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Abstract

This work focuses on developing theory and methodologies for the analysis of material
transport in stochastic fluid flows. In a first part, two dominant classes of techniques for
extracting Lagrangian Coherent Structures are reviewed and compared and some improve-
ments are suggested for their pragmatic applications on realistic high-dimensional deter-
ministic ocean velocity fields. In the stochastic case, estimating the uncertain Lagrangian
motion can require to evaluate an ensemble of realizations of the flow map associated with a
random velocity flow field, or equivalently realizations of the solution of a related transport
partial differential equation. The Dynamically Orthogonal (DO) approximation is applied
as an efficient model order reduction technique to solve this stochastic advection equation.
With the goal of developing new rigorous reduced-order advection schemes, the second part
of this work investigates the mathematical foundations of the method. Riemannian ge-
ometry providing an appropriate setting, a framework free of tensor notations is used to
analyze the embedded geometry of three popular matrix manifolds, namely the fixed rank
manifold, the Stiefel manifold and the isospectral manifold. Their extrinsic curvatures are
characterized and computed through the study of the Weingarten map. As a spectacular
by-product, explicit formulas are found for the differential of the truncated Singular Value
Decomposition, of the Polar Decomposition, and of the eigenspaces of a time dependent
symmetric matrix. Convergent gradient flows that achieve related algebraic operations are
provided. A generalization of this framework to the non-Euclidean case is provided, al-
lowing to derive analogous formulas and dynamical systems for tracking the eigenspaces of
non-symmetric matrices. In the geometric setting, the DO approximation is a particular
case of projected dynamical systems, that applies instantaneously the SVD truncation to
optimally constrain the rank of the reduced solution. It is obtained that the error commit-
ted by the DO approximation is controlled under the minimal geometric condition that the
original solution stays close to the low-rank manifold. The last part of the work focuses on
the practical implementation of the DO methodology for the stochastic advection equation.
Fully linear, explicit central schemes are selected to ensure stability, accuracy and efficiency
of the method. Riemannian matrix optimization is applied for the dynamic evaluation of
the dominant SVD of a given matrix and is integrated to the DO time-stepping. Finally
the technique is illustrated numerically on the uncertainty quantification of the Lagrangian
motion of two bi-dimensional benchmark flows.
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Title: Associate Professor, Department of Mechanical Engineering
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Notations

General notations relative to Riemannian geometry

𝐸 Finite dimensional space
𝐸* Dual space of 𝐸
< ·, · > Scalar product or duality bracket on 𝐸

|| · || =< ·, · >
1
2 Euclidean norm on 𝐸

Span(𝐴) Image space of a linear operator 𝐴
Ker(𝐴) Kernel of a linear operator 𝐴
M Smooth manifold M ⊂ 𝐸 embedded in 𝐸
𝒯 (𝑅) Tangent space at 𝑅 ∈M
𝒩 (𝑅) Normal space at 𝑅 ∈M
Π𝒯 (𝑅) Orthogonal projection onto the tangent space 𝒯 (𝑅)
ΠM Orthogonal projection onto M
Ω Closure of a set Ω ⊂ 𝐸

𝜕M Boundary 𝜕M = M ∖M of M
Sk(M ) Skeleton of M
R Point R ∈ 𝐸 of the ambient space
X Vector X ∈ 𝐸 of the ambient space attached to some point R ∈ 𝐸
𝑅 Point 𝑅 ∈M of the manifold
𝑋 Vector 𝑋 ∈ 𝒯 (𝑅) tangent to the manifold at some point 𝑅 ∈M
𝑅(𝑡) Smooth curve 𝑅(𝑡) ∈M drawn on M and defined on an open interval

around the initial time 𝑡 = 0
�̇� = d𝑅/d𝑡 Time derivative of a trajectory 𝑅(𝑡)
exp𝑅(𝑡𝑋) Geodesic curve on M starting from 𝑅 ∈M in the tangent direction

𝑋 ∈ 𝒯 (𝑅)
𝑁 Vector 𝑁 ∈ 𝒩 (𝑅) in the normal space at 𝑅 ∈M
𝜅𝑖(𝑁) Principal curvatures in the direction 𝑁
𝜅∞(𝑅) Maximal curvature at the point 𝑅 ∈M
𝐼 Identity mapping
D𝑋𝑓(𝑅) Differential of a function 𝑓 defined on a manifold M ⊂ 𝐸
DΠ𝑇 (𝑅)(𝑋) · 𝑌 Differential of the projection operator Π𝑇 (𝑅) applied to 𝑌

Some attention must be given to the notation used for the differentials. The differential of
a smooth function 𝑓 at the point 𝑅 belonging to some manifold M (this includes possibly
M = 𝐸) in the direction 𝑋 ∈ 𝑇 (𝑅) is denoted D𝑋𝑓(𝑅) :

D𝑋𝑓(𝑅) = d
d𝑡

𝑓(𝑅(𝑡))
⃒⃒⃒⃒
𝑡=0

= lim
Δ𝑡→0

𝑓(𝑅(𝑡 + Δ𝑡))− 𝑓(𝑅(𝑡))
Δ𝑡

,
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where 𝑅(𝑡) is a curve of M such that 𝑅(0) = 𝑅 and �̇�(0) = 𝑋. The differential of the
orthogonal projection operator 𝑅 ↦→ Π𝑇 (𝑅) at 𝑅 ∈ M , in the direction 𝑋 ∈ 𝑇 (𝑅) and
applied to 𝑌 ∈ℳ𝑙,𝑚 is denoted DΠ𝑇 (𝑅)(𝑋) · 𝑌 :

DΠ𝑇 (𝑅)(𝑋) · 𝑌 =
[︂ d

d𝑡
Π𝒯 (𝑅(𝑡))

⃒⃒⃒⃒
𝑡=0

]︂
(𝑌 ) =

[︂
lim

Δ𝑡→0

Π𝒯 (𝑅(𝑡+Δ𝑡)) −Π𝒯 (𝑅(𝑡))
Δ𝑡

]︂
(𝑌 ).

