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Abstract

In this paper, we study the wireline two-unicast-Z communication network over directed
acyclic graphs. The two-unicast-Z network is a two-unicast network where the destination
intending to decode the second message has apriori side information of the first message. We
make three contributions in this paper:

1. We describe a new linear network coding algorithm for two-unicast-Z networks over di-
rected acyclic graphs. Our approach includes the idea of interference alignment as one of
its key ingredients. For graphs of a bounded degree, our algorithm has linear complexity
in terms of the number of vertices, and polynomial complexity in terms of the number of
edges.

2. We prove that our algorithm achieves the rate-pair (1, 1) whenever it is feasible in the
network. Our proof serves as an alternative, albeit restricted to two-unicast-Z networks
over directed acyclic graphs, to an earlier result of Wang et. al. which studied necessary
and sufficient conditions for feasibility of the rate pair (1, 1) in two-unicast networks.

3. We provide a new proof of the classical max-flow min-cut theorem for directed acyclic
graphs.

∗This material is based upon work supported by the Air Force Office of Scientific Research (AFOSR) under award No. FA9550-
13-1-0023.
†This work was also supported by Viveck R. Cadambe’s startup grant provided by the Department of Electrical Engineering at

the Pennsylvania State University.
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1 Introduction

Since the advent of network coding [1], characterizing the capacity region of networks of orthogonal
noiseless capacitated links, often termed the network coding capacity, has been an active area of
research. Inspired by the success of linear network coding for multicast networks [2,3], a significant
body of work has been devoted to understanding the design and performance limits of linear
network codes even for non-multicast communication scenarios. Previous approaches to linear
network code design for non-multicast settings have at least one of two drawbacks: the network
code design is restricted to a limited set of network topologies, or the approach has a prohibitive
computational complexity. The goal of our paper is develop ideas and algorithms that fill this gap
in literature. The main contribution of our paper is the development of a low-complexity linear
network coding algorithm for two-unicast-Z networks - a network communication setting with two
independent message sources and two corresponding destination nodes, where one destination has
a priori knowledge of the undesired message (See Fig. 1). We begin with a brief survey of previous,
related literature.

1.1 Related Work

The simplest linear network code is in fact the technique of routing, which is used to show the
max-flow min-cut theorem. In addition to the single-source single-destination setting of the max-
flow min-cut theorem, routing has been shown to be optimal for several classes of networks with
multiple source messages in [4–6]1. The technique of random linear network coding, which is
optimal for multicast networks [2, 8], is also shown to achieve capacity for certain non-multicast
networks [2, 9, 10]2. The ideas of random linear network coding and routing have been combined
to develop network coding algorithms for arbitrary networks in [11]. Nonetheless, it is well known
that the techniques of random linear network coding and routing are, in general, sub-optimal linear
network codes for networks with multiple sources.

To contrast the optimistic results of [2–4,6, 7, 9], pessimistic results related to the performance
limits of linear network codes have been shown in [12–14]. Through deep connections between linear
network coding and matroidal theory, it has been shown that linear network codes are sub-optimal
in general [12, 15]. In fact, most recently [14], it has been shown that even the best linear code
cannot, in general, achieve the capacity of the two-unicast network.

Literature has also studied the computational limits of construction and performance evalua-
tion of linear codes. It is shown in [16] that characterizing the set of rates achievable by scalar
linear codes3 is NP-complete. Furthermore, for a given field size, the computational complexity of
determining the best (scalar or vector) linear code is associated with challenging open problems
related to polynomial solvability [18] and graph coloring [19]. Nonetheless, characterization of the
computational complexity of determining the set of all rates achievable by linear network coding
remains an open problem. One main challenge in resolving this question is to develop ideas and
algorithms for constructing linear network codes for non-multicast settings. The study and devel-

1In fact, in [7], routing has been conjectured to achieve network capacity for multiple unicast networks over undirected directed
acyclic graphs.

2Linear network coding techniques which do not necessarily involve choosing co-efficients randomly have also been studied for
multicast and certain non-multicast settings in [3, 10]

3We use the term linear coding for network codes where all the codewords come from a vector space, and encoding functions
are linear operators over this vector space. The term scalar linear network coding is used when the dimensionality of this vector
space is equal to 1. It is known that vector linear network coding strictly outperforms scalar linear network coding in general [17].
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opment of linear network codes for non-multicast settings is also important from an engineering
standpoint, especially in current times, because its utility has been recently demonstrated in set-
tings that arise from modeling distributed storage systems [20], wireless networks [21], and content
disribution systems [22]. We review the principal approaches to developing linear network codes
outside the realm of routing and random linear network coding.

Network Codes over the binary field: Initial approaches to developing codes for non-
multicast settings restricted their attention to codes over the binary field. Since the binary field
provides a small set of choices in terms of the linear combinations that can be obtained by an
encoding node, it is possible to search over the set of all coding solutions relatively efficiently. This
idea was exploited to develop a linear programming based network coding algorithms in [23, 24].
Reference [25] presents a noteworthy result that demonstrates the power of carefully designed
network codes over the binary field. Through a careful understanding of the network communication
graph, [25] characterized the feasibility of rate tuple (1, 1) in two unicast networks. The result of [25]
can be interpreted as follows: the rate tuple (1, 1) is achievable if and only if (i) the min-cut between
each source and its respective destination is at least equal to 1, and (ii) the generalized network
sharing bound - a network capacity outer bound formulated in [26] - is at least 2. Furthermore,
the rate (1, 1) is feasible if and only if it is feasible through linear network coding over the binary
field. In general, however, coding over the binary field does not suffice even for the two unicast
network [26].

Interference Alignment: Interference alignment, which is a technique discovered in the
context of interference management for wireless networks, has recently emerged as a promising tool
for linear network code design even for wireline networks. Specifically, an important goal in the
design of coding co-efficients for non-multicast networks is to ensure that an unwanted message
does not corrupt a desired message at a destination. The unwanted message can be interpreted as
an interferer at the destination, and thus, tools from interference management in wireless networks
can be inherited into the network coding setting.

Interference alignment was first explicitly identified as a tool for multiple unicast network coding
in [27], which describes a class of networks where the asymptotic interference alignment scheme
of [28] is applicable. This class of networks has been further studied and generalized in [29,30]. The
power of interference alignment for network coding was demonstrated in references [20,31–33]; these
references developed alignment-based erasure codes to solve open problems related to minimizing
repair bandwidth in distributed data storage systems. Reference [34] used interference alignment
to characterize the capacity of classes of the index coding problem [35], a sub-class of the class
of general network coding capacity problems. The index coding problem is especially important
because references [36,37] have shown an equivalence between the general network coding capacity
problem and the index coding problem.

Index Coding Based Approaches: The equivalence of the general network coding problem
and the index coding problem, which is established in [36, 37], opens another door to the develop-
ment of linear network codes for general networks. Specifically, for a given network coding setting,
the approach of [37] can be used first to obtain an equivalent index coding setting; then the ap-
proaches of [38–41] can be used to develop linear index codes. However, these index code design
approaches have high computational complexity, since they require solving challenging graph color-
ing related problems or linear programs whose number of constraints is exponential in terms of the
number of users. Because of the nature of the mapping of [37], this means that these approaches
require solving linear programs where the number of constraints is exponential number in terms
of the number of edges of the network in consideration. Another common approach to obtaining
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Figure 1: The Two-unicast-Z Network

index coding solutions is given in [42], which connects the rate achievable via linear index coding
to a graph functional known as minrank. While in principle, the minrank characterizes the rate
achievable by the best possible linear index code, the min-rank of a matrix over a given field size
is difficult to evaluate, and NP-Hard in general [43]; furthermore, there is no systematic approach
to characterizing the field size.

In summary, while recent ideas of interference alignment and connections to index coding
broaden the scope of linear network coding, these approaches inherit the main drawbacks of linear
network coding. Specifically, network coding approaches outside the realm of routing or random
linear network coding are either carefully hand-crafted for a restricted set of network topologies, or
their enormous computational complexity inhibits their utility. The motivation of our paper is to
partially fill this gap in literature by devising algorithms for linear network coding. We review our
contributions next.

1.2 Contributions

The goal of this paper is to devise systematic algorithms for linear network coding that incorpo-
rate ideas from interference alignment. In this paper, we focus on two-unicast-Z networks over
directed acyclic graphs. The two-unicast-Z network communication problem consists of two sources
s1, s2, two destinations t1, t2 and two independent messages W1,W2. Message Wi is generated by
source si and is intended to be decoded by destination ti. In the two-unicast-Z setting, destination
t2 has apriori side information of the message W1. Our nomenclature is inspired from the Z-
interference channel [44] in wireless communications, where, like our network, only one destination
faces interference4. In fact, with linear coding, relation between the sources and destinations in the
two-unicast-Z setting is the same as a Z-interference channel. We note that the two-unicast-Z net-
work can be interpreted as a two unicast network with an infinitely capacitated link between source
1 and destination 2. Therefore two-unicast-Z networks form a subclass of two-unicast networks.

4It is perhaps tempting to consider a network where s1 is not connected to t2 and use the nomenclature of the two-unicast-Z
for such a network. However, it is worth noting that routing is optimal for such a network and each message achieves a rate equal
to the min-cut between the respective source and destination. Therefore, the study of such a network is not particularly interesting
from a network capacity viewpoint.
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Despite the simplicity of its formulation, little is known about the two-unicast-Z network. For
instance, while the generalized network sharing (GNS) bound - a network capacity outerbound
formulated in [26] - is loose in general for two-unicast networks, we are not aware of any two-unicast-
Z network where the GNS bound is loose. Similarly, while linear network coding is insufficient for
two-unicast, it is not known whether linear network coding suffices for two-unicast-Z networks. In
this paper, we use two-unicast-Z networks over directed acyclic graphs as a framework to explore
our ideas of linear network coding. We make three main contributions in this paper:

(1) In Section 4, we describe an algorithm that obtains linear network codes for two-unicast-Z
networks over directed acyclic graphs. Our approach is based on designing coding co-efficients
to maximize the capacity of the implied end-to-end Z-interference channels in the network [45].
For graphs whose degree is bounded by some parameter, the complexity of our algorithm is
linear in the number of vertices and polynomial in the number of edges. We provide a high
level intuitive description of our algorithm in Section 2.

(2) In Section 5, we provide an alternate proof of the classical max-flow min-cut theorem for
directed acyclic graphs. Our proof therefore adds to the previous literature that has uncovered
several proofs of the theorem [1, 46, 47]. Our proof is a direct, linear coding based proof, and
relies on tools from elementary linear algebra. This is in contrast to previous proofs which
rely on graph theoretic results (Menger’s theorem) or linear programming. This proof, in fact,
inspires our algorithm for two-unicast-Z networks. We provide an intuitive description of the
proof in Section 2.

(3) In Section 6, we prove that our algorithm achieves a rate of (1, 1) whenever it is feasible. Note
that the necessary and sufficient conditions for the feasibility of the rate pair (1, 1) has been
characterized in [25]. Our proof in Section 6 provides an alternate proof of the feasibility of
the rate pair (1, 1), when restricted to two-unicast-Z networks over directed acyclic graphs.
Like our alternate proof to the max-flow min-cut theorem, our proof of Section 6 also relies
significantly on elementary linear algebra.

2 Intuition Behind the algorithm

Consider the two-unicast-Z network described in Fig. 1. In this network, with linear coding at all
the nodes in the network, the input output relationships can be represented as

Y1 = X1H1 + X2H2, Y2 = X2G2 ,

where for i ∈ {1, 2}, Xi is a row vector representing the input symbols on the outgoing edges of the
ith source, Yi is row vector representing the symbols on the incoming edges of the ith destination
node followed by interference cancellation with the side information if i = 2. Note that if H1,H2

are fixed and known, the input-output relations are essentially akin to the Z-interference channel.
Using the ideas of El Gamal and Costa [48] for the interference channel, the set of achievable rate
pairs (R1, R2) can be described (see [45,49,50]) as the rate tuples (R1, R2) satisfying

R1 ≤ rank (H1) , R2 ≤ rank (G2) (1)

R1 +R2 ≤ rank

([
H1

H2

])
+ rank ([H2 G2])− rank(H2) (2)

5



The goal of our algorithm is to specify the linear coding co-efficients at all the nodes in the
network, which in turn specifies the matrices H1,H2,G2. Once these matrices are specified, the
rate region achieved in the network is specified by (1), (2). Here, we describe our approach to
designing the linear coding co-efficients in the two-unicast-Z network.

To describe our intuition, we begin with the familiar single source setting, and describe the ideas
of our algorithm restricted to this setting. Note that with a single source and single destination,
with linear coding in the network, the end-to-end relationship can be represented as Y = XH,
where X and Y respectively represent the symbols carried by the source and destination edges,
and H represents the transfer matrix from the source to the destination edges. We know from
classical results that the linear coding co-efficients can be chosen such that the rank of H is equal
to the min-cut of the network. Here, we provide an alternate perspective of this classical result.
Our examination of the single-source setting provides a template for our algorithm for the two-
unicast-Z network which is formally described in Section 4. Our approach also yields an alternate
proof for the max-flow min-cut theorem which is provided in Section 5.

2.1 Algorithm for Single-Unicast Network

We focus on a scenario shown in Fig. 2. Denote the network communication graph G = (V, E),
where V denotes the set of vertices and E denotes the set of edges. Now, suppose that, as shown
in Figure 2, a linear coding solution has been formulated for G̃ = (V, E − {e}), where e denotes an
edge coming into the destination node. The question of interest here is the following: How do we
encode the edge e so that the end-to-end rate is maximized? We assume that our coding strategy
is restricted to linear schemes.

