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The Multimodal Brain Tumor Image Segmentation Benchmark 
(BRATS)
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Abstract

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation 

Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. 

Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast 

MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and 

to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations 

revealed considerable disagreement between the human raters in segmenting various tumor sub-

regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that 

different algorithms worked best for different sub-regions (reaching performance comparable to 

human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions 

simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded 

segmentations that consistently ranked above all individual algorithms, indicating remaining 

opportunities for further methodological improvements. The BRATS image data and manual 

annotations continue to be publicly available through an online evaluation system as an ongoing 

benchmarking resource.

Index Terms

MRI; Brain; Oncology/tumor; Image segmentation; Benchmark

I. Introduction

Gliomas are the most frequent primary brain tumors in adults, presumably originating from 

glial cells and infiltrating the surrounding tissues [1]. Despite considerable advances in 

glioma research, patient diagnosis remains poor. The clinical population with the more 
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aggressive form of the disease, classified as high-grade gliomas, have a median survival rate 

of two years or less and require immediate treatment [2], [3]. The slower growing low-grade 

variants, such as low-grade astrocytomas or oligodendrogliomas, come with a life 

expectancy of several years so aggressive treatment is often delayed as long as possible. For 

both groups, intensive neuroimaging protocols are used before and after treatment to 

evaluate the progression of the disease and the success of a chosen treatment strategy. In 

current clinical routine, as well as in clinical studies, the resulting images are evaluated 

either based on qualitative criteria only (indicating, for example, the presence of 

characteristic hyper-intense tissue appearance in contrast-enhanced T1-weighted MRI), or 

by relying on such rudimentary quantitative measures as the largest diameter visible from 

axial images of the lesion [4], [5].

By replacing the current basic assessments with highly accurate and reproducible 

measurements of the relevant tumor substructures, image processing routines that can 

automatically analyze brain tumor scans would be of enormous potential value for improved 

diagnosis, treatment planning, and follow-up of individual patients. However, developing 

automated brain tumor segmentation techniques is technically challenging, because lesion 

areas are only defined through intensity changes that are relative to surrounding normal 

tissue, and even manual segmentations by expert raters show significant variations when 

intensity gradients between adjacent structures are smooth or obscured by partial voluming 

or bias field artifacts. Furthermore, tumor structures vary considerably across patients in 

terms of size, extension, and localization, prohibiting the use of strong priors on shape and 

location that are important components in the segmentation of many other anatomical 

structures. Moreover, the so-called mass effect induced by the growing lesion may displace 

normal brain tissues, as do resection cavities that are present after treatment, thereby limiting 

the reliability of spatial prior knowledge for the healthy part of the brain. Finally, a large 

variety of imaging modalities can be used for mapping tumor-induced tissue changes, 

including T2 and FLAIR MRI (highlighting differences in tissue water relaxational 

properties), post-Gadolinium T1 MRI (showing pathological intratumoral take-up of contrast 

agents), perfusion and diffusion MRI (local water diffusion and blood flow), and MRSI 

(relative concentrations of selected metabolites), among others. Each of these modalities 

provides different types of biological information, and therefore poses somewhat different 

information processing tasks.

Because of its high clinical relevance and its challenging nature, the problem of 

computational brain tumor segmentation has attracted considerable attention during the past 

20 years, resulting in a wealth of different algorithms for automated, semi-automated, and 

interactive segmentation of tumor structures (see [6] and [7] for good reviews). Virtually all 

of these methods, however, were validated on relatively small private datasets with varying 

metrics for performance quantification, making objective comparisons between methods 

highly challenging. Exacerbating this problem is the fact that different combinations of 

imaging modalities are often used in validation studies, and that there is no consistency in 

the tumor sub-compartments that are considered. As a consequence, it remains difficult to 

judge which image segmentation strategies may be worthwhile to pursue in clinical practice 

and research; what exactly the performance is of the best computer algorithms available 
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today; and how well current automated algorithms perform in comparison with groups of 

human expert raters.

In order to gauge the current state-of-the-art in automated brain tumor segmentation and 

compare between different methods, we organized in 2012 and 2013 a Multimodal Brain 

Tumor Image Segmentation Benchmark (BRATS) challenge in conjunction with the 

international conference on Medical Image Computing and Computer Assisted Interventions 

(MICCAI). For this purpose, we prepared and made available a unique dataset of MR scans 

of low- and high-grade glioma patients with repeat manual tumor delineations by several 

human experts, as well as realistically generated synthetic brain tumor datasets for which the 

ground truth segmentation is known. Each of 20 different tumor segmentation algorithms 

was optimized by their respective developers on a subset of this particular dataset, and 

subsequently run on the remaining images to test performance against the (hidden) manual 

delineations by the expert raters. In this paper we report the set-up and the results of this 

BRATS benchmark effort. We also describe the BRATS reference dataset and online 

validation tools, which we make publicly available as an ongoing benchmarking resource for 

future community efforts.

The paper is organized as follows. We briefly review the current state-of-the-art in 

automated tumor segmentation, and survey benchmark efforts in other biomedical image 

interpretation tasks, in Section II. We then describe the BRATS set-up and data, the manual 

annotation of tumor structures, and the evaluation process in Section III. Finally, we report 

and discuss the results of our comparisons in Sections IV and V, respectively. Section VI 

concludes the paper.

II. Prior Work

Algorithms for Brain Tumor Segmentation

The number of clinical studies involving brain tumor quantification based on medical images 

has increased significantly over the past decades. Around a quarter of such studies relies on 

automated methods for tumor volumetry (Fig. 1). Most of the existing algorithms for brain 

tumor analysis focus on the segmentation of glial tumor, as recently reviewed in [6], [7]. 

Comparatively few methods deal with less frequent tumors such as meningioma [8]–[12] or 

specific glioma subtypes [13].

Methodologically, many state-of-the-art algorithms for tumor segmentation are based on 

techniques originally developed for other structures or pathologies, most notably for 

automated white matter lesion segmentation that has reached considerable accuracy [14]. 

While many technologies have been tested for their applicability to brain tumor detection 

and segmentation—e.g., algorithms from image retrieval as an early example [9]—we can 

categorize most current tumor segmentation methods into one of two broad families. In the 

so-called generative probabilistic methods, explicit models of anatomy and appearance are 

combined to obtain automated segmentations, which offers the advantage that domain-

specific prior knowledge can easily be incorporated. Discriminative approaches, on the other 

hand, directly learn the relationship between image intensities and segmentation labels 
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without any domain knowledge, concentrating instead on specific (local) image features that 

appear relevant for the tumor segmentation task.

Generative models make use of detailed prior information about the appearance and spatial 

distribution of the different tissue types. They often exhibit good generalization to unseen 

images, and represent the state-of-the-art for many brain tissue segmentation tasks [15]–

[21]. Encoding prior knowledge for a lesion, however, is difficult. Tumors may be modeled 

as outliers relative to the expected shape [22], [23] or image signal of healthy tissues [17], 

[24] which is similar to approaches for other brain lesions, such as Multiple Sklerosis [25], 

[26]. In [17], for instance, a criterion for detecting outliers is used to generate a tumor prior 

in a subsequent expectation-maximizations segmentation which treats tumor as an additional 

tissue class. Alternatively, the spatial prior for the tumor can be derived from the appearance 

of tumor-specific “bio-markers” [27], [28], or from using tumor growth models to infer the 

most likely localization of tumor structures for a given set of patient images [29]. All these 

models rely on registration for accurately aligning images and spatial priors, which is often 

problematic in the presence of large lesions or resection cavities. In order to overcome this 

difficulty, both joint registration and tumor segmentation [18], [30] and joint registration and 

estimation of tumor displacement [31] have been studied. A limitation of generative models 

is the significant effort required for transforming an arbitrary semantic interpretation of the 

image, for example, the set of expected tumor substructures a radiologist would like to have 

mapped in the image, into appropriate probabilistic models.

Discriminative models directly learn from (manually) annotated training images the 

characteristic differences in the appearance of lesions and other tissues. In order to be robust 

against imaging artifacts and intensity and shape variations, they typically require substantial 

amounts of training data [32]–[38]. As a first step, these methods typically extract dense, 

voxel-wise features from anatomical maps [35], [39] calculating, for example, local intensity 

differences [40]–[42], or intensity distributions from the wider spatial context of the 

individual voxel [39], [43], [44]. As a second step, these features are then fed into 

classification algorithms such as support vector machines [45] or decision trees [46] that 

learn boundaries between classes in the high-dimensional feature space, and return the 

desired tumor classification maps when applied to new data. One drawback of this approach 

is that, because of the explicit dependency on intensity features, segmentation is restricted to 

images acquired with the exact same imaging protocol as the one used for the training data. 

Even then, careful intensity calibration remains a crucial part of discriminative segmentation 

methods in general [47]–[49], and tumor segmentation is no exception to this rule.

A possible direction that avoids the calibration issues of discriminative approaches, as well 

as the limitations of generative models, is the development of joint generative-discriminative 

methods. These techniques use a generative method in a pre-processing step to generate 

stable input for a subsequent discriminative model that can be trained to predict more 

complex class labels [50], [51].

Most generative and discriminative segmentation approaches exploit spatial regularity, often 

with extensions along the temporal dimension for longitudinal tasks [52]–[54]. Local 

regularity of tissue labels can be encoded via boundary modeling for both generative [17], 
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[55] and discriminative models [32], [33], [35], [55], [56], potentially enforcing non-local 

shape constraints [57]. Markov random field (MRF) priors encourage similarity among 

neighboring labels in the generative context [25], [37], [38]. Similarly, conditional random 

fields (CRFs) help enforce—or prohibit—the adjacency of specific labels and, hence, 

impose constraints considering the wider spatial context of voxels [36], [43]. While all these 

segmentation models act locally, more or less at the voxel level, other approaches consider 

prior knowledge about the relative location of tumor structures in a more global fashion. 

They learn, for example, the neighborhood relationships between such structures as edema, 

Gadolinium-enhancing tumor structures, or necrotic parts of the tumor through hierarchical 

models of super-voxel clusters [42], [58], or by relating image patterns with 

phenomenological tumor growth models adapted to patient scans [31].

While each of the discussed algorithms was compared empirically against an expert 

segmentation by its authors, it is difficult to draw conclusions about the relative performance 

of different methods. This is because datasets and pre-processing steps differ between 

studies, the image modalities considered, the annotated tumor structures, and the used 

evaluation scores all vary widely as well (Table I).

Image Processing Benchmarks

Benchmarks that compare how well different learning algorithms perform in specific tasks 

have gained a prominent role in the machine learning community. In recent years, the idea of 

benchmarking has also gained popularity in the field of medical image analysis. Such 

benchmarks, sometimes referred to as “challenges,” all share the common characteristic that 

different groups optimize their own methods on a training dataset provided by the 

organizers, and then apply them in a structured way to a common, independent test dataset. 

This situation is different from many published comparisons, where one group applies 

different techniques to a dataset of their choice, which hampers a fair assessment as this 

group may not be equally knowledgeable about each method and invest more effort in 

optimizing some algorithms than others (see [59]).

Once benchmarks have been established, their test dataset often becomes a new standard in 

the field on how to evaluate future progress in the specific image processing task being 

tested. The annotation and evaluation protocols also may remain the same even when new 

data are added (to overcome the risk of over-fitting this one particular dataset that may take 

place after a while), or when related benchmarks are initiated. A key component in 

benchmarking is an online tool for automatically evaluating segmentations submitted by 

individual groups [60], as this allows the labels of the test set never to be made public. This 

helps ensure that any reported results are not influenced by unintentional overtraining of the 

method being tested, and that they are therefore truly representative of the method's 

segmentation performance in practice.

Recent examples of community benchmarks dealing with medical image segmentation and 

annotation include algorithms for artery centerline extraction [61], [62], vessel segmentation 

and stenosis grading [63], liver segmentation [64], [65], detection of microaneurysms in 

digital color fundus photographs [66], and extraction of airways from CT scans [67]. Rather 

few community-wide efforts have focused on segmentation algorithms applied to images of 
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the brain (a current example deals with brain extraction (“masking”) [68]), although many of 

the validation frameworks that are used to compare different segmenters and segmentation 

algorithms, such as STAPLE [69], [70], have been developed for applications in brain 

imaging, or even brain tumor segmentation [71].

III. Set-Up of the Brats Benchmark

The BRATS benchmark was organized as two satellite challenge workshops in conjunction 

with the MICCAI 2012 and 2013 conferences. Here we describe the set-up of both 

challenges with the participating teams, the imaging data and the manual annotation process, 

as well as the validation procedures and online tools for comparing the different algorithms. 

The BRATS online tools continue to accept new submissions, allowing new groups to 

download the training and test data and submit their segmentations for automatic ranking 

with respect to all previous submissions.1 A common entry page to both benchmarks, as 

well as to the latest BRATS-related initiatives is www.braintumorsegmentation.org.2

A. The MICCAI 2012 and 2013 Benchmark Challenges

The first benchmark was organized on October 1, 2012 in Nice, France, in a workshop held 

as part of the MICCAI 2012 conference. During Spring 2012, participants were solicited 

through private e-mails as well as public e-mail lists and the MICCAI workshop 

announcements. Participants had to register with one of the online systems (cf. Section III-F) 

and could download annotated training data. They were asked to submit a four page 

summary of their algorithm, also reporting a cross-validated training error. Submissions 

were reviewed by the organizers and a final group of twelve participants were invited to 

contribute to the challenge. The training data the participants obtained in order to tune their 

algorithms consisted of multi-contrast MR scans of 10 low- and 20 high-grade glioma 

patients that had been manually annotated with two tumor labels (“edema” and “core,” cf. 

