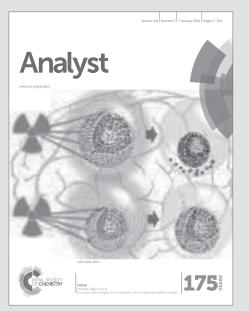

SNAPS: A TRILOGY PARTS – [0] [1] [2] COMBINED


HAPHAZARD REALITY - IOT IS A METAPHOR

View Article Online View Journal

Analyst Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Rong, A. Padron, K. Hagerty, N. Nelson, S. Chi, N. O. Keyhani, J. Katz, S. P. A. Datta, C. L. Gomes and E. S. McLamore, *Analyst*, 2018, DOI: 10.1039/C8AN00065D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/analyst

Analyst

> 59 60

Post hoc support vector machine learning for biosensors based on weak protein-ligand interactions

Y. Rong^a, A.V. Padron^a, K. J. Hagerty^a, N. Nelson^b, S. Chi^{c,d}, N. O. Keyhani^d, J. Katz^e, S.P.A. Datta^{f,g}, C. Gomes^h, and E.S. McLamore^{*a}

Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptor and target analyte are a challenge for detection electronics, particularly in field studies or in analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data from multiple protein-based biosensors, and we show that the tool can be used for point of need applications in analysis of small molecules such as acetone using a mobile phone. In all conditions tested, the open source classifier was capable of performing as well, or better, than equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phone. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet, or computer use) and the code was written in Python. For each of the applications we provide step-by-step instructions in English, Spanish, Mandarin, and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric biosensor users. This post hoc analysis tool can serve as a launchpad for convergence of nanobiosensors in planetary health monitoring hardware. applications based on mobile phone

Introduction

Received 00th January 20xx,

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Biosensors offer rapid analysis of targets ranging from small molecules, to biomolecules or cells, and can be applied across a wide variety of planetary health applications in medical, agricultural, and environmental analysis^{1, 2}. With the advent of mobile phone electrochemical and plasmonic acquisition systems ³⁻⁵, the portfolio of biosensors used in applied field studies is rapidly expanding. Biosensor accuracy, speed, range, and limit of detection are a function of the nature of molecular interactions between target analyte and bioreceptor structure, the transduction mechanism, inclusion of nanomaterials which enhance transduction, type of detection hardware, and acquisition approach (including *post hoc* analysis).

Among the various transduction approaches, electrochemical biosensors are one of the most popular device types, and most current devices combine electroactive nanomaterials (e.g., graphene, nanometal, electropolymers) with biorecognition structures such as enzymes, antibodies, or aptamers, among others ⁶⁻¹⁰. Use of transducer nanomaterials enhances signal acquisition, while the biological material is used to impart selective targeting and in some cases, catalyze a reaction¹¹⁻¹³. Impedimetric biosensors are most commonly developed based on Faradaic impedance (with redox couple in solution), but label-free biosensors using non-Faradaic impedance (absence of redox couple) are increasing in popularity^{14, 15}. In either case, the output impedance depends on changes in the interfacial electron transfer resistance and/or electrostatic repulsion that result from steric hindrance caused by interactions of the target and bioreceptor¹⁶⁻¹⁸.

Interpretation of impedimetric biosensor data is often not trivial, particular for fast electron transfer processes in nanomaterial-modified electrodes, non-Faradaic impedance, or weak/transient interactions between bioreceptor and target. Impedance data are usually fit to an equivalent circuit model using Chi² testing, and parameters derived from the model to describe the underlying electrochemistry. Changes in equivalent circuit parameters are commonly reported as sensor output, although impedance at a single frequency is occasionally used as sensor output¹⁴. Equivalent circuit analysis is based on combinations of the Principle of Superposition, Ohm's Law, and Kirchoff's Laws, and is very accurate for simple electrode geometries with homogenous surfaces. However, as circuit models are assumed a priori, there is not necessarily a correspondence between circuit elements and underlying physico-chemical processes¹⁹. Furthermore, inclusion of transducer nanomaterials on the sensor surface complicates the equivalent circuit model, requiring additional "fitting" elements. Thus, interpreting impedance data in complex solutions or with complex electrode geometries is challenging,

^{a.} Agricultural & Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida.

^{b.} Biological & Agricultural Engineering, North Carolina State University.

^c Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences; Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China.

^d Department of Microbiology and Cell Sciences, Institute of Food and Agricultural Sciences, University of Florida.

^{e.} Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida

^{f.} MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology,

^{a.} Biomedical Engineering Program, Department of Anaesthesiology, Massachusetts General Hospital, Harvard Medical School.

^{h.} Department of Mechanical Engineering, Iowa State University

⁺ Footnotes relating to the title and/or authors should appear here

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

and is sometimes more art than science²⁰. The main challenge for planetary health biosensors is to balance enhancing conductivity with transducer nanomaterials (improving limit of detection) while limiting computational cost (maintaining speed), and at the same time developing simple label-free devices that can be used in diverse applications (ensuring robustness).

To improve limit of detection, many labs coat electrodes with nanomaterials such as graphene and/or nanometal, which is known to significantly enhance conductivity and electroactive surface area²¹⁻²³ while significantly decreasing charge transfer resistance (R_{ct}). This results in fast electron transfer processes, where Faradaic current is represented by a near-linear Nyquist plot. In a classic Randles-Ershler equivalent circuit, post hoc sensor analysis is usually constrained to $R_{ct}\xspace$ as other circuit parameters are a function of the solution resistance or inductance, which are not strong indicators of molecular interactions between bioreceptor and target analyte. This situation is particularly challenging for weak/transient interactions, where more complex circuit models with fitting parameters are required, increasing the computational cost while producing output parameters that have no physicochemical meaning in the electrochemical circuit. There is a need for simple post hoc analytical techniques that can be used for point of need biosensors, particularly for field applications.

Machine learning has emerged as a powerful tool for analysis of sensor data in a wide range of applications, including: flow cytometry²⁴, electronic tongue/nose²⁵⁻²⁷, wearable sensors²⁸, ²⁹, whole organism biosensing^{30, 31}, protein detection³², sensor material optimization³³, food safety risk analysis³⁴, environmental pollutant monitoring³⁵ and multiplexing sensors arrays ³⁶⁻³⁸. These techniques provide a platform for development of systems-level planetary health solutions that focus on convergence of nanobiosensors, mobile phone sensor acquisition, and data analytics.

Here, we present an open source machine learning algorithm applied for label-free biosensors based on weak/reversible interactions that can be used with common mobile hardware (mobile phone or tablet). We demonstrate the utility of this approach for analysis of a biosensor based on reversible interactions between a small molecule (acetone) and insectderived chemosensory proteins. In vivo, CSP solubilize volatile odorants and facilitate transport to downstream odorant receptors (ORs) through reversible association/disassociation ^{39, 40}. This represents a model impedimetric biosensor based on interactions between low molecular weight binding proteins and small molecules. Biosensors based on CSP are becoming popular, but the transient ligand interactions and relationship to underlying electrochemistry are not well documented. As a comparison, we also analyzed weak/transient proteinbiomolecule interactions (both protein-DNA and proteinprotein) using well-known binding proteins with equivalent circuit analysis and machine learning. The protocol is based on Jupyter notebook (open source computing environment available for mobile phone, tablet, or computer use) and the code was written in Python. For each of the applications we provide step-by-step instructions in English, Spanish,

Mandarin, and Portuguese to facilitate widespread use for a variety of applications. The open source tool can easily be integrated with mobile biosensor equipment for rapid detection, facilitating use by a broad range of biosensor users.

Methodology

Strains and reagents

Escherichia coli strain Rosetta DE3 (Promega, Madison WI, USA) was routinely grown in Luria-Bertani broth (LB) and/or on LB-agar (1.5%) plates containing 50 μ g/mL kanamycin. All reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) or Thermo Fischer Scientific (Waltham, MA, USA) except as noted. Potassium ferrocyanide (K₄FeCN₆), potassium ferricyanide (K₃[Fe(CN)₆], and potassium chloride (KCl) were purchased from EMD chemicals (Billerica, MA, USA). Ni- and Co-NTA agarose was purchased from Gold Biotech (St. Louis, MO, USA). Thrombin was purchased from Amersham-Pharmacia Biotech (Little Chalford, UK). Polycrystalline diamond suspensions (3 and 1 mm) alumina slurry (0.05mm) were purchased from Buehler (Lake Bluff, IL, USA).

Electrochemical analysis

For all electrochemical analysis, a three-electrode system was used together with an electrochemical impedance analyzer (ERZ100, eDAQ, Colorado, USA). All electrochemical impedance spectroscopy (EIS) studies used Pt/Ir working electrodes (MF-2013, 1.6 mm diameter, BASi, West Lafayette, USA), Ag/AgCl reference electrodes (BASi, West Lafayette, USA) and platinum auxiliary electrodes (BASi, West Lafayette, USA) with nanoplatinum deposited as previously described^{41,} ⁴². Before all experiments, the Pt/Ir working electrodes were polished with two sizes of polycrystalline diamond suspensions (3 and 1 μ m), rinsed with methanol, polished with alumina slurry (0.05 μ m) and then rinsed with deionized water. Probes were cleaned in a sonication bath in DI water for 15 min, then with 0.1 M H₂SO₄ using cyclic voltammetry (CV) at a potential range of -1.0V to +1.0V until the peak current changed by less than 1%, and then finally cleaned in a sonication bath in DI water for 15 min. To ensure consistency during adsorption studies, electrodes were fitted with a plastic cap that was 3D printed on a Makerbot Replicator 2 Desktop 3D printer (see supplemental Figure S1 for specifications).

EIS analyses were conducted at 0.25V (DC), with a 100mV (AC) amplitude in the range of 100 kHz to 1 Hz in a solution with 2.5 mM potassium ferrocyanide (K_4 [Fe(CN)₆]), 2.5 mM potassium ferricyanide (K_3 [Fe(CN)₆], and 100 mM potassium chloride (KCl). For equivalent circuit analysis, all EIS data was transformed to Nyquist Plots and analyzed using ZMAN (WonATech, South Korea) 2.2 software or support vector classification analysis as noted.

Protein expression and purification

Recombinant insect chemosensory proteins (CSP) derived from *Glossina morsitans* (Gmm, tsetse fly) were heterologously expressed and purified from *E. coli* hosts using the methods described in detail by Song et al⁴³. Briefly, GmmCSP3 sequences were identified from genomic databases, codon optimized for *E. coli* expression, and synthesized/cloned into a

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

pUC vector (Genewiz, Planefield, NJ). Expression constructs were synthesized with a 10X-histidine (10X C terminal His) tag and transformed into *E. coli* host cells. Single colony isolated via selection for ampicillin resistance on LB/ampicillin plates (100 µg/ml). Cells were harvested by centrifugation, washed with Co²⁺ equilibrium buffer, and suspended in the buffer. Protein purification was achieved using Co²⁺ affinity chromatography and elution of the bound protein with increasing concentrations of imidazole. Purity of the protein was assessed by SDS- polyacrylamide gel electrophoresis (SDS-PAGE) and pure fractions were pooled and dialyzed (3000kDa) against buffer (20 mM HEPES, pH 7.5). Protein concentration was quantified with SDS-PAGE, and samples were frozen at -80 °C until used.

Expression and purification of TATA binding protein (TBP) and multiprotein bridging factor 1 (MBF1) from *Beauveria bassiana* have been described in detail previously ⁴³. Briefly, the coding sequences for both genes were codon optimized for expression in *E. coli* and synthesized (Genewiz) as above for the CSP proteins. Expression plasmids were transformed into competent *E. coli* Rosetta DE3 cells for expression and purification as above. Purified proteins were dialyzed, aliquoted and stored at -80°C until used. After protein elution using, purity was confirmed by SDS-PAGE. Protein concentration was determined using Pierce[™] BCA Protein Assay Kit (Thermo Scientific).

PCR products were digested, and then cloned into respective sites of an expression vector to produce plasmids. Expression plasmids were transformed into competent *E. coli* Rosetta DE3 cells and transformed *E. coli* were cultured in LB broth, harvested, lysed, and then purified using Ni- or Co-NTA agarose columns. Purified 10XHis-tagged proteins were aliquoted and stored at -80°C until used. After protein elution using imidazole buffers, purity was confirmed by SDSpolyacrylamide gel electrophoresis (SDS-PAGE) and protein concentration was determined using Pierce[™] BCA Protein Assay Kit (Thermo Scientific).

Protein adsorption onto sensor surface and sensor characterization

For characterizing acetone-CSP interactions, the optimal CSP concentration from previous studies⁴⁴ was used or all testing. Briefly, 2 µL of His-tagged GmmCSP3 (9.23 mg/mL) was drop cast on the surface of an electrodes, dried at 20°C for 5 minutes, and rinsed three times with DI water. A 5mM acetone stock solution was prepared in DI water, which is representative of salivary acetone levels for patients with DKA 45 . Where noted, aliquots (2 μ L) of acetone stock solution were drop cast on the surface of the biosensor, stored at 20°C for 2 minutes, and rinsed with DI water three times prior to testing. For biosensors based on protein-biomolecule interactions, the concentration in each experiment was based on Song et al ⁴³. A $2~\mu\text{L}$ aliquot of His-tagged TBP was first drop cast on the surface of the electrode, agitated gently, allowed to dry at 20°C for 5 minutes, and rinsed with DI water prior to impedance analysis. Next, 2 µL aliquots of MBF1 (no His-tag) or TATA¹ (a 40 bp DNA sequence containing two potential TATA motifs) was drop cast onto the TBP-functionalized electrode, dried at 20°C for 5 minutes, and then rinsed with deionized water three times prior to impedance analysis. Control experiments included using uncoupled (no TBP) surfaces as well as TBP-coupled + bovine serum albumin (BSA) solutions and TBP-coupled + TATA⁰ (a 35 bp DNA sequence lacking the TATA sequence in TATA¹).

Data analysis and statistics

EIS plots were analyzed with ZMAN 2.2 using an equivalent circuit model based on Chi^2 analysis. Equivalent circuit parameters, namely solution resistance (R_s), charge transfer resistance (R_{ct}), Warburg impedance (Z_w), double layer capacitance (C_{dl}), and constant phase element (Q) were estimated using Chi^2 fitting in the ZMAN software.

Nyquist and Bode plots were generated with ZMAN 2.2 and several key values were extracted within the software from equivalent circuit analysis. Namely, the Nyquist with equivalent circuit analysis were used to extract R_s , R_{ct} , Z_w , and C_{dl} from a Randels-Ershler equivalent circuit. Bode plots were used to extract the impedance at a given cutoff frequency and associated phase angle. In addition to the Randels-Ershler circuit, various equivalent circuit models (shown in supplemental S5) were tested with the model search function in ZMAN software where noted.

Support vector machine (SVM) classification

For protein-ligand interactions, EIS data were exported and transformed into samples with 152 features that represent both real and imaginary impedance at frequencies from 100kHz to 1Hz. The number of features was selected to satisfy expected confidence levels for principle components analysis. A total of 54 EIS scans were randomly split into two groups, with 80% of the data used as the training set and 20% used as the testing set. Each of the 54 data sets were binary labeled, with baseline impedance data in the absence of acetone labeled as "0", and labeled 1 in the presence of 5mM acetone. EIS data for both baseline (no acetone) and positive (5mM acetone) experiments were standardized and transformed into a two-dimensional dataset, and then mapped in a new data space. To initially screen the data, the four most common types of SVM kernels ⁴⁶ were used to screen the data. A shuffled K-fold cross validation was used for all applications of SVM in this study⁴⁷; the training dataset was divided into ten folds and shuffled,, with 20% of the total data used for testing. The test accuracy shown for each kernel is the percentage of the prediction accuracy based on the decision boundaries.

Prior to running the SVM algorithm, principal component analysis (PCA) was applied through singular value decomposition (SVD) to reduce the 152 features to two principal components. PCA was used to reduce the dimension of 152 features in the raw EIS data to a two-dimensional principal components matrix. Depending on the number of components to extract, full or randomized truncated SVD was used; this procedure was performed in LAPACK⁴⁸. To ensure generalizability across other varied application-specific biosensors, code screens were prepared for four types of SVM kernels (linear, sigmoidal, radial basis function, and polynomial) to identify which approach best segregates the training data. This feature of the open source algorithm allows the user to select the most appropriate kernel for a given analysis by comparing the cross-validation results across kernel types. SVM hyperparameters (C and gamma) were optimized using grid search and random search methods^{46, 49}. C is a tradeoff between misclassification and simplicity of the decision surface. Gamma is proportional to the radius of influence for selected support vectors ⁵⁰. All SVM codes were produced with "scikit-learn", an open source machine learning library in Python ⁵⁰, and were processed with Jupyter notebook, an open-source web application for Python (see supplemental section for step-by-step instructions in English, Spanish, Mandarin, and Portuguese and Python code).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

To validate the functionality of the SVM classifier for a wellknown detection system, a TBP-protein and TBP-DNA biosensor were fabricated based on published methods⁴³. The biosensor is based on interactions between TBP and either multiprotein bridging factor 1 (MBF1) (protein-protein binding) or TBP and TATA (protein-DNA). His-tagged TBP was first adsorbed to the electrode surface, and then EIS was used to study the interactions of TBP with either MBF (a 17 kDa protein) or TATA¹ (a TBP-binding 40mer DNA sequence). As a control, EIS data were also recorded after addition of buffer, a non-binding protein (BSA), and a non-binding 35mer sequence (TATA⁰). To challenge the approach for detection of small molecules, a CSP biosensor for detecting acetone was also developed. The experimental conditions were based on levels relevant to diagnosis of diabetic ketoacidosis (DKA), a potentially fatal outcome from complications associated with diabetes.

All experiments were repeated in triplicate, resulting in a total of 54 data sets. Analysis of variance (one-way ANOVA with Games-Howell method and 99% confidence) and student's ttest (two-sample t-test with 99.9% confidence) were performed for analyzing EIS data derived from equivalent circuit modeling as noted. All error bars represent the standard deviation of the arithmetic mean.

Results & Discussion

First, the functionality of the SVM classifier was validated for a well-known detection system using TBP-protein and TBP-DNA based on Song et al⁴³. This well-documented biosensor produces large changes in impedance after target binding, and serves as a simple case study for the machine learning tool. The biosensor is based on interactions between TBP and either MBF (protein-protein binding) or TBP and TATA¹, a 40 mer nucleotide sequence containing the TATA motif that is the recognition sequence bound by TBP, (protein-DNA). His-tagged TBP was first adsorbed to the electrode surface, and then EIS was used to study the interactions of TBP with either MBF (a 17 kDa protein) or TATA¹. As a control, EIS data were also recorded after addition of buffer, a non-binding protein (BSA), and a 35-mer nucleotide sequence lacking the TATA motif (TATA⁰).

Representative Nyquist plots show that adsorption of Histagged TBP on the sensor surface caused a significant increase in R_{ct}, as expected (**Fig 1a**). Binding between TBP and MBF also resulted in a significant change in charge transfer resistance, as did binding between TBP and TATA¹. A Randles-Ershler equivalent circuit (Chi²=1087 \pm 212) was used to extract R_s, R_{ct}, Z_w , C_{dl} for each experiment (see supplemental Table S1 for details). Similar to other manuscripts in the literature $^{\rm 51}$, $\rm R_{ct}$ was used as the most accurate parameter for characterizing protein-biomolecule interactions (Fig 1b). For comparison, addition of BSA or buffer did not result in any significant change in impedance due to non-specific binding (see supplemental Figure S2). EIS data was further analyzed by SVM classification by dividing the dataset into groups of TBP, TBP+MBF, and TBP+TATA¹. Of the screened kernels, the linear type successfully classified each of the interactions (test accuracy =100%) and was the simplest of the considered kernel types. Such accuracy was not surprising given the large change in R_{ct} for a protein-biomolecule interaction of this type (see Fig 1). Results associated with the other common, but more complex, kernels and their optimization parameters are shown in supplemental Figure S3-S4.

The molecular interactions between TBP and MBF/TATA¹ shown in **Fig 1** can be viewed as between transient and permanent interactions⁵². For these moderate to tight biomolecule interactions, a basic Randles-Ershler equivalent circuit or SVM (linear kernel) analysis can be used to analyze the data. In the following section, we show that for analysis of much weaker reversible protein-ligand interactions, equivalent circuit analysis is not sufficient and more complicated SVM classification must be used for accurate analysis.

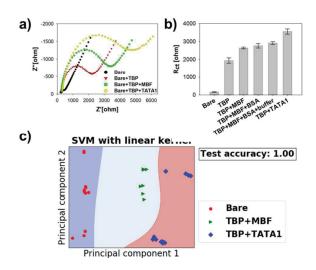
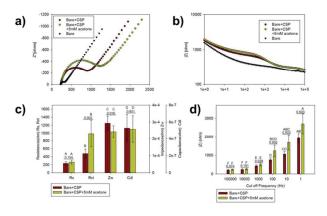


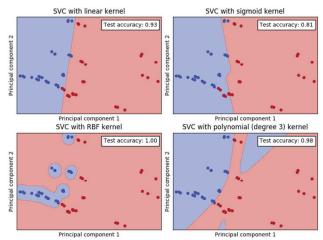
Figure 1. Impedimetric biosensor for the detection of protein-protein or protein-DNA interactions. a) Representative Nyquist plots for TBP-MBF interactions or TBP-TATA interactions clearly show an increase in charge transfer resistance after addition of target. b) Average $R_{\rm ct}$ derived from Randles-Ershler equivalent circuit model show significant results for TBP-biomolecule interactions but no significant change after addition of buffer or BSA (p values shown for each test group). c) Support vector machine (SVM) classification results with linear kernel. Additional Nyquist plots, average charge transfer resistance, and other SVM kernels are shown in the supplemental section.

Reversible protein-ligand interactions

To further challenge the machine learning tool, a CSP biosensor for detecting acetone at levels relevant for DKA triage diagnosis was developed and tested. DKA is a potentially fatal outcome from complications associated with diabetes, and accurate measurement of acetone is challenging. CSP are an excellent candidate for binding volatiles such as acetone, but to date the technology has not been proven. Representative Nyquist plots (Fig 2a) and Bode plots (Fig 2b) show that the adsorption of CSP onto the electrode caused a significant change in EIS spectra, but the change after addition of clinically relevant acetone (5 mM) was less pronounced.

For a more detailed *post hoc* analysis, a Randles-Ershler equivalent circuit was used to derive R_s, R_{ct}, Z_w, and C_{dl} as previously described (**Fig 2c**). In addition, net impedance at various cut-off frequencies was extracted from Bode plots (**Fig 2d**). Using a 99.9% confidence level, there was no significant difference between baseline measurements and average R_s (p=0.015), R_{ct} (p=0.002) Z_w (p=0.016), or impedance at any cut-off frequency (p<0.002) after addition of 5mM acetone.




Figure 2. EIS analysis of CSP-acetone interactions in the presence and absence of 5mM acetone. Representative a) Nyquist plots and b) Bode plots. c) Average parameters from Randles-Ershler equivalent circuit analysis (R_{sr} , R_{ctr} , Z_w and C_{dl}) from Randel's equivalent circuit, baseline data and EIS in the presence of 5mM acetone. d) Net impedance at representative cut off frequencies. In panels ac and d, numbers denote the p-value and uppercase letters denote statistically significant groups.

To further analyze the spectra, more complex equivalent circuit models were analyzed using ZMAN software with Chi² fitting. All equivalent circuits with improved Chi² fit (relative to Randles-Ershler) had more than four elements in various parallel/series connections, including at least one resistive element(R), capacitive element(C), constant phase element (Q) and inductive element (I) (see supplemental Fig S5). However, statistical analysis of the output parameters for these circuits also showed no significant difference in baseline and in the presence of acetone for replicate biosensors. Furthermore, there is no direct physical analogous biological structure to the constant phase elements (Q) produced by the model, further complicating the interpretation of the results and inducing bias on the interpretation.

The case study in **Fig 2** represents a common issue in non-Faradaic impedimetric biosensing where the device is based on interaction of proteins and small molecules. In such a case, the individual biosensor responds to target analyte, but variability of replicate sensors is high and interpretation of results at relevant levels is challenging. This is particularly true for weak/reversible interactions between small molecules and proteins where there is not an inherent reaction (as is the case for CSP-ligand binding). The CSP biosensor system is a promising biomimetic sensor system, but more accurate post hoc tools are needed for accurate detection of target biomarkers. As described by Liu et al ⁵³, the underlying cause for this challenge is likely a result of the nature of CSP-ligand binding in sensors. Liu et al showed that protein conformation change (backbone displacement) plays a major role in the electrical (Faradaic) properties of the sensor; this work was based on the honeybee protein Ac-ASP3. Since conformation changes can occur with non-specific interactions such as hydrogen bonding, CSP biosensors are subject to erroneous outputs due to non-specific interactions. To alleviate the false negative issue shown in **Fig 2**, EIS data was further analyzed by SVM classification.

SVM classification for acetone-CSP interactions

The decision boundaries for each kernel are shown in Fig 3, where testing data that fall into blue areas is predicted as negative (no acetone) and those that fall in red areas as positive (\geq 5mM acetone). As discussed by Liu et al ⁵⁴, other post hoc algorithms not analyzed here, such as random forest, may be more accurate in some cases. However, these approaches often increase accuracy by overfitting the data⁵⁵, which ultimately decreases the robustness of the classifier. Moreover, many of these are computationally expensive and cannot be analyzed using mobile hardware such as a mobile phone or tablet. The Gaussian radial base function (RBF) kernel (accuracy = 98%) had the highest test accuracy for classifying the training dataset. However, using the default kernel settings the dataset was not linearly separable and the RBF kernel had an overfitting issue, requiring further analysis and tuning of the parameters.

Figure 3. SVM classification for CSP-acetone biosensors using four common kernels. **a**) linear kernel (test accuracy =96%), **b**) sigmoidal kernel (test accuracy =83%), **c**) radial base function kernel (test accuracy =98%), and **d**) polynomial kernel (test accuracy =96%). Blue dots represented baseline EIS signals (no acetone in samples) and red dots represented positive EIS signals (5mM acetone in samples). The decision surface of these four SVM classifiers are plotted by red and blue regions.

To tune the RBF kernel parameters, a grid search and cross validation were performed. In cross validation, the original dataset was shuffled and divided into ten different training and testing sets, with 20% of the total data used for testing. Next, each training set was used to fit the SVM classifier and average test accuracy calculated for each split training set. In the RBF kernel, the two governing hyper-parameters are the

penalty parameter (C) and non-linear kernel coefficient (γ). The penalty hyper-parameter trades off misclassification against simplicity of decision surface, where lower C values tolerate more mistakes. The non-linear parameter defines the influence of a single training example on the output, and can be seen as the inverse of the radius of the influence of support vectors⁵⁰. Each of these parameters were optimized using a grid parameter search function using the RBF kernel (**Fig 4**). In the top left panel of **Fig 4**, where C is low, the penalty for misclassification is small and the decision surface is simple relative to values in the first column with higher C values. As the nonlinear hyper-parameter increases (from left to right in **Fig 4**), the influence radius decreases, causing over-fitting. The protocol described herein resolves this issue by creating a visualization tool to select the optimum hyper-parameters.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

γ=0.0001, C=0.1	γ=0.001, C=0.1	γ=0.01, C=0.1	γ=0.1, C=0.1	γ=1, C=0.1
0.36	0.57	0.87	0.48	0.40
γ=0.0001, C=1	γ=0.001, C=1	γ=0.01, C=1	γ=0.1, C=1	γ=1, C=1
0.66	0.82	0.82	0.91	0.93
γ=0.0001, C=10	γ=0.001, C=10	γ=0.01, C=10	γ=0.1, C=10	γ=1, C=10
0.86	0.89		0.93	0.93
γ=0.0001, C=100	γ=0.001, C=100	γ=0.01, C=100	γ= 0.1 , C=100	γ=1, C=100
0.92	0.97	1.00	0.93	0.93
γ=0.0001, C=1000	γ=0.001, C=1000	γ=0.01, C=1000	γ= 0.1, C=1000	γ=1, C=1000
0.96	0.97		0.93	0.93

Figure 4. Tuning of RBF hyper-parameters (C and gamma) for CSP acetone interactions. Representative SVM classification results for one training and testing set show the effects of parameters C and g in the output of the RBF kernels. Red and blue circles represent the baseline samples in training and testing sets; green and purple plus symbols represent the positive signals in training and testing sets. The background blue and red region indicated the classifier decision surface, where all data fall into the red region are predicted as positive. Cross-validation scores are shown in the top right corner of each subplot. The optimal classifier zone is highlighted with a blue rectangle in the center of the image.

The Python code has a built-in function to optimize the hyperparameters from data such as that shown in **Fig 4**. Based on this heat map (**Fig 5**), the optimum value of γ was 0.01, and the optimum value of C was 10. Using these parameters, the Python code is then modified (see details in step-by-step user guide) and the data is analyzed. Using the optimized kernel selection and hyper-parameters, the SVM demonstrated an accuracy of 95 ± 4% in cross validation and prediction of test samples.

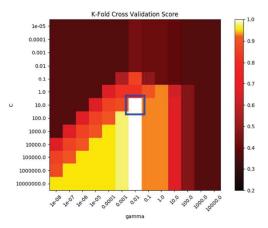


Figure 5. Heatmap of validation accuracy as a function of RBF parameters C and γ . The color indicates the cross-validation accuracy, where lighter colors represent a higher cross-validation score. Optimal parameters are highlight with a blue rectangle in the center

Decomposition of high dimensional EIS data to twodimensional data with PCA is known to improve sensor/detector accuracy due to identification of uncorrelated variables from a large set of data⁵⁶. PCA explains the maximum amount of data variance with the fewest number of principal components. For a semi-quantitative biosensor application such as the data in Fig 1-5, the use of only two principal components can lead to loss of useful information during data decomposition. However, for the RFP kernel with optimal tuning parameters the results were statistically significant at the 95% confidence interval. To further analyze the dataset, classifiers with 3 and 10 principal components were built and the cross-validation accuracy was improved (97 \pm 3%), which is expected as less information was lost during decomposition (a 3D data representation for data analyzed with three principal components is shown in supplemental Fig S6). This result was expected, as use of reductionist clustering (i.e., using twodimensional PCA) increases the risk of eliminating important outliers within the data. For example, over-clustering could result in important deviations from the "normal", for example in the case of silent ischemia⁵⁷. In this case the data curation can be improved by analyzing polar coordinates in lieu of, or in addition to, Cartesian coordinates from impedimetric sensor data. However, analysis of classifiers with a dimension larger than two is computationally expensive, and can make use of mobile phone based analytical systems challenging. Care should be taken to discern as to whether the computational need outweighs the ability to analyze data on site using mobile equipment such as a tablet or mobile phone. To maintain focus on mobile-enabled diagnostic systems in this study, we used a two-dimensional PCA analysis, which is valid for semiquantitative biosensor data where a regulatory or diagnostic metric is known (such as the case of DKA salivary biomarkers shown here).

Although not used here, computational speed and memory requirement can be improved by using more advanced computational tools such as the tensor compiler by Kjolstad et al⁵⁸. This approach is particularly useful for multidimensional data analysis, and provides a generic mechanism that can

2

4.

5.

6.

7.

8.

9.

31.

generate code for compound tensor operations with sparse tensors, eliminating the need for writing optimized code for a specific problem. This tensor algebra compiler library represents an excellent next step forward to improve the work herein.

The SVM tool shown here is highly useful for point of need small molecule analysis using mobile detection and analysis systems (see supplemental Figure S7). Rapid triage analysis of breath biomarkers (including acetone and β -hydroxybutyrate) is vital for triage analysis of patients with DKA symptoms, and mobile phone solutions can bring this diagnosis to rural areas where health care is limited. The overall mortality rate for DKA ranges from 1 to 10% of all patient admissions, and an even higher mortality rate is found among non-hospitalized patients and children under the age of 10⁵⁹. Convergent technologies for triage diagnostics require systems-level solutions that are based on readily accessible hardware such as mobile phones or tablets⁶⁰.

Conclusions

Biosensors based on weak/transient interactions between small molecules and bioreceptors are a challenge for detection electronics, particularly in field studies or in analysis of complex matrices (e.g., body fluids, food, river water, etc.) using non-Faradaic impedimetric sensors. Support vector machine learning tools are facile *post hoc* analysis tools that do not require significant computational power and can be used for *in situ* analysis with mobile hardware such as a mobile phone or tablet. Here, we show use of a simple, open source machine learning algorithm for analysing such impedimetric data, and we show that the tool can be used for point of need applications.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to thank the Agricultural & Biological Engineering PhD Fellowship (YR), the UF Opportunity Fund grant (ESM, NOK), the National Science Foundation Nanobiosensors program (ESM; Grant No. CBET-1511953, Nanobiosensing) and China Scholarship Council Fellowship (CS; No. 201303250074). The authors also thank Dr. Daniel Jenkins (University of Hawaii-Manitoba) for collaborating on use of the mobile phone acquisition system using an Android phone (ABE STAT).

References

- 1. A. P. F. Turner, *Chemical Society reviews*, 2013, **42**, 3184-3196.
- 2. A. R. Demaio and J. Rockstroem, *Lancet*, 2015, **386**, E36-E37.
- D. Z. Ji, L. Liu, S. Li, C. Chen, Y. L. Lu, J. J. Wu and Q. J. Liu, 32. Biosens Bioelectron, 2017, 98, 449-456.

- L. Liu, D. M. Zhang, Q. Zhang, X. Chen, G. Xu, Y. L. Lu and Q. J. Liu, *Biosens Bioelectron*, 2017, **93**, 94-101.
- D. M. Zhang, J. Jiang, J. Y. Chen, Q. Zhang, Y. L. Lu, Y. Yao, S. Li, G. L. Liu and Q. J. Liu, *Biosens Bioelectron*, 2015, **70**, 81-88.
- A. Hayat and J. L. Marty, Front Chem, 2014, 2.
- D. Vanegas, C. Gomes and E. McLamore, *Biosens J*, 2016, 5, 2.
- A. Walcarius, S. D. Minteer, J. Wang, Y. Lin and A. Merkoçi, *J Mater Chem B*, 2013, 1, 4878-4908.
- A. Bonanni, A. H. Loo and M. Pumera, *TrAC Trends in Analytical Chemistry*, 2012, **37**, 12-21.
- 10. T. Yin and W. Qin, *TrAC Trends in Analytical Chemistry*, 2013, **51**, 79-86.
- M. A. Daniele, M. Pedrero, S. Burrs, P. Chaturvedi, W. W. A. Wan Salim, F. Kuralay, S. Campuzano, E. McLamore, A. A. Cargill, S. Ding and J. C. Claussen, in *Nanobiosensors* and *Nanobioanalyses*, eds. M. d. C. Vestergaard, K. Kerman, I. M. Hsing and E. Tamiya, Springer Japan, Tokyo, 2015, DOI: 10.1007/978-4-431-55190-4_8, pp. 137-166.
- 12. C. Z. Zhu, G. H. Yang, H. Li, D. Du and Y. H. Lin, *Anal Chem*, 2015, **87**, 230-249.
- E. S. McLamore, M. Convertino, I. Ocsoy, D. C. Vanegas, M. Taguchi, Y. Rong, C. Gomes, P. Chaturvedi and J. C. Claussen, in *Semiconductor-Based Sensors*, WORLD SCIENTIFIC, 2016, DOI: 10.1142/9789813146730_0002, pp. 35-67.
- 14. J. S. Daniels and N. Pourmand, *Electroanal*, 2007, **19**, 1239-1257.
- 15. E. B. Bahadir and M. K. Sezginturk, Artif Cells Nanomed Biotechnol, 2016, 44, 248-262.
- 16. M. I. Prodromidis, *Electrochim Acta*, 2010, **55**, 4227-4233.
- 17. J.-G. Guan, Y.-Q. Miao and J.-R. Chen, *Biosensors and Bioelectronics*, 2004, **19**, 789-794.
- R. Elshafey, A. C. Tavares, M. Siaj and M. Zourob, *Biosens Bioelectron*, 2013, 50, 143-149.
- 19. D. D. Macdonald, *Electrochim Acta*, 2006, **51**, 1376-1388.
- M. E. Orazem, P. Agarwal and L. H. Garciarubio, J Electroanal Chem, 1994, 378, 51-62.
- S. R. Das, Q. Nian, A. A. Cargill, J. A. Hondred, S. W. Ding, M. Saei, G. J. Cheng and J. C. Claussen, *Nanoscale*, 2016, 8, 15870-15879.
- 22. W. J. Yuan, Y. Zhou, Y. R. Li, C. Li, H. L. Peng, J. Zhang, Z. F. Liu, L. M. Dai and G. Q. Shi, *Sci Rep-Uk*, 2013, **3**.
- 23. I. I. Suni, *TrAC Trends in Analytical Chemistry*, 2008, **27**, 604-611.
- 24. H. Song, Y. Wang, J. M. Rosano, B. Prabhakarpandian, C. Garson, K. Pant and E. Lai, *Lab Chip*, 2013, **13**, 2300-2310.
- 25. R. Kumar, A. P. Bhondekar, R. Kaur, S. Vig, A. Sharma and P. Kapur, *Sensor Actuat B-Chem*, 2012, **171**, 1046-1053.
- Q. Dong, L. Du, L. Zhuang, R. Li, Q. Liu and P. Wang, Biosens Bioelectron, 2013, 49, 263-269.
- L. Lu, S. P. Deng, Z. W. Zhu and S. Y. Tian, *Food Analytical Methods*, 2015, 8, 1893-1902.
- Y. X. Dai, X. Wang, P. B. Zhang and W. H. Zhang, Measurement, 2017, 109, 408-424.
- 29. X. Ding, Z. Lv, C. Zhang, X. Gao and B. Zhou, *IEEE Access*, 2017.
- Z. Qin, B. Zhang, K. Gao, L. Zhuang, N. Hu and P. Wang, Sensors and Actuators B: Chemical, 2017, 239, 746-753.
 - O.-P. Smolander, A. S. Ribeiro, O. Yli-Harja and M. Karp, Sensors and Actuators B: Chemical, 2009, **141**, 604-609.
 - E. Akbari, Z. Buntat, E. Shahraki, R. Parvaz and M. J. Kiani, *Journal of biomaterials applications*, 2016, **30**, 677-685.

56.

57.

- F. F. Gonzalez-Navarro, M. Stilianova-Stoytcheva, L. 33. Renteria-Gutierrez, L. A. Belanche-Muñoz, B. L. Flores-Rios and J. E. Ibarra-Esquer, Sensors-Basel, 2016, 16, 1483.
- 34. Z. Q. Geng, S. S. Zhao, G. C. Tao and Y. M. Han, Food Control, 2017, 78, 33-42.
- 35. S. De Vito, E. Esposito, M. Salvato, O. Popoola, F. Formisano, R. Jones and G. Di Francia, Sensors and 58. B: Chemical. 2017. DOI: Actuators https://doi.org/10.1016/j.snb.2017.07.155.
- 36. O. Sadik, W. H. Land, A. K. Wanekaya, M. Uematsu, M. J. Embrechts, L. Wong, D. Leibensperger and A. Volykin, Journal of chemical information and computer sciences, 2004, **44**, 499-507.
- 37. T. Alizadeh and S. Zeynali, Sensors and Actuators B: Chemical, 2008, 129, 412-423.
- 38. Y. Zuo, S. Chakrabartty, Z. Muhammad-Tahir, S. Pal and E. C. Alocilja, leee Sens J, 2006, 6, 1644-1651.
- 39. R. G. Vogt, in Comprehensive Molecular Insect Science, Elsevier. Amsterdam, 2005. DOI: https://doi.org/10.1016/B0-44-451924-6/00047-8, pp. 753-803.
 - 40. A. Sanchez-Gracia, F. G. Vieira and J. Rozas, Heredity, 2009, 103, 208-216.
- D. C. Vanegas, M. Taguchi, P. Chaturvedi, S. Burrs, M. Tan, 41. H. Yamaguchi and E. S. McLamore, Analyst, 2014, 139, 660-667.
- 42. S. L. Burrs, D. C. Vanegas, Y. Rong, M. Bhargava, N. Mechulan, P. Hendershot, H. Yamaguchi, C. Gomes and E. S. McLamore, Analyst, 2015, 140, 1466-1476.
- 43. C. Song, A. Ortiz-Urquiza, S. H. Ying, J. X. Zhang and N. O. Keyhani, Plos One, 2015, 10.
- 44. Y. Rong, J. Kieran-Lewis, N. O. Keyhani and E. S. McLamore, 2016.
- 45. S. Fujii, T. Maeda, I. Noge, Y. Kitagawa, K. Todoroki, K. Inoue, J. Z. Min and T. Toyo'oka, Clin Chim Acta, 2014, 430. 140-144.
- 46. C.-W. Hsu, C.-C. Chang and C.-J. Lin, 2003.
 - 47. T. Hastie, R. Tibshirani and J. Friedman, in The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer New York, New York, NY, 2009, DOI: 10.1007/978-0-387-84858-7_7, pp. 219-259.
- 48. N. Halko, P. G. Martinsson and J. A. Tropp, Siam Rev, 2011, 53, 217-288.
 - 49. J. Bergstra and Y. Bengio, J Mach Learn Res, 2012, 13, 281-305.
- 50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, J Mach Learn Res, 2011, 12, 2825-2830.
- 51. S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter and J. C. Claussen, Acs Sensors, 2017, 2, 210-217.
- I. M. Nooren and J. M. Thornton, Journal of molecular 52. biology, 2003, 325, 991-1018.
- 53. Q. J. Liu, H. Wang, H. L. Li, J. Zhang, S. L. Zhuang, F. N. Zhang, K. J. Hsia and P. Wang, Biosens Bioelectron, 2013, 40. 174-179.
- 54. M. Liu, M. Wang, J. Wang and D. Li, Sensors and Actuators B: Chemical, 2013, 177, 970-980.
- 55. T. Hastie, R. Tibshirani and J. Friedman, in The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, Springer New York, New York, NY, 2009, DOI: 10.1007/978-0-387-84858-7_2, pp. 9-41.

- H. Abdi and L. J. Williams, Wiley interdisciplinary reviews: computational statistics, 2010, 2, 433-459.
- P. F. Cohn, K. M. Fox and C. Daly, Circulation, 2003, 108, 1263-1277.
- F. Kjolstad, S. Kamil, S. Chou, D. Lugato and S. Amarasinghe, 2017.
- R. Ganesh, N. Suresh and J. Ramesh, The National medical 59. journal of India, 2006, 19, 155-158.
- 60. R. Chiu, C. Ho, S. Tong, K. Ng and C. Lam, Hong Kong medical journal= Xianggang yi xue za zhi/Hong Kong Academy of Medicine, 2002, 8, 172-176.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

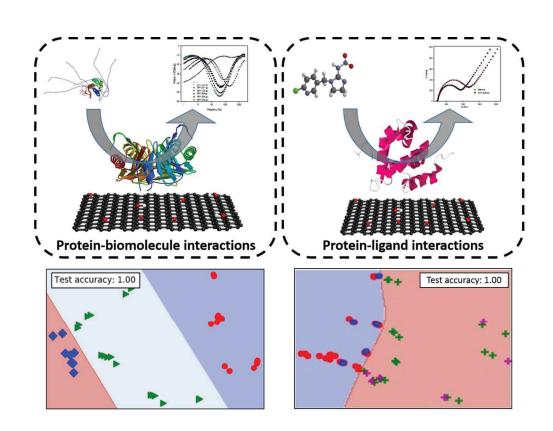
35

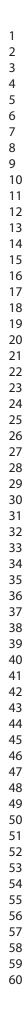
36

37

38

39


40


41

42

43

44

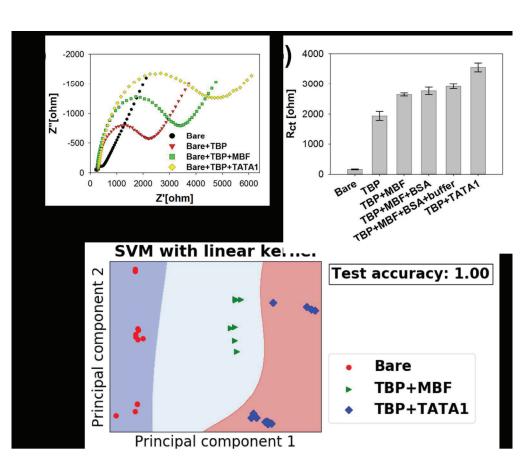


Figure 1. Impedimetric biosensor for the detection of protein-protein or protein-DNA interactions. a) Representative Nyquist plots for TBP-MBF interactions or TBP-TATA interactions clearly show an increase in charge transfer resistance after addition of target. b) Average Rct derived from Randles-Ershler equivalent circuit model show significant results for TBP-biomolecule interactions but no significant change after addition of buffer or BSA (p values shown for each test group). c) Support vector machine (SVM) classification results with linear kernel. Additional Nyquist plots, average charge transfer resistance, and other SVM kernels are shown in the supplemental section

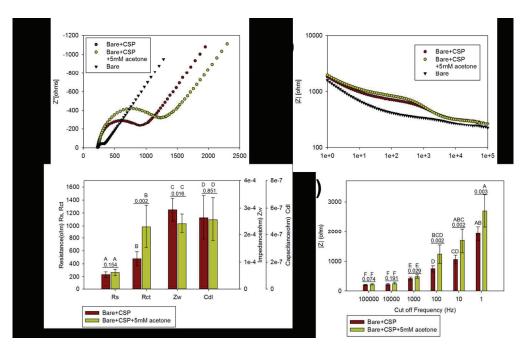


Figure 2. EIS analysis of CSP-acetone interactions in the presence and absence of 5mM acetone. Representative a) Nyquist plots and b) Bode plots. c) Average parameters from Randles-Ershler equivalent circuit analysis (Rs, Rct, Zw and Cdl) from Randel's equivalent circuit, baseline data and EIS in the presence of 5mM acetone. d) Net impedance at representative cut off frequencies. In panels ac and d, numbers denote the p-value and uppercase letters denote statistically significant groups.

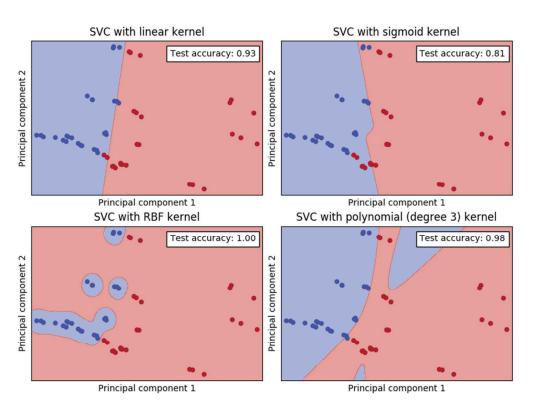


Figure 3. SVM classification for CSP-acetone biosensors using four common kernels. a) linear kernel (test accuracy =96%), b) sigmoidal kernel (test accuracy =83%), c) radial base function kernel (test accuracy =98%), and d) polynomial kernel (test accuracy =96%). Blue dots represented baseline EIS signals (no acetone in samples) and red dots represented positive EIS signals (5mM acetone in samples). The decision surface of these four SVM classifiers are plotted by red and blue regions.

203x151mm (100 x 100 DPI)

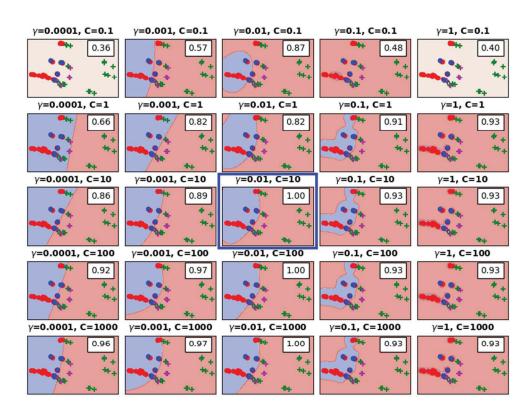


Figure 4. Tuning of RBF hyper-parameters (C and gamma) for CSP acetone interactions. Representative SVM classification results for one training and testing set show the effects of parameters C and g in the output of the RBF kernels. Red and blue circles represent the baseline samples in training and testing sets; green and purple plus symbols represent the positive signals in training and testing sets. The background blue and red region indicated the classifier decision surface, where all data fall into the red region are predicted as positive. Cross-validation scores are shown in the top right corner of each subplot. The optimal classifier zone is highlighted with a blue rectangle in the center of the image.

203x151mm (100 x 100 DPI)

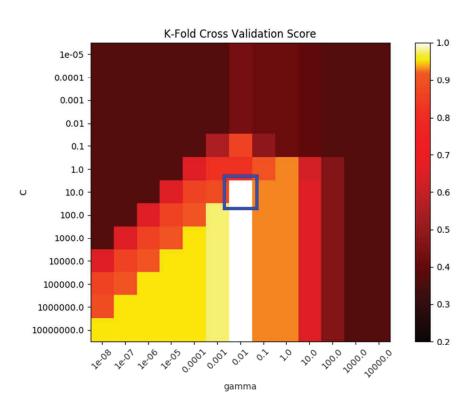
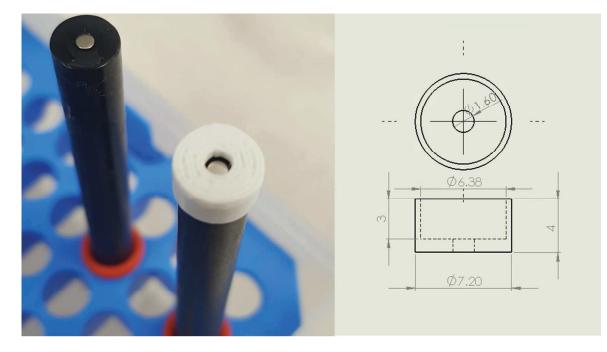
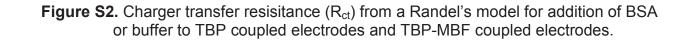
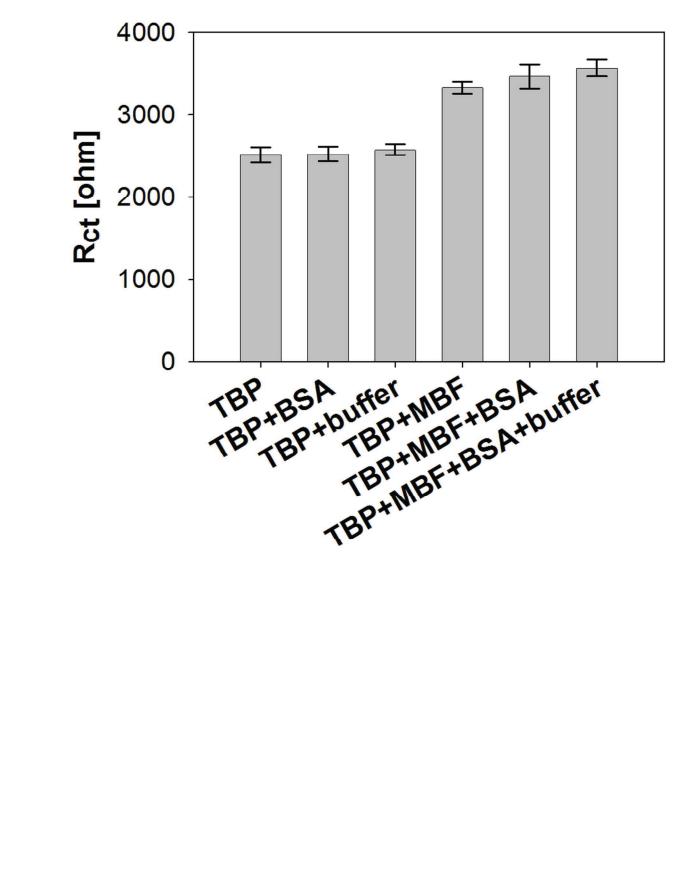


Figure 5. Heatmap of validation accuracy as a function of RBF parameters C and γ . The color indicates the cross-validation accuracy, where lighter colors represent a higher cross-validation score. Optimal parameters are highlight with a blue rectangle in the center


203x151mm (100 x 100 DPI)


SUPPLEMENTAL


Table S1. Randles-Ershler equivalent circuit analysis results for TBP-MBF binding and TBP-TATA¹ binding.

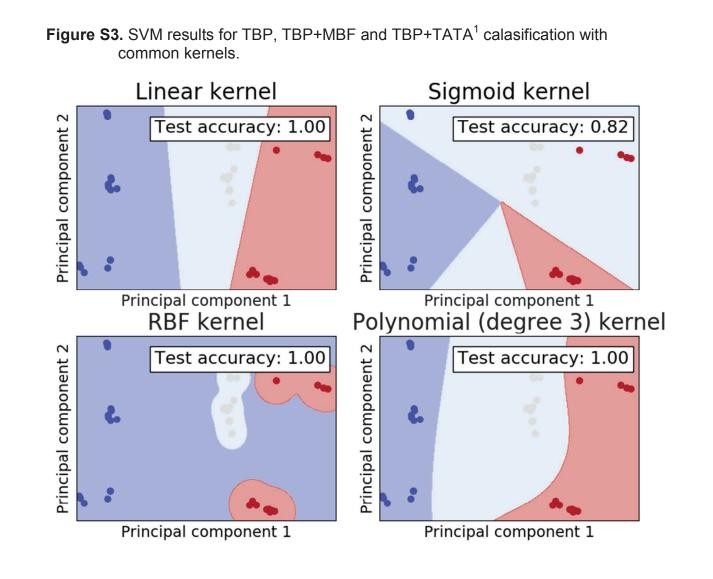
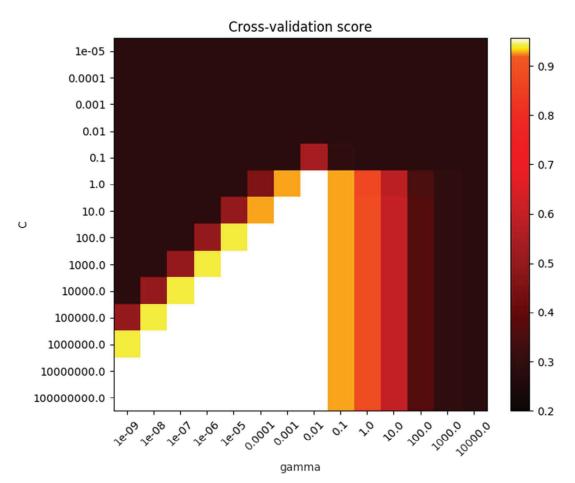
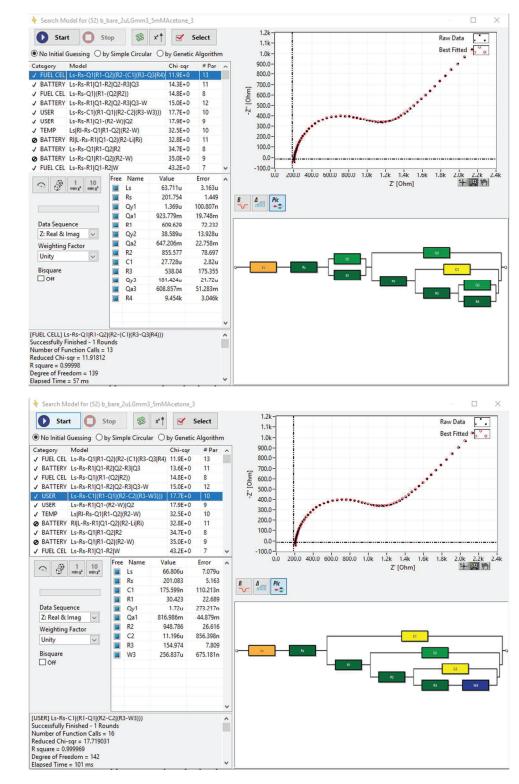
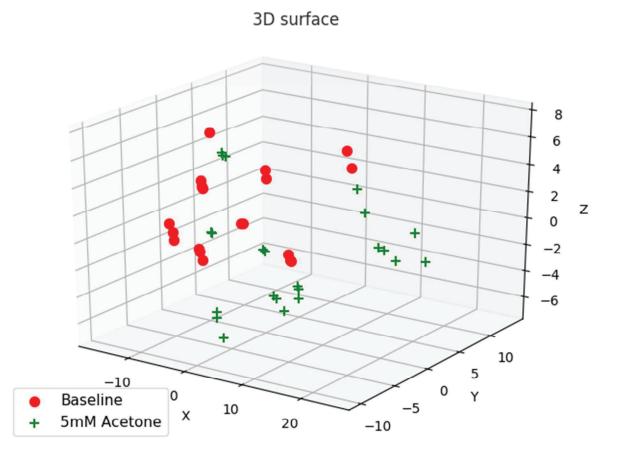

Binding	Circuit element	Value (ohm)	Standard deviation
	Rs	265.73	0.38
TBP	R _{ct}	2021.65	45.63
IDF	Z _w	1.80E-04	6.38E-07
	C _{dl}	5.10E-07	4.58E-10
	Rs	266.50	1.78
TBP-MBF	R _{ct}	2640.88	52.30
	Z _w	1.80E-04	1.85E-06
	C _{dl}	4.91E-07	8.03E-09
	R _s	328.45	2.78
	R _{ct}	3395.19	302.53
TBP-TATA1	Z _w	1.41E-04	1.46E-05
	C _{dl}	5.85E-07	2.75E-08

Figure S1. Piture of a 3D printed plastic cap fitted onto standard Basi Pt/Ir electrode, and engineering drawing design of the cap.






Figure S4. Representative SVM parameter tunning result for TBP, TBP+MBF and TBP+TATA¹ calasification with RBF kernel.

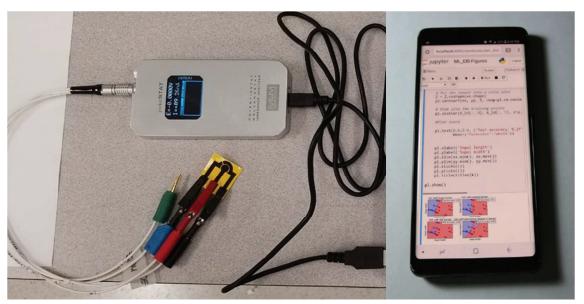

Figure S5. Representative equivalent circuit models tested with model search function in ZMAN software.

Figure S6. 3D data representation for data analyzed with three principal components. Red dots represented baseline signals of Gmm CSP biosensor, green plus represented 5mM acetone detection signals.

Figure S7. Support vector machine learning software installed on Android phone with small molecule using mobile detection and analysis systems. Screenshot showed Jupyter notebook running a SVM kernel selection code.

SVM Machine Learning for EIS data analysis step-by-step user guide

Yue Rong, Agricultural and Biological Engineering, University of Florida

1. Software preparation

1.1. Download Anaconda installer

"Anaconda is a freemium open source distribution of the Python and R programming languages for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment." --https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)

It includes all the packages and tools we need and is completely free.

It can be downloaded at:

https://www.continuum.io/downloads

There are different versions of Anaconda for Windows, macOS and Linux; Python 3.6 and 2.7. It will be about 2 Gb after installation and downloading all packages. We suggest Python 3.6.

a)	O ANACONDA.	What is Anaconda?	Products Support	Aneconda Cloud Documentatio Community About Resou	
	Down	load Anaconda D	lictributi		
	Down	Version 5.0.0 Release Date: September			
		Download For: 			
	High-Performance Distribution	Package Management	F	Portal to Data Science	
	Easily install 1,000+ <u>data science</u> packages	Manage packages, dependencie and environments with <u>conda</u>		er insights in your data and e interactive visualizations	
		🕊 Windows 🧉 mosOS 👌	Linux		
b)	4	Windows 🗯 macOS	∆ Linux		
	Anaco	nda 5.0.0 For Windo	ws Installe	er	
	Python 3.6 version 土 Download			2.7 version * Download	
	64-BIt Graphical Installer (535 h 32-Bit Graphical Installer (436 h			ical Installer (522 MB) ⑦ nical Installer (421 MB)	

Figure U1. Download Anaconda

1.2. Install Anaconda

Double click the installer to launch

Analyst

NOTE: If you encounter any issues during installation, temporarily disable your anti-virus software during install, then re-enable it after the installation concludes. If you have installed for all users, uninstall Anaconda and re-install it for your user only and try again.

