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Abstract

We describe a thermodynamics-motivated, information theoretic analysis of proteomic data 

collected from a series of 8 glioblastoma multiforme (GBM) tumors. GBMs are considered here as 

prototypes of heterogeneous cancers. That heterogeneity is viewed here as manifesting in different 

unbalanced biological processes that are associated with thermodynamic-like constraints. The 

analysis yields a molecular description of a stable steady state that is common across all tumors. It 

also resolves molecular descriptions of unbalanced processes that are shared by several tumors, 

such as hyperactivated phosphoprotein signaling networks. Further, it resolves unbalanced 

processes that provide unique classifiers of tumor subgroups. The results of the theoretical 

interpretation are compared against statistical multivariate methods and are shown to provide a 

superior level of resolution for identifying unbalanced processes in GBM tumors. The 
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identification of specific constraints for each GBM tumor suggests tumor-specific combination 

therapies that may reverse this imbalance.

Graphical Abstract

 Background

GBM is the most common and lethal human brain tumor. GBM tumors exhibit high inter- 

and intra-tumoral heterogeneity 1, 2, making them one of the most difficult cancers to treat. 

Despite major efforts to improve GBM patient survival, the majority of patients fail to 

respond to current standard of care 3. In fact, certain GBM tumors have been shown to 

develop resistance to targeted inhibitors via adaptive rather than genetic mechanisms4. This 

highlights the importance of proteomics as a tool for providing an improved understanding 

of this disease. GBM exhibits high inter-tumor protein expression variability, which is a 

consequence of both patient specific genetic backgrounds and potentially significant and 

distinct driver or passenger mutations. To quantitatively analyze how the proteomic 

heterogeneity of GBM tumors influences functional outcomes, we applied a thermodynamic 

based theoretical approach that has previously been applied to non-equilibrium chemical and 

physical systems 5–7. The goal is to classify GBM tumors within the context of stable, 

steady states, and unbalanced processes that deviate from those stable states. Our hypothesis 

is that such a classification might provide guidance for identifying effective therapies and 

therapy combinations for specific tumors, with the notion that effective therapies are those 

that remove unbalanced processes.

This paper represents the first application of surprisal analysis to proteomic data. As a proof 

of principle, we applied this analysis to a previously reported, mass spectrometry-based 

quantitative protein expression and tyrosine phosphorylation dataset collected from a panel 

of 8 patient derived GBM xenografts 2. These tumors variously expressed wild-type (wt) 

epidermal growth factor receptor (EGFR), overexpressed wtEGFR, or overexpressed the 

EGFR variant III (EGFRvIII) oncoprotein, and thus reflect some of the dominant molecular 

signatures that characterize GBM tumors. Quantitative measurements were taken from 4 

biological replicates (32 tumors are captured in this dataset) 2.

We base our approach on the premise that biological systems, normal or diseased, reach a 

state of minimal free energy at the usual conditions of a given temperature and pressure 8–10 
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subject to environmental and genomic constraints. The stable steady state of the biological 

system is that state in which the system is unchanging over time, and the inputs and outputs 

are balanced. An aggressively growing tumor is obviously not at such a stable steady state. 

Our approach considers that there are environmental and genomic constraints that preclude 

the system from reaching that stable steady state. This premise implies that tumors with 

different functional properties, as measured by proteomics, will be subject to the influence 

of different constraints. Understanding the role of those constraints requires first identifying 

the stable steady state, which is not influenced by the disease driven constraints.

To identify the most stable states for the GBM tumors we apply a maximum entropy 

based 11 surprisal analysis to the experimental data. Surprisal analysis has been recently 

applied to the analysis of biological systems 12–16 where it has been demonstrated to have a 

predictive power 17. By determining the theoretically expected distribution of protein species 

for each GBM tumor, surprisal analysis identifies the state of the minimal Gibbs free energy 

G when disease operated constraints are not imposed. A decrease in the free energy is the 

thermodynamic criterion for spontaneous change. Therefore, a basal biological state at 

minimal free energy is associated with the most stable distribution of proteins. For each 

GBM tumor separately we determine this distribution. At the transcription level the 

commonality of the most stable state in diseased and healthy tissues has been shown for 

several cancer types 13, 16. We here examine this commonality for the expression levels of 

proteins in different tumors.

