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Abstract 

The(electrodeposition(of(copper(metal(in(a(concentrated(sulfuric(acid(solution(is(

reported(to(occur(through(a(fourRstep(mechanism:((I)(the(dehydration(of(Cu2+

(H2O)6(,((II)(the(reduction(of(Cu2+(to(Cu+,((III)(the(dehydration(Cu+(H2O)6Rx(,((IV)(the(

reduction(of(Cu+(to(copper(metal.(The(dehydration(steps(have(been(found(to(be(

responsible(for(the(pHRdependence(of(the(electrodeposition(reaction.(It(is(also(

reported,(although(not(well(understood,(that(the(presence(of(Fe2+(ions(affects(the(

reaction(kinetics.(In(this(work,(the(kinetics(of(copper(electrodeposition(were(studied(

using(alternating(current(cyclic(voltammetry.(The(reaction(was(studied(at(a(copper(

rotating(disk(electrode(with(varying(concentrations(of(Cu2+(and(Fe2+.(At(sufAiciently(

low(pH,(and(a(sufAiciently(high(concentration(of(Fe2+,(the(deposition(kinetics(may(be(

slowed(enough(to(separately(observe(the(two(electron(transfer(steps(involved(in(

copper(reduction.(It(was(found(that(Fe2+(ions(affect(the(electrodeposition(kinetic(by(

slowing(down(reaction(kinetics,(particularly(the(second(electron(transfer(reaction. 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Part I: Motivation 

Understanding(the(reduction(kinetics(of(copper(electrodeposition(in(a(

concentrated(sulfuric(acid(electrolyte(is(of(particular(interest(to(the(copper(industry.(

At(the(extraction(and(puriAication(stage,(copper(anode(electroreAining(and(copper(

electrowinning(are(essential(steps.(In(both(cases,(the(metal(deposited(on(the(cathode(

needs(to(be(periodically(recovered,(requiring(the(deposit(to(remain(structurally(

stable(throughout(the(duration(of(metal(growth.(In(downstream(copper(applications,(

such(as(in(electronics,(the(presence(of(voids(or(the(lack(of(sufAicient(nuclei(

coalescence(in(electrodeposits(can(ultimately(compromise(the(integrity(of(the(

product,(e.g.(computer(chips.(This(last(issue(has(recently(been(driving(work(to(

improve(deposit(quality1–3,(but(less(work(has(been(published(on(the(challenges(faced(

in(upstream(copper(production.(((

 Factors(inAluencing(copper(electrodeposits(have(been(reported(in(conditions(

simulating(the(low(pH,(high(concentration(electrolytes(common(in(industrial(

conditions.4–6(In(copper(electrodeposition(for(extraction(processes,(solution(

additives(play(an(important,(though(only(marginally(understood,(role(in(the(Ainal(

deposit(quality.(Additives(encompass(both(inevitable(impurities(inherited(from(the(

raw(minerals(and(carried(along(with(copper(during(the(smelting(process7,(as(well(as(

molecules(purposely(added(to(improve(the(deposit(properties8.(The(outcome(on(

deposit(quality(varies(widely6–10,(with(additives(exhibiting(either(a(positive(or(

negative(effect(on(the(growing(copper.(Of(particular(interest(in(this(work,(Fe2+(ions(

have(been(reported(to(have(a(positive(effect3,6,(possibly(due(to(slowing(down(the(
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reduction(kinetics(of(Cu2+.9(Because(upstream(copper(production(involves(

deposition(on(copper(cathodes,(we(limit(our(study(to(copper(deposition(on(a(copper(

electrode.(Thus,(our(study(is(not(one(of(copper(nucleation(during(electrodeposition,(

but(rather(speaks(about(electrodeposition(kinetics(during((growth.(

Part II: Brief Review of Literature 

The(electrodeposition(of(copper(has(been(reported(to(occur(through(a(twoRstep(

electron(transfer(mechanism,(with(the(Airst(electron(transfer(being(the(rateRlimiting(

step11,12.((Subsequent(researchers(have(built(upon(this(mechanism13,14,(taking(into(

account(intermediate(chemical(reaction(steps(related(to(the(deaquation(of(solvation(

shells15–17,(as(well(as(investigating(the(potential(at(which(copper(ion(adsorption(