Section III-D) by a trained human expert. The training data also contained simulated images 

for 25 high-grade and 25 low-grade glioma subjects with the same two “ground truth” 

labels. In a subsequent “on-site challenge” at the MICCAI workshop, the teams were given a 

12 h time period to evaluate previously unseen test images. The test images consisted of 11 

high- and 4 low-grade real cases, as well as 10 high- and 5 low-grade simulated images. The 

resulting segmentations were then uploaded by each team to the online tools, which 

automatically computed performance scores for the two tumor structures. Of the twelve 

groups that participated in the benchmark, six submitted their results in time during the on-

site challenge, and one group submitted their results shortly afterwards (Subbanna). During 

the plenary discussions it became apparent that using only two basic tumor classes was 

insufficient as the “core” label contained substructures with very different appearances in the 

different modalities. We therefore had all the training data re-annotated with four tumor 

labels, refining the initially rather broad “core” class by labels for necrotic, cystic and 

enhancing substructures. We asked all twelve workshop participants to update their 

algorithms to consider these new labels and to submit their segmentation results—on the 

1challenge.kitware.com/midas/folder/102, www.virtualskeleton.ch/
2Available online: www.braintumorsegmentation.org

Menze et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.braintumorsegmentation.org
http://challenge.kitware.com/midas/folder/102
http://www.virtualskeleton.ch/
http://www.braintumorsegmentation.org


same test data—to our evaluation platform in an “off-site” evaluation about six months after 

the event in Nice, and ten of them submitted updated results (Table II).

The second benchmark was organized on September 22, 2013 in Nagoya, Japan in 

conjunction with MICCAI 2013. Participants had to register with the online systems and 

were asked to describe their algorithm and report training scores during the summer, 

resulting in ten teams submitting short papers, all of which were invited to participate. The 

training data for the benchmark was identical to the real training data of the 2012 

benchmark. No synthetic cases were evaluated in 2013, and therefore no synthetic training 

data was provided. The participating groups were asked to also submit results for the 2012 

test dataset (with the updated labels) as well as to 10 new test datasets to the online system 

about four weeks before the event in Nagoya as part of an “off-site” leaderboard evaluation. 

The “on-site challenge” at the MICCAI 2013 workshop proceeded in a similar fashion to the 

2012 edition: the participating teams were provided with 10 high-grade cases, which were 

previously unseen test images not included in the 2012 challenge, and were given a 12 h 

time period to upload their results for evaluation. Out of the ten groups participating in 2013 

(Table II), seven groups submitted their results during the on-site challenge; the remaining 

three submitted their results shortly afterwards (Buendia, Guo, Taylor).

Altogether, we report three different test results from the two events: one summarizing the 

on-site 2012 evaluation with two tumor labels for a test set with 15 real cases (11 high-

grade, four low-grade) and 15 synthetically generated images (10 high-grade, five low-

grade); one summarizing the on-site 2013 evaluation with four tumor labels on a fresh set of 

10 new real cases (all high-grade); and one from the off-site tests which ranks all 20 

participating groups from both years, based on the 2012 real test data with the updated four 

labels. Our emphasis is on the last of the three tests.

B. Tumor Segmentation Algorithms Tested

Table II contains an overview of the methods used by the participating groups in both 

challenges. In 2012, four out of the twelve participants used generative models, one was a 

generative-discriminative approach, and five were discriminative; seven used some spatially 

regularizing model component. Two methods required manual initialization. The two 

automated segmentation methods that topped the list of competitors during the on-site 

challenge of the first benchmark used a discriminative probabilistic approach relying on a 

random forest classifier, boosting the popularity of this approach in the second year. As a 

result, in 2013 participants employed one generative model, one discriminative-generative 

model, and eight discriminative models out of which a total of four used random forests as 

the central learning algorithm; seven had a processing step that enforced spatial 

regularization. One method required manual initialization. A detailed description of each 

method is available in the workshop proceedings,3 as well as in the Appendix/Online 

Supporting Information.

3BRATS 2013: hal.inria.fr/hal-00912934; BRATS 2012: hal.inria.fr/hal-00912935
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C. Image Datasets

Clinical Image Data—The clinical image data consists of 65 multi-contrast MR scans 

from glioma patients, out of which 14 have been acquired from low-grade (histological 

diagnosis: astrocytomas or oligoastrocytomas) and 51 from high-grade (anaplastic 

astrocytomas and glioblastoma multiforme tumors) glioma patients. The images represent a 

mix of pre- and post-therapy brain scans, with two volumes showing resections. They were 

acquired at four different centers—Bern University, Debrecen University, Heidelberg 

University, and Massachusetts General Hospital—over the course of several years, using MR 

scanners from different vendors and with different field strengths (1.5T and 3T) and 

implementations of the imaging sequences (e.g., 2D or 3D). The image datasets used in the 

study all share the following four MRI contrasts (Fig. 2).

1. T1: T1-weighted, native image, sagittal or axial 2D acquisitions, with 1–6 mm slice 

thickness.

2. T1c: T1-weighted, contrast-enhanced (Gadolinium) image, with 3D acquisition and 

1 mm isotropic voxel size for most patients.

3. T2: T2-weighted image, axial 2D acquisition, with 2–6 mm slice thickness.

4. FLAIR: T2-weighted FLAIR image, axial, coronal, or sagittal 2D acquisitions, 2–6 

mm slice thickness.

To homogenize these data we co-registered each subject's image volumes rigidly to the T1c 

MRI, which had the highest spatial resolution in most cases, and resampled all images to 1 

mm isotropic resolution in a standardized axial orientation with a linear interpolator. We 

used a rigid registration model with the mutual information similarity metric as it is 

implemented in ITK [74] (“VersorRigid3DTransform” with “MattesMutualInformation” 

similarity metric and three multi-resolution levels). No attempt was made to put the 

individual patients in a common reference space. All images were skull stripped [75] to 

guarantee anomymization of the patients.

Synthetic Image Data—The synthetic data of the BRATS 2012 challenge consisted of 

simulated images for 35 high-grade and 30 low-grade gliomas that exhibit comparable tissue 

contrast properties and segmentation challenges as the clinical dataset (Fig. 2, last row). The 

same image modalities as for the real data were simulated, with similar 1 mm3 resolution. 

The images were generated using the TumorSim software,4 a cross-platform simulation tool 

that combines physical and statistical models to generate synthetic ground truth and 

synthesized MR images with tumor and edema [76]. It models infiltrating edema adjacent to 

tumors, local distortion of healthy tissue, and central contrast enhancement using the tumor 

growth model of Clatz et al. [77], combined with a routine for synthesizing texture similar to 

that of real MR images. We parameterized the algorithm according to the parameters 

proposed in [76], and applied it to anatomical maps of healthy subjects from the BrainWeb 

simulator [78], [79]. We synthesized image volumes and degraded them with different noise 

4www.nitrc.org/projects/tumorsim
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levels and intensity inhomogeneities, using Gaussian noise and polynomial bias fields with 

random coefficients.

D. Expert Annotation of Tumor Structures

While the simulated images came with “ground truth” information about the localization of 

the different tumor structures, the clinical images required manual annotations. We defined 

four types of intra-tumoral structures, namely “edema,” “non-enhancing (solid) core,” 

“necrotic (or fluid-filled) core,” and “non-enhancing core.” These tumor substructures meet 

specific radiological criteria and serve as identifiers for similarly-looking regions to be 
recognized through algorithms processing image information rather than offering a 

biological interpretation of the annotated image patterns. For example, “non-enhancing 

core” labels may also comprise normal enhancing vessel structures that are close to the 

tumor core, and “edema” may result from cytotoxic or vasogenic processes of the tumor, or 

from previous therapeutical interventions.

Tumor Structures and Annotation Protocol—We used the following protocol for 

annotating the different visual structures, where present, for both low- and high-grade cases 

(illustrated in Fig. 3).

1. The “edema” was segmented primarily from T2 images. FLAIR was used to cross-

check the extension of the edema and discriminate it against ventricles and other 

fluid-filled structures. The initial “edema” segmentation in T2 and FLAIR 

contained the core structures that were then relabeled in subsequent steps [Fig. 

3(A)].

2. As an aid to the segmentation of the other three tumor substructures, the so-called 

gross tumor core—including both enhancing and non-enhancing structures—was 

first segmented by evaluating hyper-intensities in T1c (for high-grade cases) 

together with the inhomogenous component of the hyper-intense lesion visible in 

T1 and the hypo-intense regions visible in T1 [Fig. 3(B)].

3. The “enhancing core” of the tumor was subsequently segmented by thresholding 

T1c intensities within the resulting gross tumor core, including the Gadolinium 

enhancing tumor rim and excluding the necrotic center and vessels. The appropriate 

intensity threshold was determined visually on a case-by-case basis [Fig. 3(C)].

4. The “necrotic (or fluid-filled) core” was defined as the tortuous, low intensity 

necrotic structures within the enhancing rim visible in T1c. The same label was also 

used for the very rare instances of hemorrhages in the BRATS data [Fig. 3(C)].

5. Finally, the “non-enhancing (solid) core” structures were defined as the remaining 

part of the gross tumor core, i.e., after subtraction of the “enhancing core” and the 

“necrotic (or fluid-filled) core” structures [Fig. 3(D)].

Following this protocol, the MRI scans were annotated by a trained team of radiologists and 

altogether seven radiographers in Bern, Debrecen and Boston. They outlined structures in 

every third axial slice, interpolated the segmentation using morphological operators (region 

growing), and visually inspected the results in order to perform further manual corrections, 
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if necessary. All segmentations were performed using the 3D slicer software5, taking about 

60 min per subject. As mentioned previously, the tumor labels used initially in the BRATS 

2012 challenge contained only two classes for both high- and low-grade glioma cases: 

“edema,” which was defined similarly as the edema class above, and “core” representing the 

three core classes. The simulated data used in the 2012 challenge also had ground truth 

labels only for “edema” and “core.”

Algorithm 1
The hierarchical majority vote

The number of raters/algorithms that assigned a given voxel to one of the four tumor 

structures is indicated by nedm, nnen, nnec, nenh; nall is the total number of raters/algorithms.

label ← “nrm” ▷ normal tissue

if (nedm + nnen + nnec + nenh) ≥ nall/2 then

  label ← “edm” ▷ edema

  if (nnen + nnec + nenh) ≥ nall/2 then

    label ← “nen” ▷ non-enhancing core

    if (nnec + nenh) ≥ nall/2 then

      label ← “nec” ▷ necrotic core

      if nenh ≥ nall/2 then

        label ← “enh” ▷ enhancing core

      end if

    end if

  end if

end if

Consensus Labels—In order to deal with ambiguities in individual tumor structure 

definitions, especially in infiltrative tumors for which clear boundaries are hard to define, we 

had all subjects annotated by several experts, and subsequently fused the results to obtain a 

single consensus segmentation for each subject. The 30 training cases were labeled by four 

different raters, and the test set from 2012 was annotated by three. The additional testing 

cases from 2013 were annotated by one rater. For the data sets with multiple annotations we 

fused the resulting label maps by assuming increasing “severity” of the disease from edema 
to non-enhancing (solid) core to necrotic (or fluid-filled) core to enhancing core, using a 

hierarchical majority voting scheme that assigns a voxel to the highest class to which at least 

half of the raters agree on (Algorithm 1). To illustrate this rule: a voxel that has been labeled 

as edema, edema, non-enhancing core, and necrotic core by the four annotators would be 

assigned to non-enhancing core structure as this is the most serious label that 50% of the 

experts agree on.

We chose this hierarchical majority vote to include prior knowledge about the structure and 

the ranking of the labels. A direct application of other multi-class fusion schemes that do not 

consider relations between the class labels, such as the STAPLE algorithm [69], lead to 

5www.slicer.org
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implausible fusion results where, for example, edema and normal voxels formed regions that 

were surrounded by “core” structures.

E. Evaluation Metrics and Ranking

Tumor Regions Used for Validation—The tumor structures represent the visual 

information of the images, and we provided the participants with the corresponding multi-

class labels to train their algorithms. For evaluating the performance of the segmentation 

algorithms, however, we grouped the different structures into three mutually inclusive tumor 
regions that better represent the clinical application tasks, for example, in tumor volumetry. 

We obtain

1. the “whole” tumor region (including all four tumor structures),

2. the tumor “core” region (including all tumor structures except “edema”),

3. and the “active” tumor region (only containing the “enhancing core” structures that 

are unique to high-grade cases).

Examples of all three regions are shown in Fig. 2. By evaluating multiple binary 

segmentation tasks, we also avoid the problem of specifying misclassification costs for 

trading false assignments in between, for example, edema and necrotic core structures or 

enhancing core and normal tissue, which cannot easily be solved in a global manner.

Performance Scores—For each of the three tumor regions we obtained a binary map 

with algorithmic predictions P ∈ {0, 1} and the experts' consensus truth T ∈ {0, 1}, and we 

calculated the well-known Dice score

where Λ is the logical AND operator, |·| is the size of the set (i.e., the number of voxels 

belonging to it), and P1 and T1 represent the set of voxels where P = 1 and T = 1, 

respectively (Fig. 4). The Dice score normalizes the number of true positives to the average 

size of the two segmented areas. It is identical to the F score (the harmonic mean of the 

precision recall curve) and can be transformed monotonously to the Jaccard score.

We also calculated the so-called sensitivity (true positive rate) and specificity (true negative 

rate)

where P0 and T0 represent voxels where P = 0 and T = 0, respectively.

Dice score, sensitivity, and specificity are measures of voxel-wise overlap of the segmented 

regions. A different class of scores evaluates the distance between segmentation boundaries, 

i.e., the surface distance. A prominent example is the Hausdorff distance calculating for all 
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points p on the surface ∂P1 of a given volume P1 the shortest least-squares distance d(p, t) to 

points t on the surface ∂T1 of the other given volume T1, and vice versa, finally returning the 

maximum value over all d

Returning the maximum over all surface distances, however, makes the Hausdorff measure 

very susceptible to small outlying subregions in either P1 or T1. In our evaluation of the 

“active tumor” region, for example, both P1 or T1 may consist of multiple small areas or 

nonconvex structures with high surface-to-area ratio. In the evaluation of the “whole tumor,” 

predictions with few false positive regions—that do not substantially affect the overall 

quality of the segmentation as they could be removed with an appropriate postprocessing—

might also have a drastic impact on the overall Hausdorff score. To this end we used a robust 

version of the Hausdorff measure—reporting not the maximal surface distance between P1 

and T1, but the 95% quantile of it.

