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Abstract

Amorphous Silicon (a-Si) is a promising material for anodes in Li-ion batteries due to its increased capacity
relative to the current generation of graphite-based anode materials. However, the intercalation of lithium
into a-Si induces very large elastic-plastic deformations, including volume changes of approximately 300%.
We have formulated and numerically implemented a fully-coupled diffusion-deformation theory, which ac-
counts for transient diffusion of lithium and accompanying large elastic-plastic deformations. The material
parameters in the theory have been calibrated to experiments of galvanostatic cycling of a half-cell composed
of an a-Si thin-film anode deposited on a quartz substrate, which have been reported in the literature. We
show that our calibrated theory satisfactorily reproduces the mechanical response of such an anode — as
measured by the changes in curvature of the substrate, as well as the electrochemical response — as measured
by the voltage versus state-of-charge (SOC) response.

We have applied our numerical simulation capability to model galvanostatic charging of hollow a-Si
nanotubes whose exterior walls have been oxidized to prevent outward expansion; such anodes have been
recently experimentally-realized in the literature. We show that the results from our numerical simulations
are in good agreement with the the experimentally-measured voltage versus SOC behavior at various charging
rates (C-rates).

Through our simulations, we have identified two major effects of plasticity on the electrochemical perfor-
mance of a-Si anodes:

• First, for a given voltage cut-off, plasticity enables lithiation of the anode to a higher SOC. This is
because plastic flow reduces the stresses generated in the material, and thus reduces the potential
required to lithiate the material.

• Second, plastic deformation accounts for a significant percentage of the energy dissipated during the
cycling of the anode at low C-rates.

Hence, plasticity can have either (a) a beneficial effect, that is, a higher SOC for a given voltage cut-off; or
(b) a detrimental effect, that is significant energy dissipation at low C-rates.

Keywords : A. Lithium-ion batteries B. Amorphous Silicon C. Diffusion D. Elasticity E. Plasticity

1 Introduction

The development of Li-ion batteries with improved capacity, life, safety, and cost, is of major importance for
a wide range of industries — from large-scale stationary energy storage systems in renewable energy plants,
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to portable power systems for sustainable electric vehicles. In an attempt to increase capacity, researchers
have proposed the use of lithium-metal alloys, e.g. lithium-silicon and lithium-tin alloys, or a combination
of lithium-metal alloys and graphite, as potential anode materials since they possess a higher capacity for
Li than the current-generation graphite anodes (cf., e.g., Hong et al., 1999; Tarascon and Armand, 2001;
Scrosati and Garche, 2010). For example, when fully lithiated to Li15Si4, a silicon anode can theoretically
achieve a specific capacity of ∼ 3.5Ah/g, which compares with only 0.37Ah/g for the current-generation
graphite anodes. However, the intercalation of such a large amount of Li into the silicon induces very large
elastic-plastic deformations — with volume changes of approximately of ∼ 300% (Obrovac and Krause, 2007).
The two major mechanisms by which the large deformations of the anode negatively affect its performance
are:

• Fracture of the anode particles. The large stresses that develop in the anode due to inhomogeneous
volume changes associated with large gradients of Li-ions in the anode can lead to fracture of an anode
particle. The formation and propagation of cracks in turn lead to degradation of the performance of
the battery, and significantly limit its lifetime.

• Failure of the solid electrolyte interface (SEI). During operation of a Li-ion battery, a passivating film,
known as the solid electrolyte interface (SEI), forms on the surface of the anode. Due to the large
volumetric changes associated with the lithiation of Si anodes, the SEI is placed under large tensile
stresses, which in turn cause it to fail. Repeated failure and growth of the SEI leads to capacity fade
of the battery.

In order to develop a successful Si-based anode, both the problems mentioned above need to be addressed.
Fracture of anode particles has been successfully mitigated through the use of nano- and micro-dimensioned
particles. When the anode is composed of crystalline silicon (c-Si), nano-dimensioned materials have been
successfully lithiated without fracture, even though lithiation in these materials occurs by a two-phase
mechanism where pure c-Si reacts with Li, forming a heavily lithiated amorphous LixSi phase (often Li15Si4)
behind a propagating phase front (cf., e.g., Ryu et al., 2011; Liu et al., 2012). More recently, it has been
found that the lithiation behavior of amorphous Si (a-Si) is substantially different from that of c-Si. Indeed,
a-Si nanoparticles have been observed to be quite robust to fracture during cycling (He et al., 2011; McDowell
et al., 2012), and Berla et al. (2014) have recently shown that a-Si is resistant to fracture even at the micron
scale (∼ 2µm). In this paper, we focus on modeling the response of amorphous Silicon (a-Si) as an anode
material. For brevity, henceforth we often simply write Si rather than a-Si.

In order to mitigate failure of the SEI due to the large volume changes associated with lithiating Si anodes,
various research groups have proposed the use of novel “engineered” anodes which restrict the deformation
incurred by the SEI during cyclic lithiation. One such engineered anode, developed by Wu et al. (2012),
consists of an ensemble of hollow Si nanotubes whose exterior surfaces have been oxidized to form silicon-
dioxide. The electrolyte contacts the anode only at the silicon-dioxide surface, and thus the SEI grows
only on the exterior of the nanotube and is not in contact with the Si. The relatively stiff silicon-dioxide
shell acts as a mechanical constraint layer which prevents the outward expansion of the nanotube, and thus
effectively restricts the deformation which is incurred by the SEI. However, the presence of the silicon-dioxide
constraining layer leads to the generation of very large stresses during cyclic lithiation, forcing the Si anode
to deform plastically towards the inside of the hollow nanotube. The elastic-plastic deformation of the Si
anode, resulting from the mechanical constraint imposed by the silicon-dioxide layer, will have a significant
effect on the electrochemical performance of the anode, which at present is largely unexplored, and is the
focus of this paper. We expect, as noted by Sethuraman et al. (2010), that plasticity will play a role both
in determining the energy dissipated during cycling of the anode as well as in determining the realizable
capacity of the anode.

Recently, Zhao et al. (2011), Bower et al. (2011), and Anand (2012) have proposed theories which
couple large elastic-plastic deformations with large volumetric swelling due to diffusion of lithium. Further,
substantial progress has been made recently by Bucci et al. (2014) to calibrate the theory of Bower et al.
(2011) to results from their experiments in which a half-cell based on an a-Si thin film deposited on a
quartz substrate is electrochemically cycled while the curvature of the substrate is simultaneously measured;
cf. also Pharr et al. (2014). However, to the best of our knowledge, such theories have not been used to
determine how the elastic-plastic deformation of a-Si affects the electrochemical performance of anodes with
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more complex geometries such as those of the oxidized hollow a-Si nanotubes of Wu et al. (2012).1

Accordingly, the purpose of this paper is to report on our theory and finite-element-based numerical
simulation method for modeling geometrically complex a-Si anodes of the type studied by Wu et al. (2012).
We have applied our simulation capability to quantifying how the elastic-plastic deformation deformation of
engineered silicon anodes affects their electrochemical performance.

The paper is structured as follows. In Section 2 we summarize our theory for modeling a-Si anodes. In
Section 3, in order to estimate the material parameters which are not directly available in the literature, we
calibrate the material parameters of our theory to results from substrate curvature experiments available in
the recent literature (Pharr et al., 2014; Bucci et al., 2014). In Section 4 we apply our fully calibrated theory
to modeling the hollow double-walled Silicon nanotube anodes of Wu et al. (2012). Beyond comparing our
simulation predictions to the results from their experiments, we investigate the importance of plasticity on
the electrochemical behavior of such anodes. We finish in Section 5 with some final remarks.

