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Active Magnetic Anomaly Detection Using Multiple
Micro Aerial Vehicles

Philip M. Dames1, Mac Schwager2, Daniela Rus3, and Vijay Kumar1

Abstract—Magnetic Anomaly Detection (MAD) is an important
problem in applications ranging from geological surveillance
to military reconnaissance. MAD sensors detect local distur-
bances in the magnetic field, which can be used to detect the
existence of and to estimate the position of buried, hidden, or
submerged objects, such as ore deposits or mines. These sensors
may experience false positive and false negative detections and,
without prior knowledge of the targets, can only determine
proximity to a target. The uncertainty in the sensors, coupled
with a lack of knowledge of even the existence of targets,
makes the estimation and control problems challenging. We
utilize a hierarchical decomposition of the environment, coupled
with an estimation algorithm based on random finite sets, to
determine the number of and the locations of targets in the
environment. The small team of robots follow the gradient of
mutual information between the estimated set of targets and the
future measurements, locally maximizing the rate of information
gain. We present experimental results of a team of quadrotor
micro aerial vehicles discovering and localizing an unknown
number of permanent magnets.

Index Terms—Networked Robots; Probability and Statistical
Methods; Reactive and Sensor-Based Planning

I. INTRODUCTION

MAGNETIC Anomaly Detection (MAD) has applica-
tions in military, humanitarian, and industrial settings.

MAD sensors detect disturbances in the Earth’s magnetic field
that indicate the presence of nearby objects such as land and
sea mines [1], ore and mineral deposits [2], and vehicles [3].
In all of these applications, the task is to determine if there
are any objects of interest within the search area and, if any
targets exist, the number of and locations of the targets. The
search areas may span large geographic distances and the
tasks may be very dangerous. Using a small team of robots
to autonomously gather information about the targets keeps
humans from performing these dull, dirty, and dangerous tasks.
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Fig. 1. Photo of an Ascending Technology Hummingbird MAV hovering over
a magnetic target. A second target may be seen in the background.

In this paper we propose a unified estimation and control
strategy for a small team of robots to explore an environment
in search of an unknown number of targets. MAD sensors
often have a low signal-to-noise ratio, making target detection
difficult [3]. One of the most common methods for MAD is
based on orthogonal basis functions [4]. Instead, we utilize an
estimation algorithm that explicitly models the possibility of
false negative and false positive detections. This algorithm is
based on the mathematical concept of a Random Finite Set
(RFS) [5]. An RFS is a random variable with realizations
that are finite sets, jointly modeling the number of the targets
as the size of the set and the state of each target as the
individual elements of the set. Estimation algorithms based
on RFSs are becoming increasingly popular and have been
used in applications such as vehicle tracking [6], Simultaneous
Localization and Mapping (SLAM) [7], robot localization [8],
and target search [9]–[11].

The robot team uses the resulting estimate of the target set to
make control decisions. Robots follow the gradient of mutual
information between the target set and the future measure-
ments, locally maximizing the expected gain in information.
This approach, known as “information surfing,” has been used
in a variety of source seeking applications [9], [10], [12]–
[14]. More generally, information-based control laws have
been used to autonomously search for targets using a team
of mobile sensors [6], [11], [15], [16].

While we focus on applications of MAD sensors in this pa-
per, the estimation and control framework work for any sensor
that provides detection data. The work in this paper builds on
our previous work [9], [10], [17]. In [9] we initially proposed
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the estimation and control strategies and also considered the
presence of environmental hazards. In [10] we developed a
decentralized version of the estimation and control strategies.
In [17] we applied the estimation and control framework from
[9] to a single ground robot equipped with a monocular camera
to detect, localize, and collect multiple objects. Compared
to [17], the sensors used in this work are much coarser,
providing only a single bit of data. This paper has three main
contributions over our previous work. One, unlike our previous
work, which was based on simulated experiments or a single
ground robot in hardware, we present a series of experiments
using Ascending Technology Hummingbird quadrotor micro
aerial vehicles (MAVs) equipped with magnetometer sensors.
Magnetometers measure the strength of the local magnetic
field and, in this situation, are used to detect anomalies in order
to localize targets. We use two different single-robot systems
in the hardware experiments and teams of 1–4 heterogeneous
robots in simulation. Two, we experimentally characterize the
detection statistics of the sensors, a critical component to
be able to validate the effectiveness of our estimation and
control strategy. Three, we prove that the control computations
depend only on the visible subset of the environment, greatly
improving the speed of the computations.