Significance Tests—In order to compare the performance of different methods across a 

set of images, we performed two types of significance tests on the distribution of their Dice 

scores. For the first test we identified the algorithm that performed best in terms of average 

Dice score for a given task, i.e., for the whole tumor region, tumor core region, or active 

tumor region. We then compared the distribution of the Dice scores of this “best” algorithm 

with the corresponding distributions of all other algorithms. In particular, we used a 

nonparametric Cox-Wilcoxon test, testing for significant differences at a 5% significance 

level, and recorded which of the alternative methods could not be distinguished from the 

“best” method this way.

In the same way we also compared the distribution of the inter-rater Dice scores, obtained by 

pooling the Dice scores across each pair of human raters and across subjects—with each 

subject contributing six scores if there are four raters, and three scores if there are three 

raters—to the distribution of the Dice scores calculated for each algorithm in a comparison 

with the consensus segmentation. We then recorded whenever the distribution of an 

algorithm could not be distinguished from the inter-rater distribution this way. We note that 

our inter-rater score somewhat overestimates variability as it is calculated from two manual 

annotations that may both be very eccentric. In the same way a comparison between a rater 

and the consensus label may somewhat underestimates variability, as the same manual 

annotations had contributed to the consensus label it now is compared against.

F. Online Evaluation Platforms

A central element of the BRATS benchmark is its online evaluation tool. We used two 

different platforms: the Virtual Skeleton Database (VSD), hosted at the University of Bern, 

and the Multimedia Digital Archiving System (MIDAS), hosted at Kitware [80]. On both 

systems participants can download annotated training and “blinded” test data, and upload 

their segmentations for the test cases. Each system automatically evaluates the performance 

of the uploaded label maps, and makes detailed—case by case—results available to the 
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participant. Average scores for the different subgroups are also reported online, as well as a 

ranked comparison with previous results submitted for the same test sets.

The VSD6 provides an online repository system tailored to the needs of the medical research 

community. In addition to storing and exchanging medical image datasets, the VSD provides 

generic tools to process the most common image format types, includes a statistical shape 

modeling framework and an ontology-based searching capability. The hosted data is 

accessible to the community and collaborative research efforts. In addition, the VSD can be 

used to evaluate the submissions of competitors during and after a segmentation challenge. 

The BRATS data is publicly available at the VSD, allowing any team around the world to 

develop and test novel brain tumor segmentation algorithms. Ground truth segmentation files 

for the BRATS test data are hosted on the VSD but their download is protected through 

appropriate file permissions. The users upload their segmentation results through a web-

interface, review the uploaded segmentation and then choose to start an automatic evaluation 

process. The VSD automatically identifies the ground truth corresponding to the uploaded 

segmentations. The evaluation of the different label overlap measures used to evaluate the 

quality of the segmentation (such as Dice scores) runs in the background and takes less than 

one minute per segmentation. Individual and overall results of the evaluation are 

automatically published on the VSD webpage and can be downloaded as a CSV file for 

further statistical analysis. Currently, the VSD has evaluated more than 10 000 

segmentations and recorded over 100 registered BRATS users. We used it to host both the 

training and test data, and to perform the evaluations of the on-site challenges. Up-to-date 

ranking is available at the VSD for researchers to continuously monitor new developments 

and streamline improvements.

MIDAS7 is an open source toolkit that is designed to manage grand challenges. The toolkit 

contains a collection of server, client, and stand-alone tools for data archiving, analysis, and 

access. This system was used in parallel with VSD for hosting the BRATS training and test 

data in 2012, as well as managing submissions from participants and providing final scores 

using a collection of metrics. It has not been used any more for the 2013 BRATS challenge.

The software that generates the comparison metrics between ground truth and user 

submissions in both VSD and MIDAS is available as the open source COVALIC 

(Comparison and Validation of Image Computing) toolkit.8

IV. Results

In a first step we evaluate the variability between the segmentations of our experts in order 

to quantify the difficulty of the different segmentation tasks. Results of this evaluation also 

serve as a baseline we can use to compare our algorithms against in a second step. As 

combining several segmentations may potentially lead to consensus labels that are of higher 

quality than the individual segmentations, we perform an experiment that applies the 

hierarchical fusion algorithm to the automatic segmentations as a final step.

6www.virtualskeleton.ch
7www.midasplatform.org
8github.com/InsightSoftwareConsortium/covalic
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A. Inter-Rater Variability of Manual Segmentations

Fig. 5 analyzes the inter-rater variability in the four-label manual segmentations of the 

training scans (30 cases, four different raters), as well as of the final off-site test scans (15 

cases, three raters). The results for the training and test datasets are overall very similar, 

although the inter-rater variability is a bit higher (lower Dice scores) in the test set, 

indicating that images in our training dataset were slightly easier to segment (Fig. 5, plots at 

the top). The scores obtained by comparing individual raters against the consensus 

segmentation provides an estimate of an upper limit for the performance of any algorithmic 

segmentation, indicating that segmenting the whole tumor region for both low- and high-

grade and the tumor core region for high-grade is comparatively easy, while identifying the 

“core” in low-grade glioma and delineating the enhancing structures for high-grade cases is 

considerably more difficult (Fig. 5, table at the bottom). The comparison between an 

individual rater and the consensus segmentation, however, may be somewhat overly 

optimistic with respect to the upper limit of accuracy that can be obtained on the given 

datasets, as the consensus label is generated using the rater's segmentation it is compared 

against. So we use the inter-rater variation as an unbiased proxy that we compare with the 

algorithmic segmentations in the remainder. This sets the bar that has to be passed by an 

algorithm to Dice scores in the high 80% for the whole tumor region (median 87%), to 

scores in the high 80% for “core” region (median 94% for high-grade, median 82% for low-

grade), and to average scores in the high 70% for “active” tumor region (median 77%) (Fig. 

5, table at the bottom).

We note that on all datasets and in all three segmentation tasks the dispersion of the Dice 

score distributions is quite high, with standard deviations of 10% and more in particular for 

the most difficult tasks (tumor core in low-grade patients, active core in high-grade patients), 

underlining the relevance of comparing the distributions rather than comparing summary 

statistics such as the mean or the median and, for example, ranking measures thereof.

B. Performance of Individual Algorithms

On-Site Evaluation—Results from the on-site evaluations are reported in Fig. 6. Synthetic 

images were only evaluated in the 2012 challenge, and the winning algorithms on these 

images were developed by Bauer, Zikic, and Hamamci (Fig. 6, top right). The same methods 

also ranked top on the real data in the same year (Fig. 6, top left), performing particularly 

well for whole tumor and core segmentation. Here, Hamamci required some user interaction 

for an optimal initialization, while the methods by Bauer and Zikic were fully automatic. In 

the 2013 on-site challenge, the winning algorithms were those by Tustison, Meier, and Reza, 

with Tustison performing best in all three segmentation tasks (Fig. 6, bottom left).

Overall, the performance scores from the on-site test in 2013 were higher than those in the 

previous off-site leader-board evaluation (compare Fig. 7, top with Fig. 6, bottom left). As 

the off-site test data contained the test cases from the previous year, one may argue that the 

images chosen for the 2013 on-site evaluation were somewhat easier to segment than the on-

site test images in the previous—and one should be cautious about a direct comparison of 

on-site results from the two challenges.

Menze et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Off-Site Evaluation—Results on the off-site evaluation (Figs. 7 and 8) allow us to 

compare algorithms from both challenges, and also to consider results from algorithms that 

did not converge within the given time limit of the on-site evaluation (e.g., Menze, Geremia, 

Riklin Raviv). We performed significance tests on the Dice score to identify which 

algorithms performed best or similar to the best one for each segmentation task (Fig. 7). We 

also performed significance tests on the Dice scores to identify which algorithms had a 

performance that is similar to the inter-rater variation that are indicated by stars on top of the 

box plots in Fig. 8. For “whole” tumor segmentation, Zhao (I) was the best method, followed 

by Menze (D), which performed the best on low-grade cases; Zhao (I), Menze (D), Tustison, 

and Doyle report results with Dice scores that were similar to the inter-rater variation. For 

tumor “core” segmentation, Subbanna performed best, followed by Zhao (I) that was best on 

low-grade cases; only Subbanna has Dice scores similar to the inter-rater scores. For 

“active” core segmentation Festa performs best; with the spread of the Dice scores being 

rather high for the “active” tumor segmentation task, we find a high number of algorithms 

(Festa, Hamamci, Subbanna, Riklin Raviv, Menze (D), Tustison) to have Dice scores that do 

not differ significantly from those recorded for the inter-rater variation. Sensitivity and 

specificity varied considerably between methods (Fig. 7, bottom).

Using the Hausdorff distance metric we observe a ranking that is overall very similar (Fig. 7, 

boxes on the right), suggesting that the Dice scores indicate the general algorithmic 

performances sufficiently well. Inspecting segmentations of the one method that is an 

exception to this rule (Festa), we find it to segment the active region of the tumor very well 

for most volumes, but also to miss all voxels in the active region of three volumes 

(apparently removed from a very strong spatial regularization), with low Dice scores and 

Hausdorff distances of more than 50 mm. Averaged over all patients, this still leads to a very 

good Dice score, but the mean Hausdorff distance is unfavourably dominated by the three 

segmentations that failed.

C. Performance of Fused Algorithms

An Upper Limit of Algorithmic Performance—One can fuse algorithmic 

segmentations by identifying—for each test scan and each of the three segmentation tasks—

the best segmentation generated by any of the given algorithms. This set of “optimal” 

segmentations (referred to as “Best Combination” in the remainder) has an average Dice 

score of about 90% for the “whole” tumor region, about 80% for the tumor “core” region, 

and about 70% for the “active” tumor region (Fig. 7, top), surpassing the scores obtained for 

inter-rater variation (Fig. 8). However, since fusing segmentations this way cannot be 

performed without actually knowing the ground truth, these values can only serve as a 

theoretical upper limit for the tumor segmentation algorithms being evaluated. The average 

Dice score of the algorithm performing best on the given task are about 10% below these 

numbers.

Hierarchical Majority Vote—In order to obtain a mechanism for fusing algorithmic 

segmentations in more practical settings, we first ranked the available algorithms according 

to their average Dice score across all cases and all three segmentation tasks, and then 

selected the best half. While this procedure guaranteed that we used meaningful 
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segmentations for the subsequent pooling, we note that the resulting set included algorithms 

that performed well in one or two tasks, but performed clearly below average in the third 

one. Once the 10 best algorithms were identified this way, we sampled random subsets of 4, 

6, and 8 of those algorithms, and fused them using the same hierarchical majority voting 

scheme as for combining expert annotations (Section III-D). We repeated this sampling and 

pooling procedure ten times. The results are shown in Fig. 8 (labeled “Fused_4,” “Fused_6,” 

and “Fused_8”), together with the pooled results for the full set of the 10 segmentations 

(named “Fused_10”). Exemplary segmentations for a Fused_4 sample are shown in Fig. 9—

in this case, pooling the results from Subbanna, Zhao (I), Menze (D), and Hamamci. The 

corresponding Dice scores are reported in the table in Fig. 7.

We found that results obtained by pooling four or more algorithms always outperformed 

those of the best individual algorithm for the given segmentation task. The hierarchical 

majority voting reduces the number of segmentations with poor Dice scores, leading to very 

robust predictions. It provides segmentations that are comparable to or better than the inter-

rater Dice score, and it reaches the hypothetical limit of the “Best Combination” of case-

wise algorithmic segmentations for all three tasks (Fig. 8).

V. Discussion

A. Overall Segmentation Performance

The synthetic data was segmented very well by most algorithms, reaching Dice scores on the 

synthetic data that were much higher than those for similar real cases (Fig. 6, top left), even 

surpassing the inter-rater accuracies. As the synthetic datasets have a high variability in 

tumor shape and location, but are less variable in intensity and less artifact-loaded than the 

real images, these results suggest that the algorithms used are capable of dealing well with 

variability in shape and location of the tumor segments, provided intensities can be 

calibrated in a reproducible fashion. As intensity-calibration of magnetic resonance images 

remains a challenging problem, a more explicit use of tumor shape information may still 

help to improve the performance, for example from simulated tumor shapes [81] or 

simulations that are adapted to the geometry of the given patients [31].

On the real data some of the automated methods reached performances similar to the inter-

rater variation. The rather low scores for inter-rater variability (Dice scores in the range 

74%–85%) indicate that the segmentation problem was difficult even for expert human 

raters. In general, most algorithms were capable of segmenting the “whole” region tumor 

quite well, with some algorithms reaching Dice scores of 80% and more (Zhao (I) has 82%). 

Segmenting the tumor “core” region worked surprisingly well for high-grade gliomas, and 

reasonably well for low-grade cases—considering the absence of enhancements in T1c that 

guide segmentations for high-grade tumors—with Dice scores in the high 60% (Subbanna 

has 70%). Segmenting small isolated areas of the “active” region in high-grade gliomas was 

the most difficult task, with the top algorithms reaching Dice scores in the high 50% (Festa 

has 61%). Hausdorff distances of the best algorithms are around 5–10 mm for the “whole” 

and the “active” tumor region, and about 20 mm for the tumor “core” region.
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B. The Best Algorithm and Caveats

This benchmark cannot answer the question of what algorithm is overall “best” for glioma 

segmentation. We found that no single algorithm among the ones tested ranked in the top 

five for all three subtasks, although Hamamci, Subbanna, Menze (D), and Zhao (I) did so for 

two tasks (Fig. 8; considering Dice score). The results by Guo, Menze (D), Subbanna, 

Tustison, and Zhao (I) were comparable in all three tasks to those of the best method for 

respective task (indicated in bold in Fig. 7). Menze (D), Zhao (I), and Riklin Raviv led the 

ranking of the Hausdorff scores for two of the subtasks, and followed Hamamci and 

Subbanna for the third one.

