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The nuclear matrix element determining the pp → deþν fusion cross section and the Gamow-Teller
matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the
first time. Using a new implementation of the background field method, these quantities are calculated at the
SU(3) flavor–symmetric value of the quark masses, corresponding to a pion mass of mπ ∼ 806 MeV.
The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is
within 2σ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions
to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the
analogousmagnetic interactions, the calculated pp → deþν transitionmatrix element leads to a fusion cross
section at the physical quark masses that is consistent with its currently accepted value. Moreover, the
leading two-nucleon axial counterterm of pionless effective field theory is determined to be L1;A ¼
3.9ð0.2Þð1.0Þð0.4Þð0.9Þ fm3 at a renormalization scale set by the physical pion mass, also agreeing within
the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in
few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and
opens the way for subsequent investigations of many important quantities in nuclear physics.
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Weak nuclear processes play a central role in many
settings, from the instability of the neutron to the dynamics
of core-collapse supernova. In this work, the results of the
first lattice quantum chromodynamics (LQCD) calculations
of two such processes are presented, namely, the pp →
deþνe fusion process and tritium β decay. The pp → deþν
process is centrally important in astrophysics as it is
primarily responsible for initiating the proton-proton fusion
chain reaction that provides the dominant energy produc-
tion mechanism in stars like the Sun. Significant theoretical
effort has been expended in refining calculations of the
pp → deþν cross section at the energies relevant to solar
burning, and progress continues to be made with a range of
techniques [1–10], as summarized in Ref. [11]. This
process is related to the νd → nneþ neutrino-induced
deuteron-breakup reaction [12–14], relevant to the meas-
urement of neutrino oscillations at the Sudbury Neutrino
Observatory [15,16], and to the muon capture reaction
μ−d → nnνμ, which is the focus of current investigation in
the MuSun experiment [17]. The second process studied in

this work, tritium β decay, is a powerful tool for inves-
tigating the weak interactions of the Standard Model and
plays an important role in the search for new physics. The
superallowed process 3H → 3He e−ν is theoretically clean
and is the simplest semileptonic weak decay of a nuclear
system. In contrast to pp fusion, this decay has been very
precisely studied in the laboratory (see Ref. [18] for a
review) and provides important constraints on the antineu-
trino mass [19]. Tritium β decay is also potentially sensitive
to sterile neutrinos [20,21] and to interactions not present in
the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical control
as this is a superallowed process, the Gamow-Teller (GT)
contribution (axial current) is somewhat more challenging
to address than the Fermi (F) contribution (vector current).
Improved constraints on multibody contributions to the GT
matrix element will translate into reduced uncertainties in
predictions for decay rates of larger nuclei and are a first
step towards understanding the quenching of gA in nuclei
[25–27], a long-standing problem in nuclear theory.
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In this Letter, LQCD is used to study the pp → deþνe
fusion process and the Gamow-Teller matrix element
contributing to tritium β decay for the first time, albeit
at unphysically large values of the light quark masses and
neglecting the effects of isospin breaking and electromag-
netism. This is accomplished using a new algorithm for
implementing background fields, which is superior to
existing methods. Further, the quantities of interest are
extracted at high precision using a refined analysis strategy
made possible by this new approach. For pp → deþνe, the
deviations from the single-nucleon contributions are small
but are well resolved with the new technique. The leading
two-nucleon axial counterterm of pionless effective field
theory (πEFT), L1;A, is determined. The axial coupling of
3H that determines the matrix element for 3H → 3He e−ν̄ in
the isospin limit is found to be slightly smaller than that of
the proton and is consistent with previous phenomenologi-
cal estimates [6].
Background axial fields.—Background field techniques

