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1. INTRODUCTION
One of the goals of control theory has been to capture major elements of

the engineering process of feedback design under the umbrella of a formal
mathematical synthesis problem. The motivation for this goal is self evident.
Once formalized under such an umbrella, the elements of engineering art
become rigorous tools which can be applied more or less automatically to ever
more complex design situations.

Perhaps the best known example of formal mathematical synthesis is the
linear-quadratic-gaussian optimal control problem (LQG) [1]. This problem for-
malizes a specific design situation, namely the construction of feedback com-
pensators for finite-dimensional linear plant models, with stability and least-
squares performance under additive disturbances as design objectives. Need-
less to say, this covers only a small subset of typical overall engineering design
problems. However, linear models are applicable often enough (particularly in
early stages of a project), and least-squares objectives can be manipulated clev-
erly enough (via free parameters in the quadratic criterion) that LQG has proven
itself useful in many diverse design applications.

Research developments over the last several years have shown that the
flexibility provided by the quadratic criterion of LQG is remarkably broad.
Indeed, it is possible to choose free parameters in such a way that the entire
formal design process can be re-interpreted not as a least-squares error minimi-
zation problem but as a "loop shaping" problem -- that is, a problem of designing
feedback compensators to achieve desirable sensitivity and complementary sen-
sitivity transfer functions at critical loop-breaking points of the feedback sys-
tem. We believe that such a re-interpretation is useful enough for practical
design to warrant a separate label and a separate exposition. The label which is
beginning to stick is LQG/LTR, which stands for linear-quadratic-gaussian syn-
thesis with loop transfer recovery. Its exposition was first given by Doyle and
Stein in [2]. This paper provides an alternate perspective on the methodology
and presents several useful new twists. These include a formal weight selection
procedure which permits essentially arbitrary specification of system sensitivity
functions for minimum phase problems, a classification of all recoverable func-
tions in non-minimum phase problems, and certain direct relationships between
weights and sensitivities for the latter which apply to all scalar and certain
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multivariable cases.
Since LQG/LTR looks most interesting under the classical frequency domain

design paradigm of Nyquist and Bode [3,4], we begin in Section 2 with a very
brief review of this paradigm as applied to multivariable problems. We then pose
a formal H2-optimal synthesis problem which attempts to trade-off the chief
design functions of the paradigm. Comparing this a-problem with the stan-
dard LQG formulation then suggests specific choices of free parameters in the
latter to solve the former. Under minimum phase assumptions, the resulting
solutions exhibit very nice frequency domain properties. These are described
in Section 4. Properties which hold for non-minimum phase cases are also dis-
cussed, along with current research questions. Section 5 discusses the non-
minimum phase case in more detail and provides a brief example. Section 8
makes concluding comments.

·-·----- ---- 1-- -- ·---- ···-- ·-- -·
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)FEEDBACK DESIGN IN THE FREQUENCY DOMAIN

Ever since the basic work of Nyquist, Bode and others, the classical
approach to feedback design has followed the frequency domain perspective
illustrated in Figure 1. We are given a multivariable plant described by a
rational transfer function, C(s), and wish to design a compensator, K(s), such
that the closed loop feedback system satisfies the following basic requirements:

(1) Stability: bounded outputs, y(s), for all bounded disturbances, d(s), and
bounded reference inputs, r(s)

(2) Performance: small errors, e (s), in the presence of d(s) and r(s)
(3) Robustness: stability and performance maintained in the presence of model

uncertainties, 6G(s), expressed in whatever form is appropriate for the real
plant at hand

As is well known, the first of these requirements imposes structural con-
straints on certain transfer functions of the closed loop system, e.g. a Nyquist
encirclement count for the function det(I+GK) [5]. Likewise, the second
requirement imposes magnitude constraints on certain transfer functions. In
particular, for Figure 1 where disturbances and commands are reflected to the
output loop-breaking point, the (output) sensitivity function

S(s) = [I + G(s)K(s) ]-1 (1)

must be small for all frequencies, s =j c, where the disturbances and/or refer-
ence commands are large. This latter statement is a fundamental frequency
domain prescription for feedback design. We will refer to it as

P1l: "Make S(jc) small whenever d(jc) or r(jc;) are large."

For classical single-input single-output (SISO) systems, the meanings of
"small" and "large" in (P1) are, of course, to be understood in terms of the abso-
lute values of the respective complex numbers at each frequency. For multi-
input multi-output (MIMO) systems, these meanings must be treated with
greater care. Complex vectors, d (j ) and rCj ), will be taken as small or large
according to the size of their usual Euclidean norm. Complex matrices, S(jcw),
will be taken as small if their largest singular value, T[S(jcw)], is small, and they
will be taken as large if their smallest singular value, fI[S(jo)], is large. With
this generalization of definitions, the design prescription (Pl) applies to SISO
and MIMO systems alike [2,6].