Notations used in the context of matrix spaces

ℳ𝑙,𝑚 Space of 𝑙-by-𝑚 real matrices
Sym𝑛 Space of 𝑛-by-𝑛 symmetric matrices
ℳ*

𝑚,𝑟 Space of 𝑚-by-𝑟 matrices that have full rank
rank(𝑅) Rank of a matrix 𝑅 ∈ℳ𝑙,𝑚

M = {𝑅 ∈ℳ𝑙,𝑚|rank(𝑅) = 𝑟} Fixed rank matrix manifold
St𝑛,𝑝 = {𝑈 ∈ℳ𝑛,𝑝 | 𝑈𝑇 𝑈 = 𝐼} Stiefel Manifold of 𝑛-by-𝑝 matrices
𝒪𝑛 = {𝑃 ∈ℳ𝑛,𝑛 | 𝑃 𝑇 𝑃 = 𝐼} Group of 𝑟-by-𝑟 orthogonal matrices
I Isospectral manifold
𝒢 Grassman manifold
𝐴𝑇 Transpose of a matrix 𝐴
< 𝐴, 𝐵 >= Tr(𝐴𝑇 𝐵) Frobenius matrix scalar product
||𝐴|| = Tr(𝐴𝑇 𝐴)1/2 Frobenius norm
𝜎1(𝐴) ≥ . . . ≥ 𝜎rank(𝐴)(𝐴) Non zeros singular values of a matrix 𝐴

𝜆𝑖(𝐴) Eigenvalues of a real matrix 𝐴
ℜ(𝜆𝑖(𝐴)) Real parts of the eigenvalues of a matrix 𝐴
Span(𝑈) Vector space spanned by the columns of the

matrix 𝑈
sym(X) = (X + X𝑇 )/2 Symmetric part of a square matrix X
skew(X) = (X− X𝑇 )/2 Skew-symmetric part of a square matrix X
𝛿𝑖𝑗 Kronecker symbol. 𝛿𝑖𝑖 = 1 and 𝛿𝑖𝑗 = 0 for

𝑖 ̸= 𝑗
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Introduction

The motivation that constitutes the guideline of this work is the need for novel fundamen-
tal theory and computational schemes that rigorously integrate uncertainty in Lagrangian
predictions, that is in the analysis of material transport associated with dynamic time and
space dependent uncertain velocity fields. Such concern is typically encountered in ocean
and weather forecasting for which predictions often include some amount of uncertainty
[94, 92]. The first results that integrate stochastic data-assimilative ocean modeling with
Lagrangian predictions for stochastic Lagrangian Coherent Structures schemes were ob-
tained for the Monterey Bay region [95]. Accurately and efficiently estimating how material
transport is organized in such uncertain environments however still corresponds to funda-
mental and computational challenges that must for example be addressed when developing
hazard response capabilities [105] or path planning of autonomous naval systems [96, 140].

Advection and Lagrangian Coherent Structures We start in chapter 1 with a re-
view of the state of the art techniques available for analyzing material transport in non-
autonomous dynamical systems. This involves notably the theory of Lagrangian Coherent
Structures (LCS) [66, 51], that seeks to extract and provide tools for visualizing the relevant
features of the flow map of the particle ODE (Ordinary Differential Equation){︃

�̇� = 𝑣(𝑡,𝑥)
𝑥(0) = 𝑥0.

(1)

We examine and compare two classes of methods for defining and extracting relevant sur-
faces or sub-regions of the flow that exhibit material coherence. These two classes split
between those which study the flow map of the ODE (1) directly (diffeomorphism based
methods) versus those which consider its global action on scalar functions (operator based
methods). This action is given by the resolvent operator of the advection equation{︃

𝜕𝑡𝜓 + 𝑣(𝑡,𝑥) · ∇𝜓 = 0
𝜓(0,𝑥) = 𝜓0(𝑥),

(2)

that maps an initial data 𝜓0(𝑥) to the advected data 𝜓(𝑡,𝑥) at time 𝑡. We discuss the
efficient and pragmatic implementation of these methods for realistic ocean velocity data
using both the Lagrangian (1) and the Eulerian (2) points of view. We also propose some
new criteria for defining LCSs, as well as some reformulations of the existing theories. We
compare these various techniques on three benchmark numerical examples including a highly
resolved set of realistic ocean velocities.
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Model order reduction for stochastic advection We then focus on devising method-
ologies that would adapt and extend these tools to uncertain velocity fields. For such cases,
one needs to estimate the statistics of an ensemble of realizations of the flow maps of the
ODE (1) where 𝑣(𝑡,𝑥; 𝜔) becomes a stochastic variable depending on a random event 𝜔, or
equivalently, of the solution 𝜓(𝑡,𝑥; 𝜔) of the stochastic advection equation{︃

𝜕𝑡𝜓 + 𝑣(𝑡,𝑥; 𝜔) · ∇𝜓 = 0
𝜓(0,𝑥; 𝜔) = 𝜓0(𝑥; 𝜔).

(3)

This PDE formulation is not necessary more advantageous for evaluating material transport
in the case of a single deterministic simulation [27], but one of its exceptional feature is that
it transforms the nonlinear dynamics of the ODE (1) into a linear process. We will see
later on that it makes (3) especially suited for applying dynamical model order reduction
methods that avoid brute-force Monte-Carlo simulations by taking advantage of the low-
rank structure of the stochastic solutions.

Equation (3) belongs to the more general class of stochastic PDEs of the form

𝜕𝑡𝑢 = L (𝑡,𝑢; 𝜔) , (4)

where 𝑡 is time, 𝑢 the uncertain dynamical fields and L a differential operator. Find-
ing efficient reduced dynamical systems for such stochastic PDEs is an issue commonly
encountered in a wide variety of domains involving intensive computations and expensive
high-fidelity simulations [126, 116, 84, 26]. For deterministic but parametric dynamical
systems, 𝜔 may also represent a large set of possible parameter values that need to be
accounted for by the model-order reduction. In general, reduced order methods seek for a
dynamic approximation 𝑢DO of the solution 𝑢 that can decompose onto a finite number of
𝑟 spatial modes, 𝑢𝑖(𝑡, 𝑥), and stochastic coefficients, 𝜁𝑖(𝑡, 𝜔),

𝑢(𝑡,𝑥; 𝜔) ≃ 𝑢DO =
𝑟∑︁

𝑘=0
𝜁𝑖(𝑡, 𝜔)𝑢𝑖(𝑡,𝑥). (5)

The existence of such approximation is motivated by the Karuhnen-Loève (KL) decompo-
sition [99, 73], for which selecting the first 𝑟 modes yields an optimal orthonormal basis
(𝑢𝑖). Many methods have been proposed to evolve either these modes or coefficients, but
not both, the most popular being polynomial chaos expansions [154], Fourier decomposi-
tion [151], or Proper Orthogonal Decomposition [73]. In order to solve (3), we consider the
Dynamically Orthogonal (DO) approximation introduced in 2009 for stochastic PDEs (4)
by Sapsis and Lermusiaux [124]. In contrast with the previous methods, the DO method
does not assume anything more than the dependence with respect to time of the modes
𝑢𝑖(𝑡,𝑥) and coefficients 𝜁𝑖(𝑡; 𝜔). The reduced model is a coupled system of PDE that seeks
to most accurately update the approximation (5) :⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝜁𝑖 =< L (𝑡,𝑢DO; 𝜔),𝑢𝑖 >