Click Next.

Read the licensing terms and click "I Agree"

Select an install for "Just Me" unless you're installing for all users (which requires Windows Administrator privileges) and click Next.

Select a destination folder to install Anaconda and click the Next button.

NOTE: Install Anaconda to a directory path that does not contain spaces or unicode characters.

NOTE: Do not install as Administrator unless admin privileges are required.

Choose whether to add Anaconda to your PATH environment variable.

We recommend not adding Anaconda to the PATH environment variable, since this can interfere with other software. Instead, use Anaconda software by opening Anaconda Navigator or the Anaconda Prompt from the Start Menu.

Choose whether to register Anaconda as your default Python 3.6.

Unless you plan on installing and running multiple versions of Anaconda, or multiple versions of Python, you should accept the default and leave this box checked.

Click the Install button.

You can click Show Details if you want to see all the packages Anaconda is installing.

Click the Next button

After a successful installation, you will see the "Thanks for installing Anaconda" dialog box:

Click the Finish button

After your install is complete, verify it by opening Anaconda Navigator, a program that is included with Anaconda: from your Windows Start menu, select the shortcut Anaconda Navigator. If Navigator opens, you have successfully installed Anaconda.

Anaconda Navigator

If you had any issue installing the Anaconda, please visit <u>https://docs.anaconda.com/anaconda/install/</u> for help.

2. Getting started

2.1. Open Anaconda Navigator

Find Anaconda 3 in "Windows Start Menu" and click "Anaconda Navigator" to open

2.2. Click "Launch" to open "Jupyter Notebook"

It will open in your internet browser (for me it's a Chrome) an the default file location is under your system user folder. (for example C:\Users\Username)

a)	Anaconda3 (64-bit)					🚺 Upgrade Now	- CI X
	Anaconda Cloud	A Maria	Applications on root	v Channels			Refresh
	Anaconda Navigator	Tenvironments	0	0	٥	_ •	^
	Anaconda Prompt	💼 Projects (beta)	Jupyter	IPy	*		
	IPython	🖨 Learning	notebook 7 431 Web-based, interactive computing	qtconsole 7 42.1	spyder 7 212 Scientific Pithon Development	glueviz 0.10.4 Multidimensional data visualization across	
		🕰 Community	web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	Enviñonment, Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	files. Explore relationships within and among related datasets.	
	Jupyter Notebook		Launch	Launch	Launch	Install	
	Jupyter QTConsole		•	•			
	Reset Spyder Settings		orange3	R			
	Spyder		2.4.1	1.0.136 A set of integrated tools designed to help you be more productive with R. Includes R			
	New York	Documentation		essentials and notebooks.			
		Developer Blog Feedback	Install	Install			
		¥ & ?					×

Figure U2. Open Jupyter Notebook

2.3. Run an example code

Download an example code from the link below and save it to "downloads" folder.

http://scikit-learn.org/stable/ downloads/plot svm nonlinear.ipynb

use the file browser to navigate and open the download source code above. It should look like Figure U3 below.

localhost:8888/no	tebooks/Downloads/plot_svm_nonlinear.ipynb	☆	0	6	0	ABP	L 🖸	i
💭 jupyter	plot_svm_nonlinear Last CheckpoInt: a minute ago (unsaved changes)						2	
File Edit	View Insert Cell Kernel Widgets Help						Pyth	h
8 + %	2 To A V H C Code Collicolbar							
In []:	%matplotlib inline							
	Non-linear SVM							
	Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.							
	The color map illustrates the decision function learned by the SVC.							
In []:	<pre>print(doc)</pre>							
	<pre>import numpy as np import matplotlib.pyplot as plt</pre>							
	from sklearn import svm							Pythor
	<pre>xx, yy = np.meshgrid(np.linspace(-3, 3, 500),</pre>							
	np.random.seed(0) X = np.random.randn(300, 2)							
	Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)							
	<pre># fit the model clf = svm.NuSVC() clf.fit(X, Y)</pre>							
	# plot the decision function for each datapoint on the grid							
	<pre>Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape)</pre>							
	<pre>plt.imshow(Z, interpolation='nearest',</pre>							
	<pre>extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r)</pre>							
	<pre>contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,</pre>							
	<pre>plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt vticks(())</pre>							

Figure U3. Example code for non-linear SVM

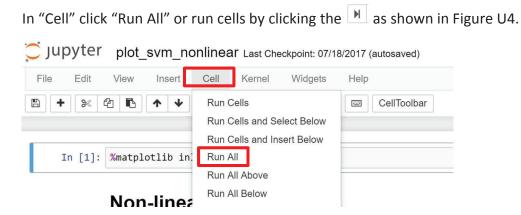


Figure U4. Run All cells to test the example code

The program should generate a plot similar to Figure U5.

```
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired)
plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()
```

Automatically created module for IPython interactive environment

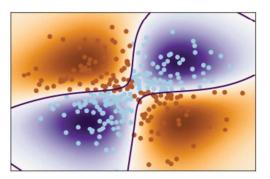


Figure U5. Expected output from example code

3. EIS data analysis with SVM machine learning

3.1. Data preparation

Raw EIS data usually includes frequency with real impedance (Z') and imaginary impedance (Z'') at that frequency as shown in Figure U6.

	Α	В	с
	Frequency [Hz]	Z'_raw [Ohm]	Z"_raw [Ohm]
0	99999.99984	258.054229	-7.637512
1	85769.58917	255.299691	-17.882566
2	73564.22411	278.492955	-18.88002
3	63095.73291	275.258838	-15.963164
4	54116.95083	289.347566	-28.062849
5	46415.88639	287.247927	-26.796648
6	39810.71513	286.058176	-32.585536
7	34145.48673	296.438676	-33.791812
8	29286.44376	301.039143	-34.728174
9	25118.8625	300.781714	-35.632715
10	21544.34515	307.305851	-40.781186
11	18478.4963	308.219676	-39.220288
12	15848.93039	312.550444	-44.296644
13	13593.56249	311.666707	-50.051774
14	11659.14268	315.616756	-54.547519
15	9999.998792	318.54106	-58.196081
16	8576.957885	322.457927	-63.004504
17	7356.421543	326.558636	-69.321829
18	6309.57253	330.949427	-77.043239
19	5411.69444	336.52842	-84.527607
20	4641.588089	343.795531	-92.286639
21	3981.071029	352.501566	-102.064143
22	3414.548269	359.595675	-112.278786
23	2928.644022	372.104547	-122.381571
24	2511.885947	385.386363	-134.632903

Figure U6. A part of representative raw EIS data.

Make sure all you EIS test are using the same frequency range then **crate an excel sheet** as shown in Figure U7, where first column are names, second column are labels, each following column is one feature which is either real impedance or imaginary impedance at a frequency.

File	ю. —	Home	Insert	Page Layout	Formulas	Data	Review	View	Developer
	80		Calibri	• 11 •		**	🖹 Wrap T	ext	General
		Copy 👻	er B I L	1 • 🛛 • 🖄	• <u>A</u> • = =	-	🖶 Merge	& Center 🝷	\$ - % 9
	Clipb	ooard	rs.	Font	G.	Alig	Inment	F3	Number
v 17		•	× v	fx					
		А	В	С	D	E	F	G	Н
_	1	name	label	1	2	3	4	l.	5 6
	2								
5	3								
	4								
	5								
_	6								

Figure U7. Excel template first step

Then, copy and transpose paste all real impedance (column B in Figure 12) to row 2 in Figure 13 starting at column C. (you may need to transpose paste the data in its original sheet then copy and paste to the template).

Next, using similar method as described above, copy all imaginary impedance (column C in Figure 12) to row 2 in Figure 13 starting at column CA (I have 76 frequencies in one EIS, I named row 1 from C as 1,2,3...76,77, to 152). Use your own naming system to give each EIS scan a unique name and put it in column A. Set a label (0 or 1 for binary classification) and put it in column B as shown in Figure U8.

/	A	В	С	BZ	CA	CB	EW	EX
1	name	label	1	76	77	78	151	152
2	4B2G1	0	258.054229	1621.41	-7.63751	-17.8826	-873.914	-939.174
2								

Figure U8. Pasted imaginary impedance into row 2 from column CA to EX (columns D-BY and CC-EV are hidden). Name and label added

Transfer all you EIS data that you are interested in classification (usually with similar experimental setting and a single variable) to the template and save it as *.csv file

										data	Project.csv	Excel							Yue Rong
		Home	Insert F	Page Layout	Formulas	Data	Review	View K	utools Ei	nterprise	Add-ins	ACROBAT	Team		hat you want				
-	Хc	ut	Calibri	* 11 *	A A = =	**	Wrap Te	ext	General	•		Norn	nal	Bad	Go	od		*	ΣΑι
		opy * ormat Painte	B I U	• 🖽 • 🖄 Font	• <u>A</u> • ≣ ≡		Merge	& Center +	\$ - % 9		ditional Forr natting ▼ Ta			Calculatio	n Che	eck Cell		Delete Form	iat 🥠 C
L,	ciipu	- i	X V		ame	01	Jiment	1.0	Number	141			56	110.5				Cons	
	4	A	В	с	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R
	1	name	Label	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
- 1	2	4B2G1	0	258.0542	255.2997	278.493	275.2588	289.3476	287.2479	286.0582	296.4387	301.0391	300.7817	307.3059	308.2197	312.5504	311.6667	315.6168	318.5
. [3	4B2G2	0	265.8894	268.0702	273.757	285.1902	278.4257	290.3433	291.5499	293.6509	302.0073	302.9377	307.6231	308.7262	312.3669	313.9265	315.5427	319
1	4	4B2G3	0	267.317	266.4577	276.3333	275.4226	286.8759	282.8898	294.9838	298.7177	299.2943	304.1186	306.9148	307.7466	312.0538	312.9816	315.566	318.
	5	5B2G1	0	212.9031	210.1753	226.3933	227.7355	227.9052	226.8304	234.8648	238.0592	239.7823	242.3075	242.45	245.1441	246.9025	247.1612	249.6174	253.
	6	5B2G2	0	221.8998	225.2367	231.5692	227.6233	227.1677	228.3944	234.2414	240.8749	242.4335	243.288	244.2544	247.5539	247.3955	248.675	250.9991	253.
n i	7	5B2G3	0	220.5023	213.8915	224.6013	228.9741	225.4477	231.434	239.4562	239.4411	240.5017	244.0199	246.1277	246.6161	248.3261	249.4041	251.0594	253.
	8	6B2G1	0	166.9949	173.7204	184.3192	169.5682	173.2099	176.5317	179.8662	179.617	183.9284	185.823	186.4487	188.3658	190.5809	191.4963	193.6587	196.
5	9	6B2G2	0	179.0694	182.0632	171.9485	169.2709	183.162	179.8637	183.721	182.0691	184.8741	185.6762	187.9043	189.6923	191.1944	191.7999	192.7237	196
	10	6B2G3	0	168.6349	182.5261	178.646	174.2017	177.7401	179.4154	182.8754	184.3721	187.3621	184.121	186.3112	189.6721	191.2342	191.5679	193.5646	196.
	11	4B2G5A1	1	259.9313	259.0188	266.8876	284.1592	285.0439	286.6123	294.9715	297.3411	304.1833	302.6753	305.6459	309.1808	311.1617	310.8451	313.0142	317.
	12	4B2G5A2	1	263.466	266.4305	283.5566	278.298	285.1393	285.0858	289.288	298.2087	300.9645	302.7892	303.546	306.7226	309.8123	310.6402	311.6402	316.
	13	4B2G5A3	1	265.7502	266.4175	272.3123	276.0552	276.7814	288.0103	291.8241	293.7257	299.5611	301.3291	303.3106	303.8075	308.4623	310.1837	312.8859	316.
	14	582G5A1	1	214.0163	227.5339	223.9881	230.3015	225.7774	232.9494	236.9239	240.9703	242.9936	241.4223	245.6318	249.8173	249.9303	249.7395	251.7926	253.
	15	5B2G5A2	1	221.6863	218.2461	224.2944	225.4269	234.8084	235.1881	237.1379	239.1588	242.6543	243.4588	245.48	247.0395	249.6863	250.0278	251.7821	254.
	16	5B2G5A3	1	219.98	212.6655	217.8348	232.9979	229.0809	234.607	239.0655	242.7952	240.4469	246.9357	247.8388	248.3381	250.0531	249.12	250.7349	254.
	17	6B2G5A1	1	186.333	178.2627	177.4258	185.1232	182.1481	184.8892	182.5009	183.927	188.007	190.4824	191.2653	190.0282	193.1123	193.4678	194.8699	196.
	18	6B2G5A2	1	179.8914	173.6595	173.5661	180.1657	180.2534	182.6176	184.5293	184.7471	186.4101	187.6895	187.2631	189.8662	190.9922	191.2556	192.9192	194.
	19	6B2G5A3	1	182.3292	179.924	177.2412	167.8647	180.4624	179.4651	185.4587	183.6399	188.3154	186.6553	189.5718	189.8636	191.809	191.5059	193.1888	195.
	20	4B1G5A1	1	286.9791	291.5914	297.6871	292.363	306.4467	314.4559	308.4549	322.7986	324.8604	325.3788	325.2187	333.2716	331.9342	333.5523	336.6442	33
	21	4B1G5A2	1	272.9672	281.8878	288.8579	313.4164	310.8411	312.8765	312.6907	309.6892	323.1059	325.5448	327.3001	327.981	332.406	333.0716	333.1723	337.
		4B1G5A3		295,2762			297.0929				321.0305		325.234		330,9777			334.3737	

Figure U9. Example raw EIS dataset ready for SVM machine learning

This example file can be downloaded from:

https://www.dropbox.com/s/7ftbm75mpyj6mc1/dataProject.csv?dl=0

Each row is a data from one run of a sample (one EIS/CV scan)

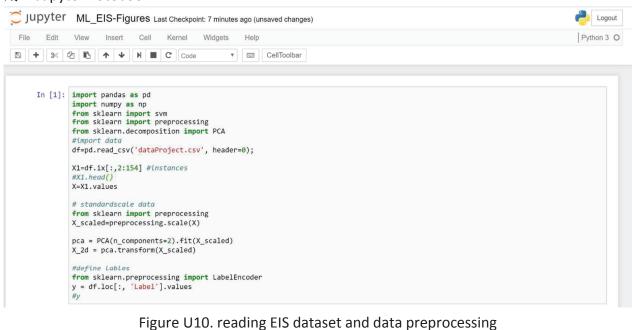
The label column is used for supervised classification/regression. It could be binary or quantitate depends on your applications.

For example:

In this dataset, "0" represent the blank/negative EIS results with no acetone in the samples; "1" represent the positive results with 5mM acetone concentration in the samples.

If you are testing glucose with 0, 1, 10 and 100 mM, you may label them as either "0,1,2,3" or "0,1,10,100" depending on doing classification or regression.

Each column followed is called a "feature" that in EIS is the real or imaginary impedance at a certain frequency.


3.2. SVM code for EIS data

The code can be downloaded from:

https://www.dropbox.com/s/7ftbm75mpyj6mc1/dataProject.csv?dl=0

Opened it in "Jupiter notebook" and put the datafile prepared as above in the same folder. Run the code by cells.

用	"Jup	vter	note	book"
/ 14	Jub	ycei	11010	NOOK

This cell read the EIS dateset from 'dataProject.csv'

The data was scaled using preprocessing.scale(X). And a principle component analysis (PCA) was performed to decompose the data into two dimensional.

Figure U11. Split data into training and testing sets.

EIS data were split into 80% training and 20% testing.

```
In [3]: import matplotlib.pyplot as pl
```

%matplotlib

Using matplotlib backend: Qt5Agg

Figure U12. Pyplot from matplotlib package was imported and figures are set to appear in a new window.

Figures plotting tools was loaded.

In [4]:	#======================================
	#Fig 2
	#=
	#C = 10 # SVM regularization parameter
	<pre>svc = svm.SVC(kernel='linear').fit(X_train, y_train)</pre>
	<pre>rbf_svc = svm.SVC(kernel='rbf').fit(X_train, y_train)</pre>
	poly_svc = svm.SVC(kernel='poly').fit(X train, y train)
	<pre>sigmod_svc = svm.SVC(kernel='sigmoid').fit(X_train, y_train)</pre>
	# create a mesh to plot in
	<pre>x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1</pre>
	<pre>y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1</pre>
	xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
	np.arange(y_min, y_max, h))
	# title for the plots
	titles = ['SVC with linear kernel',
	'SVC with sigmoid kernel',
	'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel']
	<pre>for k, clf in enumerate((svc, sigmod_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each</pre>
	# point in the mesh [x min, x max]x[y min, y max].
	pl.subplot(2, 2, k + 1)
	pl.subplots_adjust(wspace=0.4, hspace=0.4)
	<pre>Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])</pre>
	# Put the result into a color plot Z = Z.reshape(xx.shape)
	د = ۲.۳εsHape(xx.shape) pl.contourf(xx, yy, z, cmap=pl.cm.coolwarm, alpha=0.5)
	# Plot also the training points
	<pre>pl.scatter(X_2d[:, 0], X_2d[:, 1], c=y, cmap=pl.cm.coolwarm,s=20)</pre>
	#Plot score
	<pre>pl.text(0.6,0.9, ('Test accuracy: %.2f' % clf.score(X_2d, y)), transform=pl.gca().transAxes, bbox={'facecolor': 'white'})</pre>
	n viskel('Senel longtk')
	pl.xlabel('Sepal length') pl.ylabel('Sepal width')
	pl.xlim(xx.min(), xx.max())
	pl.ylim(yy.min(), yy.max())
	pl.xticks(())
	pl.yticks(())
	pl.title(titles[k])
	pl.show()

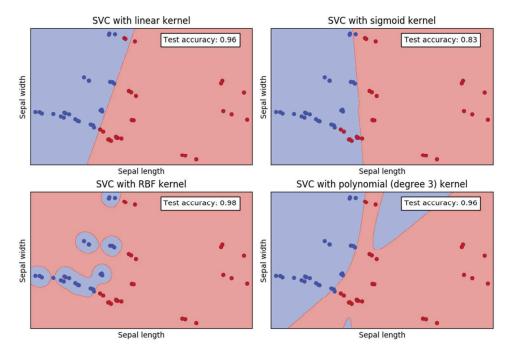


Figure U14. Result figure from the kernel selection code

In [6]:	<pre>from sklearn.model_selection import cross_val_score</pre>	
	<pre>scores = cross_val_score(estimator=svm.SVC(kernel='rbf', gamma=0.01, C=10),</pre>	
	X=X_2d,	
	y=y, cv=10.	
	n_jobs=10)	
	print('CV accuracy scores: %s' % scores) print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))	
	CV accuracy scores: [0.666666667 1. 0.83333333 1. 1. 1. 1. 1. 1. 1. 1.] CV accuracy: 0.950 +/- 0.107	
igure	e U15. Cross validation and its result.	
In [7]:	from matplotlib.colors import Normalize	
10 4	from sklearn.svm import SVC	
	from sklearn preprocessing import StandardScaler	
	<pre>from sklearn.datasets import load_iris from sklearn.model selection import StratifiedShuffleSplit</pre>	
	<pre>from sklearn.model_selection import GridSearchCV %matplotlib</pre>	
	<pre>class MidpointNormalize(Normalize):</pre>	
	<pre>definit(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalizeinit(self, vmin, vmax, clip)</pre>	
	<pre>def call (self, value, clip=None):</pre>	
	x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y))	
	C_range = np.logspace(-5, 8, 14)	
	<pre>gamma_range = np.logspace(-9, 4, 14) param_grid = dict(gamma=gamma_range, C=C_range)</pre>	
	<pre>cv = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=12) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)</pre>	
	grid - Gridearchev(sve(), param_grid-param_grid, ev-ev)	
	print("The best parameters are %s with a score of %0.2f"	
	% (grid.best_params_, grid.best_score_))	
	# Now we need to fit a classifier for all parameters in the 2d version	
	# (we use a smaller set of parameters here because it takes a while to train)	
	C_2d_range = [1,10, 100, 1000,10000]	
	gamma_2d_range = [1e-4,1e-3, 1e-2,1e-1,1] classifiers = []	
	for C in C_2d_range:	
	<pre>for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma)</pre>	
	clf.fit(X_train, y_train) classifiers.append((C, gamma, clf))	

The best parameters are {'C': 10.0, 'gamma': 0.01} with a score of 0.99

Figure U16. Finding the best parameters for RBF kernel and its results.

Figure U17. Code to visualize effect of parameters for RBF kernel.

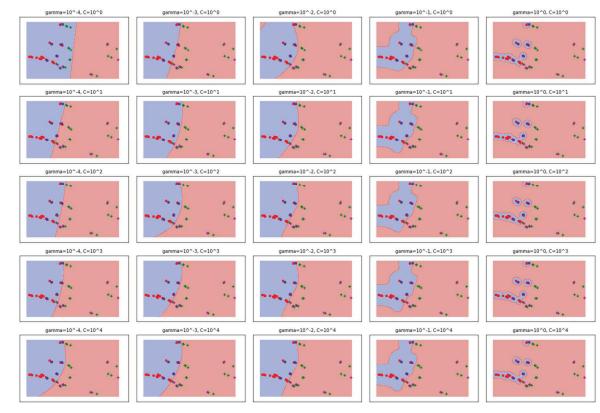


Figure U18. Effect of parameters for RBF kernel.

If you have your dataset prepared like this you may easily modify my code or the codes available online and test it out.

3.3. Scikit-Learn

http://scikit-learn.org/stable/index.html

If you have time, checkout this site.

Most of my code and knowledge is based on the information and example from this open source

project.

Good Luck!

10/23/2017

It can be downloaded at: 可以在以下地址下载:

SVM Machine Learning for EIS data analysis step-by-step user guide

支持向量机机器学习用于电化学阻抗谱数据分析的使用指南

Yue Rong 荣赦 **UF** Biosensor Lab 佛罗里达大学生物传感器实验室

1. Software preparation (软件准备)

1.1. Download Anaconda installer(下载 anaconda 安装包)

"Anaconda is a freemium open source distribution of the Python and R programming languages for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment." -- https://en.wikipedia.org/wiki/Anaconda (Python distribution)

"Anaconda 是一个免费开源的 Python 及 R 语言开发环境。它主要用于大规模的数据处理,预测 分析和科学计算,致力于简化程序包的管理和使用"-来自维基百科

It includes all the packages and tools we need and is completely free.

该软件包含了我们全部需要的工具

L	What is Anaconda?	Products	Support	Anaconda Clo Community		Blog Contact	
Downlo	ad Anaconda I	Distr	ibuti	on			
	ersion 5.0.0 Release Date: Septemb						
	Download For: 듬 📺	۵					
High-Performance Distribution	Package Management		Р	ortal to Data	Science		
Easily install 1,000+ <u>data science</u> packages	Manage packages, dependence and environments with <u>cond</u>		Uncove	er insights in g interactive v	your data		
[Windows 🗯 macOS	∆ Linux					

Figure 1 Choose your operating system by clicking "Windows", "macOS" or "Linux".

https://www.continuum.io/downloads

There are different versions of Anaconda for Windows, macOS and Linux; Python 3.6 and 2.7. It will be about 2 Gb after installation and downloading all packages. We suggest Python 3.6.

该网站提供了 Anaconda 为 Windows, macOS 和 Linux 三种平台的安装包。并且都有 Python 3.6 和 2.7 两个版本。下载安装完成大概需要 2Gb 的硬盘空间。我们建议使用 Python 3.6 版本。

Windows	🗯 macOS 🔬 Linux
Anaconda 5.0.0	For Windows Installer
Python 3.6 version * Download <u> 64-Bit Graphical Installer (435-MB)</u> 32-Bit Graphical Installer (436-MB)	Python 2.7 version * Download 64-Bit Graphical Installer (522 MB) (*) 32-Bit Graphical Installer (421 MB)

Figure 2 Click to download Python 3.6 version installer (macOS and Linux are similar)

1.2. Install Anaconda(安装 Anaconda)

Double click the installer to launch.(双击安装包开始)

NOTE: If you encounter any issues during installation, temporarily disable your anti-virus software during install, then re-enable it after the installation concludes. If you have installed for all users, uninstall Anaconda and re-install it for your user only and try again.

注意:如果在安装过程中遇到任何问题,暂时关闭反病毒软件,安装完成后重新开启。如果你选择了"为所有用户"安装,请删除 Anaconda,重新安装并选择"只为自己"安装。

Click Next.(点击继续)

Read the licensing terms and click "I Agree". (阅读并点击同意)

Select an install for "Just Me" unless you're installing for all users (which requires Windows Administrator privileges) and click Next.

选择"只为我"安装,除非你要为所有用户安装(要求 Windows 管理员权限)点击继续。

Select a destination folder to install Anaconda and click the Next button.(选择安装位置)

NOTE: Install Anaconda to a directory path that does not contain spaces or unicode characters.

注意: 安装目录中不要含有空格或者特殊符号

NOTE: Do not install as Administrator unless admin privileges are required.

注意:不要以管理员身份安装,除非管理员权限需要的时候

	Choose Install Location			
	Choose the folder in which to install /	Anaconda3 4	.4.0 (64-bi	it).
	3 4.4.0 (64-bit) in the following folder. T elect another folder. Click Next to continu		different	
Destruiter Falder				
Destination Folder				
Destination Folder	naconda3	Bro	wse	
	naconda3	Bro	wse	
C:\Users\anaconda\A	naconda3	Bro	wse]
C:\Users\anaconda\A Space required: 1.9GB	naconda3	Bro	wse	

Figure 3 Select a destination folder to install Anaconda and click the Next button

Choose whether to add Anaconda to your PATH environment variable. (选择是否将 Anaconda 加 入你的 PATH 环节变量)

We recommend not adding Anaconda to the PATH environment variable, since this can interfere with other software. Instead, use Anaconda software by opening Anaconda Navigator or the Anaconda Prompt from the Start Menu.

我们不推荐把 Anaconda 加入 PATH 环境变量,因为这可能会影响其他软件。所以我们建议从开始菜单打开 Anaconda Navigator 或者 Anaconda Prompt 来使用。

	Advanced Installation Options Customize how Anaconda integrates with Windows
	Advanced Options
	Add Anaconda to my PATH environment variable
	Not recommended. Instead, open Anaconda with the Windows Start menu and select "Anaconda (64-bit)". This "add to PATH" option makes Anaconda get found before previously installed software, but may cause problems requiring you to uninstall and reinstall Anaconda.
	Register Anaconda as my default Python 3.6 This will allow other programs, such as Python Tools for Visual Studio PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically detect Anaconda as the primary Python 3.6 on the system.
	detect Anaconda as the primary Python 5.0 on the system.
	Continuum Analytics, Inc
	< Back Install Cancel
	Figure 4 register Anaconda as your default Python 3.6
	ou plan on installing and running multiple versions of Anaconda, or multiple versions Ild accept the default and leave this box checked.
you shou	
you shou 除非你有	Id accept the default and leave this box checked.
you shou 除非你有 Click the	ild accept the default and leave this box checked. f多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。
you shou 除非你有 Click the You can o	ild accept the default and leave this box checked. 有多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button.(点击安装)
you shou 除非你有 Click the You can o 你可以点	Ild accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing.
you shou 除非你有 Click the You can o 你可以点 Click the	Ild accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ild accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续)
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ald accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续) uccessful installation, you will see the "Thanks for installing Anaconda" dialog box:
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ald accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续) uccessful installation, you will see the "Thanks for installing Anaconda" dialog box:
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ald accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续) uccessful installation, you will see the "Thanks for installing Anaconda" dialog box:
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ald accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续) uccessful installation, you will see the "Thanks for installing Anaconda" dialog box:
you shou 除非你有 Click the You can o 你可以点 Click the After a su	ald accept the default and leave this box checked. 可多版本的 Anaconda 或者多版本的 Python,你应该接受这个默认设置。 Install button. (点击安装) click Show Details if you want to see all the packages Anaconda is installing. 点击产看详情,如果你想看到所有 Anaconda 正在安装的程序包 Next button. (点击继续) uccessful installation, you will see the "Thanks for installing Anaconda" dialog box:

O Anaconda3 4.4.0 (64-bit) Se	tup	-		\times
	Thanks for installing	Anacon	ida!	
ANACONDA Powered by Continuum Analytics	Anaconda is a modern open source powered by Python. Share your notebooks, packages, p on Anaconda Cloud! Learn more about Anaconda Clo	projects and		ents
	☑ Learn more about Anaconda Su	pport		
	< Back	Finish	Can	cel

Figure 5 successful installation dialog

Click the Finish button.(点击完成)

After your install is complete, verify it by opening Anaconda Navigator, a program that is included with Anaconda: from your Windows Start menu, select the shortcut Anaconda Navigator. If Navigator opens, you have successfully installed Anaconda.

安装完成后,通过打开 Anaconda Navigator 来确认。如果你能打开 Anaconda Navigator,说明你已经成功安装了 Anaconda。

If you had any issue installing the Anaconda, please visit <u>https://docs.anaconda.com/anaconda/install/</u> for help.

如果你在安装过程中遇到其他问题,请访问: <u>https://docs.anaconda.com/anaconda/install/</u>

2. Getting started(准备开始)

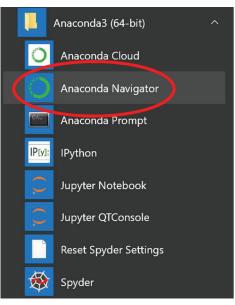


Figure 6 Find Anaconda 3 and open "Anaconda Navigator"

2.1. Open Anaconda Navigator (打开 Anaconda Navigator)

Find Anaconda 3 in "Windows Start Menu" and click "Anaconda Navigator" to open 在开始菜单中找到 Anaconda 3 并双击 "Anaconda Navigator" 打开

2.2. Click "Launch" to open "Jupyter Notebook" (点击 "Jupyter notebook"下的"Launch"按钮) It will open in your internet browser (for me it's a Chrome) an the default file location is under your system user folder. (for example C:\Users\Username)

Page 41 of 51	Analyst
1	它会在你默认的网页浏览器(我用的是 Chrome)中打开,默认的文件位置是在你的系统用户文
2	牛夹。
3	
4	
5	Byzan — 🗆 🗙
6	C Home ×
7	← → C △ O localhost.8888/tree?token=2a795f624af9f316027f558abaf6b7de1777e45de5cfcfb6
8	C jupyter Logout
9 10	Files Running Clusters
10	Select items to perform actions on them.
12	
13	□ □ 3D Objects
14	C Anaconda
15	Anaconda2
16	C Anaconda3
17	AnacondaProjects
18	Contacts
19 20	
20	Downloads
22	Dropbox
23	Expression Favorites
24	Google Drive
25	Figure 8 "Jupyter Notebook" dashboard
26	rigure o supplet Notebook dustibodid
²⁷ 2.3.	Run an example code(运行一个测试代码)
28 29	
30	Download an example code from the link below and save it to "downloads" folder.
21	
32	从以下地址下载一个测试代码,并保存到"下载"目录
33	http://scikit-learn.org/stable/ downloads/plot svm nonlinear.ipynb
34	terep // source carmon g/ stable / a sum outdo, plot sum noninical in pyrio
35	use the file browser to navigate and open the download source code above
50	
38	通过网页内的文件浏览器找到并打开刚下载的测试代码
39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

	ot_svm_nonlinear × notebooks/Downloads/plot_svm_nonlinear.ipynb		* 🔮 🔒 🔘	💩 🖕 🖄 👘
😇 jupytei	r plot_svm_nonlinear Last Checkpoint: :	a minute ago (unsaved changes)		Logout
File Edit	View Insert Cell Kernel Widge	ts Help		Python 3 C
8 + %	🐔 🖪 🛧 🖌 🕅 🔳 C Code	▼ 🖾 CellToolbar		
In []:	: %matplotlib inline			
	Non-linear SVM			
		SVC with RBF kernel. The target to predict is a XOI	P of the inpute	
	The color map illustrates the decision function		r of the inputs.	
T- ()		,,		
In []:	: print(doc) import numpy as np			
	<pre>import matplotlib.pyplot as plt from sklearn import svm</pre>			
	<pre>xx, yy = np.meshgrid(np.linspace(-3,</pre>	3, 500),		
	<pre>np.linspace(-3, np.random.seed(0)</pre>	3, 500))		
	<pre>X = np.random.randn(300, 2) Y = np.logical_xor(X[:, 0] > 0, X[:,</pre>	1] > 0)		
	<pre># fit the model clf = svm.NuSVC()</pre>			
	clf.fit(X, Y)			
	<pre># plot the decision function for each Z = clf.decision_function(np.c_[xx.ra Z = Z.reshape(xx.shape)</pre>			
	<pre>plt.imshow(Z, interpolation='nearest'</pre>	Ç.		
	<pre>extent=(xx.min(), xx.max() origin='lower', cmap=plt.c</pre>), yy.min(), yy.max()), aspect=' <mark>auto'</mark> , cm.PuOr_r)		
	<pre>contours = plt.contour(xx, yy, Z, lev</pre>	`)		
	<pre>plt.scatter(X[:, 0], X[:, 1], s=30, c plt vticks(())</pre>	c=Y, cmap=plt.cm.Paired)		
Figure 9 Ope	ened example code in "Jup	oyter Notebook"		
ould look like	e the screenshot above	e, and in "Cell" click "Rur	n All" or run cells by cli	icking the
ould look like	e the screenshot above	e, and in "Cell" click "Rur	n All" or run cells by cli	icking the
ould look like	e the screenshot above	e, and in "Cell" click "Rur	n All" or run cells by cli	icking the
		e, and in "Cell" click "Rur nonlinear Last Checkpoint: 07/1		cking the
	jupyter plot_svm_	nonlinear Last Checkpoint: 07/1	8/2017 (autosaved)	icking the
	Jupyter plot_svm_	nonlinear Last Checkpoint: 07/1	8/2017 (autosaved) Help	icking the
	jupyter plot_svm_	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells	8/2017 (autosaved)	icking the
	Jupyter plot_svm_	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below	8/2017 (autosaved) Help	icking the
	jupyter plot_svm_ File Edit View Insert	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below Run Cells and Insert Below	8/2017 (autosaved) Help	icking the
	Jupyter plot_svm_	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below Run Cells and Insert Below in: Run All	8/2017 (autosaved) Help	icking the
	jupyter plot_svm_ File Edit View Insert	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below Run Cells and Insert Below in: Run All Run All Above	8/2017 (autosaved) Help	icking the
	jupyter plot_svm_ File Edit View Insert	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below Run Cells and Insert Below in: Run All Run All Below	8/2017 (autosaved) Help	icking the
	JUPYTEr plot_svm_ File Edit View Insert ■ + ≋ @ ► ↑ ↓ In [1]: %matplotlib :	nonlinear Last Checkpoint: 07/1 Cell Kernel Widgets Run Cells Run Cells and Select Below Run Cells and Insert Below in: Run All Run All Below	8/2017 (autosaved) Help	icking the

If it generated a figure like this, your software is good to go. Cheers!

如果它生成了下图,那么你的软件就没问题了!

```
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired)
plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()
```

Automatically created module for IPython interactive environment

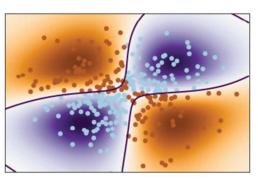


Figure 11 Expected output from example code

3. EIS data analysis with SVM machine learning (用支持向量机机器学习对电

化学阻抗谱数据进行分析)

3.1. Data preparation (数据准备)

Raw EIS data usually includes frequency with real impedance (Z') and imaginary impedance (Z'') at that frequency.

电化学阻抗谱的原始数据通常由在特定频率的实阻抗和虚阻抗构成。

	Α	В	С
	Frequency [Hz]	Z'_raw [Ohm]	Z"_raw [Ohm]
0	99999.99984	258.054229	-7.637512
1	85769.58917	255.299691	-17.882566
2	73564.22411	278.492955	-18.88002
3	63095.73291	275.258838	-15.963164
4	54116.95083	289.347566	-28.062849
5	46415.88639	287.247927	-26.796648
6	39810.71513	286.058176	-32.585536
7	34145.48673	296.438676	-33.791812
8	29286.44376	301.039143	-34.728174
9	25118.8625	300.781714	-35.632715
10	21544.34515	307.305851	-40.781186
11	18478.4963	308.219676	-39.220288
12	15848.93039	312.550444	-44.296644
13	13593.56249	311.666707	-50.051774
14	11659.14268	315.616756	-54.547519
15	9999.998792	318.54106	-58.196081
16	8576.957885	322.457927	-63.004504
17	7356.421543	326.558636	-69.321829
18	6309.57253	330.949427	-77.043239
19	5411.69444	336.52842	-84.527607
20	4641.588089	343.795531	-92.286639
21	3981.071029	352.501566	-102.064143
22	3414.548269	359.595675	-112.278786
23	2928.644022	372.104547	-122.381571
24	2511.885947	385.386363	-134.632903

Figure 12 A part of representative raw EIS data.

Make sure all you EIS test are using the same frequency range then **crate an excel sheet** as shown below, where first column are names, second column are labels, each following column is one feature which is either real impedance or imaginary impedance at a frequency.

确定你所有电化学阻抗谱的测试使用的都是相同的频率分布,并按下图建一个新的 excel 表格。

File		Home	Insert	Page Layout	Formulas	Data	Review	View	Developer
4	80		Calibri	* 11 *		**	🛿 🐨 Wrap T	ext	General
aste		Copy 👻 ormat Painte	BI L	<u>1</u> • 🗄 • 🖄	• <u>A</u> • 🔳	•	🖶 Merge	& Center *	\$ - % 9
	Clipt	oard	5	Font	15	Alig	nment	L2	Numbe
√17		-	X	f _x					
		А	В	C	D	E	F	G	н
	1	name	label	1	2	3	4	Ę	5 (
	2								
	3								
	4								
	4								

Figure 13 Excel template first step

第一列是名称,第二列是标签,之后的每一列是实阻抗护着虚阻抗。

Then, copy and transpose paste all real impedance (column B in Figure 12) to row 2 in Figure 13 starting at column C. (you may need to transpose paste the data in its original sheet then copy and paste to the template)

然后,把所有图 12 中 B 列的实阻抗数据,转置粘贴到图 13 中第二行,从第 C 列开始的位置 (在原表格中先转置再复制粘贴可能更容易)

Figure 14 Using transpose paste option to paste all real impedance data in a row.

Then using similar method to copy all imaginary impedance (column C in Figure 12) to row 2 in Figure 13 starting at column CA (I have 76 frequencies in one EIS, I named row 1 from C as 1,2,3...76,77, to 152). Use your own naming system to give each EIS scan a unique name and put it in column A. Set a label (0 or 1 for binary classification) and put it in column B.

然后,用类似的方法,把所有虚阻抗的数据(图 12 中 C 列的数据)转置粘贴到图 13 中,第二行,CA 列开始的位置(在我的电化学阻抗谱中用了 76个频率,所以第一行从 C 开始命名为 1,2,3 到 76,然后 77,78 一直到 152)。你可以使用你自己的命名系统,在 A 列中给每一个数据 列命名,然后在 B 列中给每一个数据设置标签(二进制分类中就是 0 或者 1)

	A	В	С	BZ	CA	CB	EW	EX
1	name	label	1	76	77	78	151	152
2	4B2G1	0	258.054229	1621.41	-7.63751	-17.8826	-873.914	-939.174
-								

Figure 15 Pasted imaginary impedance into row 2 from column CA to EX (columns D-BY and CC-EV are hidden). Name and label added

Transfer all you EIS data that you are interested in classification (usually with similar experimental setting and a single variable) to the template and save it as *.csv file

把那些你所有想要分类的的电化学阻抗谱数据(通常是相似的单变量实验)都用同样的方式粘贴到这个模板中,并另存为 csv 格式。

H										data	Project.csv -	Excel							Yue Rong
	Home	Insert	Pa	ige Layout	Formulas	Data	Review	View K	utools Er	nterprise	Add-ins	ACROBAT	Team	🗘 Tell me w	hat you want				
	X Cut	Calib	rî	* 11 *	A A = =	*/*	Wrap Te	ext	General	*		Norn	nal	Bad	GO	bd		*	∑ Aut
ste	Copy *	в	τυ	- III - A	• A • = =			R Center *	\$ - % 9	€.0 .00 Con	ditional Form	nat as Neut	ral	Calculatio	n Ch	eck Cell		Delete Form	
*	💞 Format Pa	inter			-		- merge	a center	4 /0 - 1		natting 🐐 Tal						· ·	* *	Cle
	Clipboard	F3		Font	5	Alig	nment	F2	Number	Fa .			St	/les				Cells	
1	*	: ×	~	fx na	ime														
	A	В		с	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R
	1 name	Label		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
-	2 4B2G1		0	258.0542	255.2997	278.493	275.2588	289.3476	287.2479	286.0582	296.4387	301.0391	300.7817	307.3059	308.2197	312.5504	311.6667	315.6168	318.54
	3 4B2G2		0	265.8894	268.0702	273.757	285.1902	278.4257	290.3433	291.5499	293.6509	302.0073	302.9377	307.6231	308.7262	312.3669	313.9265	315.5427	319.3
1	4 4B2G3		0	267.317	266.4577	276.3333	275.4226	286.8759	282.8898	294.9838	298.7177	299.2943	304.1186	306.9148	307.7466	312.0538	312.9816	315.566	318.39
	5 5B2G1		0	212.9031	210.1753	226.3933	227.7355	227.9052	226.8304	234.8648	238.0592	239.7823	242.3075	242.45	245.1441	246.9025	247.1612	249.6174	253.10
1	6 5B2G2		0	221.8998	225.2367	231.5692	227.6233	227.1677	228.3944	234.2414	240.8749	242.4335	243.288	244.2544	247.5539	247.3955	248.675	250.9991	253.90
n i	7 5B2G3		0	220.5023	213.8915	224.6013	228.9741	225.4477	231.434	239.4562	239.4411	240.5017	244.0199	246.1277	246.6161	248.3261	249.4041	251.0594	253.89
	8 6B2G1		0	166.9949	173.7204	184.3192	169.5682	173.2099	176.5317	179.8662	179.617	183.9284	185.823	186.4487	188.3658	190.5809	191.4963	193.6587	196.21
A	9 6B2G2		0	179.0694	182.0632	171.9485	169.2709	183.162	179.8637	183.721	182.0691	184.8741	185.6762	187.9043	189.6923	191.1944	191.7999	192.7237	196.4
	10 6B2G3		0	168.6349	182.5261	178.646	174.2017	177.7401	179.4154	182.8754	184.3721	187.3621	184.121	186.3112	189.6721	191.2342	191.5679	193.5646	196.9
	11 4B2G5/	1	1	259.9313	259.0188	266.8876	284.1592	285.0439	286.6123	294.9715	297.3411	304.1833	302.6753	305.6459	309.1808	311.1617	310.8451	313.0142	317.00
	12 4B2G5/	2	1	263.466	266.4305	283.5566	278.298	285.1393	285.0858	289.288	298.2087	300.9645	302.7892	303.546	306.7226	309.8123	310.6402	311.6402	316.10
	13 4B2G5/	3	1	265.7502	266.4175	272.3123	276.0552	276.7814	288.0103	291.8241	293.7257	299.5611	301.3291	303.3106	303.8075	308.4623	310.1837	312.8859	316.54
	14 5B2G54	1	1	214.0163	227.5339	223.9881	230.3015	225.7774	232.9494	236.9239	240.9703	242.9936	241.4223	245.6318	249.8173	249.9303	249.7395	251.7926	253.95
	15 5B2G5/	2	1	221.6863	218.2461	224.2944	225.4269	234.8084	235.1881	237.1379	239.1588	242.6543	243.4588	245.48	247.0395	249.6863	250.0278	251.7821	254.62
	16 5B2G5/	3	1	219.98	212.6655	217.8348	232.9979	229.0809	234.607	239.0655	242.7952	240.4469	246.9357	247.8388	248.3381	250.0531	249.12	250.7349	254.3
	17 6B2G5/	1	1	186.333	178.2627	177.4258	185.1232	182.1481	184.8892	182.5009	183.927	188.007	190.4824	191.2653	190.0282	193.1123	193.4678	194.8699	196.83
	18 6B2G5/	2	1	179.8914	173.6595	173,5661	180,1657	180.2534	182.6176	184,5293	184,7471	186,4101	187.6895	187.2631	189.8662	190.9922	191.2556	192,9192	194.94
	19 6B2G5/	3	1	182.3292	179.924	177.2412	167.8647	180.4624	179.4651	185.4587	183.6399	188.3154	186.6553	189.5718	189.8636	191.809	191.5059	193.1888	195.57
	20 4B1G5/	1	1	286.9791	291.5914	297.6871	292.363	306.4467	314.4559	308.4549	322.7986	324.8604	325.3788	325.2187	333.2716	331.9342	333.5523	336.6442	337
	21 4B1G5/	2	1	272.9672	281.8878	288.8579	313.4164	310.8411	312.8765	312.6907	309.6892	323.1059	325.5448	327.3001	327.981	332.406	333.0716	333.1723	337.33
	22 4B1G5/					300.0213									330.9777		331.6771		

Figure 16 Example raw EIS dataset ready for SVM machine learning

This example file can be downloaded from:

我的实例文件可以从以下地址下载(国内可能需要翻墙) https://www.dropbox.com/s/7ftbm75mpyj6mc1/dataProject.csv?dl=0

Each row is a data from one run of a sample (one EIS/CV scan)

The label column is used for supervised classification/regression. It could be binary or quantitate depends on your applications.

每一行代表一个完整的电化学阻抗谱。标签列用于有监督的分类或者回归。它可以是二进制的也可以是定量的。

For example:

In this dataset, "0" represent the blank/negative EIS results with no acetone in the samples; "1" represent the positive results with 5mM acetone concentration in the samples.

比如说:

在这个数据中,0代表了空白对照,1代表了有5mM 丙酮的样本。

If you are testing glucose with 0, 1, 10 and 100 mM, you may label them as either "0,1,2,3" or "0,1,10,100" depending on doing classification or regression.

如果你要检测葡萄糖在 0,1,10 和 100mM 这几个浓度,那你可以给对应数据加上"0,1,2,3"或者 "0,1,10,100"的标签。取决于你是要分类分析还是回归分析。

Each column followed is called a "feature" that in EIS is the real or imaginary impedance at a certain frequency.

之后每一列都是一个机器学习中的"特征",它们都是电化学阻抗谱中某一频率下的实阻抗或者 虚阻抗

3.2. SVM code for EIS data (支持向量机用于电化学阻抗谱的代码)

The code can be downloaded from:

代码可以从以下地址下载(国内可能需要翻墙)

- https://www.dropbox.com/s/7ftbm75mpyj6mc1/dataProject.csv?dl=0

2

3

Opened it in "Jupiter notebook" and put the datafile prepared as above in the same folder. Run the code by cells.

用"Jupyter notebook"打开,并把之前的数据文件放到相同的目录。

Upyter ML_EIS-Figures Last Checkpoint: 7 minutes ago (unsaved changes) Logout File View Help Python 3 O Edit Insert Cell Kernel Widgets E + % 2 I A ↓ N ■ C Code 🔻 📼 CellToolbar In [1]: import pandas as pd import numpy as np from sklearn import svm
from sklearn import preprocessing from sklearn.decomposition import PCA #import data df=pd.read_csv('dataProject.csv', header=0); X1=df.ix[:,2:154] #instances #X1.head(X=X1.values # standardscale data from sklearn import preprocessing X scaled=preprocessing.scale(X) pca = PCA(n_components=2).fit(X_scaled) X_2d = pca.transform(X_scaled) #define Lables from sklearn.preprocessing import LabelEncoder y = df.loc[:, 'Label'].values

Figure 17 reading EIS dataset and data preprocessing

This cell read the EIS dateset from 'dataProject.csv'

The data was scaled using preprocessing.scale(X). And a principle component analysis (PCA) was performed to decompose the data into two dimensional.

这一个段落作用是从"dataProject.csv"读取数据。数据之后通过 preprocessing.scale(X)标准化,通过主成分分析实现降维。

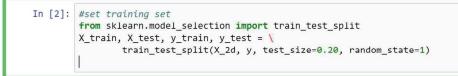


Figure 18 Split data into training and testing sets.

EIS data were split into 80% training and 20% testing. 电化学阻抗谱数据组被分为 80%的训练组和 20%的检验组

```
In [3]: import matplotlib.pyplot as pl
```

%matplotlib

Using matplotlib backend: Qt5Agg

Figure 19 pyplot from matplotlib package was imported and figures are set to appear in a new window.

Figures plotting tools was loaded. 制图工具载入

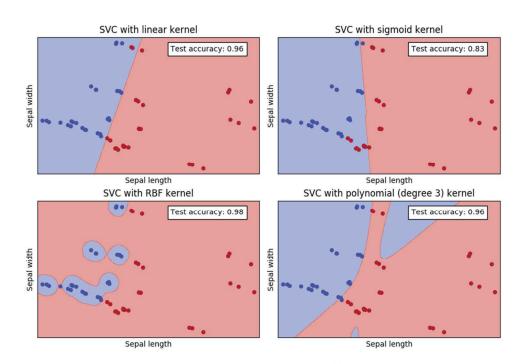


Figure 21 result figure from the kernel selection code 核选择代码的结果图

```
In [4]: #===
           #Fig 2
           #=
          h = .02 # step size in the mesh
          n - .02 # step size in the mesh
#C = 10 # SVM regularization parameter
svc = svm.SVC(kernel='linear').fit(X_train, y_train)
rbf_svc = svm.SVC(kernel='rbf').fit(X_train, y_train)
poly_svc = svm.SVC(kernel='poly').fit(X_train, y_train)
           sigmod_svc = svm.SVC(kernel='sigmoid').fit(X_train, y_train)
          # create a mesh to plot in
          x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
           xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                                     np.arange(y_min, y_max, h))
          # title for the plots
          'SVC with polynomial (degree 3) kernel']
           for k, clf in enumerate((svc, sigmod_svc, rbf_svc, poly_svc)):
               # Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
               pl.subplot(2, 2, k + 1)
               pl.subplots_adjust(wspace=0.4, hspace=0.4)
               Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
               # Put the result into a color plot
                Z = Z.reshape(xx.shape)
               pl.contourf(xx, yy, Z, cmap=pl.cm.coolwarm, alpha=0.5)
               # Plot also the training points
pl.scatter(X_2d[:, 0], X_2d[:, 1], c=y, cmap=pl.cm.coolwarm,s=20)
               #Plot score
               pl.text(0.6,0.9, ('Test accuracy: %.2f' % clf.score(X 2d, y)), transform=pl.gca().transAxes,
                          bbox={'facecolor':'white'})
               pl.xlabel('Sepal length')
                pl.ylabel('Sepal width')
               pl.xlim(xx.min(), xx.max())
               pl.ylim(yy.min(), yy.max())
               pl.xticks(())
               pl.yticks(())
pl.title(titles[k])
          pl.show()
```

Figure 20 code cell for kernel selection 核选择的代码

In [7]: from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import GridSearchCV %matplotlib class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
 self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None):
 x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
 return np.ma.masked_array(np.interp(value, x, y)) C_range = np.logspace(-5, 8, 14) C_range = np.logspace(->, 8, 14)
garma_range = np.logspace(->, 4, 14)
param_grid = ditt(garma=garma_range, C=C_range)
cv = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=12)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(X_train, y_train) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1,10, 100, 1000,10000] C_2d_range = [1,10, 100, 1000, 10000]
gamma_2d_range = [1e-4,1e-3, 1e-2,1e-1,1]
classifiers = []
for C in C_2d_range:
 for gamma in gamma_2d_range:
 clf = SVC(C=C, gamma=gamma)
 clf.fit(X_train, y_train)
 classifiers.append((C, gamma, clf)) Using matplotlib backend: Qt5Agg

The best parameters are {'C': 10.0, 'gamma': 0.01} with a score of 0.99

Figure 23 Finding the best parameters for RBF kernel and its results 径向基函数核最佳参数选择 的代码核

Figure 22 Cross validation and its result. 交叉验证的代码核结果

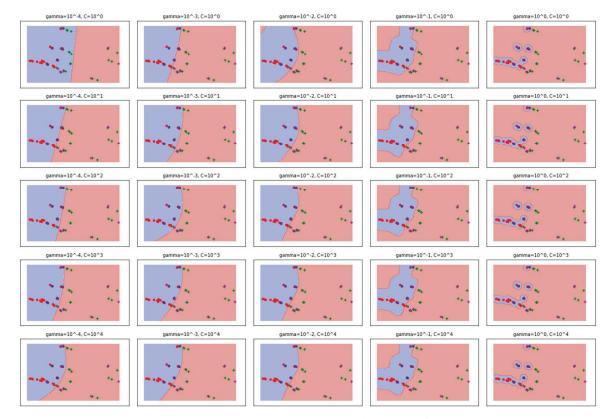


Figure 25 Effect of parameters for RBF kernel. 径向基函数核参数改变的效果

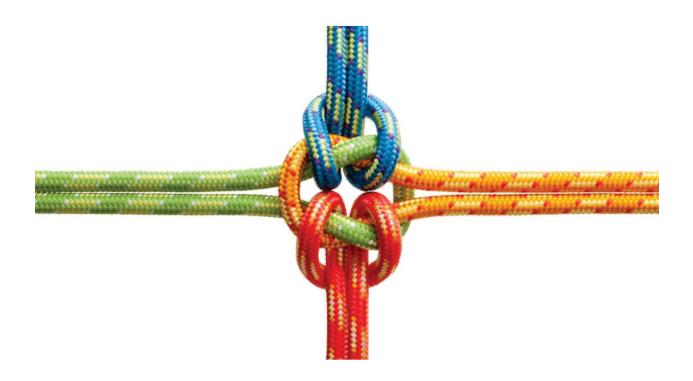

```
In [9]: import matplotlib.pyplot as plt
          #plt.figure(figsize=(8, 6))
          #xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200))
h=.1
          x_min, x_max = X_train[:, 0].min() = 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() = 1, X_train[:, 1].max() + 1
          for (k, (C, gamma, clf)) in enumerate(classifiers):
               # evaluate decision function in a grid
               Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
               Z = Z.reshape(xx.shape)
              # visualize decision function for these parameters
plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1)
               plt.subplot(left(_zzt_mage), left(gamma_zzt_mage), k + 1)
plt.subplots_adjust(wspace=0.3, hspace=0.3)
plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)),
size='medium')
               # visualize parameter's effect on decision function
               Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
               Z = Z.reshape(xx.shape)
               plt.contourf(xx, yy, Z, cmap=pl.cm.coolwarm, alpha=0.5)
               #plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu)
#plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=pl.cm.coolwarm)
              #plt.scatter(X_test[:, 0], X_test[:, 1], y_test, cmap=pl.cm.RdBu_r)
               for i in range(0, X_train.shape[0]):
                   if y_train[i] == 0:
                        c1 = pl.scatter(X_train[i,0],X_train[i,1],c='r',marker='o', s = 20 )
                    elif y_train[i] == :
               c2 = pl.scatter(X_train[i,0],X_train[i,1],c='g',marker='+', s = 30 )
for i in range(0, X_test.shape[0]):
                    if y_test[i] == 0:
                        c3 = pl.scatter(X_test[i,0],X_test[i,1],c='b',marker='o', s = 20 )
                   elif y_test[i] == 1:
    c4 = pl.scatter(X_test[i,0],X_test[i,1],c='m',marker='+', s = 30 )
               plt.xticks(())
               plt.yticks(())
               plt.axis('tight')
          scores = grid.cv_results_['mean_test_score'].reshape(len(C_range),
                                                                          len(gamma range))
```

Figure 24 Code to visualize effect of parameters for RBF kernel. 径向基函数核参数效果展示的代码

	If you have your dataset prepared like this you may easily modify my code or the codes available online
1	
2	and test it out.
3	如果你的数据用这种方式预处理好了,那么你可以很容易的通过修改我的代码或者使用网上可用
4	
5	的代码来进行测试
6	
7	3.3. Scikit-Learn
8	
9	http://scikit-learn.org/stable/index.html
10	If you have time, checkout this site.
11	Most of my code and knowledge is based on the information and example from this open source
12	project.
13	
14	如果你有时间,请查阅以上网址,我的所有代码都是基于 Scikit-learn 这个开源项目。
15	Good Luck! 祝你好运!
16	
17	
18	
19	
20	10/23/2017
21	10/20/2017
22	
23	
24	
25	
26	
27	
28	
29 30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	
60	

SNAPS PART-1 & PART-2

Shoumen Datta HAPHAZARD REALITY – IOT IS A METAPHOR

Sensor Analytics Point Solutions (SNAPS) for

2 Detection and Decision Support Systems (DSS)

3 Eric S. McLamore^{1*}, Shoumen Palit Austin Datta^{1, 2, 3 **}, Victoria Morgan¹, Nicholas Cavallaro¹, 4 Greg Kiker¹, Daniel M. Jenkins⁴, Yue Rong¹, Carmen Gomes⁵, Jonathan Claussen⁵, Diana 5 Vanegas⁶, Sahar Bahramzadeh⁷, Evangelyn C. Alocilja^{8,9} 6 ¹ Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, 7 Gainesville, FL 32611 8 ² MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 9 Massachusetts Avenue, Cambridge, MA 02139 10 ³ MDPnP Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, 11 Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139 12 ⁴ Molecular Biosciences and Bioengineering, University of Hawaii, Manoa, Honolulu, HI 96822 13 ⁵ Mechanical Engineering, Iowa State University, Ames, IA 50011 14 ⁶Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634 15 ⁷ School of Computer Engineering, Azad University, Science and Research Branch, Saveh, Iran 16 ⁸ Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824 17 9 Nano-Biosensors Lab, Michigan State University, East Lansing, MI 48824 18 19 *Corresponding author: Eric S. McLamore [<u>emclamor@ufl.edu</u> 🖀 +1(352)294-6703] 20 **Corresponding co-author: Shoumen Palit Austin Datta [shoumen@mit.edu] 21 Abstract: We discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity 22 machine-assisted decision support (MADS) tool. We summarize the approaches used for mobile 23 phone-based chemical/biological sensors, including general hardware and software requirements 24 for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to 25 converge sensor data and analytics. The platform consists of a portfolio of modular tools which 26 may lend itself to dynamic composability by enabling context-specific selection of relevant units, 27 resulting in user-guided, context-specific, case-based working modules. SNAPS is an element of 28 this variant configuration mechanism, where, depending on need, data analytics, statistical 29 characterization and algorithms may be delivered to the data via embedded systems in devices, or 30 sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the 31 physical systems with the cyber components paves the path for SNAPS to progress to higher 32 levels of artificial reasoning tools (ART) and emerge as data-informed decision support as a 33 service (DIDA'S). Proof of concept examples of SNAPS are demonstrated for quantitative and 34 qualitative data, each operated using a mobile device (smartphone/tablet) for data acquisition and 35 analysis. We discuss the challenges and opportunities for SNAPS, centered around the value to 36 end-users as a key performance indicator (KPI), for generic machine-assisted tools (MAT). 37 Keywords: sensor; smart systems; data analytics; cyber-physical systems; artificial reasoning tools; 38 ART; drag and drop analytics; DADA; sensor-analytics packages; SNAP; machine-assisted tools; 39 MAT; machine-assisted platform; MAP; knowledge graphs; trans-disciplinary convergence; 40 machine-assisted decision support; MADS 41

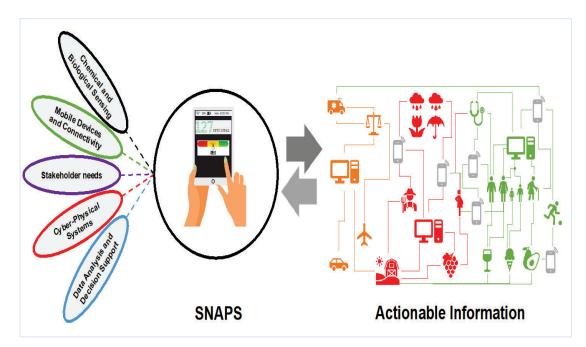


Figure 0. SeNsor-Analytics Point Solutions (SNAPS) represents a confluence of ideas,
including chemical/biological sensing, mobile devices, and connectivity, cyber-physical
systems, and data analysis for decision support. One intent is to deliver actionable
information through contextually relevant applications using combinations of machineassisted tools (MAT) and machine-assisted platforms (MAP).