The third feedback design requirement -- tolerance for uncertainty -- can
also be expressed in terms of magnitude constraints. In this case, however, the
transfer functions to which the constraints apply depend upon how model uncer-
tainties are characterized. In classical SISO problems, tradition dictates that
gain margins, gm, and phase margins, pm, be used to characterize tolerable
uncertainty. These margins are suitable for uncertainties in the following
specific form:

g(s)+&g(s) = exp(L)g(s) A (1+L)_g(s) (2)

where L is an arbitrary real scalar with abs(L) gm ln(10)/20 for pure gain
uncertainty, or L is an arbitrary imaginary scalar with abs(L) 5 pm/57.3 for
pure phase uncertainty. This characterization can be generalized to MIMO prob-
lems as follows:

G(s)+6G(s) = [I+L(s)]G(s) (3a)
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where L(s) is an arbitrary stable * transfer function matrix with

a[L(jwad m(c)) (3b)

Equation (3) is sometimes called "unstructured multiplicative uncertainty". It
covers simultaneous gain, phase and directions errors which are unknown but
bounded in size. The bound, m(c), indicates the maximum normalized magni-
tude which the model error can attain. It is typically small (m<<1) at low fre-
quencies but invariably rises toward unity and well above (modelling error >>
100%) as frequency increases.

It can be readily verified by direct manipulation of det[I+(G+6G)K] [see 6],
that stability is maintained in the presence of all possible uncertainties charac-
terized by (3) if and only if the "complementary (output) sensitivity function
[7]"

T(s) = G(s)K(s) I+G(s)K(s)]1' (4)

satisfies

P[TT(j w) ] 5 ( wfor all w) (5)
L (c)

This condition leads to the second fundamental frequency domain prescription
for feedback design:

P2: "Keep T(ja) small wherever m(o) is large"

Note that since T(s) is nothing more than the closed loop command response
transfer function, (P2) can also be interpreted as a prescription to restrict
closed loop bandwidth to the frequency range over which the plant model is
valid.

Taken together, the two design prescriptions (P1) and (P2) capture the
basic features of feedback design as viewed from the frequency domain. We face
two functions, S(s) and T(s), which both need to be small on the jo-axis. How-
ever, since

S(s) + T(s) = 1 (6)

they cannot be made small simultaneously. Rather we must trade-off the size of
one function against the size of the other in accordance with the relative impor-
tance of disturbance/command power and model uncertainty at each fre-
quency.

Feedback design is thus seen as a game of essential trade-offs between
transfer functions. Of course, these trade-offs are not always as pure as the one
identified above. For example, we have ignored sensor noise in Figure 1. This
imposes additional magnitude constraints on T(s). We have also restricted dis-
cussion to the output loop-breaking point. Other points give rise to trade-offs
between their respective sensitivity and complementary sensitivity functions
and even to trade-offs between functions taken from different points. Our objec-
tive here is not to cover all cases but simply to illustrate that the frequency
domain viewpoint gives rise to certain basic trades which can be solved via
LQG/LTR.

This assumption can be relaxed [2,6].



:3 FORL H2 -OfPMIZATlON VIA LQG/LTR
Trade-offs between transfer functions can be formalized by posing them as

function-space optimization problems. The first thing needed is a convenient
criterion of smallness. Consider

a[M]2 = AMx[MM1 ] h Trac[MMA] (7)

This shows that a matrix M will be small if 7r[MMH ] is small. Using this latter
measure for the two matrices, S(co) and Tjco), adding weights W(jco) to trade
one against the other, and integrating over frequency gives the following plausi-
ble optimization problem:

Given the plant G(s), weights W(s), and sensitivity and complementary sen-
sitivity defined by (1) and (4), respectively, find a stabilizing compensator
K(s) to minimize

J = f( 7T[SWWHSH] + r[ TTH] ) dw

= 7r[MMH] do (Ba)

with

Mh(j)= [S(j$)W(jc) T(jc) ] (Sb)

In mathematical terms, this represents an optimization over the Hardy space of
stable transfer functions with 2-norm, i.e. an H 2 -optimization problem [8].