occurs18.(Certain(aspects(of(copper(reduction(kinetics(remain(highly(contested,(

especially(when(comparing(various(electrolyte(media(and(pH(ranges,19(partially(due(

to(difAiculty(in(discerning(the(second(electron(transfer(reaction.(

( Very(few(studies(report(the(use(of(alternating(current(methods,(including(

alternating(current(voltammetry(((ACV)(for(copper(electrodeposition14.((The(

advantages(of(ACV(methods(were(put(forward(by(Smith20,(and(more(recent(works(by(

Bond(has(popularized(the(technique.21(ACV(offers(the(experimentalist(the(ability(to(

separate(faradaic(components(of(the(current(response(from(nonfaradaic(

components,(and(to(ultimately(extract(more(accurate(kinetic(parameters22,23.(This(

ability(to(Ailter(out(components(of(the(current(response,(such(as(the(double(layer(

capacitance,(allows(for(electrode(phenomena(not(easily(seen(in(DC(voltammetry(
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methods(to(be(investigated24.(Some(predictions(have(been(made(as(to(the(expected(

AC(current(response(for(an(adsorbed(species25,(although(to(the(authors’(knowledge,((

there(have(not(been(many(theoretical(or(experimental(studies(to(determine(what(

such(a(current(response(would(look(like(during(electrodeposition.((

( The(practical(objective(of(this(work(is(to(characterize(the(multiple(steps(

involved(in(copper(electrodeposition,(with(particular(attention(to(the(effect(of(Fe2+(

on(deposition(kinetics.(Technically,(and(in(order(to((understand((the(cause(of(the(

possible(kinetics(effects,(ACV(is(used(to(establish(the(electrochemical(mechanism(of(

copper(electrodeposition. 
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Part I: Copper Electroreduction Kinetics 
Electrodeposition(is(a(complex(process(drawing(on(metaphysics,(not(only(chemistry(

but(also(solidRstate(physics,(electronics,(materials(science(26.(A(two(electron(

reduction(process(for(the(deposition(of(a(metal(such(as(copper(given(by:(

actually(involves(many(interrelated(kinetic(processes,(such(as(mass(transport,(charge(

transfer,(followed(by(adatom(diffusion,(eventual(incorporation(into(growth(sites,(and(

crystallization,(each(governed(by(their(own(rates.27(The(situation(is(further(

complicated(in(practical(applications,(e.g.(copper(electrodeposition,(where(a(fourR

step(mechanism,(commonly(referred(to(as(an((C)ECE(reaction,(is(involved16.(((

Such(a(mechanism(involves(a(chemical(reaction((C),(in(this(case(the(dehydration(of(

the(hydration(shell(surrounding(Cu2+;(an(electron(transfer((E),(the(reduction(of(Cu2+(

to(Cu+;(a(second(chemical(reaction((C),(the(hydrolysis(or(dehydration(of(Cu+;(and(a(

second(electron(transfer(step((E),(the(reduction(of(Cu+(to(Cu(metal.((
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Of(the(two(electron(transfer(steps(involved(in(copper(reduction,(the(Airst(

(Equation(2.2)(is(reported(as(rateRlimiting12.(Under(certain(conditions,(such(as(

electrolytes(approaching(a(neutral(pH,(copper(reduction(exhibits(clearly(only(one(

electron(transfer19.(For(the(purposes(of(this(study,(the(kinetics(of(these(two(

reduction(reactions(will(be(the(main(focus,(in(order(to(better(understand(the(charge(

transfer(mechanisms(and(determine(how(the(electrolytic(conditions(affect(them.((

The(current(density,(i,(can(be(related(to(the(overpotential(η,(the(potential(

difference(between(a(theoretical(Nernstian(potential(and(the(experimentally(

observed(potential(of(reaction(,(through(the(ButlerRVolmer(equation28,29(

where(α(is(the(transfer(coefAicient,(F(is(the(Faraday(constant,(R(is(the(molar(gas(

constant,(z(is(the(ion(charge(magnitude,(i0(is(the(exchange(current(density,(and(T(is(

the(system(temperature.((While(this(equation(holds(true(strictly(for(oneRelectron,(

oneRstep(processes,(it(has(been(used(as(an(approximation(for(twoRstep(electron(

transfer(processes.(Furthermore,(with(a(sufAiciently(high(overpotential,(the(anodic(