Let X be a 1× S vector denoting the source symbols input on the S edges emanating from the
source node. Let H denote a S× (D−1) linear transform between the input and D−1 destination
edges - all the destination edges excluding edge e. Let p1,p2, . . . ,pk be 1× S vectors respectively
denoting the linear transform between the source and the k edges coming into edge e, that is, the
ith incoming edge. Now, our goal is to design the coding strategy for edge e, that is, to choose
scalars α1, α2, . . . , αk such that the rate of the system

Y = X

[
H

k∑
i=1

αjpj

]
is maximized, given matrix H and vectors p1,p2, . . . ,pk. Equivalently, the goal is to choose scalars

α1, α2, . . . , αk such that the rank of
[
H

∑k
i=1 αjpj

]
is maximized. The solution to this problem

is quite straightforward - one can notice that if

rank ([H p1 p2 . . . pk]) > rank (H) (3)

then the scalars α1, . . . , αk can be chosen such that the rank of
[
H

∑k
i=1 αjpj

]
is equal to the

rank (H) + 1. Since rank (H) is the rate obtained by the destination if edge e is ignored, the
implication is that if (3) is satisfied, then, we can design a linear coding strategy such that edge
e provides one additional dimension to the destination. In fact, if (3) is satisfied and the field
of operation is sufficiently large, then choosing the scalars α1, . . . , αk randomly, uniformly over

the field of operation and independent of each other increases the rank of
[
H

∑k
i=1 αjpj

]
by 1,

implying the existence a linear coding solution.
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Wireline 

Network

HX

...

X

p1X
p2X

pkX

(α1p2 + α2p2 + . . . αkpk)X

e

Figure 2: A single-unicast scenario depicted pictorially. The goal is to find scalars α1, . . . , αk.

A solution to the scenario of Fig. 2 naturally suggests a linear coding algorithm for the single
unicast problem. Suppose we are given a directed acyclic graph G = (V, E), a set of source edges
S ⊂ E , a set of destination edges D ⊂ E . Our strategy removes the last topologically ordered
edge e ∈ D and finds a linear coding solution for the remaining graph. That is, specifically, we
develop a linear coding solution for G = (V, E − {e}), with source edges S and destination edges
D − {e} ∪ In(v), where v represents the tail node of edge e, and In(v) represents the set of edges
incoming on to edge v. Therefore, we have reduced our original problem, which intended to design
coding co-efficients for |E| edges, to one which needs to design coding co-efficients for |E| − 1 edges,
albeit with a slightly different set of destination edges in mind. We can now recursively iterate the
same procedure to this smaller problem, removing the last edge as per topological ordering at each
iteration and modifying the destination edge set accordingly until all the edges are removed except
the source edges. A trivial coding solution applies to this graph, which forms a starting point for
the recursive algorithm we have described.

While our insight might appear superfluous in the context of the single unicast setting, it
does lead to an alternate proof for the max-flow min-cut theorem for directed acyclic graphs. To
conclude our discussion, we provide an intuitive description of the proof; the proof is formally
provided in Section 5. In our proof, we make the inductive assumption that the max-flow min-cut
theorem is valid for the source S and for any destination set which is a subset of E − {e}. Under
this assumption, we show using ideas from classical multicast network coding literature that the
optimal linear coding solutions for the two possible destination sets D−{e} and D−{e}∪In(v) can
be combined into a single linear coding solution that simultaneously obtains the min-cut for both
destination sets. Then, we use this combined solution along with the solution to Fig. 2 and show
that this linear coding solution achieves a rate equal to the min-cut for destination set D. More
specifically, we show that if the edge e belongs to a min-cut for destination D, then the inductive
assumption implies that, for this combined solution, (3) holds; our strategy of choosing coding
co-efficients randomly over the field ensures that a rank that is equal to the min-cut is achieved for
graph G with destination D as well.

2.2 Algorithm for Two-Unicast-Z Networks

Consider a two-unicast-Z network of the form shown in Fig. 3. The graph G = (V, E) consists of
two sets of source edges S1, S2, two sets of destination edges T1, T2, with the destination 2 being
aware of the message of the first source apriori. Now, consider a situation where a coding solution
has been formulated for all the edges of the graph, with the exception of edge e ∈ D1. We are
interested in understanding how to encode the edge e so that the end-to-end rate is maximized.
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H1X1 + H2X2

...

X1

pk,1X1 + pk,2X2

X2

p1,1X1 + p1,2X2

(α1p1,1 + α2p2,1 + . . . αkpk,1)X1

+ (α1p1,2 + α2p2,2 + . . . αkpk,2)X2

G2X2

e

v

Figure 3: A two-unicast-Z scenario depicted pictorially. The goal is to find scalars α1, . . . , αk to maximize (4).

Our heuristic is based on maximizing the sum-rate that is, the right hand side of equation (2).
Based on Fig. 3, our goal is to find α1, α2, . . . , αk such that

rank

([
H1

∑k
i=1 αipi,1

H2
∑k

i=1 αipi,2

])
+ rank

([
H2

∑k
i=1 αipi,2 G2

])
− rank

([
H2

∑k
i=1 αipi,2

])
(4)

is maximized. To do so, we examine two cases:

Case 1 If p1,2, . . . ,pk,2 lie in the span of H2, then, clearly, choosing αis randomly and uniformly
over the field is the best strategy with a probability that tends to 1 as the field size increases.
This is because in the third and negative term in (4), the column corresponding to the random
linear combination of pi,2’s do not contribute to the rank of the matrix, while random linear
coding maximizes the first two terms with high probability.

Case 2 If p1,2, . . . ,pk,2 does not lie in the span of H2, then the solution is a bit more involved.
We divide this case into two sub-cases

Case 2a Suppose that p1,2, . . . ,pk,2 do not lie in the span of [H2 G2], then chosing αis ran-
domly maximizes the expression of (4). In particular, we note that choosing αis randomly
increases the two positive terms and the negative term of (4) by 1, effectively increasing

the the expression of (4) by 1, as compared with rank

([
H1

H2

])
+ rank

([
H2 G2

])
−

rank (H2). We later show in Lemma 1 that the expression of (4) cannot be increased by
more than 1; this implies the optimality of the random coding approach for the case in
consideration here.

Case 2b Suppose that p1,2, . . . ,pk,2 lies in the span of
[
H2 G2

]
, but does not lie in the

span of H2. In this case, the optimal strategy is to choose co-efficients α1, α2, . . . , αk
so that

∑k
i=1 αipi,2 is a random vector in the intersection of the column spaces of H2

and
[
p1,2 p2,2 . . . pk,2

]
. In other words, we intend to align the local coding vector

on edge e in the space of H2.

From the above discussion, it is interesting to note that we naturally uncover interference alignment
in Case 2b as a technique that maximizes the expression of (4). In fact, we show later in Lemma

8



2 that, if

rank

([
H1 p1,1 p2,1 . . . pk,1
H2 p1,2 p2,2 . . . pk,2

])
+ rank

([
H2 p1,2 p2,2 . . . pk,2 G2

])
−rank

([
H2 p1,2 p1,2 . . . pk,2

])
> rank

([
H1

H2

])
+ rank

([
H2 G2

])
− rank (H2) (5)

then, our choice of α1, α2, . . . , αk increases (4) by 1 as compared with rank

([
H1

H2

])
+rank

([
H2 G2

])
−

rank (H2).

Wireline 

Network

H1X1 + H2X2

...

X1

pk,1X1 + pk,2X2
X2

p1,1X1 + p1,2X2

(α1p1,1 + α2p2,1 + . . . αkpk,1)X1

+ (α1p1,2 + α2p2,2 + . . . αkpk,2)X2

G2X2

e

v

Figure 4: A two-unicast-Z scenario depicted pictorially. The goal is to find scalars α1, . . . , αk to maximize (4).

Now consider the scenario of Fig. 4. In this scenario, the goal of maximizing the right hand side

of (2) is tantamount to choosing scalars α1, α2, . . . , αk to maximize rank
([

H2 G2
∑k

i=1 αipi,2

])
.

The scenario is similar to the single-unicast problem discussed earlier, and choosing the scalars αi
randomly, uniformly over the field of operation and independent of each other maximizes the sum-
rate. In fact, it is easy to see that this strategy improves the sum-rate by 1, if

rank

([
H1

H2

])
+ rank

([
H2 G2 p1,2 p2,2 . . . pk,2

])
− rank (H2) (6)

> rank

([
H1

H2

])
+ rank

([
H2 G2

])
− rank (H2) . (7)

Remark 1. Strictly speaking, the sum-rate of the two-unicast-Z network is equal to the minimum of

rank

([
H1

k∑
`=1

α`p`,1

])
+ rank(G2)

and the expression of (4). In this paper, for the sake of simplicity, we restrict our attention to maximizing the
expression of (4); our ideas and algorithms can be easily modified to maximize the smaller of

rank

([
H1

k∑
`=1

α`p`,1

])
+ rank(G2)

and (4).
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To summarize, we observe from (5) and (7) that an edge e can increase the right hand side of
(2) by 1 if, the parent edges of the edge e in combination to the other already existing edges in
the destination can increase the right hand side of (2) by at least 1. Furthermore, our strategy
to maximize the right hand side of (4) automatically uncovers the idea of alignment. Before
proceeding, we briefly explain how the problems of Fig. 3 and 4 can be composed naturally into a
recursive algorithm to design linear coding co-efficients for the entire network.

We represent the network as a directed acyclic graph G = (V, E), where V denotes the set of
vertices, and E denotes the set of edges. We begin with the last edge of the graph, that is the
edge e with the highest topological order in the graph. This edge e is incident on either the first
destination or the second destination. Given a coding solution for the graph G1 = (V, E − {e}),
we can design a linear coding solution based on the above approach. Therefore, we aim to design
a coding solution for the smaller graph G1. To do this, we add all the parent edges of e to the
corresponding destination. That is, if edge e is in destination 1, modify destination 1 in G1 to
include all the edges incoming on to the vertex v, where v is the vertex from which edge e emanates
(See Figs. 3). Similarly, if edge e is incident onto destination 2, we remove edge e to reduce the
problem to a smaller graph G1 and all the parent edges of e to destination 2 (See Fig. 4). Now,
our goal is to find a linear coding solution to the smaller problem G1. We proceed similarly by
identifying the last topologically ordered edge in G1 and removing it to obtain G2, and further
modifying the destinations. If we proceed similarly, removing one edge at a time from graph G, we
obtain a sequence of graphs G1,G2, . . . , to eventually obtain a graph GN where the destination edges
coincide with the source edges. Starting with a trivial coding solution for GN , we build a coding
solution for the sequence of graphs GN ,GN−1, . . . ,G1 and eventually obtain a coding solution for
graph G. Our approach is formally outlined in Section 4. Before we proceed, we note that in our
sequence of graphs obtained above, it can transpire that the last topologically ordered edge in one
of the graphs belongs to both destinations. We omit an explanation of this scenario here, since our
approach in handling this scenario is similar to the one depicted in Fig. 3.

3 System Model

Consider a directed acyclic graph (DAG) G = (V, E), where V denotes the set of vertices and E
denotes the set of edges. We allow multiple edges between vertices, hence, E ⊂ V × V × Z+, where
Z+ denotes the set of positive integers. For an edge e = (u, v, i) ∈ E , we denote Head(e) = v and
Tail(e) = u; in other words, when the direction of the edge is denoted by an arrow, the vertex at the
arrow head is the head vertex, and the vertex at the tail of the arrow is the tail vertex of the edge.
When there is only one edge between node u and node v, we simply denote the edge as (u, v). For
a given vertex v ∈ V, we denote In(v) = {e ∈ E : Head(e) = v} and Out(v) = {e ∈ E : Tail(e) = v}.

In this paper, we focus on the networks with one or more unicast sessions. We define each source
as a node in V, while each destination as a subset of edges in E . Subsequently, a single unicast
network problem Ω can be specified by a 3-tuple (G, s, T ), where G = (V, E) is the underlying graph,
s ∈ V is the source node and T ⊂ E is set of destination edges. Every node in the graph represents
an encoding node, and every edge in the graph represents an orthogonal, delay-free, link of unit
capacity.

In two-unicast-Z networks, we use the set S = {s1, s2}, where s1, s2 ∈ V, to denote set of two
sources. We use T = {T1, T2} to denote the set of two destinations, where T1 and T2 each is a
set of edges, i.e., Ti ⊂ E , i = 1, 2. To keep the scenario general, we allow an edge to belong both
destinations, i.e., T1 ∩ T2 need not be the null set. Furthermore, the head vertices for edges in
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the same destination may not have to be the same, i.e., for e1, e2 ∈ Ti, i = 1, 2 it is possible that
Head(e1) 6= Head(e2). Without loss of generality, we consider graphs where the edges with the
highest topological order belongs to T1 ∪ T2.

In the two-unicast-Z network, the sources s1 and s2 generate independent messages W1 and W2

respectively. The message W1 is available a priori to destination T2. The goal of the two-unicast-Z
network is to design encoding functions at every node in the network and decoding functions such
that W1 is recoverable from the symbols carried by the edges in T1, and W2 is recoverable from the
symbols carried by the edges in T2 and the side information W1. Without loss of generality, assume
that si communicates with at least one edge in Ti for i ∈ {1, 2}. Similar to the case of single unicast,
we can denote a two-unicast-Z network coding problem Ω using a 3-tuple, i.e. Ω = (G,S, T ), where
S = {s1, s2} , T = {T1, T2}.

A rate pair (R1, R2) is achievable if for every ε > 0, δ > 0, there exists a coding scheme which
encodes message Wi at a rate Ri − δi, for some 0 ≤ δi ≤ δ, such that the average decoding error
probability is smaller than ε. The capacity region is the closure of the set of all achievable rate
pairs.

Topological Order

Since the graphs considered in this paper are directed acyclic graphs, there exists a standard
topological order OrdV on the set of vertices V of the graph. The order OrdV satisfies the following
property: if there is an edge (u, v, i) ∈ E , then, OrdV(u) < OrdV(v). We define a partial order OrdE
on the set of edge E such that the order of an edge is equal to the order of the tail node of the
edge, i.e., OrdE(e) = OrdE(Tail(e)), e ∈ E . Note that all edges sharing the same tail node have the
same order. When there is no ambiguity, we omit the subscript in the ordering and simply denote
the ordering on the edges (or vertices) as Ord.