48

49 1. Overview

50 We review select systems and sensor-analytics point solutions (SNAPS), which illustrates a 51 confluence of ideas, including chemical/biological sensing, mobile devices, connectivity and cyber-52 physical systems (CPS), which may be combined with artificial reasoning tools (ART) and data-53 informed decision support (DIDA'S) systems. We provide an overview of signal transduction and 54 engineering related to the recognition-transduction-acquisition triad, followed by a discussion of 55 hardware and software elements for SNAPS. A summary of recent development of SNAPS may 56 indicate short-term pragmatic opportunities sufficient to provide Pareto solutions (effective for 57 80% of the cases). We close by pointing out a few of the challenges, including the importance of 58 making sense of data and how to deliver information on demand from data to end-users, before 59 the quality of service (QoS) perishes, in the context of actionable information which may possess 60 transactional value.

- 61
- 62
- 63
- 64
- 65

66 2. Sensor Engineering

3 of 33

67 *Chemosensing, biosensing, nanosensing may converge with partial autonomy*


68 A plethora of literature reviews describe the historical context [1], recent advances [2][3][4], 69 and futuristic ideas [5][6][7] related to development and application of chemosensors, biosensors, 70 and nanosensors [8][9]. These diagnostic tools have important applications across medical, 71 agricultural, and environmental domains. The sensor working mechanism established by the 72 International Union of Pure and Applied Chemistry in the 1990's serves as the design template. 73 The receptor coating on the sensor selectively binds target, a transduction event produces 74 measurable signal, the signal is acquired using specialty equipment. This sensing process, based on 75 the RTA triad, has been enhanced through the use of nanomaterials that improve detection limit, 76 speed and/or reversibility [10][11]. In addition, biomaterials are used to improve selectivity, 77 bandwidth, or facilitate actuation [12][13][14].

78

79 The primary application space for sensors/biosensors has been the analysis of unique targets 80 using relatively low cost, rapid detection platforms [15], including small molecules, viruses and 81 cells (amongst other targets). Recent works have focused on enhancing the mobility of sensors for 82 rapid on-site applications [16] by limiting the requirement for equipment or *post hoc* methods that 83 depend on formal labs. Most portable/handheld sensor efforts do not view chemo/bio/nanosensors 84 as a direct competitor for standard analytical laboratory diagnostics, but rather as a parallel tool to 85 trigger new questions or additional sampling to improve resolution and preserve data quality. 86 Attempting to use a handheld sensor to produce the accuracy and precision that is commonplace 87 in laboratory-based analytical techniques is in most cases a fool's errand, and a cost prohibitive 88 over-promise. What is realistic, on the other hand, is the development of low cost, light weight, 89 rapid diagnostic tools that can provide point solutions to match the specific context of the question 90 (the "low hanging fruit" from the tree of complex problems). Mobility of customized/personalized 91 sensors in an open-access format may prove to demystify the complexity of certain intractable 92 problems, raising the tide of knowledge, while providing service to communities in need and 93 enabling science to serve society (the masses, at large).

94

95 Mobile phone-based data acquisition systems are primary catalysts for mobility [17]. Smart 96 phone systems are available for optical transduction techniques such as fluorescence [18] and 97 surface plasmon resonance [19], in addition to electrochemical transduction techniques such as 98 voltammetry [20] and impedance spectroscopy [21]. While analytical capabilities have grown 99 exponentially in the last decade due to the rapid diffusion of tools such as machine learning 100 [22][23][24], there are only a few examples of mobile phone-based data analysis tools in the 101 literature [25] as most data analysis occurs on remote computers and not on mobile devices at the 102 point of contact. To maintain the integrity of end-user needs and ensure quality of service, mobile phone-based sensors may be connected to remote analytics. Here, we introduce SeNsor-Analytics 103 104 Point Solutions (SNAPS), part of a platform approach for transforming sensor data into actionable 105 information using the mobile phone for data acquisition and performing near real-time, on-site, 106 edge analytics (Fig 1).

108Figure 1. Sensor-Analytics Point Solutions (SNAPS) optimizes synergistic systems109integration and connectivity between chemical/biological sensing with cyber-physical110systems. A) Classical "lock and key" metaphor for sensor/biosensor part of the physical111system in CPS. B) Sensor signal transduction (physical/chemical/biological component)112and transmission to a mobile device coupled with in-network processing and on-site

edge analytics (cyber component in CPS).

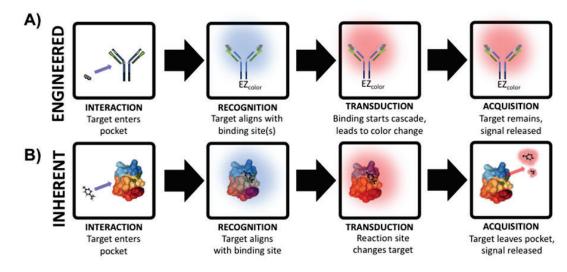
114 The RTA triad is governed by material choice

115The affinity of the receptor for the target is the limiting factor for sensor function, and the116importance of this first step in the RTA triad cannot be over-emphasized. Given that binding117affinity and selectivity are the architects of the RTA triad, transduction is the platform for118innovation. Intuitively, material choice dictates classification of device as either a sensor (use of119abiotic materials), biosensor (biological or biomimetic materials), nanosensor (nanomaterials), or120nanobiosensor (hybrid nano/biomaterials).

121

In addition to dictating these commonplace definitions, sensor material choice dictates critical factors such as performance, cost and quality of service (QoS). In its basic form, transduction is defined as a change in energy state, and there are two major classes of transduction that generates quantitative versus qualitative data, namely inherent and engineered transduction, respectively.

127 Engineered transduction involves specific binding between target and receptor but does not 128 generate a measurable product without an extra "engineered" step. The thermodynamics of the 129 system do not lead to favorable production of an active compound which can be directly quantified 130 using acquisition equipment. An extra step is required such as addition of exogenous reagent(s) 131 such as a label, or immobilization of a supporting material in close proximity to the recognition 132 structure that results in a cascade which generates a measurable by-product. The most common 133 example of engineered transduction is a lateral flow assay involving at least one binding protein 134 (such as an antibody) (Fig 2A). This recognition structure is co-immobilized with a secondary 135 structure that, upon binding of the target, undergoes a specific reaction and leads to a visible color


136 change [26]. In this type of transduction, the bonds between the target and recognition structure 137 are typically intact after the signal is acquired, leading to a significant amount of hysteresis (i.e., 138 covalent antibody-epitope bonds). Due to the hysteric binding between target and receptor, 139 devices based on engineered transduction are typically not reusable as attempts to recover the 140 native binding chemistry of the receptor are uncommon. However, the latter may change and re-141 usability may gain prominence if we can better appreciate the potential for engineering allosteric 142 triggers in the recognition mechanism [27][28]. At present, semi-quantitative data can be obtained 143 using engineered transduction approaches, if a sensor array is developed. The hysteric molecular 144 interactions restrict the data from being truly quantitative. Beyond color change, there are a host of 145 other transduction mechanisms that are not addressed in this paper (electrochemical, magnetic, 146 plasmonic, etc).

147

148 Sensors which autonomously produce quantitative data are classified as inherent 149 transduction. For example, an enzyme-ligand interaction is shown in Fig 2B. In this type of 150 transduction, binding of the target by the receptor leads to the production of a measurable by-151 product with little or no hysteresis. No additional engineering is needed to obtain useful signal 152 correlated to the binding event, as the thermodynamics of the system indicate that the presence of 153 the target alone is the rate limiting step for energy state change. The formation of the product can 154 be directly correlated to the presence of a specific amount of target, with the causality of product 155 formation well described by system stoichiometry and thermodynamics. The most common 156 example of inherent transduction is the glucose biosensor for blood analysis. Glucose and oxygen, 157 present in blood, serve as activators of the enzyme catalyzed oxidation due to the enzyme GOx, 158 glucose-1-oxidase (beta-D-glucose:oxygen-1- oxidoreductase, EC 1.1.3.4). In this reaction, the 159 oxidation of glucose on the sensor surface results in the production of electrons, which are 160 measured using oxidative amperometry [29]. One major advantage of inherent transduction is that 161 the bonds between the target and receptor are typically destabilized during the transduction, 162 leading to diffusion of reaction by-products away from the binding site after formation. Reducing 163 sensor hysteresis facilitates development of reusable sensor chemistry, allowing continuous or in 164 line sensing.

165

166 Whether the recognition involves a biomaterial, abiotic, or nanophase material, in most cases 167 multiple chemical bonds occur between the target and the receptor material, and the strength of 168 these bonds governs the specificity, limit of detection (LoD), response time, and hysteresis of the 169 sensor. Mismatch of between material choice and intended application results in loss of quality of 170 service, and in some cases a complete lack of technology acceptance. Assays and sophisticated post 171 hoc analysis techniques can resolve some of this mismatch, within limits. To preserve and elevate 172 the quality of the outcome, selection of appropriate material(s) should be paired with optimized 173 sensing protocols and analytical techniques, discussed in the following section.

175

Figure 2. Development of chemical/biological sensor systems is based on either A) 176

Engineered transduction, where a cascade of reactions must be developed for obtaining

177 the signal that is specific to the interaction/recognition step, or B) Inherent transduction, 178

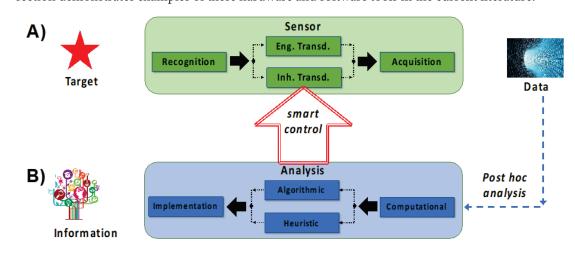
where activation energy is supplied by target and ambient environment. Structure of

179 protein in panel B courtesy of Mosbah et al [30].

180 3. Sensor-Analytics Point Solutions (SNAPS)

181 Overview

174


182 SNAPS consist of a biological/chemical/physical sensor directly interfaced with an analytical 183 tool. The green box in Fig 3A summarizes the RTA triad and displays a choice between the two 184 types of transduction discussed in the previous section. Once a receptor material is selected and the 185 appropriate transduction scheme is engineered, the process is coupled with acquisition equipment 186 to obtain signal (data). The blue box in Fig 3B shows the *post hoc* data analysis phase of SNAPS, 187 which aims to extract actionable information from sensor data. Contrary to the standard used in 188 sensor design, the analysis phase is less standardized, primarily due to lack of platform(s) for data 189 diagnostics, data quality, context, problem space, and query semantics [31]. As an example of a 190 common framework, Marr's framework is shown, which is a learning principle grounded in 191 Bayesian inference. Marr's analysis process flow has three interconnected steps: a computational 192 stage, an algorithmic or heuristic step, and an implementation step [32]. Analogous to the two 193 types of transduction previously discussed, the choice of a heuristic or algorithmic approach 194 should be directly linked to the problem context for maintaining quality of service. The 195 implementation step deconvolutes processed data using a relevance filter for producing 196 information. 197

198 In advanced SNAPS, the analysis phase may have an optional feedback control loop with the 199 sensor transduction step, which may be referred to as Smart SNAPS. For example, the temperature, 200 pH, electrical potential, or light intensity can be modulated to influence the sensor transduction

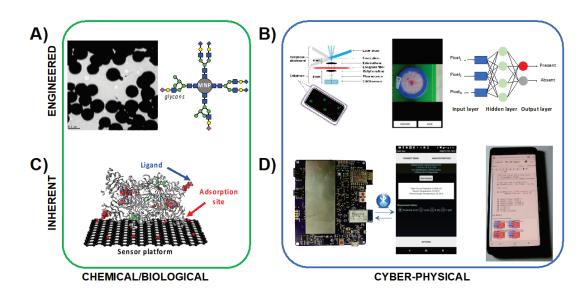
step based on information obtained from the data analysis phase. Active control of any phase in the RTA triad qualifies as a Smart SNAPS, but interfacing with the transduction step is the most logical route for adding value.

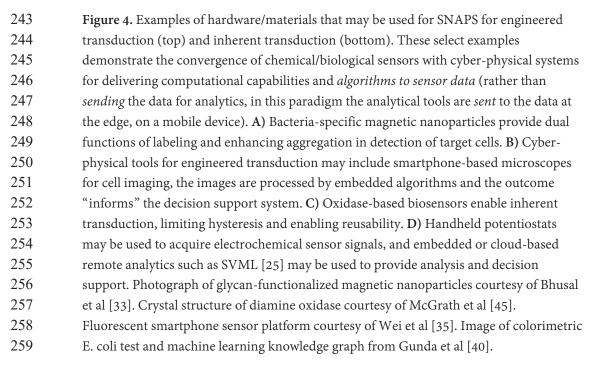
204

In SNAPS, acquisition and analytical processing occurs at the edge by deploying a mobile
 platform of tools using a smartphone or a tablet, or other similar devices as mobile hosts. The next
 section demonstrates examples of these hardware and software tools in the current literature.

208

Figure 3. SNAPS attempts to transform data into information based on convergence of two distinct areas, namely sensing and analytics. The framework for these two areas is described by: A) standard sensor development guided by RTA logic, and B) data analysis using the usual tools (computational, algorithmic, statistical). Smart control can be achieved when data from the analysis step actively controls (auto-actuates) at least one process within the RTA sensor triad.

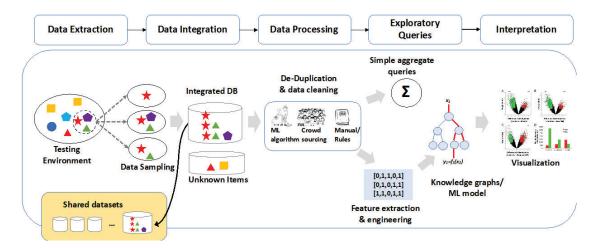

215 SNAPS Hardware and Software


216 Fig 4 shows an example of the hardware and materials used for the development of SNAPS. 217 The example of engineered transduction (top of Fig 4) demonstrates engineered transduction for 218 diagnosis of tuberculosis (TB) via detection of acid-fast bacilli in sputum samples. Biorecognition 219 is grounded in principles of glycobiology, where target cells are labeled by glycan-coated magnetic 220 nanoparticles (GMNP) [33][34]. In this example, a neodymium magnet is used to separate the 221 particle-cell aggregates to facilitate rapid determination of acid-fastness and cording properties of 222 captured mycobacteria. The TB test also employs Gram staining to provide visual confirmation. 223 Smartphone based optical systems [35] or complex microfluidic systems [36] may be used for on-224 site image analysis, and image processing algorithms [37][38][39][40], may be used for improving 225 accuracy and providing decision support.

226

In another example (bottom of Fig 4), inherent transduction is demonstrated for approaches
such as the graphene oxide-biogenic amine nanobiosensor recently developed by Vanegas et al
[41]. In this example, an enzymatic biosensor was developed based on diamine oxidase, which was
tethered to a laser scribed graphene (LSG) electrode decorated with nano-copper. Upon

231 recognition of the target ligand within the enzyme binding pocket, oxidation is carried out to 232 produce hydrogen peroxide as a by-product. The peroxide is deprotonated under an operating 233 potential of +500mV to produce electrons, measured using oxidative amperometry. Inherent 234 transduction uses materials such as oxidase which contain both active binding site(s) for 235 recognition and catalytic reaction site(s) for transduction, with the pockets remaining intact after 236 reaction (limiting hysteresis). Signal acquisition utilizes a handheld potentiostat connected to a 237 mobile phone such as the ABE-STAT tool [21]. The support vector machine (SVM) learning 238 (SVML) classification system [25] may be also applied using the same mobile phone via the Jupyter 239 notebook open source portfolio of machine learning tools. There are a myriad of other approaches 240 for optical smartphone sensing [19][42][43] as well as electrochemical sensing [20][44]. 241



260 It is obvious that sensor data, and thus the hardware to collect the data, are core competencies 261 required to fuel SNAPS or any equivalent tool in the portfolio of machine-assisted tools (MAT). 262 Without data, subsequent progress from SNAPS to higher order decision support may be 263 impossible. A wide range of commercial and custom software are available for cloud-based 264 analytics [46][47][48]. Drag and drop analytics [49][50][51][52][53][54] is one such tool of 265 growing interest. One example of a drag and drop analytic software is the tool developed for 266 quantifying uncertainty in data exploration, or QUDE. QUDE automatically quantifies the 267 different types of uncertainty/errors within data exploration pipelines [55]. The automation feature 268 in this tool is based on the following workflow: data extraction, data integration, data processing, 269 exploratory queries, machine learning, and finally interpretation. QUDE is not intended to 270 represent a solution agnostic of all problems, but rather demonstrates an approach that may serve 271 as a starting point to connect chemical/biological sensors to analytics in real time. Evolution of 272 data analysis from extraction to visualization, even in a drag and drop modus operandi, requires a 273 deep understanding of the context and is highly problem specific. Visualization tools (such as the 274 volcano plots in Fig 5) are information-rich presentations of complex datasets which may facilitate 275 use of a tool in multiple application domains, but the information must be comprehensible to 276 users/stakeholders to provide any actionable information. 277

Knowledge graph algorithms, in combination with statistical analysis and machine learning
(for example, feature engineering, extraction and selection) [56][57], are elements likely to
improve the outcome from SNAPS and enable the gradual evolution of SNAPS to become a higher
order tool to facilitate data-informed decision as a service (DIDA'S), as discussed in the following
section.

283

284 The plethora of tools reviewed here and elsewhere may operate in harmony in specialized 285 facilities (such as academic research centers). However, the real value of the convergence is at the 286 hands of end-users who may lack specialized knowledge of software or systems. Without lucidity 287 as a guiding light in the design process, any meaningful application of these tools may remain an 288 utopian expectation. Adoption largely depends on creating user interfaces no more complicated 289 than a menu of choices, for example, the type of variant configuration that enables a customer to 290 customize a laptop. Thus, the paradigm of "plug and play" must be at the front and center of this 291 discussion in order to "hide" the complexity behind simple drag and drop features which may 292 empower end users to efficiently interact with these tools [58][59]. Simplified drag and drop tools 293 for SNAPS may exponentially accelerate global demand for these tools. Democratization of access 294 through Lego-esque modular drag and drop interfaces [60], may pave the way for "drag and drop 295 analytics" (DADA) for mobile decision support systems and partial autonomy. DADA and SNAPS 296 have enormous application potential, not only in the agro-ecosystem but in any domain, for 297 example, healthcare, manufacturing [61], finance, utilities, logistics, transportation and retail. 298

300Figure 5. Software tools such as drag and drop analytics (DADA) may enable cloud-301based analytics for SNAPS. The tool shown here automatically quantifies the different302types of uncertainty/errors within data exploration pipelines (image from Chung et al303[55] modified to match context of SNAPS). Diagram shows workflow (top) and an

304 example of a pipeline (bottom).

305 4. Auto-actuation and partial levels of autonomy for low-risk automation (SARA Paradigm)

- 306 Autonomy is a framework that emerged from intelligent control and systems theory dating 307 back at least a half century [62]. The specific technology need predicates the architecture of the 308 system (including both hardware and software), and not all sensors or sensor systems are required 309 to be involved in higher levels of autonomy [63][64]. For example, the purpose, architectural 310 details, system functions, and characteristics for unmanned terrestrial vehicles are different 311 compared to unmanned space vehicles [65]. One unifying attribute of these systems is the need to 312 sense (sensors on the front end of the process) and then analyze (analytics on the back end) before 313 the system can respond, i.e., SNAPS equivalent in the sense-analyze-response systems (SARS) 314 paradigm. Lessons from higher level autonomous systems may inform how SNAPS may be better 315 engineered and optimized to deliver value (albeit, in a very different context, when compared to 316 the specifications for levels of autonomy in automobiles or the aerospace industry). 317 318 In the context of SNAPS, the traditional six levels of autonomy (see supplemental Figure S1), 319 may inform design. In the lowest level of autonomy (simple), human interaction is required for 320 direct control of the sensor system(s) and/or manual off-loading of data for post hoc analysis. For
- 322 which represents the current state for most sensor data, which is simply a report of raw data. The
- 323 latter may be referred to as simple user-guided activity report or the SUGAR paradigm.
- 324

321

In the 2nd level of autonomy (assisted), a high degree of human interaction is required, but at least one aspect of SNAPS (either sensing or analytics) is capable of performing task(s) without *de novo* synthesis of a map. These tasks may achieve prescribed objective(s), adapt to environmental changes, or develop new objectives. For example, Rong et al [25] recently developed an open

example, deployed buoy systems are common in environmental studies of aquatic chemistry [66],

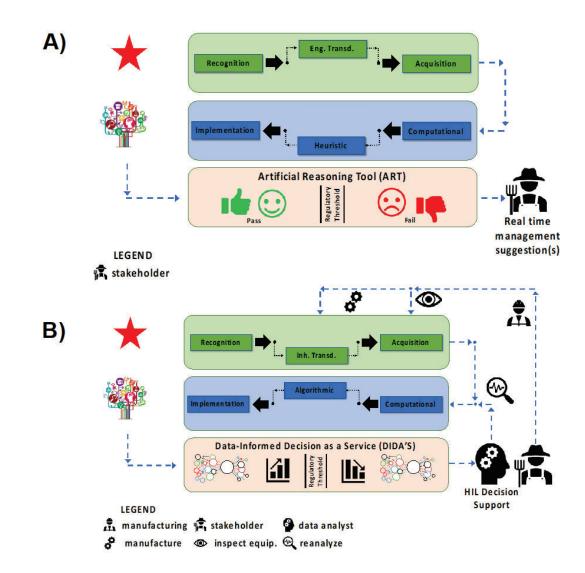
329 source mobile-phone based analytics protocol for analyzing impedance data acquired from a 330 nanobiosensor. The primary objective of the tool is to perform the first layer of analysis in 331 development of a SVML classifier to analyze impedance data (in lieu of equivalent circuit analysis). 332 The mobile phone-based tool automates selection of classifier type using principal components 333 analysis, and subsequently automates selection of hyperplane parameters (optimizes the support 334 vector classifier and support vector regressor functions across the selected hyperplane). While this 335 MAT does not perform decision support or provide validation layer(s), it may qualify as machine-336 assisted automation, particularly if the impedance data is acquired using the same hardware and 337 the sensing/analysis processes are linked for on-site edge analytics (that is, analysis, at the edge). 338 339

The classical 3rd level of automation, *partial autonomy*, may be achieved through remote 340 control of SNAPS related features, including sensing, data download, and some form of data 341 analytics such as heuristic risk assessment. The outcome may trigger a low-risk set of logic tools to 342 execute workflow which sets into motion an auto-actuation function. By embracing and 343 accomplishing auto-actuation, the concept of SNAPS evolves to address the SARA (sense, analyze, 344 respond, actuate) paradigm. For example, SNAPS may auto-adjust water flow rate in irrigation 345 pumps (by temporarily overriding a pre-set routine flow rate) based on updated moisture data 346 (from field sensor) and refreshed external weather data predicting rapidly advancing thunderstorm 347 with imminent rainfall. Hence, control systems like SNAPS, manifesting elements of the SARA 348 paradigm are derived from principles of bio-mimicry. Feedback control (activation/inhibition) is 349 the bed-rock of biological systems in maintaining homeostasis, cellular equilibrium and 350 harmonization of physiological balance [67].

351

352 Higher levels of automation are beyond the scope of this discussion. For partial automation, 353 SNAPS shall increasingly rely on integration of logic structures, for example, integrating output 354 from one or more artificial reasoning tools (ART) to support auto-actuation (SARA). Integration 355 of logic and ART in the SNAPS architecture indicates a departure from simple point solutions 356 (SNAPS) and an upstream march of ART, ushering new layers of convergence beyond SNAPS. In 357 this description, we focus on two major categories: i) sensors with engineered transduction 358 coupled with heuristic analysis of qualitative data (SNAPS-ART), and ii) sensors with inherent 359 transduction coupled with algorithmic analysis of quantitative data (referred to as SNAPS-360 DIDA'S), summarized briefly, in the following section.

361 5. Design of SNAPS for Decision Support Systems


362 If auto-actuation or partial automation is expected as an outcome, then, according to the 363 SARA paradigm, it is necessary to integrate elementary logic layers, relevant to performance/event, 364 to enable SNAPS to execute actions by using/combining contextually relevant outputs from ART. 365 The dynamic nature of ART elements may be sourced from a holding platform or repertoire for ad 366 *hoc* composable machine-assisted tools (MAT), which applies basic pseudocode, with simple logic, 367 to provide case-specific outputs, sufficient to execute low risk actions, which are (highly) fault 368 tolerant. To provide guidance in development of future SNAPS, we may organize tools into two 369 categories that are designed to meet user needs while maintaining an appreciable quality of service

(QoS). The first category utilizes qualitative sensors based on engineered transduction coupled
together with heuristic analysis to produce a version of ART (Fig 6A). SNAPS-ART, is designed to
provide near real-time management suggestions, such as using (single) sensor data to determine
whether a particular sample is above or below a threshold value pre-set by a regulatory agency. The
assumption of high fault tolerance and low risk are pivotal to develop and deploy SNAPS-ART.

376 To optimize QoS versus development costs, acquisition of qualitative data for SNAPS-ART 377 uses engineered transduction techniques and heuristic classification to satisfy user expectations 378 with a binary output (rapid YES/NO test). In terms of active control features, SNAPS-ART is 379 rudimentary, with a few discrete/distinct actions (turn on/off a subsystem) determined by simple 380 non-overlapping binary outputs based on input from SNAPS. SNAPS-ART is not intended to be a 381 comprehensive diagnostic tool, but designed for triage or rapid screening, where additional testing 382 is required to confirm/validate results. It is possible to use ART for semi-quantitative purposes that 383 depends on other combinatorial factors (for example, controlling rate of flow), but within reason. 384

385 The 2nd category of SNAPS (Fig 6B) utilizes quantitative sensors based on inherent 386 transduction coupled with algorithmic analysis, collectively referred to as SNAPS-DIDA'S. 387 Contrary to SNAPS-ART, this category is designed for decision support under the assumption of 388 low fault tolerance and moderate risk. Rather than instantaneous results classified by heuristic data 389 analysis, SNAPS-DIDA'S involves a dynamic and/or reiterative analysis of streaming data from 390 sensors and feedback logic interfaces for processed data, for example, active control features using 391 a case-specific subset of tools from a super-set of MATs and MAPs (machine-assisted tools and 392 machine-assisted platforms). Optimization (from menu of choices and range of values) for each 393 variable requires computational rigor and resources to extract context-specific variant 394 configurations expected of SNAPS-DIDA'S. On the other hand, workflow middleware as the logic 395 application or control layer may suffice for SNAPS-ART. Sophisticated decision support software 396 with decision trees executing embedded logic is one option which may be user-directed [68][69]. 397 The latter may be enabled by a drag and drop assembly from a portfolio of modular tools under the 398 umbrella of MAT and MAP. Another option is to present these choices to a human-in-the-loop 399 who may exercise some form of exclusion/reduction to narrow the search space (number of 400 choices) from the MAT/MAP menu based on experience and knowledge [70][71]. The preferred 401 option is the development of a parallel agent-based system (ABS) which may be part of a multi-402 agent system (MAS) [72][73]. The agent is expected to specific for certain pre-determined 403 functions and able to replicate/reason a few key choices (select functions), in a manner 404 approximating the human-in-the-loop. ABS may be void of the human ability to handle exception 405 management. The range of options for the Agent may be restricted by its arsenal of information 406 and logic rules, due to limits of learning and training software Agents, especially about how and 407 when to use which tool. Because of the cognitive boundaries of deterministic design, it will be an 408 egregious error to expect any training tool or machine learning routine to educate an Agent to 409 deliver support in non-deterministic scenarios. The latter makes it mandatory to recognize 410 boundaries of "artificial" systems and maintain provisions for humans-in-the-loop, by design, for 411 non-deterministic instances.

412	In the context of SNAPS-DIDAS, agent-based systems begin to function upon receiving input
413	from SNAPS. Using logic capabilities (learned, trained), agent(s) determine which tool, or sets of
414	tools, may be necessary to execute the action or partial automation SNAPS expects to trigger.
415	Agents are limited by the tools contained within MAT and MAP, unless embedded logic provides
416	the option to place a remote function call (RFC) to a cloud repository to source other tools or
417	algorithms from different systems. Including and enabling this feature is vital for agent(s) to
418	"discover" contextually relevant elements suitable for the case at hand (perhaps enabling a
419	potential path to higher levels of automation). Unrestricted discovery demands interoperability
420	between systems to source tools and functions in a manner that is location (server) agnostic.
421	REST (representational state transfer) is a lightweight architectural alternative to mechanisms like
422	RPC (Remote Procedure Calls) which helps to connect between distributed hypermedia systems.
423	RESTful web services (conforms to REST architecture) facilitate interoperability between
424	computer systems and RESTful APIs (web service APIs that adhere to the REST architectural
425	constraints) are quintessential for "plumbing" the network to catalyze connectivity [74].
426	
427	Knowledge discovery/search functions of machine-assisted systems (MAS) are key
428	performance indicators (KPI) which are inextricably linked with QoS. Synergistic integration with
429	external tools and modules calls for interoperability between platforms, which are influenced by
430	standards and architecture. Hence, automation of SNAPS-DIDA'S is far from trivial, and we are
431	only beginning to scratch the surface in terms of the confluence of ideas necessary to transform
432	this vision into reality.

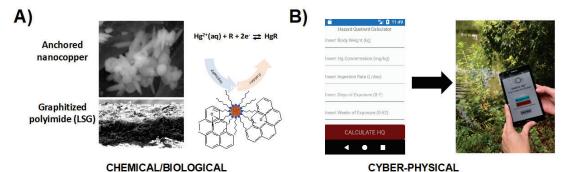
434	Figure 6. Classification of SNAPS based on end-user expectations. A) SNAPS-ART
-----	--

- 435 produces qualitative, or semi-quantitative sensor data based on engineered transduction
- 436 for analysis using heuristic analysis tools to provide management suggestions. **B**) SNAPS-
- 437 DIDA'S produces quantitative, streaming data for algorithmic analysis to be
- 438 implemented in a variety of decision support paradigms, which may include human-in-
- 439 the loop and/or agent-based systems. The diagram provides a map for avoiding
- 440 mismatch (i.e., loss of quality of service) between sensor chemistry and application needs
- 441 but are not intended to be formulaic or dogmatic. Being dynamic and agile is essential.

442 The theoretical boundary between ART and DIDA'S is blurry, at best. The classification of the 443 two systems into discrete boxes (Fig 6) is not intended to be reductionist. Perhaps it may trigger 444 ideas about future improvements and innovations. The distinction between ART and DIDA'S may 445 be made in terms of the data that must converge or the degree to which data fusion may be 446 necessary when rendering the decision or recommendation. ART may assist a rapid-response 447 system which aims to solve low risk problems, with a few data sources and data dependencies, 448 using either qualitative or quantitative sensors, matched with heuristic analysis. For example, 449 qualitative SNAPS-ART may provide the instruction to turn off the irrigation water pump if [a] 450 the rate of change of 80% of the soil moisture sensor readings fall above/below a given range of 451 values or [b] if the data from sensor(s) indicates that the rainfall rate is above a certain value. For 452 quantitative SNAPS-ART, the instruction may be to monitor and turn up/down the rate of 453 irrigation water flow, by grids/zones, depending on the soil moisture sensor readings, if the sensor 454 data falls above/below a range of values. The tool may refer to the logic instructions in a lookup 455 table which recommends water flow rates which are recommended (appropriate context) for given 456 soil moisture content and also integrates weather data.

457

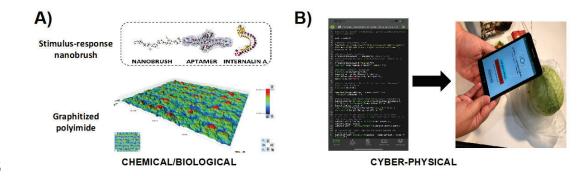
458 DIDA'S may be viewed as a mutiny of multiple ART units, each vying to contribute its data. 459 At each gateway or node in the DIDA'S platform, there are Agents which are queueing, to be 460 triggered by specific data strand/stream, to start its search and discovery process, to identify what 461 tools must be used, which other databases or data resources must be accessed, in order to satisfy 462 the context of dependencies and when/how to feed the results from the search and discovery to a 463 higher level Agent. This situation is analogous to dynamic composability of tools, triggered by 464 data, in a manner similar to application dependent networking (ADN), the underlying principle 465 necessary to connect two mobile phone users in diverse environments [75].


466 6. Proof of concept SNAPS-ART

467 Fig 7 demonstrates an example of SNAPS-ART for heavy metal analysis coupled with risk 468 assessment. In this design, a sensor with engineered transduction (qualitative data) is coupled with 469 a heuristic risk analysis tool (hazard quotient [HQ] indicator) for monitoring and assessing risk of 470 mercury exposure in drinking water in communities located near small scale artisanal gold mining 471 regions [76]. In this example, a nanosensor was developed based on LSG electrodes decorated with 472 anchored nanocopper for measuring ionic mercury (Hg^{2+}) via stripping voltammetry [77] (Fig 473 7A). Rapid screening of water samples for mercury contamination is highly useful, but the value of 474 sensor data is inconsequential without information on how compounded factors, such as body 475 weight, ingestion rate, and length of exposure contribute to overall risk. A mobile app was 476 developed in R language using the heuristic hazard quotient (HQ) method used by global 477 regulatory agencies [78]. MIT App Inventor was used to create a smartphone app, using drag and 478 drop techniques and Blockly modular tool (see supplemental section for code and details regarding 479 app development). Fig 6B displays the graphic user interface and a sample output for the SNAPS-480 ART tool, where users input drinking water ingestion rate, body weight, length of exposure, and 481 age. The app captures Hg^{2+} levels (ppm) obtained from the sensor, and uses the framework 482 established by the US Environmental Protection Agency and the World Bank to calculate a HQ 483 score [79][80][81]. Using the EPA standard HQ threshold [82], HQ >1.0 indicates higher risk of 484 potential adverse health effects increases, while a score <1.0 indicates low risk. 485

486 It is significant to grasp that the suggestion offered to the end-user is *not* the raw sensor data 487 output but a value (HQ) which *meaningfully integrates* other types of data to synthesize user-488 specific *information* which the user may choose to use, effectively (or not). Thus, SNAPS-ART

- 489 provides a real time *suggestion* to the user for health and wellness purposes as a result of
- 490 convergence of data including international standards for heavy metals contamination of drinking
- 491 water and healthcare statistics, relevant to the end-user and her environment. Detecting heavy
- 492 metal in water [83] and access to data was facilitated when text messages (SMS) with geo-code
- 493 (GPS location) were enabled to retrieve test data [84]. Improving the quality of raw data [85] is of
- 494 paramount importance but the end-users are in quest of answers (information) rather than
- 495 numbers (data). Simple and direct decision support using mobile devices is key for resource-
- 496 limited populations [86].
- 497


498 This example of SNAPS-ART highlights this quintessential *transition* from *data* for experts to 499 *information* for end-users. The HQ output significantly increases the *value* of the raw sensor data 500 by *combining* data in context of human-specific factors and micro-environment, to provide 501 actionable information relevant to precision public health. In addition, based on the HQ score, the 502 embedded artificial reasoning tool (ART) provides options to seek additional screening at a 503 verified laboratory, if the sample value triggers a set of logic/rules based on relationships between 504 data, perhaps revealed due to data association and/or data fusion. The latter is a critical feature 505 because the outcome has the potential to alert the user to recognize that the suggestion is not only 506 displaying a number but requesting secondary validation (visit to a primary care, formal lab tests). 507

·

- 509 Figure 7. Proof of concept demonstration for SNAPS-ART in heavy metal analysis of
- 510 water. A) Hg^{2+} -selective nanosensor based on LSG and nanocopper developed by
- 511 Abdelbasir et al [77]. B) Photo of heuristic analysis tool for calculating risk of mercury
- 512 exposure (hazard quotient calculator).
- 513 In another application (Fig 8) the SNAPS-ART platform aggregates impedimetric sensors for 514 detection of pathogenic bacteria in food samples. The Listeria monocytogenes biosensor developed 515 by Hills et al [87] is used as a demonstration (Fig 8A), and an ART tool was developed using 516 machine learning (R programming language). The ART tool for L. monocytogenes detection is 517 grounded in binary classification using bagged random forest written in R, with the smartphone 518 app created using MIT App Inventor. The program (see supplemental section for code) reads a raw 519 impedance data file from the biosensor, converts the data to the necessary form for machine 520 learning classification, optimizes hyperparameter values, and then uses machine learning 521 techniques to compare the sample to a training library; other methods are feasible as described by

522 Rong et al [25]. The tool is used for predicting whether the food sample (vegetable broth in this 523 case) may be contaminated or is safe, and how an user may seek secondary validation, if sample is 524 positive (Fig 8B); see supplemental section for details and screenshots of app. The major benefit of 525 this tool is the avoidance of computationally expensive (and time intensive) analytical methods 526 such as equivalent circuit analysis. While some equivalent circuit models, such as the Randles-527 Ershler circuit, provide some description of the physical meaning for each circuit element related 528 to an impedimetric biosensor, in most cases more complex models are used and parameters are 529 tuned with chi-squared (χ^2) fitting. If not used with expert guidance, equivalent circuit analysis 530 leads to significant errors in both interpretation and accuracy. It may be cost prohibitive, too. For 531 pathogens such as L. monocytogenes, the threshold for contamination is one live cell in a food 532 sample, and thus speed and accuracy of the tool are pivotal for rapid screening. Use of machine 533 learning (ML) tools to perform rapid screening, at the point of use, with a smartphone or tablet, 534 increases the *value* of the biosensor data and offers near-real time actionable *information* to the 535 end-user, agnostic of location or access to a laboratory test facility.

536

Figure 8. Proof of concept demonstration for SNAPS-ART in food safety analysis
(vegetable broth). A) *Listeria monocytogenes* biosensor developed with stimulus-response
polymers and DNA aptamers by Hills et al [70]. B) Screenshot and photograph of
machine learning analysis tool for determining whether sample is contaminated based on
an index score derived from machine learning analysis.

542 The benefits of the approach in Fig 7-8 may be extended by adapting the sensor RTA scheme 543 to allow the tool to detect and alert users about other targets (eg other heavy metal contaminants, 544 such as lead, cadmium, and arsenic or other biomolecule targets, such as viruses). SNAPS-ART 545 may be used for detection and diagnostics for a plethora of contaminating agents not only in liquid 546 (as shown here), but in any other medium as long as the analyte is presented in a form that binds 547 with the sensor material. The value of this approach increases exponentially if combined with 548 mobility (smartphone). The latter enables sourcing sensor data for myriad of analytes from any 549 environment where humans (citizen science) or drones may reach or interact with the sample. In 550 our approach, we have eschewed the use of high cost sensors, to highlight the potential for 551 diffusion of low-cost tools to enable democratization of data and distribute the dividends from 552 decision support to serve community-specific needs. To acquire, curate, analyze and extract useful 553 information from sensor and other data, we advocate synergistic integration with MAT and MAP. 554 SNAPS is a tiny first step in that direction.

Table 1. Challenges and Opportunities for SNAPS

Challenges	Opportunities
Extraction of information from sensor data for real time decision support	• Development of SNAPS-ART tools using established regulatory standards as a guide
Controlling or modulating sensor hysteresis <i>in situ</i>	 Integration of smart materials on sensor surface (e.g., stimulus-response polymers) Rudimentary control over system performance through the use of sense-analyze-respond- actuate (SARA) systems
Mobility and connectivity in agricultural and environmental systems	 Improvement of low latency communications Deploy low power [a] sensor systems and [b] data management systems
Integrating SNAPS with standard platform	 Establishment of data management systems based on lessons learned from other systems such as integrated clinical environment (ICE) Establishment of standards in architecture
Development of data informed decision as a service (DIDA'S)	 Establishment of SNAPS-ART as a common tool Integration of drag and drop analytics (DADA) and agent-based systems (ABS) Dynamic/reiterative analysis of streaming data from sensors Demonstration of feedback logic that interfaces with processed data Dynamic composability of tools triggered by data (application-dependent-networking) Database discovery or data resource discovery by agents using embedded logic (e.g., remote function call, RESTful APIs) Use of logic capabilities (learned, trained) and agent(s) to determine which tool, or sets of tools, are required for analyzing any given problem

558 7. The Path Forward?

559 The pivotal role of sensors, data, and information in decision support and partial automation 560 or auto-actuation is of critical importance in any field, including biosystems engineering. SNAPS 561 represents a confluence of ideas and is the foundation for making sense of data by adding value to 562 sensor data. Basic sensor design choices, described in this review, dictate the value and quality of 563 service for SNAPS. The lowest common denominator is to match the type of sensor transduction 564 (engineered or inherent) with an analytical approach (heuristic or algorithmic) to meet the needs 565 of the end user with respect to a baseline quality of service (QoS). In a more complex example, 566 sensor engineering for controlling or modulating hysteresis is required, if users expect real time, in 567 situ, sensor data connectivity to data analytics. SNAPS can offer design choices and suggest rules to 568 adopt (embedded logic) key performance indicators (KPI) which may be necessary to guide what 569 constitutes actionable information based on raw sensor data. However, it is essential to remain 570 cognizant of the fact that not all data may contain information and not all information may be 571 actionable or possess transactional value. Hence, the quality of data determines the quality of 572 service (QoS outcome).

573

SNAPS and ART are elements of the MAT and MAP trends, in terms of the quest to deliver
value from data analytics (in this case, with heuristic and qualitative sensors). Rudimentary control
over system performance through the use of SARA-driven Smart SNAPS, to auto-actuate select
system components, may be an example of emerging applications for agro-ecosystem,
environmental health, as well as public health and healthcare, especially remote diagnostics and
preventative health.

580

581 Beyond the SNAPS-ART paradigm, we hope to reach DIDA'S but its maturity is questionable, 582 at best. As these tools mature, the true value may be realized through the interaction of agents (i.e., 583 an agency) which embraces the collective optimization of performance (P) in the context of the 584 environment (E) where processes may be influenced by actuators (A) that depend on information 585 from sensor (S) data (thus, PEAS).

586

PEAS is mnemonic borrowed from the literature on ABS designed (modeled) to address
systems performance [88] that is focused on the convergence of percepts, environment, actuators,
and sensors (PEAS). The principle of PEAS are supposed to be the pillars on which we may build
"machines that work for us" versus "cogs" in the wheel - SNAPS, ART, DIDA'S - which are
examples of "tools with which we work" [89].

592

593 PEAS are goal-dependent strategic perspectives arising from the conceptual pot of alphabet 594 soup each with its array of dynamic push-pull elements and user-directed levers, which may be 595 used in any combination, to accomplish short term tasks (SNAPS) versus long term attempts to 596 orchestrate systems performance (PEAS). This interrelationship may be analogous to components 597 of the engine (SUGAR, SNAPS, ART, DIDA'S) which are essential and dependent for the function 598 and performance of the "whole" vehicle (PEAS).

599

600 Aggregating data and information for systems performance (PEAS) is the Holy Grail. In some 601 instances the "whole" picture is the *only* relevant picture. One attempt in biomedical engineering is referred to as the integrated clinical environment (ICE) effort [90], which strives to harmonize 602 603 data interoperability between all sub-systems to focus on the "whole patient" rather than isolated 604 parts. These concepts (PEAS, ICE) may serve as beacons for innovation in agriculture, energy, 605 environment, or other verticals areas, where a *tapestry* of solutions may be more valuable than 606 point solutions. Isolated solutions in the medical systems may lead to errors due to medical device 607 interoperability issues. The latter is often fatal, claiming as many as 250,000 lives per year, in the 608 US alone, and is the third leading cause of death in the US [91].

609

While no specific decision support framework is shown here, SNAPS is the first step toward DIDA'S, which may rely on tools such as drag and drop analytics (DADA) and models using ABS. One of the underlying themes in all cases is the use of mobility and low latency signal transmission (for example, future potential for use of 5G) as key enablers for facilitating various levels of partial autonomy within system of systems, which responds to remote instructions and signals, without lag (latency may be fatal, for example in remote surgery or for pedestrians vs autonomous cars).

010

617 The excruciating struggle to extract information from sensor data (if there is information in 618 the data) is an indication that unleashing knowledge from information may be a mirage. The 619 anticipated evolution of data-science to knowledge-science is the central thrust of knowledge-620 informed decision as a service (KIDS), an aspirational idea which may not be addressed by the use 621 of current tools and contemporary thinking. The broad spectrum of "data-informed" approaches 622 will vary by use cases, from simpler instances SNAPS may be a first step. For complex expectations, 623 DIDA'S may step in. Beyond DIDA'S we may be entering the domain of the unknown unknowns. 624

The mention of "unknown unknowns" cannot be left metaphorically hanging from the rhetorical cliff of conclusion. The academic incentive to pontificate on this topic is inextricably linked to the keystone factor of *knowledge discovery*. Unless we know what data to connect, the extraction of information will be incorrect, insipid or incomplete, at best. Low level information is akin to "the same and not the same" [92] where "whiskers" (outliers) far outweigh the central substance (interquartile range) in a box plot. Using this information as knowledge bricks will be tantamount to building a virtual house out of hollow cards.

632

Hence, knowledge discovery cannot be treated as a separate topic when discussing sensors
and sensor data. Without discovering the context and relevance of data to the bigger picture, the
outcome will remain narrow, retarded and half-baked. Sensors will be impotent without tools to
extract value from data fusion. This discussion is not peripheral but central, to all sensors.

The growing ubiquity of sensors, which are increasingly woven into almost every facet of our
daily lives, makes it imperative that sensor scientists consider the data science impact of their work.
Data scientists must take a closer look at sensor data and sensor engineering, to ask the correct
questions. Tools for knowledge discovery are not in short supply [93][94] but the rate limiting

642 factor preventing the diffusion of these tools are rooted in their complexity, lack of standards and 643 few common open platforms. If "open platforms" emerge, the race to adapt and adopt will not be 644 determined by its success due to technological strength or computational excellence. Rather the 645 economics of technology may be the single most important criteria which will influence and 646 determine feasibility [95][96] of mass adoption, the latter, in turn, will reduce cost of adoption due 647 to economies of scale. The latter is the catalyst to enable these benefits to reach the impoverished 648 communities and serve as a tool for democratization of data for the next billion users.

We are on the brink of change, albeit at a glacial pace. The advances in search and discovery of
data and information, are likely to improve if we can use tools based on graph theoretic
approaches, to establish relationships and dependencies between objects and subjects [97][98].
Currently, the tools from graph theory are few and far between, yet it is already being aggrandized
and referred to as knowledge graphs. Irrespective of the descriptive semantics and the professional
vernacular, knowledge graphs are potentially useful for knowledge discovery.

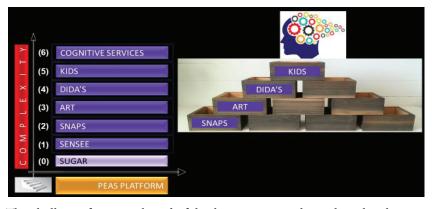
656

657 Scientific progress relies on the confluence of efficient assimilation of existing knowledge in 658 order to minimize re-invention. It appears that the graph theoretic approach may lead to the 659 creation of knowledge graph tools to plumb the depths of unknown unknowns, where catalysts for 660 scientific breakthroughs often reside. By using relationships between materials and their properties 661 [99] which may be organized as graphs with edges and nodes, a research team has developed a 662 methodology which may lend itself to exploring non-obvious relationships [100]. The authors are 663 incisive to point out an entity-relationship mode which remains the "bread and butter" of context-664 awareness. The latter, in terms of knowledge representation, has evolved as RDF, the resource 665 description framework standard [101] and is a more general model of entities (nodes) and 666 relationships, albeit incomplete. Thus, the paper by Tshitoyan et al [99] provides tangible grounds 667 to extrapolate the methodology from material science to other domains. It strengthens the notion 668 that developing and implementing knowledge graph tools may aid in unleashing new ideas, reveal 669 unknown unknowns and enable context-aware knowledge discovery.

670

671 In another vein, a leap of progress was made when an unusual strategy was adopted to 672 organize and "number" the content (names, relationships from material science) in "preparation" 673 to use the tools of machine learning (ML) for analyzing the information and exploring 674 relationships [102][103][104][105]. Nandy et al broke existing rules and enabled analytical tools 675 to plumb the depths of the associations, generally not discovered by traditional rule-based 676 methods. It is a clear indication that the next step is to establish semantic associations [106]. We 677 propose an in-depth exploration of the tools that evolved from these materials science papers, 678 which *combined* data science with domain knowledge to explore unchartered waters [107]. The 679 principles behind these approaches may be in short supply (missing) in the domain of sensor 680 chemistry and engineering. The plethora of physico-chemical characteristics that govern the 681 attributes of sensors has little (if any) fundamental semantic association with basic science 682 (structure and properties of the molecules), which dictates functional interactions and 683 efficiency/efficacy.

684 Interrelationships and dependencies are key to function, yet the reductionist approach must 685 view components in isolation, for the sake of operational convenience. The ability to synthesize 686 any graph theoretic approach (knowledge graphs) will depend on our ability to establish 687 connections between nodes and sub-nodes. The ability to organize the knowledge in its semantic 688 context (classification, taxonomy) may determine if we may extract *meaningful* relationships, 689 between distant, apparently unrelated nodes/sub-nodes. The ability to adopt and use the semantic 690 associations within the computational system will determine if we can use data related tools (for 691 example, machine learning, artificial neural nets) to discover relationships yet to be discovered. 692


693 Domain knowledge experts may help create nomological networks for sensor science [108] 694 perhaps resembling taxonomic trees or biochemical cycles [109]. In the next step, basic sensor 695 science must converge with the principles and practice of engineering, by learning from system 696 dynamics [110]. From the user perspective, the ability to use natural language queries [111] may be 697 beneficial. The latter unleashes the potential for neural machine reading comprehension [112]. 698 However, existing tools [113][114][115][116][117][118][119][120][121] are a smörgåsbord of 699 word associations/representations [122] which may often use variations of nearest neighbor 700 principles developed circa 1000 AD [123][124]. Although pockets of evolution to elementary 701 semantic data type detection is in progress [125], almost all tools lack digital semantics [126]. 702 Knowledge discovery, knowledge graphs and graph neural networks [127] will remain reasonably 703 impotent without the ability to use semantic associations, for example, semantic data catalogs 704 [128]. Thus, there appears to be a vast chasm between sensor science and engineering and data 705 science, which is in need of convergence, perhaps through a global group effort. The rejection of 706 this idea [129] may serve as a badge of honor to those who may grasp its significance.

707

708 The need for semantic tools is old news [130] but new research at the nexus of natural 709 language processing, linguistics, semantics, and science, may fuel trans-disciplinary convergence 710 necessary to advance knowledge discovery. Broad spectrum dissemination of this knowledge using 711 simple and tangible user interfaces may be crucial [131]. Knowledge discovery appears to be at the 712 heart of sensor research and sensor engineering, if we wish to extract value from sensors, already 713 deployed in enterprises, and aspire to deploy sensors as global public goods, for the next trillion 714 use-cases in the global supply chain [132]. For global supply chain and value network dynamics, 715 the "sense" table principle (circa 1997) using tangible user interfaces (TUI) is an useful idea, that 716 can display how data can change decisions in near real-time ([133][134][135][136][137] [138]). 717 However, TUI applications remains unexplored, in practice. Synergistic integration of tools based 718 on tangible user interfaces may be useful to simulate or display real-world potential for dynamic 719 changes and variant configurations (alternatives, options) if the operating logic of these TUI tools 720 are informed by (guided, advised, shaped) the convergence of semantically relevant curated data 721 (perishability, time sensitivity, time series), location-aware contextual information and meaningful 722 correlations which may uncover cryptic relationships (obvious, non-obvious, reinforced, learned), 723 which may influence the outcome or expectation or prediction. Information-informed tangible 724 user interface tools (iiTUIT) may be another higher order plane for combinatorial thinking and a 725 task for a new breed of creative thinkers who may invest in exploring *confluence* of ideas.

726 8. Concluding Remarks

727 Ubiquity of sensor data makes it crucial that sensor data offers semantically sensible 728 value, preferably at every instance, starting with less complex point solutions, referred to as 729 SNAPS, in this discussion. SNAPS and other layers in the layer cake (0-6) illustrated as steps 730 are not discrete stages but represents tool sets and or decision sub-platforms which can 731 combine, re-combine and co-exist in various forms. For example, artificial reasoning tools 732 (ART) is a sub-platform where the output may use various types of logic or rules which may 733 guide/shape rational/irrational decisions. ART is not only its own layer but may be viewed as a 734 mobile layer (repertoire of tools) which can work with various other layers to modulate the 735 output (decision). For example, SUGAR (simple user guided activity report) only delivers raw 736 data based on user command. If the output from SUGAR feeds ART, the tools may offer a 737 preliminary processing of data generated by SUGAR and offer an output (decision support) 738 which is a level above SUGAR (yet, not SNAPS). The "empty boxes" (indicated on the right) 739 in the illustration represents these potential combinations which may be case specific and 740 offers room for innovation as the evolution of decision science continues. ART may be one 741 occupant of these "boxes" if necessary, in a certain scenario (use case). ART may work with 742 any layer and in any stage (in any "box"). In this bio-inspired "McClintock"-esque paradigm 743 [139], ART (or something similar or equivalent) may be viewed as a cross-pollinator of 744 SUGAR, SNAPS, PEAS (hence "jumping genes" may be a suitable analogy [140] as well as the 745 related "mobile transposon" concept [141]). The threads of these ideas advocate the potential 746 of cross-platform mobile elements (tools) which may be designed to act as dynamic cross-747 fertilizing "influenza" {(the term "influenza" is Italian for "influence" and used [142] since 748 circa 1357 (circa 1504 in English) to describe the illness, due to its perceived association with 749 cold weather (influenze di freddo)} agents capable of improving and/or influencing, as well as 750 linking, various domains of decision support systems.

- 751
- **Figure 9**. The challenge for a new breed of thinkers is to pave the path with value
- extracted from data and information from SUGAR (simple user guided activity report) to
- 754 SERVICES (layer 6), and the layers and sub-layers, which may be necessary or
- 755 mandatory but still remains to be discovered and/or identified. In the distant future,
- perhaps, someday, the system may legitimately claim to integrate the use of cognitive
- tools even beyond knowledge (KIDS, knowledge informed decision as a service) to
- introduce and promote bold new frontiers in the realm of decision science.

759	Author Contributions:
760	Conceptualization: ESM, SPAD
761	Data curation: YR
762	Formal analysis: YR
763	Funding acquisition: ESM
764	Formatting: ESM, SB
765	Investigation: VM, NC
766	Methodology: ESM
767	Project administration: ESM, DV
768	Resources: ESM, DV
769	Software: VM, NC, YR, SB
770	Supervision: ESM
771	Visualization: ESM, SPAD
772	Writing – original draft: ESM, SPAD
773	Writing – review and editing: ALL
774	
775 776 777	Funding: This project was supported by AFRI Grant no. 2018-67016-27578 awarded as a Center of Excellence from the USDA NIFA. The authors also acknowledge NSF project 1805512 (Biosensing) and NSF project 1511953 (Nanobiosensing) for financial support.
778	
779	Conflicts of Interest: "The authors declare no conflict of interest."
780	
781	References
782	1. Wang, J., 2001. Glucose biosensors: 40 years of advances and challenges. Electroanalysis: An
783	International Journal Devoted to Fundamental and Practical Aspects of
784	Electroanalysis, 13(12), pp.983-988.
785 786	2. Wang, B. and Anzai, J.I., 2015. Recent progress in lectin-based biosensors. <i>Materials</i> , 8(12), pp.8590-8607
787	 Song, Y., Luo, Y., Zhu, C., Li, H., Du, D. and Lin, Y., 2016. Recent advances in electrochemical
788	biosensors based on graphene two-dimensional nanomaterials. <i>Biosensors and</i>
789	<i>Bioelectronics</i> , <i>76</i> , pp.195-212.
790	4. Yang, L. and Bashir, R., 2008. Electrical/electrochemical impedance for rapid detection of
791	foodborne pathogenic bacteria. Biotechnology advances, 26(2), pp.135-150.
792	5. Brolo, A.G., 2012. Plasmonics for future biosensors. <i>Nature Photonics</i> , 6(11), p.709.

793	6.	Scheller, F.W., Yarman, A., Bachmann, T., Hirsch, T., Kubick, S., Renneberg, R., Schumacher,
794		S., Wollenberger, U., Teller, C. and Bier, F.F., 2013. Future of biosensors: a personal view.
795		In Biosensors Based on Aptamers and Enzymes (pp. 1-28). Springer, Berlin, Heidelberg.
796	7.	Li, R., Feng, Y., Pan, G. and Liu, L., 2019. Advances in molecularly imprinting technology for
797		bioanalytical applications. Sensors, 19(1), p.177.
798	8.	Murphy, L., 2006. Biosensors and bioelectrochemistry. Current opinion in chemical
799		<i>biology</i> , <i>10</i> (2), pp.177-184.
800	9.	Bogue, R., 2009. Nanosensors: a review of recent research. Sensor Review, 29(4), pp.310-315.
801	10.	Li, C., Bai, H. and Shi, G., 2009. Conducting polymer nanomaterials: electrosynthesis and
802		applications. Chemical Society Reviews, 38(8), pp.2397-2409.
803	11.	Bonanni, A., Loo, A.H. and Pumera, M., 2012. Graphene for impedimetric biosensing. <i>TrAC</i>
804		Trends in Analytical Chemistry, 37, pp.12-21.
805	12.	Zhu, C., Yang, G., Li, H., Du, D. and Lin, Y., 2014. Electrochemical sensors and biosensors
806		based on nanomaterials and nanostructures. Analytical chemistry, 87(1), pp.230-249.
807	13.	Ekinci, K.L., 2005. Electromechanical transducers at the nanoscale: actuation and sensing of
808		motion in nanoelectromechanical systems (NEMS). small, 1(8-9), pp.786-797.
809	14.	Collins, B.E. and Anslyn, E.V., 2007. Pattern-Based Peptide Recognition. Chemistry-A
810		<i>European Journal</i> , <i>13</i> (17), pp.4700-4708.
811	15.	Turner, A.P., 2013. Biosensors: sense and sensibility. Chemical Society Reviews, 42(8),
812		pp.3184-3196.
813	16.	Thakare, V. and Khire, G., 2014. Role of emerging technology for building smart hospital
814		information system. Procedia Economics and Finance, 11, pp.583-588.
815	17.	Quesada-González, D. and Merkoçi, A., 2017. Mobile phone-based biosensing: An emerging
816		"diagnostic and communication" technology. <i>Biosensors and Bioelectronics</i> , 92, pp.549-562.
817	18.	Wei, Q., Luo, W., Chiang, S., Kappel, T., Mejia, C., Tseng, D., Chan, R.Y.L., Yan, E., Qi, H.,
818		Shabbir, F. and Ozkan, H., 2014. Imaging and sizing of single DNA molecules on a mobile
819		phone. ACS nano, 8(12), pp.12725-12733.
820	19.	Guner, H., Ozgur, E., Kokturk, G., Celik, M., Esen, E., Topal, A.E., Ayas, S., Uludag, Y.,
821		Elbuken, C. and Dana, A., 2017. A smartphone based surface plasmon resonance imaging
822		(SPRi) platform for on-site biodetection. Sensors and Actuators B: Chemical, 239, pp.571-577.
823	20.	Rowe, A.A., Bonham, A.J., White, R.J., Zimmer, M.P., Yadgar, R.J., Hobza, T.M., Honea, J.W.,
824		Ben-Yaacov, I. and Plaxco, K.W., 2011. CheapStat: an open-source,"Do-It-Yourself"
825		potentiostat for analytical and educational applications. <i>PloS one</i> , 6(9), p.e23783.
826	21.	Jenkins, D.M., Lee, B.E., Jun, S., Reyes-De-Corcuera, J. and McLamore, E.S., 2019. ABE-Stat, a
827		Fully Open-Source and Versatile Wireless Potentiostat Project Including Electrochemical
828		Impedance Spectroscopy. Journal of The Electrochemical Society, 166(9), pp.B3056-B3065
829	22.	Moraru, A., Pesko, M., Porcius, M., Fortuna, C. and Mladenic, D., 2010. Using machine
830		learning on sensor data. <i>Journal of computing and information technology</i> , 18(4), pp.341-347.
831	23.	Ghahramani, Z., 2015. Probabilistic machine learning and artificial
832		intelligence. <i>Nature</i> , <i>521</i> (7553), p.452.
833	24.	Saeb, S., Lonini, L., Jayaraman, A., Mohr, D.C. and Kording, K.P., 2016. Voodoo machine
834		learning for clinical predictions. <i>Biorxiv</i> , p.059774.

