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Cache Calculus: Modeling Caches
through Differential Equations

Nathan Beckmann Daniel Sanchez

Abstract—Caches are critical to performance, yet their behavior is hard
to understand and model. In particular, prior work does not provide
closed-form solutions of cache performance, i.e. simple expressions
for the miss rate of a specific access pattern. Existing cache models
instead use numerical methods that, unlike closed-form solutions, are
computationally expensive and yield limited insight. We present cache
calculus, a technique that models cache behavior as a system of ordinary
differential equations, letting standard calculus techniques find simple and
accurate solutions of cache performance for common access patterns.

F

1 INTRODUCTION

Practitioners often rely on simple formulas, like Amdahl’s Law
and Little’s Law, to understand and design computer systems.
Simple formulas complement simulation (which may be more
accurate, but is restricted to specific inputs) by yielding broad
insights about system behavior, and provide first-order answers
to common questions—e.g., how large should the reorder buffer
be to accommodate a given range of memory access latencies.

Unfortunately, few such formulas exist for caches, and those
few are limited to specific access patterns [5, 7]. The standard
way to find how a cache will perform is through time-consuming
simulation. Alternatively, prior work has proposed cache models
that yield faster predictions under arbitrary access patterns [1, 3,
4, 6, 8]. These models avoid the need for long simulations, but
they do not provide closed-form solutions:1 they are numerical
in nature, and, like simulation, they produce a miss rate for a
particular input, not an equation that lets designers reason about
how performance changes with cache size or access pattern.

For some purposes it would be preferable to have simpler
models that capture common behaviors. Such models support
early design exploration, where simplicity and insight are
paramount. They can also be used in algorithmic analysis, e.g.
to compare performance on different input sizes. For these uses,
cache models need only capture first-order effects, since detailed
modeling or simulation would be done later in the design.

This paper presents cache calculus, the first general technique
that provides closed-form solutions of cache performance.
Cache calculus advances the state-of-the-art by modeling caches
through differential equations, revealing surprisingly simple
expressions for how caches behave. Unlike prior models, which
aim to replace simulation, cache calculus complements it by
providing simple, closed-form (or transcendental) expressions.1

Road map: We begin by motivating cache calculus and present-
ing the discrete model it builds upon (§2). Cache calculus relaxes
this model into a system of ordinary differential equations
(ODEs, §3). We then show how to solve the ODEs for common
access patterns (§4), including combinations of common patterns.
In this paper, we derive formulas for stack, scanning, and
random access patterns on caches with random replacement.
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1. A closed-form expression contains a constant number of elementary
operations (e.g., Eq. 14), whereas a transcendental expression contains a
non-elementary function of the variable being solved for (e.g., Eq. 21).

Finally, we illustrate how cache calculus can be applied to
analytically intractable patterns through numerical analysis (§5).

2 BACKGROUND

Cache models try to predict the cache’s hit rate using a
probabilistic description of the access pattern and a description
of the cache (e.g., its size). Prior models [1, 3, 4, 5, 6, 8] aim to
provide an efficient alternative to simulation, to, for example,
accelerate design space exploration [1, 5, 8] or perform dynamic
cache partitioning [3]. By contrast, our main goal is to augment
simulation through simpler, closed-form models. Cache calculus
provides simple equations that capture the main tradeoffs and
aid in the early stages of design. To that end, we focus on
common access patterns and simple approximations.

Specifically, we extend a discrete cache model from our prior
work [3], hereafter called “the discrete model”. The discrete
model was designed to predict the performance of arbitrary age-
based replacement policies. It relies on two critical simplifying
assumptions. First, that the cache provides sufficient associativ-
ity so that conflict misses are a second-order concern. Hashing,
common in commercial LLCs, satisfies this assumption. Second,
that reuse distances2 are independent and identically distributed
(iid) following the probability distribution denoted PD(d).3 This
assumption is motivated by observing that private caches filter
successive references to the same address, so the LLC sees
an access stream stripped of short-term temporal correlations.
Although approximate, the iid assumption is surprisingly robust
across many access patterns and policies (§4), and in turn makes
the model tractable.