Linear Network Coding

In this paper, we consider scalar linear coding, where the encoded symbol along each edge is an
element of a finite field F. We use the algebraic framework of linear network coding of [2] to relate
the linear coding co-efficients at the vertices of the graph to the encoded symbols carried by the
edges. Specifically, we describe a linear coding solution for a network using a local coding matrix
F, whose i-th column corresponds to the edge with topological order i and stores the local coding
vector on the edge from the symbols carried by its parent edges. The linear transfer matrix of the
entire network therefore given by M = (I− F)−1 and the transfer matrices between sources and
destinations can be obtained as submatrices of the network transfer matrix M.

For i ∈ {1, 2}, we denote the symbols carried by the edges emanating from source i by the
1 × |Out(si)| vector Xi. Similarly, we denote the symbols carried by the edges in Ti to be the
1× |Ti| vector Yi. For a linear coding scheme, we write

Y1 = X1H1 + X2H2 (8)

Y2 = X1G1 + X2G2 , (9)

where Hi is the |Out(si)|×|T1| transfer matrix from Xi to Y1 and Gi is the |Out(si)|×|T2| transfer
matrix from Xi to Y2. Note that the matrices Hi and Gi are sub-matrices of the network transfer
matrix M by selecting the rows and columns corresponding to the specified source and destination
edges respectively.
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For the two-unicast-Z network, the rate pair (R1, R2) achieved by a linear coding scheme is
characterized by

R1 ≤ rank (H1) , R2 ≤ rank (G2) , (10)

R1 +R2 ≤ rank

([
H1

H2

])
+ rank

([
H2 G2

])
− rank (H2) . (11)

Note that the rate region does not depend on the matrix G1 since destination 2 cancels the effect
of X1G1 using its side information. The rate region can be derived as a simple corollary of the
result of [48], which obtains the capacity of a class of deterministic 2-user interference channels.
We refer the reader to [45] for a proof.

Notations

The cardinality of a set E is denoted by |E|. For sets A and B, A\B denotes the set of elements
in A but not in B. For a matrix A, colspan(A) denotes its column span and Ker(A) denotes the
nullspace of colspan(A). In a graph G = (V, E), For u, v ∈ V, u v indicates that u communicates
with v, i.e. there is a path from u to v on G. u 6 v means that u does not communicates with
v on G. For i, j ∈ E , i  j is equivalent to Out(i)  In(j). We denote sub-matrices of the local
and global coding matrices by super-scripts. Specifically, for two edge sets E1, E2 ⊂ E , the matrices
FE1,E2 and ME1,E2 respectively represent |E1| × |E2| dimensional sub-matrices of F and M derived
from the rows corresponding to E1 and columns corresponding to E2. For example, we can write
H1 = MOut(s1),T1 .

In the context of the two-unicast-Z networks, a GNS-cut set as defined in [26] is a set Q ∈ E ,
such that Q is

1. a s1 − T1 cut-set, and,

2. a s2 − T2 cut-set, and,

3. a s2 − T1 cut-set.

The GNS-cut set bound of a two-unicast-Z network is defined to be the cardinality of the smallest
GNS set in the network. It is shown in [26] that the GNS-cut set bound is an information theoretic
upper bound on the sum-rate achievable in the network.

4 Recursive, alignment-based, linear network coding algorithm

In this section, we present a scalar linear network code construction for the two-unicast-Z network
problem. The algorithm consists of two sub-routines, the destination reduction algorithm which
is described in Section 4.2, and the recursive code construction which is described in Section 4.3.
When both of them are run, the recursive coding routine returns the coding matrix F. The rate
achieved can be obtained via (10),(11). The sub-routines are pictorially depicted in Fig. 6 for
the network in Fig. 5. Before we describe these sub-routines, we begin with some preliminary
definitions and lemmas that will be useful in the algorithm description.
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4.1 Preliminaries

Definition 1 (Grank). Given matrices H1,H2,G2 of dimensions P1×Q1, P2×Q1 and P2×Q2 respectively,
where P1, P2, Q1, Q2 are positive integers, the Grank is defined as

Grank(H1,H2,G2) = rank
([

H1

H2

])
+ rank

([
H2 G2

])
− rank (H2) .

Note that the Grank is related to the sum-rate of the two-unicast-Z network where H1,H2 and
G2 respectively represent the transfer matrices between source 1 and destination 1, source 2 and
destination 1, and source 2 and destination 2.

Remark 2. We can show that

Grank(H1,H2,G2) = min
G1∈FP1×Q2

rank
[
H1 G1

H2 G2

]
.

Our use of the term “Grank” is inspired by the above observation which indicates the quantity of interest
is closely related to the rank of an appropriate matrix.

Remark 3. We have shown in [45], that, if H1,H2 and G2 respectively represent the transfer matri-
ces between source 1 and destination 1, source 2 and destination 1, and source 2 and destination 2, then
Grank(H1,H2,G2) is upper bounded by minimum generalized network sharing cut value of the network.

We state some useful properties of the Grank next.

Lemma 1. Let H1,H2,G2,A,B and C be matrices with entries from a finite field F, respectively having di-
mensionsP1×Q1, P2×Q1, P2×Q2, P1×M,P2×M andP2×N , for positive integersP1, P2, Q1, Q2,M,N .
Then the following properties hold.

(i) Concatenation of columns to matrices does not reduce Grank.

Grank ([ H1 A ], [ H2 B ], [ G2 C ]) ≥ Grank(H1,H2,G2).

(ii) Concatenating M column increases the Grank by at most M .

Grank([H1 A], [H2 B],G2) ≤ Grank(H1,H2,G2) +M

Grank(H1,H2, [G2 C]) ≤ Grank(H1,H2,G2) +N.

(iii) Concatenation of linearly dependent columns does not change the Grank. Suppose that

colspan
[
A
B

]
⊆ colspan

[
H1

H2

]
.

colspan
[
C
]
⊆ colspan

[
G
]
,

then
Grank ([ H1 A ], [ H2 B ], [ G2 C ]) = Grank(H1,H2,G2).
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Statement (i) follows from submodularity of the rank function. Statements (ii) and (iii) follow
from elementary properties of the rank of a matrix and the definition of the Grank. We omit a
proof of the lemma here.

Next, we state a lemma that will be useful later on in generating our linear coding solutions.

Lemma 2. Let H1,H2,G2,A,B be matrices with entries from a finite field F, respectively having of
dimensions P1 ×Q1, P2 ×Q1, P2 ×Q2, P1 ×M and P2 ×M . Suppose that

Grank([H1 A], [H2 B],G2) > Grank(H1,H2,G2)

Then, there exists a M × 1 column vector f such that

Grank([H1 Af ], [H2 Bf ],G2) = Grank(H1,H2,G2) + 1 (12)

Furthermore, if

(i) colspan(B) ⊂ colspan([H2 G2])

(ii) colspan(B) 6⊂ colspan(H2),

then, choosing a vector v randomly from the null space of the column space of [H2 B] and setting f to be
the last M entries of v satisfies (12) with a probability that approaches 1 as the field size |F| increases. In
this case, the vector f satisfies the following property: Bf ∈ colspan(H2). If (i) or (ii) are not satisfied,
then picking the entries of f randomly and uniformly over the field satisfies (12) with a probability that
approaches 1 as the field size increases.

Since adding a single column can increase the Grank by at most 1, the vector f that satisfies
(12) maximizes the Grank([H1 Af ], [H2 Bf ],G2). The vector f will be useful in obtaining the
code construction in the recursive coding routine. The approach of choosing f randomly to satisfy
(12) follows the spirit of random linear network coding [8].

4.2 Destination reduction

The destination reduction algorithm takes the original problem Ω = (G,S, T ) and generates a
sequence of N + 1 ordered two-unicast-Z network problems, for some N ∈ Z+, starting with the
original problem itself. We denote the sequence of problems as P =

(
Ω(0),Ω(1),Ω(2), . . . ,Ω(N)

)
,

where Ω(0) = Ω and Ω(i) = (G,S, T (i)) with T (i) =
{
T

(i)
1 , T

(i)
2

}
being the destination sets for the

problem number i. In particular, all the problems have the same underlying graph G and source
set S, but different destination sets, i.e., T (i) 6= T (j), i 6= j. The algorithm is formally described
in Algorithm 1, in which the key procedure is to sequentially generate Ω(i+1) from the previous
problem Ω(i). We describe the process informally here.

Recall that in a directed acyclic graph, there is a total ordering Ord on the vertices of the
graph. Also recall that Ord induces a partial ordering on the edges, where the set of edges of the
same topological order share a common tail node. In brief, the destination reduction algorithm
obtains problem Ω(i+1) from Ω(i) as follows. We find all the highest topologically ordered edges in
the union of the two destination sets. In each destination set, if it contains any of these edges, we
replace them with their immediate parent edges. Specifically, given Ω(i) = (G,S, T (i)), let E
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Algorithm 1 Destination reduction algorithm

1: procedure REDUCTION(Ω(0))
2: P← ()
3: add Ω(0) to P
4: i← 0
5: S ← {e : Tail(e) ∈ S}
6: while T (i)

1 ∪ T
(i)
2 6⊆ S do

7: E ←
{
e : arg max

e∈T (i)
1 ∪T

(i)
2

Ord(e)
}

8: Ej ← E ∩ T (i)
j , j = 1, 2

9: v ← Tail(E)
10: for j ← 1, 2 do
11: if Ej 6= ∅ then
12: T

(i+1)
j ←

(
T

(i)
j \Ej

)
∪ In(v)

13: else
14: T

(i+1)
j ← T

(i)
j

15: end if
16: end for
17: T (i+1) ←

{
T

(i+1)
1 , T

(i+1)
2

}
18: Ω(i+1) ← (G,S, T (i+1))
19: add Ω(i+1) into P
20: i← i+ 1
21: end while
22: return P
23: end procedure

denote the set of edges in T
(i)
1 ∪ T

(i)
2 with the highest topological order. In other words, all edges

in E ⊂ T
(i)
1 ∪ T (i)

2 have the same topological order, and a strictly higher topological order with

respect to every edge in T
(i)
1 ∪ T (i)

2 \E. For j ∈ {1, 2}, let Ej = T
(i)
j ∩ E. For each destination

j ∈ {1, 2}, if T
(i)
j does not contain any highest topological ordered edge, i.e., if Ej = ∅, then the

destination set remains unchanged in Ω(i+1), i.e., T
(i+1)
j = T

(i)
j . Otherwise, all edges in Ej are

removed in T
(i)
j and replaced by In(v) to produce the new destination set T

(i+1)
j in T (i+1), that is,

T
(i+1)
j = (T

(i)
j \Ej) ∪ In(v).

Before proceeding to describing our coding scheme, we list some useful and instructive properties
of the destination reduction algorithm; these properties can be easily checked for the example in
Fig. 6.

Property (i) The set of edges T
(i)
j \T

(i+1)
j has a common tail node v, which also forms the com-

mon head node of all the edges in T
(i+1)
j \T (i)

j . Furthermore, there are only two

possibilities: T
(i+1)
j \T (i)

j is empty or T
(i+1)
j \T (i)

j = In(v).

Property (ii) An edge in the graph which communicates to at least one edge in T1 appears in T
(i)
1
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Figure 5: An example network used to demonstrate our algorithm operation

s1

s2 v2

v3 v4

v5 t1

t2e1

e2

e3

e4

e5

e6

e7

e8

X1

X2
q2X2

p2X2

p3p2X2 + q3X1 p4(p3p2X2 + q3X1)

q4(p3p2X2 + q3X1)

p5(q2(q4(p3p2X2 + q3X1))� q4p3p2q2X2)

= p5p1q3X1

i = 0 i = 1 i = 2 i = 3 i = 4

Destination T (i)
1 e8 e4, e6 e4, e5 e1, e3, e4 e1, e2

Destination T (i)
2 e7 e7 e5 e1, e3 e1, e2

Figure 6: The destination and recursive coding algorithms shown for the network of Fig. 5. The scalars
p2, q2, p3, p4, q4, p5 are chosen randomly and independently of each other. Note that the recursive coding
algorithm operating at Stage 0 performs alignment step at vertex v5.

for some value i ∈ {0, 1, 2, . . . , N}. An edge which communicates to at least one edge

in T2 appears in T
(i)
2 for some value of i. Consider an edge e which communicates to

at least one edge in T1 and at least one edge in T2. Let k1 denote the largest number

such that the edge e belongs to T
(k1)
1 . Let k2 denote the largest number such that

the edge e belongs to T
(k2)
2 . Then k1 = k2.

Property (iii) Consider a two-unicast-Z problem Ω, where every edge in the graph is connected to
at least one of the destinations, that is, there is a path from every edge to at least
one edge in T1 ∪ T2. Then, the set of all edges have a lower topological order with

respect to
(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
in G is equal to⋃

i+1≤k≤N
T

(k)
1 ∪ T (k)

2 .

Property (iv) In the Ω(N), the destination edges are collocated with the source edges. That is

T
(N)
1 ∪T (N)

2 ⊆ S1 ∪S2. Furthermore, if every edge emanating from the source nodes

communicates with at least one of the destination nodes, then T
(N)
1 ∪T (N)

2 = S1∪S2.

16



Property (v) For all i, 0 ≤ i ≤ N and j = 1, 2, the destination set T
(i)
j forms a cut set between

both sources s1, s2 and the destination set Tj for the original problem Ω.

Properties (i) and (iv) can be verified by examining the algorithm. We prove Properties (ii), (iii)
and (v) in Appendix A. It is instructive to note that Properties (ii) and (iii) imply that the collection
of sets {(

T
(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
: i = 0, 1, 2, . . . , N

}
forms a partition of the set of edges of the graph. Furthermore, this partition is the same as the
partition implied by the topological ordering on the edges, i.e., all edges of the same topological
order belong to one unique member of this partition. As we observe next in our description of the
recursive coding algorithm, the recursion at depth j designs the local coding co-efficients for the
edges in the jth member of this partition.