were first used in LQCD in the pioneering works of
Ref. [28] and Refs. [29,30] in the cases of axial and
magnetic fields, respectively. Significant effort has been
applied to using background electromagnetic fields to
extract magnetic moments and electromagnetic polarizabil-
ities of hadrons [31–35] and nuclei [36–38], as well as the
magnetic transition amplitude for the np → dγ process
[39]. Very recently, axial background fields have been
employed to extract the axial charge of the proton [40,41],
and generalizations to nonzero momentum transfer [42–44]
have been used [45] to access the axial form factor of the
nucleon.
In this work, a new method is used to generate hadronic

correlation functions order by order in the background
field. In the standard approach, correlation functions are
constructed from the contraction of quark propagators that
are modified by the presence of a background field. The
same effect can be achieved by directly constructing
propagators that include explicit current insertions, and
then using such propagators to construct correlation func-
tions. For the quantities studied in this work only a single
insertion of the background axial field is required. To this
end, the compound propagator

SðqÞλq;Γðx;yÞ ¼ SðqÞðx;yÞþ λq

Z
dzSðqÞðx;zÞΓSðqÞðz;yÞ ð1Þ

is constructed for Γ ¼ γ3γ5 and flavors q ¼ fu; dg, where
SðqÞðx; yÞ is the quark propagator of flavor q and λq is a
constant (a similar approach is implemented in Ref. [46] in
a different context). The second term in this expression is
computed using standard sequential source techniques and
the procedure can be repeated to produce propagators with
higher-order couplings. These compound propagators are
sufficient to construct the isovector axial matrix elements
for zero momentum insertion in any hadronic or nuclear

system (isoscalar responses, which also involve insertions
on the sea-quark propagators, are not addressed). This work
focuses on zero momentum–projected correlation functions

CðhÞ
λu;λd

ðtÞ ¼
X
x

h0jχhðx; tÞχ†hð0Þj0iλu;λd ; ð2Þ

where h� � �iλu;λd denotes the expectation value determined
using the compound propagators. The interpolating oper-
ators for hadrons and nuclei, χh, are those previously used
to study the spectroscopy of these systems [47,48]. By

construction, CðhÞ
λu;λd

ðtÞ is a polynomial of maximum order

λNu
u λNd

d in the field strengths, where NuðdÞ is the number of
up (down) quarks in the particular interpolating operator.
Details of the LQCD calculation.—The calculations

presented below used an ensemble of gauge-field configu-
rations generated with a clover-improved fermion action
[49] and a Lüscher-Weisz gauge action [50]. The ensemble
was generated with Nf ¼ 3 degenerate light-quark fla-
vors with masses tuned to the physical strange quark
mass, producing a pion of mass mπ ∼ 806 MeV, with a
volume of L3 × T ¼ 323 × 48 and a lattice spacing of
a ∼ 0.145 fm (as determined from ϒ spectroscopy).
For these calculations, 437 configurations, with a
spacing of ten trajectories between configurations, were
used. Correlation functions were computed for h ¼
fp; n; d; nn; npð1S0Þ; pp; 3H; 3Heg from propagators gen-
erated from a smeared source and either a smeared (SS) or
point (SP) sink. Sixteen different source locations were
averaged over on each configuration. Compound propa-
gators and correlation functions were calculated at six
different values of the background field strength parameter
λ ¼ f�0.05;�0.1;�0.2g. The axial current renormaliza-
tion factor ZA ¼ 0.867ð43Þ was determined from compu-
tations of the vector current in the proton, noting that
ZA ¼ ZV þOðaÞ and assigning a 5% systematic uncer-
tainty associated with lattice-spacing artifacts (statistical
uncertainties are negligible). A determination that removes
the leading lattice-spacing artifacts leads to ZA ¼
0.8623ð01Þð71Þ [51,52] at a pion mass of mπ ∼ 317 MeV.
The proton axial charge.—The simplest matrix element

of the isovector axial current determines the axial charge of

the proton. The correlation function CðpÞ
λu;λd

ðtÞ is at most
quadratic in λu and linear in λd when constructed from the

compound propagators SðuÞλu;γ3γ5
ðx; yÞ and SðdÞλd;γ3γ5

ðx; yÞ, as
the proton has two valence up quarks and one valence down
quark. Consequently, using at least one (two) nonzero
value(s) of λdðuÞ enables extraction of the axial current
matrix element as the linear response by using suitable
polynomial fits. The difference of the up-quark and down-
quark matrix elements can be used to construct the desired
three-point function containing the isovector axial current.
This can then be combined with the zero-field two-point