835	25.	Rong, Y., Padron, A.V., Hagerty, K.J., Nelson, N., Chi, S., Keyhani, N.O., Katz, J., Datta,
836		S.P.A., Gomes, C. and McLamore, E.S., 2018. Post hoc support vector machine learning for
837		impedimetric biosensors based on weak protein-ligand interactions. Analyst, 143(9),
838		pp.2066-2075.
839	26.	Koczula, K.M. and Gallotta, A., 2016. Lateral flow assays. <i>Essays in biochemistry</i> , 60(1),
840		pp.111-120.
841	27.	Olsman, N. and Goentoro, L., 2016. Allosteric proteins as logarithmic sensors. Proceedings of
842		the National Academy of Sciences, 113(30), pp.E4423-E4430.
843	28.	Nussinov, R., Tsai, C.J. and Ma, B., 2013. The underappreciated role of allostery in the cellular
844		network. Annual review of biophysics, 42, pp.169-189.
845	29.	Taguchi, M., Ptitsyn, A., McLamore, E.S. and Claussen, J.C., 2014. Nanomaterial-mediated
846		biosensors for monitoring glucose. Journal of diabetes science and technology, 8(2), pp.403-
847		411.
848	30.	Mosbah, A., Campanacci, V., Lartigue, A., Tegoni, M., Cambillau, C. and Darbon, H., 2003.
849		Solution structure of a chemosensory protein from the moth Mamestra brassicae. <i>Biochemical</i>
850		Journal, 369(1), pp.39-44.
851	31.	Vámos, T., 1992. Judea pearl: Probabilistic reasoning in intelligent systems. Decision Support
852		<i>Systems</i> , 8(1), pp.73-75.
853	32.	Marr, D. and Poggio, T., 1979. A computational theory of human stereo vision. <i>Proceedings of</i>
854		the Royal Society of London. Series B. Biological Sciences, 204(1156), pp.301-328.
855	33.	Bhusal, N., Shrestha, S., Pote, N. and Alocilja, E., 2019. Nanoparticle-Based Biosensing of
856		Tuberculosis, an Affordable and Practical Alternative to Current Methods. <i>Biosensors</i> , 9(1),
857		p.1.
858	34.	Gordillo-Marroquín, C., Gómez-Velasco, A., Sánchez-Pérez, H., Pryg, K., Shinners, J.,
859		Murray, N., Muñoz-Jiménez, S., Bencomo-Alerm, A., Gómez-Bustamante, A., Jonapá-Gómez,
860		L. and Enríquez-Ríos, N., 2018. Magnetic Nanoparticle-Based Biosensing Assay
861		Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary
862		Tuberculosis. <i>Biosensors</i> , 8(4), p.128.
863	35.	Wei, Q., Qi, H., Luo, W., Tseng, D., Ki, S.J., Wan, Z., Göröcs, Z., Bentolila, L.A., Wu, T.T.,
864		Sun, R. and Ozcan, A., 2013. Fluorescent imaging of single nanoparticles and viruses on a
865		smart phone. ACS nano, 7(10), pp.9147-9155.
866	36.	Zheng, L., Cai, G., Wang, S., Liao, M., Li, Y. and Lin, J., 2019. A microfluidic colorimetric
867		biosensor for rapid detection of Escherichia coli O157: H7 using gold nanoparticle
868		aggregation and smart phone imaging. Biosensors and Bioelectronics, 124-125, pp.143-149.
869	37.	Yetisen, A.K., Martinez-Hurtado, J.L., Garcia-Melendrez, A., da Cruz Vasconcellos, F. and
870		Lowe, C.R., 2014. A smartphone algorithm with inter-phone repeatability for the analysis of
871		colorimetric tests. Sensors and Actuators B: Chemical, 196, pp.156-160.
872	38.	Lopez-Ruiz, N., Curto, V.F., Erenas, M.M., Benito-Lopez, F., Diamond, D., Palma, A.J. and
873		Capitan-Vallvey, L.F., 2014. Smartphone-based simultaneous pH and nitrite colorimetric
874		determination for paper microfluidic devices. Analytical chemistry, 86(19), pp.9554-9562.
875	39.	Thompson, R.E., Larson, D.R. and Webb, W.W., 2002. Precise nanometer localization
876		analysis for individual fluorescent probes. <i>Biophysical journal</i> , 82(5), pp.2775-2783.

877	40.	Gunda, N.S.K., Gautam, S.H. and Mitra, S.K., 2019. Artificial Intelligence Based Mobile
878		Application for Water Quality Monitoring. <i>Journal of The Electrochemical Society</i> , 166(9),
879		pp.B3031-B3035.
880	41.	Vanegas, D., Patiño, L., Mendez, C., Oliveira, D., Torres, A., Gomes, C. and McLamore, E.,
881		2018. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples
882		Using Locally Sourced Materials. <i>Biosensors</i> , 8(2), p.42.
883	42.	Yoo, S.M. and Lee, S.Y., 2016. Optical biosensors for the detection of pathogenic
884		microorganisms. Trends in biotechnology, 34(1), pp.7-25.
885	43.	Liu, L., Zhang, D., Zhang, Q., Chen, X., Xu, G., Lu, Y. and Liu, Q., 2017. Smartphone-based
886		sensing system using ZnO and graphene modified electrodes for VOCs detection. <i>Biosensors</i>
887		and Bioelectronics, 93, pp.94-101.
888	44.	Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. and Campbell, A.T., 2010. A
889		survey of mobile phone sensing. <i>IEEE Communications magazine</i> , 48(9), pp.140-150.
890	45.	McGrath, A.P., Hilmer, K.M., Collyer, C.A., Shepard, E.M., Elmore, B.O., Brown, D.E.,
891		Dooley, D.M. and Guss, J.M., 2009. Structure and inhibition of human diamine
892		oxidase. Biochemistry, 48(41), pp.9810-9822.
893	46.	Babiceanu, R.F. and Seker, R., 2016. Big Data and virtualization for manufacturing cyber-
894		physical systems: A survey of the current status and future outlook. <i>Computers in Industry</i> , 81,
895		pp.128-137.
896	47.	C. Wu, R. Buyya, and K. Ramamohanarao, 2016. "Big Data Analytics = Machine Learning +
897		Cloud Computing," in Buyya, R., Calheiros, R.N. and Dastjerdi, A.V. eds. Big Data: Principles
898		and Paradigms. Elsevier, pp. 1-27.
899	48.	Ravi, K., Khandelwal, Y., Krishna, B.S. and Ravi, V., 2018. Analytics in/for cloud-an
900		interdependence: A review. Journal of Network and Computer Applications, 102, pp.17-37.
901	49.	J Heer, J. and Perer, A., 2014. Orion: A system for modeling, transformation and visualization
902		of multidimensional heterogeneous networks. Information Visualization, 13(2), pp.111-133.
903	50.	Kim, J., Levy, E., Ferbrache, A., Stepanowsky, P., Farcas, C., Wang, S., Brunner, S., Bath, T.,
904		Wu, Y. and Ohno-Machado, L., 2014. MAGI: a Node. js web service for fast microRNA-Seq
905		analysis in a GPU infrastructure. <i>Bioinformatics</i> , 30(19), pp.2826-2827.
906	51.	Nolte, H., MacVicar, T.D., Tellkamp, F. and Krüger, M., 2018. Instant Clue: a software suite
907		for interactive data visualization and analysis. Scientific reports, 8(1), p.12648.
908	52.	Ko, G., Kim, P.G., Yoon, J., Han, G., Park, S.J., Song, W. and Lee, B., 2018. Closha:
909		bioinformatics workflow system for the analysis of massive sequencing data. BMC
910		<i>bioinformatics</i> , 19(1), p.43.
911	53.	Shang, Z., Zgraggen, E., Buratti, B., Kossmann, F., Eichmann, P., Chung, Y., Binnig, C., Upfal,
912		E. and Kraska, T., 2019, June. Democratizing data science through interactive curation of ml
913		pipelines. In Proceedings of the 2019 International Conference on Management of Data (pp.
914		1171-1188). ACM.
915	54.	Binnig, C., Buratti, B., Chung, Y., Cousins, C., Kraska, T., Shang, Z., Upfal, E., Zeleznik, R. and
916		Zgraggen, E., 2018, June. Towards interactive curation & automatic tuning of ml pipelines.
917		In Proceedings of the Second Workshop on Data Management for End-To-End Machine
010		

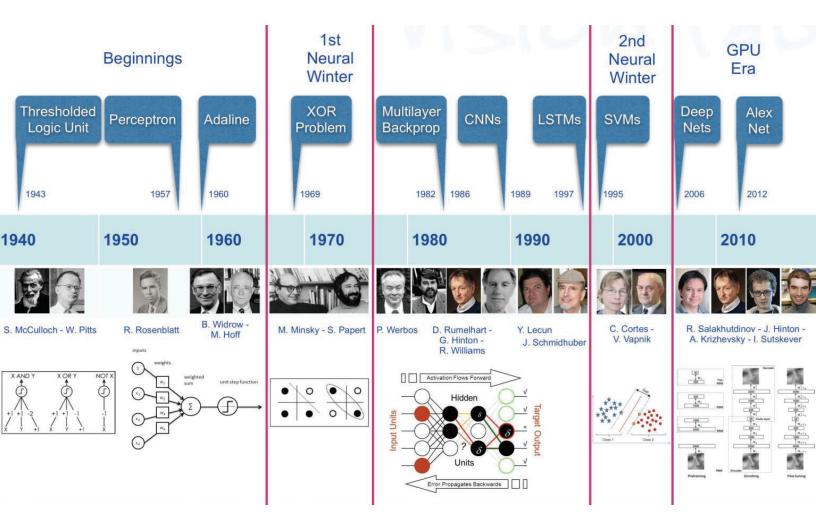
918 *Learning* (p. 1). ACM.

919	55.	Chung, Y., Servan-Schreiber, S., Zgraggen, E. and Kraska, T., 2018. Towards Quantifying
920		Uncertainty in Data Analysis & Exploration. IEEE Data Eng. Bull., 41(3), pp.15-27.
921	56.	Tou, J.T. and Gonzalez, R.C., 1972. Automatic recognition of handwritten characters via
922		feature extraction and multi-level decision. International Journal of Computer & Information
923		<i>Sciences</i> , <i>1</i> (1), pp.43-65.
924	57.	Zeng, W., Meng, X., Yang, C. and Huang, L., 2006. Feature extraction for online handwritten
925		characters using Delaunay triangulation. Computers & Graphics, 30(5), pp.779-786.
926	58.	COMSOL, "Introduction to COMSOL Multiphysics 5.3," Manual, 2014.
927	59.	P. Roger W. Pryor, Multiphysics Modeling Using COMSOL®: A First Principles Approach. 2009.
928	60.	Hamada, M. and Sato, S., 2010, June. Lego NXT as a learning tool. In Proceedings of the
929		fifteenth annual conference on Innovation and technology in computer science education (pp.
930		321-321). ACM.
931	61.	Datta, S.P.A., 2017. Emergence of Digital Twins-Is this the march of reason?. Journal of
932		Innovation Management, 5(3), pp.14-33.
933	62.	Meystel, A., 1989. Intelligent control: A sketch of the theory. Journal of Intelligent & Robotic
934		<i>Systems</i> , 2(2), pp.97-107.
935	63.	Stephanopoulos, G. and Han, C., 1996. Intelligent systems in process engineering: A
936		review. Computers & Chemical Engineering, 20(6-7), pp.743-791.
937	64.	Meystel, A., 1993, August. Architectures for intelligent control systems: The science of
938		autonomous intelligence. In Proceedings of 8th IEEE International Symposium on Intelligent
939		Control (pp. 42-48). IEEE.
940	65.	Antsaklis, P.J., Passino, K.M. and Wang, S.J., 1991. An introduction to autonomous control
941		systems. IEEE Control Systems Magazine, 11(4), pp.5-13.
942	66.	Albaladejo, C., Soto, F., Torres, R., Sánchez, P. and López, J.A., 2012. A low-cost sensor buoy
943		system for monitoring shallow marine environments. Sensors(Switzerland), 12(7), pp.9613-
944		9634.
945	67.	Pardee, A.B., Jacob, F. and Monod, J., 1959. The genetic control and cytoplasmic expression of
946		"inducibility" in the synthesis of β -galactosidase by E. coli. <i>Journal of Molecular Biology</i> , 1(2),
947		pp.165-178.
948	68.	Quinlan, J.R., 1986. Induction of decision trees. <i>Machine learning</i> , 1(1), pp.81-106.
949	69.	"Introduction to Decision Trees," 2014.
950	70.	Forstmann, B.U., Dutilh, G., Brown, S., Neumann, J., Von Cramon, D.Y., Ridderinkhof, K.R.
951		and Wagenmakers, E.J., 2008. Striatum and pre-SMA facilitate decision-making under time
952		pressure. Proceedings of the National Academy of Sciences, 105(45), pp.17538-17542.
953	71.	Gold, C., Damböck, D., Lorenz, L. and Bengler, K., 2013, September. "Take over!" How long
954		does it take to get the driver back into the loop?. In Proceedings of the Human Factors and
955		Ergonomics Society Annual Meeting (Vol. 57, No. 1, pp. 1938-1942). Sage CA: Los Angeles,
956		CA: SAGE Publications
957	72.	Cabri, G., Leonardi, L. and Zambonelli, F., 2000. MARS: A programmable coordination
958		architecture for mobile agents. IEEE Internet Computing, 4(4), pp.26-35.
959	73.	E. Jean, 2011. "Sensor network interoperability and reconfiguration through mobile agents,".

960	74.	Fielding, R.T. and Taylor, R.N., 2000. Architectural styles and the design of network-based
961		software architectures. Doctoral dissertation: University of California, Irvine.
962	75.	Willinger, W., Paxson, V., Riedi, R.H. and Taqqu, M.S., 2003. Long-range dependence and
963		data network traffic. <i>Theory and applications of long-range dependence</i> , pp.373-407.
964	76.	Vélez-Torres, I., Vanegas, D.C., McLamore, E.S. and Hurtado, D., 2018. Mercury pollution
965		and artisanal gold mining in Alto Cauca, Colombia: woman's perception of health and
966		environmental impacts. The Journal of Environment & Development, 27(4), pp.415-444.
967	77.	Abdelbasir, S.M., El-Sheikh, S.M., Morgan, V.L., Schmidt, H., Casso-Hartmann, L.M.,
968		Vanegas, D.C., Velez-Torres, I. and McLamore, E.S., 2018. Graphene-anchored cuprous oxide
969		nanoparticles from waste electric cables for electrochemical sensing. ACS Sustainable
970		Chemistry & Engineering, 6(9), pp.12176-12186.
971	78.	Nakazawa, K., Nagafuchi, O., Kawakami, T., Inoue, T., Yokota, K., Serikawa, Y., Cyio, B. and
972		Elvince, R., 2016. Human health risk assessment of mercury vapor around artisanal small-
973		scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicology and
974		environmental safety, 124, pp.155-162.
975	79.	Saleem, M., Iqbal, J. and Shah, M.H., 2014. Dissolved concentrations, sources, and risk
976		evaluation of selected metals in surface water from mangla lake, Pakistan. The Scientific World
977		Journal, 2014.
978	80.	Xiao, J., Wang, L., Deng, L. and Jin, Z., 2019. Characteristics, sources, water quality and health
979		risk assessment of trace elements in river water and well water in the Chinese Loess
980		Plateau. Science of the Total Environment, 650, pp.2004-2012.
981	81.	Takabe, Y., Tsuno, H., Nishimura, F., Tanii, N., Maruno, H., Tsurukawa, M., Suzuki, M. and
982		Matsumura, C., 2012. Bioaccumulation and primary risk assessment of persistent organic
983		pollutants with various bivalves. <i>Water Science and Technology</i> , 66(12), pp.2620-2629.
984	82.	U. S. E. P. a Oppt, "Quantitative Risk Assessment Calculations," EPA Sustain. Futur. Framew.
985		Man. 2012 EPA-748-B12-001, 2012.
986	83.	Smith, A.H., Lingas, E.O. and Rahman, M., 2000. Contamination of drinking-water by arsenic
987		in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78,
988		pp.1093-1103.
989	84.	Van Geen, A., Trevisani, M., Immel, J., Jakariya, M., Osman, N., Cheng, Z., Gelman, A. and
990		Ahmed, K.M., 2006. Targeting low-arsenic groundwater with mobile-phone technology in
991		Araihazar, Bangladesh. <i>Journal of health, population, and nutrition, 24</i> (3), p.282.
992	85.	Wan, X., Volpetti, F., Petrova, E., French, C., Maerkl, S.J. and Wang, B., 2019. Cascaded
993		amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nature chemical
994		<i>biology</i> , 15(5), p.540.
995	86.	Haque, F., Ball, R.L., Khatun, S., Ahmed, M., Kache, S., Chisti, M.J., Sarker, S.A., Maples, S.D.,
996		Pieri, D., Korrapati, T.V. and Sarnquist, C., 2017. Evaluation of a smartphone decision-
997		support tool for diarrheal disease management in a resource-limited setting. PLoS neglected
998		<i>tropical diseases</i> , <i>11</i> (1), p.e0005290.
999	87.	Hills, K.D., Oliveira, D.A., Cavallaro, N.D., Gomes, C.L. and McLamore, E.S., 2018. Actuation
1000		of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst, 143(7), pp.1650-1661.

1001	88.	Shirude, S.B. and Kolhe, S.R., 2018. Agent-Based Architecture for Developing Recommender
1002		System in Libraries. In Knowledge Computing and its Applications (pp. 157-181). Springer,
1003		Singapore.
1004	89.	Ellul, J. (1964). The technological society. New York: Knopf.
1005	90.	Subcommittee: F29.21 (ASTM), "ASTM F2761 - 09(2013) Medical Devices and Medical
1006		Systems - Essential safety requirements for equipment comprising the patient-centric
1007		integrated clinical environment (ICE)," 2013.
1008	91.	Makary, M.A. and Daniel, M., 2016. Medical error—the third leading cause of death in the
1009		US. <i>Bmj</i> , 353, p.i2139.
1010	92.	R. Hoffmann and F. J. Dyson, "The Same and Not the Same" Phys. Today, 2008.
1011	93.	W. E. McCarthy, "Knowledge Representation: Logical, Philosophical, and Computational
1012		Foundations," Account. Rev., 2002.
1013	94.	Bergman, M.K., 2018. A Knowledge Representation Practionary: Guidelines Based on Charles
1014		Sanders Peirce. Springer.
1015	95.	P. A. David, and G. Wright (2012) General Purpose Technologies and Surges in Productivity:
1016		Historical Reflections on the Future of the ICT Revolution, in <i>The Economic Future in</i>
1017		Historical Perspective, 2012.
1018	96.	The Economic Future in Historical Perspective. 2012.
1019	97.	Bullmore, E. and Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
1020		structural and functional systems. <i>Nature reviews neuroscience</i> , 10(3), p.186.
1021	98.	Fornito, A., Zalesky, A. and Breakspear, M., 2013. Graph analysis of the human connectome:
1022		promise, progress, and pitfalls. <i>Neuroimage</i> , 80, pp.426-444.
1023	99.	Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson, K.A.,
1024		Ceder, G. and Jain, A., 2019. Unsupervised word embeddings capture latent knowledge from
1025		materials science literature. <i>Nature</i> , 571(7763), p.95.
1026	100	. J. Jonas, 2005. Non-Obvious Relationship Awareness (NORA), in IBM Entity Analytic
1027		Solutions, pp. 1–78.
1028	101	. G. Bartolomeo and T. Kovacikova. (2013). "Resource Description Framework", in G.
1029		Bartolomeo and T. Kovacikova. Identification and Management of Distributed Data, Boca
1030		Raton: CRC Press, pp. 205-211.
1031	102	. Janet, J.P., Chan, L. and Kulik, H.J., 2018. Accelerating chemical discovery with machine
1032		learning: simulated evolution of spin crossover complexes with an artificial neural
1033		network. The journal of physical chemistry letters, 9(5), pp.1064-1071.
1034	103	. Janet, J.P. and Kulik, H.J., 2017. Predicting electronic structure properties of transition metal
1035		complexes with neural networks. <i>Chemical science</i> , 8(7), pp.5137-5152.
1036	104	. Janet, J.P. and Kulik, H.J., 2017. Resolving transition metal chemical space: Feature selection
1037		for machine learning and structure-property relationships. <i>The Journal of Physical Chemistry</i>
1038		<i>A</i> , <i>121</i> (46), pp.8939-8954.
1039	105	. Nandy, A., Duan, C., Janet, J.P., Gugler, S. and Kulik, H.J., 2018. Strategies and software for
1040		machine learning accelerated discovery in transition metal chemistry. Industrial &
1041		Engineering Chemistry Research, 57(42), pp.13973-13986.

1042 106. Barati, M., Bai, Q. and Liu, Q., 2017. Mining semantic association rules from RDF 1043 data. Knowledge-Based Systems, 133, pp.183-196. 1044 107. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H. and Kang, J., 2019. Biobert: pre-trained 1045 biomedical language representation model for biomedical text mining. arXiv preprint 1046 arXiv:1901.08746. 1047 108. Cronbach, L.J. and Meehl, P.E., 1955. Construct validity in psychological tests. Psychological 1048 bulletin, 52(4), p.281. 1049 109. Krebs, H.A. and Johnson, W.A., 1937. The role of citric acid in intermediate metabolism in 1050 animal tissues. *Enzymologia*, 4, pp.148-156. 1051 110. Forrester, J.W., 1995. The beginning of system dynamics. McKinsey Quarterly, pp.4-17. 1052 111. Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J.G., Liu, T. and Zhang, D., 2019. Towards Complex 1053 Text-to-SQL in Cross-Domain Database with Intermediate Representation. arXiv preprint 1054 arXiv:1905.08205. 1055 112. Liu, S., Zhang, X., Zhang, S., Wang, H. and Zhang, W., 2019. Neural machine reading 1056 comprehension: Methods and trends. *Applied Sciences*, 9(18), p.3698. 1057 113. Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep 1058 bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 1059 114. Shen, Y., Huang, P.S., Gao, J. and Chen, W., 2017, August. Reasonet: Learning to stop reading 1060 in machine comprehension. In Proceedings of the 23rd ACM SIGKDD International 1061 Conference on Knowledge Discovery and Data Mining (pp. 1047-1055). ACM. 1062 115. Wang, W., Yang, N., Wei, F., Chang, B. and Zhou, M., 2017, July. Gated self-matching 1063 networks for reading comprehension and question answering. In Proceedings of the 55th 1064 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1065 189-198). 1066 116. Tan, C., Wei, F., Yang, N., Du, B., Lv, W. and Zhou, M., 2017. S-net: From answer extraction 1067 to answer generation for machine reading comprehension. arXiv preprint arXiv:1706.04815. 1068 117. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q.V., 2019. XLNet: 1069 Generalized Autoregressive Pretraining for Language Understanding. arXiv preprint 1070 arXiv:1906.08237. 1071 118. Wang, Y., Wang, S., Tang, J., O'Hare, N., Chang, Y. and Li, B., 2016. Hierarchical attention 1072 network for action recognition in videos. *arXiv preprint arXiv:1607.06416*. 1073 119. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. and Hovy, E., 2016, June. Hierarchical 1074 attention networks for document classification. In Proceedings of the 2016 conference of the 1075 North American chapter of the association for computational linguistics: human language 1076 *technologies* (pp. 1480-1489). 1077 120. Jain, S. and Wallace, B.C., 2019. Attention is not explanation. arXiv preprint 1078 arXiv:1902.10186. 1079 121. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q. and Shen, D., 2017, September. 1080 Medical image synthesis with context-aware generative adversarial networks. In International 1081 Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 417-425). 1082 Springer, Cham.

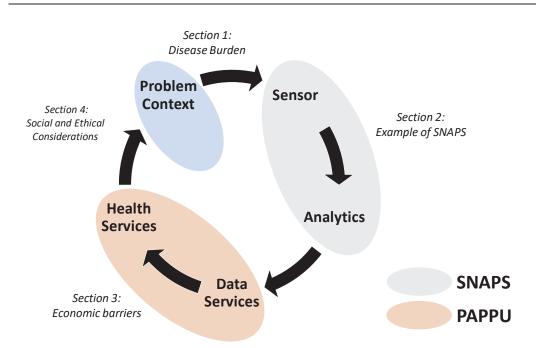

1083	122. Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word
1084	representations in vector space. arXiv preprint arXiv:1301.3781.
1085	123. Chen, G.H. and Shah, D., 2018. Explaining the success of nearest neighbor methods in
1086	prediction. Foundations and Trends® in Machine Learning, 10(5-6), pp.337-588.
1087	124. Pelillo, M., 2014. Alhazen and the nearest neighbor rule. Pattern Recognition Letters, 38,
1088	pp.34-37.
1089	125. Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satyanarayan, A., Kraska, T., Demiralp, Ç.
1090	and Hidalgo, C., 2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection
1091	In 25TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
1092	MINING, Anachorage, Alaska, 4-8 August.
1093	126. Datta, S.P.A., 2007. Unified theory of relativistic identification of information in a systems
1094	age: Proposed convergence of unique identification with syntax and semantics through
1095	Internet protocol version 6.
1096	127. Xu, K., Li, J., Zhang, M., Du, S.S., Kawarabayashi, K., & Jegelka, S., 2019. What Can Neural
1097	Networks Reason About? ArXiv, abs/1905.13211.
1098	128. www.schema.org
1099	129. Borrell, B., 2010. Foundations-Nature Rejects Krebs's Paper, 1937. Scientist, 24(3), p.88.
1100	130. Datta, S., 2008. Potential for improving decision support catalysed by semantic
1101	interoperability between systems.
1102	131. Patten, J., Ishii, H., Hines, J. and Pangaro, G., 2001, March. Sensetable: a wireless object
1103	tracking platform for tangible user interfaces. In Proceedings of the SIGCHI conference on
1104	Human factors in computing systems. ACM, pp. 253-260.
1105	132. Datta, S., Betts, B., Dinning, M., Erhun, F., Gibbs, T., Keskinocak, P., Li, H., Li, M. and
1106	Samuels, M., 2004. Adaptive value networks. In Evolution of supply chain management (pp. 3-
1107	67). Springer, Boston, MA.
1108	133. Ullmer, B. and Ishii, H., 1997. The metaDESK: models and prototypes for tangible user
1109	interfaces. In Proceedings of Symposium on User Interface Software and Technology (UIST???
1110	97), ACM.
1111	134. Ishii, H., 2004, lecture notes, Tangible Media Group MIT Media Laboratory, Tokyo, delivered
1112	February 2004.
1113	135. Maquil, V., Leopold, U., De Sousa, L.M., Schwartz, L. and Tobias, E., 2018. Towards a
1114	framework for geospatial tangible user interfaces in collaborative urban planning. <i>Journal of</i>
1115	<i>Geographical Systems</i> , 20(2), pp.185-206.
1116	136. Ullmer, B. and Ishii, H., 2000. Emerging frameworks for tangible user interfaces. <i>IBM systems</i>
1117	<i>journal</i> , 39(3.4), pp.915-931.
1118	137. Ullmer, B.A., 1997. Models and mechanisms for tangible user interfaces (Master Thesis,
1119	Massachusetts Institute of Technology).
1120	138. <u>https://tangible.media.mit.edu/papers/</u>
1121	139. Pray, L. & Zhaurova, K. 2008. Barbara McClintock and the discovery of jumping genes
1122	(transposons). Nature Education 1(1):169.

- 1123 140. Creighton, H.B. and McClintock, B., 1931. A correlation of cytological and genetical crossing-
- over in Zea mays. Proceedings of the National Academy of Sciences of the United States of
 America, 17(8), p.492.
- 1126 141. Ravindran, S., 2012. Barbara McClintock and the discovery of jumping genes. *Proceedings of* 1127 *the National Academy of Sciences*, 109(50), pp.20198-20199.
- 1128 142. Prince, T. 2019, 'The Definitive History of the Flu', *Champagne remedies, sneezing ferrets, and thousands of years of havoc*. <u>https://elemental.medium.com/the-definitive-history-of-the-flu-1130 b975432f9fc5</u>
- 1131

© 2019 McLamore et al. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

1132

1 review


- 2 Sensor-as-a-Service: Convergence of Sensor
- 3 Analytic Point Solutions (SNAPS) and Pay-A-
- 4 Penny-Per-Use (PAPPU) Paradigm as a Catalyst for
- 5 Democratization of Healthcare in Underserved
- 6 Communities
- 7 Victoria Morgan¹, Lisseth Casso-Hartman^{2,3}, David Bahamon-Pinzon⁴, Kelli McCourt⁴, Robert
- 8 G. Hjort⁵, Sahar Bahramzadeh⁶, Irene Velez-Torres^{2,3}, Eric McLamore¹, Carmen Gomes⁵,
- 9 Evangelyn C. Alocilja^{7,8}, Nirajan Bhusal^{7,9,10}, Sunaina Shrestha¹⁰, Nisha Pote¹⁰, Ruben Kenny

10 Briceno^{11,12,13,7}, Shoumen Palit Austin Datta^{1,14,15,16}, Diana C. Vanegas^{4,3*}

- 11 Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of
- 12 Florida, Gainesville, FL, 32611, USA
- 13 ² Natural Resources and Environmental Engineering, Universidad del Valle, Cali, Colombia
- ³ Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change -BioNovo, Universidad
 del Valle, Cali, Colombia
- 16 ⁴Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson
- 17 University, Clemson, SC 29631, USA
- 18 ⁵ Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- 19 ⁶ School of Computer Engineering, Azad University, Science and Research Branch, Saveh, Iran
- 20 ⁷ Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
- 21 ⁸ Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- 22 ⁹ School of Medical Sciences, Kathmandu University, Kathmandu, Nepal
- 23 ¹⁰Dhulikhel Hospital, Kathmandu University, Kavrepalanchok, Nepal
- 24 ¹¹Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru
- 25 ¹²Hospital Victor Lazarte Echegaray, Trujillo 13100, Peru
- 26 ¹³Institute for Global Health, Michigan State University, East Lansing, MI 48824, USA
- ¹⁴ MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77
 Massachusetts Avenue, Cambridge, MA, 02139. USA
- 29 ¹⁵ MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of
- Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street,
 Cambridge, MA 02139, USA
- 32 ¹⁶NSF Center for Robots and Sensors for Human Well-Being, Purdue University, 156 Knoy Hall, Purdue
- 33 Polytechnic, West Lafayette, IN 47907, USA
- 34 * Correspondence: <u>dvanega@clemson.edu</u>; Tel.: (+1)864-656-1001
- 35 Received: date; Accepted: date; Published: date

36 Abstract: In this manuscript, we discuss relevant socioeconomic factors for developing and 37 implementing Sensor Analytic Point Solutions (SNAPS) as point-of-care tools to serve 38 impoverished communities. The distinct economic, environmental, cultural, and ethical 39 paradigms that affect economically disadvantaged users, adds complexity to the process of 40 technology development and deployment beyond the science and engineering issues. We begin 41 by contextualizing the environmental burden of disease in select low-income regions around 42 the world, including environmental hazards at work, home, and broader community 43 environment, where SNAPS may be helpful in prevention and mitigation of human exposure to 44 harmful biological vectors and chemical agents. We offer examples of SNAPS designed for 45 economically disadvantaged users, specifically for supporting decision-making in cases of 46 tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic 47 challenges involved in phased implementation of diagnostic tools in low-income markets and 48 describe a micropayment-based systems-as-a-service approach (PAPPU), which may be

- 49 catalytic for adoption of low-end, low-margin, low-research and development SNAPS. Finally,
- 50 we provide some insights into the social and ethical considerations for the assimilation of
- 51 SNAPS to improve health outcomes in marginalized communities.
- 52 Keywords: sensor analytic point solutions (SNAPS); environmental health; poverty, pay-a-
- 53 penny-per-use (PAPPU), public health
- 54
- 55

56

57 Graphical Abstract. We suggest a framework for using SNAPS (sensor-analytic point solutions) 58 in combination with the financial instrument PAPPU (Pay-A-Penny-Per-Use) for providing 59 health care services for low-income communities. Distinct economic, environmental, and 60 cultural, issues must be taken into consideration. In this review we summarize the environmental 61 burden of disease (section 1), then provide two examples of SNAPS that are at various stages of 62 maturity (section 3) and discuss PAPPU as a potential mechanism to overcome economic barriers 63 (section 4). We close the review by discussing the opportunities and challenges of this approach 64 through the lens of social acceptance.

65 1. Environmental Burden of Disease

66 According to the World Health organization, environmental factors including unsafe water, 67 poor sanitation, air pollution, and unintentional exposure to hazardous chemical and biological 68 agents, are root causes for the burden of disease, disability, and death in the developing world 69 [1, 2] Impoverished communities living in polluted and crowded environments are much more 70 susceptible to the double burden of infective and non-communicable diseases, and this situation 71 is often compounded by the lack of adequate infrastructure, weak environmental policy, and 72 deficient or inequitable healthcare systems that disfavor economically challenged users [3-8]. 73 Despite the global efforts to reduce poverty, indicators of health disparities between 74 disadvantaged and affluent populations continue to persist. For instance, the 2018 World Bank 75 estimates show that on average, there is a 12-fold difference in mortality rate of infants between 76 low- and high- income populations [9], but in countries experiencing extreme deprivation such 77 as Somalia and Sierra Leone, this rate is nearly 20-fold higher than the average rate in wealthy 78 nations. In 2016, diarrheal diseases linked to poor sanitation and consumption of contaminated

3 of 23

79 food and water were responsible for 1.6 million deaths, 90% of which occurred in South Asia and

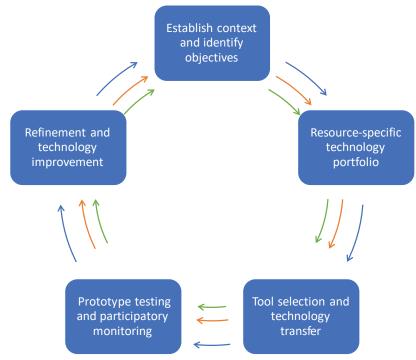
sub-Saharan Africa [10, 11] The per capita burden of disease from inhalation exposure to airborne
 polycyclic aromatic hydrocarbons (by-products of fuel combustion) is nearly 33-fold higher in

82 India compared to the USA [12, 13].

83 Nonetheless, it is important to note that due to the myriad ways in which socioeconomic and 84 environmental factors interact, it is very difficult to establish highly detailed associations of single 85 environmental risk factors with epidemiological outcomes [14-17]. Moreover, environmental 86 factors rarely occur in isolation; for example, a population can be exposed to a combination of 87 pollutants from different sources, which could result in additive or synergistic effects and 88 symptoms, making medical diagnostic processes extremely cumbersome (Briggs, 2003). In 89 addition to the limited access to healthcare systems, the problem is compounded by the relatively 90 high cost of clinical testing and may cause many illnesses to go under-reported or mis-diagnosed 91 [18] in economically challenged populations. Despite the complexities involved in linking 92 environmental and socioeconomic factors to epidemiological outcomes, there is no question that 93 such factors can result in serious public health problems, particularly in low-income communities 94 which bear the largest proportion of the burden of environmentally related diseases [19, 20].

95 Undoubtedly, much of the economic strain from both infectious and non-communicable 96 diseases associated with unhealthy environments could be effectively diminished through 97 preventive strategies that tackle associated risk factors [18, 21]. One promising approach for 98 addressing health risk factors in low-income communities is the deployment of integrated 99 technologies for data-informed decision support such as Sensor Analytic Point Solutions 100 (SNAPS). The concept of SNAPS has been recently introduced as part of a platform approach to 101 converge sensor data and analytics to deliver data-informed decision support for a number of 102 applications, including healthcare [21]. Even though thousands of sensors and point-of-care 103 diagnostic tools have been developed in research labs around the world during the past decades, 104 the large majority of these technologies have not yet translated into implementable solutions due 105 to different obstacles including unsuitability of operation under real-world conditions, high 106 fabrication and operation costs (which limits market penetration and profitability), and a lack of 107 convergence with other technologies to yield actionable information for the user [22].

108 Consider for instance the case of diarrheal diseases associated with E. coli infection from 109 ingestion of contaminated food or water, which contributes significantly to mortality and 110 morbidity of children under 5 years of age in African and Eastern Mediterranean countries [23]. 111 By conducting a literature search on the Web of Science, we found that in the past 10 years 303 112 research articles have been published in peer-reviewed journals portraying the development of 113 E. coli biosensors. However, only a small fraction of these papers includes claims such as real-114 sample testing (~29%), low-cost fabrication (~10%), portability (~9%), and user-friendly operation 115 $(\sim 2\%)$ (the complete report from this search is available in the Supplemental Section S1).


116 In this manuscript, we provide examples of SNAPS that have been tested in field conditions, 117 within the context of low-income communities. The first example was developed for assisting 118 early diagnosis of infectious disease and prevention of public health outbreaks, and the second 119 example supports decision making in cases of human exposure to an environmental pollutant. 120 We also propose the concept of Pay-A-Penny-Per-Use (PAPPU) as a potential paradigm to reduce 121 economic barriers to implement SNAPS in economically-deprived regions. The two examples of 122 field-tested SNAPS are at different stages of maturity, which provides insight into the design 123 process and logic flow. Finally, we provide some insights on the social and ethical considerations 124 for the effective use of SNAPS in assisting the users and improving health outcomes in 125 underserved communities.

126 2. Examples of SNAPS-ART

127 Near real-time qualitative decisions are often key for rapid response. SNAPS is a tool that 128 uses sensor data to provide response at the point of use with minimal analytics. If two or more 129 factors must be considered by the human-in-the-loop to take a decision, artificial reasoning tools 130 (ART) is implemented. ART is a data fusion layer that combines sensor data and display 131 suggestions or information, on the user's mobile device. In principle, SNAPS is designed to offer 132 "point solutions", which implies a rapid binary output (yes/no) based on the data captured from 133 the sensor signal (for example, sensor binds to an analyte). However, even in rudimentary 134 scenarios, a single source of binary data may fail to provide basic information. Hence, the need 135 for artificial reasoning tools (ART) which are light-weight middleware (software which sits in the 136 "middle") embedded with preliminary logic to decide what is the *meaning* of the data and what 137 information may be conveyed (displayed) for the end-user. By introducing a modular ART tool, 138 the user takes advantage of combinatorial variant configuration menu to change, adapt or 139 introduce new reasoning/logic in the middleware by re-programming the logic "buckets" simply 140 by re-shuffling and inserting the user's preferred choices from a repertoire of pre-programmed 141 logic.

142 There are many complex layers to system-level solution to ease the environmental burden 143 on impoverished communities. Velez-Torres et al [24] recently developed a circular system 144 framework for integrating analytic tools (such as SNAPS) with social action research (CLISAR). 145 The CLISAR framework is a transdisciplinary approach that involves analytical tools such as 146 sensors for informing community action related to public health, environmental issues, or food 147 security, for example. Beyond simple commercial colorimetric detection strips used in 148 development of CLISAR, information derived from SNAPS can transform this system by 149 supporting decision-making processes aimed at improving the health outcomes of marginalized 150 communities.

151 Herein, we suggest a conceptual approach for selecting and implementing the type of 152 diagnostic tools for implementation of SNAPS (see Fig 1). The examples that follow in the 153 subsequent section used a five-step process that followed a closed-loop approach similar to 154 CLISAR and other circular economic models [25]. The first step is to understand the specific 155 problem as well as the social and economic context where decision-support technology may be 156 needed. The next step is to identify readily available resources and design diagnostic tools for 157 creating a technology portfolio (sensors, analytics software, portable hardware, etc.). The third 158 step involves selection of the most appropriate tools to create SNAPS based on technical 159 capabilities as well as interactive feedback from stakeholders. In step four scientists and end-160 users test technology prototypes in field conditions using established participatory 161 methodologies. Finally, results from proof-of-concept testing should be used to evaluate and 162 refine the technology. Below, we present two examples of how this conceptual model is applied 163 in real-world settings. The first example is in advanced stage field-testing (refinement and 164 technology improvement, with some elements in the second circular phase), while the second 165 example is in early phase of development (tool selection and technology transfer).

166 167 Figure 1. Overview of process in development of SNAPS for the examples shown below. The 168 blue, orange, and green arrows indicate technology evolution using established principles of 169 circular feedback systems. The blue, orange, and green arrows indicate convergence toward a systems-level solution through feedback/refinement pathways.

170

171 2.1 Early assessment of tuberculosis in vulnerable populations

172 In 2017, 1.6 million people died from tuberculosis (TB) globally and there were 10 million 173 new TB cases that occurred in the same year [26]. TB has surpassed HIV as the leading infectious 174 disease killer worldwide since 2014 [27]. Furthermore, multidrug-resistant and extensively drug-175 resistant TB (MDR/XDR-TB) are current global public health threats. The 2017 Moscow 176 Ministerial Declaration on ending TB, involving 120 countries and over 800 partners, identified 177 "to advance research and development of new tools to diagnose, treat and prevent TB" as one of 178 four action items [28]. This meeting was followed in 2018 by a United Nations (UN) General 179 Assembly first-ever high-level meeting to accelerate efforts on ending TB [29].

180 Care of TB patients starts with accessible and affordable diagnosis. The majority of TB 181 patients live in poor conditions and in geographically remote areas. Culture-based techniques are 182 the gold standard for diagnosis, but this is relatively expensive and results take 6-8 weeks [30]. 183 For decades, TB diagnosis has relied on direct sputum smear microscopy (SSM) in many countries 184 [31]. SSM is fast, inexpensive, facile, and specific for detecting Mycobacterium tuberculosis (Mtb) 185 in high incidence areas [30, 32, 33]. It does not require complex laboratory equipment and is 186 therefore very suitable for low-resource settings especially in populations with varying socio-187 economic situations [30, 32]. However, SSM's sensitivity is only about 25%-65% compared to 188 culture, with a detection limit of about 10,000 colony forming units per milliliter (CFU/mL) [33, 189 34]. A study comparing culture, SSM, and Xpert MTB/RIF system involving hundreds of 190 specimens showed that SSM had 54% sensitivity for respiratory samples and 50% for non-191 respiratory samples [35]. Furthermore, smear sensitivity varies with the type of lesion, type and 192 number of specimens, mycobacterial species, staining technique, and the alertness and 193 persistence of the microscopist [34]. In a 2014 survey, 22 high-burden countries (HBCs) conducted 194 77.6 million sputum smears valued at 137 million USD in 42,827 microscopy centers [36]. Of these,

195 61% were performed in the BRICS countries (Brazil, Russian Federation, India, China and South 196 Africa) [36]. On average, 79% of the smears were performed for initial diagnosis in these 197 countries. When converted to 2012 USD, the unit cost for a smear, including materials, labor, and 198 overhead expenses, was 1.77 USD [34]. Studies have shown that the sensitivity of SSM improved 199 significantly when specimens were subjected to liquefaction followed by the concentration of the 200 mycobacteria by overnight sedimentation or centrifugation [33, 37-41]. However, the increased 201 sensitivity provided by these processing methods may not be sufficient to offset their increased 202 cost, complexity, and potential biohazards.

203 Recently, several methods have been developed for the diagnosis and concentration of TB 204 and multi-drug resistant tuberculosis (MDR-TB), such as Xpert MTB/RIF, TB beads, liquid 205 culture, centrifugation, filtration, and line probe assays [42-46]. However, they are not necessarily 206 accessible or affordable for those who need them the most [47]. For example, the World Health 207 Organization recommended the Xpert MTB/RIF in 2010 to diagnose all persons with signs and 208 symptoms of TB. In many studies, the Xpert system was shown to have a sensitivity of 96.8% and 209 a specificity of 99.3% compared to culture as the reference standard [35]. However, if the Xpert 210 MTB/RIF assay (cartridge price of US\$9.98) were to be used for all people with presumed TB, the 211 cost would exceed 80% of the total TB spending in countries such as India, Bangladesh, Indonesia 212 and Pakistan [48]. In 2014 and 2015, there were 32.6 and 9.1 SSM for every Xpert MTB/RIF test 213 procured [49]. While these new diagnostic methods are more sensitive and/or specific than SSM, 214 they are oftentimes prohibitively expensive and not easily accessible for those living in low-215 resource countries where Mtb has a high prevalence.

216 An important aspect of TB is the substantial financial burden placed on patients and their 217 families, not only for treatment costs but also associated costs, such as TB patients who are 218 required to take a leave of absence from work leading to the risk of impoverishment [50]. 219 Tanimura et al. reported that on average, 20% of the total cost was due to direct medical costs, 220 20% to direct non-medical costs, and 60% to income loss [51]. On average, the total cost was 221 equivalent to 58% of reported annual individual income and 39% of reported household income 222 [51]. Cost as percentage of income was particularly high among poor people and those with 223 multidrug-resistant TB [51].

224 Accurate, rapid, and cost-effective diagnostic tests are crucial to reducing TB's unacceptably 225 high infection and mortality rates especially for a treatable disease [52]. The ambitious goal of the 226 global "End TB Strategy" to reduce TB incidence by 90% and reduce TB mortality by 95% by the 227 year 2035 will not be achieved without new tools to fight TB [53]. These tools include improved 228 point-of-care diagnostic tests that are delivered to low-income communities and at the first point-229 of-contact by patients in the healthcare system. These tests should be performed on an easily 230 accessible sample and results be provided in a timely manner, allowing for a quick turnaround 231 time for treatment in a single clinical encounter, hence avoiding loss of patient follow up [53].

232 Thus, our strategy was to develop low-cost biosensing assay for rapid TB detection by 233 employing modern advances in nanoparticle science and glyco-chemistry resulting in sensitivity 234 matching the performance of Xpert MTB/RIF and standard culture. The nanoparticle-based 235 colorimetric biosensing assay (NCBA) is based on the concept of magnetically activated cell 236 enrichment (MACE) technique. In this technique the Mtb cells are isolated and enriched by 237 applying a magnetic field to activate nanoparticle-bound Mtb cells, without using any expensive 238 antibodies and energy-consuming centrifuge instruments and eliminating the need for time-239 consuming growth of Mtb. The novelty of NCBA includes the utilization of iron oxide 240 nanoparticles with superparamagnetic properties. The use of magnetic nanoparticles (MNPs) 241 offers major advantages due to their unique size and physicochemical properties. The MNP 242 solution is colloidal in nature and it provides stability, which gives rise to both steric and

coulombic repulsions. Their nanoscale size results in their higher effective surface areas, lower
sedimentation rates, and minimal precipitation due to gravitation forces. The MNPs are coated
with glycan to facilitate attachment on the bacterial cell wall through carbohydrate-binding
protein sites, providing specificity to the biosensing mechanism.

247 NCBA was validated in 500 sputum samples in Nepal and Mexico [54, 55]. In Nepal, 500 248 sputum samples were tested for TB using SSM, Xpert MTB/RIF, and NCBA. Results showed that 249 for the SSM test, 32 were positive (32+) and 468 were negative (468-); for the Xpert test, 80 were 250 positive (80+) and 420 were negative (420-); and, for the NCBA test, 80 were positive (80+) and 251 420 were negative (420-). The 32+ SSM samples were all positive in Xpert and NCBA. Of the 468-252 (negative) SSM samples, 48 were positive in both Xpert and NCBA. Table 1 presents the results 253 from SSM test (not shaded) and NCBA test (shaded) using Xpert MTB/RIF as the standard in 254 defining the number of true TB cases and non-TB cases. Statistical analysis of the diagnostic 255 comparison between SSM and NCBA using Xpert MTB/RIF results as gold standard for true 256 cases, and are presented in Table 2. At 95% confidence interval, the results show that SSM has a 257 sensitivity of only 40% (29%-52%), while NCBA has a sensitivity matching that of the Xpert 258 system (95%-100%). Probably because sputum samples were from suspected TB patients, the 259 specificity, positive predictive value (PPV), and negative predictive value (NPV), for SSM and 260 NCBA are very high close to 100%. The accuracy of SSM is 90% (87%–93%), while the accuracy 261 of NCBA is 100% (99%-100%). Given the sample size and nature of the collected samples, the 262 calculated prevalence for this cohort of patients is 16% (80 out of 500).

Table 1. Results using Xpert MTB/RIF as the gold standard for true tuberculosis (TB)cases and non-TB cases.

	True TB	Non-TB		True TB	Non-TB
SSM Test	cases	cases	NCBA Test	cases	cases
Positive test	32	0	Positive test	80	0
Negative test	48	420	Negative test	0	420

263

\mathbf{a}	1	1	
	h	∕∎	

Table 2. Comparison of diagnostic performance.

Technique	Xpert MTB/RIF as the gold standard, % (95% CI)					
	Sensitivity	Specificity	PPV	NPV	Accuracy	
SSM Test	40 (29–52)	100 (99–100)	100	90 (88–91)	90 (87–93)	
NCBA Test	100 (95–100)	100 (99–100)	100	100	100 (99–100)	

265 The Xpert MTB/RIF system reports bacterial load as very low, low, medium, and high. These 266 categories were used to estimate the bacterial load in SSM and NCBA by matching the 267 corresponding samples with the Xpert system. Table 3 shows a comparison of the detection limit 268 and dynamic range of detection of the two techniques with respect to the Xpert system. Results 269 from NCBA match well with the results from the Xpert MTB/RIF at all levels. On the other hand, 270 SSM could not detect at very low level, detecting only 14% at low level, 48% at medium level, and 271 79% at high level. Sensitivity of NCBA matches well with the Xpert system at all bacterial loads, 272 while SSM increases linearly with increasing bacterial load (y = 0.27x - 0.33, R2 = 0.97). TB positive

	Very				
Xpert MTB/RIF Categories	Low	Low	Medium	High	Total
Xpert MTB/RIF	10	22	29	19	80
NCBA	10	22	29	19	80
SSM	0	3	14	15	32
% Detection (NCBA/Xpert)	100%	100%	100%	100%	
% Detection (SSM/Xpert)	0%	14%	48%	79%	

Table 3. Detection limit and dynamic range of detection of the two techniques with respect to the Xpert MTB/RIF categories.

275 Thus, with the Xpert system as the standard, the sensitivity of NCBA is in accordance with 276 the Xpert system (100%), while SSM's sensitivity is only 40%. NCBA could detect very low AFB 277 concentrations at 102 CFU/mL, two orders of magnitude lower than SSM. This nanotechnology-278 based detection is rapid (10-20 min), inexpensive (0.10 USD/test), simple, and easily scalable 279 (Figure 1). According to Nepal's Ministry of Health, a TB diagnostic test with 70% sensitivity (and 280 treatment cure of 85%) would save 300,000 lives over the next five years [56]. This NCBA 281 technique has a high potential to support and transform the TB control program in Nepal and in 282 other high-prevalence low-resource countries. Implementation in rural areas would help to 283 increase case finding and case notification, and would support programs targeted against drug-284 resistant TB. Nepal has close to 600 microscopy centers that can support the immediate 285 implementation of this technology in the country. Similarly, it is applicable in many of the high 286 TB-burden countries. This technique can be performed in rural communities and at the first point-287 of-contact by patients in the healthcare system. Results are obtained in less than 30 min, allowing 288 for a quick turnaround time for treatment in a single clinical encounter. Desikan 2013 289 hypothesized that a universally accessible and rapid detection method with a sensitivity of 85% 290 and specificity of 97% could potentially save 392,000 lives annually worldwide [32]. Thus, the 291 developed NCBA technology may enhance the "End TB Strategy" towards a TB-free world.

- 292
- 293
- 294
- 295
- 296

297

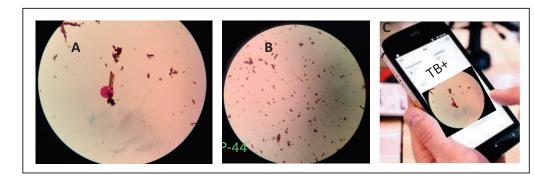


Figure 2. typical NCBA results for TB+ and TB- sputum samples, as viewed through the eyepiece
of the bright field microscope. A) TB positive sample (clumped red GMNP-AFB complex
surrounded by brown GMNPs). B) TB negative sample (dispersed brown GMNP). C) Schematic
of smartphone app for image processing and display of test results.

302 2.2 Alerting mercury exposure in artisanal gold mining communities

In South America, Africa, and Asia, millions of individuals are exposed to dangerous levels
 of mercury concentrations as a result of Artisanal Small-Scale Gold Mining (ASGM) [57]. ASGM

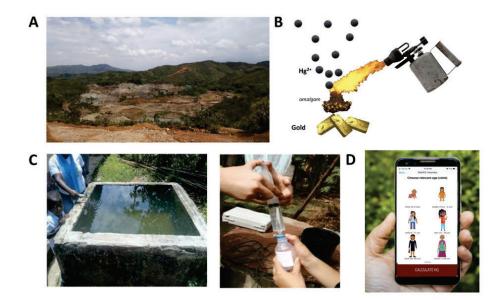
305 is a rudimentary gold mining approach performed by individuals or groups with little or no 306 mechanization, often in informal (illegal) operational settings with toxic chemicals [58]. ASGM is 307 composed of three main steps: crushing the ore into fines, mixing the fines with liquid mercury, 308 and separating the mercury from gold by evaporating the mercury [59]. Often in unregulated 309 occupational conditions, workers perform mercury evaporation using open pit, which not only 310 has severe adverse health effects for the workers that inhale the mercury vapor but also releases 311 the toxic vapor into the environment. ASGM recently exceeded combustion of coal as the leading 312 anthropogenic source for mercury emissions globally [60]. Risk of exposure to mercury can lead 313 to detrimental effects on the nervous, immune, reproductive, and digestive systems, induce 314 infertility, reduce mental function, and kidney failure [61-65].

315 The global responsibility for reducing mercury emissions was recognized by the Minamata 316 Convention in Switzerland in 2013. At the convention, over 140 countries signed a treaty 317 committing to protect human health from mercury exposure [60]. The signatory countries 318 pledged to "ban new mercury mines, phase-out existing mines, ensure the phase out and phase 319 down of mercury use in a number of products and processes, develop control measures for 320 emissions, and regulate the informal sector of ASGM" [60]. In order to mitigate mercury exposure 321 and regulate mining operations, it is prudent for marginalized communities to monitor the 322 presence of mercury in their water through low-cost, rapid, and facile devices.

323 Several analytical methods have been developed for mercury determination in water. 324 Standard laboratory techniques include cold vapor atomic absorption spectroscopy (CV-AAS) 325 [66, 67], cold vapor-atomic fluorescence spectrometry (CV-AFS) [68, 69] and inductively coupled 326 plasma mass spectrometry (ICP-MS) [70, 71]. These spectroscopic techniques are highly sensitive 327 and accurate but are often impractical for environmental applications due to the high cost of 328 analysis. In addition, these standard methods require extensive user training, and the results 329 often require days or even weeks to produce results, making them less suitable for rural 330 communities [72-74]. Some field capable units are commercially available, namely based on direct 331 mercury analysis (DMA) and handheld nanosensors/biosensors [75, 76]. DMA is based on the 332 principle of thermal decomposition (vaporization), followed by amalgamation and subsequent 333 atomic absorption spectroscopy. While extremely accurate, DMA is cost prohibitive for low-334 income communities since commercial prices of US-manufactured equipment range between 335 \$13k and \$30k USD. Perhaps inexpensive nanosensors/biosensors coupled with low-cost 336 electrochemical techniques on portable devices are likely to be more suitable as a tool for on-site 337 analysis of mercury, especially where ASGM is in practice.

338 While there are many types of transduction methods for low-cost determination of mercury, 339 electrochemical methods are sensitive and quantitative, and may be the mechanism of choice for 340 cost-effective rapid detection in the field [77]. The most common electrochemical method for ionic 341 mercury detection is anodic linear stripping voltammetry (ASV) techniques [72, 78]. ASV is a two-342 step method of deposition/accumulation during reduction of mercury ions and stripping during 343 oxidation of mercury ions along the surface of the electrode. As the mass transfer limit is reached 344 in the reaction, the oxidative current forms a well-defined peak, which can be used to calculate 345 the concentration of mercury in the sample [79]. The efficiency of any electrochemical stripping 346 test can be determined by calculating the percent change in oxidative current relative to baseline.

Carbon-based nanomaterials are a popular choice for improving electrochemical detection of mercury, as this type of materials exhibit high surface area, strong mechanical strength, excellent thermal conductivity, and high conductivity [80-81]. Some of the carbon nanomaterials in recent literature include glassy carbon [83, 84], carbon nanotubes [85], graphene [86], and reduced graphene oxide [87]. While each of these nanocarbon materials is efficient for mercury detection via stripping voltammetry, some of the materials are complicated to fabricate and exhibit poor water solubility [88]. Among carbon nanomaterials, graphene and reduced graphene
 oxide (rGO) have the highest water solubility, and one of the lowest fabrication costs. For these
 reasons, there is a growing trend to develop disposable, low-cost, graphene-based electrodes for
 field applications.


357 Examples of low-cost graphene electrodes include screen-printed electrodes and conductive 358 paper and plastic [72, 89]. In 2014, Lin et al. (2014) [90] discovered a low-cost, one-step, 359 conductive material when reducing graphene on a commercial polymer with a carbon dioxide 360 infrared laser. Since then, multiple researchers have shown that laser scribing could be used for 361 designing electrodes to sense biomolecules using infrared and ultra-violet light lasers [91-94]. 362 While graphene is indeed a useful material in sensing, one of the problems is the tendency of 363 graphene and graphene oxide for binding a host of materials in aqueous phase [95]. For this 364 reason, sensor labs typically metallize graphene electrodes with a noble metal that has a specific 365 interaction with mercury ions. These metals can be deposited using simple electrodeposition 366 methods, or advanced techniques such as pulsed sonoelectrodeposition [96]. Recently, 367 Abdelbasir et al. 2018 [97] showed that copper nanoparticles recovered from waste cables can be 368 used to detect ionic mercury using linear sweep stripping voltammetry (LSSV).