4.3 Recursive coding construction

We describe the recursive coding algorithm formally in Algorithm 2. We present an informal
description here. Without loss of generality, we only consider networks where every source edge
communicates with at least one edge in T1 ∪T2. The first step of the recursive coding construction
begins with a trivial coding scheme for Ω(N). In particular, note that Property (iv) states that

T
(N)
1 ∪ T (N)

2 is equal to S1 ∪ S2. We set the local coding vector for an edge in T
(N)
1 ∪ T (N)

2 to
be the vector with co-efficient 1 corresponding to the edge and 0 elsewhere. We assume that the

local coding vectors for all the edges outside of T
(N)
1 ∪ T (N)

2 to be indeterminate at this point; the
local coding co-efficients for these edges will be determined using the recursive coding algorithm.
Each step of the recursion is referred to as a stage. The recursive algorithm has N stages, where at
stage i, the algorithm generates the code for Ω(i) using the coding scheme for the previous stage for
Ω(i+1). In particular, the recursive coding algorithm accomplishes the following: Given a linear
coding scheme for the (i+ 1)th stage, that is, for Ω(i+1), the algorithm at the ith stage constructs
a linear coding scheme for Ω(i). Starting with the trivial coding scheme for Ω(N), our algorithm
recursively constructs coding schemes for the problems Ω(N−1),Ω(N−2), . . . ,Ω(1), which eventually
leads to a coding scheme for the original problem Ω = Ω(0). Next we focus on the coding algorithm
at stage i assuming a linear coding scheme for Ω(i+1) is given in the previous stage.

A solution to the problem Ω(i+1) will describe local coding co-efficients for all the edges in⋃
i+1≤k≤N T

(i+1)
1 ∪ T (i+1)

2 , and leave the co-efficients for the remaining edges to be indeterminate.

Given a linear coding solution for the problem Ω(i+1), the coding solution for the problem Ω(i)

inherits the linear coding co-efficients from the solution to Ω(i+1) for all edges in
⋃
i+1≤k≤N T

(i+1)
1 ∪

T
(i+1)
2 . To complete the description for a solution to Ω(i), the algorithm specifies the local coding

co-efficients for edges in
(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
. Because of Properties (ii) and (iii) of

the destination reduction algorithm, we note that specifying local coding co-efficients for edge in(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
suffices to specify the global coding-coefficients for these edges as

well, since all the edges of which have a lower topological order with respect to this set have been
assigned coding co-efficients in the solution to Ω(i+1).

We use the following notation in our description. For j = 1, 2, let

U
(i)
j = T

(i)
j ∩ T

(i+1)
j , I

(i)
j = T

(i+1)
j \U (i)

j , O
(i)
j = T

(i)
j \U

(i)
j . (13)
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Recall from Property (i) that all the edges in T
(i)
j \T

(i+1)
j have a common tail node v, which

is also the head of all the edges in T
(i+1)
j \T (i)

j . The set I
(i)
j is therefore contained in the set of

incoming edges on to this node v. The set O
(i)
j is contained in the outgoing edges from v. Based

on Property (i), we observe that if I
(i)
1 6= φ, I

(i)
2 6= φ, then I

(i)
1 = I

(i)
2 = In(v). The set U

(i)
j is the set

of unchanged destination edges between T
(i+1)
j and T

(i)
j . We divide O

(i)
2 into two disjoint subsets,

A
(i)
2 and B

(i)
2 , such that O

(i)
2 = A

(i)
2 ∪B

(i)
2 , where

A
(i)
2 = O

(i)
2 ∩O

(i)
1 , B

(i)
2 = O

(i)
2 \O

(i)
1 . (14)

Note that Property (ii) implies that B
(i)
2 contains edges that communicate with at least one edge

in T2 but not T1. Similarly, A
(i)
2 contains edges that communicate with at least one edge T1 and at

least one edge in T2. It is useful to note that A
(i)
2 6= φ ⇒ I

(i)
1 6= φ, I2 6= φ ⇒ I

(i)
1 = I

(i)
2 . Since B

(i)
2

and O
(i)
1 form a partition of the set

(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
, we specify local linear coding

co-efficients for B
(i)
2 and O

(i)
1 in the recursive coding algorithm.

Henceforth we will use the following notation. For any set of edges P ⊆ T
(i)
1 , i ∈ {1, 2, },

the transfer matrix between source i and P is denoted as HP
i . For any set of edges Q ⊆ T

(i)
2 ,i ∈

{1, 2}, the transfer matrix between source i and Q is denoted as GQ
i . Furthormore, for the sake

of consistency, we will assume that the columns of HP
i ,G

Q
i are ordered based on the topological

orderings of the edges in P and Q. Note that with our notation, H
T

(i)
1 ∩T

(i)
2

2 = G
T

(i)
1 ∩T

(i)
2

2 . With

this notation, the local coding vectors at node v generate H
O

(i)
1

j from H
I
(i)
1
j , and G

A
(i)
2

j and G
B

(i)
2

j

from G
I
(i)
2
j , for j = 1, 2. Therefore, the goal of the recursive coding algorithm is to design local

coding matrices FI
(i)
1 ,O

(i)
1 ,FI

(i)
2 ,B

(i)
2 at vertex v, with dimensions |In(v)| × |O(i)

1 |, and |In(v)| × |B(i)
2 |

respectively. The global coding co-efficients will be determined as, for j ∈ {1, 2},

H
O

(i)
1

j = H
I
(i)
1
j FI

(i)
1 ,O

(i)
1 ,G

A
(i)
2

j = G
I
(i)
2
j FI

(i)
2 ,A

(i)
2 ,G

B
(i)
2

j = G
I
(i)
2
j FI

(i)
2 ,B

(i)
2 (15)

where note that, if A
(i)
2 is non-empty, then FI

(i)
2 ,A

(i)
2 is a sub-matrix of FI

(i)
1 ,O

(i)
1 . This is because

A
(i)
2 ⊆ O

(i)
1 and, if A

(i)
2 is non-empty, I

(i)
1 = I

(i)
2 .

Informal Description of the Recursive Coding Algorithm: A formal description is de-
scribed by Algorithm 2. Here, we present an informal description of the recursive coding algorithm
for the ith stage, assuming that stage i+1 is complete. As previously stated, our goal is to generate

FI
(i)
1 ,O

(i)
1 ,FI

(i)
2 ,B

(i)
2 in (15). We do this in two phases, in the first phase, we find FI

(i)
2 ,B

(i)
2 and in the

second phase, we determine FI
(i)
1 ,O

(i)
1 . Our strategy is based on the idea of designing the coding

co-efficients so that the Grank is maximized at each stage.

4.3.1 Phase 1

If B
(i)
2 = ∅, proceed to the next phase. Otherwise, select each entry of the matrix FI

(i)
2 ,B

(i)
2

uniformly at random from the underlying finite field F. We note that, over a sufficiently large field,
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Algorithm 2 Recursive Coding Algorithm
1: procedure RECURSIVE CODING(P,F) . F represents the field over which the coding is performed
2: Denote P by (Ω(i),Ω(i+1), . . . ,Ω(N)).
3: Denote Ω(i) = (G,S, {T (i)

1 , T
(i)
2 }) and use the notation (13),(14).

4: Denote E(k) = ∪Nj=kT
(j)
1 ∪ T (j)

2 for k ∈ {i, i+ 1, . . . , N − 1}
5:

6: if length(P) = 1 then return I|E(N)|
7: end if
8: F = 0|E(i)|×|E(i)|

9: FE
(i+1),E(i+1)

= RECURSIVE CODING((Ω(i+1), . . . ,Ω(N))) . The recursion

10: . In the next few steps, we will describe coding co-efficients FI
(i)
j ,O

(i)
j , j ∈ {1, 2}

11:

12: if B(i)
2 6= ∅ then . Phase 1

13: FI
(i)
2 ,B

(i)
2 ← Uniformly random from the field F

14: end if
15: O = A = φ . Temporary variables (sets) used in the for loop next
16:

17: for e ∈ O(i)
1 do . Phase 2: Encoding the edges in O(i)

1 one edge at a time.
18: O = O ∪ e,A = O ∩A(i)

2 . O and A respectively represent the subsets of O(i)
1 and A(i)

2 . In the
next few steps, we will find the coding co-efficients for the edges in O,A

19:

20: if Grank
(

H
T

(i+1)
1

1 ,H
T

(i+1)
1

2 ,G
T

(i+1)
2

2

)
> Grank

([
H
U

(i)
1

1 HO
1

]
,

[
H
U

(i)
1

2 HO
2

]
,

[
G
U

(i)
2

2 GA
2 G

B
(i)
2

2

])
21:

& colspan
(

H
I
(i)
1

2

)
6⊂ colspan

([
H
U

(i)
1
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2

])
& colspan

(
H
I
(i)
1

2

)
⊂ colspan

([
H
U

(i)
1

2 HO
2 G

U
(i)
2

2 GA
2 G

B
(i)
2

2

])
.

then . Alignment Step

22: v← Random vector in ker(HT
(i+1)
1

2 )

23: FI
(i)
1 ,{e} ← Last |I(i)

1 |rows of v
24: else
25: FI

(i)
1 ,{e} ← Uniformly at random from the field F . Randomization Step

26: end if
27: end for
28:

29: return F
30: end procedure

19



our choice of FI
(i)
2 ,B

(i)
2 maximizes

Grank

(
H
T

(i+1)
1

1 ,H
T

(i+1)
1

2 ,

[
G2 G

I
(i)
2

2 FI
(i)
2 ,B

(i)
2

])
with high probability. This is because choosing the entries of FI

(i)
2 ,B

(i)
2 uniformly at random maxi-

mizes, the rank of

[
H
T

(i+1)
1

2 G2 G
I
(i)
2

2 FI
(i),B

(i)
2

2

]
with a probability that tends to 1 as |F| increases.

After phase 1, we have found coding vectors for edges B
(i)
2 .

4.3.2 Phase 2

Let O
(i)
1 = {ei,1, ei,2, . . . , ei,m}, where m = |O(i)

1 |. We design the coding co-efficients for the m edges

in O
(i)
1 one-by-one, with the co-efficients designed to maximize the Grank at each step. Our choice

of coding co-efficients is motivated by Lemma 2. In particular, the second phase is divided into q
steps, where in the jth step, we design the coding co-efficients for edge ei,j . Each step is classified
as a alignment step or a randomization step as follows.

Let O
(i)
1,0 = ∅ and O

(i)
1,j = {ei,1, . . . , ei,j} be the subset of the first j elements of O

(i)
1 for 1 ≤ j ≤ m.

Let A
(i)
2,j = A

(i)
2

⋂
O

(i)
1,j .

Case I (Alignment): The following conditions are satisfied.

Grank

(
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T
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)
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(16)
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(i)
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2

])
. (18)

In this case, we choose a vector v randomly in the nullspace of the column space spanned by H
T

(i+1)
1

2

and choose the column vector FI
(i)
1 ,{eij} to be the last |I(i)

1 | rows of column vector v. Note that the

sets O
(i)
1,j , A

(i)
2 are denoted by temporary variables O,A in Algorithm 2.

Case II (Randomization): Otherwise, that is, at least one of the conditions (16),(17),(18)

is violated. In this case, we select the vector FI
(i)
1 ,{eij} by choosing each of its entries uniformly at

random from F.
If (16)-(18) are satisfied, then we refer to our coding step as the alignment step. If at least one

of (16)-(18) is violated, we refer to the coding step as a randomization step. After the q steps of
Phase 2, the coding co-efficients for ⋃

i≤k≤N
T

(i+1)
1 ∪ T (i+1)

2 ,

are determined. This completes the description of the recursive coding algorithm. Before proceed-
ing, we discuss some properties of our algorithm.
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Discussion

We note that if (16) is satisfied, then, for a sufficiently large field size, we can show using Lemma
2 that
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with a probability that approaches 1 if the size of the field F grows arbitrarily. We show this below
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where (a) follows from Statement (iii) of Lemma 1, (b) follows from (16) and (c) follows from
Lemma 2.

It is also instructive to note that, if p > q,

Grank(H
T

(p)
1

1 ,H
T

(p)
1

2 ,G
T

(p)
2

2 ) ≥ Grank(H
T

(q)
1

1 ,H
T

(q)
1

2 ,G
T

(q)
2

2 ).

That is, the Grank of a stage q is no smaller than stage p which is downstream with respect to a
stage q.

We note that our algorithm performs better than optimal routing (multi-commodity flow) for
certain networks, for e.g., Fig. 5. On the other hand, for certain networks our simulations have
revealed that routing outperforms our algorithm.

Complexity

First consider the destination reduction algorithm. Since each iteration corresponds to one vertex,
i.e., the common tail node of the last topologically ordered edges, the algorithm terminates in
O(|V|) steps.
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Now consider the recursive coding algorithm. The algorithm traverses through all the inter-
mediate nodes in their topological order and performs either random coding or alignment step for
outgoing edges. At each node v, the complexity of the coding operations is dominated by the
complexity of the alignment step, if it is performed, which is bounded by O(d3), where d is the
in-degree of node v. Therefore, we have the following property for the recursive coding algorithm.

Lemma 3. For the class of directed acyclic graphs with in-degree bounded by D, the complexity of the
recursive coding algorithm is O(|V|D3).

5 Alternative proof of the max-flow min-cut theorem

In this section, we give an alternate proof of the max-flow min-cut theorem. The intuition of our
proof is provided in Section 2. Our proof is based on induction on the number of edges of the
graph. We begin with some notation that we will use in this section.

We denote the single unicast network graph as Gn = (Vn, En) with n edges the subscript n is
a notation that is useful in our proof. As per the notation introduced in Section 3, we denote
the unicast problem as Ωn = (Gn, s, Tn), where s ∈ Vn is the source and Tn ⊂ En is the set of
destination edges. A linear coding solution for Ωn can be described by the local coding matrix
Fn, which results in a linear network transfer Mn = (In − Fn)−1. The source to destination linear
transfer matrix Hn can be obtained as the submatrix of Mn, whose rows correspond to the source
edges and whose columns correspond to the destination edges. Mathematically, it can be done by
multiplying Mn with with an incident matrix An of size S × n and then an exit matrix Bn of size
D×n, where S is out-degree of the source node and D is the cardinality of the destination edge set.
Each row of An is a length n unit vector indicating the corresponding source edge coming out of the
source. Likewise, each row Bn is a length n unit vector indicating the index of the corresponding
destination edge5. To the end, the (s − Tn) source to destination linear transfer matrix is given
by Hn = An (In − Fn)−1 BT

n . Our goal is to show that the rank of Hn can be made equal to the
min-cut between the source and the destination by choosing Fn appropriately. We use the following
notation for the min-cut: for any problem Ω = (G, s, T ), we denote the min-cut between the source
node s and the destination edges T as cG(s, T ).