Among the BRATS 2012 methods, we note that only Hamamci and Geremia performed 

comparably in the “off-site” and the “on-site” challenges, while the other algorithms 

performed significantly better in the “off-site” test than in the previous “on-site” evaluation. 

Several factors may have led to this discrepancy. Some of the groups had difficulties in 

submitting viable results during the “on-site” challenge and resolved them only for the “off-

site” evaluation (Menze, Riklin Raviv). Others used algorithms during the “off-site” 

challenge that were significantly updated and reworked after the 2012 event (Subbanna, 

Shin). All 2012 participants had to adapt their algorithms to the new four-class labels and, if 

discriminative learning methods were used, to retrain their algorithms which also may have 

contributed to fluctuations in performance. Finally, we cannot rule out that some cross-

checking between results of updated algorithms and available test images may have taken 

place in between the 2012 workshop and the 2013 “off-site” test.

There is another limitation regarding the direct comparison of “off-site” results between the 

2012 and the 2013 workshop participants, as the test setting was inadvertently stricter for the 

latter group. In particular, the 2012 participants had several months to work with the test 

images and improve scores before the “off-site” evaluation took place—which, they were 

informed, would be used in a final ranking. In contrast, the 2013 groups were permitted 

access to those data only four weeks before their competition and were not aware that these 

images would be used for a broad comparison. It is therefore worth pointing out, once again, 

the algorithms that performed best on the on-site tests: these were the methods by Bauer, 

Zikic, and Hamamci in 2012, and Tustison's method in 2013.

C. “Winning” Algorithmic Properties

A majority of the top ranking algorithms relied on a discriminative learning approach, where 

low-level image features were generated in a first step, and a discriminative classifier was 

applied in a second step, transforming local features into class probabilities with MRF 

regularization to produce the final set of segmentations. Both Zikic and Menze (D) used the 

output of a generative model as input to a discriminative classifier in order to increase the 

robustness of intensity features. However, also other approaches that only used image 

intensities and standard normalization algorithms such as N4ITK [82] did surprisingly well. 

The spatial processing by Zhao (I), which considers information about tumor structure at a 

regional “super-voxel” level, did exceptionally well for “whole” tumor and tumor “core.” 

One may expect that performing such a non-local spatial regularization might also improve 

results of other methods. Most algorithms ranking in the lower half of the list used rather 
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basic image features and did not employ a spatial regularization strategy, featuring small 

false positive outliers that decreased Dice score and increased the average Hausdorff 

distance.

Given the excellent results by the semi-automatic methods from Hamamci and Guo (and 

those by Riklin Raviv for the active tumor region), and because tumor segmentations will 

typically be looked at in the context of a clinical workflow anyway, it may be beneficial to 

take advantage of some user interaction, either in an initialization or in a postprocessing 

phase. In light of the clear benefit of fusing multiple automatic segmentations, demonstrated 

in Section IV-C, user interaction may also prove helpful in selecting the best segmentation 

maps for subsequent fusion.

The required computation time varied significantly among the participating algorithms, 

ranging from a few minutes to several hours. We observed that most of the computational 

burden related to feature detection and image registration sub-tasks. In addition, it was 

observed that a good understanding of the image resolution and amount of image 

subsampling can lead to a good trade-off between speed improvements and segmentation 

quality.

D. Fusing Automatic Segmentations

We note that fusing segmentations from different algorithms always performed better than 

the best individual algorithm applied to the same task. This observation aligns well with a 

common concept from ensemble learning, when a set of predictors that are unbiased but 

with high variability in the individual prediction, improve when their predictions are pooled 

[83]. In that case, averaging over multiple predictors reduces variance and, hence, reduces 

the prediction error. Subselecting only the best few segmentations, i.e., those with the least 

bias (or average misclassification) further improves results. In general there are two extrema: 

variance is maximal for single observations and minimal after fusing many, while bias is 

minimal for the one top-ranking algorithm and maximal when including a large number of 

(also lesser) predictions. For many applications, an optimum is reached in between these two 

extrema, depending on the bias and variance of the predictors that are fused. Optimizing the 

ensemble prediction by balancing variability reduction (fuse many predictors) and bias 

removal (fuse a few selected only) can be done on a test set representing the overall 

population, or for the individual image volume when partial annotation is available—for 

example from the limited user interaction mentioned above. Statistical methods that estimate 

and weight the performance of individual contributions—for example, based on appropriate 

multi-class extensions of STAPLE [69] and related probabilistic models [19], [84]—may 

also be used to trade bias and variance in an optimal fashion.

E. Limitations of the BRATS Benchmark

When designing the BRATS study, we made several choices that may have impacted the 

results and that could potentially have been improved. For example, we decided to 

homogenize the data by co-registering and reformatting each subject's image volumes using 

rigid registration and linear interpolation, as described in Section III-C. Although the 

registration itself was found to work well (as it was always between images acquired from 
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the same subject and in the same acquisition session), it may have been advisable to use a 

more advanced interpolation method, because the image resolution differed significantly 

between sequences, patients, and centers. Furthermore, in order to build a consensus 

segmentation from multiple manual annotations, we devised a simple fusion rule that 

explicitly respects the known spatial and—with respect to the evolution of the disease— 

temporal relations between the tumor substructures, as more advanced fusion schemes were 

found to yield implausible results. These choices can certainly be criticized; however, we 

believe the major challenge for the segmentation algorithms was ultimately not interpolation 

or label fusion details, but rather the large spatial and structural variability of the tumors in 

the BRATS dataset, as well as the variability in image intensities arising from differences in 

imaging equipment and acquisition protocols.

Although we were able to identify several overall “winning” algorithmic properties 

(discussed in Section V-C), one general limitation of image analysis benchmarks is that it is 

often difficult to explain why a particular algorithm does well or—even more difficult—why 

it does not do well. This is because even the best algorithmic pipeline will fail if just one 

element is badly parameterized or implemented. Detecting such failures would require a 

meticulous study of each element of every processing pipeline—for a learning-based 

approach, for example, of the intensity normalization, the feature extraction, the 

classification algorithm, and the spatial regularization. Unfortunately, while this type of 

analysis is extremely valuable, it requires a careful experimental design that cannot easily be 

pursued post hoc on a heterogeneous set of algorithms contributed by different parties in a 

competitive benchmark such as BRATS.

Another limitation of the current study, which is also shared by other benchmarks, pertains 

to the selection of an appropriate overall evaluation metric that can be used to explicitly rank 

all competing algorithms. Although we reported separate results for sensitivity, specificity, 

and Hausdorff distance, we based our overall final ranking in different tumor regions on 

average Dice scores. As demonstrated by the results of the Festa method in “active tumor” 

segmentation, however, the exact choice of evaluation metric does sometimes affect the 

ranking results, as different metrics are sensitive to different types of segmentation errors.

Although the number of images included in the BRATS benchmark was large, the ranking of 

the segmentation algorithms reported here may still have been impacted by the high 

variability in brain tumors. As such, it will be desirable to further increase the number of 

training and test cases in future brain tumor segmentation benchmarks.

We wish to point out that all the individual segmentation results by all participants are 

publicly available,9 so that groups interested in brain tumor segmentation can perform their 

own internal evaluation, focusing specifically on what they consider most important. 

Looking at individual segmentations can also help understand better the advantages and 

drawbacks of the different algorithms under comparison, and we would strongly encourage 

taking advantage of this possibility. It is worth pointing out that the individual rater's manual 

segmentations of the training data are also available,10 so that groups that do not trust the 

9www.virtualskeleton.ch/BRATS/StaticResults2013
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consensus labels we provide, can generate their own training labels using a fusion method of 

their choice.

F. Lessons Learned

There are lessons that we learned from organizing BRATS 2012 and 2013 that may also be 

relevant for future benchmark organizers confronted with complex and expensive annotation 

tasks. First, it may be recommended to generate multiple annotations for the test data—

rather than for the training set as we did here—as this is where the comparisons between 

experts and algorithms take place. Many algorithms will be able to overcome slight 

inconsistencies or errors in the training data that are present when only a single rater labels 

each case. At the same time, most algorithms will benefit from having larger training 

datasets and, hence, can be improved by annotating larger amounts of data even if this 

comes at the price of fewer annotations per image volume.

Second, while it may be useful to make unprocessed data available as well, we strongly 

recommend providing participants with maximally homogenized datasets—i.e., image 

volumes that are co-registered, interpolated to a standard resolution and normalized with 

respect to default intensity distributions— in order to ease participation, maximize the 

number of participants, and facilitate comparisons of the segmentation methods 

independently of preprocessing issues.

G. Future Work

Given that many of the algorithms that participated in this study offered good glioma 

segmentation quality, it would seem valuable to have their software implementations more 

easily accessible. Right now, only an implementation of Bauer and Meier's method is freely 

available,11 and Tustison's code12 The online MIDAS and VSD platforms that we used for 

BRATS may be extended to not only host and distribute data, but also to host and distribute 

such algorithms. Making the top algorithms available through appropriate infrastructures and 

interfaces—for example as developed for the VISCERAL benchmark13 [86], or as used in 

the commercial NITRC Amazon cloud service14—may help to make thoroughly 

benchmarked algorithms available to the wider clinical research community.

Since our results indicate that current automated glioma segmentation methods only reach 

the level of consensus-rater variation in the “whole” tumor case (Fig. 8), continued 

algorithmic development seems warranted. Other tumor substructures may also be relevant 

with respect to diagnosis and prognosis, and a more refined tumor model—with more than 

the four classes used in this study—may be helpful, in particular when additional image 

modalities are integrated into the evaluation. Finally, in clinical routine the change of tumor 

structures over time is often of primary relevance, something the current BRATS study did 

not address. Evaluating the accuracy of automated routines in longitudinal settings including 

10www.virtualskeleton.ch/→BRATS 2013→“BRATS 2013 Individual Observer Ground-truth Data”
11www.nitrc.org/projects/bratumia [85]
12github.com/ntustison/BRATS2013
13www.visceral.eu
14www.nitrc.org/ce-marketplace
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both pre- and postoperative images, are important directions for future work along with 

further algorithmic developments.

VI. Summary and Conclusion

In this paper we presented the BRATS brain tumor segmentation benchmark. We generated 

the largest public dataset available for this task and evaluated a large number of state-of-the-

art brain tumor segmentation methods. Our results indicate that, while brain tumor 

segmentation is difficult even for human raters, currently available algorithms can reach 

Dice scores of over 80% for whole tumor segmentation. Segmenting the tumor core region, 

and especially the active core region in high-grade gliomas, proved more challenging, with 

Dice scores reaching 70% and 60%, respectively. Of the algorithms tested, no single method 

performed best for all tumor regions considered. However, the errors of the best algorithms 

for each individual region fell within human inter-rater variability.

An important observation in this study is that fusing different segmenters boosts 

performance significantly. Decisions obtained by applying a hierarchical majority vote to 

fixed groups of algorithmic segmentations performed consistently, for every single 
segmentation task, better than the best individual segmentation algorithm. This suggests that, 

in addition to pushing the limits of individual tumor segmentation algorithms, future gains 

(and ultimately clinical implementations) may also be obtained by investigating how to 

implement and fuse several different algorithms, either by majority vote or by other fusion 

strategies.
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Appendix

Here we reproduce a short summary of each algorithm used in BRATS 2012 and BRATS 

2013, provided by its authors. A more detailed description of each method is available in the 

workshop proceedings.15

 Bauer, Wiest and Reyes (2012): Segmentation of Brain Tumor Images 

Based on Integrated Hierarchical Classification and Regularization

Algorithm and Data

We are proposing a fully automatic method for brain tumor segmentation, which is based on 

classification with integrated hierarchical regularization [87]. It subcategorizes healthy 

tissues into CSF, WM, GM and pathologic tissues into necrotic, active, non-enhancing and 

edema compartment. The general idea is based on a previous approach presented in [43]. 

After pre-processing (denoising, bias-field correction, rescaling and histogram matching) 

[74], the segmentation task is modeled as an energy minimization problem in a conditional 

random field (CRF) formulation. The energy consists of the sum of the singleton potentials 

in the first term and the pairwise potentials in the second term of (1). The expression is 

minimized using [88] in a hierarchical way

(1)

The singleton potentials V(yi, xi) are computed according to (2), where ỹi is the label output 

from a classifier, xi is the feature vector and δ is the Kronecker-δ function

(2)

15BRATS 2013: hal.inria.fr/hal-00912934; BRATS 2012: hal.inria.fr/hal-00912935
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We use a decision forest as a classifier [89], which has the advantage of being able to handle 

multi-class problems and providing a probabilistic output [89]. The probabilistic output is 

used for the weighting factor p(ỹi|xi) in (2), in order to control the degree of spatial 

regularization. A 44-dimensional feature vector is used for the classifier, which combines the 

intensities in each modality with the first-order textures (mean, variance, skewness, kurtosis, 

energy, entropy) computed from local patches, statistics of intensity gradients in a local 

neighborhood and symmetry features across the mid-sagittal plane. The pairwise potentials 

W(yi, yj, xi, xj) account for the spatial regularization. In (3) ws(i, j) is a weighting function, 

which depends on the voxel spacing in each dimension. The term (1 − δ(yi, yj)) penalizes 

different labels of adjacent voxels, while the intensity term exp((−PCD(xi − xj))/(2·x̄) 

regulates the degree of smoothing based on the local intensity variation, where PCD is a 

pseudo-Chebyshev distance and x̄ is a generalized mean intensity. D(yi, yj) allows us to 

incorporate prior knowledge by penalizing different tissue adjacencies individually

(3)

Computation time for one dataset ranges from 4 to 12 min depending on the size of the 

images, most of the time is needed by the decision forest classifier.