Surprisal analysis is carried out for every protein from the list of thousands of quantified 

proteins across each of the 8 GBM tumors. The analysis represents the experimental protein 

and phosphoprotein expression levels, for all proteins measured, as a sum of two 

contributions. The larger contribution is a basal expression level, (the level of that protein at 

the minimal free energy of the system), and the smaller one representing the deviations from 

the most stable state due to the constraints 13–15, 18. Utilizing the basal expression level of 

every protein we obtain the most stable distribution of different protein species, and thus the 

most stable state of the system. An experimental validation of this theoretically identified 

most stable state has been recently demonstrated 17.

In the current analysis of the GBM tumors we find that a description of the stable steady 

state is robust and shared across all 8 tumors. This finding gives us confidence in the 

approach. Beyond this commonality, the tumors vary significantly from each other, as we 

identify that different constraints are operating in the different tumors.

A given constraint will influence a subset of proteins in a similar way by causing 

coordinated deviations of the protein levels (up or down) from the basal level which, in turn, 

can have a functional outcome, such as increased cellular migration. These tumor specific 

constraints can be used to characterize the intertumor heterogeneity. The molecular 

composition of those constraints can be mined to suggest drugging strategies for restoring 

the stable steady state.
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 Methods

 Theory

Surprisal analysis is a theoretical approach based on the key assumption that a biological 

system, including a tumor, is in a state of minimal free energy subject to constraints. (For 

more details see the Supporting Information 1, SI section “Surprisal analysis”). It is the 

constraints that preclude the system from reaching its most stable state where the free energy 

is at the lowest possible value. The measured protein abundance in every tumor is resolved 

as the sum of the protein expression level at the most stable state and the unbalanced 

processes (constraints). Surprisal analysis numerically represents the logarithm of the 

measured intensities of each protein i from a given tumor as a sum of terms (right hand side 

of equation (1)) where the leading term is the contribution from the most stable state. This is 

repeated for every GBM tumor. The mathematical procedure known as singular value 

decomposition (SVD) is then used as a numerical tool to fit the two sets of parameters in 

equation (1): the weights, λα(k) of the constraints that are indexed by α (also called 

Lagrange multipliers), and the Giα ( extent of the influence of the constraint α on the levels 

of each individual protein i). The values of Giα are such that their squares sum to unity, so a 

given protein abundance is fully represented by the steady state level and the constraints that 

influence that protein. Those proteins with significant Giα values (Giα > 0.03 or Giα < −0.03, 

Fig. S1) were further classified according to the GO biological categories using the DAVID 

database 19 and further examined for their functional connectivity using the STRING data 

base 20. Additional Table SI (excel table) contains lists of the proteins and their 

corresponding Giα values that are influenced significantly by the different constraints α and 

by the steady state. For more details see Supporting Information, SI section “Surprisal 

analysis” and 13, 15, 17.

We further compared our thermodynamic analysis with two commonly used statistical 

approaches, principal component analysis (PCA) and K-Means Clustering.

PCA was used to generate patterns of protein expression levels among GBM patients, using 

either a correlation matrix that standardizes variables, or directly on the data matrix. All the 

proteins with significant coefficients (Supporting Information, SI section “PCA analysis of 

the data” describes how ‘significance’ was defined) in every principle component were 

analyzed further using the DAVID database 19. For more details see the Supporting 

Information, SI section “PCA analysis of the data”.

K-Means Clustering was used to partition the dataset into different numbers of mutually 

exclusive clusters. An iterative Matlab algorithm that minimizes the sum of distances from 

each object to its cluster centroid, over all clusters, was utilized (number of iterations=100). 