369 Low-cost, portable, mobile phone-based acquisition systems have been developed for 370 mercury analysis in the field [98]. While this is significant for deploying sensors in low-income 371 regions, the inexpensive-portable sensor-systems lack data analytics capability to transform the 372 data into *meaningful information* which could be useful for the user. For example, the maximum 373 concentration level for inorganic mercury in drinking water is 6 ppb [99]. However, bodyweight, 374 ingestion rate, length of exposure, form and pathway of the contaminant, health of the individual, 375 and concentration of mercury influences the degree of mercury toxicity [101-102]. Thus, a SNAPS 376 tool may assist communities in acquiring data and extracting actionable information for decision 377 support.

378 Our group is currently working on developing the SNAPS platform for estimating the 379 toxicity risk associated with the ingestion of mercury-contaminated water. This SNAPS platform 380 is composed of a disposable graphene-nanocopper sensor coupled with a low-cost handheld 381 potentiostat, and a smartphone. The working mechanism of the platform starts with the detection 382 of mercury present in the sample using the graphene-nanocopper sensor. Next, selective 383 electrochemical interactions between mercury and the electrode generates an electrical signal. 384 The electrical signal is acquired and processed by the potentiostat to produce a current output. 385 Then, computer software records the current output and transforms it into concentration data via 386 calibration curves. Finally, a smartphone app is used by the user to enter the data for the 387 following parameters: mercury concentration in water (from the sensor), bodyweight of the user, 388 water ingestion rate, and length of exposure. Based on these parameters, the app runs an 389 algorithm that includes a hazard quotient formula to generate an estimation of the risk of toxicity 390 for the user [103-106].

We recently conducted a proof-of-concept demonstration of this SNAPS platform in a rural area that has been dramatically impacted by ASGM, known as La Toma in Cauca, Colombia. Even though this SNAPS platform is in an early stage of development, it represents an example of how rural communities in developing countries may use sensors as a service to access data on mobile devices and extract actionable information to help make informed decisions. Figure 3 shows the progression of the proof-of-concept demonstration of the technology.

397 Mercury enters natural aquatic systems primarily due to the burning of mercury amalgam during398 the extraction of gold from raw ore.

399

Figure 3. Demonstration of SNAPS tool for assessing risk due to inadvertent consumption of mercury in drinking water for gold mining communities in Colombia. The first step was to (A) characterize the local socioeconomic dynamics and (B) identify related routes of mercury exposure (in this case from smelting of amalgam). (C) Together with community members, we collected samples from local water sources. (D) These samples were tested with nanomaterialenabled sensors. (D) Concentration data derived from sensors was transformed into customized information about toxicity risk for specific user groups using a mobile app.

407 3. Can we overcome the economic barriers for distributing diagnostic tools in low-income408 settings?

Framing the issue of diagnostic tools in the context of technology leads us to recognize a vast spectrum. On one hand, ideas about telemedicine proposed about 100 years ago [107], and on the other hand, milestones in computational speed from about 100 days ago [108]. It may be justifiable to suggest that technological barriers may not be the primary reason why many diagnostic tools are still absent from communities under economic constraint. The powerful incentive of lucrative profitability, in the short term, may not be realized by serving impoverished regions.

Transaction cost [109] may be the over-arching factor which may have multiple interpretations [110] but appears to be the economic barrier with respect to the reasons why accelerating the rate of diffusion of diagnostic tools in distressed communities continues to pose difficult challenges [111-113]. We must focus on value to the user or the extent of the benefit to the beneficiary's environment and/or ecosystem (for example, early diagnosis of tuberculosis in a patient may save the entire village from infection and epidemic). However, delivery of value is inextricably linked to cost, unless it is aimed to deliver philosophical or mythical messages [114].

In over-simplified terms, the convergence of the cost of the product and the cost to deliver the service contributes to transaction cost [115]. A plethora of costs and cost-incurring processes are involved but we shall bypass the details. The physical product (in this case is the sensor) and the service is the solution delivery (SNAPS). Academics cannot control cost, but their contribution can impact implementation and use. A low-cost sensor from a lab must be manufactured, calibrated, evaluated and sufficiently scaled if the outcome can still be claimed as a "low-cost" sensor, capable of delivering value with respect to maintaining a certain pre-agreed quality of 430 service (QoS) in keeping with the key performance indicators (KPI) that the users desire, demand431 or deem necessary.

432 In addition, a working sensor delivered to a user is useless without a visualization system to 433 capture the data from the sensor. Stand-alone visualization devices (for example, blood glucose 434 home monitors with dedicated devices to read the blood glucose strip and deliver data readout) 435 will add inordinate cost to the system. The alternative is to use a mobile phone as a platform to 436 visualize the data from the sensor. Signal transduction from the sensor to the mobile phone calls 437 for multiple layers of tools, technology and software (middleware), in addition to the functional 438 use of a mobile phone. The presence of a mobile phone in any environment is contingent upon 439 available cellular and/or wireless infrastructure to support its use. It may not be prudent to 440 assume the presence of telecommunications infrastructure despite the penetration of such 441 services, globally [116-119]. Thus, even if a working sensor is at hand, the obvious process of 442 signal to data transition and visualization of the data involves multiple layers of capital expenses 443 (infrastructure cost) as well as associated technologies and software.

444 Assuming that the above layers are in working order, the sensor data meets a "dead end" 445 upon data visualization. A number (with units) is only meaningful if there is a relevant 446 framework for interpreting such data, for example, the combination of sensor data from mercury 447 contamination expressed in terms of a hazard quotient score, which uses other vital pieces of 448 information to assess health risk. It is the *delivery of information* based on sensor data that drives 449 value. Taken together, the physical product is no longer the focal point of value. Information 450 pertaining to the health of the user is the service which delivers value to the user. Transaction 451 cost, therefore, is no longer a product-based entity but the cost of service which must be feasible 452 for the service to be delivered, disseminated, and adopted by a community.

453 Overcoming the economic barriers to deliver SNAPS will be virtually impossible if the 454 chasm between product and service continues to overshadow the concept of value delivery to the 455 user. The economic principle, which may work in impoverished nations, is rooted in micro-456 finance and micro-payments with low transaction costs [120, 121]. The paradigm shift from 457 "product sales" to delivery of "service" involves combining the product with resources 458 (including retail mobile banking, infrastructure, telecommunications, cybersecurity, customer 459 service). Users pay only when they use the service. The latter lowers the transaction cost and 460 hence the barrier to entry into vast markets of low-income users. Not the product, but the user 461 experience is the pivotal fulcrum for the inversion of traditional business models in the era of the 462 internet of things (IoT) [122].

463 The PAPPU model was epitomized by the plain old telephone system (POTS), where the 464 user paid only the "charge per call" which was reasonably affordable even if the per capita 465 income was low. In this paper we advocate for PAPPU as a metaphor for ethical profitability 466 through social business models. In principle, the user may pay a penny for each use of a SNAP 467 (suggested but not restricted to one penny). The "penny" is a placeholder for the financial design 468 of an ultra low-cost nano-payment model, which, in the real world may represent one Rupee 469 (INR), one Yuan (CNY, RMB) or one Peso (COP). The PAPPU metaphor may evolve to become 470 the generalized monetization mantra signifying pay-a-price-per-unit wherever the principles of 471 IoT may be deployed or embedded as a digital by design metaphor including ubiquitous sensing. 472 The diffusion of connectivity may serve as a tool and IoT may be catalytic as a platform to better 473 facilitate the practice of equality, equity and égalité. PAPPU offers an economic instrument for 474 businesses to build a profit model based on economies of scale to serve low-income communities 475 and abide by ethical profitability. PAPPU offers an alternative strategy for enterprises and 476 businesses who are seeking to engage with the next billion users, albeit profitably, but within the 477 realms of ethical profitability which can be *sustained* by the per capita income of these 478 communities.

The concomitant growth of infrastructure (for example, affordable access to low latency, reduced jitter, high bandwidth wireless telecommunications, 5G, trusted mobile banking) may be necessary to pave the road for pursuit of PAPPU. The ability to escape the dead weight of old technology in the developing world may accelerate the implementation of PAPPU as an integral part of the socio-economic fabric of a product-less, service-based economy where payment per unit of service (1 liter of municipal water, 1 kilo-watt hour of energy, 1 gallon of sanitation waste) may become the new normal.

Implementing PAPPU may require alliances or public-private partnerships or global consortia with an altruistic fervor to pay and pave for the synergistic integration necessary, to promote SNAPS as a service in low-income communities. The challenge is to bring to the table global organizations, benevolent individuals and thoughtful governments, who may choose to lead this effort to channel science to serve society, for the less fortunate. We need new eyes, unbridled imagination and moral fabric of synergistic solutions that can wrap around, not to isolate, but to protect, provide and promote acceptable solutions for remediable injustices.

493 4.Social and ethical considerations for the development and implementation of SNAPS

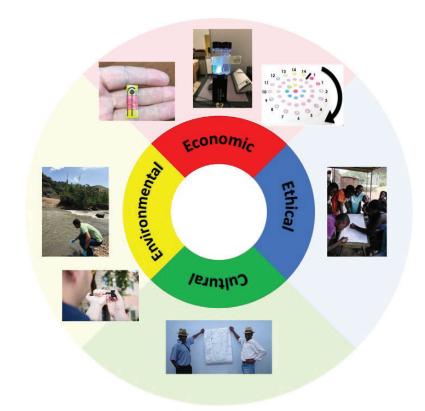
494 Cultural and ethical considerations are inextricably linked with the transformation of SNAPS 495 from an academic vision to real-world implementations which may actually help people. 496 Academics must remain cognizant of their ethical responsibility to discourage misapplication and 497 dissemination of misinformation about their inventions. In this section, we attempt to analyze 498 some potential interactions between the social and technological domains, as well as how 499 democratic approaches for technology creation and diffusion could favor the improvement of 491 health outcomes for disadvantaged communities.

501 Since the introduction of the technology acceptance model (TAM) decades ago, several extended 502 versions of this archetype have been proposed to elaborate a more comprehensive framework for 503 predicting people's intention to use a particular product or service [123-125]. TAM and its 504 variants have served as the guiding rationale behind R&D for a variety of commercial 505 technologies that are mass-produced, including healthcare devices [126]. However, it may be 506 inadequate in the context of technology development for low-income communities [127]. It is 507 worth noting that the ultimate goal of TAM and related models is to forecast user behavior across 508 a broad range of consumer populations, which means that the model focuses on highly generic 509 predictors of technology acceptance. For instance, TAM does not explicitly include any cultural 510 or social variables, which is a significant limitation since social constructs may contribute 511 significantly to the variance in users' attitudes towards technology [125, 128]. However, the goal 512 of the SNAPS with PAPPU concept is to provide an affordable sensor-analytics service platform 513 to support decision-making and enhancement of health outcomes for economically challenged 514 groups. Thus, a useful model to guide the development of SNAPS should include bi-directional 515 communication between researchers and users, and perhaps motivate researchers and users to 516 change or adapt or better inform their behavior [129].

517 Trust in the technology [130] is quintessential for adoption and continued use because 518 technology could be equally euphemistic for a double-edged sword [131, 132]. Driving positive 519 impacts from the introduction of SNAPS in low-income regions may involve not only the

519 impacts from the introduction of SNAPS in low-income regions may involve not only the 520 transfer of fully functional technology but also the empowerment of the beneficiary

520 transfer of fully functional technology but also the empowerment of the beneficiary 521 communities by enabling local mastery of the technology along with the possibility to


521 communities by enabling local mastery of the technology along with the possibility to 522 reproduce and even adapt the technology to the local conditions. We believe this open-source 523 approach to technology adoption is auspicious for supporting marginalized communities, 524 especially when trying to avoid the known failures of the charitable approach of technology 525 leapfrogging. For example, the WHO estimates that only 10-30% of the medical devices donated 526 to developing countries are used as intended; the remaining 70-90% end-up being dumped in 527 landfills, thus contributing to more pollution problems and environmental health risks [133]. 528 This situation is explained not only by the incompatibility of the technology with the locally 529 available infrastructure, but also to the lack of local capacity to adapt or fix the donated devices 530 once they break [134]. Additionally, dependence on foreign technologies could lead to an 531 imbalance of power in which the users have no option other than relying on the willingness of 532 external entities to continue to deliver much-needed technology in their regions. Thus, if the 533 goal is to make technology work effectively on behalf of society, we must divert from the 534 mainstream handed-down from the top approach and enable society to create and transform 535 technology in meaningful ways, in dispersed regions, and from the bottom-up.

536 Engaging the community through operational transparency may prevent public anxiety and 537 may also facilitate proper implementation of the technology. Users' understanding of the 538 limitations and potential risks associated with SNAPS could be vital for setting clear expectations 539 about SNAPS-assisted testing while avoiding misapplications of the technology. As Wallace et 540 al. point out, misuse of many direct-to-consumer screening tests could have caused an 541 unnecessary increase in healthcare costs due to people's overreaction to inaccurate readings from 542 direct-to-consumer screening tests, and their subsequent demand for further testing with 543 advanced clinical technology [130]. However, this concern is mostly relevant for developed 544 countries in which people have access to healthcare systems where clinical testing is readily 545 available for patients. In low-income settings, such as remote rural areas in developing countries, 546 health care services are often dysfunctional or completely inaccessible. For marginalized 547 communities, information from SNAPS could instead drive actions aimed at limiting the 548 exposure to harmful biological vectors and chemical agents. Thus, communities living in 549 territories that suffer from prolonged government abandonment could greatly benefit from the 550 democratic adoption of SNAPS to make informed decisions and solve their problems with more 551 autonomy. Nonetheless, we agree that transparency and accountability in technology 552 deployment are paramount for protecting the users' rights and integrity.

553 5. Conclusions

554 Monitoring environmental contamination is essential to protect the public from diseases and 555 other health issues. This monitoring requires accurate and accessible detection technologies to 556 ensure quality control and early warning capabilities for users to minimize negative impacts 557 (Figure 4). The framework of SNAPS with PAPUU have the potential to pave the way for 558 economically viable systems that can potentially be applied as tools for reducing local 559 environmental risks and mitigate health problems that derive from them. We envision that the 560 use of SNAPS will increase low-income communities' participation in the public/government 561 planning process by providing data they can use to fight for their right to public health care, 562 clean water and adequate sanitation. By bridging smart technology with basic needs and public 563 health, SNAPS will advance our understanding of how information can change public 564 participation, having low-income communities' representatives as 'change agents' that 565 influence public policies and planning. These communities' representatives benefit from rights-566 based arguments, evidence-based research, and effective data analyses. SNAPS have the 567 potential to serve as an illustration of how empowering impoverished communities in their 568 local context, can strengthen democratic practice in their region. Grounded on an integrated 569 perspective that takes into account cultural and ethical considerations, we foresee that SNAPS 570 will shed some light to improve implementation of public health plans in underserved 571 communities by increasing public participation in planning. Moreover, SNAPS could

- 572 potentially become a new approach to achieve the United Nations Sustainable Development
- 573 Goals 3 and 6: ensure healthy lives and promoting the well-being at all ages and ensure access
- 574 to water and sanitation for all, respectively. Furthermore, it would also help empower
- 575 impoverished communities to obtain the rights they have been promised such as basic
- 576 sanitation, clean water, and adequate health care services.
- 577

578

- Figure 4. SNAPS converges with PAPPU to establish a framework for sensor-as-a-service. The
 paradigm is rooted in economic, ethical, cultural, and environmental core values that
 synergistically act as a catalyst for the democratization of healthcare in underserved
 communities,
- 583 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, 584
 Table S1: title, Video S1: title.

585 Acknowledgments: We would like to acknowledge the support from the Department of Environmental 586 Engineering and Earth Sciences at Clemson University. Many thanks to the DUPC2-IHE program at Delft 587 University for funding the project entitled "Synoptic and participatory assessment of environmental 588 pollution and health effects due to exposure to mercury from artisanal gold mining in the Alto Cauca basin, 589 Colombia. First steps towards local development of sustainable solutions (P: 1084731:111; 590 Ref:2019/061/108473/EWH). Additional funding was provided by the Agriculture and Food Research 591 Initiative Competitive Grant no. 2018-67016-27578 awarded as a Center of Excellence from the USDA 592 National Institute of Food and Agriculture.

- 593 **Conflicts of Interest:** The authors declare no conflict of interest.
- 594 References

595

596 597	1.	Briggs, D., Environmental pollution and the global burden of disease. <i>British medical bulletin</i> 2003 , <i>Volume 68</i> , pp. 1-24. 10.1093/bmb/ldg019.
598	2.	World Health Organization and United Nations Environment Programme, Health and
599	2	environment: tools for effective decision-making: review of initial findings. 2004.
600 601	3.	Cureton, S., Environmental victims: environmental injustice issues that threaten the health of
602	4.	children living in poverty. <i>Reviews on environmental health</i> 2011 , <i>Volume</i> 26, pp. 141-147.
603	4.	Boutayeb, A., The double burden of communicable and non-communicable diseases in developing countries. <i>Transactions of The Royal Society of Tropical Medicine and Hygiene</i> 2006 ,
604		<i>Volume 100,</i> pp. 191-199. 10.1016/j.trstmh.2005.07.021 %J Transactions of The Royal Society of
605		Tropical Medicine and Hygiene.
606	5.	Gwatkin, D.R.; Bhuiya, A.; Victora, C.G., Making health systems more equitable. <i>The Lancet</i>
607	0.	2004, Volume 364, pp. 1273-1280.
608	6.	Marmot, M., Social determinants of health inequalities. <i>The lancet</i> 2005 , <i>Volume</i> 365, pp. 1099-
609		1104.
610	7.	Evans, G.W.; Kantrowitz, E., Socioeconomic status and health: the potential role of
611		environmental risk exposure. Annual review of public health 2002, Volume 23, pp. 303-331.
612	8.	Waller, L.A.; Louis, T.A.; Carlin, B.P., Environmental justice and statistical summaries of
613		differences in exposure distributions. Journal of Exposure Science Environmental Epidemiology
614		1999 , Volume 9, pp. 56.
615	9.	Mortality rate, infant (per 1,000 live births). Available online:
616		https://data.worldbank.org/indicator/SP.DYN.IMRT.IN?end=2018&start=2018&type=points&
617		view=bar (accessed on September 27 2019).
618	10.	Moraga, P.; Collaborators, G.C.o.D., Global, regional, and national age-sex specific mortality
619		for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study
620		2016. <i>The Lancet</i> 2017 , <i>Volume</i> 390, pp. 1151-1210.
621	11.	Collaborators, G.D.D., Estimates of the global, regional, and national morbidity, mortality, and
622		aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease
623	10	Study 2016. <i>Lancet Infect Dis</i> 2018 , <i>Volume 18</i> , pp. 1211-1228.
624	12.	Etchie, A.T.; Etchie, T.O.; Shen, H.; Pillarisetti, A.; Popovicheva, O., Burden of disease at the
625 626		same limit of exposure to airborne polycyclic aromatic hydrocarbons varies significantly
627		across countries depending on the gap in longevity. <i>Ecotoxicology environmental safety</i> 2019 , <i>Volume</i> 1 80, pp. 420, 420
628	13.	Volume 180, pp. 420-429. Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, SH.; Mortimer, K.; Perez-
629	15.	Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A., Air pollution and noncommunicable
630		diseases: a review by the Forum of International Respiratory Societies' Environmental
631		Committee, Part 2: air pollution and organ systems. <i>Chest</i> 2019 , <i>Volume</i> 155, pp. 417-426.
632	14.	Valdivia-Rivera, S.; Martínez-Cano, A.; Aguirre-García, G.; Lizardi-Jiménez, M., Hydrocarbon
633	111	water-pollution related to chronic kidney disease in Tierra Blanca, a perfect storm. <i>Environment</i>
634		international 2018 , Volume 121, pp. 1204-1209.
635	15.	Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.;
636		Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y., Global evaluation of heavy metal content in
637		surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate
638		statistical analyses. Chemosphere 2019, Volume pp. 124364.
639	16.	Johannson, K.A.; Balmes, J.R.; Collard, H.R., Air pollution exposure: a novel environmental
640		risk factor for interstitial lung disease? Chest 2015, Volume 147, pp. 1161-1167.
641	17.	Hu, CY.; Gao, X.; Fang, Y.; Jiang, W.; Huang, K.; Hua, XG.; Yang, XJ.; Chen, HB.; Jiang,
642		ZX.; Zhang, XJ., Human epidemiological evidence about the association between air
643		pollution exposure and gestational diabetes mellitus: Systematic review and meta-analysis.
644		Environmental research 2019 , Volume pp. 108843.
645	18.	Stanaway, W.D.; GBD 2017 Risk Factor Collaborators, Global, regional, and national
646		comparative risk assessment of 84 behavioural, environmental and occupational, and
647		metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic
648 640		analysis for the Global Burden of Disease Study 2017. <i>The Lancet</i> 2018 , <i>Volume</i> 392, pp. 1923-
649 650	10	1994. Brück Hetün A. Wolf I. Partrom I. Classon T. Cumming O. Freeman M.C. Cordon R.
651	19.	Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M.C.; Gordon, B.; Hunter, P.R.; Medlicett, K.; Johnston, P., Burden of disease from inadequate water, capitation
652		Hunter, P.R.; Medlicott, K.; Johnston, R., Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-
<i>552</i>		and hy given for selected daverse realith outcomes. The updated analysis with a locus off low-

653		and middle-income countries. International journal of hygiene environmental health 2019, Volume
654		222, pp. 765-777.
655	20.	Ostro, B.; Spadaro, J.V.; Gumy, S.; Mudu, P.; Awe, Y.; Forastiere, F.; Peters, A., Assessing the
656		recent estimates of the global burden of disease for ambient air pollution: methodological
657		changes and implications for low-and middle-income countries. Environmental research 2018,
658		Volume 166, pp. 713-725.
659	21.	Bauer, U.E.; Briss, P.A.; Goodman, R.A.; Bowman, B.A., Prevention of chronic disease in the
660		21st century: elimination of the leading preventable causes of premature death and disability
661		in the USA. The Lancet 2014, Volume 384, pp. 45-52.
662	22.	From the lab to real-world use. Nature Sustainability volume 2019, Volume 2, pp. 989.
663		https://doi.org/10.1038/s41893-019-0435-7.
664	23.	Anderson IV, J.D.; Bagamian, K.H.; Muhib, F.; Amaya, M.P.; Laytner, L.A.; Wierzba, T.;
665		Rheingans, R., Burden of enterotoxigenic Escherichia coli and shigella non-fatal diarrhoeal
666		infections in 79 low-income and lower middle-income countries: a modelling analysis. The
667		Lancet Global Health 2019, Volume 7, pp. e321-e330. https://doi.org/10.1016/S2214-
668		109X(18)30483-2.
669	24.	Vélez-Torres, I.; Vanegas, D.C.; McLamore, E.S.; Hurtado, D., Mercury pollution and artisanal
670		gold mining in Alto Cauca, Colombia: woman's perception of health and environmental
671		impacts. The Journal of Environment Development 2018, Volume 27, pp. 415-444.
672		https://doi.org/10.1177/1070496518794796.
673	25.	World Health Organization (WHO), Circular Economy and Health: Opportunities and Risk.
674		1.52. 2018.
675	26.	Tuberculosis (TB). Available online: https://www.who.int/news-room/fact-
676		sheets/detail/tuberculosis (accessed on November 13 2019).
677	27.	Yang, T.; Zhong, J.; Zhang, J.; Li, C.; Yu, X.; Xiao, J.; Jia, X.; Ding, N.; Ma, G.; Wang, G., Pan-
678		genomic study of Mycobacterium tuberculosis reflecting the primary/secondary genes,
679		generality/individuality, and the interconversion through copy number variations. <i>Frontiers in</i>
680		microbiology 2018, Volume 9, pp. 1886. https://doi.org/10.3389/fmicb.2018.01886.
681	28.	Dias, H.M.Y.; Pai, M.; Raviglione, M.C., Ending tuberculosis in India: A political challenge &
682		an opportunity. The Indian journal of medical research 2018, Volume 147, pp. 217.
683		https://doi.org/10.4103/ijmr.IJMR_660_18.
684	29.	WHO UN General Assembly High-Level Meeting on ending TB. Available online:
685		http://www.who.int/tb/features_archive/UNGA_HLM_ending_TB/en/ (accessed on
686		November 15 2019).
687	30.	Olaru, I.D.; Heyckendorf, J.; Grossmann, S.; Lange, C., Time to culture positivity and sputum
688		smear microscopy during tuberculosis therapy. PloS one 2014, Volume 9, pp. e106075.
689		https://doi.org/10.1371/journal.pone.0106075.
690	31.	Hobby, G.L.; Holman, A.P.; Iseman, M.D.; Jones, J.M., Enumeration of tubercle bacilli in
691		sputum of patients with pulmonary tuberculosis. Antimicrobial agents chemotherapy 1973,
692		<i>Volume 4,</i> pp. 94-104.
693	32.	Desikan, P., Sputum smear microscopy in tuberculosis: is it still relevant? <i>The Indian journal of</i>
694		medical research 2013, Volume 137, pp. 442.
695	33.	Steingart, K.R.; Ng, V.; Henry, M.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.;
696		Perkins, M.D.; Aziz, M.A.; Pai, M., Sputum processing methods to improve the sensitivity of
697		smear microscopy for tuberculosis: a systematic review. The Lancet infectious diseases 2006,
698		Volume 6, pp. 664-674. https://doi.org/10.1016/S1473-3099(06)70602-8.
699	34.	Demers, AM.; Verver, S.; Boulle, A.; Warren, R.; Van Helden, P.; Behr, M.A.; Coetzee, D.,
700		High yield of culture-based diagnosis in a TB-endemic setting. BMC infectious diseases 2012,
701		Volume 12, pp. 218. https://doi.org/10.1186/1471-2334-12-218.
702	35.	Afsar, I.; Gunes, M.; Er, H.; Sener, A.G., Comparison of culture, microscopic smear and
703		molecular methods in diagnosis of tuberculosis. Revista Española de Quimioterapia 2018, Volume
704		<i>31</i> , pp. 435.
705	36.	Kik, S.V.; Denkinger, C.M.; Chedore, P.; Pai, M., Replacing smear microscopy for the diagnosis
706		of tuberculosis: what is the market potential? <i>European Respiratory Journal</i> 2014 , <i>Volume</i> 43, pp.
707		1793-1796. https://doi.org/10.1183/09031936.00217313.

708 709 710	37.	Allen, V.; Nicol, M.; Tow, L., Sputum processing prior to Mycobacterium tuberculosis detection by culture or nucleic acid amplification testing: a narrative review. <i>Res Rev J Microbiol Biotechnol</i> 2016 . <i>Volume</i> 5, pp. 96–108.
711 712 713	38.	<i>Biotechnol</i> 2016 , <i>Volume</i> 5, pp. 96-108. Das, S.; Narang, P.; Nagamiah, S.; Mishra, P.; Deotale, V.; Mendiratta, D., Evaluation of variants of carbol fuchsin solution to stain acid-fast bacilli in-situ by the pot method. <i>The International Journal of Tuberculosis Lung Disease</i> 2015 , <i>Volume</i> 19, pp. 1470-1475.
714 715 716	39.	https://doi.org/info:doi/10.5588/ijtld.15.0272. Ho, J.; Marks, G.; Fox, G., The impact of sputum quality on tuberculosis diagnosis: a systematic review. <i>The International Journal of Tuberculosis Lung Disease</i> 2015 , <i>Volume 19</i> , pp. 537-544.
717		https://doi.org/10.5588/ijtld.14.0798.
718	40.	Munir, M.; Shabbir, I.; Iqbal, R.; Khan, S.U., Comparison of detection of acid fast bacilli in
719		clinical samples by AFB smear microscopy and culture in the diagnosis of tuberculosis in a
720		tertiary care setting. Pakistan Journal of Chest Medicine 2015, Volume 15, pp.
721	41.	Shea, Y.R.; Davis, J.L.; Huang, L.; Kovacs, J.A.; Masur, H.; Mulindwa, F.; Opus, S.; Chow, Y.;
722		Murray, P.R., High sensitivity and specificity of acid-fast microscopy for diagnosis of
723		pulmonary tuberculosis in an African population with a high prevalence of human
724		immunodeficiency virus. Journal of clinical microbiology 2009, Volume 47, pp. 1553-1555.
725		https://doi.org/10.1128/JCM.00348-09.
726	42.	Cudahy, P.; Shenoi, S.V., Diagnostics for pulmonary tuberculosis. Postgraduate medical journal
727		2016, Volume 92, pp. 187-193. https://doi.org/10.1136/postgradmedj-2015-133278.
728	43.	Dunn, J.J.; Starke, J.R.; Revell, P.A., Laboratory diagnosis of Mycobacterium tuberculosis
729		infection and disease in children. Journal of clinical microbiology 2016, Volume 54, pp. 1434-1441.
730		https://doi.org/10.1128/JCM.03043-15.
731	44.	Nyendak, M.R.; Lewinsohn, D.A.; Lewinsohn, D.M., New diagnostic methods for tuberculosis.
732		Current opinion in infectious diseases 2009, Volume 22, pp. 174.
733	45.	Ryu, Y.J., Diagnosis of pulmonary tuberculosis: recent advances and diagnostic algorithms.
734		Tuberculosis respiratory diseases 2015, Volume 78, pp. 64-71.
735		https://doi.org/10.4046/trd.2015.78.2.64.
736	46.	Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis.
736 737	46.	Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. International journal of mycobacteriology 2015 , Volume 4, pp. 1-6.
736 737 738		Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006.
736 737 738 739	46. 47.	Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R.,
736 737 738 739 740		Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global
736 737 738 739 740 741		Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4 , pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016 , <i>Volume</i> 1 , pp. e000132.
736 737 738 739 740 741 742	47.	Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4 , pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016 , <i>Volume</i> 1 , pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132.
736 737 738 739 740 741 742 743		Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016 , <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of
736 737 738 739 740 741 742 743 744	47.	Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015 , <i>Volume</i> 4 , pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016 , <i>Volume</i> 1 , pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i>
736 737 738 739 740 741 742 743 744 745	47. 48.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912.
736 737 738 739 740 741 742 743 744 745 746	47.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning,
736 737 738 739 740 741 742 743 744 745 746 747	47. 48.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a
736 737 738 739 740 741 742 743 744 745 746 747 748	47. 48.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp.
736 737 738 739 740 741 742 743 744 745 746 747 748 749	47. 48. 49.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2.
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750	47. 48.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751	47. 48. 49.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis-
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752	47. 48. 49.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i>
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753	47. 48. 49. 50.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8.
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754	47. 48. 49.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	47. 48. 49. 50.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European</i>
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756	 47. 48. 49. 50. 51. 	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European</i> <i>Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413.
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757	47. 48. 49. 50.	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European</i> <i>Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413. Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M., XtracTB Assay, a Mycobacterium tuberculosis
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758	 47. 48. 49. 50. 51. 	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European</i> <i>Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413. Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M., XtracTB Assay, a Mycobacterium tuberculosis molecular screening test with sensitivity approaching culture. <i>Scientific reports</i> 2017, <i>Volume</i> 7,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759	 47. 48. 49. 50. 51. 52. 	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413. Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M., XtracTB Assay, a Mycobacterium tuberculosis molecular screening test with sensitivity approaching culture. <i>Scientific reports</i> 2017, <i>Volume</i> 7, pp. 3653. https://doi.org/10.1038/s41598-017
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760	 47. 48. 49. 50. 51. 	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European</i> <i>Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public</i> <i>health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European</i> <i>Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413. Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M., XtracTB Assay, a Mycobacterium tuberculosis molecular screening test with sensitivity approaching culture. <i>Scientific reports</i> 2017, <i>Volume</i> 7, pp. 3653. https://doi.org/10.1038/s415
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759	 47. 48. 49. 50. 51. 52. 	 Singhal, R.; Myneedu, V.P., Microscopy as a diagnostic tool in pulmonary tuberculosis. <i>International journal of mycobacteriology</i> 2015, <i>Volume</i> 4, pp. 1-6. https://doi.org/10.1016/j.ijmyco.2014.12.006. Engel, N.; Wachter, K.; Pai, M.; Gallarda, J.; Boehme, C.; Celentano, I.; Weintraub, R., Addressing the challenges of diagnostics demand and supply: insights from an online global health discussion platform. <i>BMJ Global Health</i> 2016, <i>Volume</i> 1, pp. e000132. https://doi.org/10.1136/bmjgh-2016-000132. Pantoja, A.; Fitzpatrick, C.; Vassall, A.; Weyer, K.; Floyd, K., Xpert MTB/RIF for diagnosis of tuberculosis and drug-resistant tuberculosis: a cost and affordability analysis. <i>European Respiratory Journal</i> 2013, <i>Volume</i> 42, pp. 708-720. https://doi.org/10.1183/09031936.00147912. Cazabon, D.; Pande, T.; Kik, S.; Van Gemert, W.; Sohn, H.; Denkinger, C.; Qin, Z.Z.; Waning, B.; Pai, M., Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: a trend analysis from 2014-2016. <i>Gates open research</i> 2018, <i>Volume</i> 2, pp. https://doi.org/10.12688/gatesopenres.12842.2. Sakamoto, H.; Lee, S.; Ishizuka, A.; Hinoshita, E.; Hori, H.; Ishibashi, N.; Komada, K.; Norizuki, M.; Katsuma, Y.; Akashi, H., Challenges and opportunities for eliminating tuberculosis- leveraging political momentum of the UN high-level meeting on tuberculosis. <i>BMC public health</i> 2019, <i>Volume</i> 19, pp. 76. https://doi.org/10.1186/s12889-019-6399-8. Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K., Financial burden for tuberculosis patients in low-and middle-income countries: a systematic review. <i>European Respiratory Journal</i> 2014, <i>Volume</i> 43, pp. 1763-1775. https://doi.org/10.1183/09031936.00193413. Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M., XtracTB Assay, a Mycobacterium tuberculosis molecular screening test with sensitivity approaching culture. <i>Scientific reports</i> 2017, <i>Volume</i> 7, pp. 3653. https://doi.org/10.1038/s41598-017

763 764 765	54.	Bhusal, N.; Shrestha, S.; Pote, N.; Alocilja, E., Nanoparticle-Based Biosensing of Tuberculosis, an Affordable and Practical Alternative to Current Methods. <i>Biosensors</i> 2019 , <i>Volume</i> 9, pp. 1. https://doi.org/10.2200/bios0010001
766	55.	https://doi.org/10.3390/bios9010001. Gordillo-Marroquín, C.; Gómez-Velasco, A.; Sánchez-Pérez, H.; Pryg, K.; Shinners, J.; Murray,
767	55.	N.; Muñoz-Jiménez, S.; Bencomo-Alerm, A.; Gómez-Bustamante, A.; Jonapá-Gómez, L.,
768		Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli
769		Count in Paucibacillary Pulmonary Tuberculosis. <i>Biosensors</i> 2018 , <i>Volume</i> 8, pp. 128.
770		https://doi.org/10.3390/bios8040128.
771	56.	Floyd, K.; Glaziou, P.; Houben, R.; Sumner, T.; White, R.; Raviglione, M., Global tuberculosis
772		targets and milestones set for 2016–2035: definition and rationale. <i>The international journal of</i>
773		tuberculosis lung disease 2018, Volume 22, pp. 723-730. https://doi.org/10.5588/ijtld.17.0835.
774	57.	Kristensen, A.K.B.; Thomsen, J.F.; Mikkelsen, S., A review of mercury exposure among
775		artisanal small-scale gold miners in developing countries. International archives of occupational
776		environmental health 2014, Volume 87, pp. 579-590.
777	58.	Hentschel, T.; Hruschka, F.; Priester, M. Artisanal and Small-Scale Mining: Challenges and
778		Opportunities, 1st ed.; Inernational Institute for Environment and Development (IIED) and
779		World Business Council for Sustainable Development: London, United Kingdom, 2003.
780	59.	Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-
781		López, P.C.; Roeser, M., Mercury contamination from artisanal gold mining in Antioquia,
782		Colombia: The world's highest per capita mercury pollution. Science of the Total Environment
783		2011 , <i>Volume 410</i> , pp. 154-160.
784	60.	United Nations Environment Programme, Global mercury assessment 2013: Sources,
785		emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland.
786		2013.
787	61.	Sengupta, P.; Banerjee, R.; Nath, S.; Das, S.; Banerjee, S., Metals and female reproductive
788		toxicity. Human experimental toxicology 2015, Volume 34, pp. 679-697.
789	62.	Pizent, A.; Tariba, B.; Živković, T., Reproductive toxicity of metals in men. Archives of industrial
790		hygiene toxicology 2012, Volume 63, pp. 35-46.
791	63.	Matta, G.; Gjyli, L., Mercury, lead and arsenic: impact on environment and human health.
792		Journal of chemical Pharmaceutical Sciences 2016, Volume 9, pp. 718-725.
793	64.	Mahurpawar, M., Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015,
794		<i>Volume 530, pp. 1-7.</i>
795	65.	Bridges, C.C.; Zalups, R.K., The aging kidney and the nephrotoxic effects of mercury. Journal
796		of Toxicology Environmental Health, Part B 2017 , Volume 20, pp. 55-80.
797	66.	Ghaedi, M.; Reza Fathi, M.; Shokrollahi, A.; Shajarat, F., Highly selective and sensitive
798		preconcentration of mercury ion and determination by cold vapor atomic absorption
799		spectroscopy. Analytical Letters 2006, Volume 39, pp. 1171-1185.
800	67.	Yavuz, E.; Tokalıoğlu, Ş.; Patat, Ş., Magnetic dispersive solid phase extraction with
801		graphene/ZnFe2O4 nanocomposite adsorbent for the sensitive determination of mercury in
802		water and fish samples by cold vapor atomic absorption spectrometry. Microchemical Journal
803		2018 , Volume 142, pp. 85-93.
804	68.	Jones, R.; Jacobson, M.; Jaffe, R.; West-Thomas, J.; Arfstrom, C.; Alli, A., Method development
805		and sample processing of water, soil, and tissue for the analysis of total and organic mercury
806		by cold vapor atomic Fluorescence spectrometry. Oceanographic Literature Review 1996, Volume
807		2, pp. 192.
808	69.	Yu, LP.; Yan, XP., Flow injection on-line sorption preconcentration coupled with cold vapor
809		atomic fluorescence spectrometry and on-line oxidative elution for the determination of trace
810	-	mercury in water samples. <i>Atomic spectroscopy</i> 2004 , <i>Volume</i> 25, pp. 145-153.
811	70.	Rodríguez-Reino, M.P.; Rodríguez-Fernández, R.; Peña-Vázquez, E.; Domínguez-González,
812		R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A., Mercury speciation in seawater by liquid
813		chromatography-inductively coupled plasma-mass spectrometry following solid phase
814		extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury-
815	1 1	phenobarbital interaction. <i>Journal of Chromatography A</i> 2015 , <i>Volume 1391</i> , pp. 9-17.
816	71.	Ma, S.; He, M.; Chen, B.; Deng, W.; Zheng, Q.; Hu, B., Magnetic solid phase extraction coupled
817		with inductively coupled plasma mass spectrometry for the speciation of mercury in
818		environmental water and human hair samples. Talanta 2016, Volume 146, pp. 93-99.

819 820 821	72.	Barton, J.; García, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P., Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. <i>Microchimica Acta</i> 2016 , <i>Volume</i> 183, pp. 503-517.
822 823 824	73.	Kabir, K.M.; Sabri, Y.M.; Lay, B.; Ippolito, S.J.; Bhargava, S.K., A silver electrode based surface acoustic wave (SAW) mercury vapor sensor: a physio-chemical and analytical investigation. <i>RSC Advances</i> 2016 , <i>Volume</i> 6, pp. 36362-36372.
825 826 827 828	74.	Lai, C.; Qin, L.; Zeng, G.; Liu, Y.; Huang, D.; Zhang, C.; Xu, P.; Cheng, M.; Qin, X.; Wang, M., Sensitive and selective detection of mercury ions based on papain and 2, 6-pyridinedicarboxylic acid functionalized gold nanoparticles. <i>RSC Advances</i> 2016 , <i>Volume</i> 6, pp. 3259-3266.
829 830 831 832	75.	Noël, M.; Christensen, J.R.; Spence, J.; Robbins, C.T., Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet. <i>Science of the Total Environment</i> 2015 , <i>Volume</i> 529, pp. 1-9.
833 834 835 836 837	76.	Habte, G.; Hwang, I.M.; Kim, J.S.; Hong, J.H.; Hong, Y.S.; Choi, J.Y.; Nho, E.Y.; Jamila, N.; Khan, N.; Kim, K.S., Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). <i>Food chemistry</i> 2016 , <i>Volume 212</i> , pp. 512-520.
838 839	77.	Cui, L.; Wu, J.; Ju, H., Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. <i>Biosensors Bioelectronics</i> 2015 , <i>Volume</i> 63, pp. 276-286.
840 841 842	78.	Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. <i>Biosensors Bioelectronics</i> 2017 , <i>Volume 94</i> , pp. 443-455.
843 844	79.	Gao, C.; Huang, XJ., Voltammetric determination of mercury (II). <i>TrAC Trends in Analytical Chemistry</i> 2013 , <i>Volume 51</i> , pp. 1-12.
845 846	80.	Mauter, M.S.; Elimelech, M., Environmental applications of carbon-based nanomaterials. <i>Environmental science technology</i> 2008 , <i>Volume</i> 42, pp. 5843-5859.
847 848	81.	Crevillen, A.G.; Escarpa, A.; García, C.D. <i>Carbon-based Nanomaterials in Analytical Chemistry</i> , 1st ed.; Royal Society of Chemistry: United Kingdom, 2018.
849 850 851	82.	Xie, F.; Yang, M.; Jiang, M.; Huang, XJ.; Liu, WQ.; Xie, PH., Carbon based nanomaterials- A promising electrochemical sensor toward persistent toxic substance. <i>Trends in Analytical</i> <i>Chemistry</i> 2019 , <i>Volume</i> pp. 115624.
852 853 854	83.	Gong, J.; Zhou, T.; Song, D.; Zhang, L.; Hu, X., Stripping voltammetric detection of mercury (II) based on a bimetallic Au– Pt inorganic– organic hybrid nanocomposite modified glassy carbon electrode. <i>Analytical chemistry</i> 2009 , <i>Volume 82</i> , pp. 567-573.
855 856 857 858	84.	Ghanei-Motlagh, M.; Taher, M.A.; Heydari, A.; Ghanei-Motlagh, R.; Gupta, V.K., A novel voltammetric sensor for sensitive detection of mercury (II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer. <i>Materials Science Engineering:</i> C 2016 , <i>Volume 63</i> , pp. 367-375.
859 860 861	85.	Pokhrel, L.R.; Ettore, N.; Jacobs, Z.L.; Zarr, A.; Weir, M.H.; Scheuerman, P.R.; Kanel, S.R.; Dubey, B., Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury (II) detection in water: a review. <i>Science of the Total Environment</i> 2017 , <i>Volume</i> 574, pp. 1379-1388.
862 863 864 865	86.	Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Wang, W.; Zhang, Y.; Yang, T., Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. <i>Journal of Electroanalytical Chemistry</i> 2016 , <i>Volume</i> 760, pp. 52-58.
866 867 868	87.	Choi, SM.; Kim, DM.; Jung, OS.; Shim, YB., A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. <i>Analytica chimica acta</i> 2015 , <i>Volume 892</i> , pp. 77-84.
869 870	88.	Huang, XJ.; Chen, X.; Yang, M. Persistent Toxic Substance Monitoring: Nanoelectrochemical Methods, 1st ed.; John Wiley & Sons: Weinheim, Germany, 2018.
871 872 873	89.	Duarte, K.; Justino, C.I.; Freitas, A.C.; Gomes, A.M.; Duarte, A.C.; Rocha-Santos, T.A., Disposable sensors for environmental monitoring of lead, cadmium and mercury. <i>TrAC Trends in Analytical Chemistry</i> 2015 , <i>Volume</i> 64, pp. 183-190.

874 875 876	90.	Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M., Laser-induced porous graphene films from commercial polymers. <i>Nature communications</i> 2014 , <i>Volume</i> 5, pp. 5714.
877 878	91.	Tehrani, F.; Bavarian, B., Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. <i>Scientific reports</i> 2016 , <i>Volume</i> 6, pp. 27975.
879 880 881	92.	Nayak, P.; Kurra, N.; Xia, C.; Alshareef, H.N., Highly efficient laser scribed graphene electrodes for on - chip electrochemical sensing applications. <i>Advanced Electronic Materials</i> 2016 , <i>Volume 2</i> , pp. 160085. 10.1002/aelm.201600185.
882 883	93.	Vanegas, D.; Patiño, L.; Mendez, C.; Oliveira, D.; Torres, A.; Gomes, C.; McLamore, E., Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally
884 885 886	94.	Sourced Materials. <i>Biosensors</i> 2018 , <i>Volume 8</i> , pp. 42. Garland, N.T.; McLamore, E.S.; Cavallaro, N.D.; Mendivelso-Perez, D.; Smith, E.A.; Jing, D.; Claussen, J.C., Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. <i>ACS applied</i>
887 888 889	95.	<i>materials interfaces</i> 2018 , <i>Volume 10</i> , pp. 39124-39133. Yang, K.; Wang, J.; Chen, X.; Zhao, Q.; Ghaffar, A.; Chen, B., Application of graphene-based
890 891	96.	materials in water purification: from the nanoscale to specific devices. <i>Environmental Science: Nano</i> 2018 , <i>Volume</i> 5, pp. 1264-1297. Taguchi, M.; Schwalb, N.; Rong, Y.; Vanegas, D.; Garland, N.; Tan, M.; Yamaguchi, H.;
892 893		Claussen, J.; McLamore, E., Pulsed: Pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. <i>Analyst</i> 2016 , <i>Volume</i> 141, pp. 3367-3378.
894 895 896 897	97.	Abdelbasir, S.; El-Sheikh, S.; Morgan, V.; Schmidt, H.; Casso-Hartmann, L.; Vanegas, D.; Velez- Torres, I.; McLamore, E., Graphene-anchored cuprous oxide nanoparticles from waste electric cables for electrochemical sensing. <i>Sustainable Chemistry Engineering</i> 2018 , <i>Volume 6</i> , pp. 12176-
898 898 899 900	98.	12186. Jenkins, D.M.; Lee, B.E.; Jun, S.; Reyes-De-Corcuera, J.; McLamore, E.S., ABE-Stat, a Fully Open-Source and Versatile Wireless Potentiostat Project Including Electrochemical Impedance Spectroscopy. <i>Journal of The Electrochemical Society</i> 2019 , <i>Volume</i> 166, pp. B3056-B3065.
901 902	99.	World Health Organization, Mercury in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. 2005.
903 904	100.	World Health Organization, Exposure to mercury: a major public health concern. <i>WHO</i> , <i>Public Health Environment international</i> . 2007.
905 906 907	101.	Taueg, C.; Sanfilippo, D.; Rowens, B.; Szejda, J.; Hesse, J., Acute and chronic poisoning from residential exposures to elemental mercury-michigan, 1989–1990. <i>Journal of Toxicology: Clinical Toxicology</i> 1992 , <i>Volume</i> 30, pp. 63-67.
908 909	102.	Bernhoft, R.A., Mercury toxicity and treatment: a review of the literature. <i>Journal of environmental public health</i> 2012 , <i>Volume</i> 2012.
910 911 912	103.	Castilhos, Z.C.; Rodrigues-Filho, S.; Rodrigues, A.P.C.; Villas-Bôas, R.C.; Siegel, S.; Veiga, M.M.; Beinhoff, C., Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. <i>Science of the Total Environment</i> 2006 , <i>Volume 368</i> , pp. 320-325.
913 914 915 016	104.	Castilhos, Z.; Rodrigues-Filho, S.; Cesar, R.; Rodrigues, A.P.; Villas-Bôas, R.; de Jesus, I.; Lima, M.; Faial, K.; Miranda, A.; Brabo, E., Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. <i>Environmental</i>
916 917 918 919 920	105.	<i>Science Pollution Research</i> 2015 , <i>Volume 22</i> , pp. 11255-11264. Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Cyio, B.; Elvince, R., Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. <i>Ecotoxicology environmental safety</i> 2016 , <i>Volume 124</i> , pp. 155-162.
921 922 923	106.	Petroczi, A.; Naughton, D., Mercury, cadmium and lead contamination in seafood: A comparative study to evaluate the usefulness of Target Hazard Quotients. <i>Food Chemical Toxicology</i> 2009 , <i>Volume</i> 47, pp. 298-302.
924 925 926	107.	Telemedicine Predicted in 1925. Available online: https://www.smithsonianmag.com/history/telemedicine-predicted-in-1925-124140942/ (accessed on November 20 2019).
927 928 929	108.	Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A., Quantum supremacy using a programmable superconducting processor. <i>Nature</i> 2019 , <i>Volume 574</i> , pp. 505-510.

930	109.	Coase, R., The Nature of the Firm. Economica, New Series, 4 (16), 386-405. Article first published
931		online 1937, Volume 19, pp. 10.1111/j.1468-0335.1937.tb00002.x.
932	110.	Kay, N.M., Coase and the Contribution of 'The Nature of the Firm'. Managerial Decision
933		<i>Economics</i> 2015 , <i>Volume</i> 36, pp. 44-54.
934	111.	Kim, J.Y., Rich and poor: opportunities and challenges in an age of disruption. World Bank
935		2018. 10.1596/31119.
936	112.	Tonda, E.; Susan, C., Technology Challenges and tools for the implementation of the water-
937		related sustainable development goals and targets. 2015 UN-Water Annual International
938		Zaragoza Conference 2015.
939	113.	Banerjee, A.V. and Duflo, E. Poor economics: A radical rethinking of the way to fight global poverty.
940		1st ed.; Public Affairs: New York, United States of America, 2011. ISBN: 978-1-58648-798-0
941	114.	Mikami, M., Methodological divergence between coase and williamson in the history of
942		transaction cost economics. Economic Journal of Hokkaido University 2011, Volume 40, pp. 41-57.
943	115.	Klein, S.; Frazier, G.L.; Roth, V.J., A transaction cost analysis model of channel integration in
944		international markets. Journal of Marketing research 1990 , Volume 27, pp. 196-208.
945	116.	Pentland, A.; Fletcher, R.; Hasson, A., Daknet: Rethinking connectivity in developing nations.
946		Computer 2004, Volume 37, pp. 78-83. 10.1109/MC.2004.1260729.
947	117.	Martinez, A.; Villarroel, V.; Seoane, J.; del Pozo, F., Analysis of information and
948		communication needs in rural primary health care in developing countries. <i>IEEE transactions</i>
949		on Information Technology in Biomedicine 2005, Volume 9, pp. 66-72. 10.1109/TITB.2004.842411.
950	118.	Pimenidis, E.; Sideridis, A.B.; Antonopoulou, E., Mobile devices and services: bridging the
951	110.	digital divide in rural areas. International Journal of Electronic Security Digital Forensics 2009,
952		Volume 2, pp. 424-434.
953	119.	James, J., Mechanisms of access to the Internet in rural areas of developing countries. <i>Telematics</i>
954	117.	Informatics 2010, Volume 27, pp. 370-376. https://doi.org/10.1016/j.tele.2010.02.002.
955	120.	Llanto, G.M.; Fukui, R., Innovations in Microfinance in Southeast Asia, PIDS Discussion Paper
955 956	120.	*
950 957		Series, No. 2003-11, Philippine Institute for Development Studies (PIDS), Makati City. 2003.
957 958	101	PIDS Discussion Paper Series
	121.	Nenova, T.; Niang, C.T. Bringing Finance to Pakistan's poor: Access to Finance for Small enterprises
959	100	and the Underserved, 1st ed.; The World Bank: Washington DC, United States of America, 2009.
960	122.	Bernardi, L.; Sarma, S.; Traub, K. The inversion factor: How to thrive in the IoT economy, 1st ed.;
961		MIT Press: London, England, 2017.
962	123.	Davis, F.D., A technology acceptance model for empirically testing new end-user information
963		systems: Theory and results. Ph.D. thesis. Ph.D. in Management-Massachusetts Institute of
964		Technology, Massachusetts, United States of America, December 20 1985.
965	124.	Rogers, E.M., A prospective and retrospective look at the diffusion model. Journal of health
966		communication 2004 , Volume 9, pp. 13-19.
967	125.	Williams, M.D.; Rana, N.P.; Dwivedi, Y.K., The unified theory of acceptance and use of
968		technology (UTAUT): a literature review. Journal of Enterprise Information Management 2015,
969		<i>Volume 28,</i> pp. 443-488. 10.1108/JEIM-09-2014-0088.
970	126.	Johnson, M.P.; Zheng, K.; Padman, R., Modeling the longitudinality of user acceptance of
971		technology with an evidence-adaptive clinical decision support system. Decision Support
972		Systems 2014, Volume 57, pp. 444-453. 10.1016/j.dss.2012.10.049.
973	127.	Campbell, J.I.; Aturinda, I.; Mwesigwa, E.; Burns, B.; Haberer, J.E.; Bangsberg, D.R.; Holden,
974		R.J.; Ware, N.C.; Siedner, M.J., The Technology Acceptance Model for Resource-Limited
975		Settings (TAM-RLS): a novel framework for mobile health interventions targeted to low-
976		literacy end-users in resource-limited settings. AIDS Behavior 2017, Volume 21, pp. 3129-3140.
977		10.1007/s10461-017-1765-y.
978	128.	Sunny, S.; Patrick, L.; Rob, L., Impact of cultural values on technology acceptance and
979		technology readiness. International Journal of Hospitality Management 2019, Volume 77, pp. 89-
980		96. https://doi.org/10.1016/j.ijhm.2018.06.017.
981	129.	Mathieson, K., Predicting user intentions: comparing the technology acceptance model with
982		the theory of planned behavior. <i>Information systems research</i> 1991 , <i>Volume</i> 2, pp. 173-191.
983	130.	Wallace, E.A.; Schumann, J.H.; Weinberger, S.E., Ethics of Commercial Screening Tests. Annals
984		of Internal Medicine 2013 , Volume 158, pp. 500-500. doi:10.231/JIM.0b013e318210eeb0.
985	131.	Hersh, M., Technology change, technology transfer and ethics. University of Glasgow, Vienna,
986	101.	Austria. 2001.
200		

989https://www.who.int/medical_devices/publications/en/Donation_Guidelines.pdf(acc990on November 05 2019).991134.992how much medical equipment is broken in the developing world? Medical & Biol993Engineering & Computing 2011, Volume 49, pp. 719-722. https://doi.org/10.1007/s11517-011-9943.	logical
	0,00

996

 $\ensuremath{\mathbb{C}}$ 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

997

Can "SNAPS" and/or "PAPPU" make a difference for the masses?

nytimes.com/2019/10/26/opinion/sunday/duflo-banerjee-economic-incentives.html

SUNDAY REVIEW

The New York Times

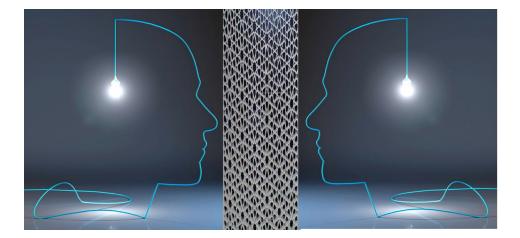
f

★ 359

Economic Incentives Don't Always Do What We Want Them To

By Esther Duflo and Abhijit Banerjee The authors were just awarded the Nobel Prize in economics.

Oct. 26, 2019


C

P3

Porous Pareto Partition:

¹Democratization of ²Distributed ³Data may or may not catalyze the global ⁴Dissemination of ⁵Digital ⁶Dividends

 D_6 is an unfinished essay (op-ed) by Shoumen Palit Austin Datta *et al* \blacklozenge Massachusetts Institute of Technology and Massachusetts General Hospital, Harvard Medical School (*shoumen@mit.edu* & *sdatta8@mgh.harvard.edu*)

Opinions expressed in this essay are solely due to the primary author and do not reflect the views of the institutions with which the author is affiliated. Listed co-authors are not responsible and may not endorse any/all comments and criticisms in this essay. This essay is not based on any scholastic research, it does not contain any new concepts and perhaps best categorized as a blog.

ABSTRACT

P3 is a petri dish brimming with questions. This essay does not provide answers but suggestions to explore. This essay may not instruct, educate or teach, but may swing the proverbial pendulum with sufficient motion to discuss business to consumer services. The reader may ponder about the amorphous questions or wonder in confusion, ambiguity and uncertainty. This essay breaks with the *status quo* and indulges orthogonal, non-linear and asymmetric information arbitrage. This essay is not an attempt to be correct or right. This essay is a seed, sterile unless cultivated or you can bury it (but it may grow). This essay aspires to inform that tools and data related to the affluent world are *not* a template to be "copied" or applied to systems in the remaining (80%) parts of the world with economic constraints and cultural preferences. We need different thinking that resists the inclination of the affluent 20% of the world to treat the rest of the world (80% of the population) just as a market. The 80/20 distribution evokes the Pareto¹ theme in this essay. On reflection (see "END NOTE"), it is unclear what this essay contributes.

CONTEXT

Since 1999, the concept of the internet of things (IoT) was nurtured as a marketing term² which may have succinctly captured the idea of data about objects stored on the internet³ in the networked physical world. The idea evolved while transforming the use of RFID (radio frequency identification) where an alphanumeric unique identifier (64-bit EPC⁴ or electronic product code) was stored on the chip (tag⁵) but the volume of raw data was stored on the internet, yet inextricably and uniquely linked via the EPC, in a manner resembling the structure of internet protocols⁶ (64-bit IPv4 and 128-bit IPv6⁷). IoT and later, *cloud of data*⁸, were metaphors for ubiquitous connectivity and concepts originating from ubiquitous computing, a term introduced by Mark Weiser⁹ in 1998. The underlying importance of data from connected objects and processes usurped the term big data¹⁰ and then twisted the sound bites to create the artificial myth of "Big Data" sponsored and accelerated by consulting companies. The global drive to get ahead of the "Big Data" tsunami, flooded both businesses and governments, big and small. The chatter about big data garnished with dollops of AI became parlor talk among fish mongers¹¹ and gold miners, inviting the sardonicism of doublespeak, peppered in this essay.

Much to the chagrin of the thinkers, the laissez-faire approach to IoT percolated by the tinkerers over-shadowed hard facts. The "quick & dirty" anti-intellectual chaos adumbrated the artefact-fueled exploding frenzy for new revenue from "IoT Practice" which spawned greed in the consulting¹² world. The cacophony of IoT in the market¹³ is a result of that unstoppable transmutation of disingenuous tabloid fodder to veritable truth, catalyzed by pseudo-science hacks, social gurus and glib publicity campaigns to drum up draconian "dollar-sign-dangling" predictions¹⁴ about "trillions of things connected to the internet" to feed mass hysteria, to bolster consumption. Few ventured to correct the facts and point out that *connectivity without discovery* is a diabolical tragedy of egregious errors. Even fewer recognized that the idea of IoT is *not a point* but an *ecosystem*, where collaboration adds value.

The corporate orchestration of the digital by design metaphor of IoT was warped solely to create demand for sales by falsely amplifying the lure of increasing performance, productivity and profit, far beyond the potential digital transformation could deliver by embracing the rational principles of IoT.

Ubiquitous connectivity is associated with high cost of products (capex or capital expense) but extraction of "value" to generate ROI (return on investment) rests on the ability to implement SARA, a derivative of the PEAS paradigm (see Fig 6 and 7). SARA - Sense, Analyze, Respond, Actuate – is not a linear concept. Data and decisions necessary for SARA makes the conceptual illustration more akin to The Sara Cycle, perhaps best illustrated by the analogy to the Krebs¹⁵ Cycle, an instance of bio-mimicry. Data and decisions constantly influence, optimize, re-configure, and change the parameters associated with, *when* to sense, *what* to analyze, *how* to respond and *where* to actuate or auto-actuate. Combining SARA with the metaphor of IoT by design may help to ask these questions, with precision and accuracy.