contribution(becomes(very(small(and(one(may(consider(a(limiting(equation(as((
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with(i0(and(α(being(kinetic(parameters(of(the(reaction(determined(through(

experimentation(or(modeling.30(((

Part II: Alternating Current Voltammetry 
Copper(electrodeposition(involves(multiple(processes(that(complicate(the(

current(response.(Some(of(these(processes(can(be(separated(into(faradaic(

components,(e.g.,(charge(transfer,(and(nonRfaradaic(components,(e.g.,(double(layer(

capacitance.(For(this(reason,(alternating(current(cyclic(voltammetry((ACV)(offers(an(

experimental(advantage.(Because(faradaic(processes(respond(to(voltage(in(a(

nonlinear(fashion,(and(nonRfaradaic(processes(respond(linearly,(it(is(possible(to(

separate(the(two(processes(using(ACV21.(The(linear(terms,(i.e.(the(nonRfaradaic(

processes(caused(by(double(layer(capacitance(effects,(will(only(be(present(in(the(DC(

current(response(and(the(Airst(fundamental(harmonic(AC(response21,23.((Being(able(to(

isolate(faradaic(processes(in(voltammetry(is(advantageous(to(this(study,(as(it(will(

allow(examination(of(charge(transfer(kinetics(without(interference(from(nonR

faradaic(components.(In(addition,(ACV(techniques(are(useful(in(examining(very(fast(

kinetic(reactions21.(This(is(ideal(for(studying(copper(deposition(kinetics(because(Cu+(

reduction((Equation(2.5)(is(a(very(fast(step.(((

 In(ACV(experiments,(an(AC(waveform,(such(as(a(sine(wave,(is(superimposed(

onto(a(linear(DC(potential(sweep.(The(current(response(can(then(be(converted(into(

the(frequency(domain(via(a(Fast(Fourier(Transform.(In(a(plot(of(power(versus(

frequency,(the(DC(component(of(the(current(response(is(given(by(a(sharp(peak(near(

zero(frequency.(Additional(peaks,(occurring(at(multiples(of(the(AC(wave’s(frequency,(
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called(the(harmonics,(represent(the(AC(components(of(the(current(response20.(These(

individual(peaks(can(be(isolated(and(converted(back(into(the(time(domain(to(

separately(look(at(the(current(contribution(of(each(harmonic21.(This(separates(the(

AC(responses(from(the(DC(response,(the(faradaic(components(from(the(nonRfaradaic(

components((Figure(2.1) 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Figure 2.1: Fourier transform of AC current response (frequency domain) with selected AC 
current responses from higher harmonics (time domain)
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Chapter 3 

Procedures and Experimental Methods 
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Part I: Experimental Setup 

 A(doubleRwalled(glass(container(was(used(as(the(electrochemical(cell(hosting(

a(three(electrode(setup((Figure(3.1).(The(working(electrode(was(a(6.58(mm(diameter(

rotating(copper(disk.(The(counter(electrode(was(a(coiled(platinum(wire,(and(the(

reference(electrode(was(a(saturated(calomel(electrode((0.241(V(vs.(SHE(at(RT).(All(

potentials(are(hereafter(reported(with(respect(to(the(standard(hydrogen(electrode.(

Solutions(were(prepared(using(reagentRgrade(sulfuric(acid((95R98%(purity,(SigmaR

Aldrich),(copper((II)(sulfate(pentahydrate((99%(purity,(Alfa(Aesar),(and(iron((II)(

sulfate(pentahydrate((99+%(purity,(Alfa(Aesar),(and(deionized(water.(Powders(were(

weighed(Airst,(to(obtain(the(necessary(amount(of(cupric(and(ferrous(ion(

concentration,(and(then(dissolved(over(a(twentyRfour(hour(period(into(a(solution(

with(the(desired(molarity(of(sulfuric(acid.(

Figure 3.1: Experimental electrochemical cell with three electrode configuration
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Experiments(were(either(performed(at(ambient(temperature(298(±(5(K(or(at(

water’s(freezing(point,(273(K.(For(the(later,(temperature(was(controlled(by(Alowing(

ice(water(through(the(cell(wall.(The(working(electrode(was(polished(to(a(mirror(with(

1(micron(alumina(and(nitrogen(gas(was(bubbled(through(all(electrolytes(for(at(least(