2 Constitutive theory

Anand (2012) has formulated a general framework of balance laws and thermodynamically-consistent consti-
tutive equations which couple Cahn-Hilliard-type species diffusion with large elastic-plastic deformations of
a body, and accounts for the swelling and phase segregation caused by the diffusing species. In this paper we
neglect any phase segregation mechanisms, and accordingly use a specialized form of Anand’s theory which
neglects a dependence of the free energy on the gradient of the species concentration.2 Further, since our
focus here is on modeling the response of a-Si, we limit our considerations to an isotropic theory. In order
to model the experimentally-observed chemo-mechanical response of a-Si (e.g., Pharr et al., 2014; Bucci
et al., 2014), the theory summarized below accounts for: (i) large elastic-plastic deformations using finite
deformation kinematics; (ii) variation of the elastic moduli with varying lithium content; (iii) dependence of
the yield strength on lithium content; and (iv) rate-sensitive plastic response.

Our theory relates the following basic fields:3

1We note that Zhao et al. (2012) have previously studied the generation of stresses in spherical and cylindrical hollow
core-shell nanostructures. However, in their study they used various simplifying assumptions — e.g., rigid-perfectly-plastic
material, no effect of concentration on the material properties, plane-strain conditions, uniform concentration, etc. Further,
they made no attempt to model the voltage versus state-of-charge response of the system, and compare model predictions
against experimental results.

2In their experiments McDowell et al. (2013) and Wang et al. (2013) have observed that a-Si nanoparticles appear to lithiate
by a quasi-two-phase mechanism and not single-phase diffusional insertion of Li. The theory of Anand (2012) can be applied
to modeling such two-phase lithiation mechanisms, cf. Di Leo et al. (2014). However, since such a quasi-two-phase mechanism
appears to occur only in the first half cycle of lithiation, we do not account for such a mechanism in this paper.

3Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration, and ∆ = Div∇ denotes the
referential Laplace operator; grad div, and div grad denote these operators with respect to the point x = χ(X, t) in the deformed
body; a superposed dot denotes the material time-derivative. Throughout, we write Fe−1 = (Fe)−1, Fe−⊤ = (Fe)−⊤, etc. We
write trA, symA, skwA, A0, and sym0A respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric

parts of a tensor A. Also, the inner product of tensors A and B is denoted by A :B, and the magnitude of A by |A| =
√
A :A.
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x = χ(X, t) motion;

F = ∇χ deformation gradient;

F = FeFpFs multiplicative decomposition of F;

Fs,Fp,Fe swelling, plastic, and elastic distortions;

Fe = ReUe polar decompositions of Fe;

Ue =
∑3

α=1 λ
e
αr

e
α ⊗ reα spectral decomposition of Ue;

Ee =
∑3

α=1 (lnλ
e
α)r

e
α ⊗ reα logarithmic elastic strain;

Ee
H = ReEeRe⊤ spatial logarithmic elastic strain;

T = T⊤ Cauchy stress;

Me = JeRe⊤TRe Mandel stress;

cR molar concentration per unit reference volume;

cR,max maximum molar concentration per unit reference volume;

c̄ = cR/cR,max ∈ [0, 1] normalized concentration;

c = J−1cR molar concentration per unit volume in the deformed body;

µ chemical potential;

j spatial species flux vector.

2.1 Constitutive equations

1. Kinematics. Multiplicative decomposition of the deformation gradient,

F = FeFpFs, (2.1)

with
J = detF > 0, Je = detFe > 0, Jp = detFp = 1, Js = detFs > 0. (2.2)

2. Swelling distortion. Based on the isotropy of a-Si, we take the swelling distortion Fs to be spherical
and to depend on the Li concentration,

Fs = (Js)1/31, with Js = 1 + Ω(cR − cR0), (2.3)

where Ω is a constant partial molar volume of the intercalating Li in the body, and cR0 is the initial
concentration of Li.

3. Free energy. The free energy per unit reference volume is taken as

ψR = µ0cR +RϑcR,max

(

c̄ ln c̄+ (1 − c̄) ln(1− c̄) +
7∑

n=2

an · c̄(n)
)

︸ ︷︷ ︸

chemical energy

+ Js

(
1

2
Ee :C(c̄)[Ee]

)

︸ ︷︷ ︸

elastic energy

. (2.4)

Here, µ0 is a reference chemical potential, R is the gas constant, ϑ is the absolute temperature, and the
polynomial dependence

∑7
n=2 an · c̄(n) in the chemical free energy, in which an are fitting coefficients,

is motivated by the recent paper Bucci et al. (2014). Further,

C(c̄) = 2G(c̄)I+ (K(c̄)− (2/3)G(c̄))1⊗ 1, (2.5)

is a concentration-dependent elasticity tensor, with G(c̄) and K(c̄) concentration-dependent shear and
bulk moduli, respectively.

4. Stress. The Mandel and Cauchy stress tensors are respectively given by,

Me = Js−1 ∂ψR

∂Ee
= 2G(c̄)Ee +

(

K(c̄)− 2

3
G(c̄)

)

(trEe)1, and

T = Je−1ReMeRe⊤ = Je−1

(

2G(c̄)Ee
H +

(

K(c̄)− 2

3
G(c̄)

)

(trEe
H)1

)

.

(2.6)
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5. Chemical Potential. The chemical potential of the Li in the anode is given by,

µ =
∂ψR

∂cR
− Ω

1

3
trMe

= µ0 +Rϑ ln

(

γ
c̄

1− c̄

)

− Ω
1

3
trMe +

Js

cR,max

(
1

2
Ee :

dC(c̄)

dc̄
[Ee]

)

+Ω

(
1

2
Ee :C(c̄)[Ee]

) (2.7)

where, following Bucci et al. (2014), we have defined an “activity coefficient” γ by

Rϑ ln(γ) =

7∑

n=2

an · n · c̄(n−1). (2.8)

The polynomial coefficients an are determined by fitting to experimental or numerical simulations of
the open-circuit potential of Si during lithiation. Such a fit was performed by Bucci et al. (2014) for
a-Si; we use their fitting coefficients in this paper.