Depending upon the properties of G(s) and the choice of W(s), optimizing
compensators for (8) are not in general finite dimensional, strictly proper, or
even proper. However, under the mild restriction that G and W are themselves
finite dimensional and strictly proper, it is possible to show that the standard
LQG problem can be used to generate a sequence of strictly proper compensa-
tors which minimize (8) in the limit and maintain closed loop stability. To show
this, consider the usual LQG setup:

Given

d= (t) + Bu(t) + Lt(t) (9a)dt-

Y(t) = Cz (t) + i~.rl(t) (9b)
z(t) = Hx(t) (9c)

where matrices (A,B,C) form the standard n-dimensional state-space
representation of G(s), i.e.

G(s) = Ci(s)B with t(s) = (sI-A)- , (9d)

where z(t) is an auxiliary response variable, and where t(t) and 77(t) are
Gaussian white noise processes with unit intensities.
Find a controller depending only on y (r) and u (T), T~t, to minimize

JLO= E l{ T ((ZTZ + p2 UTU)dt (10)

The free parameters of this problem are the noise input matrix L in (9a), the
scalar A in (9b), the auxiliary response matrix H in (9c), and the scalar p in (10).
In contrast to the standard LQG formulation, these parameters will not be given



a priri physical significance (e.g. process noise, sensor noise, controlled vari-
ables, control weights). Rather, they are free to be manipulated for other design
purposes. It is well known, of course, that under mild assumptions on these
parameters, the LQG problem yields a unique n-dimensional fixed-parameter
stabilizing compensator as its solution [1].

Given that LQG produces a stabilizing compensator K(s), it is possible to
transform (10) into an equivalent H 2-criterion, and hence, to verify that LQG
solves an H 2 -problem. Note first that equations (9) can be written in the fre-
quency domain as

f G C$tL I1ul
H1= [IHB HtL Oi1j (11)

Substituting u = -K(s)y yields

=P(S) (12a)

with

p(5 _ L[-H BK(IH+GK)-1CTL -.uHtBK(I+GK)-1j (12b)
() = -pK(+ GK)- 1 CL ppK(I+ GK) ] (1b)

Finally, substituting (12) into (10) via Parseval's Theorem yields

JLQg = 1 T r[PPH] do (13)

Comparing (8) and (13), it is now apparent that the only remaining step
needed to solve (8) is to show that free parameters exist for (12b) such that
P(s) reduces to M(s). It is easy to verify that the following choices do the
trick:

Choose L and Au such that

CL (s) (14a)

and let

H=C and p -0 . (14b)

Then

P(S) [(I+ GK)-I W -GK(I+ GK)- l (14c)

Note that for each non-zero value of p, the LQG solution for these choices pro-
duces a stabilizing strictly proper controller which is H 2-optimal for criterion
(13). This criterion, however, approaches (8) more and more closely as p - 0.
Hence, for a sequence of decreasing p-values, we get a sequence of controllers
which optimizes (8) in the limit.

It is also easy to verify that the following alternative to (14) produces
another useful transfer function trade-off:

Choose H and p such that

CHB = W(s) (15a)
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and let

L=B and -O-,0 . (15b)

Then

p(s) , p [ W(I+KG)-KG o (15c)(I+KG)-'KG ol
These choices accomplish an H 2 -trade-off between the sensitivity and comple-
mentary sensitivity functions at the input loop-breaking point of Figure 1
instead of at the output. Both choices, (14) and (15), will be referred to as
LQG/LTR.



4. PFROPITIES OF LQG/LTR SOLUTIONS
The practical value of a formal synthesis problem rests in the qualitative

properties of its solutions. We will see in this section that H 2 -solutions via
LQG/LTR have very nice properties for the class of systems whose models are
minimum phase, i.e. for G(s)'s with no transmission zeros in the right half plane
[5j. For non-minimum phase models, certain integral constraints apply to the
H -solution (and to solutions from all other design methodologies as well) whose
impact is currently only partially understood.

4.1. Properties for Minimum Phase Models
The compensator produced by (14) has the following well known form:

KLQC(S) = K 0(sI-A-BKC -K C)-'1K (16)

where Kj is the Kalman filter gain corresponding to the parameter choices
(14a), and K, is the LQ-regulator gain corresponding to (14b). Note that K, is
functionally dependent on the parameter p. It is shown in [2] that this func-
tional dependence produces the following limit for square minimum phase G(s):

G(s )KLG(s) -, C@(s )K! poinLtwise in s

as p - (17)

Equation (17) shows that the optimal (output) loop transfer function matrix of a
minimum phase H 2 -problem (8) corresponds to the loop transfer function of a
Kalman filter with its loop broken at the residual point, as illustrated in Figure 2.
Moreover, (17) shows that the sequence of LQG solutions generated by (14) con-
verges to this function ( "recovers" this function) as the design parameter p
becomes small.