Training and Testing

The classifier was trained using 5-fold cross-validation on the training dataset, with separate 

training for high- and low-grade as well as synthetic and patient data. The parameters of the 

algorithm were chosen empirically. We also compared the proposed approach to our 

previous method [43] which used SVMs as a classifier instead of decision forests and which 

had a less sophisticated regularization. With the new method, the computation time could be 

reduced by more than a factor of two and the accuracy was significantly improved. However, 

we still discovered difficulties with datasets that were very different from the training data, 

which hints at some problems of the supervised algorithm with generalization.

 Buendia, Taylor, Ryan and John (2013): A Grouping Artificial Immune 

Network for Segmentation of Tumor Images

Algorithm and Data

GAIN+ is an enhanced version of the original Grouping Artificial Immune Network that was 

developed for fully automated MRI brain segmentation. The model captures the main 

concepts by which the immune system recognizes pathogens and models the process in a 

numerical form. GAIN+ was adapted to support a variable number of input patterns for 

training and segmentation of tumors in MRI brain images. The model was demonstrated to 

operate with multi-spectral MR data with an increase in accuracy compared to the single 

spectrum case. The new input patterns include, in any combination, voxel intensities from 

2D or 3D blocks or shapes of varying sizes customized to each MRI sequence (T1, T2, 

FLAIR, etc.), and also include feature and textural patterns such as mean and variance of 

selected block sizes, slice or radial distance, co-occurrence matrices, among others. Due to 

the representation of the voxel intensities as multi-bit values, it can be shown that not every 
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bit carries the same entropy. That is, each bit does not contribute equally to the final 

interpretation of the data. The GAIN algorithm makes use of this fact to increase the speed 

of its operation. Bits are grouped into groups of size 2 bits. A new grouping approach was 

implemented based on the location of each bit within the input pattern, and the significance 

of the input features. Higher priority was given to higher order bits and overall to voxels at 

closer distance to the center voxel. This grouping approach runs in just a few seconds and 

the same grouping file can be used for all cases. Training takes an average of 1.3 min per 

input byte, thus, for example, an input pattern of 16 bytes takes an average of 21 min of 

training. Segmentation with post-processing of one case takes 20 s for the same input size. 

The preprocessing pipeline was designed to remove noise and inhomogeneities due to MR 

scanner bias fields, and match each spectrum's intensity histogram to the volumes used for 

training. Several post-processing options were added to the program, such as finding and 

extracting connected components, and performing dilation and erosion on those 

components.

Training and Testing

The original GAIN method was designed to train on a single case, and although GAIN+ has 

been adapted to train on multiple images, single case training performed best. We performed 

20-fold cross validation on the real high-grade BRATS 2013 training set. GAIN+ 

performance was evaluated with the four BRATS 2013 labels: 1) Necrosis, 2) Edema, 3) 

Non-Enhancing tumor, and 4) Enhancing Tumor. In this case, GAIN+ was run with an input 

pattern of 16 bytes: 7 FLAIR + 7 TIC +1 T1 + 1 T2 voxels. The segmented images were 

uploaded to the BRATS 2013 Virtual Skeleton web site. The evaluation was done for three 

different tumor sub-compartments: 1) Region 1: Complete tumor (labels 1 + 2 + 3 + 4 for 

patient data), Dice: 0.73, 2) Region 2: Tumor core (labels 1 + 3 + 4 for patient data), Dice: 

0.61, 3) Region 3: Enhancing tumor (label 4 for patient data), Dice: 0.64.

 Cordier, Menze, Delingette and Ayache (2013): Patch-Based 

Segmentation of Brain Tissues

Algorithm and Data

We describe a fully automated approach inspired by the human brain labelling method 

described in [90], and similar to multi-atlas label propagation methods [91]–[93]. A database 

of multi-channel local patches is first built from a set of training pathological cases. Then, 

given a test case, similar multi-channel patches are retrieved in the patch database, along 

with the corresponding labels. Finally, a classification map for the test case is inferred as a 

combination of the retrieved labels during a label fusion step [94]–[97].

To decrease the computation time, images are sub-sampled to 2-mm isotropic resolution 

[98]. A candidate tumor mask is defined by thresholding (50% percentile) a denoised [99] 

T2-weighted FLAIR image. Since the patch retrieval is driven by a sum-of-squared-

differences (SSD), a global intensity alignment [98] is applied to the mean image intensity 

restricted to the candidate tumor mask. Training images are cropped along the Z-axis to 

focus on training patches surrounding the tumor.
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Image features are the concatenation of 3 × 3 × 3 intensity patches extracted from four MR 

channels. Given a multi-channel patch query, the five nearest-neighbor patches are retrieved 

within each training patch database, each of which contributes to a weighted voting. We use 

exponential weights, based on patch similarity [90], [95], [97]; the decay parameter σ2 

depends on the test case, and is set to the maximum of SSD between every voxel in the test 

case and every first-neighbor training patch. For each label, the weighted voting results in a 

probability-like map. Since the label regions are interlocked, label maps are hierarchically 

computed: first, complete tumor is distinguished from healthy tissues; then tumor core from 

edema; finally enhancing tumor from the rest of the core. At each step, weighted votes are 

rebalanced based on label frequencies, in order to penalize labels which would be more 

often picked if the patch retrieval were blind.

As post-processing, at most the two biggest connected components of the complete tumor 

are kept, the second one being kept only if its volume is greater than 20% of the volume of 

the first one. Classification maps are up-sampled to 1-mm isotropic resolution, and one 

iteration of Iterated Conditional Modes [100] smooths the result. On average, the 

segmentation total computation time is 20 min times the number of training cases.

Training and Testing

The most important parameters are manually set and consist of the patch size and the 

number of training cases. A range of values for the number of retrieved nearest-neighbor 

patches were tested, and the segmentation results were almost not affected. For the training 

data, the labelling is performed in a leave-one-out scheme, while for the test data, every 

relevant training case is used. Real cases are processed separately from simulated cases. For 

real low-grade test cases, the training dataset includes both high- and low-grade cases, while 

for real high-grade test cases, the training dataset only includes high-grade cases.

The algorithm shows a few shortcomings which would require the following steps to be 

refined.

• The necrotic core is sometimes partially missed by the candidate tumor mask. 

Tumour detection could either be skipped at the expense of higher computational 

burden, or be more sensitive by using the T2-weighted image in addition to the 

FLAIR image.

• For enhancing tumors, thin parts are often missed by the algorithm. This is visible 

on the probability maps and may be due to the sub-sampling step.

• Tumor voxels can be misclassified as healthy tissues or edema, usually if the 

necrotic core is similar to the cerebrospinal fluid on the FLAIR channel. Enforcing 

the convexity of tumor connected components helps but the contours of the tumor 

compartments are not matched as closely. The regularization would be more 

relevant during the label fusion.

• Shape criteria could help discard false positives in the occipital lobe and the 

cerebellum.
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 Doyle, Vasseur, Dojat and Forbes (2013): Fully Automatic Brain Tumor 

Segmentation From Multiple MR Sequences Using Hidden Markov Fields 

and Variational EM

Algorithm and Data

We propose an adaptive scheme for brain tumor segmentation using multiple MR sequences. 

Our approach is fully automatic and requires no training. The model parameters are instead 

estimated using a variational EM algorithm with MRF constraints and the inclusion of a 
priori probabilistic maps to provide a stable parameter trajectory during optimization.

We build on the standard hidden Markov field model by considering a more general 

formulation that is able to encode more complex interactions than the standard Potts model. 

In particular, we encode the possibility that certain tissue combinations in the neighborhood 

are penalized more than others, whereas the standard Potts model penalizes dissimilar 

neighboring classes equally, regardless of the tissues they represent.

A solution to the model is found using the Expectation Maximization (EM) framework [101] 

combined with variational approximation for tractability in the presence of Markov 

dependencies. In particular, we consider the so-called mean field principle that provides a 

deterministic way to deal with intractable Markov Random Field (MRF) models [102] and 

has proven to perform well in a number of applications.

We adopt a data model comprising of five normal tissue classes; white matter, grey matter, 
ventricular CSF, extraventricular CSF, and other. The glioma is modeled by a further four 

classes representing the diseased tissue state; edema, non-enhancing, enhancing and 

necrotic. In the absence of sufficient data to robustly and accurately estimate a full free 

interaction matrix B with the number of classes K = 9, further constraints are imposed on the 

B. The four glioma classes are considered a single structure, whose interaction with the 

normal tissue classes is not dependant on the specific glioma tissue state. Parameters are 

estimated using the variational EM algorithm, which provides a tractable solution for non 

trivial Markov models.

The deformable transform that describes the mapping between the International Consortium 

for Brain Mapping (ICBM) template and the data space is found using tools provided by the 

Insight Segmentation and Registration Toolkit (ITK). The transform is used to register the 

probabilistic tissue atlases to the MR sequences. An initial 5-class segmentation is 

performed, and the tumor region of interest (ROI) is detected by a simple morphological 

method comparing the segmentation result and the five tissue atlases. The prior probabilistic 

tissue atlas and the tumor ROI are incorporated a priori in the final segmentation algorithm 

via the singleton potential parameter in the MRF.

The computation time is 30 min per patient, giving an average Dice coefficient for high-

grade and low-grade complete tumor volume of 0.84 and 0.81, respectively.
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Training and Testing

The algorithm was tested on real-patient data from the BRATS 2012 and 2013 dataset. No 

training was performed; the initial labeling was random, and all model parameters were 

estimated iteratively.

 Festa, Pereira, Mariz, Sousa and Silva (2013): Automatic Brain Tumor 

Segmentation of Multi-Sequence MR Images Using Random Decision 

Forests

Algorithm and Data

The proposed algorithm is fully automated and uses all available MRI sequences. Three 

preprocessing steps were performed. The first aims for the bias field correction, with N4ITK 

method [103]. The second normalizes the intensity scale of each sequence to a chosen 

reference, by histogram matching using ITK [104]. Finally, since some FLAIR images were 

already limited to the volume of interest, all sequences from each subject were cropped to 

have the same brain volume. A random decision forest is used to classify each brain voxel, 

based on several features extracted from the training data. The main parameters in a decision 

forest are the number of trees and their depth, set to 50 and 25, respectively. Due to 

computational limitations, a maximum of 120 000 points per training subject were sampled. 

Half of these points are background and the other half are tumor and edema. The feature set 

includes: 1) MR sequences intensities and the difference between each two sequences; 2) 

neighborhood information with the mean, sum, median and intensity range of 3D cubic 

neighborhoods with edges of 3, 9, and 19 mm, centered in each voxel, from all MR 

sequences and the differences between sequences; 3) context information as the difference 

between each voxel and the mean value of 3 × 3 × 3 mm cubes, centered 3 mm from the 

voxel in six directions (two per axis), from all sequences; 4) texture information in all MR 

sequences, including edge density and local binary partition (signal and magnitude) 

extracted from 3 × 3 × 3 mm neighborhoods, and the Laws texture features [105] extracted 

from 2D 3 × 3 neighborhoods, in all three dimensions. Finally, a post processing step was 

performed assuming that very small isolated 3D regions, with less than seven voxels (value 

found empirically), of one label type should not exist. The total execution time is about 30 

min for each test subject, mainly due to the features extraction, using the programming 

language Python on a computer with an Intel processor (i7-3930k, 3.2 GHz).

Training and Testing

Three datasets were available: “Training” (with corresponding ground truth), “LeaderBoard” 

and “Challenge.” The training step was done using all real data from the Training dataset, 

from both grades to increase the representation of some labels (like non-enhancing). The 

testing step was performed with all datasets. Leave-one-out cross-validation was used for the 

Training dataset. The features set, as well as the hyperparameters for the decision forest, 

were found using leave-one-out cross-validation of the Training dataset. To segment high-

grade tumors, all images (used in training and testing stages) were normalized to a high-

grade reference. Similarly, images were normalized to a low-grade reference when 

segmenting these tumors. The critical part of the proposed algorithm is the normalization, 
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which influences the whole pipeline, especially with intensity related features used in a 

supervised classifier. A basic characterization of texture was used in the proposed algorithm 

and it seems to be helpful in the distinction of different tumor tissues. With a better texture 

characterization, it is expected to achieve further improvement in the segmentation of brain 

tumors.

 Geremia, Menze and Ayache (2012): Spatial Decision Forests for Glioma 

Segmentation in Multi-Channel MR Images

Medical imaging protocols produce large amounts of multi-modal volumetric images. The 

large size of the produced datasets contributes to the success of machine learning methods. 

These methods automatically learn from the data how to perform challenging task such as, 

for instance, semantic annotation. Although being a tremendous asset in theory, very large 

datasets are down-sampled to ensure tractability of the learning process. Moreover, the 

informative data is often submerged in overwhelming amounts of redundant data. Thus, 

most state of the art methods need to parse large amounts of uninformative data before 

reaching valuable data.

We present the “Spatially Adaptive Random Forests” (SARFs) [42] to overcome these issues 

in the context of volumetric medical images. SARFs automatically learn how to efficiently 

target valuable data. It avoids parsing and processing redundant data while focusing its 

computational power on critical image regions. We demonstrate its power to address multi-

class glioma annotation in multi-modal brain MRIs.

SARF builds on three cutting-edge methods: 1) discriminative random forests, 2) an efficient 

multi-scale 3D image representation, and 3) structured labelling. Random forests 

demonstrated outstanding segmentation results in the context of brain lesion segmentation in 

MRIs and multi-organ segmentation in full body CT scans. Although real-time performance 

can be achieved during testing, training the forest is still time consuming due to the large 

amount of data that it needs to ingest.

In order to speed up training and testing, SARF relies on an efficient hierarchical 

representation of image volumes. The hierarchical representation is obtained by recursively 

applying an extended version of the SLIC algorithm to handle volumetric multi-modal 

images. The final result consists in a coarse to fine super-voxel hierarchical partition of the 

images similar to (cite bouman et al.).