𝑟∑︁
𝑗=1

E[𝜁𝑖𝜁𝑗 ]𝜕𝑡𝑢𝑗 = E

⎡⎣𝜁𝑖

⎛⎝L (𝑡,𝑢DO; 𝜔)−
𝑟∑︁

𝑗=1
< L (𝑡,𝑢DO; 𝜔),𝑢𝑗 > 𝑢𝑗

⎞⎠⎤⎦ ,
(6)

E being the expectation operator and <, > the standard scalar product over 𝐿2 functions (an
integral over the spatial domain). Numerical schemes were developed by Ueckermann et. al.
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[147] for these PDEs that allowed to obtain efficient simulations of stochastic Navier-Stokes
equations. Nevertheless, a gap remains today regarding, (i) the rigorous understanding of
the error committed by this approximation in a general framework, (ii) the selection of
appropriate numerical schemes in these methods for problems dominated by advection. In
general, the discretization of the advection term −𝑣 · ∇𝜓 in (2) requires particular care to
obtain stability and accuracy [108], and it is not a priori clear how up-winding rules and
other nonlinear schemes can be efficiently adapted to the stochastic case.

Riemannian geometry of matrix manifolds and low-rank methods In order to
develop rigorous, stable and accurate schemes for (3), we investigated the foundations of
low-rank model order reduction methods for stochastic PDEs. After discretization of (4)
with respectively 𝑙 and 𝑚 spatial and stochastic degrees of freedoms, one is interested in
the numerical solution of a large system of ODEs of the form

Ṙ = ℒ(𝑡,R), (7)

where ℒ is an operator acting on the space ℳ𝑙,𝑚 of 𝑙-by-𝑚 matrices R. As noticed by the
recent work of Musharbash in [103], it turns out that in this discrete setting, the DO method
coincides with the “dynamical low-rank” approximation introduced in 2007 by Koch and
Lubich [83, 103]. The decomposition (5) is written under the form of rank 𝑟 approximation
R ≃ 𝑈𝑍𝑇 where 𝑈 is a 𝑙-by-𝑟 matrix containing the discretization of the basis functions
(𝑢𝑖), and 𝑍 is a 𝑚-by-𝑟 matrix containing the realizations of the stochastic coefficients (𝜁𝑖).

Any model order reduction method attempts to evolve a point 𝑅 = 𝑈𝑍𝑇 in the subset

M = {𝑅 ∈ℳ𝑙,𝑚|rank(𝑅) = 𝑟}

constituted by rank 𝑟 matrices. As already exploited in the optimization community [4],
a crucial feature is that M has a smooth shape in the space ℳ𝑙,𝑚 that gives to this set a
lot of structure: in mathematical jargon, M is a smooth manifold. To provide a geometric
intuition, a 3D projection of two 2-dimensional subsurfaces of the set of rank one 2-by-2
matrices (a three dimensional manifold embedded in a four dimensional space) has been
plotted on Figure 1. This figure has been obtained by using the parameterization

𝑅(𝜌, 𝜃,𝜑) = 𝜌

(︃
sin(𝜃) sin(𝜑) sin(𝜃) cos(𝜑)
cos(𝜃) sin(𝜑) cos(𝜃) cos(𝜑)

)︃
, 𝜌 > 0, 𝜃 ∈ [0, 2𝜋], 𝜑 ∈ [0, 2𝜋],

and projecting orthogonally two subsurfaces by plotting the first three elements 𝑅11, 𝑅12
and 𝑅21. We will prove in chapter 2 that the maximal curvature of M is proportional
to the inverse of the lowest singular value, which is consistent with the spiraling shape
visible on Figure 1a near the origin (note that in this example, the smallest singular value
is 𝜎2(𝑅) = 𝜌). Simultaneously, M is the union of 𝑟-dimensional affine subspaces of ℳ𝑙,𝑚

supported by the manifold of strictly lower rank matrices, which is to some extent illustrated
on Figure 1b.

Geometrically, a dynamical system (7) can be seen as a time dependent vector field
ℒ(𝑡, ·) that assigns the velocity ℒ(𝑡,R) at time 𝑡 at each point R of the ambient space
ℳ𝑙,𝑚 of 𝑙-by-𝑚 matrices (this is illustrated on Figure 2). Similarly, any rank 𝑟 model order
reduction can be viewed as a vector field 𝐿(𝑡, ·) that must be everywhere tangent to the
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the text.
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Figure 2: Dynamical systems as vector fields ℒ in the ambient space ℳ𝑙,𝑚 (in red), or as
vector fields 𝐿 tangent to the manifold M (in blue). The DO approximation corresponds
to the dynamical system 𝐿(𝑡, ·) obtained by the orthogonal projection of the vector field
ℒ(𝑡, ·) onto the local tangents to the manifold M , i.e. the “tangent projection" in short.

manifold M of rank 𝑟 matrices. The corresponding dynamical system is

�̇� = 𝐿(𝑡, 𝑅) ∈ 𝒯 (𝑅), (8)

where 𝒯 (𝑅) denotes the tangent space of M at 𝑅. From this point of view, the DO or
dynamical low rank approximation is obtained by “combing the hair” formed by the original
vector field ℒ on the manifold M , that is by setting 𝐿(𝑡, 𝑅) = Π𝒯 (𝑅)(ℒ(𝑡,R)) to be the
time-dependent orthogonal projection of each vector X = ℒ(𝑡, 𝑅) onto the tangent space
𝒯 (𝑅). Making the projection Π𝒯 (𝑅) explicit, the DO solution 𝑅(𝑡) = 𝑈(𝑡)𝑍(𝑡)𝑇 can be
obtained by solving {︃

�̇� = ℒ(𝑡, 𝑈𝑍𝑇 )𝑇 𝑈

�̇� = (𝐼 − 𝑈𝑈𝑇 )ℒ(𝑡, 𝑈𝑍𝑇 )𝑍(𝑍𝑇 𝑍)−1,
(9)

which is equivalent to the system given by Koch and Lubich in [83] and a discrete version
of the DO equations (6) from Sapsis and Lermusiaux in [124]. Such relationships between
matrix dynamical systems that learn subspaces and stochastic subspace predictions and
data assimilation where also investigated by Lermusiaux [89] using ideas and methods from
Brockett et al [20, 21].