4.1.1. Two-Step LQG/LTR Design
The above properties suggest a two-step approach to H 2 -optimal design:

Step(1): Design a Kalman filter, via (14a), with desirable sensitivity, comple-
mentary sensitivity, and loop transfer functions
Step(2): Design a sequence of LQ-regulators, via (14b), to approximate the
functions in Step(1) to whatever accuracy is needed

Both of these steps are easy design tasks. The first is easy because Kalman filter
sensitivity, complementary sensitivity and loop transfer functions are explicitly
related the the chosen weights W(jc;), as described below, and the second is
easy because it involves only repeated solutions of algebraic Riccati equations
followed by inspection of S and T.

4.1.2. Relations between Kalman Filter Functions and Weights
As a consequence of Kalman's dual equality for filters [9] and of equation

(17), the transfer functions produced-by standard Kalman filter designs can be
shown to exhibit the following nice properties:

Property(1): Designer-specified shapes
For all frequencies where the weights, Wjw)=Cb0(jC)L/ , are much larger
than unity, Kalman filter sensitivity, complementary sensitivity, and loop
transfer functions have the shapes

i[(ICP(ja )KjW)-(j] )]



s[COX)Kf(I+C0Cjw)Kf)l] 1 (la)
aj[Ct(j;)Kf ]R airw(jW)]

for all singular values a.

Property(2): Known high frequency attenuation

As c -, =, Kalman filter shapes satisfy

a [(I+Ct(jw)Kf)-'] $; 1

aj[C((jw)Kfx(I+C$(j)K,)-'] O CK] (k)

oat[C( c()Kj] [ K

for all singular value ai

Property(3): Well-behaved crossovers

As the loop crosses over from high-gain regions (18) to low-gain regions
(19), Kalman filter sensitivities and complementary sensitivities never
become too large. They satisfy

ai [(I+ Cry ;)Kf)-l] 5 1

ai[Cb(j )K; (I+ C~(j)K;)-'] s 2 (20)

for all singular values at and all frequencies w

As described shortly, the first of these properties offers essentially arbitrary
freedom to shape the sensitivity function in all high-gain regions of the Kalman
filter loop. The second property shows that the loop must eventually transition
from high gain to low gain regions and will do so at an attenuation rate propor-
tional to 1/ c. The third property shows that these transitions will automatically
be nice, in that the loop does not amplify disturbance or command errors during
the transitions and retains stability in the face of modelling uncertainties as
large as 50% ( compare (5) and (20)). The latter stability robustness margin is
not adequate, of course, for the entire frequency range. At high frequencies
where uncertainties can greatly exceed 100%, we must rely on the attenuation
rate provided by Property (2) for the needed margin. As a consequence of (20),
this attenuation rate actually applies not only at very high frequencies but
throughout the crossover region.

4.1.3. A Formal Procedure to Shape Sensitivities

As evident from (18), in order to shape the high gain regions of a Kalman
filter loop we merely need to Aind L, the noise input matrix in our design model,
such that the aj[C4L]'s have the desired shapes. This can be done directly by
experimenting with various L's, and/or more formally by augmenting additional
dynamics to the design model such that the choice becomes trivial. For exam-
ple, whenever the desired shapes correspond to a stable function, Wd(S), it
suffices to add this function to the output of G(s) in the manner shown in Figure
3. In this figure, the plant's unstable dynamics have been collected into an all-
pass factor, BP (s), such that

G(s) = Bp(s)-' G,(s) (21)

where CGm(s) is minimum phase and stable, and

B (j C)BC j ()H = I for aU Cj (22)



Signals from Wd(s) are passed through the all-pass as shown in the figure. The
overall state-space representation then remains stabilizable from t(t) and u(t)
and detectable from y(t) and z(t) (LQG solutions exist) and has a noise input
matrix L which satisfies

C<(s)L = Bp(s)- Wd(s) . (23)

Hence, from (22)

aj[Ct(j )L] = i[ Wd(jw )] (24)

for all c; and all singular values, as desired.

Note that this formal augmentation procedure * is particularly simple when
G(s) is stable, with B.(s) = I. In addition, if the desired function Wd(s) is itself
a legitimate Kalman filter loop transfer function (i.e. satisfies a dual Kalman ine-
quality [10]), then the filter design step may be skipped entirely by letting
Kf = L. Despite this simplicity, however, we caution that the procedure should
not be applied indiscriminately. It produces compensators which cancel all
stable dynamics of G(s) and replaces them with dynamics of W(s). Such cancel-
lations should be minimized by constructing the desired weights as much as pos-
sible out of dynamics of G(s), (i.e. by choosing noise inputs which directly drive
the original state-space of G).