II. PROBLEM FORMULATION

The objective of the mission is to identify the correct target
set, which includes both target count and target positions, as
quickly as possible. Let q denote the pose of an MAV within
the environment. Let x denote the pose of an individual target
and X = {x1, . . . ,xn} denote a set of targets.

A. Sensors

Each MAV is equipped with a sensor that is able to detect
the presence of nearby targets within the sensor field of
view (FoV). Let pd(x | q) be the probability of a sensor
with pose q detecting a single target with pose x, where
pd is 0 for all targets outside of the FoV. Note that this
sensor is extremely coarse, providing only a single bit of
information about whether there are any targets within the
FoV. Such coarse sensors experience false negative detections,
with probability 1− pd(x | q), and may also experience false
positive detections, with probability pfp.

For multiple targets, the probability of detection is

pd(X | q) = 1− (1− pfp)
∏
x∈X

(
1− pd(x | q)

)
, (1)

since the only way to not get a detection is to have no false
positive detections and to not detect any of the targets. The
measurements are binary, with z = 1 corresponding to the
sensor detecting the presence of at least one target within the
FoV. The measurement model is

g(z | X,q) =

{
pd(X | q), z = 1

1− pd(X | q), z = 0.
(2)

The sensors that we utilize in this work are the magnetome-
ters found onboard the MAVs. These sensors are much smaller
and lower cost than the traditional MAD sensors mounted to

TABLE I
BEST FIT MAD SENSOR PARAMETERS.

MAV pfn R0 [m] σR [m] R1 [m] pfp εm
Kilo 0.172 0.262 0.0948 0.5 0.00320 0.55
Papa 0.0177 0.249 0.0425 0.5 0.0138 0.03
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(b) MAV Papa

Fig. 2. Experimentally determined MAD sensor detection models used for
target detection and localization.

full-scale aircraft or boats to detect ore deposits or submarines
and, as a result, are much coarser. Additionally, it is well
known that magnetometers are not reliable indoors due to the
presence of metal building materials, electrical wiring, and
other such components. This problem is further exacerbated
by the robots themselves: the drive motors contain permanent
magnets, the wires to the drive motors have very high current
and the magnetometers are located near the onboard computers
and wireless antennae. Furthermore, the strength and direction
of a magnetic field depends highly on the orientation of the
magnetic source. These factors all make the inference problem
difficult.

To account for all of these uncertainties we model the
magnetometer as a binary sensor, returning a positive mea-
surement if the magnetic field is “sufficiently” disturbed from
the nominal value. Letting r = |x − q|, the probability of
detection takes the form

pd(x | q) =


1− pfn r < R0,

(1− pfn) exp
(
− (r−R0)

2

2σ2
r

)
R0 ≤ r ≤ R1,

0 R1 < r.
(3)

Here, pfn is the probability of a false negative, R0 is the radius
inside which the probability of detection is constant, σr is
the rate at which the probability of detection drops off with
distance, and R1 is the maximum detection range of the sensor.
The values of the parameters depend on the specific sensor
and robot being used. Fig. 2 shows the experimentally derived
sensor models for the two MAV platforms we use, Kilo and
Papa. Table I lists the best fit parameters for the two MAV
platforms. See Section III-A for further details on the sensor
model and characterization.