Curvature of matrix manifolds, differentiability of the truncated SVD and Polar
decomposition, Projected dynamical systems Riemannian geometry of the fixed
rank manifold is therefore an adapted framework for understanding low-rank methods. In
chapter 2 we review and reformulate some background material about the Riemannian
geometry of embedded smooth manifolds in a formalism free of tensor notations. This
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allows to conveniently analyze the embedded geometry of popularly encountered matrix
manifolds, namely the Stiefel manifold (that includes the group of orthogonal matrices), the
isospectral manifold (that includes the Grassman manifold), and the fixed rank manifold,
the latter being the object of study in model order reduction. We obtain explicit formulas
for the Weingarten map and the extrinsic or principal curvatures on these manifolds with
respect to a given normal direction [139, 36, 11]. Combined with a result relating these
curvatures to the differential of the orthogonal projection onto a given manifold M (the
application mapping a point of the ambient space to the closest point on M ), we derive
expressions for the differential of algebraic operations such as truncated SVD (Singular
Value Decomposition), Polar Decomposition and of the projectors over the eigenspaces of
a symmetric matrix. We extend the methodology to the case of a non Euclidean ambient
space, which allows to apply a similar methodology to find time derivative of the eigenspaces
of non symmetric matrices and to derive dynamical systems that compute them.

In this geometric framework, the DO approximation becomes a projected dynamical
system on a manifold M embedded in an euclidean space 𝐸 in the particular case where
M is the fixed rank manifold and 𝐸 the space ℳ𝑙,𝑚 of 𝑙-by-𝑚 matrices. We provide an
analysis of such projected dynamical system in a general setting and we show that the
error committed remains controlled under the geometric condition that the non-reduced
solution remains close to the low-rank manifold M , or more precisely under the condition
that it does not cross the skeleton of M , which is also equivalent to the condition that the
orthogonal projection of this solution onto M remains differentiable. Applied to the DO
methodology later on in chapter 3, we find that the error of the DO approximation (9) is
explicitly related to the gap 𝜎𝑟(R) − 𝜎𝑟+1(R) between the singular values of order 𝑟 and
𝑟 + 1 of the original solution R, which is an improvement over the initial error analysis of
Koch and Lubich in [83] and Musharbash in [103].

DO numerical schemes for stochastic advection Having at our disposal the geomet-
ric analysis, we investigate in chapter 3 the implementation in practice of the DO method
for the stochastic advection equation with random velocity field (3). To our knowledge,
the first results that coupled stochastic data-assimilative ocean modeling and Lagrangian
Coherent Structures schemes were obtained by Lermusiaux and Lekien [95]. The Error
Subspace Statistical Estimation scheme was used for uncertainty forecasting and data as-
similation, and its ensemble of velocity fields was employed to compute the corresponding
LCS uncertainties. LCS statistics were then studied for three different dynamical regimes
and periods in the Monterey Bay region [94, 92]. Presently, we develop new theory and nu-
merical schemes for such stochastic advection and Lagrangian transport studies, using the
DO equations which allow much larger ensemble sizes and the novel geometrical methods
obtained above which allow more robust and accurate integrations.

Deterministic-stochastic consistent numerical schemes are obtained by discretizing first
in space before applying the DO method in the matrix setting, rather than looking for the
discretization of the continuous DO equations as in [147]. For the method to be efficient,
accurate, and directly consistent with deterministic realizations, we find that fully linear
high order schemes that include some amount of artificial diffusion are appropriate. Various
strategies are presented for selecting a time-stepping that accounts for the curvature of the
fixed-rank manifold and the error related to closely singular coefficient matrices. Exploiting
the relation between the DO method and the Singular Value Decomposition, we show
that Riemannian optimization onto the fixed rank manifold can be integrated in the time
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marching scheme to (i) improve the accuracy of the DO time-stepping by accounting for the
curvature of the manifold and (ii) update at will the rank of the reduced solution. Finally,
we demonstrate the applicability of the method on two numerical examples and provide
comparisons with Monte-Carlo simulations.

We become able to efficiently estimate a truncated KL expansion of a stochastic flow
map and hence evaluate its statistics such as mean position or standard deviation from the
mean position of a particle.

This work led to the preparation of two preprint articles: most of the content of chapter 2
and chapter 3 are intended to appear in [44] and [45] respectively.
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Chapter 1

Numerical methods for Lagrangian
Coherent Structures and material
transport analysis

1.1 Introduction

1.1.1 Advection and material transport

Advection plays a major role in a wide variety of physical processes and engineering appli-
cations of fluid mechanics [73, 14], neutronic transport, chemical transports, atmospheric
sciences [121] and ocean sciences [60, 106]. At its most fundamental level, the pure advection
process is understood through the transport partial differential equation (PDE),{︃

(𝜕𝑡 + 𝑣(𝑡,𝑥) · ∇)𝜓 = 0
𝜓(0,𝑥) = 𝜓0(𝑥),

(1.1)

that models the material transport of a passive (scalar or vectorial) tracer field 𝜓 under a
velocity field 𝑣, having initially its values distributed as 𝜓0 over a physical domain of posi-
tions 𝑥. This property is found by relating (1.1) to the solutions of the ordinary differential
equation (ODE) {︃

�̇� =𝑣(𝑡,𝑥)
𝑥(0) =𝑥0,

(1.2)

where 𝑥(𝑡) is physically understood as the position at time 𝑡 of a particle initially located
at 𝑥0 and whose instantaneous velocity is 𝑣(𝑡,𝑥(𝑡)). If 𝜑𝑡

0 is the flow map of this ODE,
mapping initial positions 𝑥0 to those 𝜑𝑡

0(𝑥0) = 𝑥(𝑡) at time 𝑡, then under sufficient regularity
conditions on the velocity field 𝑣 [34, 12], the solution 𝜓 of the advection eqn. (1.1) is
obtained by “carrying 𝜓0 values along particles’ paths”:

𝜓(𝑡,𝑥) = 𝜓0(𝜑−𝑡
0 (𝑥)), (1.3)

where 𝜑−𝑡
0 = (𝜑𝑡

0)−1 is the backward or inverse flow map (Figure 1-1). This is related
to the renormalization property of the “physical” solutions of this PDE, namely if 𝜌 is a
solution, then 𝑏(𝜌) is a solution for any function 𝑏 with some regularity assumptions [17]
(another existence and uniqueness mathematical framework to obtain solutions being the
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Figure 1-1: Illustration of the action of the forward and backward flow map on a subdomain 𝑈 ⊂ Ω
of the physical domain Ω. 𝜑𝑡

0 maps initial particle positions 𝑥0 to their position at time 𝑡, and
(𝜑𝑡

0)−1 is the reciprocal map.