Without loss of generality, we assume An · Bn = 0, that is, the source node s is not a tail
node of any destination edges in T in the graph Gn. If there is any destination edge that is coming
directly from the source node, then this edge can be removed; it suffices to show the max-flow
min-cut theorem can be proved on the remaining graph. Next we introduce a few definitions and
lemmas which will be useful in our proof.

5.1 Preliminary Lemmas

Definition 2 (Atomic matrix). An atomic matrix of size n × n is an upper-triangular matrix, where all the
off-diagonal elements are zero, except those elements in a single column. Given an upper-triangular matrix
U, the i-th atomic matrix of U, denoted as U[i], is the atomic matrix formed by setting all the off-diagonal
elements of U to zero, except those in column i.

5Note the difference the incident/exit matrices and the input/output matrices A and B defined in [2]. The latter are not restricted
to unit vector in rows and encompass the encoding and decoding operations at the source and receiver respectively. Here, we focus
on the transfer matrix observed for the network. Hence, we are concerned with only incident and exit matrices.
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A standard property in matrix algebra captures the relation between an upper-triangular matrix
and its atomic matrices.

Lemma 4 (Atomic decomposition). An n × n triangular matrix U with all one diagonal elements can be
written as the product of its atomic matrices in the reverse index order, i.e. U = U[n] ·U[n−1] · · ·U[1].

Since the local coding matrix Fn is an n × n strict upper-triangular matrix, the quantity
(In − Fn) is also an upper-triangular matrix but with all diagonal elements begin equal to 1. We

are interested in decomposing the inverse of atomic matrix (In − Fn)[i] in order to understand the
linear network transfer matrix. For that, we start with the following property.

Property 1. (
(In − Fn)[i]

)−1
= (In + Fn)[i] . (19)

For simplicity, we denote En = (In + Fn) and define i-th atomic matrix E
[i]
n to be the i-th edge

coding matrix. Note that the i-th column entries of E
[i]
n above the diagonal represent exactly the

local coding vector of the i-th edge of the network. With property (19), we note the following.

Lemma 5 (Network transfer matrix decomposition). The network transfer matrix (In − Fn)−1 can be
decomposed into the product of its edge matrices in the forward topological order, i.e. (In − Fn)−1 =∏n
i=1 E

[i]
n

The proof is simple and omitted. The above lemma is interesting because it decomposes the
network transfer matrix into the local coding based into a prodoct of n matrices, where each matrix
in the product captures the influence of the local coding vector corresponding to a single edge. The
edge reduction lemma of [45] can be shown simply using the above decomposition. We now proceed
to a proof of the max flow min-cut theorem.

5.2 The proof

Now we are ready to prove the max flow min cut theorem. It is sufficient to show the linear
achievability of a flow that equals to the min cut. That is equivalent to the following proposition.

Proposition 1 (Achievability of Min-Cut). For all k ∈ Z+, given an arbitrary directed acyclic graph
Gk = (V, E) with k edges, and a unicast problem Ωk = (Gk, s, T ), there exists a k × k local coding matrix
Fk, such that the rank of the transfer matrix from s to T equals to the min cut between s and T , i.e.

rank (H) = rank
(
A (Ik − Fk)

−1 BT
)

= cGk(s, T ) . (20)

Note that this is equivalent of showing that there exists an edge coding matrices E
[i]
k for the

i-th edge, such that

rank (H) = rank
(
A
(
Ik − F−1

k

)
BT
)

= rank

(
A ·

n∏
i=1

E
[i]
k ·BT

)
= cGk(s, T ) . (21)

We prove Proposition 1 using mathematical induction on k ∈ Z+. When k = 1, the claim is
trivially true. For the inductive step, we start with the following inductive assumption and claim
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Assumption 1 (Inductive assumption). Proposition 1 holds for all k such that 1 ≤ k ≤ n− 1.

Using the above assumption, we prove Proposition 1 for the case where k = n, for an arbitrary,
unicast problem Ωn. It will be convenient to denote En = E , Tn = T,Hn = H,An = A,Bn = B.
Let en be an edge with the highest topological order in graph Gn. Let Gn−1 = (V, E − {en}). In
the problem Ωn, if en is not a destination edge, i.e. en 6∈ Tn, then en does not communicates
with any destination edges, i.e. en 6 e, ∀e ∈ T , since en has the highest topological order
in Gn. Consequently, erasing en do not affect the capacity and the min cut from s to Tn, i.e.
cGn(s, Tn) = cGn−1(s, Tn).

Next we focus on the case when en ∈ Tn. Note that en is not emitted directly from the source
node s and is a destination edge. As a result, we can decompose the incident and exit matrices as
follows,

An =
[
An−1 0

]
, Bn =

[
B∗n−1 0

0 1

]
, (22)

where An−1 is the incident matrix from the source to subgraph Gn−1, while B∗n−1 is the exit matrix
from Gn−1 to the first D−1 destination edges. The zero column following An−1 indicates that en is
not emitted from the source node, whereas the unit vector in the last column of Bn indicates that
en is a destination edge. Subsequently, consider the decomposition of the s−Tn transfer matrix on
Gn. In the following sequence of equations, we use the notation en to denote the first n− 1 entries
of the nth column of matrix Fn; note that the last entry of the nth column is 0. We can write the
transfer matrix as,

Hn = An (In − Fn)−1 BT
n = An ·

n∏
i=1

E[i]
n ·BT

n

=
[
An−1 0

]
·
n∏
i=1

E
[i]
i ·
[
B∗n−1 0

0 1

]T
(23)

=
[
An−1 0

]
·
(
n−1∏
i=1

E[i]
n

)
·E[n]

n ·
[
B∗n−1 0

0 1

]T
(a)
=
[
An−1 0

]
·
[

(In−1 − Fn−1)−1 0

0 1

]
·E[n]

n ·
[
B∗n−1 0

0 1

]T
(b)
=
[
An−1 0

]
·
[

(In−1 − Fn−1)−1 0

0 1

]
·
[

In−1 en
0 1

]
·
[
B∗n−1 0

0 1

]T
=
[
An−1 (In−1 − Fn−1)−1 0

] [B∗Tn−1 en
0 1

]
= An−1 (In−1 − Fn−1)−1

[
B∗

T

n−1 en

]
. (24)

In this process, for step (a), we apply Lemma 5 on the product of first n− 1 to obtain the network
transfer matrix of the subgraph Gn−1, while in (b) we simply write out the matrix En explicitly
using the local coding vector en on the edge en and idenity matrix of (n − 1) × (n − 1). To the
end, we decompose the source-destination transfer matrix into two parts that can be intuitively
understood. The first part, Hn−1 = An (In−1 − Fn−1)−1 B∗

T

n−1 is simply the source to destination
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transfer matrix of the subgraph Gn−1. The second part is the contribution of the last topologically
ordered edge en. Therefore,

Hn =
[
Hn−1 An−1 (In−1 − Fn−1)−1 en

]
. (25)

Now consider the last edge en. If it is not a part of any s − Tn min cut on graph Gn, then
removal of en does not affect the min cut of the graph, i.e. cGn−1(s, t) = cGn(s, t). In this case,
leveraging the inductive assumption on the subgraph Gn−1, we claim that there exists local coding
matrix F∗n−1 for the graph Gn−1 such that,

rank (Hn−1) = rank
(
An−1 (In−1 − Fn−1)−1 B∗

T

n−1

)
= cGn−1(s, t) = cGn(s, t) . (26)

To put it simply, when en is not a part of any min cut set, we can ignore the this edge and achieve
a flow equal to the min cut, using only the remaining subgraph Gn−1. To do this, we can simply
choose the existing local coding matrix F∗n−1 which satisfies (26) and set the local coding vector at
en to be zero, i.e. en = 0. Doing this eliminates the last column in (25) and guarantees that

rank (Hn) = rank (Hn−1) = cGn−1(s, Tn) = cGn(s, Tn) (27)

It remains to prove the claim in the case when en belongs to some min-cut set for the graph
Gn. Let v = Tail(en) be the tail node of theg edge en. We examine two unicast problems on Gn−1,
Ωn−1 = (Gn−1, s, Tn−1) and Ω∗n−1 =

(
Gn−1, s, T

∗
n−1

)
, where Tn−1 and T ∗n−1 are given by,

Tn−1 = Tn\{en} ∪ In(v) , T ∗n−1 = Tn\{en} (28)

Note that both Ωn−1 and Ω∗n−1 are unicast problems whose underlying graph has exactly n− 1
edges. For the source-destination min cuts, we have the following lemma.

Lemma 6. When en is a edge in some min cut between s and Tn on Gn, the min cut values on Gn and Gn−1

satisfy the following

cGn−1(s, Tn−1) ≥ cGn(s, Tn) (29)

cGn−1(s, T ∗n−1) = cGn(s, Tn)− 1 (30)

The proof follows from elementary graph theoretic arguments and is omitted. It is straightfor-
ward to see that the s− Tn−1 transfer matrix for Ω∗n−1 is exactly given by Hn−1, which is the first
part of the matrix Hn. For Ωn−1, the destination edge set is formed by replacing en with its parens
edges, i.e. incoming edges to v. Let these edge be ei1 , . . . , eih , where i1, . . . , ih are the edge indices,
the exit matrix of Ωn−1 is given by

BT
n−1 =

[
B∗

T

n−1 ui1 . . . uih

]
, (31)

where uij , 1 ≤ j ≤ h is a length n unit vector with 1 at position ij and zero elsewhere. Hence, the
transfer matrix for Ωn−1 is,

Hn−1 = An−1 (In−1 − Fn−1)−1 BT
n−1

=
[
HT
n−1 An−1 (In−1 − Fn−1)−1 [ui1 . . . uih

]]
.
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Next, we invoke the inductive assumptions on the problems Ωn−1 and Ω∗n−1. We can conclude
that, there exists a local coding matrix Fn−1 for Ωn−1 and a local coding matrix F∗n−1 for Ω∗n−1,
such that,

rank (Hn−1) = rank
(
An−1 (In−1 − Fn−1)−1 BT

n−1

)
= cGn−1(s, Tn−1) ≥ cGn(s, Tn) (32)

rank
(
H∗n−1

)
= rank

(
An−1

(
In−1 − F∗n−1

)−1
B∗

T

n−1

)
= cGn−1(s, T ∗n−1) = cGn(s, Tn)− 1 (33)

Finally, the following lemma helps us to find the local coding matrix for the original graph Gn
Lemma 7. Given a local coding matrix Fn−1 that satisfying (32) and a local coding matrix F∗n−1 satisfy-
ing (33), for a sufficiently large field F, there exists p, q ∈ F and a local coding vector en such that

rank
(
An−1

(
In−1 −

(
pFn−1 + qF∗n−1

))−1
[
B∗

T

n−1 en

])
= cGn(s, Tn) (34)

The proof follows from the spirit of the algebraic framework of network coding introduced in [2]
and is presented in Appendix B. Therefore, from the two local coding matrices Fn and F∗n−1, we
can choose the local coding vectors for the last k edges randomly, and construct the local coding
matrix Fn for Gn as follows,

Fn =

[
pFn−1 + qF∗n−1 en

0 0

]
(35)

The new local coding matrix Fn will satisfy the original claim in (20) which provides an achievable
flow that equals the min cut on any arbitray graph of n edges.

Remark 4. Note that in the process of searching for the local coding matrix Fn which satisfies (20)
and achieves the maximum flow, we essentially rely on recursive construction the local coding matrices
throught the sequence {Fn−1,Fn−2, . . . ,F1} using (35). These local coding matrices in turn correspond
to maximum flow achieving coding matrices for smaller problems we constructed as subproblems, i.e.
{Ωn−1,Ωn−2, . . .Ω1}. This sequence of problems would, in fact, result in running the destination reduction
algorithm of Section 4 on the original problem Ω (with the second destination set equal to the null set).

6 Achievability of Rate Pair (1, 1)

We prove for the special case that the rate pair (1, 1) is always achievable through our algorithm
unless there is a single edge GNS cut. We begin by stating our result formally.

Theorem 1. Consider a two-unicast-Z problem Ω = (G,S, T ) where, for i ∈ {1, 2}, source si is connected
to at least one edge in destination Ti, and the GNS-cut set bound is at least 2. Then, the coding matrix F
returned by RECURSIVECODING (REDUCTION (Ω) ,F) achieves the rate pair (1, 1) with a probability that
tends to 1 as the field size F increases.

We first state the a few lemmas on the transfer matrices produced by the recursive coding
algorithm. They are useful for the proof of Theorem 1.

Lemma 8. Let H1,H2 and G2 be matrices of dimensions P1 ×Q1, P2 ×Q1 and P2 ×Q1 respecitvely. If
H1 6= 0 and G2 6= 0, then Grank (H1,H2,G2) = 1 if and only if the following holds,

rank (H2) = rank
([

H1

H2

])
= rank (G2) = rank

([
H2 G2

])
= 1.
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Lemma 9. In the recursive coding algorithm, for any i ∈ {0, 1, 2, . . . , N}, the matrix

H
T

(i)
1

1

H
T

(i)
1

2

 does not

contain an all zeroes column with a probability that tends to 1 as the size of field |F| increases.

Lemma 10. Let Q(i) = T
(i)
2 \T

(i)
1 . Given that the recursive algorithm performs the alignment step from

some stage k+ 1 to stage k, then, with a probability that tends to 1 as the field size |F| increases, GQ(i)

2 6= 0
for every stage i in {0, 1, 2 . . . , k}.

It is straightforward to verify Lemma 8 from the definition of Grank. The proofs of Lemmas 9
and 10 are provided in Appendix E and D respectively.