Rather than merging the segmentations obtained from the different scales of the image, 

SARF iteratively refines the segmentation. This is made possible by carefully extrapolating 

the voxel-based ground truth to coarser scales. Additionally, SARF provides the ability of 

reasoning on semantically close classes by combining them in an hierarchical way (cite 

structured labelling). The resulting semantic tree together with the supervoxel hierarchy are 

powerful tools to efficiently parse and annotate the image volumes.

SARF makes use of these tools by integrating them into the random forest framework. 

During training, it learns the optimal image spatial sampling associated to the segmentation 
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task. During testing, the algorithm quickly handles the background and focuses on 

challenging image regions to refine the segmentation. These properties were demonstrated 

together with promising results in the context of multi-class glioma segmentation in multi-

modal brain MRIs.

 Guo, Schwartz and Zhao (2013): Semi-automatic Segmentation of 

Multimodal Brain Tumor Using Active Contours

In this paper, we present a semi-automatic segmentation method for multimodal brain 

tumors. It requires only that a user manually draw a region of interest (ROI) roughly 

surrounding the tumor on a single image. The algorithm combines the image analysis 

techniques of region and edge-based active con-tours and level set approach, and has the 

advantages of easy initialization, quick segmentation, and efficient modification. The typical 

run-time for each case in the training dataset can be within 1 min.

 Hamamci and Unal (2012): Multimodal Brain Tumor Segmentation Using 

the “Tumor-Cut” Method

Algorithm and Data

As described in detail in the “Tumor-cut” article [72], the semi-automatic tumor 

segmentation method by Hamamci and Unal specifically targets the gross tumor volume 

(GTV) and the necrotic regions of the brain tumors on contrast enhanced T1-weighted MR 

images, requiring an initialization by drawing a line through the maximum diameter of the 

tumor as in the “Response Evaluation Criteria In Solid Tumors” (RECIST) guidelines [4]. 

For the BRATS challenge, the method was extended to multi-modal MRI to include also the 

labels for edema and non-enhanced regions. Hamamci and Unal's approach to fuse different 

MR modalities is to apply the original tumor-cut method to each channel seperately and then 

combine the segmented volumes by basic set operations based on the type of the modality. 

For each channel, a segmentation is initialized by drawing the maximum observable 

diameter of the tumor and performed independently (see Fig. 10). For FLAIR images, whole 

hyper-intense region is segmented as FLAIR volume (Vfl) and for T2 images only the core 

abnormality is segmented as T2 volume (Vt2). Tumor core is segmented on contrast 

enhanced T1 MRI (Vt1c) followed by the application of the necrotic segmentation method to 

segment the necrotic regions within the tumor core (Vnec). For the low-grade cases, Vt1c and 

Vnec are set to empty, because the tumors were not enhanced by the application of the 

contrast agent. Non-contrast enhanced T1 MR images were used neither for high- nor low-

grade cases. For FLAIR segmentation, only the weight of the regularizer in the energy term 

for the level-set evolution is tuned to allow resulting tumor surfaces to have higher 

curvatures. Label for each class is determined by the following operations:
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For each case, user interaction takes about 1–2 min and typical run time is around 10–30 

min, depending on the size of the tumor, using a CPU. However, the parallel nature of the 

algorithm allows GPU implementation, which would reduce the processing time 

significantly.

Training and Testing

We observed that in one case only, we segmented an abnormal structure, which was not 

labeled as tumor by the experts. Although, this resulted a zero overlap score for the 

particular case, in fact, to allow user to choose what to segment is an advantage of the semi-

automatic approach. In general, the T2 results did not provide useful information, as only a 

small portion of the tumors consist of the non-enhancing region and the segmentation results 

were not accurate due to the low contrast between tumor core and edema. The approach of 

Hamamci and Unal's algorithm was to apply their original algorithm independently to each 

modality. A combined algorithm that considers the multidimensional information from all 

available modalities have the potential to improve the results obtained.

 Meier, Bauer, Slotboom, Wiest and Reyes (2013): Appearance- and 

Context-sensitive Features for Brain Tumor Segmentation

Algorithm and Data

In our approach, we regard image segmentation as a supervised classification problem. The 

present method is an improved version of the one proposed by Bauer et al. in [87] and can be 

subdivided into three main parts: a feature extraction yielding a voxel-wise feature vector, a 

classification step and a subsequent spatial regularization. Moreover, we preprocess the 

multimodal image data which encompasses noise-reduction, bias-field correction and 

intensity normalization.

The major difference to [87] is that for every voxel we extract a 257-dimensional feature 

vector composed of appearance-sensitive (multimodal intensities and intensity differences, 

first-order textures and gradient textures) and context-sensitive features (atlas-normalized 

coordinates, multiscale symmetry features and multi-/monomodal ray features). As a 

classifier we employ a classification forest. The predicted class label is defined according to 

the MAP-rule applied on the posterior probability output from the classification forest. The 

implementation of the classification forest is based on the Sherwood library [46]. The 

regularization is conducted in a hierarchical manner as proposed in [106]. It is realized as an 

energy minimization problem of a conditional random field, which is defined on a grid graph 

representing the image. The probabilistic output of the classification forest is further used to 

define the unary potentials, which model the affiliation of a voxel to a possible tissue class. 
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Pairwise potentials model the coherence between neighboring voxels and are used to 

incorporate tissue dependencies and to account for anisotropic voxel dimensions. For 

solving the energy minimization problem we relied on the Fast-PD algorithm proposed in 

[88].

Our method is fully automatic with a testing time of 2–12 min per subject depending on the 

size of the image volume, where the feature extraction consumes most of the time.

Training and Testing

Relevant parameters of the classification forest (depth, number of candidate weak learners 

and thresholds per node) are set according to a gridsearch. The model is trained either on 

high-grade or low-grade cases only. For preliminary results and training phase before the 

competition the method has been evaluated on the high-grade or low-grade cases of the 

BRATS2013 training set using 5-fold cross validation.

We observed that depending on the image data false positives in the infratentorial part of the 

brain might appear. Moreover, the discrimination between edema and non-enhancing tumor 

seems to be the most challenging one. We plan to employ additional image features to 

overcome these problems and to further improve the current accuracy.

 Menze, Van Leemput, Lashkari, Weber, Ayache and Golland (2012): 

Segmenting Glioma in Multi-Modal Images Using a Generative Model for 

Brain Lesion Segmentation

We evaluate a fully automated method for channel-specific tumor segmentation in multi-

dimensional images proposed by us in [73] that extends the general “EM segmention” 

algorithm for situations when specific spatial structures cannot be described sufficiently 

through population priors. The method represents a tumor appearance model for multi-

dimensional sequences that provides channel-specific segmentation of the tumor. Its 

generative model shares information about the spatial location of the lesion among channels 

while making full use of the highly specific multi-modal signal of the healthy tissue classes 

for segmenting normal tissues in the brain. In addition to tissue types, the model includes a 

latent variable for each voxel encoding the probability of observing tumor at that voxel, 

based on the ideas from [55], [56].

• Approach amends physiological tissue atlas with personalized lesion prior.

• During segmentation information on tumor localization is traded between 

modalities via latent prior. Results in an individual segmentation in every modality.

• Outperforms both univariate and multivariate EM segmentation and is capable of 

considering channel-specific constraint on hypo- or hypo intensity of the lesion 

with respect to the intensities of normal tissues in the same image.

To initialize our algorithm we segment the volume into the three healthy and an outlier class 

using a freely available implementation of the EM segmentation with bias correction [25]. 

Outliers are defined as being more than three standard deviations away from the centroid of 
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any of the three normal tissue classes. We apply our algorithm to the bias field corrected 

volumes returned from this EM segmenter and initialize intensity parameters with values 

estimated in the initial segmentation. We initialize the latent atlas α to 0.7 time the local 

prior for the presence of gray or white matter. For a semantic interpretation that is in line 

with the class definitions of the segmentation challenge, Channels-specific segmentations 

returned by our algorithm are transformed to Edema and Core classes. We label voxels that 

show tumor specific changes in the T2 channel as edema, and voxels that show hyper-

intense tumor specific changes as tumor core. A discriminative classifier filters all tumor 

segments removing those that are most likely to be false positives, primarily evaluating 

shape and location of the tumor regions returned from the generative model.

 Menze, Geremia, Ayache and Szekely (2012): Segmenting Glioma in 

Multi-Modal Images Using a Generative-Discriminative Model for Brain 

Lesion Segmentation

The present discriminative model [73] (described above) returns probability maps for the 

healthy tissues, and probability maps for the presences of characteristic hypo- or hyper-

intense changes in each of the image volumes. While this provides highly specific 

information about different pathophysiological processes induced by the tumor, the analysis 

of the multimodal image sequence may still require to highlight specific structures of the 

lesion—such as edema, the location of the active or necrotic core of the tumor, “hot spots” 

of modified angiogenesis or metabolism—that cannot directly be associated with any of 

these basic parameter maps returned. As a consequence, we propose to use the probabilistic 

output of the generative model, together with few structural features that are derived from 

the same probabilistic maps, as input to a classifier modeling the posterior of the desired 

pixel classes. In this we follow the approach proposed by [40] that prove useful for 

identifying white matter lesion in multiple input volumes. The building blocks of this 

discriminative approach are the input features, the parametrization of the random forest 

classifier used, and the final post-processing routines.

The approach combines advantageous properties from both types of learning algorithms: 

First, it extracts tumor related image features in a robust fashion that is invariant to relative 

intensity changes by relying on a generative model encoding prior knowledge on expected 

physiology and pathophysiological changes. Second, it transforms image features extracted 

from the generative model—representing tumor probabilities in the different image channels

—to an arbitrary image representation desired by the human interpreter through an efficient 

classification method that is capable of dealing with high-dimensional input data and that 

returns the desired class probabilities. In the following, we shortly describe the generative 

model from [73], and input features and additional regularization methods used similar to 

our earlier discriminative model from [40].

As input feature describing the image in i voxel we use the probabilities p(ki) for the K = 3 

tissue classes . We also use the tumor probability  for each channel C = 4 , 

and the C = 4 image intensities after calibrating them with a global factor that has been 
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estimated from gray and white matter tissue . From these data we derive two types of 

features: the “long range features” that calculate differences of local image intensities for all 

three types of input features , and a distance feature that calculates the 

geodesic distance of each voxel i to characteristic tumor areas. We choose random forests as 

our discriminative model as it uses labeled samples as input and returns class probabilities. 

For the normal classes (that are not available from the manual annotation of the challenge 

dataset) we infer the maximum a posterior estimates of the generative model and use them 

as label during training. Random forests learn many decision trees from bootstrapped 

samples of the training data, and at each split in the tree they only evaluate a random 

subspaces to find the best split. To minimize correlation in the training data, and also to 

speed up training, we draw no more 2000 samples from each of the ≈ 106 voxels in each of 

the 25 dataset. We train an ensemble with 300 randomized decision trees, and choose a 

subspace dimensionality of 10. We use the random forest implementation from Breiman and 

Cutler. To improve segmentation, we use a Markov random field (MRF) imposing a 

smoothness constraint on the class labels. We optimize the function imposing costs when 

assigning different labels in a six neighborhood on the cross-validated predictions on the 

training data.

 Reza and Iftekharuddin (2013): Multi-Class Abnormal Brain Tissue 

Segmentation Using Texture Features

Algorithm and Data

In this work, we propose fully automated multi-class abnormal brain tissue segmentation in 

multimodality brain MRI. Fig. 11 shows a generic flow diagram for our algorithm pipeline. 

Since BRATS-2013 dataset is already skull stripped and co-registered; the first step involves 

preprocessing of 2D MRI slices extracted from 3D volume for each patient. Intensity 

normalization and inhomogeneity correction are used as pre-processing steps. Then two 

primary sets of features are extracted from each preprocessed image. The first set includes 

non-local features such as pixel intensities (IT1, IT2, IFL, IT1c) and differences of intensities 

(d1 = IT1 − IT2, d2 = IT2 − IFL, d3 = IFL − IT1c) that represents global characteristics of brain 

tissues. To characterize the tumor surface variation, we employ our novel texture features 

such as fractal PTPSA [107], and mBm [108] as well as classical textons [109] as the second 

set of features. After extraction, all features are fused in a classical Random Forest [110] 

classifier. Once the labels are predicted simultaneously, we obtain a 3D volume image per 

patient for online evaluation.

Training and Testing

We performed 3-fold cross validation on training dataset to tune the parameters. Extensive 

experiments suggests employing all tumor samples and randomly selected equal number of 

non-tumor samples for training the RF classifier yields good training results. For a single 

patient it takes about an hour and half to complete the whole process as shown in Fig. 11 

while 3-fold cross-validation takes only about 15 min. The most time consuming parts are 

preprocessing and feature extraction which are done offline. All results in this work are 

obtained using MATLAB 2011a on windows 64 bit 2.26 GHz Intel Xeon processor, with 12 
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GB RAM. We process HG and LG patients separately for both Leader Board and Challenge 

testing phases. There are a few leader board cases that show low scores. Our observation 

suggests that if the tumor tissue intensities are below the mean intensity of the image, the 

necrosis tissues are misclassified as non-tumor. Data redundancy in the samples and 

covariance among the features usually lower the classifier performance. In summary, our 

extensive experimental results with BRATS data confirm the efficacy of our texture-based 

methods for multi-class abnormal brain tissue segmentation.

 Riklin Raviv, Van Leemput and Menze (2012): Multi-Modal Brain Tumor 

Segmentation via Latent Atlases

The work is based on a generative approach for patient-specific segmentation of brain 

tumors across different MR modalities much in the spirit of [55], [56]. The segmentation 

problem is solved via a statistically driven level-set framework. Specifically, image 

partitioning into regions of interest (tumor parts) and healthy brain parts are obtained via the 

joint evolution of four level-sets functions determined by the images gray level-distributions 

and a smoothness term. Manual initialization based on a few mouse clicks to determine the 

approximate tumor center and extent was used.