10(minutes(prior(to(experimentation.(The(copper(disk(was(rotated(at(800(rpm(

throughout(all(rotating(disk(measurements.(A(summary(of(experimental(solutions(

and(conditions(may(be(found(in(Table(3.1(

Each(solution(was(Airst(characterized(using(electrochemical(impedance(

spectroscopy(to(determine(the(uncompensated(resistance(obtained(at(the(limit(Zim(

approaches(0(at(100(kHz(on(a(Nyquist(plot.(The(measured(resistance(was(used(to(

correct(for(the(IR(drop(in(postRexperiment(analysis,(following:(

Ereal(=(Emeas(–(Imeas*R((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((3.1)(

All(data(are(presented(with(respect(to(this(corrected(potential.((

Table 3.1: Experimental conditions of prepared solutions 
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Measurements(were(conducted(for(no(more(than(5(cycles(with(each(freshly(polished(

electrode(when(the(working(electrode(was(rotating.(The(investigated(potential(range(

was(chosen(to(limit(the(hydrogen(evolution(reaction,(to(limit(anodic(dissolution(of(

the(copper(electrode,(and(to(ensure(repeatability(between(cycles(in(both(the(DC(

component(and(higher(AC(harmonics.(Only(the(third,(fourth,(and(Aifth(cycles(were(

analyzed.(NonRrotating(experiments(were(only(run(for(one(cycle.(At(the(end(of(the(

last(cycle,(the(cell(was(dismantled(and(the(electrode(was(reRpolished(before(the(next(

run.((

Part II: Methods of Data Collection and Analysis 

The(direct(current(voltammograms(were(generated(using(a(potentiostat((Reference(

3000:(Gamry(Instruments,(USA).(For(alternating(current(measurements,(a(sine(wave(

created(with(a(waveform(generator((MOTU(UltraLiteRmk3(Hybrid:(MOTU,(USA)(was(

superimposed(onto(the(direct(current(ramp.(The(current(response(was(collected(

using(a(data(acquisition(system(((DT9837B:(Data(Translation,(USA)(at(25000(Hz(

acquisition(frequency.(A(custom(designed(code((ver.(5.5.2;(Scilab(Enterprises,(

France)(was(used(to(analyze(the(results(postRmeasurement.(The(complex(current(

response(was(analyzed(using(a(FastRFourier(Transform((FFT),(which(presented(a(

power(spectrum(with(sharp(peaks(at(multiples(of(the(frequency(of(the(AC(sine(wave.(

These(peaks(represented(the(transformed(DC,(fundamental,(and(higher(harmonic(

components,(and(were(isolated(and(converted(back(into(the(time(domain(using(an(
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inverse(FFT.(Thus,(the(DC(and(harmonic(results(could(be(individually(plotted(versus(

the(DC(potential21.((

( In(absence(of(a(full(model(for(a((C)ECE(mechanism(involving(adsorption,(the(

resulting(components(were(compared(to(a(model(drawn(from(experimental(results(

for(a(more(simpliAied(case:(a(reversible,(single(electron(transfer(system(involving(the(

ferri/ferrocyanide(redox(couple(with(10(mM(Fe(CN)63+(and(3M(KCl((Figure(3.2).((

Under(these(conditions,(the(fundamental(harmonic(presents(one(sharp,(symmetrical(

peak(at(the(half(wave(potential,(E1/2.(The(second(harmonic(is(represented(by(the(

derivative(of(the(fundamental(harmonic,(with(two(symmetrical(peaks(and(a(trough(at(

E1/2.(The(third(harmonic(is(a(derivative(of(this(second(harmonic,(with(three(peaks,(

the(middle(of(which(is(located(at(E1/2.(This(pattern(repeats(for(all(higher(

harmonics20.(In(this(system,(peak(heights(scale(proportionally(with(an(increase(in(

the(electron(transfer(coefAicient,(α,(and(with(faster(rate(constant(k0.(A(large(α(favors(

more(symmetrical(peaks,(in(both(height(and(shape22.(Four(main(features(were(then(

of(interest(in(analyzing(experimental(results:(peak(heights(on(both(the(anodic(and(

cathodic(sides(of(E1/2,(peak(shape(symmetry(with(respect(to(E1/2,(overall(peak(height,(

and(the(location(of(E1/2.((
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Part I: Electrodeposition in Industrial Conditions 
Figure(4.1(shows(the(DC(signal(measured(during(copper(electrodeposition(in(a(