From these assumptions, the discrete model produces three
interdependent equations that describe the cache’s behavior on
the access pattern. Specifically, it describes the probability of
different events as a function of their age.4 The discrete model
describes the distribution of ages A, hits H , and evictions E.
For example, PA(10) is the probability that a randomly selected
line has age 10, and PE(16) is the probability that a randomly
selected line will be evicted at age 16. The cache’s hit rate is the
total hit probability P[hit] =

∑∞
x=1 PH(x).

We now briefly describe the equations in the discrete model,
since they are the basis for the ODEs used in cache calculus.
Refer to [3] for detailed explanations.
Ages: In order to survive to age a, a line must first survive to
age a− 1. Thus the probability a randomly selected cache line
has age a decreases with larger a, and the probability a random
cache line has age a is just the sum of all hits or evictions at later
ages. Finally, since every access produces exactly one line of age
1 (whether by hit or eviction), with cache size S

PA(a) =
1

S

∞∑
x=a

PH(x) + PE(x) (1)

Hits: To compute the probability of hits at age a, the discrete
model observes that a hit of age a must have reuse distance
a. Thus the hit probability is related to the reuse distance
probability. Moreover, evictions at earlier ages make later hits
less likely. Specifically, the probability a random cache line will
hit at age a is

2. In this paper, reuse distance is the number of accesses between
references to the same address; contrast with stack distance, the number
of unique addresses. Some prior work treats these terms synonymously.

3. In our notation, PX(x) is the probability that random variable X
equals x, and P[X > x] is the probability that X is larger than x.

4. The age of a cache line is the number of accesses that have elapsed
since it was last referenced (i.e., since last hit or insertion).



2

PH(a) = PD(a)×

1−
a−1∑
x=1

PE(x)

P[D > x]

 (2)

The latter factor is the fraction of hits at age a lost due to
evictions at earlier ages.
Evictions: Evictions are the most complicated part of the discrete
model. Due to space constraints, in this paper we specialize the
eviction equation for random replacement.

With random replacement, the probability that eviction
occurs at age a is just the probability that the cache misses
and that the (randomly chosen) victim has age a

PE(a) = P[miss]× PA(a) (3)

The discrete model was thoroughly validated and shown to
be accurate: on SPEC CPU2006 benchmarks it yields negligible
median error and mean error of under 4%. But despite this
accuracy, the discrete model equations do not readily yield
insight into the relationship between the cache size S or access
pattern D. Moreover, it requires iteration that is orders of
magnitude more expensive than cache calculus’s models. These
problems afflict all prior, general-purpose models [1, 4, 6, 8], and
other models [5, 7] are limited to specific access patterns.

3 CACHE CALCULUS

Cache calculus transforms the discrete model into a system of
ordinary differential equations that admit standard, well-studied
calculus techniques. We first introduce variables representing the
cumulative probability function (CDF) of each random variable
in the discrete model, shown in Table 1.

TABLE 1
ODE variables and corresponding random variables in discrete model.

Discrete model P[D < a] P[A < a] P[H < a] P[E < a]
Cache calculus D(a) A(a) H(a) E(a)

Using these variables, we can rewrite the discrete model
equations. First, following ODE conventions, we often drop the
parameter a; i.e., H denotes H(a) unless otherwise specified.
Second, observe from the Fundamental Theorem of Calculus
that H ′ = PH(a), or fH(a) using continuous probability notation.
The same holds for other variables.
Ages: The continuous approximation of the age distribution is

A′ =
1− (H + E)

S
(4)

In detail, the transformation is (starting from Eq. 1)

PA(a) =
1

S

∞∑
x=a

PH(x) + PE(x)

Relaxing to continuous probability

fA(a) =
1

S

∫ ∞
a

[
fH(x) + fE(x)

]
dx

=
1

S

(
1−

∫ a

0

[
fH(x) + fE(x)

]
dx

)
Substituting A′ = fA(a) and H + E =

∫ a

0

[
fH(x) + fE(x)