It is hardly necessary to over-emphasize the value of the correct questions for each element of SARA in a matrix of connected objects, relevant entities which can be discovered, distributed nodes, related processes and desired outcomes. Strategic inclusion of SARA guides key performance indicators. Lucidity and clarity of thoughtful integration of digital by design idea is key to reconfiguring operations management. Execution and embedding SARA is not a systems integration task but rather a fine-tuned *synergistic* integration based on the *weighted combination of dependencies* in the SARA matrix. Failure to grasp the role of data and semantics of queries, in the context of KPI (key performance indicators) may increase transaction costs, reduce the value proposition for customers and obliterate ROI or profitability.

Figure 0 - From the annals¹⁶ of the march of unreason: *Internet of things: \$8.9 trillion market in 2020, 212 billion connected things.* It is blasphemous and heretical to suggest that this a *research*¹⁷ outcome.

This essay meanders, not always aimlessly, around discussions involving data and decision. It also oscillates, albeit asynchronously, between a broad spectrum of haphazard realities or "dots" which may be more about esoteric analysis rather than focusing on delivering real-world value. In part, this discussion questions the barriers to the rate of diffusion of technologies in underserved communities. Can implementing *simple* tools act as affordable catalysts? Can it lift the quality of life, in less affluent societies, by enabling meaningful use of data, perhaps small data, at the right time, at the lowest cost?

The extremely non-linear business of delivering tools and technologies makes it imperative to consider the trinity of systems integration, standards and interoperability. We advocate that businesses may wish to gradually dis-engage with the product mind-set (sensors, hardware, software) and engage in the *ecosystem* necessary to deliver *services* to communities. The delivery of service to the end-user must be synergized. Hence, system integration may be a subset of synergistic integration. But, before we can view this "whole" it is better to understand the coalition of cyber (data) with the physical (parts). In many ways, this discussion is about cyberphysical systems (CPS) but not for lofty purposes, such as landing on Mars, but for simple living, on Earth.

MODELS IN THE BACKGROUND

Because it may be difficult to grasp the whole, we tend to focus on the part, and parts, closest to our comfort zone, in our area of interest. This reductionist approach may be necessary *ab initio* but rarely yields a solution, *per se*. Reconstruction requires synthesis and synergy, the global glue which underlies mass adoption and diffusion, of tools, in an age of integration, which, itself, is a khichuri¹⁸ of parts, some known (industrial age, information age, systems age) and others, parts unknown.

Divide and conquer still remains a robust adage. It may be the philosophical foundation of reductionism. The latter has rewarded us with immense gains in knowledge and the wisdom as to why this *modus operandi* is *sine qua non*. For example, the pea plant (*Pisum sativum*) unleashed the cryptic principles of genetics¹⁹ and unicellular bacteria shed light on normal physiological underpinnings of feedback control²⁰ common in genetic circuits as well as regulatory networks for maintenance and optimization of biological homeostasis, quintessential for health and healthcare in humans and animals. Cancer biology was transformed by Renato Dulbecco²¹ by *reducing* the multi-factorial complexity of human cancer research to focus on a *single gene model* (SV40 large T-antigen) from Papova viruses.

Biomimicry also inspired the creation of better machines and systems²², using the principles and practice of control theory borrowed from science, strengthened by mathematics and successfully integrated with design and manufacturing, by engineers. An early convergence²³ of control theory with communication may be found in the 1948 treatise "Cybernetics" by Norbert Wiener²⁴ (who may have borrowed²⁵ the word "cybernétique" proposed by the French physicist and mathematician André-Marie Ampère²⁶ to design the then non-existent science of process control).

In other examples of 'divide and conquer' the theoretical duo "Alice and Bob" is at the core²⁷ of cryptography²⁸ as well as the game theoretic²⁹ approach³⁰ to "prisoner's dilemma" which has influenced business strategies³¹ and now it is spilling over to knowledge graph³² databases. The simple concept of a lone travelling salesman proposed by Euler in 1759 appears to have evolved³³ as the bread and butter of most optimization engines, which, when considered together with data and information, continues to improve decision support systems (DSS) in manufacturing, retail, transportation, logistics³⁴ and omnipresent supply chain³⁵ networks, almost in every vertical.

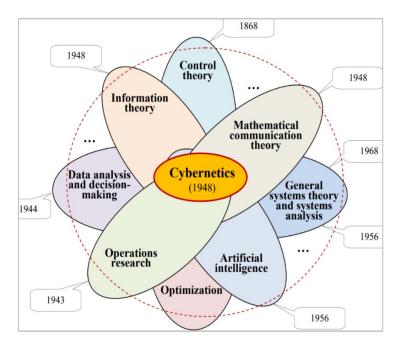


Figure 1 - A Century of Convergence \blacklozenge The Composition and Structure of Cybernetics [²²]

The purpose of these disparate examples are to emphasize the notion that there are fundamental units of activity or models or set(s) of patterns or certain basic behavioral criteria (for lack of a better descriptive term) that underlie most actions and reactions. When taken apart or sufficiently reduced, we may observe these as isolated units or patterns or models of rudimentary entities. When combined, these simple models/units/patterns/elements can generate an almost unlimited variety of system behaviors observed on grand scales. When viewing the massive scale of systems from the "top" it may be quite counter-intuitive to imagine that the observed manifestations are due to a few or a relatively small group of universal 'truths' which we refer to as models, units, rules, logic, patterns, elements or behaviors. To further illustrate this perspective, consider petals (flowers), pineapple (fruit) and pyramids. The variation between and within these three very different examples may boil down to Fibonacci³⁶ numbers, fractal³⁷ dimensions and the Golden³⁸ Ratio³⁹ in some form, or the other. In another vein, the number, eight, seems to be central to atoms (octet) and an integral part of the Standard Model in physics (octonions⁴⁰). Number 8 is revered by the Chinese due to its link with words synonymous with wealth and fortune (fa).

Parallel examples can be drawn from physical sciences. Large scale system behaviors can be reduced and mapped to simple models. Combination of these simple models, with widely different microscopic details, applies to, and generates, large set of possible systems⁴⁵ and system of systems. Another example of "hidden complementarities" emerged from cryptic mathematical bridge embedded in natural sciences. It is now established that eigenvectors may be computed⁴⁶ using information about eigenvalues. Students are still taught that eigenvectors and eigenvalues are independent, and must be calculated separately starting from rows and columns of the matrix. Mathematicians authored papers in related fields⁴⁷ yet none "connected the dots" between eigenvectors and eigenvalues. The insight that eigenvalues of the minor matrix encode hidden information may not be entirely new⁴⁸ but was neither understood nor articulated. The relationship of centuries-old mathematical objects⁴⁹ ultimately came from physicists. Nature inspires mathematical thinking because mathematics thrives when connected to nature. Grasping these connections enables humans to create tools to mimic nature (bio-mimicry).

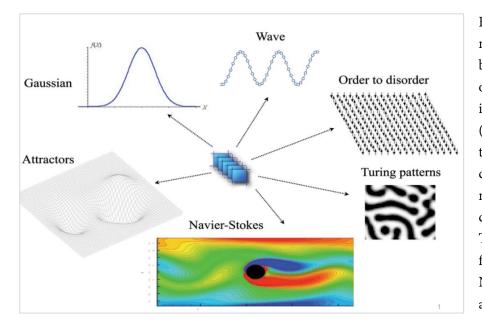


Figure 2 – Only a few models may capture the behavior of a wide range of systems, underlies the idea of universality²⁶ (models illustrated in this figure: Gaussian distribution, wave motion, order to disorder transitions, Turing patterns, fluid flow described by Navier-Stokes equations, and attractor dynamics).

PROBLEM SPACE: ARE WE ASKING THE CORRECT QUESTIONS?

The lengthy and winding preface [to the problem at hand (D₆)] is presented to substantiate the opinion that there may be a disconnect between the volume of data we have generated as a result of the "information age" versus the lack lustre gains in performance, as estimated by the productivity⁵⁰ index. Currently, we may have ~2.7 zettabytes⁵¹ (2.7 billion terabytes) of data, but some estimates claim as much as 33 zettabytes⁵² of data at hand (2018), and predicts it to reach 175 zettabytes circa 2025.

The deluge of data as a result of "information technology" is far greater in magnitude than the diffusion of electricity⁵³ a century ago. Productivity increases due to the introduction of electricity and IT offer economic parallels⁵⁴ but based on the magnitude of change, the short fall (in productivity) cannot be brushed aside by attributing the blame to mismeasurement explanations⁵⁵ for the sluggish⁵⁶ pace. Extrapolating measurements using the tools of classical productivity⁵⁷ to determine the impact of IT and influence of data is certainly fraught with problems⁵⁸ yet the incongruencies alone cannot explain the shrinkage. In socio-economic terms, there is a growing chasm between IT and data/information versus productivity, improvement in quality of life, labor, compensation⁵⁹ and increases in living standards.

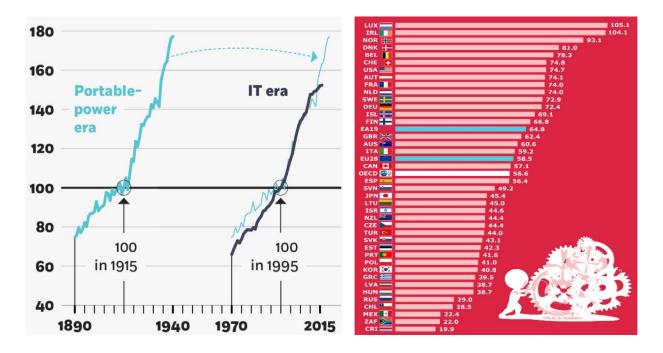


Figure 3 – (LEFT) Labor-Productivity Index [⁶⁰]: Has data failed to deliver? IT was billed as the bridge between *the haves* and *the have-nots*. General process technologies takes ~25 years to reach market adoption [⁵¹]. (RIGHT) Labor Productivity⁶¹ (OECD, 2018) is yet another example how the arithmetic of productivity (ratio between volume of output vs input) is misguided, misdiagnosed, mismeasured and misused as a metric of economic realities. Making Mexico (22.4) appear to be one fifth as "productive" as Ireland (104.1) suggests formulaic manipulations⁶² (GDP per hour worked, current prices, PPP).

Despite trillions of dollars invested in data, digital transformation and other IT tools⁶³ (big data, AI, blockchain) the perforated return on investment⁶⁴ increasingly points to massive⁶⁵ waste. One reason for this "waste" may be due to use of models of data where errors are aggregated under a generalized⁶⁶ form or variations⁶⁷ of the normal (homoskedastic) distribution.

Heteroskedasticity was addressed⁶⁸ using ARCH⁶⁹ (autoregressive conditional heteroskedasticity⁷⁰) and GARCH⁷¹ models⁷² (generalized ARCH). The use⁷³ of these proven techniques⁷⁴ for time series data (for example, sensor data showing water temperature in marine aquaponics⁷⁵ or cold chain⁷⁶ temperature log of vaccine package during transportation) in financial⁷⁷ econometrics⁷⁸ may be extended. Applications in predictive⁷⁹ modeling and forecasting⁸⁰ techniques may wish to adopt these econometric tools (GARCH) as a standard, whenever time series data is used (for example, supply chain⁸¹ management, sensor data in health), but only *if* there is sufficient data (volume) to meet the statistical rigor necessary for successful error correction.

Perhaps it is best to limit the post-mortem analysis of IT failures, snake-oil sales of AI⁸² and other debacles. Let us observe from this discussion that in the domain of data, and extraction of value from data to inform decisions, the tools of transforming data to inform decision may benefit from **re**-viewing the processes and technologies with "new" eyes. Above all, we must ask, often, if we are pursuing the correct questions, if the tools are appropriate and rigorous. The productivity gap and reports of corporate waste are "sign-posts" on the road ahead, except that the signage is in the incorrect direction, with respect to the intended destination, that is, profit and performance.

SOLUTIONS APPROACH - THE ELUSIVE QUEST TO BUILD BRIDGES BETWEEN DATA AND DECISIONS

There are no novel proposed solutions in this essay, only new commentary about *approaches* to solutions. The violent discord between volume of data versus veracity of decisions appears to be one prominent reason why the productivity gap may widen to form a chasm. The "background" section discussed how the reductionist approach points to simple models or underlying units or key elements, which, when combined, in some form, by some rules or logic, may generate large scale systems.

Data models⁸³ for DBMS are very different from models in data. Pattern mining⁸⁴ from data⁸⁵ is a time-tested tool. What new features can we uncover or learn about data, from patterns? What simpler models or elements are cryptic in data? Are these the correct questions? *If* there are simpler models or patterns in some types of data, can we justify extrapolating these models and *patterns* as a *general feature* of the data?

We have been mining for patterns and models (clustering, classification, categorization, principal component analysis) for decades, why haven't we found simpler models or patterns, yet? Are we using the wrong tools or wrong approaches or looking at the wrong places? How rational are we in our search for these general/simple models in view of the fact that models of data from retail or manufacturing or health clinics *should* be quite different?

The lowest common denominator of simple/general models/patterns may not be an ingredient for building that experimental "thought" bridge. Increasing volume of data could help GARCH tools but appears to be on a slippery slope in terms of quality with respect to *informing* decision support systems and/or the veracity of decisions (output). Baseline data models/patterns as denominators from grocery shopping or dry wall manufacturing or mental health clinics *should* be different. In lieu of "universal" common denominators, we may create repertoires of domain-specific common denominators. Then, a comparative analysis between common denominators of retail grocery shopping model from Boston versus Beijing may reveal the spectrum of nutritional behaviors. If linked to eating habits, perhaps we can extrapolate its *influence* on health/mental health (additional mental health comments on page 28).

Domain-specific denominator models (DSDM) aren't new. It requires an infrastructure approach to data analytics which needs multi-talented teams to explore almost every cross-section and combination of very large volumes of data, from specific domains, to identify obvious correlations as well as unknown/non-obvious relationships. If there is any doubt about the quality of the raw data, then quality control may mandate data curation. The latter alone, makes the task exponentially complex. Curation may introduce reasonable doubt in evaluating any outcome because the possibility exists that curation algorithms and associated processes were error-prone or untrustworthy (post-curation jitters).

Another demerit for DSDM and the idea of denominator models, in general, may be rooted in the "apples vs oranges" dilemma. Denominator models that underlie science and engineering systems are guided by natural laws, deemed *rational*. The quest for denominator models in data (retail, finance, supply chain, health, agriculture) are influenced, infected and corrupted by irrational⁸⁶ human behavior. Rational models of irrational behavior⁸⁷ may co-exist elsewhere but remains elusive for data science due to volatility and the vast *spectrum of irrationality* that may be introduced in data by human interference.

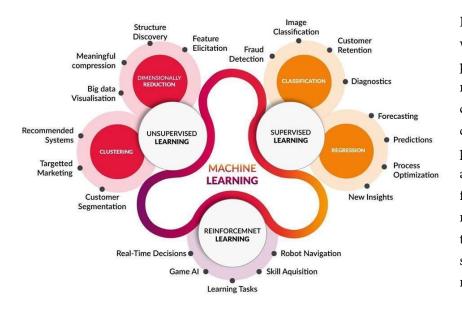


Figure 4 – It appears that we have been mining for patterns and other simpler models (such as clustering, classification, categorization, regression, principal component analysis). But, have we found a set(s) of simpler models or patterns, yet, to test the concept of domainspecific denominator models (DSDM)?

Perhaps the concept of DSDM, ignoring its obvious caveats, may be applied to select domains for specific purposes, for example, healthcare, where deliberate human interference to introduce errors in data is a criminal offense. Case-specific model building, and pattern recognition, may benefit from machine learning (ML) approaches. The latter fueled a plethora of false⁸⁸ claims but real success is still a *work in progress* because the bridge between data and decisions will be perpetually *under construction*. Productivity gap and corporate waste are indicators that existing approaches (see Figure 4) are flawed, failing or have⁸⁹ failed. We need new roads. The boundary of our thought horizon 'map' is in Figure 4. The tools are incremental variations⁹⁰ garnished with gobbledygook alphabet soup. Unable⁹¹ to create any breakthrough, the return of seasonal "winters of AI" indicates the struggle to shed new light in this field since the grand edification⁹² during the 1950's. Unable to cope with data challenges, hard facts⁹³ and difficult progress, the field offered a perfect segue for con artists and hustlers to inculcate falsehoods and deceive⁹⁴ the market. Machine learning was substituted⁹⁵ by mindless drivel from ephemeral captains of industry and generated hype⁹⁶ from corporate⁹⁷ marketing machines.

AVOID THIS SPACE - THE DECEPTION SPACE

Data consumers have been led astray by vacuous buzz words manufactured mostly by consulting groups. Part of the productivity gap may be due to fake news, propaganda⁹⁸ and glib strategy from smug consultants to coerce large contracts with cryptic "billable hours" to help "monetize" false promises due to "big" data, fabricated⁹⁹ claims¹⁰⁰ of "intelligence" in artificial intelligence¹⁰¹ and deliberately conniving misrepresentations¹⁰² of "blockchain" as a panacea¹⁰³ for all problems¹⁰⁴ including basic food safety and security. Callous and myopic funding agencies invested billions in academic¹⁰⁵ industry partnerships to fuel banal R&D efforts orchestrated by corporate collusion¹⁰⁶ and perhaps¹⁰⁷ criminal¹⁰⁸ practices. Abominable predatory practices on display in Africa are disguised under the "smart cities" marketing campaign to mayors of *African cities, which cannot even provide clean drinking water to its residents.* Vultures from the industry¹⁰⁹ are selling mayors of African cities surveillance technology and AI in the name of cameras for smart city safety and security. These behemoths are cognizant as to how autocrats use data as an ammunition to plan and justify abuse of its citizens, through algorithms of repression.

EXPLORE THE SOLUTION SPACE – NECESSARY TO ASK QUESTIONS THAT MAY NOT HAVE ANSWERS, YET

Uploading data from nodes along a variety of supply chains is an enormous undertaking given trillions of interconnected processes and billions of nodes with extraordinarily diverse categories of potential data streams, with different security mandates, for example, [a] sensor data about heavy metal (mercury) contamination in water used for irrigation, [b] near real-time respiratory rate of patient with COPD (chronic obstructive pulmonary disease) under remote monitoring telemedicine in rural nursing home, and [c] automated check-out scan data from retail grocery store sales, of fast moving consumer goods, contracted for replenishment (penalty for out of stock) under vendor managed inventory (VMI). The *e-tail* revolution is creative supply chain optimization and reducing retail information asymmetry.

Transforming data and data analytics to inform decision support for *small* cross-sections of examples cited, here, may be theoretically easy in "*power point*" diagrams which "connects" nodes and integrate decisions which circle back to optimize processes, *using pixels*. The reality may be different.

Aggregating data, from various nodes, sub-nodes, devices and processes, on a platform, to enable collective evaluation of dependencies, which could influence outcomes/decisions, may be not only beneficial, but must be mandatory for certain domains, for example, healthcare¹¹⁰ and clinical¹¹¹ environments where patient safety¹¹² must be of paramount importance.

Any *one* standard platform approach is unlikely to succeed. But a platform approach is probably rational. Multiple segments, on standard (open) platforms, with secure, yet selective interoperable data exchange, between platforms, may address a few challenges. Bringing together various options with respect to data acquisition and analytics, begins to catalyze information flow, decision support and *meaningful*¹¹³ use of data¹¹⁴. This suggestion is a few decades old, but not yet a trend, in practice. The drive to connect data was accelerated by the introduction of the concept of the internet of things¹¹⁵ (IoT). Platform¹¹⁶ efforts¹¹⁷ are addressing data¹¹⁸ upload from devices and sensors¹¹⁹ (Figure 5).

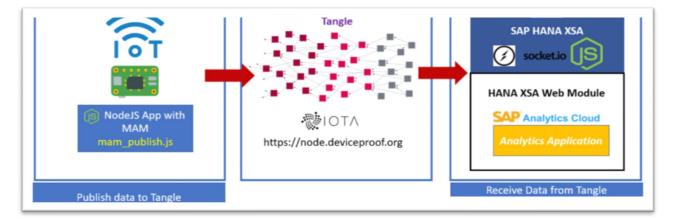


Figure 5 – National and international consortiums, in partnership with large and small software companies, are addressing data acquisition and aggregation. In this example, Tangle appears to be a data aggregation platform (example shows data from a temperature sensor) which can serve data analytics engines to extract information (if data contains information). Replication of "Tangle" for various verticals (retail, health, logistics) and the ability to use open data distribution services¹²⁰ may facilitate interoperability between data "holding" services like Tangle. When coupled with supply chain track and trace systems, a retail store (Target, Tesco, Metro, Ahold) can use Tangle data to inform a customer that the One-Touch blood glucose testing strip (healthcare product manufactured by J&J) will arrive at the store (3rd party logistics provider and distribution transportation service) on Monday by 2am and placed on store shelf by 530am (retail store replenishment planning) or delivered to the customer on Tuesday before 9am (online fulfillment services). Any data can be uploaded/downloaded from Tangle.

SOLUTION ECONOMY - WILL WE EVER GET THERE?

There aren't any silver bullets and one shoe doesn't fit¹²¹ all. If we focus on the data to decision process, alone, in any vertical or domain, the variations of analysis and analytics may be astronomical. Initial investments necessary for these endeavors almost guarantees that the extracted value from data (and relevant information) may not be democratized or made functionally available to the less fortunate. In principle, the outcome from data to decisions, when appropriate, must be sufficiently distributed and democratized to provide value for communities under economic constraints. Any *meaningful* solution, therefore, is not a scientific or engineering outcome, alone, but must be combined with the economics of technology¹²² which must be a catalyst for implementation and adoption by the masses, if transaction costs¹²³ can be sustained by the community of users.

The economic principle for impoverished environments may be rooted in micro-finance¹²⁴ and micro-payments¹²⁵ with *low* transaction costs (*the downside*: misinformation¹²⁶ can be propagated and disseminated at *low* cost, too). By eliminating classical "product sales" the focus shifts to delivery of "service" which is a *package* of the product plus other resources (retail mobile banking, infrastructure, telecommunications, cybersecurity¹²⁷, security¹²⁸, customer service). Users pay (pennies) *only when they use the service*. PAPPU¹²⁹ (pay-a-penny-per-use or pay-a-price-per-unit) is a *metaphor* for economic instruments to lower the barrier to entry into markets with billions of users.

The economic incentive for democratization of data is the potential to unleash/create new markets for data, information and decision support, for billions of new consumers (users). The reward in the lucrative service economy model depends on harvesting the economies of scale where each user (market of billions) may pay one or more "pennies" (micro-payment for pay-per-use services). The risk in the service economy is the collection of that "penny" (per use) at the last step of the seamless service delivery process, if the user is satisfied with the quality of service (QoS) metrics. The plethora of partners necessary to create and sustain the ecosystem to deliver the seamless service is a herculean task. Sharing a fraction of that "penny" with the partners in the ecosystem is not a trivial challenge. If the QoS delivery metrics suffer due to poor performance of any one partner (component), the end-user "penny" may be unpaid if the QoS metric fails to reach a pre-determined value (time, duration, speed, rate, volume). The inability of one provider (weakest link) in the service supply chain can be financially detrimental to all other supply chain partners due to loss of that penny, *albeit, only for that transaction* (unless the partner has a chronic problem, then, it must be excluded from the ecosystem and the entire value network¹³⁰). Delivery of service is a real-time convergence of operations management which includes (but is not limited to) multiple value chains which must integrate¹³¹ the physical supply chain and the financial supply chain with the service supply chain and customer relationship management (brand expectation).

Determining the cost of execution, to deploy, the example in Figure 5, may be an effective way to study feasibility. By simulating models to explore "what if" scenarios, it may be possible to predict the potential for adoption of services in the context of various economies of scale and PAPPU models which could unchain the economics of technology adoption.

IS THIS FAUX NAÏVETÉ IN ITS PUREST DISTILLATE?

Decision scientists must build a compass to help extract value from data. One compass will not suffice to guide domain-specificity. Existing tools may limp along with *snail-ish* advances (Figure 4) yet it may remain inaccessible to the masses because the tools may not be feasible for mass adoption. The struggle to transform data into information is still in quest of a Renaissance.

The path from *data-informed* to *information-informed* decision remains amorphous. The grand "highway" from information to knowledge is still in the realm of unknown unknowns. Making sense of data is handicapped due to [i] an apparently insurmountable semantic barrier, [ii] scarcity of tools to facilitate location-aware and context-aware discovery of data at the edge or point of use, [iii] lack of standards and interoperability between platforms and mobile devices for data and analytics sharing.

Users in non-OECD nations may not want to idle away while the architects of Renaissance are still in short supply. In the near term, it is necessary that we continue to work on dissemination of data which can deliver at least some value, sooner, rather than later. Decision support based on sensor data analytics may provide economic benefits¹³² and incentives, if we can share the digital dividends with the masses, for example, in health¹³³ and agriculture, including every facet of food, required, daily, globally.

Tangle, a tool¹³⁴ to share sensor data using MAM¹³⁵ (masked authenticated messaging) may offer hope. Can nano-payments for sensor data address some of the feasibility challenges¹³⁶ and pave the way for human-centric economy of things¹³⁷ using IoT as a design metaphor? SNAPS¹³⁸ is a tiny step in that general direction: distributing low cost tools to enable data-informed decision support for less complex problems. Assuming the Pareto principle is working, perhaps 80% of the problems may be addressed, and even resolved, with simple tools to deliver solutions as a *service*, at the right-time, at the point of use.

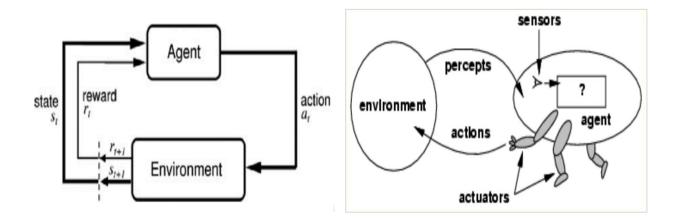


Figure 6 - SNAPS is one layer in a proposed analytics platform (layer cake) which consists of a portfolio of tools aligned with the concept of PEAS¹³⁹, a mnemonic borrowed from agent-based systems (**R**), to address systems performance through convergence of percepts, environment, actuators, and sensors. (**L**) Reinforcement Learning¹⁴⁰ (Figure 4), a machine learning technique, compared with PEAS.

REALITY CHECK – DATA FUSION

The inflated view of the sensor-based economy¹⁴¹ is carefully¹⁴² crafted¹⁴³ to create¹⁴⁴ new markets¹⁴⁵ and momentum¹⁴⁶ for sales¹⁴⁷ of sensors and data services¹⁴⁸ aimed to amplify the IoT¹⁴⁹ hype to fortify the deception game. It is promoting the desired effect by spawning mass hysteria and skillfully obfuscating the hard facts which then paves the ground for hordes of consultants to act as "trusted advisors" to make sense of this "revolution" which is supposedly going to change the future of work, life and living. One glaring outcome of delusional¹⁵⁰ propaganda¹⁵¹ is the near trillion dollar³⁹ waste related to investment in technology with a failed ROI. Trillions of sensors and devices that *could* connect to the internet (basis for the cosmic scale of IoT) is due to the scale of unique identification¹⁵² made possible by adopting a 128-bit structure in the internet protocol. The unique address spaces in IPv6¹⁵³ is *29 orders of magnitude higher* than IPv4 if one compares¹⁵⁴ 4.3x10⁹ address spaces for the 64-bit IPv4 versus 3.4x10³⁸ unique address spaces for the 128-bit IPv6. New possibilities¹⁵⁵ and applications¹⁵⁶ may arise due to the flexibility of IPv6 to directly connect to the internet (rather than sub-nesting under/via gateway nodes).

The difference between promise and perils in deploying the concept of IoT as a design metaphor is rooted in grasping the difference between connectivity, discovery and actionable insight. Just because something is *connected* does not mean value emerges, automatically, without a *connected ecosystem*. If a visitor's tablet can discover the printer in an office and use it to print a meeting agenda, then we have extracted some type of value between the connectivity of the tablet and the printer, which were able to "discover" each other, and that discovery enabled the gain in efficiency (printing the agenda). In its basic form, this is an example of very simple data fusion which leads to an actionable output and provides "information" for the meeting attendees in terms of the printed agenda. Connecting trillions of entities to the internet is an exercise in futility unless discovery and data fusion enables meaningful extraction of data to move up the DIKW¹⁵⁷ value chain¹⁵⁸ where data precedes information, knowledge and wisdom.

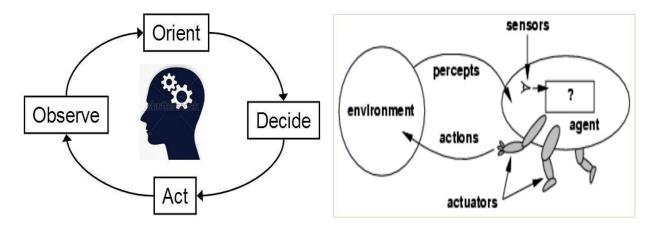


Figure 7 - PEAS, a mnemonic borrowed from agent-based systems (**R**), addresses systems performance through convergence of percepts, environment, actuators, sensors. The OODA¹⁵⁹ loop (**L**) and PEAS¹³³ contribute to advance DIKW (data, information, knowledge, wisdom), which begins with data fusion¹⁶⁰.

The PEAS paradigm resembles OODA (Figure 7) because "observations" refer to scanning (sensing) the environment and "orientation" informs the image of the environment by encapsulating both descriptive and predictive analytics ("decide" includes prescriptive analytics). The integration of data fusion and analytics with agent-based systems is critical in the era of IoT. The networked society faces a deluge¹⁶¹ of data yet the human ability to deal with data, analytics, and synthesis of information may be inefficient. How can devices discover data and facilitate processes without intervention by humans? Automated on/off action taken by a domestic thermostat and HVAC based on temperature sensors may be quite primitive when considering autonomous objects in air (UAV), land and water.

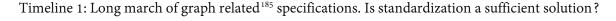
Raw sensor data unless discovered and combined with "perceptions" from the environment, may be context-deprived and over/under utilized, which lowers the value of the data with respect to the desired goals. The perception from the environment is not unique but a "learning" task for the system. It may re-use the experience (learning), when relevant and appropriate, at a different instance (Figure 6). Can this "learning" become mobility-enabled and "teach" other devices, for example, by transmitting a *tutor* virion to another computer or drive or system? Can this device communicate in natural language and/or respond/understand the semantics in human queries?

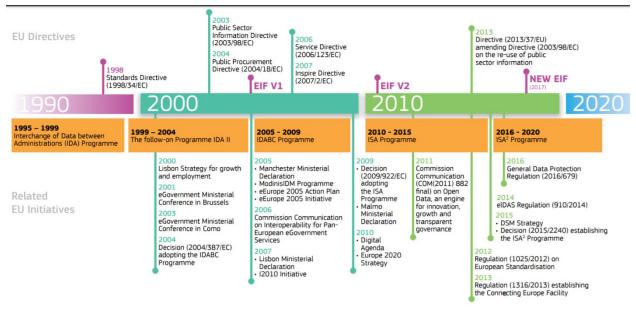
Taken together, unleashing the value of data may require coordination of ABS (agent-based systems) in every facet of our interaction with machines, objects, and processes which may benefit from feedback. ABS is an old¹⁶² concept¹⁶³ but resistant to succinct definition¹⁶⁴ because agent activity must remain agile and adapt to the operating objective (PEAS) and problem context (OODA). Equation-based models create rigid, hard-coded software. Agent-based system design induces agility, may enable "drag & drop" variant configuration to adjust (on-demand) to volatility, uncertainty and ambiguity, inherent in most environments. In the context of democratization of data and benefits for the masses, agents can be highly personalized and "belong" to people, for example, personal agents, as discussed¹⁶⁵ elsewhere, with respect to cybersecurity. A similar modus operandi can be adopted for other use cases where data fusion¹⁶⁶ can be dynamic and composable (composed when necessary, depends on context) not only for use-cases but also for individual user-specific cases/applications.

Agent Characteristics	Definition
Autonomy	Operates without the direct intervention of humans or others
Sociability	Interacts with other agents, that is, communicates with external environment such as sensors, fusion systems and human operators
Reactivity	Perceives its environment and responds in a timely fashion
Pro-activity	Exhibits goal-directed behavior by taking the initiative
Learnability	Learns from the environment over time to adjust knowledge and beliefs
Mobility	Moves with code to a node where data resides
Anthromorphicity	Externally behaves like human

Table 1 – Generally, Agents are computational entities (software) designed to perform specific tasks, autonomously. Agents embedded in devices (sensors) may have logic capabilities to perform artificial reasoning tasks (ART) and/or optimization¹⁶⁷ in multi-agent systems (MAS)

The role of software agents to "discover" and then determine which data and/or data fusion may be meaningful or relevant (user-specific), is an old idea, waiting to be effectively applied. Connecting data must be contextual. The *established* contextual relationship must be discovered and "understood" by agents or group of agents. Another old idea is to *pre-establish* the context based on knowledge graphs. The common thinking that W3C standard RDF¹⁶⁸ (resource description framework) triples are the solution for knowledge graphs is incomplete. This myopia, is, in part, one reason why the semantic web¹⁶⁹ failed to flourish. The brilliant idea of representing subject-predicate-object (SPO) as a relational RDF graph is certainly useful and applicable in many instances but the approach *bites the dust* when the reductionist 1:1 granular relationship fails to represent reality. The latter is painfully obvious, especially in medicine and healthcare, where the rigidity of the RDF standard structure and RDF schema may be an anathema. The "force-fitting" of RDF to healthcare applications¹⁷⁰ oversimplifies scenarios to the point where it may, inadvertently, introduce errors, simply due to exclusion, which may prove to be fatal.


One proposal suggests adapting¹⁷¹ RDF by creating relationships between sets/subsets (rather than points and vertices as in classical SPO) using the set theoretic¹⁷² approach. It is easy to grasp why "set" of symptoms and potential set of causes may make more sense in medicine and healthcare. The overlapping (Venn diagram) subset of relationships may be indicative of likely causes for symptoms. Generic symptoms, for example, fever, can be due to a plethora of causes and why a rigid 1:1 relationship in RDF could turn lethal in healthcare applications. The finer granularity of RDF is a disadvantage yet it is key to merging attribute lists about an entity sourced from different data sources. The latter enables better search and discovery across diverse domains, the hallmark of globalization of enterprise systems.


An even older idea¹⁷³ which is recently¹⁷⁴ enjoying scientific¹⁷⁵ as well as public attention¹⁷⁶ is the labeled property graph (LPG). It is suitable for use cases which may be focused on providing stores for single applications and single organizations, such as, domain-specific denominator models (DSDM). LPG proponents are less committed to standardization, interoperability and sharing. It is in contrast to the W3C ethos and RDF which favors standardization, interoperability and sharing, which makes it useful in discovery using graph pattern searches. Optimization of local (domain specific) searches¹⁷⁷ using graph-traversal algorithms¹⁷⁸ are better suited for property graph (PG) databases. Knowledge graph networks embedded between sets/subsets may give rise to amorphous "linked" clouds, which could be industry¹⁷⁹ specific and may be domain specific¹⁸⁰ as well as user specific. Imagine if data from each patient could be used by an *automated knowledge graph engine* to create precision, patient-specific and personalized knowledge graphs. Extracting the relationships and contextualizing the relevance of symptoms may influence the accuracy of diagnosis. When viewing knowledge graphs in a population study (epidemiology), it may be easier to detect outlier events or cases that did not fit expected patterns.

Therefore, domain specific denominator models (DSDM) may be represented as a domain/user specific knowledge graph networks. Agents may be invaluable in working within this environment to discover relationships and contexts (specificity reduces search space), as well as discover data sources, and perhaps, based on embedded logic, decide whether the features or attributes calls for data fusion.

For any agent-based approach to succeed, it is critical that the agent framework and standards are interoperable with the knowledge graph network and the data domains where the agent is searching. The opposing tendencies of RDF vs LPG in terms of standardization, interoperability and sharing may limit agent mediated "cross-investigation" of domains, discovery and data. Therefore, it begs to question the expectation why one agent must perform in all domains. Perhaps, the success of agent search and discovery depends on semantically annotated structured data. The latter depends on ontological structure. W3C proposed¹⁸¹ OWL standard web ontology language ¹⁸² and recent variations (VOWL¹⁸³) may contribute to interoperability. The old idea of Internationalized Resource Identifier (IRI), as a complement to the Uniform Resource Identifier (URI)¹⁸⁴ to identify resources (to facilitate discovery) is a valid principle but yet to be adopted in practice. The plethora of old ideas (referred here) suggests that the value of these ideas may have to be revisited. This field needs new "blood" and new "eyes" to imagine new ways to address interoperability. But, in reality, today, on top of this wobbly incompatible infrastructure, we are layering the "snake oil AI" and unleashing an incorrigible torrent of half-truths.

Timeline 2: EU's Elusive¹⁸⁶ Quest for Interoperability: Is 30 years not enough?

"DOUBLE A" PERSPECTIVE OF DATA AND TOOLS vs THE HYPOTHETICAL POROUS PARETO (80/20) PARTITION

If combined, Africa (1+ billion) and Asia (4+ billion) approximates 75% of the world's current (2019-2020) population. The corporate view of 75% of the world's market is driven by the promise of new markets, new customers and new wave of consumerism. It has little to do with lifting the lives of people. Our discussion about the physics and mathematics of data, therefore, is *a tempest in a tea cup*. For 5+ billion people, the trial and tribulations of data and data analytics, we have discussed here, can be dismissed with an eye roll. It is useless for most pressing daily applications in the "double A" world.

Thus far, what we have discussed, on one hand, may be an exploration of the tessellated facets in our search for meaning, and on the other hand, it is a discussion which may find parallels with the "six blind men and the elephant" syndrome¹⁸⁷ apparently divorced from complementarity¹⁸⁸ or synergy. It is as if the outcome from 20% of the global population, relevant or not, is thrust upon the remainder of the world market. In 80% of the cases for 80% of the global population the daily decisions about FEWSH (bare necessities of life: food, energy, water, sanitation, healthcare) do not require artificial intelligence, machine learning algorithms or optimization of 'state space' for hundreds of variables.

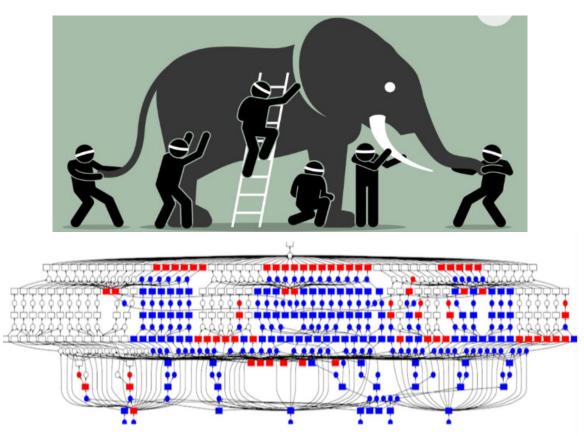


Figure 8 - Blind men and elephant. Each man guesses his own part of the elephant but blinded by hype¹⁸⁹ they cannot perceive the "whole" elephant. A metaphor for focus on parts, which occludes the system. Cartoon (bottom): penchant for decision trees by *power-point* rather than search for low hanging fruits.

In 80% of the cases for 80% of the global population the daily decisions about FEWSH require data, *small data*, data in near real time and data that only impacts and enhances the user. In that context, jumping up and down about *democratization of data* is tantamount to chest-thumping. The data in these use cases may be related to a subset of FEWSH (food, farm, agriculture, water, healthcare). If the tools are there to acquire this data, then the data is available. Therefore, is democratization really an issue? Is it a politically correct word that the 20% world prefers to use as a hand-waving advocacy of problems that are divorced from reality on the ground? Is "democratization" a "theme" song for advocacy groups in OECD nations who may display the symptoms of the *six blind men and elephant* syndrome?

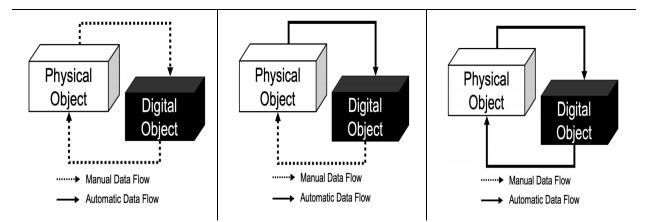
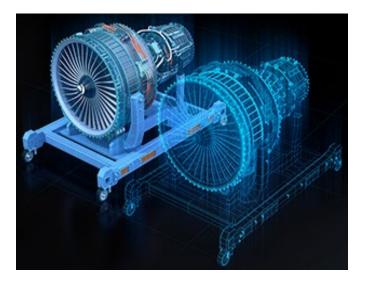



Figure 9 – Digital Duplicate (left), Digital Shadow¹⁹⁰ (center), Digital Proxy (right) and Digital Twin (bottom) are variations of digital models of physical objects, integrated with data flow. But, do we know if it is *meaningful* for data related needs for 80% of the world? It is unlikely to be solved by Digital Twins¹⁹¹ or flamboyant gimmicks peddled by fake pundits on the pages¹⁹² of *Forbes*. However, the R&D related to these tools may trickle through the "pores" from the 20% side of the partition to the other side (80%) of the *porous* Pareto¹⁹³ partition and occasionally¹⁹⁴ may be helpful.

Bulgaria 1.2 0 59 [9] none Cyprus 23.9 20 75 [9] yes (depending on income) Czech Republic 5.2 40* 32 [9] yes Denmark 14.6 30 187 [13] yes Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes		DXA units/million	Waiting time (d)	Cost (€)	Reimbursement
Bulgaria 1.2 0 59 [9] none Cyprus 23.9 20 75 [9] yes (depending on income) Czech Republic 5.2 40* 32 [9] yes Denmark 14.6 30 187 [13] yes Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes	Austria	28.7	14	30 [11]	yes
Cyprus 23.9 20 75 [9] yes (depending on income) Czech Republic 5.2 40* 32 [9] yes Denmark 14.6 30 187 [13] yes Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes	Belgium	53	14	34 [12]	partial
Czech Republic 5.2 40* 32 [9] yes Denmark 14.6 30 187 [13] yes Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes Romania 2.4 7 5[24] yes Slovakia	Bulgaria	1.2	0	59 [9]	none
Denmark 14.6 30 187 [13] yes Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes Latvia 4.9 10* 18 [18] yes Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes Slovakia	Cyprus	23.9	20	75 [9]	yes (depending on income)
Estonia 8.9 14 14 [14] yes Finland 16.8 1 146 [15] yes Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Italy 18.6 83* 81 [9] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Netherlands 10.7 14* 84 [21] yes Poland 4.3 1 10 [9] yes Slovakia 10.7 18* 32 [9] yes Slov	Czech Republic	5.2	40*	32 [9]	yes
Finland 16.8 1 146 [15] yes France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes	Denmark	14.6	30	187 [13]	yes
France 29.1 14 41 [9] yes (conditional) Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes (conditional	Estonia	8.9	14	14 [14]	yes
Germany 21.1 0 36 [9] yes Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes Slovakia 10.7 18* 32 [9] yes Slovakia 10.7 18* 32 [9] yes (conditional)	Finland	16.8	1	146 [15]	yes
Greece 37.5 11* 115 [9] yes Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes Slovakia 10.7 18* 32 [9] yes Slovakia 10.7 18* 32 [9] yes <t< td=""><td>France</td><td>29.1</td><td>14</td><td>41 [9]</td><td>yes (conditional)</td></t<>	France	29.1	14	41 [9]	yes (conditional)
Hungary 6.0 15* 7 [16] yes Ireland 10.0 140** 99 [17] yes (conditional) Italy 18.6 83* 81 [9] yes (conditional) Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Slovakia 10.7 18* 32 [9] yes Slovakia 10.7 18* 32 [9] yes (conditional) Slovakia 10.7 18* 32 [9] yes (conditional) Slovakia 10.7 18* 32 [9] yes (conditional) Spain 8.4 105* 109 [9]	Germany	21.1	0	36 [9]	yes
Ireland10.0140* a99 [17]yes (conditional)Italy18.683*81 [9]yes (conditional)Latvia4.910*18 [18]yesLithuania3.46*28 [19]noLuxembourg2.03059 [20]yesMalta9.7105*184 [21]yesNetherlands10.714*84 [22]yesPoland4.3110 [9]yes (conditional)Portugal26.985 [23]yesSlovakia10.718*32 [9]yesSlovakia10.711*29 [25]yes (conditional)Spain8.4105*109 [9]yesSweden10.060152 [26]yes	Greece	37.5	11*	115 [9]	yes
Italy18.683*81 [9]yes (conditional)Latvia4.910*18 [18]yesLithuania3.46*28 [19]noLuxembourg2.03059 [20]yesMalta9.7105*184 [21]yesNetherlands10.714*84 [22]yesPoland4.3110 [9]yes (conditional)Portugal26.985 [23]yesSlovakia10.718*32 [9]yesSlovakia27.111*29 [25]yes (conditional)Spain8.4105*109 [9]yesSweden10.060152 [26]yes	Hungary	6.0	15*	7 [16]	yes
Latvia 4.9 10* 18 [18] yes Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes (conditional) Slovakia 10.7 18* 32 [9] yes Slovenia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Ireland	10.0	140* ^ª	99 [17]	yes (conditional)
Lithuania 3.4 6* 28 [19] no Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5 [24] yes Slovakia 10.7 18* 32 [9] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Italy	18.6	83*	81 [9]	yes (conditional)
Luxembourg 2.0 30 59 [20] yes Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes Slovakia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Latvia	4.9	10*	18 [18]	yes
Malta 9.7 105* 184 [21] yes Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5 [24] yes Slovakia 10.7 18* 32 [9] yes (conditional) Slovakia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Lithuania	3.4	6*	28 [19]	no
Netherlands 10.7 14* 84 [22] yes Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes Slovakia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Luxembourg	2.0	30	59 [20]	yes
Poland 4.3 1 10 [9] yes (conditional) Portugal 26.9 8 5 [23] yes Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes (conditional) Slovenia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Malta	9.7	105*	184 [21]	yes
Portugal 26.9 8 5 [23] yes Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes Slovakia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Netherlands	10.7	14*	84 [22]	yes
Romania 2.4 7 5[24] yes Slovakia 10.7 18* 32 [9] yes Slovenia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Poland	4.3	1	10 [9]	yes (conditional)
Slovakia 10.7 18* 32 [9] yes Slovenia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Portugal	26.9	8	5 [23]	yes
Slovenia 27.1 11* 29 [25] yes (conditional) Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Romania	2.4	7	5[24]	yes
Spain 8.4 105* 109 [9] yes Sweden 10.0 60 152 [26] yes	Slovakia	10.7	18*	32 [9]	yes
Sweden 10.0 60 152 [26] yes	Slovenia	27.1	11*	29 [25]	yes (conditional)
	Spain	8.4	105*	109 [9]	yes
UK 8.2 11* 51 [27] yes ^d	Sweden	10.0	60	152 [26]	yes
	UK	8.2	11*	51 [27]	yes ^d

The number and provision of central DXA units available in the EU27 (Data on reimbursement and waiting time [10])

Table 2 – Availability¹⁹⁵ of DEXA (dual energy x-ray absorptiometry) scan machines to measure bone mineral density (BMD), a fair prognosticator for osteoporosis. The European standard¹⁹⁶ is 11 (DEXA) DXA units/million. In an updated estimate, the poorest country in EU27 offers 4 machines/million¹⁹⁷ whereas Bulgaria's neighbor Greece boasts 37.5 DXA units/million. In comparison, Indonesia¹⁹⁸ has only 0.13, India¹⁹⁹ 0.18 and Morocco²⁰⁰ 0.6 DXA units/million. For the health of the people in these nations, how can democratization of data lower their risk of osteoporosis? Are we asking the correct questions? Are we pursuing the wrong reasons? Are we arm-chair analysts helping the (BMD) medical device industry²⁰¹ accelerate their sales campaigns to AA nations? Can data provide relevant answers?

Table 2 offers a glimpse of one problem in healthcare. The tools to acquire the data are in short supply. Measuring the risk of osteoporosis is a prerequisite for prevention and treatment, if affordable. Arm-chair "scenarios" of medical IoT will want to connect DEXA (DXA) scan data with sales of milk and exposure to sunlight as a "wellness" indicator. From the "double A" perspective, it may be a futile "power point" exercise because milk *may not be available* for the age group²⁰² generally at high risk of osteoporosis in the AA nations. In most parts of Africa and Asia there is an opulence of sunlight.

Just because there is an "IoT" scenario, does not mean it is worthwhile or valid for users in "double A" nations. Just because there is data also does not result in information. Can we reduce incidence rates of osteoporosis simply by adding more DXA machines per capita? A recent (2013) study using seven national electronic healthcare records (EHR) databases revealed that Denmark (14.2 DXA units per million) showed age- and sex-standardized incidence rates (IRs) of hip/ femur fractures 2X higher than those observed in UK (8.2 DXA units/million), Netherlands (10.7 DXA units/million), and Spain (8.4 DXA units/million), while Germany (21.1 DXA units/million) yielded IRs in the middle range.

DRUG	PRESCRIBED FOR	UK PRICE	US	PRICE
NEXIUM per 20mg table	etAcid reflux	£0.66	£7.40	
ACTIMMUNE, 12 vials	Genetic diseases, osteopetrosis	£5,400	£42,990.	
DARAPRIM per tab	HIV, cancer, malaria patients	£2.30	£619	26,900%
NASONEX, 50mg	Nasal allergies	£7.68	£224	
CINRYZE, 2 vials	HAE, genetic disorder	£1,336	£3,645	
HARVONI per tab		£464	£928	
SOVALDI per 400mg tal	bHep C in children under 12	£416	£855	
DIAZEPAM, per tab	anxiety, relaxation, muscle spasms.	£0.02	£3.05	15,200%
OVEX, 100mg tablet		£2.54	£300	.11,800%
LIPITOR, per 10mg tab	Statin	£0.46	£4.50	
VIAGRA, per 25mg tab.		£4	£61	1,500%
ZOCOR per 10mg tab	Statin	£0.64	£4.20	
CYMBALTA per 30mg c	apsuleAnti-depressant	£0.80	£9.48	1,200%
	Allergies			
	Diabetes	and the second		
HIP REPLACEMENT	OPERATION	£7,313	E26k-E37	
KNEE REPLACEMENT	OPERATION	£6,315	£24,801	
	ON			

Table 3 – Plague of unethical profitability makes US pharmaceutical²⁰³ business model in healthcare an abomination which is inappropriate for mimicry in any part of the world. Source: Dr James Nolan²⁰⁴

CONUNDRUMS

On one extreme we have presented sophisticated ideas for making sense of data. On the other hand, we doubt whether the toothless call for *democratization of data* from the affluent 20% of the world can help to lift the lives of people on the other side of the porous Pareto partition (80% of the world). It is not a true "Pareto" scenario, but the 80/20 nature of this problem evokes the Pareto principle as an analogy, hence, Pareto partition. The R&D outcome of the 20% may contribute certain elements to the 80% side. The "partition" is a metaphorical porous membrane, with bidirectional porosity, if necessary.

Often, it may not be necessary. For example, is it necessary to deal with data and data models in this scholastic²⁰⁵ manner (Figure 10) for all problems? The 80/20 global partition may be prominent in agriculture, healthcare and energy. In case of the latter, what is the value of smart metering or load balancing algorithms when there isn't enough energy, at an affordable cost, to supply the basic tenets of economic growth? How many farmers in the "80%" world can afford to use the drone-on-demand²⁰⁶ system? Why should people from the majority sector (80%) need useless marketing tools²⁰⁷ when daily healthcare for the less fortunate can solve a myriad of problems with *just-in-time little bits of data*, for example, daily blood glucose level from a diabetic (versus the *always-on* real-time monitoring of blood glucose) or monitoring individuals for silent myocardial ischemia²⁰⁸, a leading contributor to death. This is the debate where the economics of technology and its *relevance to the community* are crucial issues which may *enable* adoption or *disable* the dissemination of technology, which could have contributed to economic growth, workforce development and sustainable job creation.

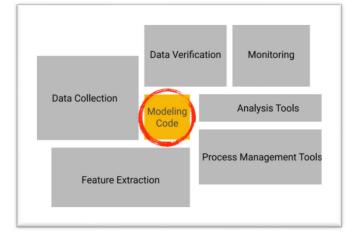


Figure 10 – From monitoring an event to using the data to inform a decision, there are a plethora of steps²⁰⁹ in the standard operating procedure (SOP) for the "20%" deploying data to drive decisions. However, irrespective of socio-economic issues, in future, all aspects of feature selection and feature engineering may emerge as a pivotal or rate limiting step in dealing with diverse data sources. In this context, automated feature extraction and other feature related steps may be a very significant step. *In combination, automated feature engineering and automated knowledge graph engines (see page 16) may usher new dimensions in data and data analytics, if automated data curation could improve data quality.*

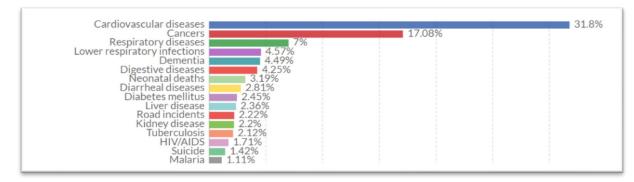


Figure 11 – Share of deaths, by cause (2017) percent of total deaths²¹⁰. Data refers to specific cause of death, which is distinguished from risk²¹¹ factors for death (water and air pollution, diet, sanitation).

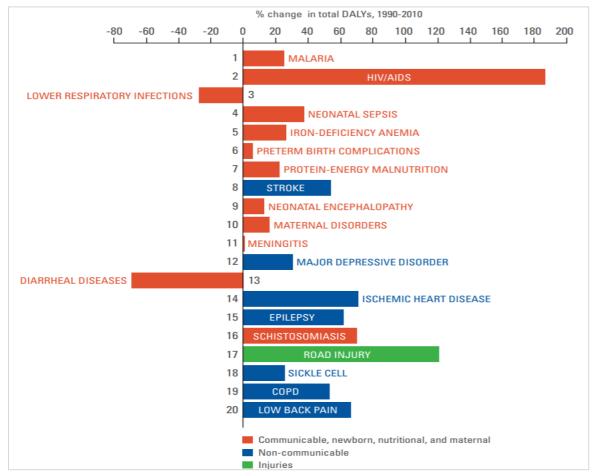


Figure 12 - Shifts²¹² in leading causes of DALYs for females, Ghana (1990-2010). The leading 20 causes of DALYs are ranked from top to bottom in order of the number of DALYs they contributed in 2010. DALYs (Disability-adjusted life years): The sum of years lost due to premature death (YLLs, Years of life lost due to premature mortality) and years lived with disability (YLDs, Years of life lived with any short-term or long-term health loss causing disability.). DALYs are also defined as years of healthy life lost.

Worldwide, Africa²¹³ accounts for 9 out of every 10 child deaths due to malaria, for 9 out of every 10 child deaths due to AIDS, and for half of the world's child deaths due to diarrhoeal disease and pneumonia. More than one billion children are severely deprived of at least one of the essential goods and services they require to survive, grow and develop²¹⁴ - these include nutrition, water, sanitation facilities, access to basic health-care services, adequate shelter, education and information. As a result, almost 9.2 million children under-five die every year and 3.3 million babies are stillborn. Most of the 25,000 children under five that die each day are concentrated in the world's poorest countries in sub-Saharan Africa and South Asia. There, the child mortality rate is 29 times greater than in industrialized countries: 175 deaths per 1000 children compared with 6 per 1000 in industrialized countries.

These facts (paragraph above) and Figure 12 offers a vastly contrasting view to that of data tools and democratization of data as essential for lifting the lives of the people living on the majority side of the porous Pareto partition. Simple forms of small amount of data, sufficiently informing ordinary tasks, may be suitable for delivery of global public goods and services to the majority of the 80% world. It is absolutely ludicrous to think that "big" data, AI/ML, blockchain or smarmy publicity²¹⁵ stunts may help, in this context. What we need is the concept²¹⁶ of "bit dribbling" perhaps coupled with pay-a-penny-per-use (PAPPU) systems to help people improve their quality of life without the constant need for charity.

Technology may play a central role to reach the billions who need service but not in the form of business²¹⁷ which is staple in the West and copied by the thoughtless Eastern schools, especially in India. Technical tools will generate data. The ability to use that data, judiciously, may be key to the value of data, for impoverished nations. Coupling social need with technical catalysts must be optimized in the context of the community and not according to *Wired* or *MIT Tech Review* or *HBR*. Advanced R&D is the bread and butter of progress, but the application of advanced tools must be contextual to the services that the community can sustain. Just because auto maker Koenigsegg claims the *Agera* model was built with a "less is more" philosophy does not mean it is the pragmatic standard of transportation suitable for Calcutta, India. In the realm of systems engineering courses and education, dynamic optimization (DO, Figure 13) illustrates a similar perspective. The principle is worth teaching, worldwide, but the practice must be relevant to the case. Do we all need DO in everyday life and living? Is it necessary for all types of edge analytics to process data using convolutional neural networks (CNN) on a mobile device or phone?

The conundrum of *not* applying the tools we think we have mastered is counterintuitive to the problem-solving ethos in the 20% world. We are ever ready to use the latest and greatest knowledge from the bleeding edge to derive and drive the best possible 99.99% perfection and performance. The quagmire of lies aside, we do have real tools which offers notable advantages. But, the volume of the 80% of the world and the economic handicap in these communities must be assimilated in order to change our thinking. The acronym KPI (key performance indicator) is for "performance" which is euphemistic for profit in the 20% world. It may or may not be in the best interest of the people. For 80% of the world perhaps KPI should stand for "key people indicator" and ascertain whether we improved lives of people.

Improving lives, however, is relative to the life you aim to improve, a life with disabilities²¹⁸ versus life with social²¹⁹ void are active domains in robotics. Indeed, robotics is key for the 21st century but the robot propaganda, written mostly by hacks²²⁰ and driven by media²²¹ sales, is a sign of the times. Essential robotics and robots for tasks that are dangerous, dirty and dull (repetitive) are progressing in various domains.

The idea of the automated robotic factory was popularized by Philip K. Dick's fiction "Autofac" published²²² in 1955 (*Galaxy* magazine). The "lights-out" automated manufacturing facility FANUC²²³ (factor automated numerical control) is in operation since 2001, in Japan. But FANUC is an exception. Even though "lights-out" robotics made significant strides in heavy industry, it is far from the Orwellian scenarios promoted through chicanery²²⁴ and buffoonery²²⁵ aimed for profit from book sales by discombobulating the masses. In reality, the promise of robotics must be balanced with the degree of *trust²²⁶ in automated execution*, especially when humans are involved, directly.

In other instances where human life is at risk (for example, transportation, manufacturing, mining) the trust in automated action (robot) is as good as the planning for "what ifs" *when* the auto execution goes awry. But, that is a deterministic perspective where what could go wrong is anticipated, albeit with some degree of uncertainty. However, if a mobile robot crashes with a holonic manufacturing podium, it may generate a cascade of events where the outcome may be non-deterministic. The critical question in such a scenario is the extent to which a non-deterministic outcome can be tolerated and the *acceptable* cost of risk despite the 'open-ended' uncertainty. Few can even approach to answer this/these questions²²⁷ because it verges on the domain of unknown unknowns.