solution(with(0.063(M(Cu2+(and(1.85(M(H2SO4,(conditions(representative(of(industrial(

practices.((Multiple(analyses(of(the(DC(component(does(not(allow(one(to(clearly(

distinguish(the(current(responses(for(solutions(with(and(without(0.054(M(Fe2+.(((
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Figure 4.1: DC Current response for 1.84 [M] H2SO4, 0.64 [M] Cu2+

black, solid: 0 [M] Fe2+ red, dotted: 0.054 [M] Fe2+ at ambient temperatures
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On(the(other(hand,(as(shown(in(Figure(4.2,(analysis(of(the(fundamental(and(higher(

harmonic(components(in(a(solution(with(0.630(M(Cu2+(with(1.84,(1.08,(or(0.89(M(

H2SO4(revealed(harmonic(peaks(characteristic(of(a(faradaic(event.(The(peak(center(

for(this(faradaic(event(shall(henceforth(be(denoted(E1.(The(locations(of(each(

harmonic(peak(potential(in(various(concentrations(of(H2SO4(are(summarized(in(

Table(4.1.(E1fundamental,(as(observed(from(the(fundamental(harmonic,(does(not(align(

with(the(E1(as(observed(in(higher(harmonics.((
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(

At(higher(concentrations(of(H+,(the(peaks(become(asymmetric(with(respect(to(

E1.(In(a(solution(with(1.84(M(H2SO4,(there(is(a(considerable(peak(height(difference(

between(the(two(peaks(of(the(second(harmonic.(In(the(third(and(fourth(harmonic,(

the(peaks(that(occur(on(the(anodic(side(of(E1(are(higher(than(their(cathodic(

counterparts.(This(difference(in(peak(height(becomes(less(noticeable(as(the(

concentration(of(H+(increases.(In(the(extreme(case(of(0.84(M(H2SO4,(this(situation(is(

reversed(in(the(fourth(harmonic;(the(peaks(on(the(anodic(side(of(E1(are(lower(than(

their(cathodic(counterparts.((

The(peak(shapes(are(also(asymmetrical(with(respect(to(E1.(In(solutions(with(

higher(concentrations(of(H+,(the(peaks(at(potentials(cathodic(to(E1(have(a(prominent(

shoulder(around(0.15V(/SHE,(which(is(absent(from(their(anodic(counterparts.(This(

shoulder(is(less(distinguishable(in(solutions(with(a(higher(pH.( 

Figure(4.3(shows(the(second(and(third(harmonics(for(solutions(that(contained(

0.054(M(Fe2+(ions.(All(of(the(key(features(of(the(AC(harmonics(discussed(above(for(

solutions(without(Fe2+((Figure(4.2)(were(more(pronounced(in(solutions(containing(

E1Fundamental E1Second E1Third E1Fourth

1.84 [M] H2SO4 0.03 V /SHE 0.27 V /SHE 0.27 V /SHE 0.28 V /SHE

1.08 [M] H2SO4 0.04 V /SHE 0.27 V /SHE 0.27 V /SHE 0.28 V /SHE

0.89 [M] H2SO4 0.06 V /SHE 0.27 V /SHE 0.27 V /SHE 0.28 V /SHE

Table 4.1: Locations of current response peaks in fundamental and higher 
harmonics for various concentrations of H2SO4, no Fe2+ present in system
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Fe2+.(This(is(illustrated(by(the(prominence(of(the(shoulder(at(0.15(V(/SHE(in(such(

solutions.(Likewise,(the(peak(heights(are(more(asymmetric(than(their(ironless(

counterparts.(In(solutions(with(0.84(M(H2SO4,(the(peak(heights(on(the(anodic(side(of(

E1(remain(higher(than(their(cathodic(counterparts,(even(in(the(fourth(harmonic.(In(

solutions(with(high(concentrations(of(H+,(peak(heights(were(lower(when(Fe2+(ions(

were(present.(Such(solutions(also(show(wider(harmonics(peaks,(with(the(anodic(and(
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cathodic(sides(located(further(from(each(other.(As(with(peak(height,(this(effect(is(less(

pronounced(at(a(higher(pH.((

Part II: Electrodeposition in Slow-Kinetic Conditions 
In(order(to(investigate(the(possibility(that(the(peak(shoulder(located(at(0.15(