Remark 5. Henceforth, all the statements of the proof hold true in a probabilistic sense. That is, the
statements are true with a probability that tend to 1 as the field size |F| tends to infinity. To avoid laborious
notation and wording, we omit mentioning this explicitly in our proof.

6.1 Proof Overview

We first provide a brief overview of the proof of Theorem 1 and summarize the basic ideas of the
proof. Note that we only prove the necessity part of the theorem in this paper, as the sufficiency
follows directly from the GNS outer bound [26]. In particular, it suffices to show that the recursive
coding algorithm will generate source-to-destination transfer matrices which give an achievable rate
region that contains the point (1, 1). In the proof, we show that this is true for an arbitrary two-
unicast-Z problem Ω = (G,S, T ) with underlying graph G. We shall use the achievable region given
in Theorem 1 in [45], which is simplified to the following in the case of two-unicast-Z networks,

R1 ≤ rank

(
H
T

(0)
1

1

)
, (36)

R2 ≤ rank

(
G
T

(0)
2

2

)
, (37)

R1 +R2 ≤ Grank

(
H
T

(0)
1

1 ,H
T

(0)
1

2 ,G
T

(0)
2

2

)
. (38)

In order to show that the above achievable region contains the point (1, 1), we prove three claims
on the transfer matrices, each corresponds to an upper bound in (36) to (38). Recall that the
algorithm is divided into stages from N to 0. At stage i, the algorithm specifies coding co-efficients

for the edges in the destination sets of Ω(i), specifically, for edges in T
(i)
1 ∪ T

(i)
2 \

(
T

(i+1)
1 ∪ T (i+1)

2

)
,

by using the coding co-efficients in the previous stage i + 1. Also, recall that in the process of

coding for stage i, for destination T
(i)
j , U

(i)
j denotes the unchanged edges; I

(i)
j denotes the incoming

edges which are coded in stage i + 1 and are removed from the destination set; O
(i)
j denotes the

outgoing edges which are to be coded from I
(i)
j edges and enter the destination set. Furthermore,

O
(i)
2 is the union of two disjoint set B

(i)
2 and A

(i)
2 . The former set of edges are coded in phase 1 of

the algorithm while the latter edges are coded in phase 2 as a subset of O
(i)
1 . To prove Theorem 1,

we show that

rank

(
H
T

(i)
1

1

)
≥ 1 , rank

(
G
T

(i)
2

2

)
≥ 1 , Grank

(
H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
≥ 2 , (39)
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for every stage i, 0 ≤ i ≤ N , unless there is a single edge GNS cut in the graph. Note that the
above statement is trivially true for the initial stage, i.e. i = N . Therefore, to prove the theorem,
we assume that (39) holds true for some stage i + 1 and we show that the conditions remain true
in stage i unless there is a single edge GNS cut set. We outline our proof steps below.

• In Claims 1 and 2, we show that the transfer matrices H
T

(i)
1

1 and G
T

(i)
2

2 are non-zero, assuming

that H
T

(i+1)
1

1 ,G
T

(i+1)
2

2 are non-zero. We prove this claim by considering the the cases of ran-

domization and alignment steps separately. Since in the previous stage, the matrices H
T

(i+1)
1

1

and G
T

(i+1)
2

2 are non-zero by assumption, and since random linear combination of a set of
non-zero vector does not result in a zero vector, a randomization step preserves the desired
non-zero property of the respective matrices at stage i. In case that the stage contains an
alignment step, we make use of the fact that conditions (16)-(18) have to be fulfilled and the
generated column has to satsify Lemma 2. We verify that these conditions imply that neither

G
T

(i)
2

2 nor H
T

(i)
1

1 are set to 0.

• We show in Claim 3 that in stage i, the Grank of the transfer matrices is always lower bounded
by 2 only if there does not exist a single edge whose removal disconnects (s1, T1), (s2, T2) and
(s2, T1). Specifically, we assume that the claim holds for stage i + 1 and we show that it
remains true for the next stage i. To do that, we first show that if any alignment step takes

place between the two stages, the rank of the resulting matrix

H
T

(i)
1

1

H
T

(i)
1

2

 is strictly greater than

the rank of H
T

(i)
1

2 . This implies that the Grank is strictly larger than the rank of
[
H

(i)
2 G

(i)
2

]
,

which is at least 1. As a consequence, we show that the Grank is at least 2.

Subsequently, if the algorithm results in Grank less than 2, it can only carry out randomization
steps at that stage. In this case, we use Lemmas 8, 9 and 10 to show that if the Grank at

stage i reduces to 1, then (a) the edges in U
(i)
2 cannot be communicated from source s2 (b)

the sets U
(i)
1 and B

(i)
2 are empty, and (c) there can be only one newly coded edge, common

to both destination set, i.e.
∣∣∣O(i)

1

∣∣∣ =
∣∣∣A(i)

2

∣∣∣ = 1. (a), (b), and (c) imply that T
(i)
2 contains only

one edge that s2 communicates with, while T
(i)
1 contains this particular edge as the only edge

in the set. Consequently, applying Property (v) in Section 4, we know that O
(i)
1 is a cut set

between source s1, s2 and T1. Furthermore, because of (a) and the fact that T
(i)
2 is a cut set

between source s1, s2 and T2, we establish that A
(i)
2 = T

(i)
2 \U

(i)
2 is a cut set between s2 and

T2. As a result, we infer that the removal of the edge in O
(i)
1 simultaneously disconnects the

source-destination pairs (s1, T1), (s2, T2) and (s2, T1). In other words, we infer that the edge

in O
(i)
1 forms a GNS-cut set to complete the proof.

We now formally present proofs of Claims 1,2 and 3 which combine to serve as a proof of Theorem 1.

6.2 Proof of Theorem 1

Claim 1. For all 0 ≤ i ≤ N , H
T

(i)
1

1 6= 0.
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Proof. Consider first the case of i = N . Since s1 communicates with t1, there exists some source edge
(s1, v1) ∈ T (N)

1 . Recall that in the trivial solution for Ω(N), we simply set the column corresponding the
each edge in T (N)

1 to a unit vector indicating the source edge it represents. Since (s1, v1) ∈ T (N)
1 is a source

edge at s1, it gives rise to a non-zero column in H
T

(N)
1

1 . Thus, the claim holds for stage N .

Suppose the claim of H
T

(i+1)
1

1 6= 0 is true at some stage i+ 1, consider the stage i. Note that only phase

2 of the algorithm affects H
T

(i)
1

1 . If H
U

(i)
1

1 6= 0, since U (i)
1 ⊆ T (i)

1 , the claim holds for H
T

(i)
1

1 . Otherwise, we

must have H
I
(i)
1

1 6= 0. In this case, consider some step j in phase 2.

• If it is a randomization step, then H
T

(i)
1

1 6= 0.

• If it is an alignment step, by Lemma 2, the newly generated column must satisfy,

H
I
(i)
1

2 FI
(i)
1 ,{ei,j} ∈ colspan

([
H
U

(i)
1

2 H
O

(i)
1,j−1

2

])
,H

I
(i)
1

1

H
I
(i)
1

2

FI
(i)
1 ,{ei,j} 6∈ colspan

H
U

(i)
1

1 H
O

(i)
1,j−1

1

H
U

(i)
1

2 H
O

(i)
1,j−1

2

 .

This is only true when H
I
(i)
1

1 FI
(i)
1 ,{ei,j} 6= 0. By the construction of the algorithm, H

I
(i)
1

1 FI
(i)
1 ,{ei,j} is

a column in H
T

(i)
1

1 .

Therefore, H
T

(i)
1

1 6= 0. This completes the proof.

Claim 2. For all 0 ≤ i ≤ N , G
T

(i)
2

2 6= 0.

Proof. For i = N , since s2 communicates with t2, there exists a source edge (s2, v2) ∈ T (N)
2 . Similar to

the previous case, in the trivial solution for Ω(N), we simply set the column corresponding the each edge in
T

(N)
2 to a unit vector indicating the source edge it represents. Since (s2, v2) ∈ T (N)

2 is a source edge at s2,

it gives rise to a non-zero column in G
T

(N)
2

2 . Thus, the claim holds for stage N .

Assume the claim is true for stage i + 1 and consider stage i. If G
U

(i)
2

2 6= 0, then the claim holds

for G
T

(i)
2

2 , as U (i)
2 ⊆ T

(i)
2 . Otherwise, we must have G

I
(i)
2

2 6= 0. In this case, if random linear coding is
performed, either in phase 1 (for B(i)

2 edges) or for an edge in A(i)
2 in phase 2, then the resulting column is

non-zero and hence G
T

(i)
2

2 6= 0.
Therefore, we only need to consider the case where alignment occurs in some step j in phase 2. In this

case, because of the conditions under which the algorithm performs alignment, we have

colspan
(

H
I
(i)
1

2

)
6⊂ colspan

([
H
U

(i)
1

2 H
O

(i)
1,j−1

2

])
colspan

(
H
I
(i)
1

2

)
⊆ colspan

([
H
U

(i)
1

2 H
O

(i)
1,j−1

2 G
U

(i)
2

2 G
A

(i)
2,j−1

2 G
B

(i)
2

2

])
.
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Since A(i)
2,j−1 ⊆ O

(i)
1,j−1 by the construction of the algorithm, G

A
(i)
2,j−1

2 is a submatrix of H
O

(i)
1,j−1

2 . Subse-
quently, for the above alignment conditions to hold we must have[

G
U

(i)
2

2 G
B

(i)
2

2

]
6= 0. (40)

Since
[
G
U

(i)
2

2 G
B

(i)
2

2

]
is a submatrix of G

T
(i)
2

2 , the alignment step does not set G
T

(i)
2

2 to 0 and the claim is
true for all i, 0 ≤ i ≤ N .

From the two claims, we have established that for all i,

rank

(
H
T

(i)
1

1

)
≥ 1 , rank

(
G
T

(i)
2

2

)
≥ 1 . (41)

Claim 3. For all 0 ≤ i ≤ N , Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
≥ 2 if and only if the graph G does not contain

a single edge GNS cut set.

Proof. First note that Claim 1 implies that Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
≥ rank

(
G
T

(i)
2

2

)
≥ 1. Observe

that (41), Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
= 1 if and only if the following hold:

rank
(

G
T

(i)
2

2

)
= rank

([
H
T

(i)
1

2 G
T

(i)
2

2

])
= rank

(
H
T

(i)
1

2

)
= rank

H
T

(i)
1

1

H
T

(i)
1

2

 = 1. (42)

Next, we prove Claim 3. First we show that the claim is true for stage N .

Suppose that Grank
(

H
T

(N)
1

1 ,H
T

(N)
1

2 ,G
T

(N)
2

2

)
= 1. By (42),

rank
(

G
T

(N)
2

2

)
=1 = rank

(
H
T

(N)
1

2

)
, colspan

(
H
T

(N)
1

2

)
= colspan

(
G
T

(N)
2

2

)
.

By the construction of the algorithm, at stage N , we assign a different unit vector for each of the different
source edge. Therefore, to satisfy the above equations, we must have T (N)

1 = T
(N)
2 and

∣∣∣T (N)
1

∣∣∣ = 1. In

this case, removal the single edge in T (N)
1 will disconnect (s1, T1), (s2, T2) and (s2, T1) simultaneously.

Therefore, the claim holds for stage N .

Suppose that the claim holds for stage i+ 1, i.e. Grank
(

H
T

(i+1)
1

1 ,H
T

(i+1)
1

2 ,G
T

(i+1)
2

2

)
≥ 2. We show the

claim for stage i.

Alignment steps do not violate Claim 3.

We first show that if the recursive coding algorithm performs some alignment step in Phase 2 in stage i,

then Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
≥ 2 and therefore, the claim holds. Without loss of generality, assume
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that the alignment step is performed for some edge ei,j ∈ O(i)
1 . Then, by Lemma 2, the generated columnH

I
(i)
1

1

H
I
(i)
1

2

FI
(i)
1 ,{ei,j} will satisfy,

H
I
(i)
1

2 FI
(i)
1 ,{ei,j} ∈ colspan

([
H
U

(i)
1

2 H
O

(i)
1,j−1

2

])
,H

I
(i)
1

1

H
I
(i)
1

2

FI
(i)
1 ,{ei,j} 6∈ colspan

H
U

(i)
1

1 H
O

(i)
1,j−1

1

H
U

(i)
1

2 H
O

(i)
1,j−1

2

 .

As a result,

rank

H
U

(i)
1

1 H
O

(i)
1,j

1

H
U

(i)
1

2 H
O

(i)
1,j

2

 > rank
([

H
U

(i)
1

2 H
O

(i)
1,j

2

])
. (43)

Therefore, at stage i we have,

rank

H
T

(i)
1

1

H
T

(i)
1

2

− rank
(

H
T

(i)
1

2

)

= rank

H
U

(i)
1

1 H
O

(i)
1,j

1 H
O

(i)
1 \O

(i)
1,j

1

H
U

(i)
1

2 H
O

(i)
1,j

2 H
O

(i)
1 \O

(i)
1,j

2

− rank
([

H
U

(i)
1

2 H
O

(i)
1,j

2 H
O

(i)
1 \O

(i)
1,j

2

])

≥ rank

H
U

(i)
1

1 H
O

(i)
1,j

1

H
U

(i)
1

2 H
O

(i)
1,j

2

− rank
([

H
U

(i)
1

2 H
O

(i)
1,j

2

])
> 0 .

Hence rank

H
T

(i)
1

1

H
T

(i)
1

2

 > rank
(

H
T

(i)
1

2

)
. Since (41) holds for all stages, by Lemma 8, we have

Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
≥ 2.

That implies, if any alignment step takes place at stage i, then the claim holds for stage i.

Randomization steps do not violate Claim 3.

It remains to show the claim holds if all the coding steps performed at stage i are randomization steps.
Consider the stage i+ 1 where the claim is assumed to be true. That is, we have

Grank
(

H
T

(i+1)
1

1 ,H
T

(i+1)
1

2 ,G
T

(i+1)
2

2

)
≥ 2.