Centroid clusters were computed using squared Euclidean distances. For more details see 

Supporting Information, SI section “K-means clustering of the data

 Availability of supporting data

iTRAQ proteomics datasets used in this study are available in 2. To examine to what extent 

genomic changes have a proteomic output in GBM tumors, we used CGH data available in 

the GEO database (GSE39242) as described in the Supporting Information.
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 Results and Discussion

 Application of Surprisal analysis to GBM proteomics

Surprisal analysis was used to characterize changes in the measured expression levels 2 of 

over a thousand proteins, plus hundreds of phosphorylation sites, for the 8 GBM tumors. 

These 8 tumors include two expressing wild-type (wt) epidermal growth factor 

receptor(EGFR) (GBM k = 10, 12 labeled wt), three overexpressing wtEGFR (GBM k = 8, 

15, 26, labeled as wt+), and three expressing the EGFRvIII oncogene (GBM k = 6, 39, 59 

labeled EGFRvIII).

For each protein species i we fit the observed protein abundance to the theoretically derived 

equation (1) (For more details see Supporting Information (SI) section 1a “Surprisal 

analysis”):

(1)

The left hand side of this equation is the experimentally reported 2 intensity of protein i in 

tumor k, Xi(k). On the right hand side the first term is the protein intensity  at the stable 

steady state. In the numerical fit of the right hand side of equation (1) to the data, we allow 

the most stable state term to be different for different tumors and so it is written as . 

The sum of terms Σα = 1Giαλα(k) represents deviation from the reference state due to the 

constraints labeled by α (α=1,2…) in tumor k. This is also a change in the chemical 

potential of protein i due to the constraints (SI section 1a “Surprisal analysis”). The weight 

Giα represents the extent of influence of the specific constraint α on each individual protein 

i . Proteins with the same sign of Giα (see Fig.S1) have a similar behavior in the process α 

(deviate in the same direction from the basal state). λα(k) is the weight, or amplitude, of the 

constraint α in a particular GBM tumor. We rank the constraints by their weight such that α 

= 1 is most dominant. A genetic defect or epigenetic perturbation that prevents the GBM 

tumor cells from reaching the most stable state can be considered as a constraint. For 

consistency of notation in equation (1) we represent the stable state as . 

Each constraint represents a group of collectively acting proteins. These constraints/groups 

are mathematically independent. Levels of some proteins can be influenced by more than 

one constraint (unbalanced process) due to the non-linear organization and high 

interconnectivity of biochemical pathways. Surprisal analysis allows 1) the resolution of 

unbalanced modes for every protein and 2) the elucidation of whether zero, one or more 

unbalanced processes influence a particular protein. Such insight is not achieved through a 

fold change analysis, or other statistical analyses, such as K-mean clustering.

Experimental noise can affect the fitted weights and we report error bars based on four 

biological replicates for all quantified proteins, phosphorylation sites and for all tumors.

For the iTRAQ proteomic measurements that comprise our database, protein intensities 

rather than protein concentrations are generated as an output (Supporting Information: SI 

section 1b “Implementation of surprisal analysis to the iTRAQ technology”). We interpret 
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this mean intensity to be a semi-quantitative reflection of the protein and phosphorylation 

levels across the population of cells within each tumor sample.

 Identification of the most stable state

We first seek to identify the stable steady state as a protein expression level baseline. There 

is considerable heterogeneity amongst the different tumors, and so each tumor is 

mathematically allowed to have its own stable state expression levels. It is therefore 

remarkable that a common stable state ( ) was found across all 8 GBM tumors. 

Mathematically this commonality is represented by the result that the value of λα(k),the 

weight of the stable state in tumor k, is the same, within the error bars, for all eight tumors 

(Fig. 1a).