Note that the detection model, pd(x | q), has a finite FoV,
since any real-world sensor will not be able to see the entire
environment. Thus, target sets that differ only outside of the
FoV of a sensor appear identical. We can leverage this fact
to improve the computational efficiency of the estimation and
control algorithms, but we must first define a projection opera-
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F

q

Fig. 3. An example environment with one robot with pose q and a circular
sensor FoV. The cells within the FoV, F , are highlighted in gray.

tor. Let F be the set of cells that have a non-empty intersection
with the sensor FoV. See Fig. 3 for a simple example of this.
Consider the projection of a target set r(X) = X ∩F and let
V = r(X) denote a target set projected onto the sensor FoV.
Note that this map is surjective but not injective as long as F
is a proper subset of the environment, so no inverse mapping
exists. The right inverse still exists, where r((r)−1(V )) = V
but (r)−1(r(X)) 6= X . The right inverse of the projection
is (r)−1(V ) = {X | r(X) = V }, which in general returns
multiple values that correspond to all of the sets that appear
identical to a sensor with FoV F .

Lemma 1: The measurement model is unaffected by the
project operator, i.e., g(z | X,q) = g(z | r(X),q) ∀X .

Proof: By definition, pd(x | q) = 0 for all x /∈ F . From
(1), we see that

pd(X | q) = 1− (1− pfp)
∏
x∈X

(
1− pd(x | q)

)
=1− (1− pfp)

∏
x∈r(X)

(
1− pd(x | q)

) ∏
x/∈r(X)

1

= pd(r(X) | q). (4)

Thus, g(z | X,q) = g(z | r(X),q).

B. Estimation
As robots explore the environment, they exchange their

measurements and poses. The robots then feed this data into a
recursive Bayesian filter to estimate the target locations from
the collected data. However, unlike many multi-target estima-
tion algorithms such as the Probability Hypothesis Density
(PHD) filter [5] or occupancy grids [18], we cannot assume
that targets are independent due to the coarse nature of the
sensor. Instead we maintain a distribution over sets, as we did
in our previous work [9], [10]. We keep the number of RFSs
at a computationally tractable level by using a hierarchical
decomposition of the environment rather than a fixed grid,
as Fig. 4a shows. This is similar in spirit to the approach
in Ristic and Vo [11], but we enumerate all possible sets
over a hierarchical decomposition instead of using a randomly
sampled collection of target sets.

The update equations for the Bayesian filter are

pt(X | z) =
g(z | X,q)pt−1(X)∑
X′ g(z | X ′,q)pt−1(X ′)

, (5)

where z ∈ {0, 1} are binary measurements. Note that in the
estimation equations we overload the variable X to be a set

(a) Example target set

(b) Cell refinement

(c) Cell merge

Fig. 4. (a) An example realization of a RFS over the hierarchical grid. The
black cells are the estimated occupied cells and the white cells are empty.
This is close to the true set, shown by the orange diamonds. (b) A cell
refinement procedure, where a large occupied cell is divided into four smaller
cells with uniform occupancy probability. The shading in each cell indicates
the probability that that cell is occupied, with white being 0 and black being
1. (c) A grid merging procedure, where four empty sub-cells with the same
parent cell are merged to form the parent cell.

Algorithm 1 Add cell c
1: X′ ← X . Copy existing sets
2: C ← C + 1 . Add one to cell count
3: for X ∈ X | |X| < N do
4: p′(X)← 1

2p(X)
5: p′({X ∪ {c}})← 1

2p(X)
6: X′ ← X′ ∪ {X ∪ {c}} . Add set with new cell
7: end for
8: X← X′

of cells, X = {c1, . . . , cn}, which indicates that there are n
targets in n distinct cells (i.e., xi ∈ ci, i = 1, . . . , n). As can
be seen, the complexity of the filter updates depends upon the
number of sets. If the number of potential targets was equal
to the number of cells (C), there would be 2C possible sets.
However, if we limit the number of targets (N ) to be small
compared to C, then the number of sets decreases to O(CN ).
To further reduce the complexity, we utilize a hierarchical
decomposition of the environment, here based on a quadtree,
to limit the number of cells, C. When the probability that a cell
is occupied is higher than a pre-specified threshold, the cell is
subdivided into a collection of smaller, disjoint sets, as Fig. 4b
shows. For a quadtree, this process involves removing the
parent cell and then adding four child cells. Similarly, when
the probability that all of the child cells of a parent cell are
empty is higher than a desired threshold, the cells are merged
back into the parent cell, as Fig. 4c shows. Algorithms 1 and 2
outline the cell addition and removal procedures, respectively.