6. Evolution equation for Fp. The plastic distortion evolves according to

Ḟp = DpFp, with Dp = ˙̄ǫp
(
3Me

0

2σ̄

)

, ˙̄ǫp ≥ 0, Fp(X, 0) = 1, (2.9)

where
σ̄

def
=

√

3/2|Me
0| (2.10)

defines an equivalent tensile stress, and ˙̄ǫp denotes an equivalent tensile plastic strain rate. We intro-
duce a positive-valued, stress-dimensioned, and concentration-dependent yield strength Y (c̄) > 0, and
assume that a no-flow condition,

˙̄ǫp = 0 if σ̄ ≤ Y (c̄), (2.11)

holds. During plastic flow, ˙̄ǫp > 0, the equivalent tensile stress is taken to be equal to a rate-dependent
flow strength,

σ̄ = Y (c̄) + Y∗

(
˙̄ǫp

ǫ̇0

)1/m

, (2.12)

where Y∗ > 0 is a positive-valued, stress-dimensioned constant, ǫ̇0 is a reference tensile plastic strain
rate, and m is a measure of the strain-rate sensititivy of the material. Equations (2.11) and (2.12) may
be combined to give the equivalent tensile plastic strain rate as,

˙̄ǫp =







0 if σ̄ ≤ Y (c̄),

ǫ̇0

(
σ̄ − Y (c̄)

Y∗

)m

if σ̄ > Y (c̄).
(2.13)

In order to model the experimentally-observed concentration-dependent change in the yield strength
of a-Si, we adopt the following specific form for Y (c̄),

Y (c̄) = Ysat + (Y0 − Ysat) exp

(

− c̄

c̄∗

)

, (2.14)

with {Y0, Ysat, c̄∗} three positive-valued material parameters. This function produces a simple exponen-
tial softening response from an initial value Y0 to a lower saturation value Ysat < Y0, with c̄∗ controlling
the rate of decay. Further, as a special value for Y∗ in the rate-dependent response (2.12), we take

Y∗ = Ysat. (2.15)

7. Species flux. The spatial flux j, of the intercalating Li is taken to depend on the spatial gradient
gradµ, of the chemical potential:

j = −m gradµ, with m =
D0

Rϑ
c(1 − c̄) ≥ 0 the mobility. (2.16)
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Here, D0 is a constant diffusion coefficient.

Remark.

The constitutive equation (2.16) for the species flux differs from that in Anand (2012). In that paper
it was the referential species flux, jR, which was taken to be given by a scalar mobility times the
negative of the referential gradient of the chemical potential (−∇µ). We now believe that (2.16) is the
more appropriate form for the species flux for large deformations of continually isotropic materials.
Using standard transformation rules of continuum mechanics, the flux relation in the reference body
corresponding to (2.16) is

jR = −
(
JC−1m

)
∇µ, with C = F⊤F.

2.2 Governing partial differential equations. Boundary and initial conditions

The governing partial differential equations consist of:

1. The local force balance
divT+ b = 0, (2.17)

where the Cauchy stress T is given by (2.6), and b is the non-inertial body force.

2. The local balance for the species concentration

ċR = −J divj, (2.18)

with the flux j given by (2.16).

With Su and St denoting complementary subsurfaces of the boundary ∂Bt of the deformed body Bt, as
boundary conditions we consider a pair of simple boundary conditions in which the displacement u = x−X

is specified on Su and the surface traction on St:

u = ŭ on Su × (0, T ),

Tn = t̆ on St × (0, T ).

}

(2.19)

With Sµ and Sj another pair of complementary subsurfaces of the boundary ∂Bt, we also consider boundary
conditions in which the chemical potential is specified on Sµ and the spatial species flux on Sj

µ = µ̆ on Sµ × (0, T ),

j · n = j̆ on Sj × (0, T ).

}

(2.20)

The initial data is taken as

u(X, 0) = 0, and µ(X, 0) = µ0(X) in B. (2.21)

The coupled set of equations (2.17) and (2.18), together with (2.19), (2.20) and (2.21) yield an initial/boundary-
value problem for the displacement u(X, t) and the chemical potential µ(X, t)
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2.3 Electrolyte-anode interfacial reaction kinetics. Butler-Volmer equation

More details on our treatment of interfacial reaction kinetics may be found in Appendix A. As discussed in
(2.20)2, at a point on the surface of the deformed body we may prescribe a flux boundary condition, j ·n = j̆.
The prescribed flux j̆ is related to an applied current per unit area by

I = −F j̆, (2.22)

where F is the Faraday constant. Conjugate to an applied flux at a point on the surface of the anode, there
is a chemical potential, which we shall denote by µsurface. The surface chemical potential µsurface may be
related to an electric potential by (c.f. A.16) through

U = V0 −
−µsurface

F
, (2.23)

where the potential U is commonly referred to as the equilibrium potential4, and where V0 is a reference
potential which depends on the counter-electrode.

In order to model the electrochemical response of an anode, we must also account for the voltage drops
at the anode/electrolyte interface due to out-of-equilibrium electrochemical reactions. With V the applied
cell voltage, the driving force for the electrochemical reactions is given by (c.f. A.18)

η = V − U, (2.24)

and is commonly referred to as the overpotential, since it is the potential above the equilibrium potential U
required to drive Li into the anode. The current I per unit area (or equivalently the prescribed flux j̆) is then
presumed to be a function of the overpotential η, and is widely taken to be given by the phenomenological
Butler-Volmer equation (cf., e.g., Newman and Thomas-Alyea, 2012; Bazant, 2013),

I = I0

(

exp

(

−αFη
Rϑ

)

− exp

(

1− α)
Fη

Rϑ

))

, (2.25)

where 0 < α < 1 is a symmetry factor which biases the reaction, and I0 is a concentration-dependent
exchange current, given by

I0 = Fk0(1− c̄)αc̄(1−α), (2.26)

with the parameter k0 a rate constant which is determined experimentally.
In our simulations we take α = 0.5, in which case (2.25) may be inverted to yield

η = 2
Rϑ

F
sinh−1

(

−1

2

I

I0

)

, with I0 = Fk0(1− c̄)1/2(c̄)1/2. (2.27)

Then, combining (2.27), (2.24), and (2.23), we may calculate the voltage V using the relation

V = V0 −
µsurface

F
+ 2

Rϑ

F
sinh−1

(

−1

2

I

I0

)

, (2.28)

for an applied current I. We shall use this relation in our simulations to calculate the requisite voltage V
for a prescribed current I.

2.4 Numerical implementation of the theory

We have implemented our coupled diffusion-deformation theory described in Sect. 2 by writing a user-
element subroutine (UEL) for Abaqus/Standard (2010), for a 2D axisymmetric 4-node linear isoparametric
quadrilateral element. Our numerical implementation is based on the procedures described in detail in the
recent paper by Chester et al. (2014). Accordingly, for brevity, in this paper we omit all details of our
numerical implementation.

4The electric potential U is an equilibrium potential in the sense that it relates to the interfacial voltage drop at the
electrode/electrolyte interface when the electrochemical reactions at the interface are in equilibrium.
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However, we note that in our numerical implementation we have ignored the last two terms in (2.7)
for the chemical potential. These terms are quadratic in the elastic strains, and expected to be smaller in
magnitude than the other terms in (2.7). Cf. Sethuraman et al. (2010) for arguments leading to such an
approximation even for silicon, which can absorb a large amount of lithium, and for which the values of the
elastic moduli are significantly affected when it is fully lithiated.

3 Calibration of the material parameters in the theory

The purpose of this section is to report on the calibration of the material parameters in our theory. The
calibrated values are summarized in Table 1 at the end of this Section. A majority of the material properties
necessary to characterize our constitutive theory are available in the literature. For the rest, we discuss in
detail the procedures that we have used to estimate the values from published experimental data, primarily
from the substrate-curvature experiments reported by Pharr et al. (2014).

3.1 Chemical properties

• The x in LixSi represents the stoichiometric amount of Li in the compound LixSi. We assume here
that Si may be fully lithiated to the compound Li15Si4, so that xmax = 3.75. Note that x is related to
the normalized concentration c̄ by x = xmaxc̄.

• With ρSi = 7.874 · 104mol/m3 the molar density of Si (Mohr et al., 2008), the maximum molar
concentration of Li in Si is then given by cR,max = 3.75 · ρSi = 0.295 · 106mol/m3.