theory of viscosity solutions, see [29]). In fact, (1.1) and (1.2) are equivalent mathematical
descriptions of material transport, as setting 𝜓0(𝑥) = 𝑥 in (1.3) yields 𝜓(𝑡,𝑥) = (𝜑𝑡

0)−1(𝑥).
Similarly, solving backward in time the transport equation with a terminal condition,{︃

(𝜕𝑠 + 𝑣(𝑠,𝑥) · ∇)𝜌 = 0
𝜌(𝑡,𝑥) = 𝜌𝑡(𝑥),

(1.4)

allows to retrieve the forward flow map from the relation 𝜌(𝑠,𝑥) = 𝜌𝑡(𝜑𝑡
𝑠(𝑥)) by setting

𝜌𝑡(𝑥) = 𝑥. This shows that the flow map 𝜑𝑡
0 can be obtained from a solution of the transport

PDE (1.1) and vice versa. This property has been thoroughly investigated on the theoretical
side to give a mathematical meaning to the solutions of the ODE (1.2) for velocity fields
𝑣 with weak regularity [34, 12, 17], and more recently in numerical computations, as it
offers an alternative method to direct particle advection for the evaluation of the flow map
𝜑𝑡

0 [97, 98].

1.1.2 Lagrangian Coherent Structures

Material transport cannot be understood directly from the direct observation of the velocity
field [66, 129], which must be integrated over a time-window. The examples to follow will
provide a clear illustration that particle trajectories advected under an even rather “simple”
time-dependent velocity field are not trivial. The concept of Lagrangian Coherent Struc-
tures (LCS) has emerged recently [71] to improve understanding of material transport in
time-dependent fluid flows. Coherent structures is a notion initially derived from the obser-
vation of turbulent fluid flows and used to refer to persistent eulerian large scale patterns
visible in the velocity fields. These patterns preserve their kinetic energy and allow for en-
ergy dissipation towards smaller scales in the Kolmogorov energy cascade [42]. Lagrangian
Coherent Structures deal with the observation of the material flow itself, and therefore
refers to the persistence of material sub-domains in the flow [39, 68, 66]. LCS are expected
to allow for improved Lagrangian hazard predictions and prevention, typical applications
being pollution tracking in oceans [88, 28] and other environmental flow hazards [1].

To date, several definitions of LCS, that do not fully coincide, have been proposed by
different authors [39, 53, 66, 81, 107, 112, 129, 142] and, there are as many computational

20



methodologies to extract them from time-dependent (non-autonomous) velocity fields. In
this chapter, we review the concept of LCS and the two dominant methods that have
emerged to compute them, and their pragmatic applicability to realistic, highly-resolved
and multi-scale ocean velocity data (note that a recent comparison of these methods is
available on [9]). A time dependent velocity field 𝑣(𝑡,𝑥) is assumed to be given, which is
not necessary a solution of the Navier-Stokes equations. Incompressibility, i.e. div(𝑣) = 0,
is often assumed but it is also not a requirement.

With the flow map 𝜑𝑡
0 or equivalently the PDE (1.1) giving all the information about

material transport, one could say everything needed is there and stop: for example, level set
methods [108] or the direct use of the flow map function can be used to track the evolution of
a domain spanned by a pollutant. Nevertheless, the information contained in the flow map
or the operator (1.6) is not convenient to display: this is because the flow map is a function
(a diffeomorphism) mapping a domain Ω ⊂ R𝑛 into itself, with the spatial dimension 𝑛
being in general 𝑛 = 2 or 3. Defining and computing LCS is therefore all about finding
adequate visualizations of the flow map, that allow to extract the ominant structures of
material transport through an “understandable” picture, for example by plotting a scalar
function 𝐿𝐶𝑆 : R𝑛 → R that will contain an information that best represent the one
contained in the flow map. This scalar function can be a field whose particular level-sets
which indicate coherent sub-domains. It can also be an indicator function for the location
of barriers sub-manifolds. Since the information contained in the vector mapping

𝜑𝑡
0 : R𝑛 → R𝑛 (1.5)

can hardly be reproduced without loss in a simpler representation 𝐿𝐶𝑆 : R𝑛 → R, several
complementary techniques may be used to obtain a picture of how material transport is
organized.

One sees therefore that computing LCS in practice is requires two main ingredients : (i)
an estimation of the flow map, obtained directly by advecting particles, or indirectly by
computing solutions of the PDE (1.1) and (ii) an adequate visualization of the flow map to
extract coherent structures. LCS approaches can mainly be classified into two types: those
which attempt to plot relevant features of the flow map diffeomorphism 𝜑𝑡

0, versus those
which focus on relevant features of the functional operator (1.1)

𝑓 ↦→ 𝑓 ∘ 𝜑−𝑡
0 , (1.6)

that maps initial densities 𝑓0 ∈ 𝐿2(Ω) to the corresponding solution of the advection equa-
tion (1.1) at time 𝑡. The first class of approaches considers rather the action induced by
the flow map on individual particle trajectories, while the second studies its global action
on density distributions.

In all these methods, some issues are recurrent when it comes to applying these these
computational methodologies to realistic data: dependency of coherence with a particular
space-scale or a finite time window [0, 𝑡], presence of inlets and outlets [142], noise or
approximations in data measurement [64].

1.1.3 Three benchmark numerical examples

In the following we review the available techniques and bring some suggestions to improve
LCS estimations and computations. Keeping in mind pragmatic ocean applications for
which velocity data are gridded and often highly resolved, we will apply and compare these
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Figure 1-2: Streamlines and vorticity of the Double Gyre Flow at 𝑡 = 10

Figure 1-3: Streamlines and vorticity of the Flow Past Cylinder Flow at 𝑡 = 0

on three benchmark examples: the analytic double-gyre flow that is a popular example
of most of LCS works [129, 66, 97], the flow past a cylinder that is a typical example of
Navier-Stokes fluid flow, and a realistic set of ocean velocity data over the region of the
island of Palau.

Analytic double-gyre

The double gyre is a 2D benchmark example for studying Lagrangian coherence of parti-
cle motions [129, 97, 66]. This flow is constituted by two vortices oscillating horizontally
(Figure 1-2). We use the analytic expression of this flow proposed by Shadden et al. [129] :

𝑣(𝑡,𝑥) = (−𝜕𝑦𝜑, 𝜕𝑥𝜑) with 𝜑(𝑥, 𝑡; 𝜔) = 𝐴 sin[𝜋𝑓(𝑥, 𝑡)] sin(𝜋𝑦), (1.7)

where 𝑓(𝑥, 𝑡) = 𝜖 sin(𝜔𝑡)𝑥2 + (1 − 2𝜖 sin(𝜔𝑡))𝑥 and 𝑥 = (𝑥, 𝑦). The 2D domain is Ω =
[0, 2]×[0, 1] and the values considered for the parameters are 𝐴 = 0.1, 𝜖 = 0.1 and 𝜔 = 2𝜋/10.
We consider a 512x256 grid and the flow is integrated between 𝑡 = 0 and 𝑡 = 15.