V(/SHE(was(a(second(faradaic(event,(efforts(were(made(to(slow(down(electron(

transfer(kinetics.(The(next(set(of(experiments(diverged(from(industrial(conditions(in(

favor(of(colder(temperatures((273(K)(and(lower(concentrations(of(Cu2+.(The(next(set(

of(solutions(were(prepared(with(0.01(M(Cu2+(and(1.84(M(H2SO4,(both(with(and(

without(0.054(M(Fe2+.((Cyclic(voltammetry(experiments(under(these(conditions(

(Figure(4.4)(still(do(not(show(a(signiAicant(difference(between(solutions(with(and(
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Figure 4.4: DC Current response for 1.84 [M] H2SO4, 0.01 [M] Cu2+

black, solid: 0 [M] Fe2+ red, dotted: 0.054 [M] Fe2+ at 273 K
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without(Fe2+.(Figure(4.5(compares(the(fundamental(and(second(harmonic((overlaid)(

from(a(room(temperature(measurement(containing(0.63(M(Cu2+,(1.84(M(H2SO4,(and(

0.054(M(Fe2+,(with(the(fundamental(and(second(harmonic((overlaid)(from(a(freezing(

point(measurement(containing(0.01(M(Cu2+,(1.84(M(H2SO4,(and(0.054(M(Fe2+. 
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As(anticipated(for(such(conditions,(reaction(rates(were(slower.(Two(separate(

faradaic(events(can(be(observed,(at(0.33(V/SHE(and(0.04(V/SHE,(termed(E1(and(E2,(

respectively.(Figure(4.5b(shows(these(two(distinct(fundamental(harmonic(peaks,(

which(line(up(with(two(distinct(second(harmonic(troughs.(The(location(of(E1(in(

Figure(4.5b(is(shifted(anodically(with(respect(to(Figure(4.5a.((

Figures(4.6(and(4.7(show(the(harmonics(for(the(isolated(Airst(and(second(

faradaic(events,(respectively.(As(observed(at(room(temperature,(harmonic(peaks(in(

solutions(with(Fe2+(were(wider(than(solutions(without(Fe2+.(Figure(4.6(shows(no(

signiAicant(difference(in(peak(height(or(shape(in(solutions(without(or(without(Fe2+.(

The(current(response(at(E2((Figure(4.7)(shows(consistently(lower(harmonic(peaks(

with(enhanced(separation(between(the(cathodic(and(anodic(sides(of(E2.(Compared(to(

the(harmonics(at(E1,(and(the(results(of(the(model,(the(E2(peaks(are(atypical.(E2third(

and(E2fourth(are(located(at(a(more(cathodic(potential(than(E2fundamental(or(E2second.(This(

shift(is(similar(to(the(one(observed(in(Figure(4.2.(The(observed(faradaic(event(at(E2(is(

distorted(towards(the(more(anodic(potential(due(to(overlap(with(the(faradaic(event(

at(E1,(with(the(strongest(effect(on(the(fundamental(harmonic.(Higher(harmonics(

appear(less(susceptible(to(such(overlap,(pertaining(more(strictly(to(the(charge(

transfer(of(interest,(with(peak(positions(stabilizing(in(the(third(and(fourth(harmonic.(((
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Although(the(peaks(at(E2(are(strongly(asymmetrical,(they(split(at(a(consistent(

potential(with(alternating(peaks((for(odd(harmonics)(and(troughs((for(even(

harmonics).(This(is(a(deAinitive(characteristic(for(a(faradaic(event(in(AC(voltammetry,(

with(the(observed(asymmetry(being(typical(of(an(irreversible(reaction20,25.(Such(a(

current(response(shape(has(also(been(predicted(for(reactions(involving(an(

adsorption(step25.(

In(order(to(further(investigate(the(electron(transfers(occurring(at(E1(and(E2,(

measurements(were(taken(keeping(the(working(electrode(stationary((Figure(4.8).(

The(absence(of(rotation(did(not(affect(E1(signals,(while(peak(currents(at(E2(increased.(

Furthermore,(the(harmonics(at(E2(exhibit(a(closer(shape(to(E1,(in(qualitative(

agreement(with(the(model.(  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Part I: The Mechanism of Copper Electroreduction 