• The maximum volumetric swelling of Si has been measured by Obrovac and Krause (2007) as ΩcR,max =
2.625, and hence the partial molar volume of Li in Si is Ω = 8.89 · 10−6m3/mol.

• The diffusivity D0 of Li in Si has been measured by Ding et al. (2009) to be D0 = 10−16m2/sec.

• Finally, the coefficients used by Bucci et al. (2014) to fit the activity coefficient (2.8) are a2/F =
0.8735V, a3/F = 0.7185V, a4/F = −4.504V, a5/F = 6.876V, a6/F = −4.6272V, and a7/F =
1.1744V, where F = 9.6485 ·104C/mol is the Faraday constant. The reference potential is V0 = 0.88V

3.2 Elastic properties

With

a =
x

x+ 1
=

xmaxc̄

xmaxc̄+ 1
(3.1)

denoting the atomic fraction of Li atoms, the variation of the Young’s modulus E, and the Poisson’s ratio
ν, with Li concentration is taken to obey a simple rule-of-mixtures proposed by Sethuraman et al. (2012),

E = aELi + (1− a)ESi, and ν = a νLi + (1− a) νSi, (3.2)

where (ELi, νLi) are the elastic properties of pure Li, and (ESi, νSi) are the elastic properties of pure Si.
Although the mixture rule (3.2) is linear with respect to the atom fraction a, see Fig. 1(a), it produces
a non-linear result with respect to either the stoichiometric coefficient x or the normalized concentration
c̄ = x/xmax, as shown in Fig. 1(b). The elastic moduli (E, ν) are converted to (G,K) by using the standard
relations G = E/(2(1 + ν)) and K = E/(3(1− 2ν)).

3.3 Plastic Properties. Reaction Constant

The remaining material properties that need to be calibrated are the plastic properties {Y0, Ysat, c̄∗, ǫ̇0,m}
in equations (2.13) and (2.14), as well as the reaction constant k0 in the expression (2.27)2 for the exchange
current I0. Pharr et al. (2014) and Bucci et al. (2014) have recently reported on their novel experiments in
which a half-cell based on an a-Si thin-film anode deposited on a quartz substrate is galvanostatically cycled
against a Li electrode, while the curvature of the substrate is simultaneously monitored. We have calibrated
the plastic properties and the reaction constant by conducting finite-element simulations of the substrate
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curvature experiments and adjusting these material parameters so that pertinent numerical results match
those which were measured experimentally by Pharr et al. (2014).

In the experiments of Pharr et al. (2014), a 100nm amorphous silicon film was deposited on a quartz
substrate and first lithiated/delithiated galvanostatically against a Li-electrode in a half cell at a C-rate
of 1/8 for one cycle. During the second cycle the lithiation rate was varied in order to induce different
strain rates in the silicon film to probe the rate sensitivity of plastic flow of a-Si. During their experiment a
substrate-curvature measuring technique was used to estimate the nominal stress in the a-Si film by using
the classical Stoney formula (Stoney, 1909)

σn =
1

6

Es

1− νs

h2s
hf
κ, (3.3)

where κ is the experimentally-measured curvature of the substrate, Es and νs are the Young’s modulus
and Poisson’s ratio of the substrate, and hs and hf are the thicknesses of the substrate and the film layers,
respectively.

As noted by Pharr et al. (2014), in their experiments there is loss of Li to the formation of SEI on the
silicon anode. Thus, what is experimentally controlled during their galvanostatic experiments is the total
flux of lithium into the system, jtot, and not the flux of lithium, jSi into the silicon anode; a portion jSEI of
the total flux in the system is consumed in the formation of the SEI. Thus,

jSi = jtot − jSEI. (3.4)

In our simulations we prescribe the flux of lithium into the silicon jSi. Thus, in order to compare our
simulations to the experimental results of Pharr et al. (2014), we need to estimate jSEI. Following recent
models of SEI formation (cf. e.g. Smith et al., 2011; Pinson and Bazant, 2013), and based on our previous
paper on modeling SEI growth, Rejovitzky et al. (2014), we assume that the rate of loss of Lithium is
inversely proportional to the square-root of time5

jSEI = B/
√
t, (3.5)

where B is a proportionality constant. Thus, combining (3.5) with (3.4), we obtain

jSi = jtot −B/
√
t. (3.6)

The total flux jtot depends on the charging rate and is determined by the experimental conditions. From
the experiment results of Pharr et al. (2014) we have estimated that6

B = 1.3364 · 10−5mol/(m2sec1/2).

For later use we introduce the quantity

xtot =
A

V

3.75

cR,max

∫ t

0

jtot dτ, (3.7)

which represents a normalized measure of the total amount of Li going into the system; here A and V are
the initial area and volume of the a-Si anode respectively.

The simulation domain used to numerically represent the substrate curvature experiments of Pharr et al.
(2014) is shown in Fig. 2. In order to minimize computational effort, we have only considered a small section
of an axisymmetric plate adjacent to the axis of radial symmetry as the simulation domain, and meshed it
with a single column of elements.7 The silicon layer was meshed with 20 user-elements whose constitutive

5Bucci et al. (2014) have accounted for Li lost to SEI formation in a similar manner; however, they accounted for the flux
of Li lost to SEI formation using a model which also depends on the applied voltage. Here, for simplicity, and since modeling
SEI formation is not the main objective of this paper, we simply model loss of Li to SEI formation through (3.6).

6Specifically, from their voltage versus SOC plot, we estimate the difference in concentration at 1V before and after the first
cycle, and based on the experimental C-rate, determine how much Li was lost in one full cycle.

7In the experiments of Pharr et al. (2014), there is also a 15 nm layer of Ti and a 300 nm layer of Cu between the glass
substrate and the silicon film. Since these layers are relatively stiff, and much thinner than the glass substrate, we do not
include them in our finite element model.
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behavior is described by the coupled diffusion-deformation theory summarized in Sect. 2. The glass layer
is meshed with 20 built-in Abaqus elements whose constitute behavior is taken to be linear elastic with a
Young’s modulus of Es = 72GPa and Poissons ratio νs = 0.165.

The boundary/initial conditions used for the substrate-curvature simulations are as follows:

• Mechanical boundary conditions: With respect to Fig. 2(b), consistent with radial symmetry, the
nodes along edge AB are constrained to have zero radial displacement. All nodes along the edge CD
are constrained to remain on a straight line as defined by the nodes at points C and D. The line formed
by these nodes is free to move and rotate, and it is from the rotation of this line with respect to its
initial vertical position that we compute the simulated curvature of the plate. Finally, the node at
point B is constrained to have zero vertical displacement to prevent any rigid body motions.

• Flux boundary conditions: With respect to Fig. 2(b), on the nodes along edge AC we prescribe
the flux of lithium according to (3.6). As in the experiment of Pharr et al. (2014), the total flux jtot
is set to correspond to a C-rate of 1/8 for the first full cycle. During the second cycle, the C-Rate was
set to 1/8 for 1 h followed by a number of segments with different C-rates. The time of each segment
was chosen such that the total flux into the system during each segment was equal. Specifically, C-rate
jumps from 1/8 to

C-rate ∈ [1/2, 1/4, 1/16, 1/32, 1/64, 1/128], (3.8)

were considered.