Flow past a cylinder

The second example is a numerical simulation of a flow past a cylinder (Figure 1-3). The
flow is set on a domain Ω = [0, 16] × [0, 6] discretized with a 240 × 90 grid. The Reynolds
number is Re=100. The cylinder is a disc of center (𝑥𝑐, 𝑦𝑐) = (4.5, 3) and of radius 𝑅 = 0.5.
The flow enters at the left side on the domain with a velocity 𝑣 = (1, 0). Neumann boundary
conditions are considered at the top and bottom walls, while the second normal derivative
is set to 𝜕2𝑣/𝜕𝑛2 = 0 at the right bottom wall. We consider a time window 𝑡 ∈ [0, 10] over
which the periodic regime is established.

Realistic velocity data over the Fleat Palau region

The third example is a realistic velocity field (Figure 1-4) over the Fleat Palau region,
obtained from an oceanic prediction of the MSEAS data assimilative PE model [63] for this
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Figure 1-4: Streamlines and vorticity around the Palau region at 𝑡 = 0

region. The resolution of the domain is 853x728 for a duration of 144 hours. This example
is more challenging since (i) the resolution of this example is relatively high (ii) the domain
includes inlets, outlets, and an inner obstacle with complex geometry, and (iii) the flow is
only approximately divergence-free.

1.2 Diffeomorphism based LCS methods

Although most works belonging to this class of methods have been using terms from the
theory of autonomous dynamical systems (such as “invariant”, “attractive”, “repelling”
manifolds), most of these techniques find relevant features of the flow map in its “disconti-
nuities” (sharp gradients) or irregularities: intuitively particles that are located from either
side of a discontinuity surface of 𝜑𝑡

0 have large diverging trajectories while particles located
where the flow map is locally constant tend to reach nearby positions. Hence LCS are
sought as material co-dimension 1 lines (in 2D) or surfaces (in 3D) that exhibit extremal
properties of repulsion or attraction, ideally globally, or at least in the neighborhood of
these surfaces. Several attempts have been made to identify such lines, mainly by Georges
Häller [65, 69, 104, 128], but also [81, 129]. Another technique is the use of braids [10].

1.2.1 Extracting LCS from the SVD of the differential of the flow map

Several kinds of barriers have been defined, depending on how one identifies what is a codi-
mension 1 “discontinuity” surface for the diffeomorphism 𝜑𝑡

0. Irregularity can be quantified
by the magnitude of the smallest Lipschitz constant 𝐿 such that the inequality

||𝜑𝑡
0(𝑥1)− 𝜑𝑡

0(𝑥2)|| ≤ 𝐿||𝑥1 − 𝑥2|| (1.8)

is satisfied for 𝑥2 in the neighborhood of 𝑥1. Bounding this constant is one of the main
interests of some works [12] that have aimed at defining the flow map from the transport
PDE (1.1). In fact, for a regular flow map, inequality (1.8) becomes

||D𝜑𝑡
0(𝑥)𝛿𝑥|| ≤ 𝐿||𝛿𝑥||,
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where D𝜑𝑡
0 is the differential of the flow map. In the following we will denote

D𝜑𝑡
0(𝑥) =

𝑛∑︁
𝑖=1

𝜎𝑡
𝑖(𝑥)𝜂𝑡

𝑖(𝑥)𝜉𝑡𝑇
𝑖 (𝑥), D𝜑−𝑡

0 (𝑦) =
𝑛∑︁

𝑖=1
𝜎−𝑡

𝑖 (𝑦)𝜂−𝑡
𝑖 (𝑦)𝜉−𝑡𝑇

𝑖 (𝑦), (1.9)

the Singular Value Decomposition ([75]) of the differential D𝜑𝑡
0 (resp. D𝜑−𝑡

0 ) of the (resp.,
backward) flow map at the position 𝑥 ∈ Ω ⊂ R𝑛 (resp. 𝑦 ∈ 𝜑𝑡

0(Ω) ⊂ R𝑛), where singular
values are assumed to be given in a decreasing order, (i.e. 𝜎𝑡

1(𝑥) ≥ 𝜎𝑡
2(𝑥) ≥ . . . ≥ 𝜎𝑡

𝑛(𝑥) >
0), and singular vectors are normalized (||𝜉𝑠

𝑖 (𝑥)|| = ||𝜂𝑠
𝑖 (𝑥)|| = 1). With these notations,

the best constant 𝐿 in equation (1.8) is the maximum singular value 𝜎𝑡
1(𝑥), or as it is usually

referred to in the LCS literature [66], the square root of the maximum eigenvalue of the
Cauchy Green tensor D𝜑𝑡

0(𝑥)𝑇 D𝜑𝑡
0(𝑥). The corresponding maximum stretching direction

in the initial domain is given by the right singular vector 𝜉𝑡
𝑖(𝑥), and is aligned with its

matching left singular vector 𝜂𝑡
𝑖(𝑥) in the advected configuration.

The forward and backward FTLE field (Finite Time Lyapunov Exponent) on the time
window [0, 𝑡], respectively FTLE𝑡

0 and FTLE−𝑡
0 are defined by a logarithmic rescaling of the

maximal singular value:

FTLE𝑡
0(𝑥) = log(𝜎𝑡

1(𝑥))
𝑡

, FTLE−𝑡
0 (𝑦) = log(𝜎−𝑡

1 (𝑦))
𝑡

. (1.10)

Ridges of the forward FTLE have been used to find repelling LCS, while those of the
backward FTLE were used to extract backward LCS [129]. There is a relationship between
the two as it will be illustrated in corollary 1.1. One should keep in mind that the forward
FTLE is a quantity defined in the initial configuration Ω while the backward FTLE is
defined on the advected domain 𝜑𝑡

0(Ω).
The logarithm is used as trajectories tend to diverge exponentially in time, hence

FTLE𝑡
0(𝑥) is a measure of the maximum rate of strain. This exponential growth of trajec-

tories can be justified by the following observation:

Lemma 1.1. Assume that the singular value 𝜎𝑡
1(𝑥) of order 𝑖 of D𝜑𝑡

0(𝑥) remains simple
on ]0, 𝑡]. Then

𝜎𝑡
𝑖(𝑥) = exp

[︃∫︁ 𝑡

0
𝜂𝑠𝑇

𝑖 (𝑥)
(︃
∇𝑣(𝑠,𝜑𝑡

0(𝑥)) +∇𝑣(𝑠,𝜑𝑡
0(𝑥))𝑇

2

)︃
𝜂𝑠

𝑖 (𝑥)d𝑠

]︃
≤ 𝑒𝜌(𝑥)𝑡, (1.11)

with
𝜌(𝑥) = sup

𝑠∈[0,𝑡]

(︃
∇𝑣(𝑠,𝜑𝑡

0(𝑥)) +∇𝑣(𝑠,𝜑𝑡
0(𝑥))𝑇

2

)︃
.