 Shin (2012): Hybrid Clustering and Logistic Regression for Multi-Modal 

Brain Tumor Segmentation

Unsupervised learning approaches have potential for applications in medical image 

processing, as previously discussed [111]–[113]. Additionally, the approach can be extended 

readily to a previously unseen dataset avoiding the issues of overfitting that can occur in 

supervised learning methods, where overfitting has a larger influence in tumor segmentation 

when tumors have very heterogeneous characteristics. Unsupervised learning approaches 

were applied 1) in [112] for the previous two-class segmentation challenge, and 2) in [113] 

to detect multiple organs from a dataset where a few roughly labeled samples were available. 

These methods however were not directly applicable when the format of this challenge was 

changed to classify four-class labels.

The four-class segmentation problem was therefore approached with a supervised learning 

algorithm, used previously in [112], to segment the tumor-cores, trained with logistic 

regression. Four-dimensional patches (3 × 3 × 3 volume-patch ×4 channels) were used with 

second-order polynomial features as described in [112], as opposed to the three-dimensional 

patches (mpsl × mpsl 2-D image-patch ×T temporal-dimension) used previously in [113] to 

identify organs (but not for segmentation). This was because the dataset for this challenge 

was carefully registered with little motion, compared to the abdominal scans in [113] where 

the registration over the 40 volumes along the time-course was difficult as the region is 

usually affected by breathing motion. Deep neural networks with up to six layers were tried 

as well, pre-training the hidden-layers with stacked-autoencoder feature learning and 

subsequently fine-tuning them with the labeled samples in the training dataset. Neural 

network model was not used for the challenge however, because the improvement of 
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classification accuracy was small (< ~0.05) relatively to the higher complexity compared to 

the logistic regression model.

Each channel of volumes was normalized separately, to try to learn the relation between the 

multi-channel intensity values, and to avoid any biases in the image intensities in different 

scans. The same type of classifier was used to classify all labels including the not-of-interest 

label (label:0), where they were trained only on the patient-dataset which has four-class 

labels, and applied to synthetic data which has only two labels. Two cross-validations were 

performed for the parameter adaptation, and no additional post-processing steps were 

applied to the patch-wise classification. It took about 5–10 min to segment a volume 

depending on the size of the whole head in the volume, as the classifier scans through all the 

non-zero entities.

The segmentation result is reasonably good, especially considering that only patch-wise 

classification was performed for the segmentation without any post-processing step, with a 

single (type of) classifier being used to segment all tumor classes and data-types (patient/

synthetic). This demonstrates the application of a classification model applied to the 

segmentation of coarsely labeled tumors. Combining any post-processing steps might 

provide an immediate improvement on the final segmentation result, while application of 

unsupervised methods could be studied in the future for this four-class segmentation, e.g., 

segmenting label: x-vs-rest for all labels individually but similarly to [112]. Extending the 

classification model to a structured prediction model is an interesting avenue for future work 

for this model, while using a whole volume as an input to deep convolutional neural 

networks [114] might be worth investigating for the application of neural network models.

 Subbanna, Precup, Collins and Arbel (2012): Hierarchical Probabilistic 

Gabor and MRF Segmentation of Brain Tumours in MRI Volumes

The off-site classification results were produced by a fully automated hierarchical 

probabilistic framework for segmenting brain tumours from multispectral human brain MRIs 

using multiwindow Gabor filters and an adapted Markov Random Field (MRF) framework 

[115] (while the 2012 on-site results were produced by an earlier version of the work [116]).

Image pre-processing involves bias field correction using N3 [117], intra-subject 

multispectral volume registration [118], non-uniformity correction [119], and intensity 

normalization [104] The algorithm consists of two stages. At the first stage, the goal is to 

coarsely segment tumors (and associated sub-classes) from surrounding healthy tissues using 

texture features. During training, specialized Gabor functions are developed to optimally 

separate tumors from surrounding healthy tissues based on combined-space coefficients of 

tumors in multispectral brain MRIs [120]. A Bayesian classification framework is designed 

such that models for tumour/non-tumors are built during training, based on the combined 

space Gabor decomposition. During testing, a Bayesian classifier results in tumour/non-

tumor probabilities and coarse tumor boundaries around regions with high tumor 

probabilities. Prior probabilities for healthy brain tissues are obtained by registering a 

healthy tissue prior atlas to regions outside tumor boundaries [118] The coarse boundaries 

are refined at the voxel level through a modified MRF framework that carefully separates 
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different tumor subclasses from each other and from healthy tissues. This customized MRF 

differs from standard MRFs in that it is not simply a smoothing operator on priors. In 

addition to taking voxel intensities and class labels into account, it also models intensity 

differences between neighboring voxels in the likelihood model and considers transition 

probabilities between neighboring voxel classes. The second inference stage is shown to 

resolve local inhomogeneities and impose a smoothing constraint, while maintaining 

appropriate boundaries as supported by local intensity difference observations.

The method was trained and tested on the updated MICCAI 2012 BRATS Database, which 

included four tumor subclasses: necrotic core, edema, solid tumor, and enhanced tumor. The 

algorithm was trained and tested on clinical volumes, including low-grade and high-grade 

tumors. Classifiers were built separately for all categories. No other datasets were used for 

training or tuning. Online segmentation statistics (e.g., Dice overlap metrics) were provided. 

For training cases, the method was tested in a leave-one-out fashion. After training, the 

algorithm was tested on all test cases. On I7 Dell Optiplex machines, the training took a day, 

due to both convolution and simulated annealing algorithms used. Each volume took 70 min 

to classify, due to time consuming convolutions with different Gabor filters. For tumor core 

segmentation, the technique outperformed the top methods by about 30% in the clinical test 

cases in terms of Dice statistics, and had comparable performance with the highest 

performing methods in terms of segmentation of other tumour regions (in all statistics) for 

both training and test cases. In terms of shortcomings, the classifier is currently heavily 

dependent on the normalization step performing adequately, which caused a problem in at 

least one HG test case. In addition, should the classifier at the first stage fail to find tumours 

altogether, the second stage has difficulty recovering, as seen in an LG and HG case.

 Taylor, John, Buendia and Ryan (2013): Map-Reduce Enabled Hidden 

Markov Models for High Throughput Multimodal Brain Tumor Segmentation

We have developed a novel Map-Reduce enabled extension to hidden Markov models 

(HMMs) to enable high-throughput training and segmentation of tumors and edema in 

multimodal magnetic resonance images of the brain.

Preprocessing and Training

Preprocessing prepares the input MR spectra, T1, T1 with Gadolinium contrast-enhanced 

(T1C), T2, and FLAIR, for segmentation. The preprocessing pipeline has been designed to 

remove spatial inhomogeneities due to patient movement, remove image artifacts (skull, 

eyes) not related to the segmentation problem, remove inhomogeneities due to MR scanner 

bias fields, and match each spectrum's intensity histogram to the volumes used for training. 

Training the HMM (Fig. 12) involves extracting a feature vector for each voxel in the source 

case. We extract intensity voxels from FLAIR, T1, T1C, and T2 MR spectra. Neighboring 

voxels are added to the feature vector. The corresponding truth labels for the voxel 

neighborhood in the feature vector is utilized for supervised training of the HMM. 

Extending the HMM model to Map-Reduce (Fig. 12) involved adapting the HMM 

supervised learning algorithm to incrementally update based on individual feature vectors 

and coding a Mapper to perform feature extraction. In our current case, a single Mapper 
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handles a single training case, extracting all of the feature vectors for the case and providing 

the vectors to the Reducer. The Reducer collects the feature vectors from all of the Mappers 

and incrementally updates the HMM model as new feature vectors are produced. A final 

Controller normalizes the probabilities in the HMM (initial, transition, emission) and stores 

the HMM to a file. The HMM was trained with the BRATS 2013 high-grade training data.

Segmentation and Results

Segmenting with the HMM (Fig. 3) involves extracting the feature vector for each voxel in 

the target case in the same manner as HMM training. Voxels from FLAIR, T1, T1C, and T2 

in a neighborhood around the voxel of interest are organized into the feature vector and 

provided to the trained HMM model. The HMM model produces a predicted label for the 

feature vector. Postprocessing involved filtering out small objects and applying dilation and 

erosion operations on each segmented class. Our method has been evaluated on the 

BRATS2013 challenge dataset for high-grade glioma cases. We achieve an mean accuracy 

(Dice score) of [59.5]% for edema and [65.6]% for tumor in the real cases. The Map-Reduce 

enabled HMM is able to train on all cases simultaneously, performing 220% faster on an 8-

node cluster than on a single node. Segmentation of a single patient case takes less than 1 

min.

Limitations with the current algorithm include lack of support for spatial features, 

neighborhood-based textural features, and utilization of atlas-based priors, which have been 

shown to improve segmentation accuracy. We are currently working on a Decision Forest 

based extension to the HMM-Map Reduce algorithm to incorporate these features.

 Tustison, Wintermark, Durst and Avants (2013): ANTs and Árboles

Description

Given the success of random forest (RF)-based approaches in the BRATS 2012 challenge, 

we employed RFs to produce a completely automated, multi-modality brain segmentation 

framework. However, differences from related work include an expanded feature image set, 

concatenated RF modeling, and an open source implementation16 heavily dependent on the 

Advanced Normalization Tools (ANTs)17 repository including its R packaging (ANTsR).18 

It is the latter open source aspect of our work which significantly motivated our participation 

in BRATS 2013 as it provides a reproducible and publicly available framework for 

performing such an important task in neuroimaging [121].

Algorithm and Data

The workflow for estimating tumor-based labeling from multi-modal images involves the 

following steps.

1. Symmetric multivariate template construction [122] using the data described in 

[123].

16github.com/ntustison/BRATS2013
17stnava.github.io/ANTs
18stnava.github.io/ANTsR
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2. Image preprocessing:

• Windowing intensities (quantiles [0.01, 0.99]);

• N4 bias correction [103];

• Rescaling intensity range to [0, 1].

3. Stage 1 (GMM) processing:

• generation of feature images;

• construction of the Stage 1 RF model and probability images.

4. Stage 2 processing:

• generation of single-modality MAP-MRF images using the Stage 1 RF 

probability images as spatial priors;

• construction of the Stage 2 RF model and labelings.

5. Refinement of Stage 2 labelings using a heuristically-derived binary morphological 

processing protocol.

We used the following feature images:

• Per modality (FLAIR, T1, T1C, T2)

— First-order neighborhood statistical images: mean, variance, skewness, 

and entropy. Neighborhood radius ∈ {1, 3}.

— GMM (stage 1) and MAP-MRF (stage 2) posteriors: CSF, gray matter, 

white matter, necrosis, edema, non-enhancing tumor and enhancing tumor 

(or a subset for the simulated data).

— GMM (stage 1) and MAP-MRF (stage 2) connected component geometry 

features: distance to tumor core label, volume, volume to surface area 

ratio, eccentricity, and elongation.

— Template-based: symmetric template difference and contralateral 

difference with Gaussian smoothing (σ = 4 mm).

• Miscellaneous: normalized Euclidean distance based on cerebral mask, log 

Jacobian image, and (T1C - T1) difference image.

Prior cluster centers for specific tissue types learned from training data are used in the first 

stage to construct multiple GMM-based feature images [124]. The resulting spatial priors 

derived from application of the RF model for the first stage were used as input to an iterative 

n-tissue N4 ⇌ Atropos MAP-MRF segmentation protocol. These are used to create 

modified feature images for the second stage. ANTs registration [125] is also used to 

produce three sets of feature images: the log Jacobian image, intensity differences between 

each modality of each subject and the corresponding symmetric template, and contralateral 

differences.

All processing was performed using the computational cluster at the University of Virginia.
19 Timing measures (single-threaded) included ~1.5 h per subject for feature image creation 
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with the bulk of time devoted to spatial normalization with the symmetric template. Model 

construction required ~2 h with prediction taking approximately 15 min per subject.

Training and Testing

Training was performed separately for both real and simulated data and high-grade versus 

low-grade tumor assessment resulting in four RF modeling/prediction pathways. Training 

was limited to the 80 evaluation datasets provided by the organizers with evaluation 

employing a leave-one-out strategy for each of the four groupings.

 Zhao and Corso (2012): Brain Tumor Segmentation With MRF on 

Supervoxels

Algorithm and Data

For each MRI case, we first perform over-segmentation, which results in a set of 

supervoxels. We then solve the voxel labeling problem directly on the supervoxels 

constraining all voxels within one supervoxel to have the same label.

Consider a Markov random field defined over the supervoxels . A labeling f assigns a label 

fP ∈ L to each supervoxel P, where L = {N, E, nonET, ET, C, B}, necrosis, edema, non-

enhancing tumor, enhancing tumor, cerebrospinal fluid and background (white matter and 

gray matter), respectively. The energy function

where  is the set of supervoxels and N  is the set of adjacent supervoxels, captures the 

cost of a certain labeling f. We define the data term as DQ (fQ) = ∑q∈Q − log(P(I(q) | fQ)), 

where P(I(q) | fQ) is the node class likelihood estimated by a Gaussian mixture model and 

I(q) denotes the feature of voxel q, the intensities of q of four channels. We define the 

smoothness term to capture the edge presence along the common boundary of the two 

supervoxels

where α,β are two nonnegative parameter, and Np is the neighborhood of p. Edge(p) is 

defined as

(4)

where rq,p is a voxel, such that q and rq,p are symmetric about p.

19www.uvacse.virginia.edu
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Finally, we solve the supervoxel labeling energy minimization problem using graph cuts 

[126]–[128].

The computing time is about 20 min for each case with Matlab an Intel Core i7-3770K, 3.50 

GHz processor and 16 GB memory system. The most time consuming part is over-

segmentation and computing VP,Q in (4).

Because we use intensities directly as the feature, we compute the standard scores to put the 

data in the same scale.