For an informative movie showing the results of such a simulation please see the supplementary movie
S1 PlateCycling.mp4. This movie shows the time-dependent contour plots of the normalized concentration
c̄, the equivalent plastic strain ǭp, and the equivalent plastic strain rate ˙̄ǫp on the deformed geometry of
the a-Si. It also shows the variation of the nominal stress (cf. (3.3)) versus xtot (cf. (3.7)), as well as the
cell-voltage V (cf. (2.28)) versus xtot during the experiment.

The results from our material parameter calibration procedure are shown in Figs. 3 and 4. Fig. 3(a)
compares the simulated nominal stress (solid line) as a function of the total lithium content xtot, against the
corresponding experimental measurement (dashed line) (Pharr et al., 2014). The simulation captures the
experimentally-observed behavior relatively well. In obtaining this fit the material parameters

ǫ̇0 = 2.3 · 10−3 1/sec and m = 2.94,

for the material rate-sensitivity were taken directly from Pharr et al. (2014), and only the the parameters

{Y0, Ysat, c̄∗}

in (2.14) were adjusted to fit the data.
Fig. 3(b) shows the simulated voltage V (solid line) versus the total lithium content xtot, against the

corresponding experimental measurement (dashed line) (Pharr et al., 2014). Note that in the simulation
shown in Fig. 3(b) we maintained a C-rate equal to 1/8; accordingly we have cropped the experimental
data before the start of the C-rate jumps. The simulated voltage was computed using equation (2.28) by
appropriately adjusting the parameter k0 in the expression (2.27)2 for the exchange current I0. We adjusted
k0 so that the total dissipation of energy in one full cycle (i.e. the area inside the curves encompassed by
the second and third half-cycles) in the simulation was approximately equal to that in the experiment.

With respect to the comparisons shown in Fig. 3, we make the following observations:

• In Fig. 3(a), the onset of plasticity, followed by plastic softening, occurs earlier in the simulation than
in the experiment. This is likely due to the fact that we have underestimated the amount of Li lost to
SEI formation in the early stages of lithiation.

• The functional form (2.14) for the variation of the yield strength with species concentration in the sim-
ulation captures the experimentally-observed plastic softening with increasing concentration, relatively
well. During delithiation, the model as well as the experiments predict an increase in flow resistance
due to a decrease in the concentration of lithium.
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• The simulated elastic unloading after the first half-cycle matches well with the corresponding experi-
mental results. This suggests that the mixing rule (3.2), combined with the elastic constants listed in
Table 1, are well suited to characterizing the variation in elastic properties with changing Li concen-
tration.

• As shown in Fig. 3(b), the simulation, using the reaction kinetics described in Sect. 2.3, gives a fairly
good approximation of the experimentally-measured voltage versus xtot response.

Finally, Figs. 4(b) and (c) compare the simulated and experimentally-measured stress-jumps due to
changes in C-rate. Note that the axes in the two figures are identical in order to provide an accurate visual
comparison of the stress increments and decrements with changes in C-rate. The simple power-law strain-
rate-sensitivity for the a-Si in the theory produces stress-jumps which are comparable to those measured
experimentally by Pharr et al. (2014).

The final list of calibrated values for a-Si is summarized in Table 1. Note that only the three material
parameters {Y0, Ysat, c̄∗} for the rate-independent part of the plastic deformation resistance, and the reaction
kinetics parameter k0 for the exchange current have been fitted in this work; all the other parameters have
been obtained from values published in the literature. With all the material parameters in the theory fixed
to the values shown in this Table, in the next Section we apply our numerical simulation capability to model
the hollow double-walled Silicon anodes developed by Wu et al. (2012).

Table 1: Material properties for our fully-coupled elastic-plastic deformation-diffusion model for amorphous
Silicon anodes

Parameter Value Source

Chemical

D0 10−16 m2/sec Ding et al. (2009)

ΩcR,max 2.625 Obrovac and Krause (2007)

cR,max = 3.75 · ρSi 0.295 · 106mol/m3 ρSi = 7.874 · 104mol/m3 from
Mohr et al. (2008)

[a2, a3, a4, a5, a6, a7]/F
[0.8735, 0.7185,−4.504,

6.876,−4.6272, 1.1744]V
Bucci et al. (2014)

Elastic

Ea-Si 80GPa

Sethuraman et al. (2012)νa-Si 0.22

ELi 4.91GPa

νLi 0.36

Plastic
Rate-Dependent

ǫ̇0 2.3 · 10−3 1/sec
Pharr et al. (2014)

m 2.94

Plastic
Rate-Independent

Y0 1.6GPa
Fitted to Pharr et al. (2014)Ysat 0.4GPa

c̄∗ 0.04

Reaction Kinetics k0 3.25 · 10−7mol/sec Fitted to Pharr et al. (2014)
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4 Modeling a hollow double-walled a-Si nanotube anode

As discussed in the introduction, in order to mitigate failure of the SEI, various research groups have proposed
the use of novel Si anode designs which restrict the deformation incurred by the SEI during cyclic lithiation.
One such design, experimentally-realized by Wu et al. (2012), involves fabricating an anode which consists
of an ensemble of hollow a-Si nanotubes whose outside has been oxidized; see Fig. 5(a) for a TEM image.
These structures are referred by the authors as double-walled nanotubes, where the two walls refer to an
interior Si core and an exterior silicon-dioxide shell; see schematic Fig. 5(b). Since the electrolyte contacts
the anode only on its exterior surface — the exposed surface of silicon-dioxide, the SEI will also grow only
on the exterior of the nanotube. During cycling, the relatively stiff silicon-dioxide shell acts as a mechanical
constraint layer which prevents the outward expansion of the nanotube, effectively restricting the deformation
incurred by the SEI.

In this Section we apply our calibrated fully-coupled theory for a-Si to model such a geometrically-
complex anode design. We do so with all material properties for a-Si fixed at the values shown in Table 1,
which were calibrated from independent experiments. In our simulations, the mechanical properties of the
SiO2 layer are simply taken to be linear elastic with a Young’s modulus of E = 90GPa, and a Poisson’s
ratio of ν = 0.17.

In modeling the hollow nanotubes of Wu et al. (2012), we assume that they are axisymmetric and have
a length much larger than their diameter, so that diffusion of Li occurs entirely in the radial direction. In
accordance with these assumptions, and in order to save computational effort, we take a sliver of the hollow
tube, cf. Fig. 5(b), as our simulation domain, and mesh it with a single row of elements; cf. Fig. 5(c). With
respect to Fig. 5(c) we apply the following boundary:

• Mechanical boundary conditions: The nodes along the edge AC are constrained to have zero-
displacement in the vertical z-direction. Consistent with our assumption of a long thin tube, the nodes
along edge DF are constrained to remain flat but are allowed to displace in the z-direction. The edges
AF and CD are traction-free.

• Chemical potential boundary conditions: Consistent with our assumption of radial diffusion only,
we constrain the chemical potential of the nodes on edge AC to equal the chemical potential of the
nodes on edge DF.

• Flux boundary conditions: In these simulations we neglect the transport of Li through the SiO2

layer. Then, consistent with the experiments which were done at a constant current, we prescribe a
flux of Li into the Si directly on the nodes on edge BE. The magnitude of the flux is computed based
on a desired C-rate through

j̆ = −(V/A)(C-rate/3600)cR,max,

where V and A are the initial volume and area of the Si anode respectively, and cR,max is the maximum
molar concentration given in Table 1. In these simulations, for simplicity, we do not consider any loss of
Li to SEI formation. As in the experiments of Wu et al. (2012), the simulated anode is cycled between
voltage limits of 0.01V and 1V, where the simulated voltage is computed during the simulation using
(2.28).