Proof. It is well known that d
d𝑡𝜎

𝑡
𝑖(𝑥) = 𝜂𝑡𝑇

𝑖 (𝑥) d
d𝑡

(︀
∇𝜑𝑡

0(𝑥)
)︀
𝜉𝑡

𝑖(𝑥) (see e.g. [86]). Hence

d
d𝑡

𝜎𝑡(𝑥) = 𝜂𝑡𝑇
𝑖 (𝑥)(∇𝑣(𝑡,𝜑𝑡

0(𝑥))D𝜑𝑡
0(𝑥))𝜉𝑖(𝑥)

= 𝜎𝑡
𝑖(𝑥)𝜂𝑡𝑇

𝑖 (𝑥)∇𝑣(𝑡,𝜑𝑡
0(𝑥))𝜂𝑡

𝑖(𝑥)

=
(︃
𝜂𝑡𝑇

𝑖 (𝑥)
(︃
∇𝑣(𝑡,𝜑𝑡

0(𝑥)) +∇𝑣(𝑡,𝜑𝑡
0(𝑥))𝑇

2

)︃
𝜂𝑡

𝑖(𝑥)
)︃

𝜎𝑡
𝑖(𝑥),

which yields (1.11) by integration.
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Remark 1.1. Equation (1.11) shows that the evolution of 𝜎𝑡
1(𝑥) results from a competition

between its history over the interval [0, 𝑡] and the current eigendirection of maximal stretch-
ing of the instantaneous deformation tensor (∇𝑣 +∇𝑣𝑇 )/2). This further emphasizes the
dependency of coherence to a fixed time window [0, 𝑡].

There is a duality between the SVD of the forward and backward flow maps and FTLE
as stated in [70, 40, 81] :

Proposition 1.1. The differential D𝜑−𝑡
0 of the inverse flow map and of the flow map D𝜑𝑡

0
are related by the formula:

D𝜑−𝑡
0 = (D𝜑𝑡

0)−1 ∘ (𝜑𝑡
0)−1.

Therefore the singular value decomposition of D𝜑−𝑡
0 is given by

(D𝜑−𝑡
0 )(𝑦) =

𝑛∑︁
𝑖=1

𝜎𝑡
𝑖(𝜑−𝑡

0 (𝑦))−1𝜉𝑡(𝜑−𝑡
0 (𝑦))𝜂𝑡𝑇 (𝜑−𝑡

0 (𝑦)).

In other words:

∙ The singular values of D𝜑−𝑡
0 are inverse of those of D𝜑𝑡

0 advected backward in time:

𝜎−𝑡
𝑖 (𝑦) = 𝜎𝑡

𝑛−𝑖+1(𝜑−𝑡
0 (𝑦))−1.

∙ The right (resp. left) singular vectors of D𝜑−𝑡
0 are the corresponding left (resp. right)

singular vectors of D𝜑𝑡
0 advected backward in time:

𝜉−𝑡
𝑖 (𝑦) = 𝜂𝑡

𝑛−𝑖+1(𝜑−𝑡
0 (𝑦))

𝜂−𝑡
𝑖 (𝑦) = 𝜉−𝑡

𝑛−𝑖+1(𝜑−𝑡
0 (𝑦)).

Corollary 1.1. In 2D (𝑛 = 2) and for a divergent free velocity field 𝑣, the backward FTLE
coincides with the forward FTLE advected backward in time:

FTLE−𝑡
0 (𝑦) = FTLE𝑡

0(𝜑−𝑡
0 (𝑦)).

Proof. This is an immediate consequence of the fact that under these assumptions,

𝜎−𝑡
1 (𝑦) = 1

𝜎𝑡
2(𝜑−𝑡

0 (𝑦))
= 𝜎𝑡

1(𝜑−𝑡
0 (𝑦)),

since the free divergence condition implies det(D𝜑𝑡
0) = 𝜎𝑡

1(𝑥)𝜎𝑡
2(𝑥) = 1.

The leading right singular vector at time 𝑡, 𝜉𝑡(𝑥), is the direction maximizing the
stretch (i.e. the discontinuity) ||D𝜑𝑡

0(𝑥)𝛿𝑥|| locally among all infinitesimal displacements
𝛿𝑥. Therefore, an natural idea is that LCS should be surfaces constantly normal to the
vector field 𝜉𝑡

1(𝑥). In [65], Haller proposed to define LCS as such surfaces that would satisfy
the additional requirement that the magnitude of the discontinuity (i.e. 𝜎𝑡

1(𝑥)) is locally
maximal in the normal direction to the surface. An issue with this approach is that requir-
ing both conditions yields to an overdetermined definition. As a result, Haller proposed
later a less restrictive theory in [68] where he defined attracting, repelling, and hyperbolic
LCS, which can be interpreted as three possible ways of seeking “discontinuity fronts” of
the flow map:
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∙ Repelling LCS are surfaces everywhere normal to the leading vector field 𝜉𝑡
1(𝑥), these

surfaces are shown [104, 66] to be the most locally repelling surfaces 𝒮 when allowing
local deformations of the surface by rotations of the normal 𝑛 around 𝑥 ∈ 𝒮 (but
without changing the position of 𝑥). They are extracted in 2D as integral curves of
the ODE d𝑥/d𝑠 = 𝜉𝑡

2(𝑥(𝑠)), with some care to handle possible sign discontinuities of
the eigenvector field 𝜉2 (see [39]).

∙ Elliptic LCS are surfaces maximizing the tangential shear, i.e. associated to the
maximum value of the constant 𝐿 over all 𝛿𝑥 satisfying 𝛿𝑥𝑇 d𝜑𝑡

0𝛿𝑥 = 0. For a surface
normal to such extremal direction 𝛿𝑥, the transport of the infinitesimal material
perturbation 𝛿𝑥 is by definition tangential to the surface. They are extracted as
integral curves of a field obtained from 𝜉𝑡

1 and 𝜉𝑡
2 (see [66]).