The levels of more than 500 proteins are well fitted by the stable state term and were not 

influenced significantly by any unbalanced process. These proteins are identified within the 

red box of Fig. S1 of the Supporting Information. These proteins participate in the 

homeostatic functions of the cell, such as protein and RNA metabolism, and the cell cycle 

(Supporting Information, Table S1). It was previously shown using surprisal analysis of a 

diverse set of transcriptomic data sets that the most stable state of different organisms, 

different cell lines and healthy/cancer patients was associated with similar groups of 

transcripts involved in cellular homeostasis 13, 14, 16. This suggests that this stable state is 

also present in normal tissues.

 Unbalanced processes operating in GBM tumors

For every observed protein, surprisal analysis identifies which, if any, unbalanced processes 

influence the observed level of that given protein. When the level of a particular protein is 

influenced by only a single unbalanced process (i.e. α = 1), the corresponding experimental 

protein expression level will be well approximated by the steady state term ( ) and 

the single deviation term . Likewise, if the level of a given 

protein is influenced by more than one unbalanced processes, more than one deviation term 

is required to accurately fit the experimental level of that protein.

 Regulatory constraint

Equation 1 lists the constraints as α = 1,2… and the corresponding weights λ1(k), λ2 (k)…, 

with lower valued indices implying more dominant constraints. Our analysis resolved 7 

constraints in the data 2 which is the maximal number of constraints allowed by the data for 

8 tumors 15. We use the weight of the α = 1 constraint, λ1(k), to illustrate how to interpret 

the results. Unlike the most stable state term (Fig. 1a), the α = 1 constraint has different 

amplitudes in different tumors. It is particularly active in GBMs k = 10, 15 and 26 ( Fig. 1b). 

Fig. 1c presents a heat map of the α = 1 induced deviations Gi1λ1(k) of the protein levels 

from the stable steady state for each tumor k. Fig. 1d is an expanded heat map of the 

proteins influenced most significantly by α = 1. Phosphotyrosine events by far dominate this 

group (Additional Table SI (excel table)), implying that the influence of this constraint is the 

activation of phosphotyrosine signaling pathways (Supporting Information Fig.S2, Table 

S2). Note that for GBM10 (a wtEGFR expressing tumor), the constraint represses this 
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activity (λ1 is negative-valued in Fig 1b, and the heat maps of Fig. 1c and 1d are color-coded 

blue to indicate proteins with repressed levels relative to the steady state. In contrast, the first 

constraint leads to increased phosphoprotein signaling in GBM15, GBM26 and, to a lesser 

extent, in GBM59. This first constraint can be called a phosphorylation constraint.

We further validated the interpretation of the role of the first constraint by performing a 

surprisal analysis on just the subgroup of phosphoproteins. Our interpretation suggests that 

all members of this group must be subjected to this constraint. Indeed we find that the most 

stable state distribution for this subgroup that we label as  (Supporting Information, Fig. 

S3d) is quantitatively similar to the distribution of those same phosphoproteins identified 

through the first constraint via analysis of the full dataset (Fig. S3b, labeled as ).

To further illustrate the influence of the 1st constraint, we showed that the measured levels of 

the two phosphoproteins pSTAT3 and pAbi2 were well described by summing the 

contributions from the stable state term and 1st constraint, α = 1 (Fig. 1e and 1f). This 

summation reproduced the measured levels for all tumors, except for pSTAT3 in GBM59 

and GBM12, suggesting that this phophoprotein may be influenced by additional constraints 

in those two tumors (Supporting Information, SI sections 1a “Surprisal analysis of the data” 

and “error determination”).

 Significant unbalanced processes in the GBM tumors

 Higher-index constraints—In Figure 2a we plot the amplitude, of constraints α = 

2,3,4 for the 8 GBM tumors. These constraints exhibit a highly variable amplitude across the 

tumors. For example, the α = 2 constraint exerts a strong influence in two of the three 

EGFRvIII tumors (GBM39 and 59, Fig. 2a).