PRL 119, 062002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

11 AUGUST 2017

062002-2



function to form a ratio that asymptotes to the desired axial
charge at late times, namely,

RpðtÞ ¼
CðpÞ
λu;λd¼0ðtÞjOðλuÞ − CðpÞ

λu¼0;λd
ðtÞj

OðλdÞ
CðpÞ
λu¼0;λd¼0ðtÞ

; ð3Þ

where the ratios are spin-weighted averages, and “jOðλqÞ”
extracts the coefficient of λq in the preceding expression.
Then,

R̄pðtÞ≡ Rpðtþ 1Þ − RpðtÞ !t→∞ gA
ZA

; ð4Þ

where corrections to this relation from backwards propa-
gating states originating from the finite extent of the time
direction are suppressed by at least e−2mπT=3 ∼ 10−7 in the
signal region in the present set of calculations. The
effective-gA plots resulting from the correlator differences
are shown in Fig. 1, along with the result of a combined
constant fit to the SS and SP ratios that extracts gA=ZA
from the late-time asymptote. The extracted value is
gA=ZA ¼ 1.298ð2Þð7Þ, where the first uncertainty is stat-
istical (determined from a bootstrap analysis) and the
second is systematic (arising from choices of fit ranges
in both the field strengths and temporal separation as well
as from differences in analysis techniques). Including
the renormalization factor yields an axial charge of
gA ¼ 1.13ð2Þð7Þ, which is consistent with previous deter-
minations from standard three-point function techniques at
this pion mass [53,54].
The GT matrix element for tritium β decay.—The half-

life of tritium, t1=2, is related to the F and GT matrix
elements by [1]

ð1þ δRÞfV
K=G2

V
t1=2 ¼

1

hFi2 þ fA=fVg2AhGTi2 ; ð5Þ

where the factors on the left-hand side are known precisely
from theory or experiment. On the right-hand side, fA;V
denote known Fermi functions [55] and hFi and hGTi are
the F and GT reduced matrix elements, respectively.
The Ademollo-Gatto theorem [56] implies hFi ∼ 1, modi-
fied only by second-order isospin breaking and by electro-
magnetic corrections. However, h3Hejq̄γkγ5τþqj3Hi ¼
ūγkγ5τþugAhGTi (assuming vanishing electron mass and
at vanishing lepton momentum) is less constrained, and its
evaluation is the focus of this section.
By isospin symmetry, the spin-averaged GT matrix

element for 3H → 3He e−ν̄ is related to the axial charge
of the triton, gAð3HÞ, when the light quarks are degenerate
and in the absence of electromagnetism. Analogous to
RpðtÞ in Eq. (3), the ratio R3HðtÞ of correlation functions in
background fields is constructed such that, analogous to
Eq. (4), R̄3HðtÞ → gAð3HÞ=ZA in the large-time limit. The
analysis of these correlation functions is more complex than
for the proton because the triton has four up quarks and five
down quarks and the correlators are thus quartic and quintic
polynomials in λu;d, respectively. Polynomial fits to the
calculated correlation functions are sufficient to extract the
terms linear in λu;d. Results for R̄3HðtÞ are shown in Fig. 2
alongwith a constant fit to the asymptotic value gAð3HÞ=ZA.
Also shown in Fig. 2 is hGTiðtÞ ¼ R̄3HðtÞ=R̄pðtÞ, which is
independent of ZA, and the fit to its asymptotic value
gAð3HÞ=gA. Analyses of these ratios lead to