All of the above properties have duals based on the free parameter choices
in (15). For this case, again with square minimum phase G(s), it has been shown
that [2]

KLp(s)G(s) - KC @(s)B pointuise ins

as A - 0 (25)

where K, is the gain matrix of an LQ-regulator designed with parameters from
(15a). Hence, the optimal (input) loop transfer function of an H 2 -problem
corresponds to the loop transfer of an LQ-regulator broken at the control input
point. This function can be recovered by a sequence of Kalman filter designs
with parameters from (15b). A two-step design process now starts with a single
LQ-regulator which achieves desirable sensitivity, complementary sensitivity,
and loop transfer functions, and is followed by a sequence of filter designs to
approximate these functions to whatever needed accuracy. Nice properties dual
to (18)-(24) apply which make this process easy.

4.2. Properties for Non-minimum Phase Models
When the model G(s) has right half plane transmission zeros, the asymp-

totic behavior of equations (17) or (25) does not hold, and the two-step LQG/LTR
design process fails to produce the desired functions. Nevertheless, the process
still offers useful options which can be exploited in design.

4.2.1. Option 1: Avoiding the issue
The first thing to note is that the minimum phase rtequirement applies to

the model of a plant, not to the plant itself. A common design trick, therefore,
is to approximate non-minimum phase plants with minimum phase design
models. This is perfectly safe provided that the resulting (deliberate) modelling

' Formal augmentation of desired loop shapes was fArst proposed for stable plants in 11i].
Extensions to the unstable case similar to Figure 3 are developed in [12]. The needed ail-pass
pole factors can be constructed by solving an additional algebraic Riccati equation, as illus-
trated for completeness in Figure 4.



-11-

errors are incorporated into the uncertainty characterization of equation (3).
One way to do the approximation, for example, is to collect all unstable zeros
into an all-pass factor analogous to (21), i.e.

G(s) = B.(s) G,(s) (26)

where GC(s) is minimum phase and

B, (j o) B, (j ) = I jor all c) (27)

The plant G(s) is then approximated by the model GI,(s). For a single zero at
s = +z, this produces a normalized multiplicative error which satisfies

at[L(c<w)J = absetI W (28)

Note that this error is small for all ;w « z. Indeed, whenever (28) is small com-
pared to the existing model uncertainty, m(w) in (3), it can be added to m(cw)
with minor effects, and the LQG/LTR design process can proceed in normal
minimum phase fashion.

4.2.2. Option 2: Living with the issue
It is evident from (28), of course, that sufficiently small values of z can pro-

duce approximation errors which dominate other model uncertainties. In that
case, our design trick, while still safe, becomes excessively conservative. It
invokes design prescriptions, (P2) and equation (5), which ignore too much of
the known phase and direction structure of the modelling error.

For plants in the latter category, the H 2 -problem offers fewer known gen-
eral properties. The sequences of compensators produced by (14) or (15) do not
converge to nice functions such as (17) or (25). They do, however, converge to
H 2 -optimal functions, that is, to functions which achieve the best H 2 -trade-off
between S and T, subject to the inherent constraints imposed by non-minimum
phase zeros. Non-minimum phase constraints have been interpreted only
recently, and only for SISO problems, as integral relations over frequency
applied to the function log[absS(jw)] [15]. The relations show that sensitivity
improvements ( S < 1) achieved in one frequency range must be paid for with
deteriorations (S > 1) over another range, with the severity of deteriorations
dependent upon right half plane zero locations. This conclusion also follows
from recent results in H'-optimization theory [16].

In our H2-solutions, the frequency ranges in which improvements and
deteriorations of sensitivity occur can be manipulated by the weights, W(s).
Like the non-minimum phase constraints themselves, however, the exact rela-
tionship between W(s) and S(s) is currently available only for SISO and certain
limited MIMO cases. These cases are developed and illustrated by means of
example in Section 5. It turns out that the shape of S(jcw) can be directly
assigned via W(jw), but its magnitude level cannot (i.e. S(jw) is determined to
within an unknown scale factor)"*. Analogous results for-general MIMO problems
remain a goal of current research.