Algorithm 2 Remove cell c
1: X′ ← X . Copy existing sets
2: C ← C − 1 . Remove one from cell count
3: for X ∈ X | c ∈ X do
4: p(Y )←

∑
X|X\{c}=Y p(X)

5: X′ ← X′ \ {X} . Remove all sets with c
6: end for
7: X← X′
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We can leverage the projection operation, r(X), to improve
the efficiency of the filter updates by only performing the
update over the collection of projected sets.

Theorem 1: The filter update in (5) is equivalent to

pt(X | z) =
pt(r(X) | z)
pt−1(r(X))

pt−1(X). (6)

Proof: Consider the collection of target sets containing
targets in F , V = ∪X∈X(X ∩ F ). Using Bayes’ theorem, for
any V ∈ V we have

pt(V | z,q) =
g(z | V,q)pt−1(V )

p(z | q)
. (7)

Using (5), (7), and Lemma 1, we see that

pt(X | z)
pt−1(X)

=
g(z | X,q)
p(z | q)

=
g(z | r(X),q)

p(z | q)
=
pt(r(X) | z)
pt−1(r(X))

.

Rearranging terms leads to the desired result.
Note that with an initially coarse discretization of the

environment, some cells may be large compared to the sensor
FoV. Since targets may be located anywhere within the cell,
we must take into account the partial visibility of some cells.
Given this, the probability of detection for cell c is given by

pd(c | q) =
1

|c|

∫
x∈c

pd(x | q) dx ≈
1

m

m∑
k=1

pd(xc,k | q), (8)

where |c| is the area of the cell c. This integral is approximated
by a sum over a set of m points in the cell, {xc,k}mk=1 ∈
c, which, given no available information beyond our binary
detections, are distributed uniformly over the cell. The simplest
approach is to use the cell centroids. However, multiple points
should be used for cells that are large compared to the sensor
field of view so that at least one such point is always within
the FoV.

To implement Algorithms 1 and 2, the collection of sets over
a cellular representation of the environment can be efficiently
encoded using the binary representation of integers. Adding
a cell is done by allowing the next highest bit to be set, and
removing a cell is done by shifting all of the bits above the cell
to be removed. The number of targets in a set is the number of
bits set to high. The rest is a matter of bookkeeping, making
sure each cell is associated to a unique bit in the integer.

C. Control

The robots utilize the output of the filter, combined with a
sensor model and knowledge of each others’ poses, to make
control decisions. Specifically, the robots follow the gradient
of the mutual information between the set of targets and
the possible future measurements. This leads the robots to
locally optimize the information gain, a strategy known as
“information surfing” [13]. While planning over a longer time
horizon may be preferable in some scenarios [6], [19]–[21],
the limited information provided by a binary sensor would
require such a long horizon as to be computationally infeasible
in practice.

Mutual information was first defined by Shannon [22],

I[X;Z | q] =
∑
X∈X

∑
z∈Z

p(z, X | q) log p(z, X | q)
p(z | q)p(X)

. (9)

This quantifies the amount of dependence between random
variables, in this case the target set X (of cell labels) and
the vector of future measurements of all of the robots in the
team z. By following the gradient of mutual information with
respect to the pose of the robots, we expect the team to locally
maximize the rate of information gain.