We consider two possible cases:

(I) rank
(

G
T

(i+1)
2

2

)
≥ 2, and
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(II) Grank
(

H
T

(i+1)
1

1 ,H
T

(i+1)
1

2 ,G
T

(i+1)
2

2

)
> rank

(
G
T

(i+1)
2

2

)
= 1.

In each case, we show that if

Grank
(

H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
= 1 (44)

then, the following hold:

G
U

(i)
2

2 = 0 , U
(i)
1 = B

(i)
2 = ∅ , O

(i)
1 = A

(i)
2 ,

∣∣∣O(i)
1

∣∣∣ = 1 . (45)

Once we show this, the claim can be proved as follows. Given that U (i)
1 is empty at stage i, clearly T (i)

1 =

O
(i)
1 . Therefore, based on Property (v) of the algorithm, we infer that s1 and s2 communicate with T1

only through the single edge in O(i)
1 . In other words, removing the edge in O(i)

1 disconnects T1 from the
two sources. We argue here that (45) implies that removing the edge disconnects s2 from T2 as well. Since

B
(i)
2 is empty, we have T (i)

2 \T
(i)
1 = U

(i)
2 . Because G

U
(i)
2

2 = 0, we infer from Lemma 10 that there is no

alignment step in any stage k ≥ i. Therefore, the matrix G
U

(i)
2

2 is generated through performing random

linear coding at every edge that lies between the sources and the edges in T (i)
1 ∪ T

(i)
2 . The fact that G

U
(i)
2

2

is a zero matrix in conjunction with the classical result of [2] which indicates that random linear network
coding achieves a rank that is equal to the min-cut to any set of destination edges together imply that s2

does not communicate with U (i)
2 . Based on Property (v) in Section 4, T (i)

2 is a cut set between s1, s2 and
T2. But since s2 does not communicate with U (i)

2 , we conclude that s2 communicates with T2 only through
T

(i)
2 \U

(i)
2 = A

(i)
2 = O

(i)
1 , i.e., s2 communicates with T2 through the single edge in O(i)

1 . Consequently, the
removal of the single edge in O(i)

1 disconnects s2 from T2 as well. Thus, O(i)
1 is a single-edge GNS cut set.

To complete the proof we show that if (44) holds, then (45) also holds for each of the two cases.

Case (I): rank
(

G
T

(i+1)
2

2

)
= rank

([
G
U

(i)
2

2 G
I
(i)
2

2

])
≥ 2. Suppose that Grank

(
H
T

(i)
1

1 ,H
T

(i)
1

2 ,G
T

(i)
2

2

)
=

1. Clearly, in this case,A(i)
2 andB(i)

2 cannot be both empty; otherwise G
T

(i)
2

2 = G
T

(i+1)
2

2 and rank
(

G
T

(i)
2

2

)
=

2, which contradicts (42). Now, consider the possible ranks of the matrix G
U

(i)
2

2 . From (42) we have,

rank
(

G
U

(i)
2

2

)
≤ rank

(
G
T

(i)
2

2

)
= 1. We first show that the rank of G

U
(i)
2

2 is 0. If rank
(

G
U

(i)
2

2

)
= 1,

then colspan
(

G
I
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2

)
6⊂ colspan

(
G
U

(i)
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2

)
, as rank

(
G
T

(i)
2

2

)
≥ 2. If A(i)

2 ∪ B
(i)
2 is non-empty, then G

A
(i)
2

2

and/or G
B

(i)
2

2 will be created from random coding of columns of G
I
(i)
2

2 . As a result, we have,

rank
(

G
T

(i)
2

2

)
= rank

([
G
U

(i)
2

2 G
A

(i)
2

2 G
B

(i)
2

2
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> rank

(
G
U

(i)
2

2

)
= 1,

which contradicts (42). But A(i)
2 or B(i)

2 cannot both be empty. Hence, we cannot have rank
(

G
U

(i)
2

2

)
= 1.

Therefore, rank
(

G
U

(i)
2

2

)
= 0. Therefore, we have rank

(
G
I
(i)
2

2

)
≥ 2. Since I(i)

2 is non-empty, note that

columns of
[
H
O

(i)
1

2 G
A

(i)
2

2 G
B

(i)
2

2

]
are generated by random coding from columns of G

I
(i)
2

2 . If the set
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O
(i)
1 ∪A

(i)
2 ∪B

(i)
2 = O

(i)
1 ∪B

(i)
2 (since A(i)

2 ⊆ O
(i)
1 ) contains at least two elements, then

rank
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(i)
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(i)
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2

])
≥ rank
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(i)
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2 G
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(i)
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2

])
≥ 2 ,
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As a result, we have the following at the beginning of recursive algorithm Phase 2 between stage i+ 1
and i,
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In other words, the conditions for alignment step are satsfied. Thus, the algorithm will carry out an
alignment step, which is a contradiction. Therefore, we conclude that
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This completes the proof.

7 Conclusion

The techniques of routing and random network coding have served as pillars of our encoding func-
tion design in networks. These techniques are loosely analogous to wireless network achievability
techniques of orthogonalization and random coding combined with treating interference as noise
respectively. The paradigms of orthogonalization and random coding were challenged by interfer-
ence alignment in [28]. An important milestone in the development of interference alignment for
wireless networks was the development of numerical alignment algorithms [51, 52]. In this paper,
we have undertaken an analogous effort for alignment in wireline network coding.

Our paper leads to several open problems. We initiate the study of two-unicast-Z networks.
For two-unicast networks, we know that linear coding is insufficient for capacity in general, and
that edge-cut outerbounds [26, 53] are loose. In contrast, it is an open question whether even
scalar linear network is sufficient for two-unicast-Z networks; similarly, it is not known whether the
GNS-cut set bound is loose for two-unicast-Z networks. Second, our approach to maximizing the
sum-rate is rather myopic, since we greedily optimize the network coding co-efficients one edge at a
time. In comparison, linear programming based algorithms have been formulated for routing, and
for network coding restricted to binary field. Development of similar formulations for optimizing
the sum-rate of the two-unicast-Z network is a promising research direction. Finally, an interesting
question is how our approach compares to other approaches when translated to the index coding
problem through the construction of [37].
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A Proof of Properties (ii), (iii) and (v)

We first state and prove Lemma 11 which describes a useful property of the destination reduction
algorithm. Then we prove Properties (ii) and (iii).

Lemma 11. For any two positive integers p, q with p < q, the set of all edges in T (q)
1 ∪ T (q)

2 has a strictly

lower topological order with respect to the edges in
(
T

(p)
1 ∪ T (p)

2

)
\
(
T

(p+1)
1 ∪ T (p+1)

2

)
.

Proof. For any integerm, let us denote by e(m), an edge of the highest topological order in set T (m)
1 ∪T (m)

2 .

From the destination reduction algorithm, we note that for any integerm, every edge in
(
T

(m)
1 ∪ T (m)

2

)
\
(
T

(m+1)
1 ∪ T (m+1)

2

)
has the same topological order as e(m). Furthermore, from the algorithm, we note that e(m) has a strictly
higher topological order with respect to every edge in T (m+1)

1 ∪ T (m+1)
2 ; specifically, e(m) has a higher

topological order with respect to e(m+1). This is because, in the process of obtaining Ω(m+1) from Ω(m),
we remove the edges with the highest topological order from the two destination sets T (m)

1 ∪ T (m)
2 and re-

place them with the immediate parent edges, which have a strictly lower topological order. By the transitive
nature of partial ordering, we infer that e(p) has a higher topological order with respect to e(q). Therefore
e(p) has a higher topological order with respect to every edge in T (q)

1 ∪ T (q)
2 . Furthermore, since every edge

in
(
T

(p)
1 ∪ T (p)

2

)
\
(
T

(p+1)
1 ∪ T (p+1)

2

)
has the same topological order as e(p), we conclude that every edge

in this set has a strictly higher topological order with respect to every edge in T (q)
1 ∪ T (q)

2 .

Proof of Property (ii): For j ∈ {1, 2}, let Kj be the set of edges that communicate with destina-

tion Tj , but do not belong to
⋃

0≤k≤N T
(k)
j . We show that K1 and K2 are empty by contradiction.

Suppose that K1 is non-empty. Let e be the highest topologically ordered edge in K1. Since there
is a path from e to destination 1, there is at least on edge e′ which is a member of Out(Head(e)),
such that there is a path from e′ to destination 1. Furthermore, since e′ does not belong to K1,

there exists an integer k such that e′ lies in T
(k)
1 ∪T (k)

2 for some value of k. Let k∗ denote the largest

among such integers. Therefore, we note that e′ does not lie in T
(k∗+1)
1 ∪ T (k∗+1)

2 . By examining
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the destination reduction algorithm, we infer that e′ is among the edges of the highest topological

order in T
(k∗)
1 ∪ T (k∗)

2 . In the process of obtaining Ω(k∗+1) from Ω(k∗), all the edges in In(Tail(e′))

are added to T
(k∗+1)
1 or T

(k∗+1)
2 or both sets, depending on whether e′ belongs to T k

∗
1 , or T

(k∗)
2 or

both sets. In particular, edge e is added to T
(k∗+1)
1 ∪ T (k∗+1)

2 . Therefore edge e does not lie in K1

which contradicts our earlier assumption. Therefore the set K1 is empty. We can similarly show
that K2 is empty.

Therefore, we have shown that if an edge communicates with destination j for j ∈ {1, 2}, then

it belongs to T
(k)
j for some integer k. Let k1 be the largest integer such that e belongs to T

(k1)
1 .

Let k2 be the largest integer such that e belongs to T
(k2)
2 . To complete the proof, we show that

k1 = k2. As a contradiction, suppose that k1 6= k2. Without loss of generality, assume that k1 > k2.

Then, we note that edge e belongs to T
(k2)
2 , but does not belong to T

(k2+1)
2 . By examination of

the destination reduction algoritm, we infer that this means that edge e is among the highest

topologically ordered edges in T
(k2)
2 ,. and that edge e has a higher topological order with respect

to all edges in T
(k1+1)
1 ∪ T (k2+1)

2 .

Since k1 > k2 and e ∈
(
T

(k2+1)
1 ∪ T (k2+1)

2

)
\
(
T

(k)
1 ∪ T (k)

2

)
, Lemma 11 implies that e has a

strictly higher topological order with respect to all the edges in T
(k1)
1 ∪ T (k1)

2 . Therefore e cannot

belong to T
(k1)
1 contradicting our earlier assumption. Therefore k1 = k2.

Proof of Property (iii): Let K(i) represent the set of all edges with a lower topological order

with respect to
(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
. From Lemma 11 we infer that

⋃
i+1≤k≤N

T
(k)
1 ∪ T (k)

2 ⊆ K(i).

To complete the proof, we need to show the reverse, that is, we need to show that

K(i) ⊆
⋃

i+1≤k≤N
T

(k)
1 ∪ T (k)

2 .

Consider any edge e in K(i). Since e communicates with one of the two destinations, Property

(ii) implies that e lies in T
(m)
1 ∪ T (m)

2 for some integer m. Let m denote the largest integer such

that e lies in T
(m)
1 ∪ T (m)

2 . To complete the proof, it suffices to show that m ≥ i+ 1. We show this

by contradiction. Suppose that m < i. Because e lies in
(
T

(m)
1 ∪ T (m)

2

)
\
(
T

(m+1)
1 ∪ T (m+1)

2

)
, we

infer from Lemma 11 that e has a higher topological order with respect to every edge in T
(i)
1 ∪T

(i)
2 .

This contradicts the assumption that e lies in K(i). Therefore, we have m ≥ i. If m = i, then e

lies in
(
T

(i)
1 ∪ T

(i)
2

)
\
(
T

(i+1)
1 ∪ T (i+1)

2

)
. This also contradicts the assumption that e lies in K(i).

Therefore we have m > i. This completes the proof.

Proof of Property (v): We show that each set T
(i)
1 is a cut set between s1, s2 and destination

edge set T1. The same argument applies to the case of T
(i)
2 . Note that it suffices to show that

any path between s1 or s2 and some edge in T1 passes through at least one edge in each set T
(i)
1 ,

i = 0, 1, . . . , N . Specifically, consider an arbitrary path P with length n, denoted by a sequence
of edges, i.e. P = {e1, e2, . . . , en}, where Head(ei) = Tail(ei+1) for 1 ≤ 1 ≤ n. We show that if

Tail(e1) = s1 or Tail(e1) = s2 and en ∈ T1, then T
(i)
1 ∩ P 6= ∅ for all i = 1, 2, . . . , N .

42



First consider the case i = 0, since en ∈ T1 and T
(0)
1 = T1, clearly T

(0)
1 ∩P 6= ∅. To complete the

proof, we assume that for some k, 0 ≤ k ≤ N , T1(k)∩P 6= ∅ holds and show that T
(k+1)
1 ∩P 6= ∅.

Let ej be some edge belonging to both P and T
(k)
1 . If ej ∈ T

(k+1)
1 , then clearly, T

(k+1)
1 ∩ P is

non-empty. Suppose otherwise, i.e. ej 6∈ T (k+1)
1 , then ej ∈ T (k)

1 \T
(k+1)
1 . By the construction of the

destination reduction algorithm, we know that ej is not a source edge and In(Tail(ej)) ⊆ T
(k+1)
1 .

As a result, ej 6= e1 and ej−1 ∈ In(Tail(ej)). We have ej−1 ∈ P and ej−1 ∈ T (k+1)
1 , that is, we have

shown that T
(k+1)
1 ∩ P 6= ∅. This completes the proof.

B Proof of Lemma 7

For convenience of notation, let cGn(s, Tn) = M . Since,

rank(Hn−1) = rank
(
An−1 (In−1 − Fn−1)−1 BT

n−1

)
= M − 1 (53)

rank(H∗n−1) = rank
(
An−1

(
In−1 − F∗n−1

)−1
B∗

T

n−1

)
≥M , (54)

there exists an (M−1)×(M−1) submatrix S1 in Hn−1 whose determinant f1 is not zero. Similarly
in matrix H∗n−1, there exists some M ×M submatrix S2, whose determinant f2 is not zero.