For later use, we define the state-of-charge (SOC) of the a-Si anode at a given time by

SOC =

∫

B

c̄ dV/

∫

B

dV. (4.1)

Remark. As reported by Wu et al. (2012), and recently studied in detail by Zhang et al. (2014), it is
expected that during cycling the SiO2 film will react with Li to form a silicon-oxygen-lithium compound.
This reaction, which is believed to be non-reversible, will consume lithium and also lead to an expansion
of the SiO2 film. In our simulations we do not attempt to model the uptake of Li, and the consequent
expansion of the SiO2 film during cycling. We make this purposeful choice for two reasons: (i) We would
like to maintain our focus on the theory for a-Si and its response in the geometrically-complex anode under
study; and (ii) It is unclear at present what the product of the reaction involving SiO2 and Li is; and as
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such, attempting to model this would result in a number of additional fitting parameters which cannot —
at this stage of available experimental data — be independently determined.

4.1 Typical simulation output

A typical result of our simulations is shown in Fig. 6, where we cycled a hollow double-walled nanotube
anode at a C-rate of 1 for three half-cycles between voltage limits of 0.01 and 1V. On the left in Fig. 6 we
show contours of the normalized concentration c̄ (top), and contours of equivalent plastic strain ǭp (bottom)
in the a-Si. These contours are plotted at states (A) and (B), which respectively represent the states at the
beginning and end of the last half-cycle; see the figure on the right, where these states are marked by dashed
lines. From the contours of equivalent plastic strain we note that at the end of 3 half-cycles, the anode has
accumulated a very large amount of plastic deformation — up to 210% plastic strain.

On the right of Fig. 6 we show plots of the equilibrium U (blue), and the voltage V (red), both as functions
of the SOC. The difference between these two curves is the overpotential, η = V − U , which arises entirely
due to the surface reaction kinetics described in Sect. 2.3. The equilibrium potential represents the intrinsic
response of the Si anode, and visualizing it together with the voltage allows us to discern the contribution
from the mechanical deformation of the Si anode to the overall voltage versus SOC behavior. The dissipation
due to plastic deformation is evident in the hysteretic behavior of the equilibrium potential versus SOC curve.
In this particular simulation, plasticity accounts for ≈ 15% of the total dissipation during one cycle. For an
informative animation of this cyclic simulation please see the supplementary movie “S2 HollowTube.mp4”.

4.2 Comparison between our simulation results and the experiments of Wu et
al. (2012)

Next, we compare our simulation results to the experimentally-measured voltage versus capacity curves of
Wu et al. (2012). To convert the capacity data reported by these authors to SOC, we assume, as reported by
the authors, that Si comprises 60% of the total mass of the active material, and that the maximum capacity
of Si is 3.579Ah/g. In order to compare the results from our simulations to those obtained experimentally,
we ignore the results from the first half-cycle in our simulations, and shift the minimum SOC achieved in
subsequent cycles to be zero. Fig. 7 (a) compares our simulated results (solid lines) for voltage versus SOC,
against the experimental results (dashed lines) of Wu et al. (2012) at two C-rates — a C-rate of 1 (red) and a
C-rate of 20 (blue). Although there are some discrepancies between the simulated and experimental results,
our theory is capable of qualitatively reproducing the overall experimentally-measured response reasonably
well.8

In order to get a more quantitative comparison between simulations and experiments, we may calculate
two additional quantities from the voltage versus SOC curves at different C-rates:

• First, the total dissipation in one full cycle at a given C-rate is given by the corresponding area inside
the voltage versus SOC curve.

• Second, the maximum capacity at a given C-rate corresponds to the capacity when the voltage hits
the lower cutoff limit of 0.01V.

We have carried out such calculations for several different C-rates. Fig. 7(b) shows the total dissipation as a
function of C-rate — the simulations are shown as red circles, and the corresponding experiments are shown
as black squares; note that the abscissa for the C-rates is logarithmic. It is clear from Fig. 7(b) that our
simulations overestimate the total dissipation; however, our simulations correctly predict the experimentally-
observed trend that the total dissipation is the largest at a C-rate ≈ 1, and decreases as the C-rate increases.
The maximum capacity as a function of C-rate is shown in Fig. 7(c) — again the simulations are shown as
red circles, and the corresponding experiments are shown as black squares. We obtain a good quantitative
prediction of the experimentally-measured maximum capacity as a function of C-rate.

8In our simulations we have considered only a single nanotube, while the experimental results of Wu et al. (2012) were
obtained from an anode which was made up of an ensemble of nanotubes of various dimensions. Some of the differences
between the simulated and experimental results shown in Fig. 7 are clearly due to thme fact that we are considering only a
single nanotube. In future work we aim to simulate an anode composed of many nanotubes of various dimensions.
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We emphasize again that the results shown in Fig. 7 were obtained by using material properties for
a-Si which were were calbrated from independent experiments. This shows that the theory and simulation
capability presented in this paper is capable, with reasonable accuracy, of modeling the electrochemical
response of a geometrically-complex Si anode.

4.3 Role of plastic deformation on the electrochemical response of the a-Si
anode

The simulation capability developed here allows us to explore the role of plastic deformation on the voltage
versus SOC behavior of the anode during cycling. We expect, as noted by Sethuraman et al. (2010), that
plasticity will play a role both in determining the energy dissipated during cycling of the anode as well as in
determining the realizable capacity of the anode.

First, we estimate the contribution of plasticity to the overall dissipation during cyclic lithiation/delithiation.
Fig. 8(a) shows the plastic dissipation per cycle as a function of the C-rate. The dissipation due to plasticity
is larger at low C-rates than at high C-rates. There are two factors that contribute to this behavior: First,
since the plastic response of a-Si is rate-dependent, it exhibits a lower flow resistance at lower C-rates. Sec-
ond, at low C-rates the voltage cutoff of 0.01V is reached at higher values of SOC, and therefore the anode
is deformed to a greater extent than at high C-rates.

Fig. 8 (b) shows the plastic dissipation normalized by the total dissipation (in percent) as a function of
the C-rate. This figure clearly shows that at low C-rates plasticity plays a major role in the total dissipation
of the anode over one cycle; it accounts for over 30% of the total dissipation at a C-rate of 1/10.

Although plasticity can contribute significantly to the total dissipation of energy of the anode per cycle, it
also has the beneficial effect of relieving the build-up of elastic stresses in the material. This in turn reduces
the voltage required to lithiate the anode to a particular SOC.

To illustrate this important effect we have performed simulations suppressing plastic deformation, while
maintaining all other parameters constant. The results are shown in Fig. 9, where we compare a simulation
with plasticity (red lines) to a simulation without plasticity (blue lines), both at a C-rate of 1. Fig. 9(a)
compares the voltage V versus SOC for the two simulations. This figure clearly shows that the simulation
without plasticity reaches the cutoff voltage of 0.01V at a SOC of ≈ 0.3, whereas the simulation with
plasticity reaches the cutoff at a much higher SOC of ≈ 0.7. The point in the first half-cycle where the two
curves deviate indicates the onset of plasticity in the simulations with plasticity. Fig. 9(b) compares the
equilibrium potential U versus SOC from the two simulations. Note that there is no discernible hysteretic
behavior in the simulation without plasticity, since there is almost no dissipation of energy in the intrinsic
behavior of the Si anode when plasticity is suppressed.9

We have carried out such calculations for several different C-rates. Figs. 9(c) and (d), respectively, show
the total dissipation per cycle as a function of C-rate, and the maximum capacity (SOC at V = 0.01V) as
a function of C-rate. Clearly, the simulations without plasticity produce significantly different results than
those with plasticity.