We have previously shown in [9] that the gradient of mutual
information with respect to the pose of robot r is

∂I[X;Z | Q]

∂qr
=
∑
z∈Z

∑
X∈X

∂g(z | X,Q)

∂qr
pt(X)

× log
g(z | X,Q)∑

X∈X g(z | X,Q)pt(X)
, (10)

where Q = {q1, . . . ,qR}. Here pt(X) comes from (5) and
g(z | X,Q) =

∏R
r=1 g(z

r | X,qr), since measurements from
different sensors are conditionally independent give the target
set. The gradient of this is

∂g(z | X,Q)

∂qr
=

g(z | X,Q)

g(zr | X,qr)
∂g(zr | X,qr)

∂qr
(11)

and the gradient of (1) is

∂g(z | X,q)
∂q

= (−1)1−zg(z = 0 | X,q)

×
∑
x∈X

1

1− pd(x | q)
∂pd(x | q)

∂q
. (12)

We also take advantage of the projection operator to greatly
improve the efficiency of the control computations, replacing
all instances of X by r(X).

Theorem 2: Mutual information is not affected by the
projection operator, i.e., I[X;Z | q] = I[V;Z | q].

Proof: Using (9) and Lemma 1,

I[X;Z | q] =
∑
X∈X

∑
z∈Z

g(z | X,q)p(X) log
g(z | X,q)

p(z)

=
∑
V ∈V

∑
z∈Z

g(z | V,q) log g(z | V,q)
p(z)

×
∑

X∈X|r(X)=V

p(X)

︸ ︷︷ ︸
=p(V )

=
∑
V ∈V

∑
z∈Z

g(z | V,q)p(V ) log
g(z | V,q)
p(z)

= I[V;Z | q].

Corollary 1: The gradient of mutual information is not
changed by the project operator.

Remark 1: For multiple robots the projection becomes
r(X) = X ∩ (∪rF r).

The robots follow the gradient of mutual information with
respect to their poses,

qrt+1 = qrt + k

∂I[V;Z|Q]
∂qr∣∣∣∂I[V;Z|Q]

∂qr

∣∣∣+ ε
, (13)

where k is the step size and ε = 10−20 � 1 prevents
numerical errors when the gradient is zero. The computational
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complexity of this is O(2RCNF ), where N is the maximum
number of targets, R is the number of robots, and CF is the
number of cells within the footprint of the robot team. In [10]
we showed that the control actions are independent for robots
that do not observe any of the same cells, i.e., F i∩F j = ∅ for
i 6= j, decreasing both R and CF . When the information gain
is extremely low, i.e., I[V;Z | Q] < 10−6, the robot instead
drives towards the cell with the highest uncertainty, i.e., the
cell with probability of occupancy closest to 0.5.

The collision avoidance algorithm used in the multi-robot
experiments is myopic, with a robot backing up, i.e., following
the negative gradient, if it would come into collision with
another robot. This occasionally causes the robots to step
forwards then backwards repeatedly. When this occurs while
a target is located near the edge of the sensor footprint it
makes target localization more difficult and unreliable since
the detection likelihood is lowest at the edge of the footprint.
This would be less of an issue for robots with sensor footprints
that are significantly larger than the physical footprint of the
robot. In these experiments, the sensor has a radius of 0.5 m
and the robot has a radius of 0.375 m.

III. EXPERIMENTAL RESULTS

MAD sensors for large-scale surveillance are finely cali-
brated to detect very subtle disturbances in the Earth’s mag-
netic field. The noisy, scaled-down laboratory environment is
representative of more complex, real-world environments.

A. Sensor Characterization

We first ran experiments to characterize the detection
statistics for the 3-axis magnetometer on board the AscTec
Hummingbird MAV platform, shown in Fig. 1. Each target
consists of two cylindrical neodymium magnets1 with the axis
of the magnets aligned with the z-axis of the global coordinate
frame and having a combined length of 10 cm.