]
dx

yields Eq. 4. The remaining transformations are similar, but due
to space constraints we omit their details.
Hits: To write the hit distribution as an ODE, it is helpful to
introduce a new variable that represents the second factor in
Eq. 2; i.e., the fraction of hits lost to earlier evictions

B(a) =

∫ a

0

E′(x)

1−D(x)
dx ⇒ B′ =

E′

1−D
(5)

With B, the hit distribution is simply

H ′ = D′(1−B) (6)

Evictions: Let m = P[miss] be the cache’s miss rate. Then for
random replacement (Eq. 3), the eviction distribution is

E′ = mA′ (7)

3.1 Summary
The above equations form a non-autonomous system of dif-
ferential equations in four variables (A,B,H,E—recall that D
is a model input). The system yields the cache’s miss rate as
m = lima→∞E, which always has one solution in [0, 1] as well
as the extraneous solution m = 0. Moreover, the system is linear
for random replacement, making it easy to find closed-form
solutions. Unfortunately, the system is non-linear for LRU and
other policies, but can be solved using numerical analysis (§5) or
a fully associative formulation (omitted for space; see [2, §D.5]).

4 ANALYTICAL SOLUTION

We now consider cache performance under three access patterns:
the scan pattern iterates repeatedly over an array, the stack
pattern scans back and forth over an array, and the random
pattern accesses random array elements. These are illustrated
over time on an N -element array in the left side of Fig. 1.
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Fig. 1: Example access patterns. (left) Accesses over time to different
array elements. (right) Resulting reuse distance distribution.

The right side of Fig. 1 shows the resulting reuse distance
distributions. All references in the scanning pattern have the
same reuse distance N ; random accesses have exponentially
distributed reuse distances; and the stack pattern has uniform
reuse distances from 1 to 2N . Hence the cumulative reuse
distance distributions for each are

Dscan(x) =

{
0 If x < N

1 Otherwise
(8)

Drandom(x) = 1−
(
N − 1

N

)x

(9)

Dstack(x) =

{
x/2N If x < 2N

1 Otherwise
(10)

Note that reuse distances in the scan and random patterns
are iid, whereas those in the stack pattern are not. Yet we will
see that the model is accurate on each pattern.

One intuitive result from the following analysis is that the
cache’s miss rate is scale-invariant. That is, only the ratio of the
array size and cache size matter, not their absolute size. We
denote this ratio ω = S/N .

4.1 Simple patterns
To arrive at closed-form solutions for random replacement, we
solve the following initial value problem derived from the ODEs:

H ′′ =
D′′

D′
H ′ − D′

1−D
E′ and E′′ = −m

S
(H ′ + E′) (11)
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Fig. 2: Comparison of ODE solution (—) vs. simulation ( ) on random
replacement for several access patterns.

These equations eliminate variables A and B, simplifying the
analysis. The initial values for all variables are zero, so H(0) =
E(0) = 0 and (by substitution) H ′(0) = D′(0) and E′(0) = m/S.
(Age zero simply denotes infinitesimally small ages.) These
initial values mean that there are no hits or evictions initially,
so short reuse distances hit, and, since small ages are more
common, evictions are also more likely.
Scanning pattern: To solve for the cache’s miss rate on a
scanning pattern with random replacement, we first observe
that (i) all lines hit at age N if not evicted, (ii) no hits occur at
ages less than N , and (iii) all evictions occur at ages less than N .
Thus for ages 0 < a < N , H ′ = 0 and

E′′ = −m

S
E′ ⇒ E = 1− e−ma/S (12)

The right-hand side follows from initial conditions. We can now
compute the miss rate m. Since no evictions occur beyond age
N

m =

∫ N

0

E′ da = E(N)− E(0) = 1− e−m/ω (13)

We solve for m via the product logarithm W0(x) = z ⇒ zez = x

m = 1 + ω W0

(
−e−1/ω/ω

)
(14)