* All-pass zero factors can be found by solving another Riccati equation, as illustrated in Fig-
ure 5, or numerically preferred, by solving generalized eigenvalue problems [13,14].
*" Note that these limitations are precisely the same as the limitations on S180
H -designs [16].
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4.2.3. Option 3: Giving up H 2 -optimality
A heuristic argument which explains why equations (17) or (25) cannot hold

for non-minimum phase problems proceeds as follows: No stabilizing compensa-
tor K(s) can use unstable poles to cancel unstable zeros of the plant G(s).
Hence, the products GK or KG must retain the non-minimum phase structure of
G. The Kalman filter and LQ-regulator loop transfers (C$K! or KciB), however,
are known to be minimum-phase (else they could not exhibit infinite positive
gain margin [17]). Thus, neither function can be recovered.

This reasoning naturally leads to the question "What class of functions can
be recovered?". More precisely, if we modify the LQG/LTR process by replacing
the Kalman filter design step (14a) with an arbitrary choice of filter gains, say
Kv = F, but retain the sequence of LQ-regulators (14b), for what choices of F
will a convergence result such as (17) apply? The answer to this question is not
surprising. Any function which shares the right half plane pole/zero structure
of G(s), can be recovered by the modified process. Specifically:

Let G(s) be square. Choose filter gain F such that

C'(s)F = B,(s) Bp (s)-l W,(s) (29a)

where W,(s) is any stable, strictly proper, full rank function, and where
B, (s) and Bp(s) are all-pass factors of right half plane zeros and poles of
G(s), respectively, such that

G(s) = B,(s)Bp (s)-' 1 Gw(s) (29b)

with Gm,(s) minimum phase and stable. Then the sequence of compensa-
tors generated by (14b)

KF(s) = K, (sI-A -BK. -FC)-IF (30)

satisfies

G(s) KF(s) - C$(s)F pointwise ins

as p - 0 (31)

This result follows from a minor variation of the original recovery derivation for
(17). The modified derivation is included in Appendix A for completeness. A for-
mal augmentation procedure which implements the result is shown in Figure 6.
This procedure is analogous to Figure 3 for minimum phase plants. Hence, the
same caveats apply. More importantly however, since F in (29) is no longer a
Kalman filter gain, no LQG guarantees apply -- not H 2 -optimality and not even
stability. Separate test must be performed on the function C4)F in order to
assure that it has desirable feedback properties.

1- -rn ---·



5. LQG/LTR FOR NON-INMUM PHASE PROB _LMS
As discussed above, the relationships between weights and sensitivities in

non-minimum phase H 2 -problems is currently available only for SISO and cer-
tain MIMO cases. This section provides an informal description of the SISO rela-
tionships and illustrates them with a simple example.

5.1. SISO Relationships
The key feature which makes minimum and non-minimum phase problems

different is that the latter impose certain global constraints on achievable sensi-
tivity functions. These constraints are a consequence of the analyticity of s(jy )
and have recently been expressed in the following Poisson Integral form [15]:

Let z,i, = 1,... m, be right half plane zeros of the plant g (s), distinct for sim-
plicity, let bp(s) denote the plant's all-pass pole factor (if any), and let S(o)
denote the magnitude of the sensitivity function of any stabilizing feedback
loop for g (s). Then 

f log[9(c)] v 2 (c))dc = i-og[bp-(z1 )] for eachi (32a)
0 2

where vii(c) are "constraint weighting functions" defined by

= Re zi
(c_-Im z )2 +(Re za) 2 (32b)

These constraint expressions can be used with Lagrange multipliers to turn our
original constrained H2-optimization problem in (8) (viewed as an optimization
over s, with s constrained to the class of sensitivities produced by stabilizing
compensators for g) into an unconstrained problem, i.e.

J = sf uj2d c + X Ai | Fgog(bp- (zi)) -lo()t Ujdo (33)
o [

where iUi(w) is the magnitude of the usual weight on sensitivity, and the comple-
mentary sensitivity term in (5) has been dropped for simplicity. Since s(w) in
(33) is now unconstrained", simple differentiation at each frequency produces
the following optimal ':

M(o (34)

This last equation demonstrates that the optimal non-minimum phase sensi-
tivity must be a linear combination of pre-determined constraint weighting func-
tions divided by the designer's chosen sensitivity weighting function. Note how-
ever, that the Lagrange multiplier values Xi remain unknown. Hence, 9(c) is not
actually known until we solve the H 2 -problem. Nevertheless, the equation lends
substantial information about what sensitivity weights to choose. In particular,
systems with a single right half plane zero will have sensitivities proportional to

A. We can therefore compute w(w) explicitly to produce an entire desired

* For stable systems, the right hand side of (32a) is replaced by zero. For minimum phase
systems, all weightings in (32a) reduce to unity and the right hand side becomes a sum of
real parts of the unstable poles [15].
· This simple argument depends upon an assurrption that no constraints other than (32) ap-
ply to I. Though not formally proven in [15] or here, this assumption is apparently true.
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shape of S(w), with only a scale factor left unknown. An example which illus-
trates this possibility is given shortly.