But, that may not deter simulation aficionados from pursuing stochastic (*what if*) models to capture distribution of randomness in non-deterministic outcomes. Heuristics approaches may surface to suggest contingency measures. This is "video gaming" of automation²²⁸ which could turn deadly in reality. The *executive* robot may be suited for "3D" tasks (dull, dirty, dangerous) but unsuitable for relinquishing human oversight and control if lives are at risk. However, even worse are evil acts perpetrated by humans to bury²²⁹ and ignore²³⁰ the failure of automation, in the pursuit of profit.

Robotic tools in the 20% world are engaged in sophisticated activity which may be subjected to high oversight. In general, the 80% world is not a customer for such implementations in terms of mass consumption. Automation replacing or reorganizing jobs is not a new event (for example, auto industry) because technology²³¹ shifts the cycle of jobs and with it, the economy. Rapid changes in skill sets and the volatility of job categories influence other domains, namely, K-16 education, training, skills development (capital, labor market, employment) and communication (hopefully, the truthful variety). The rate of change in certain ecosystems are dreadfully slow (for example, education system) whereas the evolution of the job market may resemble the rapid pace of bacterial growth, albeit slower than viral growth rates. The diffusion of robotics will take time and only if the building blocks of automation can be popularized, globally, in a manner that Lego blocks may have inspired young minds to compose, create and construct.

The 80% world can benefit from robotics, for example, by reducing global disease²³² burden in emerging economies and developing nations. If sewer system cleaners (mostly young children who are flexible enough to reach cramped spaces) are replaced by robotic tools to do the "dirty" work, then the health risk to the young workers and public health risk to the community (from unsafe or unhygienic sewers) may be reduced. One must balance between improving lives versus affordable robots to perform such tasks. Robotics (tools) are an ally for the underserved by helping to improve lives, enabling health and wellness, rather than fear-mongering and flagrant deception²³³ how robots will replace human jobs.

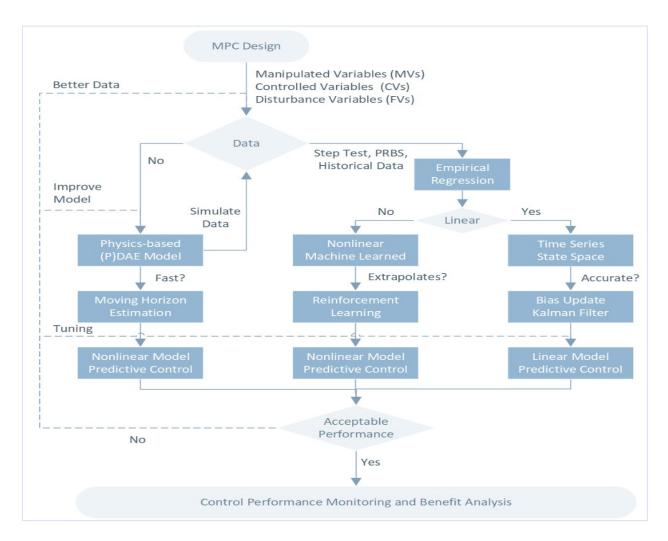


Figure 13 – Dynamic Optimization²³⁴ is a central component of systems engineering where applications of numerical methods for solution of time-varying systems are used to improve performance and precision of engineering design and real-time control applications, which may have a broad spectrum of use, for example, from optimizing the artificial pancreas to fuel cells. Principles of DO may be taught²³⁵ worldwide but DO, systems level data science²³⁶ and Bayesian²³⁷ statistics are excellent tools yet, often, less useful for 80% of the tasks for 80% of the world on the other side of the porous Pareto partition.

REFLECTION

The protagonists of the "open source" movement may be dismayed by "partition" suggestion which does not disguise an "ours" vs "theirs" view of a divided world. It is unfortunate but necessary to serve as a constant thorn in our conscience and sow discomfort. The "partition" thinking originates from the corporate pursuit of developing a smörgåsbord of bleeding edge tools in the 20% world and then coerce 80% of the world to buy such products and services ("next billion users"). To add insult to injury, corporations from the 80% world are salivating to acquire rights to these products and bring it to their market (for example, Tata (TCS), TechMahindra, Wipro, Infosys, "body-shops" in India²³⁸). There exists a *nano-cosm* of people in the 80% world who could be a part of the 20% world. Because they are an influential minority and holds the financial power in the 80% world, they are aligning their "profit" objectives with the 20% world.

This mismatch may be at the heart of this global dilemma and creates the necessity to consider the porous Pareto partition in terms of people and service for the end-user. People in AA nations are not the consumers for facial recognition software systems. The abuse²³⁹ is perpetrated by governments. People in the 80% world are not seeking quantum computing to process exabytes of data. People are seeking simple information, for example, for their health (data for blood cholesterol level) or from their farm (data about concentration of heavy metal contaminants in irrigation water used for fresh produce, such as, tomatoes). These services help people, the end user, the consumer. This discussion is about what science, engineering and technology businesses can do for people where the key performance indicator is user-centricity and human-centric²⁴⁰ well-being.

This mismatch between the business to consumer (B2C) services versus the business to business (B2B) services is not new. The 80% world is always looking to the 20% world when planning strategic moves for climbing "up" the supply chain. The fact that the tools from the 80% of the world may not fit in the 20% world is obvious from "frugal innovation" calls²⁴¹ by others. Yet, the type of imagination, invention²⁴² and innovation²⁴³ from the 20% world R&D is quintessential for all and a few are immensely helpful in the lives of the 80% world. What may be often lost, is the *translation* of the advances from the 20% world, for people-centric applications, in the 80% world. This discussion is not singing the praises about the investment in research that only the 20% of the world can afford to push forward because we know²⁴⁴ the facts. The world is indebted for the strides made possible due to entrepreneurial innovation in such havens such as Massachusetts and California. This discussion is about exposing the lies²⁴⁵ but not slowing the leaps of vision from the 20% world, hence, "porous" partition may facilitate the flow of innovation. Not "as is" but with contextual modifications to better serve communities in the 80% world, at a self-sustaining cost (for example, the PAPPU model, pay-a-penny-per-use or pay-a-price-per-unit).

Mental health is one problem where "porosity" is most welcome because most of the world are affected by generic²⁴⁷ as well as specific issues, which contributes to economic²⁴⁸ drain. Inherited bipolar and unipolar disorders²⁴⁹ do not discriminate on the basis of race, color, religion or national origin. The neurochemical, neuroendocrine and autonomic abnormalities associated with these disorders need biomedical research to elucidate the neurobiological basis of these diseases. The latter is not feasible for the 80% world. Harvesting data²⁵⁰ from external symptoms and pattern analysis²⁵¹ may offer a low-cost substitute, to inform the nature of treatment required. People in the 80% world may find it useful.

However, this discussion is not a *to-do* list. It is not a roadmap. It may be a compass, oscillating asynchronously from esoteric thoughts to bare necessities. We are immersed in this duality. One cannot exist without the other. The role of the "partition" is to help focus on the issues that are unique to the environment and community that we wish to serve. It is not a partition of R&D or people or products but a partition for *delivery of service*.

The idea of democratization of data is a bit buzzy but gimmicks are key to marketing. August institutions, including MIT, are complicit in sponsoring potentially puffy pieces to keep the hype²⁵² alive. But, the fact remains that enabling data to inform decision is a bedrock of measurement, central to all, irrespective of economic status. The porous Pareto partition is a catalyst to focus on services for the 80% world, where less could be more and serves our sense of égalité.

Dribbling a bit of data to inform a person that her respiratory rate (RR) is fluctuating, too often, may be a preventative measure (think of the proverb *a stich in time saves nine*). Informing the person that her RR data is not copasetic, may reduce future morbidity due to COPD (chronic obstructive pulmonary disease). Providing data and information may be *without* impact on the quality of life in the absence of follow-up (clinic). In terms of data and information, alone, by enabling something simple and even mundane, the people-centric application of technology and data, preferably at the edge²⁵³ (point of use), may help to do more, with less. Unbeknownst to us, we are attempting to use the pillars of science, engineering, data, information and knowledge to build bridges which may serve as a platform to provide service to billions of users. Rather than *gilding the lily* we are offering a "bare bones" bridge which serves a rudimentary purpose and still may exclude a few. The volume and demand for such low cost services [pay-a-penny-per-use (**PAPPU**) service business] may also be profitable for the business ecosystem.

Supporting a sustainable effort, to lift the quality of life, will depend on the extent of the product *ecosystem* and many other "things" in addition to technical and sensor data (see "disclaimer") as well as the *cohesion of the service supply chain*. Socio-economic data²⁵⁴ and related factors are equally significant. Core elements are education of women²⁵⁵ and trust²⁵⁶ in women, followed by civic honesty²⁵⁷, social value²⁵⁸ as well as inculcating the practice of ethical profitability in social business and entrepreneurial innovation to accelerate the pace of creating pragmatic tools and solutions for remediable²⁵⁹ injustices.

DISCLAIMER – THE ILLUSION OF DATA, DELUSION OF BIG DATA AND THE ABSENCE OF INTELLIGENCE IN AI

Neither data nor AI²⁶⁰ is a panacea. The acquisition of data and analysis of data is not a guarantee that there is information in the data or that the information is actionable in terms of delivering value for the user. This essay about data in its various forms is *not* the life-blood but a contributor. Global public goods that define "life-blood" are food, energy, water, sanitation and healthcare (FEWSH). Separately, and in combination, the 80% world need advanced and affordable array of tools and technologies to leapfrog the conventional practices of FEWSH in the 20% world.

In this context energy is the rate limiting entity and in a "tie" with food and water, in terms of human existence and life. The "hand-me-downs" from the 20% world of energy may not be sustainable and perhaps not even good. Perhaps the Sahara Desert may be a source of energy for creating a global "battery" - an idea²⁶¹ triggered by an 1877²⁶² proposal, in a different context (it was, too, subjected to misrepresentation²⁶³ and mockery²⁶⁴). Whether this is a "good" idea or not is *not exclusively* a matter of technological feasibility of implementation or transaction cost of service delivery. The question is, if it is *good for people*. Global public goods are a matter of context for the community as well as the continent. Exploring the cleavage between entrepreneurial engineering innovation and complexities of social egalitarianism requires willingness to recognize, and adapt, among many *different conceptions of a sense of the future*. Not the future deemed appropriate by the 20% world experts. The future is non-linear.

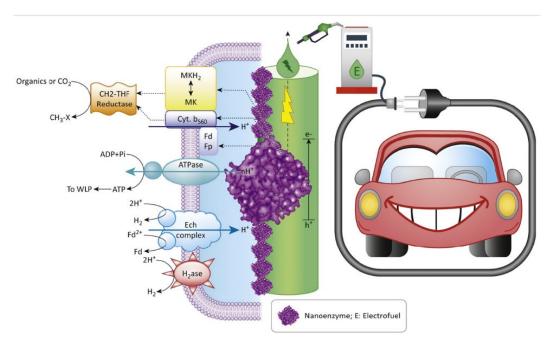


Figure 14 – The trinity of imagination, invention and innovation is central for the 80% world to leapfrog the dead weight of old technology and conventional wisdom from the 20% world. *Nanoenzyme-microbe interaction for clean and affordable bio-electrofuel production (Fig 1 from Singh et al [ref 271])*.

It may be a non-binary future with multiple paths and unequal connectivity between amorphous nexus of networks representing non-linear choices, aspirations and outcomes. "Good" decisions are relative to *that mix* which defies definition yet works as a catalyst for economic rejuvenation. Even this *type* of "good" will (must) change with time and culture because no one version of good can fit all the world²⁶⁵. A binary *outcome*, with exceptions, must not be confused with binary *decision making* because a plethora of non-binary factors can influence the outcome, which may appear as a simple output.

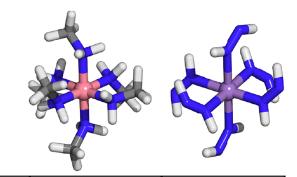
An oversimplified and cherubic example of the latter may resonate with residents of the Boston area. The choice between Mike's²⁶⁶ and Modern²⁶⁷, famed confectioners located almost opposite each other on Hanover Street in Boston's North End, is far from binary. The filling in the cannoli, taste of java and the length of the queue, are factored in the decision-making process, which generally presents itself cloaked in a binary-esque outcome.

Thus, the creativity and imagination necessary from science, engineering, technology and medicine (STEM) to address FEWSH must extract solutions sustainable under economic constraints. They will vary in their need to connect a few or many 'dots' to inform the solution delivery system. It is true "porosity" may contribute to solutions in the 80% world, and perhaps, less is more, but it will be remiss to leave the reader with the impression that invention/innovation may have to take a second place in the 80% world. In some cases, the latter rings true. In most instances we must seek *out-of-the-world* or counterintuitive ideas²⁶⁸ and blend it with incisive insight. Far reaching *convergence* of bio, nano, info and eco²⁶⁹ is not an alternative but an imperative to stitch practical solutions, which can satisfy, survive, and surpass, the criteria dictated by the economics of technology and technology policy²⁷⁰, which may be necessary to transform grand visions²⁷¹ into everyday reality (and uncover new²⁷² tools, in the process).

But "grand visions" are often manufactured²⁷³ as incremental mediocrity. Patents for using quantum²⁷⁴ computing²⁷⁵ are as absurd as the use of "cognitive" and the accompanying belligerence²⁷⁶ in marketing. Those who throw around the term "cognition" may not have consulted a credible expert²⁷⁷ or explored its meaning/definition {*cognition* [*n*] *mental action or process of acquiring knowledge and understanding through thought, experience, and the senses*}. Neither neurology nor modern computational neuroscience comprehends the *combined* electrochemical, cellular and molecular nature of what it may mean to "acquire knowledge" by animals or humans. Any model, equation, algorithm or hand-waving is simply false if it claims anything more than a vague impression of what "*acquire knowledge*" may mean. The other key words in the definition (*thought, experience*) are at depths we do not even dare to know how to measure. The mindless drivel that we can decipher "processes" because of functional nuclear magnetic resonance imaging (fMRI "activation" maps of real time blood flow) are constrained by spatio-temporal resolution and limited ability of fMRI²⁷⁸ to reliably detect functional activation. At the current state of instrumentation, resolution is inversely proportional to the ability to detect functional activation. Optimizing both is essential before fMRI data may be considered precise.

The infinite absurdity cryptic in the claims about cognition, learning, experience and thought is neither coloured by cognitive dissonance nor a figment of our uninformed imagination. Table 4²⁷⁹ captures the duration of so-called "deep learning" training over "days" on a TPU²⁸⁰ (tensor processing unit) scale with vast amounts of data (GB) only to generate undifferentiated²⁸¹ rubbish. By comparing row number 1 vs 10 (bottom), the scores of the relevant match (#1, 0.892) between learning (saved query) vs challenge (new query) is unimpressively different (#10, 0.765). In other words, according to Google BERT, after several days of "deep learning" "*Blah blah blah blah blah*" when challenged with the query "*Does this integrate with gmail?*" generates 0.765, suggesting 76.5% similarity between the two.

		BERT	RoBERTa	DistilB	ERT	XLNet		
Size (millions)		Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: 66		Base: ~110 Large: ~340	
Training Time		Base: 8 x V100 x 12 days* Large: 64 TPU Chips x days (or 280 x V100 x days*)			Base: 8 x V100 x 3.5 days; 4 times less than BERT.		Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.	
Performance		Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degra BERT	3% degradation from BERT		2-15% improvement over BERT	
Data		16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)		16 GB BERT data. 3.3 Billion words.		Base : 16 GB BERT data Large : 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.	
Method		BERT (Bidirectional Transformer with MLI and NSP)	BERT without NSP**	BERT Dis	BERT Distillation		Bidirectional Transformer with Permutation based modeling	
	Sa	ved Query	New Query	BERT Score	USE Score	ELMO Score	XLNet Score	
1	How much will	this cost?	Is this expensive?	0.892	0.803	0.742	0.720	
2	Where is your da	ata stored? H	ow secure is your product	0.890	0.625	0.765	0.705	
3	What temperature is it today? What		What time is the game on?	0.880	0.677	0.746	0.730	
4	How do I change my password I can'		an't find the settings page	0.868	0.671	0.717	0.706	
5	Can I sign up for a free trial Do I need a cre		credit card to get started?	0.868	0.736	0.753	0.759	
6	6 Where can I view my settings Does th		this integrate with gmail?	0.866	0.620	0.717	0.691	
7	7 I really do not like this product		I really like this product	0.865	0.747	0.864	0.870	
8	8 What is the Capital of Ireland? What time is		e is the film in the cinema	0.865	0.578	0.663	0.778	
9	9 Hello, is there anyone there? What		Vhat time is the game on?	0.832	0.594	0.680	0.723	
10	10 Blah blah blah Does		this integrate with gmail?	0.765	0.519	0.585	0.688	


Table 4 – Google BERT thinks "*blah blah*" is **76.5% similar** to "*Does this integrate with gmail?*" The laughable outcome is not at all surprising despite the hordes of brilliant scientists working to create tools (RNet, XLNet, ELMo, BERT, ALBERT, DILBERT, ROBERTA) over the past 20 years because it is gnarly to capture *semantics* of language which has evolved over the past 200,000 years.

The much-ballyhooed *context-awareness* of ELMo²⁸², BERT²⁸³, and its cousin ALBERT²⁸⁴, due to permutations and combinations of including masked language model (MLM) and next sentence prediction (NSP), is left in the dust, based on examples in Table 4. Except for those feigning ignorance and blind-to-reason-fanatics, observers may not be incorrect in thinking that throwing data (please see "Data" row in the upper part of Table 4) or using generic high volume of data for training (BERT claims to use "Wikipedia" in column 1 row 4) is ineffective. To be effective, these tools (ELMo, BERT, ALBERT, DILBERT, ROBERTA, etc) must use training data relevant to the context of target (search). Context-awareness in the absence of data curation is as fake as claiming that a marble bowl is made of gold. Nevertheless, these advances in search techniques are immense strides²⁸⁵ but the tools still aren't "intelligent" but dumb as doorknobs. The doorknob does not turn unless one turns it or actuates it, manually or mechanically. Wikipedia as an experimental control is a plausible idea. Using curated data for training (ANN) may improve accuracy of search and better guide informed users to extract notions of connections and relationships with BERT-esque tools as *supplementary aids* (Tshitoyan *et al*²⁸⁶) provides supporting evidence, Table 5). These tools are of limited value for non-mission critical applications, for example, recommendations (movies, books, restaurants), weather for entertainment (IBM's Weather Channel) and fault tolerant uses (open garage door, on/off sprinklers). Non-essential human-centric uses (congestion routing, temperature control, voice message to email) may qualify if the outcome is almost correct in 80% of the cases. Actual use with humans-in-the-loop (healthcare, emergency response, security) may be scuppered if based on any credible risk versus reward analytics, except for offering *non-binding and non-executable* suggestions or alerts for human decision makers.

Text corpus	Materials	Grammar	All	Corpus size
Wikipedia	2.6	72.8	51.0	2.81B words
Wikipedia elements	2.7	72.1	41.4	1.08B words
Wikipedia materials	2.2	72.8	41.3	781M words
All abstracts	43.3	58.3	51.0	643M words
Relevant abstracts	48.9	54.9	52.0	290M words
Pre-trained model	10.4	47.1	30.8	640k papers

Table 5 (from Tshitoyan *et al* Extended Data Table 4) – Analogy scores (%) for materials science versus 'grammar' from different sources. Training using Wikipedia for – metals – is grammatically rich (>72%) but content poor even when using select Wikipedia for materials (2.2% analogy). The smallest corpus (290M words) used for training using continuous bag of words (CBOW) offers the best performance (48.9%) on materials-related analogies when *curated* for "relevant" abstracts. The best performance for grammar may turn out to be profitable by enabling ELMo, BERT, ALBERT, ROBERTA and DILBERT (DistilBERT) to be the voices of artificial trainers for the standardized twaddle marketed with impunity and known as *Test of English as a Foreign Language* (TOEFL). The contextual enrichment in this table is similar to the example of enrichment shown in Figure 16, suggesting the need for relevance / curation.

The paramount significance of curated contextual data in training any model (including ANNs, artificial neural networks) cannot be overemphasized. Individuals and institutions in possession of less than lofty ideals may revert to trickery in an attempt to sow doubt or discombobulate or disqualify the type of outcomes, for example, presented in Table 5. It is the age-old deception due to over-fitting²⁸⁷ which can be also applied to ANN during training and the "fit" may be driven to precision using tools such as recursive feature addition²⁸⁸ (RFA). For readers seeking a simpler analogy may wish to re-visit what we discussed as the "force-fitting" of RDF to healthcare applications (reference 170). The erudition necessary to train ANN with curated data is not easily gleaned from a cursory review. Extensive perusal of scholastic research²⁸⁹ begins to reveal a few of the minutiae with respect to the nature of the domain specific data and the context of data curation (see sections 3 and 4 in Nandy *et al*, reference 289) that forms the bulk of the *preparatory* work based on rigor and strength of broad spectrum²⁹⁰ knowledge. In an earlier section we referred to *domain specific* models in a "macro" sense (pages 9-10) whereas the domain specificity of this example (Nandy *et al*) is at the molecular (atomic and/or sub-atomic) scale.

	[Co(NH ₂ CH ₃) ₆] ³⁺	[Mn(HNNH) ₆] ³⁺		
DFT	-20.00 eV	-18.64 eV		
ANN	-19.91 eV	-23.55 eV		

Table 6 – Even after extensive training using precision data enriched for features using RFA, it is not surprising when gross errors are found in the outcome (analysis). Figure 7 (from page 13981 in Nandy *et al*) is one example how artificial neural networks (ANN) used in machine learning (ML) exercises and analytics generate erroneous results. ΔE_g data (LEFT) shows ANN error (0.09 eV) with respect to DFT (density functional theory²⁹¹) in a singlet [Co(NH2CH3)6]3+ transition metal complex.

(Right) Data shows large ANN error (-4.91 eV) with respect to DFT for a quintet [Mn(HNNH)6]3+ transition metal complex. The quintet [Mn(HNNH)6]3+ complex highest occupied molecular orbital (HOMO) level is underestimated by 4.9 eV, which is almost *double* the mean absolute error (MAE). This ANN was specifically trained using ΔE_g data models on a set of 64 octahedral homoleptic complexes (OH64). The discrepancy (ANN error) is significant because frontier molecular orbital energetics provide essential insight into chemical reactivity and dictate optical and electronic properties. Small errors could make an immense difference in terms of chemistry of the transition metal complex. In this illustration, the metals are shown as spheres and coordinating atoms as sticks (C atoms, gray; N atoms, blue; H atoms, white). *If your healthcare diagnosis and treatment was based on such an ANN outcome, would you trust, accept and abide by the direction of the treatment suggested by such results? If this outcome is based on data from your electronic health records (EHR) which is known to be erroneous, would you trust poor data quality to inform a poorly performing ANN engine to design your healthcare ?*

The third piece of evidence that also dispels the marketing myths of AI in favor of viewing through the lens of *artificial reasoning* tools (ART, referring to ANN, CNN, RNN, DL, RL), is another variety of neural network²⁹² with credible capabilities. MPNN²⁹³ (message passing neural network) for molecules²⁹⁴ is a tool²⁹⁵ to unleash data²⁹⁶ for human-centric applications in health and medicine. This example centers on uncovering and repurposing a previously known molecule as an antibiotic²⁹⁷ using a plethora of tools including MPNN and collectively referred to as deep learning (DL). This paper (297) by Stokes *et al* and the two other papers by Tshitoyan *et al* as well as Nandy *et al*, emphasize data curation and learning, without once mentioning the term AI or "artificial intelligence" in any shape or form in the scientific papers. Unfortunately, the marketing and news item²⁹⁸, as expected, did not shy away from fake sensationalism to bolster the false appeal of AI.

The *learning* that generated the antibiotic (renamed Halicin), is nauseatingly detailed and the *training* (MPNN) was excruciatingly structured, optimized and re-optimized (using hyperparameter²⁹⁹ optimization). The old idea of ensembling³⁰⁰ was applied to improve outcomes *in silico* but predictions were *biologically* tested through rigorous experiments. Even after repeated steps to minimize errors, the authors (reference 297) remain cognizant of the pitfalls: "*It is important to emphasize that machine learning is imperfect. Therefore, the success of deep neural network model-guided antibiotic discovery rests heavily on the coupling of these approaches to appropriate experimental designs."* (Stokes *et al*, page 698)

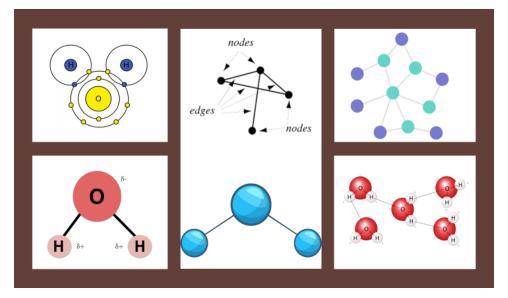


Figure 15 – Training a neural network to recognize molecules relies on the fact that every molecule may be represented as a *graph* (or a collage of connected graphs, eliciting the idea of a *knowledge graph*). The water molecule may be viewed as a graph with oxygen (O) as the node (vertex). Bonds between oxygen and hydrogen (O–H) serves as the "side" or edge. Most molecule (within reason) may be transformed to a molecular graph and is at the heart of MPNN training to recognize different types of molecules. Then, the *trained* neural network, MPNN, is used to search for similar or *dissimilar* molecules in a repository.

A curated set of 2335 molecules were used as the training set for new antibiotic molecules. The 2335 training data set were chosen, including FDA library of 1,760 molecules pre-selected based on their ability to inhibit microbial (*E. coli* BW25113) growth. In other words, molecules with structure and function *known* to possess anti-microbial activity. Training MPNN with this data set enables the neural network to *learn* the structures in order to select similar (or dissimilar) structures from a larger library of structures. The expectation is that when a "challenge" library is presented to the MPNN, the degree of similarity or dissimilarity, in terms of the output from the MPNN, can be *tuned* by modifying selection parameters. For example, using prediction scores (PS) to categorize molecules from a larger library (in this case, the ZINC database with ~1.5 billion molecules). By selecting higher PS value (>0.7, >0.8, >0.9), the outcome is "enriched" and a sub-set of molecules (in this case, 107,347,223, reductionism at work) is further subjected to other selection criteria, for example, nearest neighbor analysis (Tanimoto score). Finally, potential molecules (in this case, 23) are biologically screened (microbial assay) to identify the "new" antibiotic candidate(s). One such candidate is Halicin (Stokes *et al*), previously identified as the c-Jun N-terminal kinase inhibitor SU3327 and re-discovered as a broad-spectrum antibiotic, re-named Halicin but still the same molecule as SU3227, albeit repurposed, based on function.

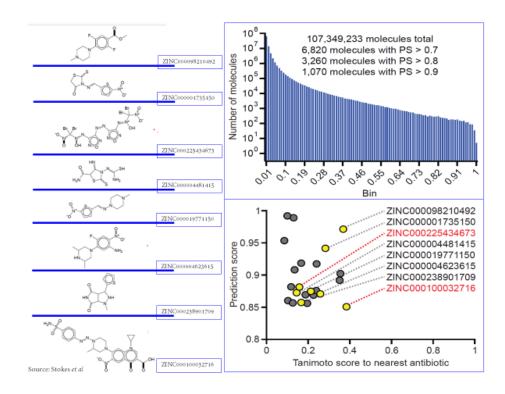


Figure 16 – Potential candidates (8 molecules) from ZINC database (structures on the left) were scored using nearest neighbor (NN) analysis (yellow circles, bottom right). NN is based on principles derived a thousand years ago³⁰¹ (circa 1030). Data is curated at successive steps by enriching for *context* (selecting higher prediction scores, PS, top right) in a manner similar to Table 5 (wikipedia vs relevant abstracts).

In combination, these three examples offers preliminary evidence that artificial reasoning tools (ART) such as ANN, MPNN, DL (deep learning), RL (reinforcement learning), etc. are *excellent* tools. However, ART and related tools are not intelligent, they do not self-operate and the outcome is solely due to the skill and sophistication of the human operators. The steps must be designed with cautious intellectual strategy embracing the *breadth* of diverse knowledge, often dismissed by many institutions. Execution demands *depth* of erudition and incisive foresight to weigh the pros and cons of the criteria used to assess the *quality of curated data* prior to commencing training neural networks with such data.

It is essential to learn the *meaning of context* in order to sufficiently inform the "artificial" part of ART. Models and patterns are like chicken playing tic-tac-toe³⁰² without context and semantics. Human *knowledge* to equip ART is almost impossible to transfer because we do not have a clue how to abstract continuous knowledge and use discrete processes to *build* it into an artificial system. Hence, ART may not "possess" an internal model of the external world. The immense variability in terms of features and which features may be *relevant* in which environment makes it difficult to model a state by claiming that feature selection will address all relevant and discrete contexts that the item or object may experience. Even if feature engineering was automated to levels of precision continuity that could encapsulate all possible permutations and combinations of the behavior of an entity or object, the model may be inadequate in the hands of different users who may not feature in the feature catalog, without bias. It is not trivial yet not impossible to model behavior and optimize for some features in a retail environment (for example, who may shop at Whole Foods, who may return to Andronico's versus Mollie Stone's).

If reason could inform common sense then one may prefer ART over AI and the observe the value of reasoning in machine learning techniques using neural networks. Neural networks and machine learning tools are amplifying, modifying and regurgitating whatever humans have programmed into the tool. It cannot *learn* beyond the range of data or information provided, until humans decide to change, adjust or add/subtract parameters/attributes which will influence the *learning* and the output from ART. The obstreperous zeal to move away from the misnomer of modern³⁰³ AI³⁰⁴ and adopt ART as a generic term may be a *back to the future* moment for rule-based³⁰⁵ expert systems³⁰⁶ and principles³⁰⁷ but coupled with new ML tools³⁰⁸. Marketing panders to creators of unstructured data but the zettabytes of data anarchy occasionally offers value irrespective of the clamor for general AI or ambient AI or intuitive AI or cognitive AI. Isn't it possible to deliver value using ART?

But, does the acronym matter? Perhaps only to a few (or less). AI is a false trigger for technology transitions³⁰⁹ but it is cheaper³¹⁰ and cheaper³¹¹ to promote. It is profitable for conference organizers, narcissistic speakers, greedy social gurus and other forms of eejits. Irresponsible computation may be draining the energy³¹² economy yet the marketing world is oblivious to the grave socio-economic incongruencies in terms of the thermodynamics³¹³ of computation, which is absent from daily discussions. Perpetrating the myth of intelligence in AI is a moral anathema. ART lacks the cachet and panache, but promotes the rational idea of *learning* tools, which are, and will be, helpful for society.

The state of artificial learning is analogous to receiving a map of the world on a postage stamp and expect the bearer of the map (stamp) to arrive at 77 Massachusetts Avenue, Cambridge, MA, using that postage-stamp-sized map as the only guide. Neurologists shudder³¹⁴ at AI, the public are ignorant of the evidence of sham (Tables 4-6 and Figure 16) while marketing accelerates the "show" over substance. Sensationalism amplifies attention and siphon funds away from real world issues, making it harder for elements of FEWSH³¹⁵ to move forward, for the 80% world. The task ahead is to be creative, more than expected, and avoid the oxymoronic implementation of *innovation as usual*. Dynamic combinations³¹⁶ and cross-pollination of counterintuitive connections may be worth exploring³¹⁷ to find many *different* ways to lift billions of boats, not just a few yachts. Future needs égalitarian resistance to our "default"

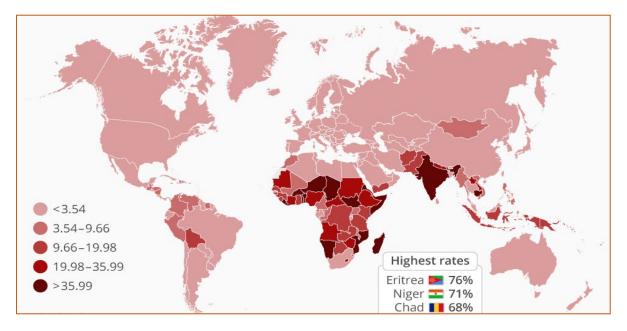


Figure 17 – Is GINI coefficient³¹⁹ a non-stationary end-goal for economic redistribution through ethical social entrepreneurial innovation? Nearly a billion³²⁰ people³²¹ defecate outdoors (percent of population who are forced to defecate outdoors). It appears that the pay-a-penny-per-unit (PAPPU) model could rake in billions if managed sanitation services were developed as a business. If a billion people paid one penny (US) per use per day for their "leased" sanitation service (at home) then the global gross earning for pay-per-use sanitation may be US\$3.65 billion annually, an indication of earnings potential and wealth from the business of the poor. The primary assumption is that the individual will choose to pay one penny per day even if their income is only \$2 per day (lowest per capita average earnings). This social business model depends on different domains³²² of infrastructure necessary to offer home sanitation as an e-commerce³²³ service. The return on investment will be realized gradually because earnings will not be US\$3.65 billion in the first year. Is the inclination to invest, and wait, too much to expect from global organizations which could help facilitate delivery of global public goods?

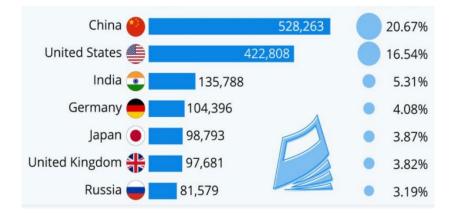


Figure 18 – Publications in peer-reviewed journals (2018). Face-saving feel-good false positives? Propaganda³²⁴ (does *not* exclude scientists³²⁵) masks facts³²⁶ and analyses, by ignoring the quality of publications, citations and investment in R&D (% GDP). Dubious research³²⁷ output tarnishes the image and publications. Are we pointing fingers at a quarter (25.98% = 20.67% + 5.31%) of the global share?

Photograph 0 – GINI coefficient gone awry? Vast slums, adjacent to high rise residential buildings in a section of Mumbai (photograph by Prashant Waydande³²⁸), contradicts the notion that India may be an emerging leader in credible scientific research³²⁹ (Figure 18). Are these a few symptoms stemming from grave gender bias, discrimination³³⁰ against females and inequity of women in science and society?

PERSONAL END NOTE

Thoughtful readers have asked about the audience³³¹ that this essay intends to reach. I am unable to answer. This essay flows from convergence of a broad spectrum of chatter. Certain segments originate from personal observations and others are a mix of intent, content, context and relevance from social network of users as well as decision makers³³². Most people prefer focus and a *take home message*. The former is less obvious but the latter is less unclear from the cartoon at the bottom of this page. It may be uninteresting for most adults to read about an array of haphazard realities, an extrapolation from my exchanges (or lack thereof) with a few hundred selected professionals in academia and industry. But, what is more painful is the absence of engagement with young minds and students. Isn't it tragic to be young and cynical? Has the person gone from knowing little to exploring even less? Ruminations in this essay may not reach more than a few people. The fabric of this essay was spun with many threads, not all of them are digital. To arrive at the conjectures in this essay consumed part of my life in their acquisition and formation, irrespective of the fact that they be incorrect, flippant, vacant or just rubbish. Thus, one may conclude, perhaps the essay exposes my stupidity³³³, perhaps it is irrelevant and serves no real purpose, perhaps *it is a tale*³³⁴, *told by an idiot, full of sound and fury, signifying nothing*.

Les savants des autres nations, à qui nous avons donné l'exemple, ont cru avec raison qu'ils écriraient encore mieux dans leur langue que dans la nôtre. L'Angleterre nous a donc imités; l'Allemagne, où le latin semblait s'être réfugié, commence insensiblement à en perdre l'usage; je ne doute pas qu'elle ne soit bientôt suivie par les Suédois, les Danois et les Russes. Ainsi, avant la fin du dix-huitième siècle, un philosophe qui voudra s'instruire à fond des découvertes de ses prédécesseurs, sera contraint île charger sa mémoire de sept à huit langues différentes, et. après avoir consume à les apprendre le temps le plus précieux de sa vie, il mourra avant de commencer à s'instruire.³³⁵ The scholars of other nations, to whom we have provided an example, believed with reason that they would write even better in their language than in ours. England has thus imitated us; Germany, where Latin seems to have taken refuge, begins insensibly to lose the use of it: I do not doubt that it will soon be followed by the Swedes, the Danes and the Russians. Thus, before the end of the 18th century, a philosopher who would like to instruct himself about his predecessor's discoveries will be required to load his memory with 7 to 8 different languages; and after having consumed the most precious time of his life in acquiring them, he will die before having begun to instruct himself.³³⁶

If it's inaccessible to the poor it's neither radical nor revolutionary.

IN CONCLUSION – THE PRINCIPLES AND PRACTICE OF P3 – IS IN NEED OF PEOPLE WHO ARE TRUE LEADERS

Concluding sections ought to be labeled "temporary" because we are perpetually immersed in an ocean of unknown unknowns. This essay and our discussion is not an exception. Nevertheless, it will be remiss to leave the discussion without an attempt to share clues with entrepreneurial innovators who may be interested in social businesses and, in parallel, the pursuit of ethical profitability. Perusal of the PDF documents "Practice of P3" will reveal a broader context and perhaps a few ideas related to food and water (01FW), healthcare (02H) and energy (03E) - <u>https://dspace.mit.edu/handle/1721.1/123984</u>

As the name implies, social businesses are "*businesses*" and not academic experiments or lab projects. The convergence of concepts, tools and technologies necessary to deliver the business of social business is not trivial and the most important element is that of *leadership*. Convergence implies that collaboration between domains rich in ideas, integration and implementation are, more or less, essential for end-to-end service delivery. No <u>one</u> business can synthesize the entire tapestry required to deliver a certain quality of service. Each business (and academic partners) must contribute to the ecosystem and relinquish certain elements of control the business executives assume. The service delivery ecosystem is comprised of many types of businesses and some may be inclined to conclude that they are the "pillars" in this new process. Too often one forgets that pillars are useless unless we can build bridges over pillars. This *forgetfulness* is buoyed by hubris, mostly at the CxO level, where individuals designated "chief officers" are ill-equipped to navigate the paradigm shift to *service* delivery. In particular, *people* who are CTO or CSO or CIO or CDO may think that they possess all the tools and resources to provide what is best. They may know what is best for their domain or company but it may not be the same as what is best for the end user in the ecosystem and the service supply chain partners in the delivery network.

The CxO roles must evolve to keep pace with emerging spectrum of models where products are pariahs and service is the new slogan. Management roles ought to change (CEO, COO, CFO). Urgent changes are overdue for CTO, CSO, CIO, CDO roles (excludes people who maintain IT plumbing). In the world of the "outcome economy" selling a trainer or a sneaker is no longer the end point. The trainer or sneaker is now a "service" where the consumer pays for duration of the service (life cycle) provided by the trainer or sneaker. It may seem tad obsequious but the service economy is here to stay, especially for the 80% world. The *nano-fee pay-a-penny-per-use* (PAPPU) model may unlock markets of billions who may have non-zero amounts of disposable income. Wealth of the poor may fuel ethical profitability for social business by tapping into markets of the next billion users. Current shades of 'western' business ethos, roles and models are unlikely to serve as pillars for the bridge to the future of service economies. The insurmountable resistance to reducing *western* business barriers is comparable to the resistance from the American Medical Association to universal healthcare. *However, exceptions may be found in cases where the CEO or CTO is/are the primary inventors (creating start-ups). The question for them is whether can they successfully and seamlessly integrate their contribution with the service supply chain.*

In general, one of many errors in the current CxO model is the focus on specialization, which is highly relevant to CTO, CSO, CIO, CDO, because the company values the skills the person contributes. While that skill is certainly useful and valuable to a segment of the business, it may be less applicable when that skill is only a part of the solution. The outcome economy does not care if the CTO is skilled in millimeter wavelets or the CDO is an expert in backpropagation algorithms. The *delivery of value* at the end of the tunnel is not about a skill, but a synergistic integration of a *variety of skills*, most of which may be missing in any one person and in any one company. The idea of a generalist gently rises to the surface.

The future is about fusion. The rate limiting nodes are due to the nature of the CxO roles who are, traditionally, pefer to drown in their own knowledge, even if the facts are out of sync. The new world CxO roles may emphasize coordination and *cross-pollination*. The CxO must be a dyamic *node* who can connect the company to access knowledge as well as resources from a wide cross-section of academic, industry and government sources, depending on the case. This is important, immediately, to CTO, CSO, CIO, CDO roles because of the complex and inextricably linked dependencies, at the core of service delivery solutions. This change is not only for social businesses but for every business, especially small and medium businesses, where resources are limited yet the solutions demand increasing degrees of sophistication. This change is neither a silver bullet nor is it fitting for all intents and purposes.

Part of the disconnect, in Fortune 500 type companies, may be related to the salaries of CxO's. For example, if a half-million-dollar CTO seeks outside help for a project, the CEO may wonder why the company should yet again pay for external experts when it has already paid half-million for the "knowit-all" CTO. The depth of the in-house talent may be inadequate. At the end, a half-baked outcome is served to the customer, who is brain-washed to believe that the innovation delivered exceed all others.

For human resources, hiring a CTO,CSO, CIO, CDO as a "learn-it-all" *node* for knowledge connectivity may be heretic. The constant need for creating liaison may be unacceptable. Most CxO individuals may not have the correct network or may not know who knows what, where. Composing and re-composing solution teams through agile combinations of internal and external relationships are rarely in practice. Yet, it is the latter that is poised to deliver exponential value, if explored. Few *leaders* have the incisive foresight to lead beyond their comfort zone. Even fewer possess the courage to take the road less travelled. The system appears to reward the *risk-averse* managers (albeit, with exceptions).

Businesses will benefit from people/nodes of connectivity who can act as *coordinators*. Social businesses who aim to be profitable will require immense connectivity. Coordination must be the daily mantra. Perusal of "Practice of P3" will reveal that trans-disciplinarity is the norm. The definition of CxO roles must be deconstructed and reconstructed as an amalgam of parts, if we are serious about service delivery of global public goods, for example, food, water (01FW), healthcare (02H) and energy (03E) - the crucial elements of our haphazard reality (https://dspace.mit.edu/handle/1721.1/123984).

REFERENCES

¹ https://en.wikipedia.org/wiki/Pareto_principle

² <u>https://www.postscapes.com/iot-history/</u>

³ Sanjay Sarma, David Brock and Kevin Ashton (1999) "*The Networked Physical World - Proposals for Engineering the Next Generation of Computing, Commerce, and Automatic-Identification,*" MIT Auto-ID Center White Paper. MIT-AUTOID-WH001, 1999. <u>https://autoid.mit.edu/publications-0</u> <u>https://pdfs.semanticscholar.org/88b4/a255082d91b3c88261976c85a24f2f92c5c3.pdf</u>

⁴ Sarma, S., Brock, D. and Engels, D. (2001) "Radio Frequency Identification and the Electronic Product Code," *IEEE Micro*, vol. 21, no. 6, Dec. 2001, pp. 50–54. doi:10.1109/40.977758.

⁵ Sarma, Sanjay (2001) "Towards the 5 cents tag," Auto-ID Center. MIT-AUTOID-WH-006, 2001 ⁶ https://www.rfc-editor.org/rfc/pdfrfc/rfc791.txt.pdf

⁷ Deering, S. and Hinden, R (2017) Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force (IETF) <u>https://www.rfc-editor.org/rfc/pdfrfc/rfc8200.txt.pdf</u>

⁸ https://www.bizjournals.com/boston/blog/mass-high-tech/2012/11/mit-aims-to-harness-cloud-dataon-consumer.html

⁹ Max Mühlhäuser and Iryna Gurevych (2008) Introduction to Ubiquitous Computing. IGI Global. https://pdfs.semanticscholar.org/ab0e/b44c7c81a1af3fc2d23fa03f8f04f9e4ca2d.pdf

¹⁰ https://www.bigdataframework.org/short-history-of-big-data/

¹¹ Melina Kourantidou (2019) *Artificial intelligence makes fishing more sustainable by tracking illegal activity*. <u>https://theconversation.com/artificial-intelligence-makes-fishing-more-sustainable-by-tracking-illegal-activity-115883</u>

¹² https://www.postscapes.com/iot-consulting-research-companies/

¹³ Which market view? The imperfect categories are consumer and industrial IoT. Definitions proposed by domestic and foreign governments (US DHS, US FTC, EU ENISA) are (not surprisingly) neither systematic nor in sync. According to DHS, IoT is defined as "connection of systems and devices (with primarily physical purposes e.g. sensing, heating/cooling, lighting, motor actuation, transportation) to information networks (internet) via interoperable protocols, often built into embedded systems." (page 2 in "Strategic Principles for Securing the Internet of Things (IoT)", Version 1.0, Nov 15, 2016) https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of _Things-2016-1115-FINAL_v2-dg11.pdf).

European Union Agency for Network and Information Security (ENISA) defines IoT as "a cyberphysical ecosystem of interconnected sensors and actuators, which enable intelligent decision making." Internet viewed as a subset not the whole set. (Page 18 in "Baseline Security Recommendations for IoT" https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-

iot/at_download/fullReport). One version of IoT is in H.R.1668 "Internet of Things Cybersecurity Improvement Act of 2019" (https://www.congress.gov/116/bills/hr1668/BILLS-116hr1668ih.pdf).

H.R. 4792 "U.S. Cyber Shield Act of 2019" mentions "internet-connected products" and stipulates that the term 'covered product' means a consumer-facing physical object that can (a) connect to the internet or other network; and (b) (i) collect, send, or receive data; or (ii) control the actions of a physical object or system (https://www.congress.gov/116/bills/hr4792/BILLS-116hr4792ih.pdf).

¹⁴ Cisco CEO at CES 2014: *Internet of Things is a \$19 trillion opportunity*.

https://www.washingtonpost.com/business/on-it/cisco-ceo-at-ces-2014-internet-of-things-is-a-19-trillion-opportunity/2014/01/08/8d456fba-789b-11e3-8963-b4b654bcc9b2_story.html

¹⁵ https://www.the-scientist.com/uncategorized/nature-rejects-krebss-paper-1937-43452

¹⁶ www.zdnet.com/article/internet-of-things-8-9-trillion-market-in-2020-212-billion-connected-things/

¹⁷ https://machinaresearch.com/static/media/uploads/machina_research_press_release_-

_m2m_global_forecast_&_analysis_2012-22_dec13.pdf

¹⁸ https://www.npr.org/sections/thesalt/2017/07/20/527945413/khichuri-an-ancient-indian-comfortdish-with-a-global-influence

¹⁹ Mendel, Gregor. 1866. Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47.

http://www.esp.org/foundations/genetics/classical/gm-65.pdf

²⁰ F. Jacob and J. Monod, "Genetic regulatory mechanisms in the synthesis of proteins," *Journal of Molecular Biology*, vol. 3, no. 3, pp. 318–356, 1961. <u>https://doi.org/10.1016/S0022-2836(61)80072-7</u>
 ²¹ Dulbecco, Renato. "The Induction of Cancer by Viruses." *Scientific American*, vol. 216, no. 4, Apr.

1967, pp. 28–37 doi:10.1038/scientificamerican0467-28

http://calteches.library.caltech.edu/230/1/cancer.pdf

²²Novikov, D. A. "Systems Theory and Systems Analysis. Systems Engineering." *Cybernetics*, by D.A Novikov, vol. 47, Springer International Publishing, 2016, pp. 39–44. doi:10.1007/978-3-319-27397-6_4 www.researchgate.net/publication/300131568_Systems_Theory_and_Systems_Analysis_Systems_Engin eering

²³ http://web.mit.edu/esd.83/www/notebook/Cybernetics.PDF

²⁴ Wiener, Norbert. *Cybernetics, or Control and Communication in the Animal and the Machine (2nd Ed.).* MIT Press, 1961. doi:10.1037/13140-000.

https://uberty.org/wp-content/uploads/2015/07/Norbert_Wiener_Cybernetics.pdf

²⁵ https://www.sissa.it/fa/workshop_old/DCS2003/reading_mat/zuazuaDivSEMA.pdf

²⁶ Williams, L. Pearce. "André-Marie Ampère." *Scientific American*, vol. 260, no. 1, 1989, pp. 90–97. https://www.jstor.org/stable/24987112

²⁷ https://www.americanscientist.org/article/alice-and-bob-in-cipherspace

²⁸ Rivest, R. L., et al "A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems." Communications of the ACM, vol. 21, no. 2, Feb. 1978, pp. 120-26

doi:10.1145/359340.359342. https://dl.acm.org/citation.cfm?id=359342

²⁹ Nash, J. F. (1950) "Equilibrium Points in N-Person Games." *Proc Natl Academy of Sci (USA)*, vol. 36, no. 1, Jan. 1950, pp. 48–49. doi:10.1073/pnas.36.1.48 • www.pnas.org/content/pnas/36/1/48.full.pdf

³⁰ Axelrod, Robert M. *The Evolution of Cooperation*. Rev. ed, Basic Books, 2006. http://www.eleutera.org/wp-content/uploads/2015/07/The-Evolution-of-Cooperation.pdf

³¹ Kreps, David M., et al. "Rational Cooperation in the Finitely Repeated Prisoners' Dilemma." *Journal of Economic Theory*, vol. 27, no. 2, Aug. 1982, pp. 245–52. <u>https://doi.org/10.1016/0022-0531(82)90029-1</u>
 ³² <u>https://en.wikipedia.org/wiki/Graph_database#/media/File:GraphDatabase_PropertyGraph.png</u>

³³ Little, John D. C., et al. "An Algorithm for the Traveling Salesman Problem." *Operations Research*, vol. 11, no. 6, Dec. 1963, pp. 972–89. doi:10.1287/opre.11.6.972.

https://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf

³⁴ Schrader, Charles R. (1997) United States Army Logistics, 1775-1992: An Anthology, Volume 1 https://history.army.mil/html/books/068/68-1/cmhPub_68-1.pdf

³⁵ Datta, Shoumen, et al. "Adaptive Value Networks." *Evolution of Supply Chain Management: Symbiosis of Adaptive Value Networks and ICT*, edited by Yoon S. Chang et al., Springer US, 2004, pp. 3–

67. doi:10.1007/0-306-48696-2_1. https://link.springer.com/chapter/10.1007/0-306-48696-2_1

³⁶www.cs.cmu.edu/afs/cs/academic/class/15251/Site/current/Materials/Lectures/Lecture13/lecture13.pdf

³⁷ https://kluge.in-chemnitz.de/documents/fractal/node2.html

³⁸ https://trove.nla.gov.au/work/21161891?q&versionId=25229969

³⁹ Sterling, Mary Jane (2015) Mathematics and Art. <u>https://www.bradley.edu/dotAsset/d62c7fce-87ed-</u> <u>4b61-9ce7-23a78b70144d.pdf</u>

⁴⁰ Carmody, Kevin. "Circular and Hyperbolic Quaternions, Octonions, and Sedenions." *Applied Mathematics and Computation*, vol. 28, no. 1, Oct. 1988, pp. 47–72. doi:10.1016/0096-3003(88)90133-6. https://doi.org/10.1016/0096-3003(88)90133-6

⁴¹ Pennisi, Elizabeth, et al. "The Momentous Transition to Multicellular Life May Not Have Been so Hard after All." *Science*, 28 June 2018. <u>https://www.sciencemag.org/news/2018/06/momentous-</u> <u>transition-multicellular-life-may-not-have-been-so-hard-after-all</u>

⁴² "How Many Bacteria Live on Earth?" *Sciencing*. https://sciencing.com/how-many-bacteria-live-earth-4674401.html

⁴³ Prusiner, S. B. "Novel Proteinaceous Infectious Particles Cause Scrapie." *Science*, vol. 216, no. 4542, Apr. 1982, pp. 136–44. doi:10.1126/science.6801762.

https://science.sciencemag.org/content/216/4542/136.long

⁴⁴ Pattison, I. H., and K. M. Jones. "The Possible Nature of the Transmissible Agent of Scrapie." *Veterinary Record*, vol. 80, no. 1, Jan. 1967, pp. 2–9. doi:10.1136/vr.80.1.2. https://veterinaryrecord.bmj.com/content/80/1/2

⁴⁵ "1.4 Universality." New England Complex Systems Institute. <u>https://necsi.edu/14-universality</u>
⁴⁶ Denton, Peter B., et al. "Eigenvectors from Eigenvalues." ArXiv:1908.03795 (August 2019)
<u>https://arxiv.org/pdf/1908.03795.pdf</u>

⁴⁷ Tao, Terence, and Van Vu. "Random Matrices: Universality of Local Eigenvalue Statistics." *ArXiv:0906.0510* (June 2010) <u>https://arxiv.org/pdf/0906.0510.pdf</u>

⁴⁸ Wu, Leting, et al. "A Spectral Approach to Detecting Subtle Anomalies in Graphs." *Journal of Intelligent Information Systems*, vol. 41, no. 2, Oct. 2013, pp. 313–37. doi:10.1007/s10844-013-0246-7 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.499.3228&rep=rep1&type=pdf
⁴⁹ Denton, Peter B., et al. "Eigenvalues: The Rosetta Stone for Neutrino Oscillations in Matter."

ArXiv:1907.02534 (July 2019) https://arxiv.org/pdf/1907.02534.pdf

⁵⁰ Committee on Information Technology, Automation, and the U.S. Workforce, et al. *Information Technology and the U.S. Workforce: Where Are We and Where Do We Go from Here*? National Academies Press, 2017. doi:10.17226/24649. National Academies of Sciences, Engineering, and Medicine 2017. https://doi.org/10.17226/24649 and https://www.nap.edu/download/24649

⁵¹ Wassén, Olivia. "Big Data Facts - How Much Data Is out There?" *NodeGraph*, 2 Sept. 2019. https://www.nodegraph.se/big-data-facts/

⁵² https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataagewhitepaper.pdf

⁵³ David, Paul A. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox." *The American Economic Review* 80, no. 2 (1990): 355-61. www.jstor.org/stable/2006600.

(https://pdfs.semanticscholar.org/dff7/9b2f28cbb79da91becaab803667f30394233.pdf?_ga=2.215911511. 1520557695.1570682035-1238830782.1562127126)

⁵⁴ Syverson, C. (2013) Will History Repeat Itself? Comments on "Is the Information Technology Revolution Over?" Intl Productivity Monitor 25 37-40 www.csls.ca/ipm/25/IPM-25-Syverson.pdf
⁵⁵ Syverson, Chad. *Challenges to Mismeasurement Explanations for the U.S. Productivity Slowdown*. Working Paper, 21974, National Bureau of Economic Research, Feb. 2016. *National Bureau of Economic Research*, doi:10.3386/w21974. https://www.nber.org/papers/w21974.pdf

⁵⁶ Gordon, R (2016) *The Rise and Fall of American Growth: U.S. Standard of Living since the Civil War* https://press.princeton.edu/books/hardcover/9780691147727/the-rise-and-fall-of-american-growth

⁵⁷ Solow, Robert M. "A Contribution to the Theory of Economic Growth." *The Quarterly Journal of Economics*, vol. 70, no. 1, Feb. 1956, p. 65. doi:10.2307/1884513

⁵⁸ "Information Technology and the U.S. Workforce: Where Are We and Where Do We Go from Here?" doi:10.17226/24649 <u>https://www.nap.edu/read/24649/chapter/5#55</u>

⁵⁹ Bivens, Josh and Mishel, Lawrence (2015) Understanding the Historic Divergence Between Productivity and a Typical Worker's Pay: Why It Matters and Why It's Real. Economic Policy Institute. https://www.epi.org/files/2015/understanding-productivity-pay-divergence-final.pdf

⁶⁰ "Why Hasn't Technology Sped up Productivity?" *Chicago Booth Review*.

https://review.chicagobooth.edu/economics/2018/article/why-hasn-t-technology-sped-productivity

⁶¹ OECD. *OECD Compendium of Productivity Indicators 2019*. OECD, 2019. doi:10.1787/b2774f97-en ⁶² Huff, Darrell (1954) *How to Lie with Statistics*. Norton, 1954.

http://faculty.neu.edu.cn/cc/zhangyf/papers/How-to-Lie-with-Statistics.pdf

⁶³ Blum, Avrim, et al. *Foundations of Data Science*. First edition, Cambridge University Press, 2020. https://www.cs.cornell.edu/jeh/book.pdf

 ⁶⁴ David, Javier. "Study: Nearly 70 Percent of Tech Spending Is Wasted." *Vox*, 31 Oct. 2015, https://www.vox.com/2015/10/31/11620222/study-nearly-70-percent-of-tech-spending-is-wasted
 ⁶⁵ Zobell, Steven. "Why Digital Transformations Fail: Closing The \$900 Billion Hole In Enterprise
 Strategy." *Forbes*. https://www.forbes.com/sites/forbestechcouncil/2018/03/13/why-digitaltransformations-fail-closing-the-900-billion-hole-in-enterprise-strategy/

⁶⁶ Giller, Graham L. "A Generalized Error Distribution." *SSRN Electronic Journal*, 2005. doi:10.2139/ssrn.2265027.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.542.879&rep=rep1&type=pdf

⁶⁷ McDonald, James B., and Yexiao J. Xu. "A Generalization of the Beta Distribution with Applications." *Journal of Econometrics*, vol. 66, no. 1–2, Mar. 1995, pp. 133–52. doi:10.1016/0304-4076(94)01612-4. https://www.sciencedirect.com/science/article/abs/pii/0304407694016124

⁶⁸ Granger, Clive W.J. (1983) Co-integrated variables and error-correcting models. UCSD Discussion Paper 83-13.

⁶⁹ Engle, Robert F. "Interpreting Spectral Analyses in Terms of Time-Domain Models." Annals of Economic & Social Measurement. Vol 5, no 1, Jan. 1976, pp. 89–109. www.nber.org/chapters/c10429.pdf
⁷⁰ Engle, Robert F. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica, vol. 50, no. 4, July 1982, p. 987. doi:10.2307/1912773. http://www.econ.uiuc.edu/~econ508/Papers/engle82.pdf

⁷¹ Granger, Clive W. J., et al. *Essays in Econometrics: Collected Papers of Clive W.J. Granger*. Cambridge University Press, 2001. <u>https://dl.acm.org/citation.cfm?id=781849</u>

⁷² Granger, Clive W. J. *Time Series Analysis, Cointegration, and Applications.* 2004. https://escholarship.org/uc/item/2nb9f668

⁷³ Engle, Robert. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics." *Journal of Economic Perspectives*, vol. 15, no. 4, Nov. 2001, pp. 157–68. doi:10.1257/jep.15.4.157. http://www.cmat.edu.uy/~mordecki/hk/engle.pdf

⁷⁴ https://www.nobelprize.org/prizes/economic-sciences/2003/summary/

⁷⁵ Baldassare Fronte, Greta Galliano and Carlo Bibbiani (2016) From freshwater to marine aquaponic: new opportunities for marine fish species production. Conference VIVUS, 20th and 21st April 2016, Biotechnical Centre Naklo, Strahinj 99, Naklo, Slovenia.

https://pdfs.semanticscholar.org/f8b2/fad3fe3f6f92a7b1c8276ad57876d8fd0a70.pdf

⁷⁶ Matthias, Dipika M., et al. "Freezing Temperatures in the Vaccine Cold Chain: A Systematic Literature Review." *Vaccine*, vol. 25, no. 20, May 2007, pp. 3980–86. doi:10.1016/j.vaccine.2007.02.052.

https://www.nist.gov/sites/default/files/documents/2017/05/09/FreezingReviewArticle-Vaccine.pdf

⁷⁷ D. Ruppert (2011) *Statistics and Data Analysis for Financial Engineering*. Pages 477-504. Springer Texts in Statistics. DOI 10.1007/978-1-4419-7787-8_18

https://faculty.washington.edu/ezivot/econ589/ch18-garch.pdf

⁷⁸ Duan, Jin-Chuan (2001) GARCH Model and Its Application.

http://jupiter.math.nctu.edu.tw/~weng/seminar/GarchApplication.pdf

⁷⁹ Diebold, F.X. (2019) Econometric Data Science: A Predictive Modeling Approach

http://www.ssc.upenn.edu/~fdiebold/Textbooks.html

https://www.sas.upenn.edu/~fdiebold/Teaching104/Econometrics.pdf

⁸⁰ Datta, Shoumen and Granger Clive (2006) Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management. <u>https://dspace.mit.edu/handle/1721.1/41905</u>

⁸¹ Datta, S., et al. "Management of Supply Chain: An Alternative Modelling Technique for

Forecasting." Journal of the Operational Research Society, vol. 58, no. 11, Nov. 2007, pp. 1459–69.

doi:10.1057/palgrave.jors.2602419. https://dspace.mit.edu/handle/1721.1/41906

⁸² Narayanan, Arvind (2019) *How to recognize AI snake oil*

https://www.cs.princeton.edu/~arvindn/talks/MIT-STS-AI-snakeoil.pdf

⁸³ Li, Lingli, et al. "A Survey of Uncertain Data Management." *Frontiers of Computer Science*, vol. 14, no. 1, Feb. 2020, pp. 162–90. doi:10.1007/s11704-017-7063-z.

https://link.springer.com/article/10.1007/s11704-017-7063-z

⁸⁴ Agrawal, R., Imielinski, T., Swami, A. (1993) "Mining Association Rules between Sets of Items in Large Databases." *Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data - SIGMOD* '93, ACM Press, 1993, pp. 207–16. doi:10.1145/170035.170072.