gAð3HÞ
ZA

¼ 1.272ð6Þð22Þ; gAð3HÞ
gA

¼ 0.979ð3Þð10Þ; ð6Þ

where the first uncertainties are statistical and the second
arise from systematics as described for gA. The result for
gAð3HÞ=gA is quite close to the precise, experimentally
determined value of hGTi ¼ 0.9511ð13Þ [6] at the physical
quark masses. In the context of πEFT, the short-distance
two-nucleon axial-vector operator, with coefficient L1;A [4],
is expected to give the leading contribution to the difference
of this ratio from unity [57].
The low-energy proton-proton fusion cross section.—

The low-energy cross section for pp → deþν is dictated by
the matrix element

jhd; jjA−
k jppij≡ gACη

ffiffiffiffiffiffiffiffi
32π

γ3

s
ΛðpÞδjk; ð7Þ

where Aa
kðxÞ is the axial current with isospin and spin

components a and k, respectively, j is the deuteron spin
index, Cη is the Sommerfeld factor, and γ is the deuteron
binding momentum. The quantityΛðpÞ has been calculated

FIG. 1. Ratios of correlation functions that determine the
unrenormalized isovector axial charge of the proton. The orange
diamonds (blue circles) correspond to the SS (SP) effective
correlator ratios R̄pðtÞ, defined in Eq. (4), and the band
corresponds to a constant fit to the plateau interval of both SS
and SP ratios.
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at threshold in πEFT to N2LO [3] and N4LO [4] and
later with a dibaryon approach [10,57] and in pionful
effective field theory [58]. With the approach of Ref. [4],
resumming all of the effective range contributions
[10,59,60], Λð0Þ at N2LO is related to the renormalization-
scale independent short-distance quantity Lsd-2b

1;A that is a
solely two-body contribution, along with scattering param-
eters and Coulomb corrections:

Λð0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γρ

p
�
eχ − γapp½1 − χeχΓð0; χÞ�

þ 1

2
γ2app

ffiffiffiffiffiffiffi
r1ρ

p �
−

1

2gA
γapp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γρ

p
Lsd-2b
1;A : ð8Þ

Here, χ ¼ αMp=γ, where α is the QED fine-structure
constant and Mp is the mass of the proton. The pp
scattering length is app, r1 and ρ are the effective ranges
in the 1S0 and 3S1 channels, respectively, and Γð0; χÞ is the
incomplete gamma function. A determination of Lsd-2b

1;A , or
equivalently of the πEFT coupling L1;A, which is deter-
mined from the scale-independent constant

L1;A ¼ 1

2gA

1 − γρ

γ
Lsd-2b
1;A −

1

2

ffiffiffiffiffiffiffi
r1ρ

p
; ð9Þ

as shown explicitly in Ref. [4], is a goal of the present
LQCD calculations.
A background isovector axial-vector field mixes the

Jz ¼ Iz ¼ 0 components of the 3S1 and 1S0 two-nucleon
channels, enabling the pp-fusion matrix element to be
accessed. Using the new background field construction, the

relevant off-diagonal matrix element Cð3S1;1S0Þ
λu;λd

ðtÞ is a cubic
polynomial in both λu and λd. In Ref. [39], the analogous

mixing between the two-nucleon channels induced by an
isovector magnetic field was treated by diagonalizing a
(channel-space) matrix of correlators and determining the
splittings between energy eigenvalues. This provided
access to the matrix element dictating np → dγ at low
energies, as was proposed in Ref. [61]. Such a method can
also be used for the axial field, but the improved approach
implemented here makes use of the finite-order polynomial
structure to access the matrix element directly. For a
background field that couples to the u quarks,