For an informative movie which compares simulations with and without plasticity, please see the supple-
mentary movie “S3 HollowTube PlasticComp.mp4”. This movie shows the time-dependent contour plots of
the normalized concentration c̄ and the equivalent plastic strain ǭp on the deformed geometry of the a-Si
nanotube anode. It also shows the variation of the voltage V versus SOC during the simulation.

5 Concluding remarks

We have formulated and numerically implemented a fully-coupled diffusion-deformation theory, which ac-
counts for transient diffusion of lithium and accompanying large elastic-plastic deformations of a-Si. The
material parameters in the theory have been calibrated to results from experiments reported in the litera-
ture. We have applied our numerical simulation capability to model galvanostatic charging of hollow a-Si

9There are two possible dissipation mechanism in the electrode, one due to plastic deformation, and one due to gradients in
the chemical potential (c.f. eq. (8.11) in Anand, 2012). In our simulations, due to the nano-metric size of the anodes considered,
the gradients of the chemical potential are very small and consequently the dissipation due to gradients in the chemical potential
is very small.
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nanotubes whose exterior walls have been oxidized to prevent outward expansion (Wu et al., 2012). We
have shown that the results from our numerical simulations are in good agreement with the experimentally-
measured voltage versus SOC behavior at various charging rates (C-rates). Through our simulations, we
have identified two major effects of plasticity on the performance of a-Si-based anodes:

• First, plasticity enables lithiation of the anode to a higher SOC for a given voltage cut-off. This is
because plastic flow reduces the stresses generated in the material, and thus reduces the potential
required to lithiate the material.

• Second, plastic deformation accounts for a significant amount of the energy dissipated during the
cycling of the anode at low C-rates. For the particular geometry of the anode considered in this paper,
plasticity accounts for over 30% of the total dissipation per cycle at a low C-rate of 1/10.

Hence, plasticity can have either a beneficial effect — that is, a higher SOC for a given voltage cut-off, or a
detrimental effect — that is, significant energy dissipation at low C-rates, on the electrochemical performance
of a-Si-based anodes.

The design of a-Si-based anodes for optimal performance is non-trivial. The fully-coupled diffusion-
deformation theory and simulation capability reported in this paper should be useful in developing a detailed
understanding of the electro-chemo-mechanical operation of a-Si-based anodes, and optimizing their design
for future applications. Furthermore, the favorable comparison between the predictions from our continuum
theory and the experimental results shown in this work, demonstrates the applicability and importance
of continuum-level models in making meaningful predictions of the electrochemical response of a-Si based
nanostructured anodes.

Finally, the theory and numerical simulation tools developed in this work will help one to formulate
models at the porous-electrode-scale, where one must consider the interactions between anode particles and
binder and between anode particles themselves. Using the foundations developed here, such a (non-trivial)
extension of this work will allow one to study how the stresses generated within an anode particle affects
its interaction with other particles, as well as study how the stresses generated in the microstructure might
affect loss of conductivity due to failure of the anode-particle/binder interfaces.
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A Appendix. Details of modeling interfacial reaction kinetics.

Electrochemical potential: The electrochemical potential of the ith charged species in a chemical
reaction is defined as

µ̃i
def
= µi + ziFφI , (A.1)

where µi is its chemical potential, zi is its valence, F is Faraday’s constant,10 and φI is the electric
potential in phase I in which the charged species is found.11

Consider an electrode containing some Li submerged in a bath of an electrolyte containing Li+ ions. We
make the following assumptions regarding this system:

• The electrode material is considered insoluble in the electrolyte.

• We assume that within the electrode there are more than enough electrons to combine with the Li
ions, so that lithium in the electrode exists as a neutral species.

• We consider the electrical conductivity of the electrode to be large, and the diffusion of Li+ through
the electrolyte to be fast.

10The Faraday constant is the magnitude of electric charge per mole of electrons. It has a value 9.64853399(24) × 104 C
mol−1.

11Henceforth we distinguish the electrochemical potential with an overset tilde, µ̃, while the chemical potential, µ, will not
have an overset tilde.

15



• We denote the electric potential in the electrode by φe, and the electric potential in the electrolyte by
φ. Further, we assume that both of these electric potentials are constant, and variations in the electric
potential occur only at the electrode/electrolyte interface.

Consider now the following electrochemical reaction at the surface of the electrode,

Li(electrode surf.)
⇄ Li+(electrolyte) + e−(electrode surf.), (A.2)

and let
µ̃
(electrode surf.)
Li , µ̃

(electrolyte)

Li+
, and µ̃

(electrode surf.)

e−
, (A.3)

respectively, denote the the electrochemical potentials of the Li atoms on the surface of the electrode, Li ions
in the electrolyte, and the electrons on the surface of the electrode.

Remark. Henceforth, for brevity, we will omit the superscripts used in (A.2) and (A.3) to denote the
location of each species. Thus, for the ensuing discussion, the neutral Li as well as the electrons should
always be considered as being on the the surface of the electrode, while the Li+ ions should always be
considered as being in the electrolyte. Hence, the subscript denoting the species type is also an indicator of
its location.

Let the difference between the electrochemical potentials of the reactant and products in (A.2) divided
by Faraday’s constant be denoted by

η
def
=

1

F

(

µ̃Li − (µ̃Li+ + µ̃e−)
)

. (A.4)

This represents a “driving force” for the chemical reaction (A.2) in the sense that:

• If η > 0, then lithium is favored to be expelled form the electrode into the electrolyte — Li is oxidized
to form Li+.

• If η < 0, then lithium is favored to be intercalated form the electrolyte into the electrode — Li+ is
reduced to form Li.

• And, the condition η = 0 represents the condition for equilibrium of the reaction in equation (A.2).

The electrochemical potentials in (A.4) may be further expressed in terms of their chemical potentials
and electric potentials as

µ̃Li = µLi,

µ̃Li+ = µLi+ + Fφ,

µ̃e− = µe− − Fφe,

(A.5)

where in writing (A.5) we have made use of the fact that Li atoms in the electrode are a neutral species, that
the Li ions are positively charged (valance of +1), and that the electrons are negatively charged (valance
of −1). Further note that the electric potential acting on the Li ions is that of the electrolyte, φ, and the
electric potential acting on the electrons is that of the electrode, φe.

Next, consistent with our earlier assumptions, we assume further that the activities of the Li+ ions in
the electrolyte and the electrons e− in the electrode have a value of unity12 — that is the electrolyte and
the electrode may be treated as infinite reservoirs which supply Li+ ions and electrons e− to the chemical
reaction at the surface of the electrode particle. Then, the electrochemical potentials (A.5) may be written
as

µ̃Li = µ0
Li + µ̂Li(c̄,M

e, ϑ),

µ̃Li+ = µ0
Li+

+ Fφ,

µ̃e− = µ0
e−

− Fφe,

(A.6)

12The chemical potential of a species is usually written as

µi = µ0

i
+ Rϑ ln(ai),

where ai represents the activity of the species, and µ0

i
represents the reference value when ai = 1.
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where the reference potentials µ0
Li, µ

0
Li+

and µ0
e−

are constants, and where we have recalled that the chemical
potential of the Li at the surface of the electrode is a function of the concentration, the Mandel stress, and
the temperature, (c.f. eq. 2.7). Using (A.6) we may write the quantity η defined (A.4) as

η =
µ̂Li(c̄,M

e, ϑ)

F
−

(µ0
Li+

+ µ0
e−

− µ0
Li)

F
+∆φ, (A.7)

where
∆φ

def
= (φe − φ), (A.8)

represents the voltage drop across the electrode/electroyte interface.