⁸⁵ Coenen, Frans. "Data Mining: Past, Present and Future." The Knowledge Engineering Review, vol. 26, no. 1, Feb. 2011, pp. 25–29. doi:10.1017/S0269888910000378.

https://www.researchgate.net/publication/220254364_Data_mining_Past_present_and_future

⁸⁶ Kahneman, Daniel. *Thinking, Fast and Slow*. Penguin Books, 2012.

http://sysengr.engr.arizona.edu/OLLI/lousyDecisionMaking/KahnemanThinkingFast&Slow.pdf

⁸⁷ Akerlof, George, and Janet Yellen. "Rational Models of Irrational Behavior." American Economic

Review, vol. 77, no. 2, 1987, pp. 137–42. <u>https://notendur.hi.is/ajonsson/kennsla2003/Akerlof_Yellen.pdf</u> ⁸⁸ <u>https://spectrum.ieee.org/biomedical/diagnostics/how-ibm-watson-overpromised-and-</u> <u>underdelivered-on-ai-health-care</u>

⁸⁹ Minds and Machines Postponed / Canceled - Post Regarding GE Digital Layoffs.

https://www.thelayoff.com/t/VtbKYAf

90 http://bit.ly/MRC-BERT-HAN

⁹¹ Rumelhart, David E., et al. "Learning Representations by Back-Propagating Errors." *Nature*, vol. 323, no. 6088, Oct. 1986, pp. 533–36. doi:10.1038/323533a0.

https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf

⁹² McCarthy, John, Minsky, Marvin L., Rochester, Nathaniel and Shannon, Claude E. (1955) A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence (31 August 1955) <u>http://www-formal.stanford.edu/jmc/history/dartmouth.pdf</u>

⁹³ Datta, Shoumen and Granger Clive (2006) Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management. <u>https://dspace.mit.edu/handle/1721.1/41905</u>

⁹⁴ Levy, Frank. "Computers and Populism: Artificial Intelligence, Jobs, and Politics in the near Term." *Oxford Review of Economic Policy*, vol. 34, no. 3, July 2018, pp. 393–417.

doi:10.1093/oxrep/gry004. https://www.russellsage.org/sites/default/files/gry004.pdf

⁹⁵ GE Minds + Machines (November 15, 2016) <u>www.youtube.com/watch?v=OYn9ZtpWCUw</u>

⁹⁶ Why Robots Won't Take over the World. <u>https://phys.org/news/2018-04-robots-wont-world.html</u>

⁹⁷ Freedman, David H. "What Will It Take for IBM's Watson Technology to Stop Being a Dud in Health Care?" *MIT Tech Review www.technologyreview.com/s/607965/a-reality-check-for-ibms-ai-ambitions/*⁹⁸ Minds and Machines Postponed / Canceled - Post Regarding GE Digital Layoffs. https://www.thelayoff.com/t/VtbKYAf

⁹⁹ Salmon, Felix. "IBM's Watson Was Supposed to Change the Way We Treat Cancer. Here's What Happened Instead." *Slate Magazine*, 18 Aug 2018. <u>https://slate.com/business/2018/08/ibms-watson-how-the-ai-project-to-improve-cancer-treatment-went-wrong.html</u>

¹⁰⁰ Perez, Carlos E. "Why We Should Be Deeply Suspicious of BackPropagation." *Medium*, 13 Oct 2017. https://medium.com/intuitionmachine/the-deeply-suspicious-nature-of-backpropagation-<u>9bed5e2b085e</u>

¹⁰¹ Datta, Shoumen. *Intelligence in Artificial Intelligence*. Oct 2016. <u>https://arxiv.org/abs/1610.07862</u>
¹⁰² "There's No Good Reason to Trust Blockchain Technology." *Wired*.

https://www.wired.com/story/theres-no-good-reason-to-trust-blockchain-technology/

¹⁰³ Stinchcombe, Kai. "Blockchain Is Not Only Crappy Technology but a Bad Vision for the Future." *Medium*. 9 April 2018. <u>https://medium.com/@kaistinchcombe/decentralized-and-trustless-</u> crypto-paradise-is-actually-a-medieval-hellhole-c1ca122efdec

¹⁰⁴ "RuuviLab - IOTA Masked Authentication Messaging." RuuviLab. <u>https://lab.ruuvi.com/iota</u>

¹⁰⁵ Andreas Kamilaris, Agusti Fonts and Francesc X. Prenafeta-Boldύ (2019) The Rise of Blockchain Tech in Agriculture and Food Supply Chains. <u>https://arxiv.org/ftp/arxiv/papers/1908/1908.07391.pdf</u>
 ¹⁰⁶ Press, Gil. "Big Data Is Dead. Long Live Big Data AI." *Forbes*.

www.forbes.com/sites/gilpress/2019/07/01/big-data-is-dead-long-live-big-data-ai/#5a262cf71b05 ¹⁰⁷ Walsh, Mary Williams, and Emily Flitter. "McKinsey Faces Criminal Inquiry Over Bankruptcy Case Conduct." *The New York Times*, 8 Nov 2019. <u>https://www.nytimes.com/2019/11/08/business/mckinsey-</u> criminal-investigation-bankruptcy.html

¹⁰⁸ Black, Edwin. *IBM and the Holocaust: The Strategic Alliance between Nazi Germany and America's Most Powerful Corporation*. 1st ed, Crown Publishers, 2001. <u>http://posoh.ru/book/htm/ibm.pdf</u>
 ¹⁰⁹ Allison, Simon. "Huawei's Pitch to African Mayors: 'Our Cameras Will Make You Safe.'" *The M&G Online*. <u>https://mg.co.za/article/2019-11-15-00-our-cameras-will-make-you-safe</u>

¹¹⁰ 2007 Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability: HCMDSS//MD PnP 2007: *Improving Patient Safety through Medical Device Interoperability and High Confidence Software*: Proceedings: 25-27 June 2007, Cambridge, MA. https://nam.edu/wp-content/uploads/2018/02/3.1-Goldman-Jan-2018-002.pdf

 ¹¹¹ Hatcliff, John et al (2011) Medical Application Platforms – Rationale, Architectural Principles, and Certification Challenges. www.nitrd.gov/nitrdgroups/images/8/8b/MedicalDeviceInnovationCPS.pdf
 ¹¹² Makary, Martin A., and Michael Daniel. "Medical Error—the Third Leading Cause of Death in the US." *BMJ*, vol. 353, May 2016. doi:10.1136/bmj.i2139 https://www.bmj.com/content/353/bmj.i2139
 ¹¹³ Slight, Sarah Patricia, et al. "Meaningful Use of Electronic Health Records: Experiences From the Field and Future Opportunities." *JMIR Medical Informatics*, vol. 3, no. 3, 2015, p. e30. doi:10.2196/medinform.4457 https://medinform.jmir.org/2015/3/e30/

¹¹⁴ Meaningful Use. CDC. 10 Sept. 2019 <u>https://www.cdc.gov/ehrmeaningfuluse/introduction.html</u>
 ¹¹⁵ MIT AUTO-ID LABORATORY <u>https://autoid.mit.edu/about-lab</u>

¹¹⁶ Shabandri, Bilal, and Piyush Maheshwari. "Enhancing IoT Security and Privacy Using Distributed Ledgers with IOTA and the Tangle." *2019 6th International Conference on Signal Processing and Integrated Networks (SPIN)*, IEEE, 2019, pp. 1069–75. doi:10.1109/SPIN.2019.8711591

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1e c/iota1_4_3.pdf

¹¹⁷ The Coordicide <u>https://files.iota.org/papers/Coordicide_WP.pdf</u>

¹¹⁸ <u>https://www.iota.org/</u>

¹¹⁹ Send IoT Data to the IOTA Tangle with SAP HANA XSA and Analytics Cloud.

https://blogs.sap.com/2019/10/08/send-iot-data-to-the-iota-tangle-with-sap-hana-xsa-and-analyticscloud/

120 https://www.dds-foundation.org/

¹²¹ Mark Shepard, Katherine Baicker and Jonathan S. Skinner (2019). *Does One Medicare Fit All? The Economics of Uniform Health Insurance Benefits* in Tax Policy and the Economy, Volume 34, Moffitt. DOI 10.3386/w26472 <u>https://www.nber.org/papers/w26472.pdf</u>

122 http://bit.ly/Economics-of-Technology

123 http://bit.ly/COASE5PAPERS

¹²⁴ Merelli, Annalisa. "The Inventor of Microfinance Has an Idea for Fixing Capitalism." *Quartz*. <u>https://qz.com/1089266/the-inventor-of-microfinance-has-an-idea-for-fixing-capitalism/</u>

¹²⁵ Georgescu, Cristian. "Simulating Micropayments in Local Area Networks." *Procedia - Social and Behavioral Sciences*, vol. 62, Oct. 2012, pp. 30–34. <u>https://doi.org/10.1016/j.sbspro.2012.09.007</u>

¹²⁶ Spence, Michael (2011) The Next Convergence: The Future of Economic Growth in a Multispeed
 World. Farrar, Straus and Giroux, 2011. <u>http://pubdocs.worldbank.org/en/515861447787792966/DEC-</u>
 Lecture-Series-Michael-Spence-Presentation.pdf

¹²⁷ Tabassi, Elham, et al. *A Taxonomy and Terminology of Adversarial Machine Learning*. NIST IR 8269draft. National Institute of Standards and Technology, October 2019. doi:10.6028/NIST.IR.8269-draft https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8269-draft.pdf

¹²⁸ Duddu, Vasisht. "A Survey of Adversarial Machine Learning in Cyber Warfare." *Defence Science Journal*, vol. 68, no. 4, June 2018, p. 356. doi:10.14429/dsj.68.12371

¹²⁹ Victoria Morgan, Lisseth Casso-Hartman, David Bahamon-Pinzon, Kelli McCourt, Robert G. Hjort, Sahar Bahramzadeh, Irene Velez-Torres, Eric McLamore, Carmen Gomes, Evangelyn C. Alocilja, Nirajan Bhusal, Sunaina Shrestha, Nisha Pote, Ruben Kenny Briceno, Shoumen Palit Austin Datta, and Diana C. Vanegas (2020) *Sensor-as-a-Service: Convergence of Sensor Analytic Point Solutions (SNAPS) and Pay-A-Penny-Per-Use (PAPPU) Paradigm as a Catalyst for Democratization of Healthcare in Underserved Communities*. Diagnostics 2020, 10, 22; doi:10.3390/diagnostics10010022 • MIT Library

SNAPS - https://dspace.mit.edu/handle/1721.1/123983 • https://dspace.mit.edu/handle/1721.1/11021 ¹³⁰ Datta, Shoumen et al (2004) *ADAPTIVE VALUE NETWORKS: Convergence of Emerging Tools*,

Technologies and Standards as Catalytic Drivers in Chang, Yoon Seok, et al., editors. Evolution of Supply Chain Management: Symbiosis of Adaptive Value Networks and ICT. Kluwer Academic Publishers, 2004. <u>https://dspace.mit.edu/handle/1721.1/41908</u>

¹³¹ Silvestro, Rhian, and Paola Lustrato. "Integrating Financial and Physical Supply Chains: The Role of Banks in Enabling Supply Chain Integration." *International Journal of Operations & Production Management*, vol. 34, no. 3, Jan. 2014, pp. 298–324. doi:10.1108/IJOPM-04-2012-0131. https://www.emerald.com/insight/content/doi/10.1108/IJOPM-04-2012-0131/full/html

¹³² Banerjee, Abhijit V., and Esther Duflo. *Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty*. 1st ed, PublicAffairs, 2011. <u>https://warwick.ac.uk/about/london/study/warwick-summer-school/courses/macroeconomics/poor_economics.pdf</u>

¹³³ Kamenetz, Anya. "Esther Duflo Bribes India's Poor To Health." *Fast Company*, 8 August 2011. https://www.fastcompany.com/1768537/esther-duflo-bribes-indias-poor-health

¹³⁴ Lie, Robert. *Robertlie/Dht11-Raspi3*. 2018. 2019. *GitHub* <u>https://github.com/robertlie/dht11-raspi3</u>
¹³⁵ Handy, Paul. "Introducing Masked Authenticated Messaging." *Medium*, 9 April 2018.

https://blog.iota.org/introducing-masked-authenticated-messaging-e55c1822d50e

¹³⁶ Ekaterina D. Kazimirova (2017) Human-Centric Internet of Things. Problems and Challenges https://www.researchgate.net/publication/319059870_Human-

<u>Centric_Internet_of_Things_Problems_and_Challenges</u>

¹³⁷ Calderon, Marco A., et al. "A More Human-Centric Internet of Things with Temporal and Spatial Context." *Procedia Computer Science*, vol. 83, 2016, pp. 553–559 doi:10.1016/j.procs.2016.04.263 https://www.sciencedirect.com/science/article/pii/S1877050916302964

¹³⁸ McLamore, E.S., S.P.A. Datta, V. Morgan, N. Cavallaro, G. Kiker, D.M. Jenkins, Y. Rong, C. Gomes, J. Claussen, D. Vanegas, E.C. Alocilja (2019) SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support. *Sensors*, vol. 19, no. 22, p. 4935 • https://www.mdpi.com/1424-8220/19/22/4935/pdf
 ¹³⁹ Artificial Intelligence - Intelligent Agents (2017) https://courses.edx.org/asset-

v1:ColumbiaX+CSMM.101x+1T2017+type@asset+block@AI_edx_intelligent_agents_new__1_.pdf ¹⁴⁰ Sutton, Richard S., and Andrew G. Barto. *Reinforcement Learning: An Introduction*. Second edition, MIT Press, 2018. <u>https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf</u> ¹⁴¹ "The Sensor-Based Economy." *Wired*, January 2017.

https://www.wired.com/brandlab/2017/01/sensor-based-economy/

¹⁴² Pont, Simon, editor. *Digital State: How the Internet Is Changing Everything*. Kogan Page, 2013.

¹⁴³ Leading the IoT: Gartner Insights on How to Lead in a Connected World

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

¹⁴⁴ Dave Evans (2011) The Internet of Things: How the Next Evolution of the Internet Is Changing Everything. <u>https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf</u>

¹⁴⁵ David Puglia. "Are Enterprises Ready for Billions of Devices to Join the Internet?" *Wired*, December 2014. <u>https://www.wired.com/insights/2014/12/enterprises-billions-of-devices-internet/</u>

¹⁴⁶ "Gartner Says 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in Use in 2020."

https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

¹⁴⁷ www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
 ¹⁴⁸ The Internet of Things: Sizing up the Opportunity. McKinsey.

https://www.mckinsey.com/industries/semiconductors/our-insights/the-internet-of-things-sizing-up-the-opportunity

¹⁴⁹ "IoT Overview Handbook: 2019 Background Primer on The Topics & Technologies Driving the Internet of Things." *Postscapes*. <u>https://www.postscapes.com/iot/</u>

¹⁵⁰ Martin Fleming, Wyatt Clarke, Subhro Das, Phai Phongthiengtham, and Prabhat Reddy (2019) The Future of Work: How New Technologies Are Transforming Tasks (October 31, 2019)

https://mitibmwatsonailab.mit.edu/research/publications/paper/download/The-Future-of-Work-How-New-Technologies-Are-Transforming-Tasks.pdf

¹⁵¹ Andrew Ng "Why AI Is the New Electricity" <u>https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity</u>

¹⁵² Cheekiralla, Sivaram, and Daniel W. Engels. "An IPv6-Based Identification Scheme." *2006 IEEE International Conference on Communications*, vol. 1, 2006, pp. 281–86. doi:10.1109/ICC.2006.254741 https://ieeexplore.ieee.org/document/4024131

¹⁵³ Stallings, W. "IPv6: The New Internet Protocol." *IEEE Communications Magazine*, vol. 34, no. 7, July 1996, pp. 96–108. doi:10.1109/35.526895. <u>https://ieeexplore.ieee.org/document/526895</u>

¹⁵⁴ "Difference Between IPv4 and IPv6" *Tech Differences*, 4 August 2017.

https://techdifferences.com/difference-between-ipv4-and-ipv6.html

¹⁵⁵ Datta, Shoumen Palit Austin "An Unified Theory of Relativistic Identification of Information in the Systems Age: Proposed Convergence of Unique Identification with Syntax and Semantics through Internet Protocol Version 6 (IPv6)." *International Journal of Advanced Logistics*, vol. 1, no. 1, July 2012, pp. 66–82. doi:10.1080/2287108X.2012.11006070. https://dspace.mit.edu/handle/1721.1/41902

¹⁵⁶ Datta, Shoumen. "Mobile eVote as an IPv6 App." 23 May 2011.

https://shoumendatta.wordpress.com/2011/05/23/mobile-e-vote-ipv6-app/.

https://dspace.mit.edu/bitstream/handle/1721.1/41902/IPv6%20Apps%20and%20SaaS.pdf?sequence=1 1&isAllowed=y

¹⁵⁷ <u>https://bentley.umich.edu/elecrec/d/duderstadt/Speeches/JJDS6/jjd1341.pdf</u>

¹⁵⁸ Figueroa, Anthony. "Data Demystified — DIKW Model." *Medium*, 24 May 2019. https://towardsdatascience.com/rootstrap-dikw-model-32cef9ae6dfb

 ¹⁵⁹ William S. Angerman (2004) Coming Full Circle With Boyd's OODA Loop Ideas: An Analysis Of Innovation Diffusion And Evolution (Thesis). <u>https://apps.dtic.mil/dtic/tr/fulltext/u2/a425228.pdf</u>
 ¹⁶⁰ Castanedo, Federico. "A Review of Data Fusion Techniques." *The Scientific World Journal*, 2013, doi:10.1155/2013/704504. <u>http://downloads.hindawi.com/journals/tswj/2013/704504.pdf</u>
 ¹⁶¹ <u>https://www.wur.nl/en/Education-Programmes/wageningen-academy-1/What-we-offer-</u>

vou/Courses/show-1/Course-Towards-Data-driven-Agri-Food-Business-1.htm

¹⁶² CS 540 Lecture Notes: Intelligent Agents. <u>http://pages.cs.wisc.edu/~dyer/cs540/notes/agents.html</u>

¹⁶³ Maes, Pattie. "Intelligent Software." *Proceedings of the 2nd International Conference on Intelligent User Interfaces - IUI* '97, ACM Press, 1997, pp. 41–43 • doi:10.1145/238218.238283

¹⁶⁴ Paolucci, Massimo, and Roberto Sacile. *Agent-Based Manufacturing and Control Systems: New Agile Manufacturing Solutions for Achieving Peak Performance*. CRC Press, 2005.

http://jmvidal.cse.sc.edu/library/paolucci05a.pdf

¹⁶⁵ Datta, S (2017) Cybersecurity: Agents based Approach? <u>https://dspace.mit.edu/handle/1721.1/107988</u>
 ¹⁶⁶ White, Franklin E. (1997) Data Fusion Group. <u>https://apps.dtic.mil/dtic/tr/fulltext/u2/a394662.pdf</u>

¹⁶⁷ Rafferty, Ellen R. S., et al. "Seeking the Optimal Schedule for Chickenpox Vaccination in Canada: Using an Agent-Based Model to Explore the Impact of Dose Timing, Coverage and Waning of

Immunity on Disease Outcomes." Vaccine, November 2019. doi:10.1016/j.vaccine.2019.10.065.

¹⁶⁸ O. Lassila and R.R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. W3C working draft, February 1999. <u>www.w3.org/TR/REC-rdf-syntax/</u>

¹⁶⁹ T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, March 2001.
 ¹⁷⁰ Shi, Longxiang, et al. "Semantic Health Knowledge Graph: Semantic Integration of Heterogeneous Medical Knowledge and Services." *BioMed Research International*, vol. 2017, 2017, pp. 1–12 doi:10.1155/2017/2858423 http://downloads.hindawi.com/journals/bmri/2017/2858423.pdf

 ¹⁷¹ Ayan Chakraborty, Shiladitya Munshi and Debajyoti Mukhopadhyay (2013) Searching and Establishment of S-P-O Relationships for Linked RDF Graphs : An Adaptive Approach. 2013 Int Conf on Cloud & Ubiquitous Comp & Emerging Tech <u>https://arxiv.org/ftp/arxiv/papers/1311/1311.7200.pdf</u>
 ¹⁷² Ayan Chakraborty, Shiladitya Munshi and Debajyoti Mukhopadhyay (2013) A Proposal for the Characterization of MultiDimensional Inter-relationships of RDF Graphs Based on Set Theoretic Approach. <u>https://arxiv.org/ftp/arxiv/papers/1312/1312.0001.pdf</u>

¹⁷³ Buneman, Peter. "A Characterisation of Rigid Circuit Graphs." *Discrete Mathematics*, vol. 9, no. 3, Sept. 1974, pp. 205–212 doi:10.1016/0012-365X(74)90002-8.

http://homepages.inf.ed.ac.uk/opb/homepagefiles/phylogeny-scans/rigidcircuitgraphs.pdf

¹⁷⁴ Sharma, Chandan, and Roopak Sinha. (2019) "A Schema-First Formalism for Labeled Property Graph Databases: Enabling Structured Data Loading and Analytics." *Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies - BDCAT '19*, ACM Press, 2019, pp. 71–80 doi:10.1145/3365109.3368782

¹⁷⁵ Wang, Da-Wei, et al. (2019) "CK-Modes Clustering Algorithm Based on Node Cohesion in Labeled Property Graph." *J of Computer Science and Technology*, vol. 34, no. 5, September 2019, pp. 1152-1166 doi:10.1007/s11390-019-1966-0

¹⁷⁶ https://aibusiness.com/ending-the-rdf-vs-property-graph-debate-with-rdf/

¹⁷⁷ Tarjan, Robert. "Depth-First Search and Linear Graph Algorithms." *SIAM Journal on Computing*, vol. 1, no. 2, June 1972, pp. 146–160 doi:10.1137/0201010.

¹⁷⁸ Fleischer, Rudolf, and Gerhard Trippen. (2003) "Experimental Studies of Graph Traversal

Algorithms." *Experimental and Efficient Algorithms*, edited by Klaus Jansen et al., vol. 2647, Springer Berlin Heidelberg, 2003, pp. 120–133 doi:10.1007/3-540-44867-5_10

¹⁷⁹ Noy, Natasha, et al. "Industry-Scale Knowledge Graphs: Lessons and Challenges." *Com of the ACM*, vol. 62, no. 8, July 2019, pp. 36–43 doi:10.1145/3331166 <u>https://queue.acm.org/detail.cfm?id=3332266</u>
¹⁸⁰ <u>https://tech.ebayinc.com/engineering/akutan-a-distributed-knowledge-graph-store/</u>

¹⁸¹ https://www.w3.org/TR/owl-guide/

¹⁸² Sengupta K., Hitzler P. (2014) Web Ontology Language (OWL). In: Alhajj, Reda, and Jon Rokne, eds. *Encyclopedia of Social Network Analysis & Mining*. Springer, NY. doi:10.1007/978-1-4614-6170-8
 ¹⁸³ http://vowl.visualdataweb.org/v2/

¹⁸⁴ https://tools.ietf.org/html/rfc3987

¹⁸⁵ www.eads-iw.net/web/nfigay

¹⁸⁶ Carbone, Lorenzo, et al. *State of Play of Interoperability: Report 2016.* 2017. *Open WorldCat.* http://dx.publications.europa.eu/10.2799/969314

https://ec.europa.eu/isa2/sites/isa/files/docs/publications/report_2016_rev9_single_pages.pdf ¹⁸⁷ "Blind Men and the Elephant." <u>www.allaboutphilosophy.org/blind-men-and-the-elephant.htm</u> ¹⁸⁸ Bohr, N. (1950) "On the Notions of Causality and Complementarity." *Science*, vol. 111, no. 2873, January 1950, pages 51–54 doi:10.1126/science.111.2873.51

¹⁸⁹ Morrison, Alan (2019) *Is data science/machine learning/AI overhyped right now?* www.quora.com/Is-data-science-machine-learning-AI-overhyped-right-now/answer/Alan-Morrison
 ¹⁹⁰ Fuller, Aidan, et al. "Digital Twin: Enabling Technology, Challenges and Open Research." Oct.

2019. http://arxiv.org/abs/1911.01276 • https://arxiv.org/ftp/arxiv/papers/1911/1911.01276.pdf

¹⁹¹ https://newsstand.joomag.com/en/iic-journal-of-innovation-12th-edition/0994713001573661267

¹⁹² https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-isit-so-important

¹⁹³ Pareto, Vilfredo. *Manual of political economy*. Translated by A. M. Kelley, 1971. MIT Press.

¹⁹⁴ Eric S. McLamore, R. Huffaker, Matthew Shupler, Katelyn Ward, Shoumen Palit Austin Datta, M. Katherine Banks, Giorgio Casaburi, Joany Babilonia, Jamie S. Foster (2019) "Digital Proxy of a Bio-Reactor (DIYBOT) Combines Sensor Data and Data Analytics for Wastewater Treatment and Wastewater Management Systems." (*Nature Scientific Reports, in press*) Draft copy of "DIYBOT" available from MIT Libraries <u>https://dspace.mit.edu/handle/1721.1/123983</u>

¹⁹⁵ Hernlund, E., et al. "Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden: A Report Prepared in Collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA)." *Archives of Osteoporosis*, vol. 8, no. 1–2, December 2013, p. 136. doi:10.1007/s11657-013-0136-1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880487/pdf/11657_2013_Article_136.pdf

¹⁹⁶ Mithal, Ambrish, Dhingra, Vibha and Lau, Edith (2009) .The Asian Audit Epidemiology, costs and burden of osteoporosis in Asia 2009. <u>http://www.iofbonehealth.org/</u>

¹⁹⁷www.iofbonehealth.org/sites/default/files/PDFs/Audit%20Eastern%20Europe_Central%20Asia/Russi an_Audit-Bulgaria.pdf

¹⁹⁸ www.iofbonehealth.org/sites/default/files/PDFs/Audit%20Asia/Asian_regional_audit_Indonesia.pdf

¹⁹⁹ www.iofbonehealth.org/sites/default/files/PDFs/Audit%20Asia/Asian_regional_audit_India.pdf
 ²⁰⁰ https://www.iofbonehealth.org/facts-statistics

²⁰¹ Global Bone Density Test Market Grows Substantially by 2023, Asserts MRFR Unleashing the Forecast for 2017-2023. *Reuters*. <u>www.reuters.com/brandfeatures/venture-capital/article?id=57229</u>
²⁰² El Maghraoui, A., et al. "Bone Mineral Density of the Spine and Femur in a Group of Healthy Moroccan Men." *Bone*, vol. 44, no. 5, May 2009, pp. 965–969 doi:10.1016/j.bone.2008.12.025
²⁰³ Angell, Marcia. (2005) *The Truth about the Drug Companies: How They Deceive Us and What to Do about It*. Random House Trade Paperbacks, 2005.

https://cyber.harvard.edu/cyberlaw2005/sites/cyberlaw2005/images/NYReviewBooksAngell.pdf²⁰⁴ https://www.keele.ac.uk/pharmacy-bioengineering/ourpeople/jamesnolan/

²⁰⁵ https://people.eecs.berkeley.edu/~pabbeel/

²⁰⁶ http://bit.ly/Farm-IoT-Ranveer

²⁰⁷ https://www.theaaih.org/

²⁰⁸ Gutterman, D.J. (2009) Silent Myocardial Ischemia. May 2009. Circulation Journal 2009 **73** 785–797. https://www.jstage.jst.go.jp/article/circj/73/5/73_CJ-08-1209/_pdf

²⁰⁹ <u>https://github.com/alirezadir/Production-Level-Deep-Learning</u>

²¹⁰ Hannah Ritchie (2018) *What do people die from* ? <u>https://ourworldindata.org/what-does-the-world-die-from</u>

²¹¹ https://www.who.int/nmh/publications/ncd_report_chapter1.pdf

²¹² Institute for Health Metrics and Evaluation, Human Development Network, The World Bank. The Global Burden of Disease: Generating Evidence, Guiding Policy — Sub-Saharan Africa Regional Edition. Seattle, WA: IHME, 2013.

http://documents.worldbank.org/curated/en/831161468191672519/pdf/808520PUB0ENGL0Box037982 0B00PUBLIC0.pdf

²¹³ Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization (2009). ISBN 978 92 4 156387 1

https://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf ²¹⁴ https://www.who.int/pmnch/media/press_materials/fs/fs_mdg4_childmortality/en/

²¹⁵ https://economictimes.indiatimes.com/magazines/panache/jack-dorsey-has-fallen-in-love-withafrica-plans-to-shift-there-for-3-6-months-next-year/articleshow/72275949.cms

²¹⁶ The concept of "bit dribbling" may not be new but may be attributed to Neil Gershenfeld (MIT) circa 1999 (*personal communication*). The notion is that very small amounts of data and information (bits) transmitted (dribbled) at the right time, are often enough to serve 80% of cases, in several circumstances.
²¹⁷ Parker, Martin (2018) Shut Down the Business School.

https://www.theguardian.com/news/2018/apr/27/bulldoze-the-business-school

²¹⁸ Eid, Mohamad A., et al. "A Novel Eye-Gaze-Controlled Wheelchair System for Navigating Unknown Environments: Case Study With a Person With ALS." *IEEE Access*, vol. 4, 2016, pages 558 - 573. doi:10.1109/ACCESS.2016.2520093.

²¹⁹ Robots for Lonely Hearts – Asian Robotics Review. <u>https://asianroboticsreview.com/home29-html</u>

²²⁰ Oppenheimer, Andres, and Ezra E. Fitz. *The Robots Are Coming! The Future of Jobs in the Age of Automation*. Vintage Books, a division of Penguin Random House, 2019. ISBN-13 978-0525565000
 ²²¹ Deming, David. "The Robots Are Coming. Prepare for Trouble." *The New York Times*, 30 January 2020. https://www.nytimes.com/2020/01/30/business/artificial-intelligence-robots-retail.html

²²² http://www.philipkdickfans.com/mirror/websites/pkdweb/short_stories/Autofac.htm

²²³ https://www.bloomberg.com/news/features/2017-10-18/this-company-s-robots-are-makingeverything-and-reshaping-the-world

²²⁴ Ford, Martin. *Rise of the Robots: Technology and the Threat of a Jobless Future*. Basic Books, 2016.
²²⁵ Pugliano, John. *The Robots Are Coming: A Human's Survival Guide to Profiting in the Age of Automation*. Ulysses Press, 2017.

²²⁶ The Dutch Safety Board (2009) *Crashed during approach, Boeing 737-800, near Amsterdam Schiphol Airport, 25 February 2009.* <u>https://catsr.vse.gmu.edu/SYST460/TA1951_AccidentReport.pdf</u>

²²⁷ Pacaux-Lemoine, Marie-Pierre, and Frank Flemisch. "Layers of Shared and Cooperative Control, Assistance and Automation." *IFAC-PapersOnLine*, vol. 49, no. 19, 2016, pp. 159 - 164 doi:10.1016/j.ifacol.2016.10.479

²²⁸ Wickens, Christopher D., et al. "Stages and Levels of Automation: An Integrated Meta-Analysis." *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, vol. 54, no. 4, Sept. 2010, pp. 389 - 393 doi:10.1177/154193121005400425

²²⁹ Hamby, Chris. "How Boeing's Responsibility in a Deadly Crash 'Got Buried." *The New York Times*,
20 January 2020. <u>https://www.nytimes.com/2020/01/20/business/boeing-737-accidents.html</u>

²³⁰ Hamby, C. and Moses, C. "Boeing Refuses to Cooperate With New Inquiry Into Deadly Crash." *The New York Times*, 6 February 2020. <u>www.nytimes.com/2020/02/06/business/boeing-737-inquiry.html</u>

²³¹ Solow, Robert M. (1957) "Technical Change and the Aggregate Production Function." *The Review of Economics and Statistics*, vol. 39, no. 3, Aug. 1957, p. 312. doi:10.2307/1926047

http://www.piketty.pse.ens.fr/files/Solow1957.pdf

²³² http://ghdx.healthdata.org/

²³³ <u>https://www.oxfordeconomics.com/recent-releases/how-robots-change-the-world</u>

²³⁴ <u>https://apm.byu.edu/prism/index.php/Members/JohnHedengren</u>

²³⁵ <u>https://apmonitor.com/do/index.php/Main/ShortCourse</u>

²³⁶ Osgood, Nathaniel. (2019) Systems Data Science.

https://www.youtube.com/watch?v=CPUOyqs9G3Q&feature=youtu.be

²³⁷ Bayes, Thomas. (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53(0):370-418, 1763 http://www.rssb.be/bsn57/bsn57-6.pdf
²³⁸ Exceptions prove the rule. Not all Indians espouse the "body shop" mantra. Global business and tech leaders (2020) of Indian origin include Mrs Jayashree Ullal (CEO, Arista Networks), Mr Arvind Krishna (CEO, IBM, incoming), Mr Sundar Pichai (CEO, Alphabet/Google), Mr Satya Nadella (CEO, Microsoft), Mr Shantanu Narayen (CEO, Adobe), Mr Rajeev Suri (CEO, Nokia, outgoing), Mr V K Narasimhan (CEO, Novartis) and Mr Ajaypal Singh Banga (CEO, MasterCard). The market cap of these 8 companies (~\$3T) may be 20% of the total market cap of the top 50 US companies (~\$15T). www.iweblists.com/us
²³⁹ Sabrie, Gilles (2019) Behind the Rise of China's Facial-Recognition Giants (09.03.2019)

https://www.wired.com/story/behind-rise-chinas-facial-recognition-giants/

²⁴⁰ https://www.purdue.edu/rosehub/

²⁴¹ Navi Radjou & Jaideep Prabhu (2016) *Frugal Innovation: How to do More With Less.* http://naviradjou.com/book/frugal-innovation-how-to-do-more-with-less/

²⁴² Creighton, Jean (2019) 5 Moon-landing innovations that changed life on Earth

https://theconversation.com/5-moon-landing-innovations-that-changed-life-on-earth-102700

²⁴³ <u>https://www.inc.com/bill-murphy-jr/27-innovations-we-use-constantly-but-that-you-probably-didnt-know-were-from-nasa-space-program.html</u>

²⁴⁴ <u>https://spinoff.nasa.gov/</u>

²⁴⁵ Marcus, Gary (2019) An Epidemic of AI Misinformation.

https://thegradient.pub/an-epidemic-of-ai-misinformation/

²⁴⁶ Vanegas, D. C., L. Patiño, C. Mendez, D. A. Oliveira, A. M. Torres, C. L. Gomes, and E. S. McLamore.
"Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials." *Biosensors*, vol. 8, no. 2, Apr. 2018, p. 42. doi:10.3390/bios8020042
https://www.mdpi.com/2079-6374/8/2/42

²⁴⁷ Holmes, E. A., et al. "Applications of Time-Series Analysis to Mood Fluctuations in Bipolar Disorder to Promote Treatment Innovation: A Case Series." *Translational Psychiatry*, vol. 6, no. 1, Jan. 2016, pp. e720–e720. doi:10.1038/tp.2015.207

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068881/pdf/tp2015207a.pdf

²⁴⁸ Trautmann, Sebastian, et al. "The Economic Costs of Mental Disorders: Do Our Societies React
Appropriately to the Burden of Mental Disorders?" EMBO Reports, vol. 17, no. 9, Sept. 2016, pp. 1245–1249. doi:10.15252/embr.201642951

www.ncbi.nlm.nih.gov/pmc/articles/PMC5007565/pdf/EMBR-17-1245.pdf

²⁴⁹ Drevets, Wayne C., et al. "Subgenual Prefrontal Cortex Abnormalities in Mood Disorders." *Nature*, vol. 386, no. 6627, Apr. 1997, pp. 824–827 doi:10.1038/386824a0

²⁵⁰ P. Llamocca, A. Junestrand, M. Cukic, D. Urgelés, V. López. (2018) *Data source analysis in mood disorder research*. XVIII Proceedings of the XVIII Conference of the Spanish Association for Artificial Intelligence, CAEPIA, ISBN: 978-84-09-05643-9 F. Herrera et al. (Eds.), pp. 893-900, Granada, Spain.
²⁵¹ P. Llamocca, D. Urgelés, M. Cukic, V. Lopez. (2019) *Bip4Cast: Some advances in mood disorders data analysis*. Proceedings of the 1st International Alan Turing Conference on Decision Support and Recommender Systems, London 2019.

²⁵² Raymond Perrault, Yoav Shoham, Erik Brynjolfsson, Jack Clark, John Etchemendy, Barbara Grosz, Terah Lyons, James Manyika, Saurabh Mishra, and Juan Carlos Niebles, "The AI Index 2019 Annual Report", AI Index Steering Committee, Human-Centered AI Institute, Stanford University, Stanford, CA, December 2019. <u>https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf</u> ²⁵³ Chen, Yu-Hsin, et al. "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on

Mobile Devices." May 2019. <u>http://arxiv.org/abs/1807.07928</u> • <u>https://arxiv.org/pdf/1807.07928.pdf</u> https://www.rle.mit.edu/eems/wp-content/uploads/2019/04/2019_jetcas_eyerissv2.pdf

 ²⁵⁴ Jo, Eun Seo, and Timnit Gebru. "Lessons from Archives: Strategies for Collecting Sociocultural Data in Machine Learning." Dec. 2019 doi:10.1145/3351095.3372829 https://arxiv.org/pdf/1912.10389.pdf
 ²⁵⁵ Tembon, Mercy Miyang, and Lucia Fort, editors. *Girl's Education in the 21st Century: Gender Equality, Empowerment and Growth*. The World Bank, 2008. doi:10.1596/978-0-8213-7474-0
 ²⁵⁶ https://www.nytimes.com/2006/10/14/world/asia/14nobel.html

²⁵⁷ Cohn, Alain, et al. "Civic Honesty around the Globe." *Science*, vol. 365, no. 6448, July 2019, pp. 70–73. doi:10.1126/science.aau8712

²⁵⁸ Grosch, Kerstin; Rau, Holger (2017) : Gender differences in honesty: The role of social value orientation. Discussion Papers, No. 308, University of Göttingen, Center for European, Governance and Economic Development Research (CEGE), Göttingen, Germany.

https://www.econstor.eu/bitstream/10419/156226/1/882555200.pdf

²⁵⁹ Sen, Amartya. *The Idea of Justice*. Harvard University Press, 2009.

https://dutraeconomicus.files.wordpress.com/2014/02/amartya-sen-the-idea-of-justice-2009.pdf

²⁶⁰ "Artificial Intelligence Makes Bad Medicine Even Worse." Wired. www.wired.com,

https://www.wired.com/story/artificial-intelligence-makes-bad-medicine-even-worse/

²⁶¹ Datta, Shoumen (2008) Arm Chair Essays in Energy. <u>https://dspace.mit.edu/handle/1721.1/45512</u>

²⁶² Donald Mackenzie (1877) The Flooding of the Sahara: An Account of the Proposed Plan for Opening Central Africa to Commerce and Civilization. 1877. S. Low, Marston, Searle, & Rivington, Publishers. https://ia902205.us.archive.org/23/items/floodingsaharaa01mackgoog/floodingsaharaa01mackgoog.pdf

²⁶³ <u>https://www.jstor.org/stable/1761255?seq=1#metadata_info_tab_contents</u>

²⁶⁴ https://www.nature.com/articles/019509a0.pdf

²⁶⁵ Rothman, Joshua. *The Equality Conundrum* 13 January 2020. <u>www.newyorker.com/magazine/annals-</u>

of-inquiry \blacklozenge https://www.newyorker.com/magazine/2020/01/13/the-equality-conundrum

²⁶⁶ <u>https://www.mikespastry.com/</u>

²⁶⁷ https://www.modernpastry.com/

²⁶⁸ Ilić, Suzana, et al. (2018) "Deep Contextualized Word Representations for Detecting Sarcasm and Irony." *Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis*, Association for Computational Linguistics, 2018, pp. 2–7

doi:10.18653/v1/W18-6202 https://arxiv.org/pdf/1809.09795.pdf

²⁶⁹ Datta, Shoumen (2008) Convergence of Bio, Info, Nano, Eco: Global Public Goods and Economic Growth. <u>https://dspace.mit.edu/handle/1721.1/41909</u>

²⁷⁰ Steinmueller, W. Edward, 2010. "Economics of Technology Policy" Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, pages 1181-1218, Elsevier • https://doi.org/10.1016/S0169-7218(10)02012-5

²⁷¹ Singh, Lakhveer, et al. "Bioelectrofuel Synthesis by Nanoenzymes: Novel Alternatives to Conventional Enzymes." *Trends in Biotechnology*, Jan. 2020, p. S0167779919303129 doi:10.1016/j.tibtech.2019.12.017
 ²⁷² L. Wang, Y. Chen, F. Long, L. Singh, S. Trujillo, X. Xiao, H. Liu (2020) *Breaking the Loop: Tackling*

Homoacetogenesis by Chloroform to Halt Hydrogen Production-Consumption Loop in Single Chamber Microbial Electrolysis Cells. Chemical Engineering Journal. <u>https://doi.org/10.1016/j.cej. 2020.124436</u> ²⁷³ <u>https://patents.justia.com/inventor/andrew-e-fano</u>

²⁷⁴ https://patents.justia.com/patent/10095981

²⁷⁵ <u>https://claimparse.com/patent.php?patent_num=10275721</u>

²⁷⁶ https://www.ibm.com/downloads/cas/KMPVGB4W

²⁷⁷ https://mcgovern.mit.edu/profile/tomaso-poggio/

²⁷⁸ Faro, Scott H., and Feroze B. Mohamed, editors. *Functional MRI: Basic Principles and Clinical Applications*. Springer, 2006. ISBN 978-0-387-23046-7

²⁷⁹ <u>https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82ba5f8</u>

²⁸⁰ <u>https://cloud.google.com/tpu/</u>

²⁸¹ <u>https://blog.floydhub.com/when-the-best-nlp-model-is-not-the-best-choice/</u>

²⁸² Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer (2018) *Deep contextualized word representations*. <u>https://arxiv.org/pdf/1802.05365.pdf</u>
 ²⁸³ Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018) *BERT: pre-training of deep bidirectional transformers for language understanding*. <u>https://arxiv.org/pdf/1810.04805.pdf</u>

²⁸⁴ Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma and Radu Soricut
 (2020) Albert: A Lite Bert for Self-Supervised Learning of Language Representations. 8th International
 Conference on Learning Representations (2020) <u>https://openreview.net/pdf?id=H1eA7AEtvS</u>

²⁸⁵ Sun, Cong, et al. "A Deep Learning Approach With Deep Contextualized Word Representations for Chemical–Protein Interaction Extraction From Biomedical Literature." *IEEE Access*, vol. 7, 2019, pp. 151034–46 doi:10.1109/ACCESS.2019.2948155

²⁸⁶ Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova, Kristin A. Persson, Gerbrand Ceder and Anubhav Jain (2019) Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019) https://doi.org/10.1038/s41586-019-1335-8

²⁸⁷ Babyak, M. A. (2004) "What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models." *Psychosomatic Med*, vol. 66, no. 3, May 2004, pp 411-21 DOI 10.1097/01.psy.0000127692.23278.a9 https://people.duke.edu/~mababyak/papers/babyakregression.pdf
²⁸⁸ Tarfa Hamed (2017) *Recursive Feature Addition: A Novel Feature Selection Technique, Including a Proof of Concept in Network Security.* PhD thesis submitted to University of Guelph, Ontario, Canada. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/10315/Hamed_Tarfa_201704_PhD.pdf?s equence=1&isAllowed=y

²⁸⁹ Aditya Nandy, Chenru Duan, Jon Paul Janet, Stefan Gugler, and Heather J. Kulik (2018)
"Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry." *Industrial and Engineering Chemistry Research*, volume 57, number 42, October 2018, pages 13973 - 13986 doi:10.1021/acs.iecr.8b04015

²⁹⁰ Virshup, Aaron M., et al. "Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds." *Journal of the American Chemical Society*, vol. 135, no. 19, May 2013, pp. 7296 - 7303 doi:10.1021/ja401184g

²⁹¹ Sam Lemonick (2019) As DFT Matures, Will It Become a Push-Button Technology? *Chemical & Engineering News*, volume 97, issue 35 <u>https://cen.acs.org/physical-chemistry/computational-chemistry/DFT-matures-become-push-button/97/i35</u>

²⁹² Joan Bruna, Wojciech Zaremba, Arthur Szlam & Yann LeCun (2014) "Spectral Networks and Locally Connected Networks on Graphs." <u>http://arxiv.org/abs/1312.6203</u> • <u>https://arxiv.org/pdf/1312.6203.pdf</u>
 ²⁹³ Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals and George E. Dahl (2017) *Neural Message Passing for Quantum Chemistry*. <u>https://arxiv.org/pdf/1704.01212.pdf</u>

²⁹⁴ Kyle Swanson (2019) Message Passing Neural Networks for Molecular Property Prediction. Master's Thesis. EECS, MIT. <u>https://dspace.mit.edu/bitstream/handle/1721.1/123133/1128814048-</u>

MIT.pdf?sequence=1&isAllowed=y

²⁹⁵ <u>http://chemprop.csail.mit.edu/</u>

²⁹⁶ Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum and Jean-Louis Reymond (2012) "Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17." *J of Chemical Information and Modeling*, vol. 52, no. 11, November 2012, pp. 2864–2875 doi:10.1021/ci300415d
²⁹⁷ Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackerman, Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory, George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay and James J. Collins (2020) "A Deep Learning Approach to Antibiotic Discovery." *Cell*, vol. 180, no. 4, February 2020, pp. 688-702.e13 doi:10.1016/j.cell.2020.01.021 https://www.cell.com/cell/pdf/S0092-8674(20)30102-1.pdf
²⁹⁸ http://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220
²⁹⁹ Zhang, Xiang, et al. (2019) "Deep Neural Network Hyperparameter Optimization with Orthogonal

Array Tuning." July 2019. <u>http://arxiv.org/abs/1907.13359</u> ◆ <u>https://arxiv.org/pdf/1907.13359.pdf</u>

³⁰⁰ Lars Kai Hansen and Peter Salamon (1990) *Neural Network Ensembles*. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 10, October 1990.

https://pdfs.semanticscholar.org/257d/c8ae2a8353bb2e86c1b7186e7d989fb433d3.pdf

³⁰¹ Marcello Pelillo (2014) "Alhazen and the nearest neighbor rule." *Pattern Recognition Letters* 38 (2014) 34–37 http://dx.doi.org/10.1016/j.patrec.2013.10.022

³⁰² https://thenextweb.com/neural/2020/02/19/study-ai-expert-gary-marcus-explains-how-to-take-ai-tothe-next-level/

³⁰³ Russell, Stuart and Norvig, Peter (2010) *Artificial Intelligence: A Modern Approach*. 3rd ed, Prentice Hall. <u>http://aima.cs.berkeley.edu/</u>

³⁰⁴ Winston, Patrick Henry and Richard Henry Brown, editors. *Artificial Intelligence, an MIT Perspective*.
 MIT Press, 1979. <u>https://courses.csail.mit.edu/6.034f/ai3/rest.pdf</u>

³⁰⁵ Buchanan, Bruce G., and Edward Hance Shortliffe, editors. (1984) *Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project*. Addison-Wesley. 1984. http://digilib.stmik-banjarbaru.ac.id/data.bc/2.%20AI/2.%20AI/1984%20Rule-

Based%20Expert%20Systems.pdf

³⁰⁶ Quinlan, J. R., editor. (1987) *Applications of Expert Systems: Based on the Proceedings of the Second Australian Conference*. Turing Institute Press in association with Addison-Wesley Pub. Co, 1987.

³⁰⁷ Giarratano, Joseph C. and Gary Riley. (1989) *Expert Systems: Principles and Programming*. 1st ed.
 PWS-Kent Publishing Company, Boston. ISBN 0-87835-335-6

³⁰⁸ Buchanan, Bruce G. (1989) "Can Machine Learning Offer Anything to Expert Systems?" *Machine Learning*, vol. 4, no. 3–4, December 1989, pages 251–254 doi:10.1007/BF00130712.

https://link.springer.com/content/pdf/10.1007/BF00130712.pdf

³⁰⁹ Valverde, S. (2016) Major transitions in information technology. Philosophical Transactions of the Royal Society. B 371: 20150450 \blacklozenge http://dx.doi.org/10.1098/rstb.2015.0450

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958943/pdf/rstb20150450.pdf

³¹⁰ Mearian, Lucas. (2017) "CW@50: Data Storage Goes from \$1M to 2 Cents per Gigabyte

(+video)." *Computerworld*, 23 March 2017 • <u>https://www.computerworld.com/article/3182207/cw50-</u> <u>data-storage-goes-from-1m-to-2-cents-per-gigabyte.html</u>

³¹¹ Supernor, Bill (2018) "Why the Cost of Cloud Computing Is Dropping Dramatically." *App Developer Magazine*, <u>https://appdevelopermagazine.com/why-the-cost-of-cloud-computing-is-dropping-dramatically/</u>

³¹² Wolpert, H David (2018). "Why Do Computers Use So Much Energy?" Scientific American Blog Network • https://blogs.scientificamerican.com/observations/why-do-computers-use-so-much-energy/
³¹³ David H Wolpert. (2019) "The stochastic thermodynamics of computation." Journal of Physics A: Mathematical and Theoretical 2019 https://iopscience.iop.org/article/10.1088/1751-8121/ab0850/pdf
³¹⁴ Panesar, S.S., Kliot, M., Parrish, R., Fernandez-Miranda, J., Cagle, Y., Britz, G.W. (2019) Promises and Perils of Artificial Intelligence in Neurosurgery. Neurosurgery • https://doi.org/10.1093/neuros/nyz471

³¹⁵ Emily Hanhauser, Michael S. Bono, Jr., Chintan Vaishnav, A. John Hart, and Rohit Karnik (2020)
 Solid-Phase Extraction, Preservation, Storage, Transport, and Analysis of Trace Contaminants for Water
 Quality Monitoring of Heavy Metals, *Environ Science & Tech* (2020). DOI: 10.1021/acs.est.9b04695
 ³¹⁶ Rohit Sharma, Sachin S. Kamble, Angappa Gunasekaran, Vikas Kumar, Anil Kumar (2020) A
 Systematic Literature Review on Machine Learning Applications for Sustainable Agriculture Supply
 Chain Performance, Computers and Operations Research. https://doi.org/10.1016/j.cor.2020.104926
 ³¹⁷ Amelie Gyrard, Manas Gaur, Saeedeh Shekarpour, Krishnaprasad Thirunarayan and Amit Sheth
 (2018) *Personalized Health Knowledge Graph*. Contextualized Knowledge Graph Workshop,
 International Semantic Web Conference, 2018.

https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1005&context=aii_fac_pub

³¹⁸ "Apple Agrees to Settlement of up to \$500 Million from Lawsuit Alleging It Throttled Older Phones." *TechCrunch*, <u>http://social.techcrunch.com/2020/03/02/apple-agrees-to-settlement-of-up-to-500-million-from-lawsuit-alleging-it-throttled-older-phones/</u>

³¹⁹ Gini, Corrado (1909) "Concentration and dependency ratios" (in Italian). English translation in *Rivista di Politica Economica* (1997) 87: 769–789

320

www.reddit.com/r/MapPorn/comments/88mw3q/open_defecation_around_the_world_2015_960_684/ ³²¹ "Nearly a Billion People Still Defecate Outdoors. Here's Why." *Magazine*, 25 July 2017, https://www.nationalgeographic.com/magazine/2017/08/toilet-defecate-outdoors-stunting-sanitation/ ³²² Sadhu, Bodhisatwa, et al. "The More (Antennas), the Merrier: A Survey of Silicon-Based Mm-Wave Phased Arrays Using Multi-IC Scaling." *IEEE Microwave Magazine*, vol. 20, no. 12, Dec 2019, pp 32–50 ³²³ Wang, Tengfei and Kang, Jong Woo (2020). *An integrated approach for assessing national e-commerce performance*. Trade, Investment and Innovation Working Paper Series, No. 01/20, ESCAP Trade, Investment and Innovation Division, United Nations (UN). January 2020. Bangkok, Thailand. https://www.unescap.org/sites/default/files/publications/Working%20Paper%20No.1_2020.pdf ³²⁴ http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

³²⁵ Propaganda erudite, credible and respectable scientists, are disturbing, devastating and desacralizing. [This statement and this note must be taken with more than just a pinch of salt because it is the personal opinion of the primary author (SD), who may be best described by others as less than academic dust along the infinite corridors of the esteemed institutions with which he may be affiliated.] Time, events and publications suggest that "giants" who are *good* are occasionally hypnotized by the slippery slope of metamorphosis from *good* to self-anointed "God" particles. Knowledge, which was once regarded as an oak tree, and supposed to usher in self-deprecation, modesty and humility, now, frequently suffers from bloating, sufficient to spill over the *black hole* of hubris. For example, a trio of brilliant (see ref 91) male scientists, in the upper latitudes of North America, are acting as *Nostradamus*, stoked by greed and the quest for immortality, buoyed by corporate largesse, exclusively driven by the desire for wealth creation. A group of complicit organizations and ill-informed media are ever ready to quench the drab voices of reason and restraint, in favour of sensationalizing and amplifying this inane *Nostradamus Effect*.

This harms society (due to derelict reports, for example, see reference number 233) and reduces the credibility of august institutions and organizations which appear as pawns for corporate business development (https://knowledgegraphsocialgood.pubpub.org) often under a camouflage of so-called knowledge for social good. https://knowledgegraphsocialgood.pubpub.org/programcomittee ³²⁶ Boroush, Mark (2020) National Science Board, National Science Foundation. 2020. Research and Development: U.S. Trends and International Comparisons. Science and Engineering Indicators 2020.

NSB-2020-3. Alexandria, VA. https://ncses.nsf.gov/pubs/nsb20203/assets/nsb20203.pdf

³²⁷ Cyranoski, David. "China Awaits Controversial Blacklist of 'Poor Quality' Journals." *Nature*, vol. 562,
 Oct. 2018, pp. 471–72. *www.nature.com*, doi:10.1038/d41586-018-07025-5

³²⁸ <u>https://www.thehindu.com/profile/photographers/Prashant-Waydande/</u>

³²⁹ "Indian Research Quality Lags Quantity." *Economic Times Blog*, 24 Dec. 2019,

https://economictimes.indiatimes.com/blogs/et-editorials/indian-research-quality-lags-quantity/ ³³⁰ Jaishankar, Dhruva. "The Huge Cost of India's Discrimination Against Women." *The Atlantic*, 18 Mar. 2013. https://www.theatlantic.com/international/archive/2013/03/the-huge-cost-of-indiasdiscrimination-against-women/274115/

³³¹ Kroll, Barry M. "Writing for Readers: Three Perspectives on Audience." *College Composition and Communication*, vol. 35, no. 2, May 1984, p. 172. doi:10.2307/358094

³³² Soto C., R., Robles-Baldenegro, M.E., López, V. and Camalich, J.A. (2017), MQDM: An Iterative Fuzzy Method for Group Decision Making in Structured Social Networks. International Journal of Intelligent Systems 32 pages 17-30 ◆ https://onlinelibrary.wiley.com/doi/full/10.1002/int.21826
³³³ Schwartz, M. A (2008) Importance of Stupidity in Scientific Research. *Journal of Cell Science*, vol. 121,

no. 11, pp. 1771, doi:10.1242/jcs.033340 • https://jcs.biologists.org/content/joces/121/11/1771.full.pdf ³³⁴ http://shakespeare.mit.edu/macbeth/macbeth.5.5.html

³³⁵ Jean le Rond d'Alembert (1886) Oeuvres de D'Alembert. ISBN-13 9781103953189

³³⁶ Gordin, Michael D. (2015) *Scientific Babel: How Science Was Done before and after Global English.* The University of Chicago Press, 2015.

³³⁷ <u>https://citations.ouest-france.fr/citation-voltaire/medecins-administrent-medicaments-dont-savent-</u>22351.html

ACNOWLEDGEMENTS

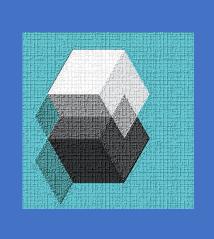
Critical review by Robert F Curl (https://www.nobelprize.org/prizes/chemistry/1996/curl/biographical/) and editorial comments by Alain Louchez (https://www.itu.int/en/ITU-T/Workshops-and-Seminars/iot/201402/Pages/LOUCHEZAlain.aspx) may have helped to improve the timbre of this essay.

Market proponents of AI are individuals who blather about neural networks of which they know little, to solve problems using learning tools which they know less, for the society of human beings of whom they know nothing.

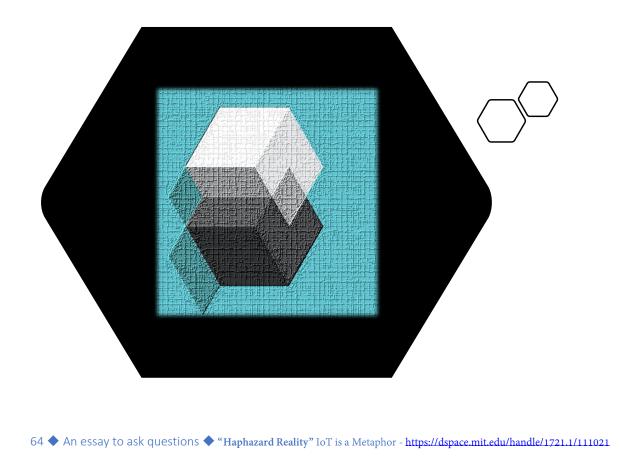
(Adapted from "Les médecins administrent des médicaments dont ils savent très peu, à des malades dont ils savent moins, pour guérir des maladies dont ils ne savent rien" – Voltaire³³⁷)

(Doctors are men who prescribe medicines of which they know little, to cure diseases of which they know less, in human beings of whom they know nothing.)

Tweet



Suppose you have cancer and you have to choose between a black box AI surgeon that cannot explain how it works but has a 90% cure rate and a human surgeon with an 80% cure rate. Do you want the AI surgeon to be illegal?


3:37 PM · Feb 20, 2020 · Twitter Web App

IS THIS A BLANK PAGE? WE SEE AN UNSEEN SENSE OF THE FUTURE IN WHAT APPEARS TO BE A BLANK PAGE.

We are keeping room for disambiguation, discussion, dissent (and imagination, invention, innovation).

Good leadership requires you to surround yourself with people of diverse perspectives who can disagree with you