GO functional analysis of the proteins associated with this constraint indicates that changes 

in cell motility/cell adhesion are a significant functional consequence (Supporting 

Information, Table S3). The relevant proteins include key regulators of cell motion and 

adhesion, such as the proteins pLyn, pPLCγ, CD44, and pPxn 21–24 (Supporting 

Information, Tables S3 and Fig. S4). These results correspond with the results obtained from 

previous studies in which increased cell motility and invasion were detected in GBM 

EGFRvIII tumors 24, 25. Similarly, constraints indexed by α = 3–7 (Fig 2a, Fig. S5,S6 and 

Supporting information, SI sections 1d “Minor unbalanced processes”) exhibit appreciable 

amplitude on only specific tumors, and the identities of the proteins influenced by those 

unbalanced processes can inform a GO functional analysis for identifying the functional 

consequences of the specific constraints (Tables S4–S8). Figure 2b highlights the fact that 

the tumor-specific levels of individual proteins (p-Lyn and p-Pxn are shown) can be 

influenced by multiple unbalanced processes.

 A summary of the unbalanced processes and genomic relationships

A summary of the resolved unbalanced processes, their functional consequences, and their 

amplitude on the individual tumors, is provided in Fig. 3. Each tumor is influenced by a 

combination of 2–3 distinct constraints. Molecular and biological analysis of those 

constraints may provide guidance for combination therapies as discussed below.
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The unbalanced processes identified by the information theory analysis of proteomic data 

should be consistent with genomic information. To explore this, we analyzed available 

Comparative Genomic Hybridization (CGH) datasets (GSE39242) from the Gene 

Expression Omnibus (GEO) database 26 for GBM 12, 8, 15, 26 and 59 tumors. This analysis 

is described in detail in the Supporting Information (SI section 5 “Comparison between 

CGH datasets from GBM tumors and iTRAQ proteomic datasets”). We identified 

unbalanced processes and associated biological categories in the CGH data, and compared 

those to the unbalanced processes from the proteomic data. About 25–30% of the genomic 

changes correlate with the proteomic changes for a given constraint. In other words, a given 

constraint will positively influence the levels of around 200 proteins. That same constraint 

positively influences a similar number of genes, and there is a 25–30% overlap between 

these two data sets. This correspondence is consistent with literature findings regarding the 

extent to which variations in protein concentration can be explained through knowledge of 

variations in mRNA abundances 27. Interestingly, the robust core of the genomic dataset has 

significantly larger overlap (~50%) with the proteomic robust core (the stable steady state) 

and is classified according to similar biological functions (i.e. protein synthesis, mRNA 

metabolism, etc. (Supporting Information, Table S16)). This result suggests that the 

homeostatic steady state core possesses significant robustness at both the genomic and 

proteomic level. It also the validity of the information theoretic analysis of the GBM 

proteomic data sets.

 PCA analysis and k-means clustering

Our use of surprisal analysis is motivated by the notion of creating a physicochemical based 

framework for understanding biological processes. As in physics and chemistry, a free 

energy framework has the potential to predict a direction of biological behaviors 17, 28. Thus, 

the use of thermodynamics is motivated by pragmatism. It is, however, useful to compare 

our approach against purely statistical methods that are often applied to large biomolecular 

data sets, such as Principal Component Analysis (PCA) and K-means clustering 29, 30.

The covariance matrix used in surprisal analysis serves as initial input for further 

thermodynamic based analysis and theoretical interpretation of the results. That matrix has a 

mathematical form dictated by the theory and it plays the role of bridging between the 

proteomic experimental data and the theory (Supporting Information, section 1a “Surprisal 

analysis of the data” and 15). It is NOT the same matrix that is used in PCA analysis.

PCA analysis is a statistical approach that concentrates on variations relative to the mean 

(Supporting Information, SI section 3 “PCA analysis”), and so identifies groups of the 

proteins with similar behavior relative to the mean. The covariance matrix of the PCA 

analysis is a covariance matrix of the experimental data, and the PCA eigenvectors (the 

principle components) are analyzed to extract further biological meaning. As an intermediate 

numerical step, surprisal analysis uses a covariance matrix of the surprisals, meaning the 

covariance of the natural logarithms. This has a physical, rather than purely statistical, 

significance.