 Depending(on(the(experimental(conditions(highlighted(earlier,(one(or(two(

faradaic(events(may(be(distinguished(during(copper(electrodeposition.(In(industryR

simulating(conditions,(at(higher(temperature(and(in(the(presence(of(high(

concentrations(of(copper,(DC(measurements(indicate(an(inAlection(point(at(0.25(V/

SHE,(a(distinct(event(E1(which(is(also(observed(at(a(similar(potential(in(AC(

measurements(in(second(and(higher(harmonics.(At(lower(temperatures,(the(location(

of(E1(shifts(anodically,(as(would(be(expected(from(a(system(with(Nernstian(behavior.((

The(location(of(E1(at(a(potential(close(to(the(standard(electrode(potential(for(Cu2+(

reduction(to(Cu(metal((Table(4.1),(and(the(lack(of(any(other(possible(faradaic(

reactions(occurring(at(that(potential(allows(us(to(assign(E1(to(the(following(reaction:((

(DC(measurements(in(industrial(conditions(also(indicate(a(second(inAlection(

point(at(0.05(V(/SHE,(E2,(an(event(not(noticed(as(easily(as(E1(in(AC(measurements(

under(the(same(conditions.(Instead,(the(second(and(third(harmonic(currents(from(E1(

exhibit(shoulders(overlapping(with(the(current(response(at(E2.(The(shoulders(are(

most(prominent(in(low(pH(solutions,(which(have(been(shown(to(be(associated(with(a(

smaller(α16,31.(The(decrease(in(symmetry(could(be(attributed(to(a(decrease(in(α,(or(to(

the(increasing(prominence(of(the(event(E2.(Slowing(overall(reaction(kinetics,(either(

through(decreasing(pH,(decreasing(Cu2+(concentration,(or(decreasing(temperature,(
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points(to(slower(events(at(E1(and(E2,(increasing(the(prominence(of(this(shoulder.(

Furthermore,(at(low(pH,(the(harmonics(at(event(E1(are(more(asymmetrical,(again(

indicating(current(overlap(from(E2.(This(overlap(is(consistent(with(ACV(models(for(

multiple(electron(transfer(steps20.((

In(the(extreme(case(shown(in(Figures(4.6,(4.7(and(4.8,(the(two(reduction(steps(

at(E1(and(E2(are(completely(separated.(In(these(cold(solutions(with(low(

concentrations(of(Cu2+,(no(shoulders(on(the(cathodic(side(of(the(reaction(are(

observed.(This(conAirms(that(the(second(event(corresponds(to(a(distinct(electron(

transfer(reaction,(and(that(the(shoulders(observed(under(industrial(conditions(are(

due(to(the(overlap(of(E1(and(E2(currents.(It(is(likely,(therefore,(that(the(event(E2(is(

very(fast(compared(to(E1,(such(that(it(is(often(masked(by(E1(current(responses.(The(

event(E2(exhibits(atypical(higher(harmonic((>(2ω)(currents(with(low(currents(having(

strongly(asymmetrical(shapes,(pointing(to(an(irreversible(reaction(or(a(reaction(

involving(an(adsorbed(species20,25. 

 It(is(possible(that(the(hydrogen(evolution(reaction((HER)(occurs(in(parallel(

with(the(reaction(at(E2,(although(studies(of(hydrogen(evolution(on(copper(electrodes(

report(large(overpotentials(for(the(HER(4,5,32.(Furthermore,(Fe2+(has(been(shown(to(

be(a(catalyst(for(HER32,(which(contradicts(the(decrease(in(currents(observed(for(E2(in(

systems(in(the(presence(of(Fe2+((Figure(4.7).( 

Results(with(a(stationary(working(electrode(show(E2(has(a(stronger(

dependence(on(rotation(than(E1,(with(the(event(E2(appearing(more(distinct(and(

better(deAined.(In(nonRrotating(conditions,(mass(transfer(quickly(controls(the(AC(

current(for(the(dissolved(species,(and(the(enhanced(separation(between(E1(and(E2(
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suggests(that(E1(involves(bulk(solution(species,(while(E2(mostly(depends(on(surface(

species,(e.g.(adsorbed(species.((

The(faradaic(event(E2(therefore(appears(as(a(fast(electron(transfer(step(

involving(surface(conAined(species,(most(likely(following(reaction(2:(

Previous(authors(have(reported(such(a(reaction(occurring(at(similar(potentials,(

suggesting(that(the(reaction(involves(Cu+(as(an(adsorbed(species.18 

The(features(of(the(fundamental(harmonics(for(this(system(recorded(in(

industrial(conditions(remain(anomalous,(in(particular(with(regards(to(the(shift(of(