To learn the baseline magnetic field, we flew the Humming-
bird through a lawnmower pattern over a 2.6×2.6m area at a
constant height of approximately 1.3 m. Fig. 5 shows that the
magnetic field experiences significant changes over the area
covered by the robot, varying by almost an order of magnitude.
This is likely due to the presence of a metal staircase and
other large objects in addition to building materials, electrical
wires, and other robots in the laboratory space. Despite the
large variance in measurements taken at the same location,
the average field changes smoothly over the environment. We
fit a nominal field strength by dividing the area into grid cells
with size 30 cm and taking the empirical mean of all of the
magnetic field readings taken within that cell. Angermann et
al. [23] create a similar map of the ambient indoor magnetic
field, using the local structure in order to localize robots within
a workspace.

To characterize the detection statistics, we flew the
same pattern with a single magnetic target positioned at
(0, 0, 1.12)T m. The resulting magnetic field readings are

1K&J Magnetics, Inc. D8Y0, https://www.kjmagnetics.com/proddetail.asp?
prod=D8Y0a
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(a) MAV Kilo – z-axis – no magnet. (b) MAV Kilo – z-axis – magnet.

(c) MAV Kilo – x-axis – no magnet. (d) MAV Kilo – x-axis – magnet.

(e) MAV Papa – z-axis – no magnet. (f) MAV Papa – z-axis – magnet.

Fig. 5. Experimental results of the magnetic field strength as a function of
the 2D position of the MAVs in the baseline training runs. Blue dots indicate
the individual data points and the grayscale surface shows the average value
in each cell. The magnetic field strength along the z-axis for MAV Kilo is
shown (a) before and (b) after a magnet is placed at (0, 0) m. The magnetic
field strength along the x-axis for MAV Kilo is shown (c) before and (d) after
a magnet is placed at (0, 0) m. The magnetic field strength along the z-axis
for MAV Papa is shown (e) before and (f) after a magnet is placed at (0, 0) m.

plotted as a function of the distance to the target in Fig. 6.
We use the deviation from the nominal fields shown in Fig. 5c
and Fig. 5e to determine the presence of a target. From Fig. 6
it is evident that far away from the target the deviations
from the nominal field are relatively small, though with a
few clutter detections. Near to the targets there are significant
deviations in the magnetic field, with an approximate detection
radius of 0.5 m. We have colored the data points according to
whether they are inliers or outliers, using a threshold εm on
the deviation in the field strength. We selected εm values (in
Table I) such that increasing the value results in significantly
more false positive detections and a small decrease in the rate
of false negative detections.

Note in Fig. 5b that for MAV Kilo there is a step increase
induced in the readings along the z-axis of the magnetometer
after the robot passes directly over the magnet. This does not
occur for MAV Papa. The phenomenon was repeatable in the
training runs, but presents problems for actual experimental
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(a) MAV Kilo. (b) MAV Papa

Fig. 6. Experimental results of the deviation of the magnetic field due to the
addition of a magnet as a function of the true distance to the magnet for (a)
MAV Kilo and (b) MAV Papa.

trials as the robot does not know the locations of the magnets a
priori. To avoid this problem, we instead use the magnetometer
along the x-axis for MAV Kilo. However, the deviation along
the x-axis, unlike the z-axis, is not isotropic and changes signs
depending on what side of the magnet the robot is on, as
Fig. 5d shows. In order to keep the models for the two robots
similar, we ignore this change in the sign of the deviation
for MAV Kilo and only consider the absolute value of the
deviation in the magnetic field.

We use this data to characterize the detection and clutter
models for the MAD sensor. The probability of a false positive
is computed using the ratio of detections to all measurements
outside of the sensing radius. To compute the detection statis-
tics, we divide the distance from the robot to the target into
bins (of width 3 cm) and look at the detection rate within each
bin, using the thresholds from above to determine true versus
missed detections. Fig. 2 shows this experimental data and
the best fit detection models. For both robots, the detection
rate is relatively high and constant when the distance is small
and falls sharply towards zero as the distance increases. Given
this, and letting r = |x − q|, we model the probability of
detection in (3). To find the best fit parameters, given in
Table I, we perform a brute-force search over a range of the
parameter space, selecting the model with the minimum sum-
of-squares error between the data points the model. pfp is
the probability of a false positive detection and is found by
counting the empirical fraction of detections when the magnet
was further than the maximum sensing range. The differences
in the models, particular the false negative rate, is due to the
different magnetometer axes being used by the robots.