PCA divided the proteomic data into 7 main patterns of proteomic alterations (Supporting 

Information, SI section 3 “PCA analysis of the data” and Fig. S7). The top four first 
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Principal components (PC) accounted for 92% of the data variance (Supporting Information, 

SI section 3 “PCA analysis of the data”). PCA was extremely sensitive to the phospho-

proteins due to higher variance of those proteins. The eigenvectors of all 7 PCs were almost 

exclusively associated with phosphoproteins (Additional Table SI (excel table), and 

Supporting Information, SI section 3 “PCA analysis of the data”), and thus had limited value 

beyond classifying the tumors according to phosphoprotein activity.

PCA did resolve significant statistical differences between the tumors (Supporting 

Information, Fig. S7), but gave little guidance to the biological interpretation of those 

differences. PC1, for example, resolves a difference between GBM10 and GBM39 (Fig. S7). 

This difference appears to be associated with the unbalanced processes α = 1 and α = 2 

identified by surprisal analysis. In fact, most proteins associated with PC1 (as identified in 

Fig. S7d) were part of the lists generated by α = 1 and α = 2 from surprisal analysis (Fig. 

S7e). Attempts to classify the proteins associated with PC1 to biological processes did not 

reveal any significant enriched biological categories. However, central phosphorylated 

proteins, such as pLyn and pPxn that are known from the literature to participate in cell 

motility pathways, were picked up by both analyses (Additional Table SI (excel table)). 

Similarly PC2 resolved a difference between GBM15 and GBM6. The proteins associated 

with PC2 formed an almost complete subset of those associated with α = 1 from surprisal 

analysis (Fig. S7f). However, it is those additional proteins that are captured by surprisal 

analysis that aid in the biological interpretation. The only PC that showed a pattern similar to 

the results of surprisal analysis was PC6, which resolved a difference between the GBM 8 

and GBM26 in a similar manner to α = 6 (Supporting Information, Fig. S7c, Table S12). A 

summary of the biological categories associated with the different PCs is presented in the 

Supporting Information, Fig. S9. This table is quite different from that generated by surprisal 

analysis. In part this is because PCA is more sensitive to the higher variance of the 

phosphoproteins. As a result, some of the important biological categories, such as glycolysis 

through oxidative phosphorylation or DNA packaging, were missed in the PCA analysis.

K-means clustering algorithm was able to generate significant clusters (with more than 

>95% of the analyzed proteins) only when just the phosphorylated proteins were included in 

the analysis (Supporting Information, SI section 4” K-means clustering of the data”, Fig. 

S10,S11) and thus had limited biological resolution of the GBM proteomic signatures 

(Supporting Information, Table S14).

These results suggest that surprisal analysis led to improved resolution of the biological 

tumor heterogeneity due to mathematical differences in the approaches.

 Towards Tumor Specific Drug Targets

Our hypothesis is that drug-targeting an unbalanced process will repress that process and 

help restore the robust steady state. In other words, an appropriate therapy will reduce the 

weights, λα(k), of tumor specific unbalanced processes. In thermodynamic terms, λα(k) is 

the measure of how far the constraint α increases the free energy of the tumor.

In order to target a particular unbalanced process, we searched for extensively correlated hub 

proteins that are influenced by that process. To this end, we appeal to the theory 13. Given 

Kravchenko-Balasha et al. Page 9

J Phys Chem B. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the extent of the influence of the constraint α on the levels of each individual protein i (Giα), 

the theory gives the pairwise correlation between proteins i and j as Giα Gjα
13. Typical 

results for such protein correlations are shown as a heat map in Fig. 4a for the α = 2 process 

in GBM59.