More generally, if several right half plane constraints apply, it is possible to
use equation (34) to parameterize the weights in terms of the Lagrange multi-
plier values, and then to search over these Lagrange parameters until the
desired shape of s(co) is achieved. This process is also illustrated below.

5.2. An Example

Consider the following simple SISO system with a non-minimum phase zero
at z = l+jO and an unstable pole at p =0.2+j 0:

g () = bp(s)-lg.(s)

with

bp(s) = s -0.2 ge(s) 0.2(-s + 1)
s +0.2 (s + 1)(s +0.2)

According to (33), sensitivities for this plant must satisfy a single integral con-
straint with weighting given by

v(o)2 = 1 (36)
)2+

Hence, H 2 -optimal sensitivities will be related to the chosen sensitivity weights
by

= 1 1a(w) = i (37)
( (W) abs(ja + l)

This last formula was used to define several candidate sensitivity weightings
for the example. Each candidate was augmented to the plant model according
to the procedure of Figure 3, and the two-step LQG/LTR calculations were car-
ried out. Some resulting recovered sensitivity functions are shown in Figure 7.

In Figure 7a, for example, the weight q)(w) = vl(w) is used to produce a flat
sensitivity function*. The unknown constant level of this function turns out to
be s=1.5 which is precisely the minimum H'-norm achievable via
H'-optimization [16]. Note that this example verifies that H 2 -weights exist to
solve H.-problems [7]. Moreover, equation (37) provides a constructive way to
find such weights for the case at hand.

Figure 7b shows an alternate choice of w(c) calculated according to (37) to
produce a ten-fold improvement in low frequency sensitivity compared to high
frequency sensitivity. This improvement is indeed achieved, but at the expense
of deterioration from the minimum achievable flat sensitivity. Figure 7c shows a
choice in which the improvement is sought at high frequencies instead of low,
and Figure 7d shows a choice where improvements are sought at mid-
frequencies.

Finally, to illustrate the general case with more than one non-minimum
phase constraint, consider a modified version of our plant with one additional
right half plane zero, i.e.

g,(s) = o0.2(-s + 1)(-s +.5) (38)
(s +.2)(s +l)(s +.5)

* We have also retained a small weight ( j -=,001) on complementary sensitivity in order to
keep compensators realizable. Hence, all S(X)'s in Figure 7 return eventually to unity.
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This new plant must satisfy two non-minimum phase constraints, one with
weighting function vl from (36) and the other with weighting

'v2(W)2 = .5 (39)
W2+,25

Now suppose that we still want to achieve a flat sensitivity function. According to
(34), the sensitivity weighting required to do so must satisfy

[2+1 + 0.525 (40)

This magnitude corresponds to

() (J+z(XXe) (41)
u ~JW~) = (j ;,; + i) (j (41)

where the zero location z(Xl,X2) is indexed by the multipliers and remains unk-
nown. A brute force search to determine its value is summarized in Figure 8.
The desired flat sensitivity is attained for zt2.55 and has an H--level it3.54.
As expected, this is higher than our previous level due to the extra non-
minimum phase constraint.

All of the above results confirm the basic non-minimum phase behavior
identified in [15] and [16], namely that sensitivities cannot be shaped arbi-
trarily. They are constrained to satisfy certain integrals which translate into a
minimum H'-bound achievable by a flat sensitivity function. Improvements
over this bound are possible in any finite range of frequencies but must be paid
for with deteriorations in other ranges. We have seen that the ranges in which
the improvements and deteriorations occur can be effectively manipulated with
the weights W(s) in SISO H 2 -problems. While no details are given here, this
capability also generalizes to the class of MIMO problems with orthogonal non-
minimum phase zero directions (including, for example, systems with a single
real non-minimum phase zero or a single non-minimum phase complex conju-
gate pair). This follows because the all-pass zero factor B,(s) for such prob-
lems can be diagonalized by orthogonal transformations, and the SISO results
can then be applied separately in each direction. More general MIMO cases
remain to be resolved.