Next consider the submatrix S1 in An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
B∗

T

n−1 as well as the subma-

trix S2 in An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
BT
n−1. Let their determinants be f1(p, q) and f2(p, q).

Clearly f1(p, q) 6= 0 and f2(p, q) 6= 0 since f1(1, 0) 6= 0 and f2(0, 1) 6= 0. Thus, f(p, q) =
f1(p, q)f2(p, q) is a non-zero polynomial. Applying Lemma 4 in [8] to f(p, q), we conclude that
if the underlying field F is large enough, choosing p, q uniformly at random from F will yield
f(p, q) 6= 0 with a probability that tends to 1 as the field size increases. Equivalently, with the
random choices of p and q,

rank
(
An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
BT
n−1

)
= M − 1 (55)

rank
(
An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
B∗

T

n−1

)
≥M . (56)

Furthermore, since B∗
T

n−1 =
[

BT
n−1 ui1 . . . uih

]
, we conclude that the matrix

An−1

(
In−1 − pFn−1 − qF∗n−1

)−1 [
ui1 . . . uih

]
,

which are the symbols carried by the edges ei1 to eih , contains at least 1 columns that are linearly

independent from the columns of An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
BT
n−1. Because ei1 , . . . , eih are

the parent edges of en−1+1, . . . , en, by choosing the local coding vectors for the last edge uniformly
at random from F, we are setting the columns of

An−1

(
In−1 − pFn−1 − qF∗n−1

)−1 [
en−1+1 . . . en

]
to be a random linear combinations of the columns of

An−1

(
In−1 − pFn−1 − qF∗n−1

)−1 [
ui1 . . . uih

]
.

Therefore,
An−1

(
In−1 − pFn−1 − qF∗n−1

)−1 [
en
]

43



contains exactly one linearly independent column from An−1

(
In−1 − pFn−1 − qF∗n−1

)−1
BT
n−1. Hence,

we conclude that,

rank
(
An−1

(
In−1 − pFn−1 − qF∗n−1

)−1 [
BT
n−1 en

])
= M (57)

C Proof of Lemma 2

Since Grank ([H1 A], [H2 B] ,G2) > Grank (H1,H2,G2), it is clear that, colspan
([

A
B

])
6⊂

colspan
([

H1

H2

])
.

We first consider the case when at least one of conditions (i) and (ii) does not hold. In this
case, we pick entries of f uniformly at random from a large enough field.

1. If colspan (B) ∈ colspan (H2), then Bf ∈ colspan (H2), but Af 6∈ colspan (H1). Consequently,

rank

([
H1 Af
H2 Bf

])
= rank

([
H1

H2

])
+ 1 ,

rank ([H2 Bf G2]) = rank ([H2 G2]) ,

rank ([H2 Bf ]) = rank (H2) .

2. If colspan (B) 6∈ colspan ([H2 G2]), then Bf 6∈ colspan ([H2 G2]), and Af 6∈ colspan (H1).
Hence,

rank

([
H1 Af
H2 Bf

])
= rank

([
H1

H2

])
+ 1 ,

rank ([H2 Bf G2]) = rank ([H2 G2]) + 1 ,

rank ([H2 Bf ]) = rank (H2) + 1 .

Therefore, in both cases, we Grank ([H1 Af ], [H2 Bf ] ,G2) = Grank (H1,H2,G2) + 1.
It remains to find the vector f that satisfies (12) when conditions (i) and (ii) both hold. In

particular, it suffices to find a vector f such that[
A
B

]
f 6∈ colspan

([
H1

H2

])
, (58)

Bf ∈ colspan (H2) . (59)

Suppose the columns of the matrix

[
H1

H2

]
are indexed by the index set [Q1] = {1, 2, . . . , Q1}, while

the columns are from

[
A
B

]
are indexed by the index set [M ] = {1, 2, . . . ,M}. Let Γ be the subset

of [Q1] such that, for the matrix H2, its submatrix consists columns indexed by Γ forms basis of
the matrix. Denote this submatrix as HΓ

2 . Thus, rank (H2) = |Γ|. By the basis extension theorem,

there exists a subset of columns of

[
A
B

]
, indexed by αB ⊂ [M ], such that the columns of matrix

[HΓ
2 BαB ] form a basis of [H2 B]. Since columns of HΓ

2 are linearly independent, columns of
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HΓ =

[
HΓ

1

HΓ
2

]
are also linearly independent. Hence, there exists a subset αH ⊂ [Q1], such that

αH ∩ Γ = ∅, such that the columns of

[
HΓ

1 HαH
1

HΓ
2 HαH

2

]
form a basis of

[
H1

H2

]
. Consider the matrix[

HΓ
1 HαH

1 AαB

HΓ
2 HαH

2 BαB

]
. We show that its columns are linearly independent. Consider a length |Γ|

vector cΓ, a length |αH | vector cαH and a length |αB| vector cαB , such that

[
HΓ

1 HαH
1 AαB

HΓ
2 HαH

2 BαB

] cΓ

cαH

cαB

 = 0 . (60)

We aim to show that

 cΓ

cαH

cαB

 = 0. Since the columns of HΓ
2 is a basis for H2, there exists a matrix

D such that HαH
2 = HΓ

2 . Thus,

[
HΓ

2 HαH
2 BαB

]  cΓ

cαH

cαB

 = HΓ
2 (cΓ + DcαH ) + BαBcαB = 0. (61)

But
[
HΓ

2 BαB
]

forms a basis. As a result, cαB = 0 and cΓ + DcαH = 0. Substituting this in (60),
we get [

HΓ
1 HαH

1

HΓ
2 HαH

2

] [
cΓ

cαH

]
= 0 . (62)

Since columns of

[
HΓ

1 HαH
1

HΓ
2 HαH

2

]
also form a basis, we must have cΓ = 0 and cαH = 0. Hence, columns

of

[
HΓ

1 HαH
1 AαB

HΓ
2 HαH

2 BαB

]
are linearly independent.

By the basis extension theorem, there exits a set βB ⊂ [M ]\αB, such that the columns of[
HΓ

1 HαH
1 AαB AβB

HΓ
2 HαH

2 BαB BβB

]
form a basis for the matrix

[
H1 A
H2 B

]
. We next show that |βB| > 0.

We know that Grank ([H1 A], [H2 B],G2) > Grank (H1,H2,G2). Therefore,

Grank ([H1 A], [H2 B],G2)−Grank (H1,H2,G2)

= rank

([
H1 A
H2 B

])
− rank

([
H1

H2

])
+ rank

([
H2 B G2

])
− rank

([
H2 G2

])
− rank (H2) + rank

([
H2 B

])
(a)
= rank

([
H1 A
H2 B

])
− rank

([
H1

H2

])
−
(
rank (H2)− rank

([
H2 B

]))
= (|Γ|+ |αH |+ |αB|+ |βB| − |Γ| − |αH |)− (|Γ| − |Γ|+ |αB|)
= |βB| > 0 ,

where (a) follows from condition (ii), i.e. colspan (B) ⊂ colspan
([

H2 G2

])
.
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Since βB 6= ∅, note that the columns of
[
HΓ

2 BαB BβB
]

is a linearly dependent set of

vectors. This is because, this set of vectors spans [H2 B], whose basis is
[
HΓ

2 BαB
]
. The

nullspace of
[
HΓ

2 BαB BβB
]

therefore contains at least one non-zero vector. Pick an arbitrary

non-zero vector from this nullspace. Denote the vector as be

 cΓ

cαB

cβB

, where cΓ is a length |Γ|

subvector, cαB is a length |αB| subvector and cβB is a length |βB| subvector. We have, cβB 6= 0
and HΓ

2 cΓ + BαBcαB + BβBcβB = 0, hence, BαBcαB + BβBcβB ∈ colspan
(
HΓ

2

)
= colspan (H2). On

the other hand, since columns of

[
HΓ

1 HαH
1 AαB AβB

HΓ
2 HαH

2 BαB BβB

]
is a basis, the columns of

[
AαB AβB

BαB BβB

]
is linearly independent of the columns of

[
HΓ

1 HαH
1

HΓ
2 HαH

2

]
, which is a basis for

[
H1

H2

]
. Therefore,[

AαB

BαB

]
cαB +

[
AαB

BαB

]
cβB 6∈ colspan

([
H1

H2

])
.

We are now ready to specify f satisfying (58) and (59). For any set I ⊆ [M ], let f I denote the
entries of vector f I corresponding to set I. We specify the M × 1 vector f as follows: fαB = cαB ,
fβB = cβB , and f I = 0 for any set I which is disjoint with αB ∪ βB. We note that with this choice
of f , we have

Bf = BαBcαB + BβBcβB[
A
B

]
f =

[
AαB

BαB

]
cαB +

[
AαB

BαB

]
cβB

It can be readily verified that (58) and (59) are satisfied.
So far, we have showed that there is at least one vector f which satisfies (58) and (59) and

subsequently satisfies (12). Next, we show that if conditions (i) and (ii) hold, then picking a
random vector v from the nullspace of

[
H2 B

]
and setting f to be the last M entries of the

random vector v satisfies (12) with high probability,. In particular, we show that such a vector f
satisfies (58) and (59) with high probability.

Let v =

[
v1

v2

]
, v1 ∈ FQ1 ,v2 ∈ FM , be a random vector from the nullspace of

[
H2 B

]
, i.e.

H2v1 + Bv2 = 0. Clearly, f = v2 satisfies (59). We need to show that f chosen this way satisfies
(58) with high probability. Note that the vector v2 fails to satisfy (58) if and only if there exists
some v′1 ∈ FQ1 , such that, [

H1 A
H2 B

] [
v′1
v2

]
= 0 . (63)

Let R be the set of all such vectors in the nullspace of
[
H2 B

]
, i.e.

R =

{[
v1

v2

]
∈ Ker

([
H2 B

])
: ∃ v′1 ∈ FQ1 , s.t.

[
H1 A
H2 B

] [
v′1
v2

]
= 0

}
. (64)

Clearly, if

[
v1

v2

]
,

[
u1

u2

]
∈ R, then there exists v′1,u

′
1 ∈ FQ1 , s.t.

[
H1 A
H2 B

] [
av′1 + bu′1
av2 + bu2

]
= 0 (65)
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for any a, b ∈ F, i.e.

[
av′1 + bu′1
av2 + bu2

]
∈ R . Hence, R is a subspace of Ker

([
H2 B

])
.

Furthermore, note that R is a proper subspace. This is because we have already shown that
there exists a vector in the null space of

[
H2 B

]
that satisfy (58), that is, we have already shown

the existence of a vector in the nullspace
[
H2 B

]
that does not lie in R. Therefore, by picking

v uniformly at random from Ker
([

H2 B
])

, the probability that both condition (58) and (59) are
satisfied is

1− P (v ∈ R) = 1− 1

|F|t , t ∈ Z+ (66)

where |F| is the size of the underlying field and t is the difference between the dimension of subspace
R and the dimension of Ker

([
H2 B

])
. Hence, as the field size increases arbitrarily, the probability

of both (58) and (59) hold approaches to 1. This completes the proof.

D Proof of Lemma 9

Clearly, at the initial stage, by the construction of the algorithm, every column of the matrix
corresponds to a source edge and is assigned a unit vector. As a result, none of the columns in the

matrix

H
T

(N)
1

1

H
T

(N)
1

2

 is all-zero.

Suppose that there is no all-zero column in the matrix

H
T

(i+1)
1

1

H
T

(i+1)
1

2

. Clearly, in

H
T

(i)
1

1

H
T

(i)
1

2

, no

all-zero columns can be generated from random coding of columns of

H
T

(i+1)
1

1

H
T

(i+1)
1

2

 with a probability

that tends to 1 as the field size increases. It remains to consider the case when alignment happens.
But by Lemma 2, the alignment step will generate a column that does not belong to the column

span of the matrix

H
U

(i)
1

1

H
U

(i)
1

2

. Hence, any column generated by alignment cannot be all zero either.

This completes the proof.

E Proof of Lemma 10

Suppose that from stage k + 1 to stage k, the algorithm performs some alignment step. Since

A
(k)
2 ⊂ O

(k)
1 , we have Q(k) = T

(k)
2 \T

(k)
1 = U

(k)
2 ∪ B(k)

2 \U
(k)
1 . By the construction of the algorithm,

if at some step j in phase 2, an alignment step takes place, then we have,

colspan
(

H
I
(i)
1

2

)
6⊂ colspan

([
H
U

(i)
1

2 H
O

(i)
1,j−1

2

])
,

colspan
(

H
I
(k)
1

2

)
⊂ colspan

([
H
U

(k)
1

2 H
O

(k)
1,j−1

2 G
U

(k)
2

2 G
A

(k)
2,j−1

2 G
B

(k)
2

2

])
.
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Since A
(k)
2,j−1 ⊂ O

(k)
1,j−1, G

A
(k)
2,j−1

2 is a submatrix of H
O

(k)
1,j−1

2 . For the conditions to hold, we must have

G
U

(k)
2 ∪B

(k)
2 \U

(k)
1

2 = GQ(k)

2 6= 0 .

Now consider Q(k−1) = T
(k−1)
2 \T (k−1)

1 . By the construction of the algorithm, Q(k−1) does not
communicate with T1. Hence, all the columns corresponding to edges in Q(k−1) are either source
edge columns or columns generated by random coding in phase 1 at some stage of the algorithm.

On the other hand, since all edges in Q(k) communicate with T2 but not T1, for each edge e
(k)
i ∈ Q(k)

there exists an edge e
(k−1)
i ∈ Q(k−1) such that either e

(k)
i = e

(k−1)
i or e

(k)
i is a parent edge of e

(k−1)
i .

Thus, each column in GQ(k)

2 participates in random coding for at least one edge in Q(k−1). Now

since GQ(k)

2 6= 0, we conclude that at least one column of GQ(k−1)

2 is not all-zero and thus GQ(k−1)

2 is

not a zero matrix. Subsequently we have, for all 0 ≤ i ≤ k, GQ(i)

2 6= 0, which completes the proof.
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