The group of the proteins influenced the most by the same unbalanced process (significant 

Giα) should exhibit the highest correlation (upper left hand corner of the heat map, Fig. 4a). 

These proteins identified by surprisal analysis, generate a highly connected protein-protein 

interaction map, according to the STRING database 20 (Fig. 4b). These proteins generate a 

network highly enriched in interactions (p-value ~ 0, 140 proteins have more than 360 

interactions according to the STRING database). This implies that a protein influenced 

significantly by an unbalanced process and independently confirmed by STRING to be 

highly connected, will likely influence the entire unbalanced process. Additional examples 

drawn from the analysis of other constraints are provided in the SI materials (Figs. S2,S4 

and S14,S15- with additional comments in SI section 6). We suggest that targeting of a few 

proteins with significant Giα values from distinct tumor specific constraints, rather than 

proteins from the same unbalanced process, will be advantageous for reducing the tumor 

specific imbalances.

Fig. 4c compares protein intensities, in logarithmic scale, as contributed by the steady state 

term and the intensities due to the unbalanced processes. Fig. 4c shows that for most 

proteins in any particular unbalanced process α their intensities are centered about zero. 

Therefore only a limited number of proteins have significant Giα values and so need to be 

examined.

Fig. 4d suggests that targeting a combination of highly correlated proteins from α =2,4 

unbalanced processes that specifically characterize GBM59 could effectively reduce the 

tumor imbalance and shift the tumor towards the balanced state. In GBM59 the largest 

unbalanced process, α = 1, is less specific.

To illustrate a proposed strategy for choosing potential protein candidates for tumor specific 

combination therapy we consider the pair of EGFRvIII tumors, GBM 59 and 39. These are 

similar in the constraints α = 1, 2 (Fig.3). They possess known GBM targets such as EGFR 

and the Lyn/Src family kinases 31–33 which are, in fact, influenced by the constraints. 

However these tumors differ in the α = 4 constraint. GBM 39 tumor has an additional 

induced migration module with PDGFR as a potential druggable target 31, 33 while analysis 

of the GBM59 tumor points to enhancement of aerobic glycolysis through pPKM2 (y105, 

Supporting Information, Fig. S14,S15). This provides the hypothesis that a PDGFR inhibitor 

(e.g. Imatinib), if used in combination with an EGFR (e.g. Erlotinib) and Lyn/Src inhibitor 

(e.g. Dasatinib), would be more effective in treating GBM 39 (reducing GBM39 specific 

imbalances) than GBM 59. Note that in addition to a very high functional connectivity, 

pEGFRy992 and pLyn are influenced by more than one unbalanced process (Additional 

Table SI, (excel table)), thus targeting those hub proteins can be particularly advantageous 

for pushing the GBM39 tumor towards the stable steady state. In general, we look for hub 

proteins that are influenced by an important constraint and preferably more than one.
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 Conclusion

GBM is a prototypical heterogeneous tumor, yet surprisal analysis was able to demonstrate a 

reference level (the steady state) common for all the quantitatively measured proteins across 

a panel of GBM tumors. Some of the experimentally measured protein levels are close to 

their steady state value while others deviate significantly. For each protein in a given tumor, 

surprisal analysis resolves the deviation from the steady state into a few, two or three, 

distinct ongoing processes that reflect biological constraints. These constraints help provide 

a biological differentiation of the various tumors (Fig. 3) that could not be achieved through 

PCA or K-means clustering. The definition of a highly robust, stable steady state that is 

common across all tumors was further supported by a joint genomic/proteomic analysis. 

This suggests that tumor evolution is driven by unbalanced pathways that vary significantly. 