Cð3S1;1S0Þ
λu;λd¼0 ðtÞ ¼ λu

Xt

τ¼0

X
x;y

h0jχ33S1ðx; tÞA
u
3ðy; τÞχ†1S0ð0Þj0i

þ c2λ2u þ c3λ3u; ð10Þ

where χ33S1
(χ1S0) is an interpolating field for the Jz ¼ 0

(Iz ¼ 0) component of the 3S1 (1S0) channel, Au
3 ¼ uγ3γ5u,

and c2;3 are irrelevant terms. Calculations of the back-
ground field correlators at three or more values of λu allow
for the extraction of the term that is linear in λu. A similar
procedure yields the term that is linear in λd from back-
ground fields coupling to the d quark. Taking the difference
of the ratios of these terms to the corresponding zero-field
two-point functions determines the transition matrix
element in the finite lattice volume:

R3S1;1S0ðtÞ ¼
Cð3S1;1S0Þ
λu;λd¼0 ðtÞj

OðλuÞ − Cð3S1;1S0Þ
λu¼0;λd

ðtÞj
OðλdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cð3S1;3S1Þ
λu¼0;λd¼0ðtÞCð1S0;1S0Þ

λu¼0;λd¼0ðtÞ
q : ð11Þ

Consequently, the difference between ratios at neighboring
timeslices determines the isovector matrix element:

R3S1;1S0ðtÞ≡ R3S1;1S0ðtþ 1Þ − R3S1;1S0ðtÞ

!t→∞ h3S1; Jz ¼ 0jA3
3j1S0; Iz ¼ 0i

ZA
; ð12Þ

in the limit where ΔE ¼ Ed − Epp is small (as is the case
with the quark masses used in this calculation [47]), and
when the contributions from excited states are suppressed.
This quantity, measured with both SS and SP correlators,
is shown in Fig. 3, along with the extracted value of the
axial matrix element h3S1; Jz ¼ 0jA3

3j1S0; Iz ¼ 0i=ZA ¼
2.568ð5Þð31Þ, where the first uncertainty is statistical
and the second is a systematic encompassing choices of
fit ranges in time, field strength, and variations in analysis
techniques. The latter includes an estimate of the violation
of Wigner’s SU(4) symmetry, contributing an uncertainty
of Oð1=N4

cÞ ∼ 1% to the extraction of the matrix element
based on the large Nc-limit. At the pion mass of this study,
the initial and final two-nucleon states are deeply bound

FIG. 2. The ratios of correlation functions that determine the
unrenormalized isovector axial matrix element in 3H (upper
panel), and the ratio of the isovector axial matrix element in
3H to that in the proton (lower panel). The orange diamonds (blue
circles) correspond to the SS (SP) effective correlator ratios and
the bands correspond to constant fits to the asymptotic behavior.
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[47] and the finite-volume effects in the matrix elements are
negligible [62,63]. At lighter values of the quark masses,
where the npð1S0Þ system and/or the deuteron is unbound
or only weakly bound, the connection between finite-
volume matrix elements and transition amplitudes requires
the framework developed in Refs. [62,63].
To isolate the two-body contribution, the combination

Lsd-2b
1;A ðtÞ=ZA ¼ ½R3S1;1S0ðtÞ − 2RpðtÞ�=2 is formed as shown

in the lower panel of Fig. 3. Taking advantage of the near
degeneracy of the 3S1 and 1S0 two-nucleon channels at the
quark masses used in this calculation, it is straightforward
to show that this correlated difference leads directly to the
short-distance two-nucleon quantity Lsd-2b

1;A . Fitting a con-
stant to the late-time behavior of this quantity leads to

Lsd-2b
1;A

ZA
¼ h3S1; Jz ¼ 0jA3

3j1S0; Iz ¼ 0i − 2gA
2ZA

¼ −0.011ð01Þð15Þ; ð13Þ

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.
In light of the mild quark-mass dependence of the

analogous short-distance, two-body quantity contributing
to np → dγ [39], Lsd-2b

1;A is likely to be largely insensitive to
the pion mass between mπ ∼ 806 MeV and its physical
value. This approximate independence and the associated
systematic uncertainty will need to be refined in subsequent
calculations. Based on this expectation, the result obtained
here at mπ ∼ 806 MeV is used to estimate the value of