B. Single Robot Results

We conduct a series of hardware and simulation experiments
with a single robot to test the performance of the search
algorithm in the MAD setting and to validate the performance
of the simulation environment. With each of the two robots,
Kilo and Papa, we performed three individual hardware trials
and five simulation trials. The hardware experiments are
performed in a Vicon motion capture system, which provides
each robot with an accurate estimate of its pose. The robots
explore a 2×2m area that is divided into cells with a maximum
edge length of 50 cm and a minimum length of 12.5 cm. The
minimum cell size is on the same length scale as the 10 cm

long targets and significantly smaller than the 1 m diameter
sensor footprint.

Fig. 7 shows the resulting evolution of the entropy of the
target set and of the expected number of targets over time. Note
that the time includes both computation and movement. The
overall behavior is similar across both hardware and simulation
experiments. The target entropy decreases quickly at first and
has several step increases as cells are subdivided before finally
reaching the desired level of 0.1 bits. Similarly, the expected
number of targets begins near 4.5 before reaching a final value
near 2.0, the true value. For both the simulated and hardware
experiments, there was a single trial where the final expected
number of targets was 3.0. Fig. 7f shows the final estimate for
one such occurrence, where the robot incorrectly determined
that two adjacent cells both contain a target. There was also a
single trial in both the hardware and simulated systems where
one of the targets was mis-localized, with the true target being
in a cell adjacent to the final estimated position. Fig. 8 shows
the statistics of the time to completion. The minimum and
median times are very similar, at 320 s and 417.5 s for the
hardware experiments and 326 s and 422.5 s for the simulation
experiments.

C. Multi-Robot Results

We use the simulation environment to test the performance
with teams of 2, 3, and 4 MAVs, avoiding complex, unmodeled
interactions between physical robots, such as the magnetic
field induced by the motors of one robot interfering with the
magnetometer readings on the other robots. Given the level
of similarity between the performance of the MAD system in
the previous hardware and simulation experiments, we feel
confident that the simulation results could be replicated in
hardware. The sensor models used in these trials match those
of the previous experiments, with at least one MAV matching
Kilo and at least one matching Papa so that the team had
heterogeneous sensor models.

Fig. 8 shows the statistics of the time to completion for
the 2 target scenario from the single-robot trials. Here we see
that teams of 2 and 3 robots are able to complete the task
more quickly than a single robot. However, a 4 robot team
takes longer and only completes the task within the 700 s
time budget in 5 of the 10 trials. This is due to the added
computational complexity of planning for four robots. Table II
shows this more clearly, with 4 robots spending 48.2% of the
total time computing instead of moving, a significantly higher
percentage than smaller teams.

In addition to the 2 target scenario that we test in hardware,
we test the system with 0, 1, and 4 targets. Fig. 9 shows the
statistics in the time to completion. One trend that quickly
emerges is that it takes longer to localize more targets. This is
due to the extreme coarseness of the sensor, providing only a
single bit of data with each measurement. The accompanying
video shows how robots must circle around targets, taking
many measurements, in order to localize the targets. Since this
must be done for each target, increasing the number of targets
significantly increases the time to completion. Also, adding
more targets increases the total number of cells necessary to
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(d) Hardware experiments – expected number
of targets
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(e) Single robots simulations – expected num-
ber of targets
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Fig. 7. Experimental results. (a–b) show the time evolution of the entropy of the target estimate and (d–e) show the time evolution of the expected number
of targets for a single robot in hardware and in simulation, respectively. (c) and (f) show localization results for two runs of a single real-world quadrotor.
The orange diamonds indicate the true target positions and shading within each cell is the probability of occupancy.

localize all of the targets. This increases the computational
load since the estimation and control algorithms scale polyno-
mially in the number of cells.