Training and Testing

We made a two-fold cross-validation on high-grade and low-grade cases, respectively. We 

learn individual classifiers for the high-grade set and the low-grade set with the same 

algorithm. As most other supervised methods using intensities as the feature, the accuracy of 

our method depends on the standardization of intensities. Hence, our method may fail if the 

case has different distribution with other cases. In some cases, our method fails because the 

data is not good enough. For example, in some cases, extraction is not good enough to 

remove the whole skull (we did not try to make a better extraction), and in some other cases, 

we do not have the whole image on FLAIR channel. But our method also fails on some good 

cases.

To overcome this problem, we could make a rough segmentation first, get the normal part of 

the case (white matter, gray matter, CSF), and make the intensity standardization only with 

the normal part. We are working on such a method and may use it in BRATS 2013 if it 

works.

 Zhao, Sarikaya and Corso (2013): Automatic Brain Tumor Segmentation 

With MRF on Supervoxels

Algorithm and Data

We normalize the data and estimate the likelihood of pixels by the registration of a 3D joint 

histogram. We first perform over-segmentation on each case, resulting in a set of 

supervoxels. We then solve the voxel labeling problem directly on the supervoxels with 

Markov random field. This algorithm do not need manual input.

Pre-Processing

For each channel of each MRI case, we first denoise with SUSAN [129]; then we compute 

the standardized z-scores (zero mean and unit covariance) to put the data in the same scale, 

which are the feature vectors we use.

Oversegmentation of the Image With Supervoxels

In order to obtain supervoxels of MRI scan images, we use SLIC 3D [130] which generates 

supervoxels by clustering voxels based on their color similarity and proximity in the image 

volume. RegionSize and regularizer, the two parameters of SLIC, are 10 and 0.1, 

respectively.
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Segmentation With Graph Cuts on a Markov Random Field

Consider a Markov random field defined over the supervoxels  with A labeling f

where N  is the set of adjacent supervoxels. We define the data term as DQ (fQ) = ∑q∈Q − 

log(P(I(q) | fQ)), where P(I(q) | fQ) is the node class likelihood estimated by histogram based 

method and I(q) denotes the feature of voxel q. two supervoxels:

where Np is the neighborhood of p. Edge(p) is defined as

where rq,p is a voxel, such that q and rq,p are symmetric about p.

Finally, we solve the labeling energy minimization problem using graph cuts [131].

In this step, the key parameters a and b 0.5

A. Histogram Based Likelihood Estimation—Given a testing image Imgx and a 

labeled training image Imgi, we estimate the likelihood Pri(I(p) | fp) for each voxel p ∈ Imgx 

with Algorithm 2.

Algorithm 2

Likelihood Estimation

Input: Imgx, labelled image Imgi

  1: Compute Ii, Ix with quantization

  2: Compute Hi, Hx, Ht,i, t ∈ L

  3: With Hi, Hx, compute 

  4: With  and Ht,i, compute the deformed Histogram, , t ∈ L

  5: 

We then integrate information from each training image as follows:
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Running Time

The running time is about 0.7n + 4 min for each case, where n is the number of cases of 

training data. The most consuming part is 3D registration of histograms. This depends on the 

size of the histogram and the method for registration.

Training and Testing

We learned individual classifiers for each of the four sub-problems. For each sub-problem, 

we use a 2-fold cross validation for the parameters a and b in the smoothness term of MRF, 

however, we set (a) / (b) to (1) / (30) manually. We only use the training data from the 

BRATS challenge.

Shortcomings

The performance of the over-segmentation limits the accuracy of our method. To overcome 

this, we could make a voxel level labeling in the supervoxels along the boundary, after the 

supervoxel labeling.

 Zikic, Glocker, Konukoglu, Shotton, Criminisi, Ye, Demiralp, Thomas, 

Das, Jena, and Price (2012): Context-sensitive Classification Forests for 

Segmentation of Brain Tumor Tissues

Description

This submission is based on a classification forest, which is used such as to produce context-

sensitive predictions. The method is based on our work focusing on high-grade glioma [39], 

with further technical details available in [51]. The context sensitivity arises from two 

components in the framework. The first one is that the forest does not operate only on the 

original input images, but also on initial patient-specific probabilities p′ for each tissue class 

c. These probabilities are computed at test time for each patient as the posterior probability p
′(c | I(x)) = p(I(x) | c)p(c), based on the likelihood p(I(x) | c) of the multi-channel intensity 

I(x) given c. p(I(x) | c) and p(c) are estimated based on the training dataset—the likelihood 

by a Gaussian mixture model, and the prior as a normalized empirical histogram. While the 

initial probabilities often give reasonable rough estimates, they are noisy and erroneous, due 

to use of local intensity information only. Presenting the initial estimates to the forest as 

additional input has the effect of removing the noise and correcting some misclassifications. 

The second context-inducing component is the use of context-sensitive features for the forest 

(similar to [132], [133]), which capture intensity characteristics around the point of interest. 

Due to the regularizing effect of the context-sensitive forest, we did not find it necessary to 

use an explicit energy-based regularization.
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We use the following preprocessing. For each patient, all scans are affinely aligned to the T1 

contrast scan. We perform inhomogeneity correction with [82]. Instead of the standard 

histogram equalization, we multiply the intensities in each scan, such that the mean value 

equals 1000.

Our approach is fully automatic. The segmentation takes 1–2 min per scan (excluding pre-

processing). The training of one tree takes ca. 20 min on a single PC. The key parameters of 

the method are the number of trees per forest and the maximal tree depth. We use forests 

with 100 trees with maximal depth of 20 for all challenge submissions (except the 2-class 

training data, where 40 trees per forest were used). An analysis of the parameter settings can 

be found in [39].

Method and parameter tuning were performed by a leave-one-out cross-validation on the 

initial BRATS 2-class training data. The same settings were then used for all submissions. 

We learn individual classifiers for the four sub-tasks (real/high, real/low, sim/high, sim/low). 

Since we did not perform a cross-validation to modify any parameters for the 4-class setting, 

the error reported in the system for 4-class training is based on a classifier trained on all 

images, which explains the high score.

The largest potential for improvement seems to be to attempt to achieve better results for 

outlier patients with very low accuracy (cf. [51]). This might be done by using more training 

data, or by taking into account further information, e.g., whether the scan is pre or post 

surgery.
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Fig. 1. 
Results of PubMed searches for brain tumor (glioma) imaging (red), tumor quantification 

using image segmentation (blue), and automated tumor segmentation (green). While the 

tumor imaging literature has seen a nearly linear increase over the last 30 years, the number 

of publications involving tumor segmentation has grown more than linearly since 5–10 

years. Around 25% of such publications refer to “automated” tumor segmentation.
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Fig. 2. 
Examples from the BRATS training data, with tumor regions as inferred from the 

annotations of individual experts (blue lines) and consensus segmentation (magenta lines). 

Each row shows two cases of high-grade tumor (rows 1–4), low-grade tumor (rows 5–6), or 

synthetic cases (last row). Images vary between axial, sagittal, and transversal views, 

showing for each case: FLAIR with outlines of the whole tumor region (left); T2 with 

outlines of the core region (center); T1c with outlines of the active tumor region if present 

(right). Best viewed when zooming into the electronic version of the manuscript.
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Fig. 3. 
Manual annotation through expert raters. Shown are image patches with the tumor structures 

that are annotated in the different modalities (top left) and the final labels for the whole 

dataset (right). Image patches show from left to right: the whole tumor visible in FLAIR (A), 

the tumor core visible in T2 (B), the enhancing tumor structures visible in T1c (blue), 

surrounding the cystic/necrotic components of the core (green) (C). Segmentations are 

combined to generate the final labels of the tumor structures (D): edema (yellow), non-

enhancing solid core (red), necrotic/cystic core (green), enhancing core(blue).
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Fig. 4. 
Regions used for calculating Dice score, sensitivity, specificity, and robust Hausdorff score. 

Region T1 is the true lesion area (outline blue), T0 is the remaining normal area. P1 is the 

area that is predicted to be lesion by—for example—an algorithm (outlined red), and P0 is 

predicted to be normal. P1 has some overlap with T1 in the right lateral part of the lesion, 

corresponding to the area referred to as P1 Λ T1 in the definition of the Dice score (Eq. 

III.E).
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Fig. 5. 
Dice scores of inter-rater variation (top left), and variation around the “fused” consensus 

label (top right). Shown are results for the “whole” tumor region (including all four tumor 

structures), the tumor “core” region (including enhancing, non-enhancing core, and necrotic 

structures), and the “active” tumor region (that features the T1c enhancing structures). Black 

boxplots show training data (30 cases); gray boxes show results for the test data (15 cases). 

Scores for “active” tumor region are calculated for high-grade cases only (15/11 cases). 

Boxes report quartiles including the median; whiskers and dots indicate outliers (some of 

which are below 0.5 Dice); and triangles report mean values. Table at the bottom shows 

quantitative values for the training and test datasets, including scores for low- and high-

grade cases (LG/HG) separately; here “std” denotes standard deviation, and “mad” denotes 

median absolute deviance.
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Fig. 6. 
On-site test results of the 2012 challenge (top left and right) and the 2013 challenge (bottom 

left), reporting average Dice scores. Test data for 2012 included both real and synthetic 

images, with a mix of low- and high-grade cases (LG/HG): 11/4 HG/LG cases for the real 

images and 10/5 HG/LG cases for the synthetic scans. All datasets from the 2012 on-site 

challenge featured “whole” and “core” region labels only. On-site test set for 2013 consisted 

of 10 real HG cases with four-class annotations, of which “whole,” “core,” “active” regions 

were evaluated (see text). Best results for each task are underlined. Top performing 

algorithms of the on-site challenge were Hamamci, Zikic, and Bauer in 2012; and Tustison, 

Meier, and Reza in 2013.
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Fig. 7. 
Average Dice scores from the “off-site” test, for all algorithms submitted during BRATS 

2012 and 2013. The table at the top reports average Dice scores for “whole” lesion, tumor 

“core” region, and “active” core region, both for the low-grade (LG) and high-grade (HG) 

subsets combined and considered separately. Algorithms with the best average Dice score 

for the given task are underlined; those indicated in bold have a Dice score distribution on 

the test cases that is similar to the best (see also Fig. 8). “Best Combination” is the upper 

limit of the individual algorithmic segmentations (see text), “Fused_4” reports exemplary 
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results when pooling results from Subbanna, Zhao (I), Menze (D), and Hamamci (see text). 

Reported average computation times per case are in minutes; an indication regarding CPU or 

Cluster based implementation is also provided. Plots at the bottom show the sensitivities and 

specificities of the corresponding algorithms. Colors encode the corresponding values of the 

different algorithms; written names have only approximate locations.
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Fig. 8. 
Dispersion of Dice and Hausdorff scores from the “off-site” test for the individual 

algorithms (color coded), and various fused algorithmic segmentations (gray), shown 

together with the expert results taken from Fig. 5 (also shown in gray). Boxplots show 

quartile ranges of the scores on the test datasets; whiskers and dots indicate outliers. Black 

squares indicate the mean score (for Dice also shown in the table of Fig. 7), which were used 

here to rank the methods. Also shown are results from four “Fused” algorithmic 

segmentations (see text for details), and the performance of the “Best Combination” as the 
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upper limit of individual algorithmic performance. Methods with a star on top of the boxplot 

have Dice scores as high or higher than those from inter-rater variation. Hausdorff distances 

are reported on a logarithmic scale.
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Fig. 9. 
Examples from the test data set, with consensus expert annotations (yellow) and consensus 

of four algorithmic labels overlaid (magenta). Blue lines indicate the individual 

segmentations of four different algorithms (Menze (D), Subbanna, Zhao (I), Hamamci). 

Each row shows two cases of high-grade tumor (rows 1–5) and low-grade tumor (rows 6–7). 

Three images are shown for each case: FLAIR (left), T2 (center), and T1c (right). Annotated 

are outlines of the whole tumor (shown in FLAIR), of the core region (shown in T2), and of 

active tumor region (shown in T1c, if applicable). Views vary between patients with axial, 
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sagittal and transversal intersections with the tumor center. Note that clinical low-grade 

cases show image changes that have been interpreted by some of the experts as 

enhancements in T1c.
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Fig. 10. 
Maximum diameter line drawn by the user to initialize the algorithm for CE-T1 (a), T2 (b), 

and Flair (c) modalities and the corresponding outputs, for a sample high-grade case. 

Manual labels overlayed on T1 for a sample slice (d).
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Fig. 11. 
Generic flow diagram of the proposed method.
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Fig. 12. 
Left: Training the HMM model. Center: MapReduce model for HMM-based brain tumor 

segmentation. Right: Applying the HMM model for segmentation.
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TABLE II

Overview of the Algorithms Employed in 2012 and 2013. For a Full Description Please Refer to the Appendix 

and the Workshop Proceedings Available Online (see Section III-A). Three Non-Automatic Algorithms 

Required a Manual Initialization

Method Description Fully
automated

Integrated hierarchical random forest classification and CRF regularization Yes

2012

Spatial decision forests with intrinsic hierarchy [42] Yes

“Tumorcut” method [72] No

Generative lesion segmentation model [73] Yes

Generative-discriminative model building on top of “Menze (G)” Yes

Generative model with latent atlases and level sets No

Hybrid clustering and classification by logistic regression Yes

Hierarchical MRF approach with Gabor features Yes

Learned MRF on supervoxels clusters Yes

Context-sensitive features with a decision tree ensemble Yes

Bit-grouping artificial immune network Yes

2013

Patch-based tissue segmentation approach Yes

Hidden Markov fields and variational EM in a generative model Yes

Random forest classifier using neighborhood and local context features Yes

Semi-automatic segmentation using active contours No

Appearance- and context-sensitive features with a random forest and CRF Yes

Texture features and random forests Yes

“Map-Reduce Enabled” hidden Markov models Yes
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Method Description Fully
automated

Random forest classifier using the open source ANTs/ANTsR packages Yes

Like “Zhao (I)” with updated unary potential Yes
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