Lsd-2b
1;A at the physical pion mass by including an additional

50% additive uncertainty. Propagating this uncertainty
through Eq. (8), the threshold value of ΛðpÞ in this system
at the physical quark masses is determined to be
Λð0Þ ¼ 2.659ð2Þð9Þð5Þ, where the three uncertainties are
the statistical uncertainty, the fitting and analysis systematic
uncertainty, and the quark-mass extrapolation systematic
uncertainty, respectively. Uncertainties in the scattering
parameters and other physical mass inputs are also propa-
gated and included in the systematic uncertainty. This result
is remarkably close to the currently accepted, precise
phenomenological value Λð0Þ ¼ 2.65ð1Þ [11] (see also
Ref. [57]). The N2LO relation of Ref. [4], when enhanced
by the summation of the effective ranges to all orders
using the dibaryon field approach [10,59,60], gives
Λð0Þ¼2.62ð1Þþ0.0105ð1ÞL1;A, enabling a determination
of the πEFT coupling,

L1;A ¼ 3.9ð0.2Þð1.0Þð0.4Þð0.9Þ fm3; ð14Þ

at a renormalization scale μ ¼ mπ . The four uncertainties
are the statistical uncertainty, the fitting and analysis
systematic uncertainty, the mass extrapolation systematic
uncertainty, and a power-counting estimate of higher order
corrections in πEFT, respectively. This value is also very
close to previous phenomenological estimates, as summa-
rized in Refs. [11,14].
Summary.—The primary results of this work are the

isovector axial-current matrix elements in two- and three-
nucleon systems calculated directly from the underlying
theory of the strong interactions using lattice QCD (see also
the Supplementary Material [64]). These matrix elements
determine the cross section for the pp fusion process pp →
deþν and the Gamow-Teller contribution to tritium β decay,
3H → 3He e−ν. While the calculations are performed at
unphysical quark masses corresponding to mπ ∼ 806 MeV
and at a single lattice spacing and volume, the mild mass
dependence of the analogous short-distance quantity in the
np → dγ magnetic transition enables an estimate of
the pp → deþν matrix element at the physical values of
the quark masses, and the results are found to agree within
uncertainties with phenomenology. Future LQCD calcu-
lations, including electromagnetism beyond Coulomb
effects, at lighter quark masses with isospin splittings,
larger volumes, and finer lattice spacings, making use of the
new techniques that are introduced here, will enable
extractions of these axial matrix elements with fully
quantified uncertainties and will be important for phenom-
enology, providing increasingly precise values for the pp-
fusion cross section and GT matrix element in tritium
β decay.
Beyond the current study, background axial-field

calculations also allow the extraction of second-order, as
well as momentum-dependent, responses to axial fields.

FIG. 3. Ratios of correlation functions that determine the
unrenormalized isovector axial matrix element in the Jz¼ Iz¼0
coupled two-nucleon system (upper panel), and the unrenormal-
ized difference between the axial matrix element in this channel
and 2gA (lower panel). The orange diamonds (blue circles)
correspond to the SS (SP) effective correlator ratios and the bands
correspond to fits to the asymptotic plateau behavior and include
only the statistical and fitting systematic uncertainties (the
additional 1% uncertainty from Wigner symmetry breaking is
not represented in the bands).
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Second-order responses are important for determining
nuclear ββ-decay matrix elements, both with and without
(for a light Majorana neutrino) the emission of associated
neutrinos [70]. Momentum-dependent axial background
fields will allow the determination of nuclear effects in
neutrino-nucleus scattering. In both cases, LQCD calcu-
lations of these quantities in light nuclei will provide vital
input with which to constrain the nuclear many-body
methods that are used to determine the matrix elements
for these processes in heavy nuclei.
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