Equilibrium: At equilibrium η = 0. Thus, using (A.7), we may define an equilibrium interfacial voltage as

∆φeq = V ∗

0 − µ̂Li(c̄,M
e, ϑ)

F
, (A.9)

where

V ∗

0
def
=

(µ0
Li+

+ µ0
e−

− µ0
Li)

F
≡ constant. (A.10)

In the absence of stresses, (A.9) represents the standard Nernst equation for the system under consideration.
Using (A.9), we may rewrite (A.7) as

η = ∆φ−∆φeq. (A.11)

The quantity η is commonly referred to as the overpotential, since — as is clear from (A.11) — it represents
the electric potential above (or below) an equilibrium value required to drive the chemical reaction.

Deviation from equilibrium: When the overpotential η 6= 0, the chemical reaction (A.2) takes place, and
there is a resulting current I. The current I per unit area is a function of the overpotential η, and is widely
taken to be given by the phenomenological Butler-Volmer equation (cf., e.g., Newman and Thomas-Alyea,
2012; Bazant, 2013),

I = I0

(

exp

(

−αFη
Rϑ

)

− exp

(

(1− α)
Fη

Rϑ

))

. (A.12)

Here, I0 is a concentration-dependent exchange current, given by

I0 = Fk0(1− c̄)αc̄(1−α), (A.13)

0 < α < 1 is a symmetry factor which biases the reaction, and k0 is a rate constant which is typically
determined experimentally. In our simulations we assume α = 0.5, in which case (A.12) may be inverted to
yield

η = 2
Rϑ

F
sinh−1

(

−1

2

I

I0

)

, with I0 = Fk0(1− c̄)1/2(c̄)1/2. (A.14)

Equilibrium potential. Cell voltage: Let

∆φcnt
def
= φcnt − φ,

define the voltage drop at the counter-electrode/electrolyte interface in the half-cell, where φcnt is the electric
potential of the counter-electrode which is a constant. Then, we define an equilibrium potential for the
half-cell through

U
def
= ∆φeq −∆φcnt. (A.15)

Then, using (A.15) and (A.9), we obtain that

U = V0 −
µ̂Li(c̄,M

e, ϑ)

F
, where V0

def
= V ∗

0 −∆φcnt ≡ constant. (A.16)
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Thus, the parameter V0 depends on the counter-electrode used. It is a Li foil in all the experiments considered
in this paper.

Finally, the cell voltage is defined as the voltage drop between the electrode and the counter electrode

V
def
= φe − φcnt

= (φe − φ) − (φcnt − φ) = ∆φ−∆φcnt,
(A.17)

where in writting (A.17) we have made use of the assumption that the electrolyte electric potential φ is
constant through the electrolyte. Using (A.11), (A.14), and (A.16) the cell voltage may be written as

V = U + η

= V0 −
µ̂Li(c̄,M

e, ϑ)

F
+ 2

Rϑ

F
sinh−1

(

−1

2

I

I0

)

.
(A.18)

Flux boundary condition: As discussed in (2.20)2, at a point on the surface of the deformed body we
may prescribe a flux boundary condition, j · n = j̆. The prescribed flux j̆ is related to an applied current I
per unit area at that point by

j̆ = −I/F. (A.19)

Remark. When a battery is cycled under constant current conditions, that is galvanostatic conditions, it
is the total current

Itotal =

∫

∂Bt

I da,

which is constant across the electrode. In a finite-element simulation of an arbitrary shaped-electrode which
has been discretized to havem elements on the exterior boundary of the body, one must prescribe an integral
constraint of the form

Itotal =

m∑

k=1

∫

∂Be

t

Ik da =

m∑

k=1

∫

∂Be

t

−F j̆k da

where j̆k represents the flux to be prescribed on the desired surface of the k-th element. However, in the
simulations considered in this paper the diffusion is essentially one-dimensional in nature, there is a single
element on the surface of our simulation domains, and the simple eq. (A.19) applies.
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Figure 1: Variation of the elastic constants in LixSi as a function of (a) the fraction of Li atoms (number of
Li atoms/total number of atoms), and (b) as a function of the normalized Li concentration c̄.
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Figure 2: (a) Plate geometry showing simulation domain at the axis of radial symmetry, and (b) schematic
of the single-column finite-element mesh used in the substrate curvature simulations.
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Figure 3: Fit of our substrate curvature simulation to the experiments of Pharr et al. (2014) showing (a) the
nominal stress in the Si film, and (b) the voltage, both as functions of the total lithium content.

1.2 1.4 1.6 1.8 2 2.2 2.4

−0.57

−0.52

−0.47

−0.42

xtot

S
tr
es
s
(G

P
a
)

FEA Simulation

(b)

1.2 1.4 1.6 1.8 2 2.2 2.4

−0.57

−0.52

−0.47

−0.42

xtot

S
tr
es
s
(G

P
a
)

Experiments of Pharr et al. (2014)

 

 

C/128

C/64

C/32

C/16

C/8

C/4

C/2

(c)

Figure 4: Nominal stress jumps produced by varying the C-rate from (a) our finite-element simulation, and
(b) the experiments of Pharr et al. (2014).

22



}}}

Si

20 nm

SiO2

10 nm

A B C

DEF

ez

ez

er

er

(a) (b) (c)

d

200 nm

Wu et al., (2012)

gap

170 nm

SiSiO2

Figure 5: Modeling hollow double-walled nanotubes. (a) Shows a TEM of the experimentally-realized
nanotubes reproduced from Wu et al. (2012). (b) Shows a representative hollow double-walled nanotube
where, consistent with our assumptions of axisymmetry and radial diffusion, we take a sliver of the tube on
the ez-er plane as our simulation domain. (c) Shows a schematic of the simulation domain (not to scale)
and a representative finite-element mesh.
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Figure 6: Simulation of a hollow double-walled nanotube anode cycled at a C-rate of 1 between voltage
limits of 0.01 and 1V for 3 half-cycles. Contours of normalized concentration c̄ (top) and equivalent plastic
strain ǭp (bottom), in the a-Si anode, at (A) the start, and (B) the end of the last half-cycle. On the right
we plot the voltage V , and equilibrium potential U , as functions of SOC, for the same simulation.
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Figure 7: Comparison between simulated hollow double-walled nanotubes and the experiments of Wu et al.
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Figure 8: Simulations of hollow double-walled nanotubes. (a) Plastic dissipation over one full cycle as
a function of C-rate. (b) Plastic dissipation normalized by total dissipation, in percent, as a function of
C-rate. Note the logarithmic x-axis.
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Figure 9: Simulations of hollow double-walled nanotubes with and without plasticity. (a) Voltage versus
SOC, (b) equilibrium potential versus SOC, (c) total dissipation over one cycle versus C-rate, and (d)
maximum capacity (i.e. SOC at cutoff of V = 0.01V) versus C-rate. Note the logarithmic x-axis.
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