Fig. 2 compares Eq. 14 with simulation of microbenchmarks
on a small cache using random replacement. (We have confirmed
that model results hold for different array sizes N .) Simulation
results are given by circles ( ), model solutions are solid lines
(—), and colors show different access patterns. As the figure
shows, Eq. 14 accurately predicts the scanning miss rate over all
cache sizes.
Random accesses: The reuse distance distribution for a random
access pattern has exponential decay, since every address has
1/N chance of being referenced at each access. Substituting Eq. 9
into Eq. 11 yields a simpler equation for H ′′

H ′′ = (H ′ + E′) ln
N − 1

N
(15)

This equation has a similar form to evictions (Eq. 11). To
simplify, let ` = ln(N/(N − 1)). Given the initial conditions,
these equations yield a solution of the form

H ′ = ` e−(`+m/S)a and E′ =
m

S
e−(`+m/S)a (16)

We can now compute the miss rate

m =

∫ ∞
0

E′ da =
m/S

`+m/S
(17)

which means either m is zero or, if S < N ,

m = 1− S` ≈ 1− ω (18)

The final approximation holds for large N , where ` ≈ 1/N . Fig. 2

shows that the model is, once again, an excellent match with
simulation.
Stack pattern: Similar to the scanning pattern, the stack pattern
only has hits or evictions at ages 0 < a ≤ 2N . We simplify the
hit distribution using the derivatives of Eq. 10, D′ = 1/2N and
D′′ = 0

H ′′ =
E′

a− 2N
(19)

Evictions do not simplify and are unchanged from Eq. 11.
Given the initial conditions, these equations are solved by

H ′ =
1

2N
e−ma/S and E′ =

(
1− a

2N

)
m

S
e−ma/S (20)

This yields the miss rate

m =

∫ 2N

0

E′ da = 1 +
e−2m/ω − 1

2m/ω
(21)

Unlike prior patterns, Eq. 21 does not yield an explicit
solution for m (it is a transcendental equation). But it can be used
to quickly iterate to a fixed-point on m by repeatedly evaluating
the right-hand side of Eq. 21. This iteration is far more efficient
than iterating on a full discrete model like [1, 3, 4, 6, 8].

Although an exact, closed-form solution is not forthcoming
for the stack distribution, we can get a closed-form approxima-
tion. First, consider that when N � S, the miss rate is high
m ≈ 1, the cache is small ω ≈ 0, and thus e−2m/ω ≈ 0. Hence

m ≈ 1− ω

2m
⇒ m ≈ 1

2

(
1 +
√
1− 2ω

)
(22)

This approximation works well at high miss rates, and we can
extend it across the full range by taking its Taylor series around
ω = 0

m ≈ 1− ω

2
− ω2

4
− ω3

4
−O

(
ω4
)

(23)

Fig. 2 compares this approximation (. . .), 100 iterations of Eq. 21
(—), and simulation ( ). It shows that the approximation is fairly
accurate throughout the range. The small error at low miss rates
comes from reuse distances not being iid.

4.2 Hybrid patterns
Cache calculus is easily extended to model more complicated
patterns, for example by combining the patterns just seen. We
give one simple example of a program scanning over arrays of
different sizes.
Hybrid scan: Suppose that a program accesses two data struc-
tures, a fraction p of accesses scanning an array of size N1, and
a fraction 1− p scanning an array of size N2. This access pattern
produces a more complicated reuse distance distribution, shown
in Fig. 3. Note that this pattern also does not satisfy the iid
assumption, yet we will see that the model remains accurate.

Scanning over the first array takes N1/p accesses on average,
with some variance depending on how often it is accessed, and
likewise for the second array. With large reuse distances, we

0 N 2N 3N

Accesses →

N1

N2

0 N 2N 3N

Reuse distance, d

0

1/N

2/N

3/N

4/N

5/N

6/N

7/N

8/N

P
ro

b
a
b
ili

ty
, 
D
′ (
d
)

d1 =N1/p

d2 =N2/(1−p)A
rr

a
y
 e

le
m

e
n
t

Fig. 3: A more complex pattern that scans over two arrays. The N array
elements are split evenly into two arrays N1 and N2, and p = 3/4
accesses go to the first array.
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can model the reuse distance distribution using the normal
distribution (details omitted).