6. CONCLUSION
This paper has presented a new perspective on the formal LQG/LTR design

method for linear multivariable feedback systems. We have interpreted the
design problem as an essential trade-off between sensitivity and complementary
sensitivity functions in the frequency domain. This trade-off was posed as a
weighted H 2 -optimization problem and solved with a modified form of the stan-
dard LQG method.

Solutions of the H2-problem have very desirable properties for minimum
phase systems. For this case, a two-step design process is appropriate, begin-
ning with a Kalman filter (or LQ-regulator) design to achieve desirable transfer
functions, and followed by a sequence of LQ-regulator (or Kalman filter) designs
to recover these functions to any needed accuracy. A formal weight augmenta-
tion procedure was described to defitne H 2-weightings which achieve essentially
arbitrary shapes for sensitivity functions in the first step.

While this two-step design approach does not carry over directly to non-
minimum phase problems, several options for dealing with such problems were
discussed. It turns out that H 2 -solutions for SISO and some MIMO cases can still
be manipulated effectively through the choice of weights, and that a large class
of loop transfer functions can still be recovered with the LTR approach.

These various features make LQG/LTR a very effective design tool for linear
multivariable feedback systems. The major weakness of the method appears to
be its restriction to design trade-offs at only one loop-breaking point. That is,
the method can trade-off S(j c) against T(j o) with both defined at the output or
both defined at the input. However, it cannot easily trade-off these functions
when they are defined at different points.' This means that the method
currently obligates designers to reflect all feedback design requirements to one
of the two loop-breaking points. While such reflections cause no difficulty in
SISO problems, it is easy to construct MIMO examples where they are arbitrarily
conservative. Only further research and applications experience can determine
whether this will remain an important shortcoming.
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APPENDIX A
This appendix documents a modification of a derivation in [2] to show that

the class of functions in Section 4.2.3 can be recovered in non-minimum phase
cases. First note that the factored plant in equation (29) has the following (non-
minimal) state space representation:

-- z2 =[CI Al o 2 I + + (Ala)

y = [D 2 C1 C2 ] 1 (Alb)

where the first group of states represents the minimum phase (but possibly
unstable) factor of the plant. and the second group represents the non-
minimum phase all-pass zero factor, B,. (For unstable plants, note that F must
be selected to keep the system stabilizable from- (t). Then CoB and C~F share
a common pole factor as well as a common zero factor, as required in equation
(29)).

It follows from this structure and from known asymptotic properties of LQ-
regulator gains [18] that

pK1(p) - U[C,O] UCm

as p -, 0 (A2)

where U is an orthonormal matrix and C, is a minimum phase version of the
plant's output matrix, such that

CI(s)B = Bz(s) Cm (s)B and Ct(s)F = B,(s) C, (s)F (A3)

One application of the matrix inversion lemma to equation (30) plus the lim-

iting behavior (A2) now shows that the compensator KF(s) has the limit

KF(S) - (CmZ(s)B)-B 'Cm (s)F (A4)

where

S(s) = (sI-A-FC)-1

One more application of. the inversion lemma applied to Cam together with (A3)
yields

,m ,(s) = [B, (s)- 1 (I-C(s)F) -'B (s )] C.( (s) (A5)

Finally, substituting this into (A3) and (A4) gives the desired result:

G(S)KF(S) = B,(s)Cm' (s)BKF(s)

B.(s) Cm q(S )B (C;Q(S )B) - 1 Cm, (s)F

= B.(S)C(s)F = C(s)F (A6)

-U---------



Figure 1: STANDARD FREQUENCY DOMAIN DESIGN PROBLEM
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Figure 2: LIMITING SOLUTION OF H 2 -PROBLEM (8)
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Figure 3: FORMAL WEIGHT AUGMENTATION
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Figure 4: ALL-PASS POLE FACTORS

Let Kfp satisfy

o = AZ + EA T + q 2 BBT -ECTC-
Kfp = -ECT as q - 0

Then one possible all-pass pole factorization is given by:
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Figure 5: ALL-PASS ZERO FACTORS

Let Kz satisfy
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Then one possible all-pass zero factorization is given by:
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Figure 6: FORMAL WEIGHT AUGMENTATION FOR
RECOVERABLE FUNCTIONS
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Figure 7: SENSITIVITIES AND ASSOCIATED WEIGHTS
Part A
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Figure 7: SENSITIVITIES AND ASSOCIATED WEIGHTS
Part B
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Figure 7: SENSITIVITIES AND ASSOCIATED WEIGHTS
Part C
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Figure 7: SENSITIVITIES AND ASSOCIATED WEIGHTS
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Figure 8: SEARCH OVER LAGRANGE PARAMETERS
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