The identification of distinct unbalanced processes, the associated biological constraints, and 

their differential influence across the various tumors, identifies a potential combination of 

tumor specific pathways from distinct constraints, and highlight a few proteins within each 

pathway. The unbalanced processes provide targets towards reducing the tumor driving 

unbalanced processes with the purpose of restoring the stable state. A further validation of 

our conclusions in different cancers and patients is required.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Identification of the steady state and regulatory constraint in GBM tumors
(a) The amplitude of λ0(k)., the k’th GBM tumor steady state term α= 0 and error bars for 

the different tumors. To within the small error bars the steady state is found to be invariant 

across all tumors. (b) The amplitude λ1(k).)of the unbalanced process α = 1 reflects the 

extent of the deviation from the steady state due to the first constraint. The role of constraint 

αis similar in tumors that have the same sign of λα(k). The error bars for the λα(k). were 

calculated from the errors associated with the mean values of measured proteins as a 

function of GBM tumor (Supporting Information 1, SI section 1c “error determination”). (c) 
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Heat map representing deviations in protein expression levels from the steady state due to 

the unbalanced process α = 1(Gi1λ1(k)) . The heat map includes the entire dataset of 

unmodified and phosphorylated proteins. (d) Heat map representing deviations from the 

steady state only in the subset of phosphorylated proteins due to the α= 1 unbalanced 

process. (e, f) For every measured protein the importance of the unbalanced process α= 1 is 

determined by comparison of the  (blue curve), sum of the stable state and the α= 

1 deviation term, to the experimental protein expression levels (black curves).
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Fig. 2. Unbalanced processes (α = 2,3,4)
(a) Amplitudes of the unbalanced processes α = 2, 3, 4 as represented by λ2(k), λ3(k), λ4(k) . 

(b) pLyn and pPxn are shown as examples for the proteins influenced by multiple 

unbalanced processes. Experimental protein expression levels (black curve) could be closely 

reproduced for the majority of the tumors (except GBM 26) only when for pLyn the α = 4 

deviation term was added to the sum  and for pPxn both α = 3 and α = 4 terms 

were added to the sum  (green curves), pointing to the significant influence of 

the constraints α = 3 and α = 4 on the protein expression levels of these proteins.
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Fig. 3. Summary of the unbalanced processes operating in the GBM tumors
Surprisal analysis identified several distinct unbalanced processes for each GBM tumor k. 

The table summarizes λα(k) values denoted by different sizes and numbers of + or − 

symbols. The size and number of +/− signs reflect the relative importance of the particular 

unbalanced process to that tumor. For example, constraint α= 4 includes an enhanced 

migration network (M) and decreased aerobic glycolysis (AG) and MAPK networks in 

GBM39, whereas GBM59 exhibits a decreased M network and enhanced AG and MAPK 

pathways (note the opposite signs for these tumors).
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Fig. 4. Towards Tumor Specific Drug Targets
(a) A heat map of the correlation of proteins in the second, α = 2, unbalanced process in 

GBM59. Shown are all the proteins with Gi2 > 0. Proteins with the highest Gi2 values (and 

consequently highest Gi2Gj2 values, values shown in red) are influenced significantly by the 

unbalanced process. These proteins are affected in the same way by the process. (b) 140 of 

the proteins with the most positive values of Gi2 (values shown in red in A) were used as an 

input for generation protein-protein network. Only 115 connected proteins are shown. (c) 
Histogram of the protein intensities at the steady state and the deviations thereof in 

logarithmic scale: Gi0λ0, that is the minimal value of the free energy and the distribution of 

the deviations, Σα=1Giαλa(k)(α=1,2,..7), correspondingly in the tumor GBM59 for every 

protein i. The values of Gi0λ0 and Σα=1Giαλa(k) are distributed in a bell-shaped manner 

about a finite negative number and about zero respectively. (d) The effect of a 4-fold 

decrease in the weights of the unbalanced processes (α = 2, 4) operating in the GBM59 on 
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the free energy. The notation Σ in the figure means Σα=1Giαλa(k)(α=1,2,..7) and is the same 

data shown in the upper part of panel c. The notation Σ − α = 2,4 in the figure means the 

sum  with λ2 and λ4 decreased by 4-fold.
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