However, the normal distribution is complicated to analyze,
so we instead model that all accesses to the first array have reuse
distance d1 = N1/p, and all to the second have reuse distance
d2 = N2/(1 − p). With this crude approximation, there are no
hits except at ages d1 and d2.

Without loss of generality, suppose that d1 < d2. Then until
age d1, evictions are unchanged from the prior scanning example
(Eq. 12), and thus at age d1 there have been

E(d1) = 1− e−md1/S (24)

evictions. The hits at age d1 are just the fraction of accesses to
the first array that have not been evicted (Eq. 6)

H(d1) = D′mixed-scan(d1)
(
1− E(d1)

)
= p e−md1/S (25)

Since accesses to the first array hit at age d1, afterwards
only accesses to the second array remain. This makes later
ages less common. Specifically, just after age d1, only a fraction
(1 − p) e−md1/S/S of lines remain (computed from the age
distribution, Eq. 4). Since evictions depend on the age probability
(Eq. 7), the eviction distribution changes after age d1 as well.
Specifically, we must choose new constants when solving Eq. 12.
After doing so, we find that the evictions from ages d1 to d2 are

E(d2)− E(d1) = (1− p)(e−md1/s − e−md2/s) (26)

And thus the overall miss rate is (adding Equations 24 and 26)

m = 1− p e−mN1/pS − (1− p) e−mN2/(1−p)S (27)
Eq. 27 has a similar form to the miss rate when scanning a
single array (Eq. 13), but with two terms, one for each array.
Indeed, Eq. 27 generalizes to many arrays with sizes Ni and
access probabilities pi

1−m =
∑
i

pi e
−mNi/piS (28)

The left-hand side is the cache’s hit rate, and each term in the
right-hand sum gives the hits to the ith array.

Unlike when scanning a single array, Eq. 28 does not yield
an explicit, closed-form solution. However, it does provide a
transcendental expression that can be repeatedly evaluated to
rapidly converge to a fixed point on m (see Fig. 5b in the next
section). Fig. 4 shows that the ODE solution is accurate for a
variety of different array sizes with 100 iterations of Eq. 27.
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Fig. 4: Comparison of ODE solution (—) vs. simulation ( ) on random
replacement for several array ratios on the mixed scanning pattern. Total
array size N = N1 +N2 and p = 3/4 of accesses go the first array.

5 NUMERICAL SOLUTION

Some access patterns are difficult to express analytically, or
come from online monitors that cannot be pre-characterized.
Even in these cases, cache calculus provides efficient miss rate
predictions via numerical analysis. Specifically, we solve the
system of ordinary different equations on A, B, H , and E from
§3 using the Runge-Kutta method. Adaptive methods could
be used to improve efficiency, while providing rigorous error
bounds unlike prior models. Otherwise, this application of cache
calculus is similar to prior reuse-distance-based models [3, 4, 8].

As in analytical solutions, numerical solutions require the
miss rate m to set up initial conditions, but m itself is a product
of the solution. Numerical solutions therefore converge on m
through iteration (similar to Fig. 4.2). Fig. 5 shows an example.
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Fig. 5: Example numerical solution on a complex access pattern.

The left-hand side shows the reuse distance distribution of
an access pattern that scans over an array while randomly
skipping some elements at each step. This distribution is
gathered empirically from a pseudo-randomly generated trace.
The right-hand side shows how numerical solution converges to
the actual miss rate. We solve the initial value problem, starting
from m = 0.5, to produce a new miss rate (plotted on the
line “Miss rate map”). The solution then repeats using the new
miss rate as a seed until it converges to a fixed point (where it
intersects the line y = x). As shown, this process takes just a few
iterations to converge (“Model iteration on m”).

6 CONCLUSION

Architects frequently use simple mathematical models to reason
about their designs, but such closed-form expressions are
lacking for caches. We have presented cache calculus, the first
general technique that yields simple mathematical formulas for
cache performance across many access patterns. Cache calculus
leverages the well-studied theory of ODEs, yielding closed-form
or transcendental models of cache performance.
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