The other trend that emerges from this data is that there
is a clear tradeoff between the increased sensing provided by
adding more robots and the increased computational burden
of planning for a larger team. At a certain point the search
area becomes saturated with robots: the sensor footprint of
each robot covers 19.6% of the search area and each robot
covers 11.0% of the search area. Table II shows the effects
of this tradeoff, with larger teams spending significantly more
time computing and less time moving than small teams. This
is particularly true with a larger number of targets, as Fig. 8,
Fig. 9c, and Table III show. In the 4 target case, the team is
almost never able to complete the task within the time budget.
The 4 robot team actually completes the task most often, but
has the highest average final entropy in the target estimate,
indicating that it is the least consistent. For this environment
and these robots, the 2 robot team seems to perform best on
average: the time to completion is competitive in all scenarios
and it has the best average final entropy in the 4 target case.

We also tested the system in a larger 4× 4m environment.
We kept all other system parameters the same, including the
location of the targets and the initial positions of the robots.
In this larger environment we saw a different trend, with the 4
robot team finishing the mission the fastest, as Fig. 9 shows.
The larger environment (4 times the area of the original)
requires more time for the robots to traverse, giving larger
teams the advantage. This additional space also allows the
robots to spread out and explore disjoint areas, decoupling the

Completion time [s]
0 200 400 600

Hardware

Sim - 1 robot

Sim - 2 robots

Sim - 3 robots

Sim - 4 robots

Fig. 8. Box plots of the time to completion for the simulated and hardware
MAD experiments with 2 targets. Black lines are the in small environment
where the hardware experiments were conducted. Red lines are the larger
simulated environment.

TABLE II
AVERAGE PERCENTAGE OF TIME SPENT COMPUTING.

Number of targets
Small environment Large environment

0 1 2 4 0 1 2 4

#
ro

bo
ts 1 0.8 1.5 5.4 15.9 0.5 1.5 5.6 12.7

2 0.9 3.0 14.9 41.2 0.6 2.5 10.0 24.0
3 2.0 8.3 35.4 69.6 1.0 4.6 15.9 46.7
4 5.7 17.4 48.2 84.9 1.2 5.0 20.7 51.7

control computations and decreasing the number of times the
collision avoidance algorithm is activated. We see the effects
of this in Table II, with the computation time growing more
slowly with the team size.
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Fig. 9. Box plots of the time to completion for simulated experiments using teams of different sizes in environments with a varying number of targets. The
small environment is in black and the large environment is in red.

TABLE III
AVERAGE FINAL ENTROPY [BITS].

Number of targets
Small environment Large environment

0 1 2 4 0 1 2 4

#
ro

bo
ts 1 0.08 0.09 0.08 2.78 0.27 0.55 3.94 7.72

2 0.09 0.09 0.08 1.49 0.28 0.37 2.30 7.07
3 0.07 0.06 0.07 3.49 0.09 0.08 1.15 8.20
4 0.09 0.09 1.43 8.96 0.09 0.10 1.35 6.93

IV. CONCLUSIONS
Magnetic anomaly detection is an important task in mili-

tary surveillance, humanitarian de-mining efforts, geological
mapping, and more. In this paper we present a unified control
and estimation framework to autonomously discover, count,
and localize an unknown number of targets. We present a
series of hardware and simulated experiments using a small
team of quadrotor MAVs. The MAVs are equipped with
magnetometers, which detect the presence of nearby magnetic
sources, providing only a single bit of data. Despite this very
coarse sensor, the robots are able to successfully determine the
number of targets and to localize each target with a precision
at the length scale of the targets.

This framework may also be applied to other scenarios with
noisy, binary sensors, such as touch sensors or any sensor
where the data is thresholded. This work also applies to robots
other than MAVs, though robots with kinematic constraints
may need to project the gradient onto the set of feasible control
inputs. Future work will focus on planning over longer time
horizons, planning for robots with multiple sensors attached
to each platform, and in situations where robots must actively
sense and avoid hazards.
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