E1fundamental(from(the(Nernst(reduction(potential(for(reaction(1.(Such(a(shift(is(not(

observed(in(conditions(where(reaction(2(can(be(isolated,(suggesting(that(the(

measured(reduction(potential(for(reaction(1(in(industrial(conditions(represents(a(

value(between(the(Nernst(potentials(for(reactions(1(and(2.(This(is(also(consistent(

with(ACV(models(for(a(mechanism(involving(two(successive(electron(transfer(steps20. 

Part II: The Effect of Ferrous Ions 
 In(industrial(conditions,(the(effect(of(Fe2+(on(the(electron(transfer(kinetics(is(

more(predominant(at(low(pH.(With(Fe2+(present(in(the(electrolyte,(the(harmonic(

peaks(for(reaction(1(remain(asymmetrical,(even(at(a(higher(pH,(as(opposed(to(

measurements(without(Fe2+.(This(suggests(that(reaction(2,(which(has(harmonics(
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better(resolved(at(lower(pH,(is(inAluenced(by(Fe2+,(the(presence(of(which(enhances(

the(separation(between(reaction(1(and(2.(

( Under(conditions(where(the(two(reduction(steps(are(distinguishable,(no(

difference(in(harmonic(shape(for(reaction(1(in(solutions(with(and(without(iron(can(

be(observed((Figure(4.6).(Conversely,(reaction(2(is(highly(inAluenced(by(the(presence(

of(Fe2+((Figure(4.7).(Measurements(on(solutions(containing(Fe2+(reveal(consistently(

lower(currents(and(shapes(that(more(qualitatively(Ait(the(ACV(model(than(

measurements(without(Fe2+. 

When(Fe2+(is(present(in(the(system,(reaction(1(appears(at(more(anodic(

potentials,(while(reaction(2(occurs(at(more(cathodic(potentials.(Fe2+(ions(therefore(

appear(to(be(hindering(reaction(2,(thus(enhancing(separation(between(the(two(

electron(transfers,(while(not(inAluencing(reaction(1.((It(may(be(proposed(that(

electrostatic(effects(from(Fe2+(are(hindering(adsorption,(which(would(not(affect(

reaction(1.(This(is(useful(for(isolating(and(studying(the(two(reactions(independently(

and(extracting(kinetic(parameters(for(Cu+(reduction.((

Our(results(allow(us(to(propose(that(the(electron(transfers(in(copper(

reduction(obey(the(following(mechanism:(
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 The(inconsistent(trends(with(pH(for(step(3,(however,(may(indicate(that(Fe2+(

affects(the(intermediate(chemical(reaction:((

via(interaction(between(the(solvation(shell(around(Fe2+(and(the(solvation(shell(

around(Cu+.((

( Lack(of(a(fully(developed(model(for(ACV(experiments(on(a((C)ECE(mechanism(

involving(adsorption(limits(the(extent(to(which(kinetics(for(Cu+(reduction(and(the(

inAluence(of(Fe2+(on(this(reduction(can(be(quantitatively(characterized.(It(is(proposed(

that(future(work(be(focused(on(developing(such(a(model.(
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Chapter 6 

Conclusions 

 The(overall(currents(measured(in(DC(and(AC(voltammetry(in(industrial(

conditions(are(the(combination(of(currents(from(Cu2+(reduction(to(Cu+,(and(Cu+(

reduction(to(Cu(metal.(In(conditions(designed(to(slow(charge(transfer(kinetics,(these(

two(reduction(steps(can(be(separately(observed(by(ACV.(The(shapes(of(the(harmonic(

current(peaks(for(Cu+(reduction(conAirm(previous(reports(that(Cu+(reduction(occurs(

as(an(adsorbed(species.(In(industrial(conditions,(Fe2+(lowers(the(overall(reaction(

kinetics(measured(in(DC(and(AC(voltammetry.(ACV(results(show(that(Fe2+(has(a(

stronger(effect(on(Cu+(reduction,(producing(lower(peak(currents(at(larger(

overpotentials.( 
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