∙ Attracting LCS are surfaces that are everywhere normal to the eigenvector field 𝜉𝑡
𝑛(𝑥)

associated with the smallest eigenvalue 𝜎𝑡
𝑛(𝑥). They are obtained as integral curves

of the ODE d𝑥/d𝑠 = 𝜉𝑡
1(𝑥(𝑠)).

Nevertheless this locally optimal approach does not yield globally coherent structures: a
LCS can be drawn from every point of the domain, and it is unclear how to select the most
influential ones. In [66], Haller proposes to select the curves that go along global maxima
of the FTLE field, but it it is not a priori guaranteed that a globally maximizing property
is maintained all the way along the curve.

Other variants of this approach have been considered in [69] as well as some instanta-
neous techniques [128], valid for small integration times or for autonomous systems. To
date, these methods have been tested on realistic flows in [112, 61].

1.2.2 Polar distance and rigid sets

In our review of the available LCS literature and our conclusions about the relations between
LCS and the regularity of the flow map, we were surprised not too find any reference to the
following well known theorem in continuum mechanics [120]:

Theorem 1.1. Suppose that 𝜑 is a transformation whose jacobian is a rotation at any
point of the domain Ω, namely

∀𝑥 ∈ Ω, D𝜑(𝑥)𝑇 D𝜑(𝑥) = 𝐼.

Then 𝜑 is a rigid transformation (i.e. a translation plus a rotation): there exists 𝑃 ∈ 𝒪𝑛𝑛

a rotation (i.e. 𝑃 𝑇 𝑃 = 𝐼) independent of 𝑥 such that

∀𝑥 ∈ Ω,𝜑(𝑥) = 𝜑(𝑥0) + 𝑃 (𝑥− 𝑥0).

Proof. We give a proof inspired from [137, 118]. Two proofs are popular, the first consists
in differentiating the equality D𝜑(𝑥)𝑇 D𝜑(𝑥) = 𝐼 and using the symmetry of the Hessian
(namely Schwarz theorem) to obtain that D𝜑(𝑥) = 0. The existence of the Hessian is
actually not required as explained more transparently in the following. Consider the arc
𝜑(𝑥+ 𝑡(𝑦 − 𝑥)) image of the segment joining 𝑥 to 𝑦 by 𝜑. Its length is∫︁ 1

0

⃒⃒⃒⃒⃒⃒⃒⃒ d
d𝑡
𝜑(𝑥+ 𝑡(𝑦 − 𝑥))

⃒⃒⃒⃒⃒⃒⃒⃒
d𝑡 = ||𝑦 − 𝑥||.
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Also this arc must have a length greater than the length of the segment joining 𝜑(𝑥) to
𝜑(𝑦), therefore ||𝜑(𝑥)−𝜑(𝑦)|| ≤ ||𝑦 − 𝑥||. Since the differential of the inverse map of 𝜑 is
D𝜑(𝜑−1(𝑥))−1 is also an orthogonal matrix, one deduces that ||𝜑−1(𝜑(𝑦))−𝜑−1(𝜑(𝑥))|| =
||𝑦 − 𝑥|| ≤ ||𝜑(𝑦) − 𝜑(𝑥)||, hence ||𝑦 − 𝑥|| = ||𝜑(𝑦) − 𝜑(𝑥)||: 𝜑 preserves distances. This
implies that 𝜑 is a rigid motion. Indeed,

||𝜑(𝑦)−𝜑(𝑥0)+𝜑(𝑥0)−𝜑(𝑥)||2 = ||𝑦−𝑥0||2−2 < 𝜑(𝑦)−𝜑(𝑥0),𝜑(𝑥)−𝜑(𝑥0) > +||𝑥−𝑥0||2,

showing that

∀𝑥,𝑥0,𝑦 ∈ Ω, < 𝜑(𝑦)− 𝜑(𝑥0),𝜑(𝑥)− 𝜑(𝑥0) >=< 𝑦 − 𝑥0,𝑥− 𝑥0 > .

Denote 𝑃 the matrix whose columns are (𝜑(𝑥0 + 𝑡𝑒𝑖) − 𝜑(𝑥0))𝑗 , for a 𝑡 sufficiently small
and 𝑒𝑖 an orthonormal basis of 𝑃 𝑛, so that 𝑥0 +𝑡𝑒𝑖 ∈ Ω. Then for any 𝑥 = 𝑥0 +𝑡

∑︀𝑛
𝑖=1 𝑥𝑖𝑒𝑖,

by linearity of 𝑃 with respect to the scalar product

< 𝜑(𝑦)− 𝜑(𝑥0),𝜑(𝑥)− 𝜑(𝑥0) >

=< 𝑦 − 𝑥0, 𝑡
𝑛∑︁

𝑖=1
𝑥𝑖𝑒𝑖 >=

𝑛∑︁
𝑖=1

𝑥𝑖 < 𝑦 − 𝑥0, 𝑡𝑒𝑖 >

=
𝑛∑︁

𝑖=1
𝑥𝑖 < 𝜑(𝑦)− 𝜑(𝑥0),𝜑(𝑥0 + 𝑡𝑒𝑖)− 𝜑(𝑥0) >

=
𝑛∑︁

𝑖=1
𝑥𝑖 < 𝜑(𝑦)− 𝜑(𝑥0), 𝑃𝑒𝑖 >=< 𝜑(𝑦)− 𝜑(𝑥0), 𝑃 (𝑥− 𝑥0) > .

Hence one finally concludes that

||𝜑(𝑦)− 𝜑(𝑥0)− 𝑃 (𝑦 − 𝑥0)||2

= ||𝑦 − 𝑥0||2 − 2 < 𝜑(𝑦)− 𝜑(𝑥0), 𝑃 (𝑦 − 𝑥0) > +||𝑦 − 𝑥0||2

= 2||𝑦 − 𝑥0||2 − 2||𝜑(𝑦)− 𝜑(𝑥0)||2 = 0.

Therefore, a way to quantify how far the flow map 𝜑𝑡
0 is from being a rigid transfor-

mation, can intuitively be done by measuring how far the jacobian D𝜑𝑡
0(𝑥) is from being a

rotation at every point. It turns out that John (1961) has shown that theorem 1.1 is “stable
under perturbations” in the following sense:

Theorem 1.2 (John [78], see also chapter 5, Theorem. 2.2 in [118]). Let 𝐵(𝑥0, 𝜌) ⊂ Ω be
the ball centered at 𝑥0 and of radius 𝜌. Assume that there exists 𝜖 > 0 such that

∀𝑥 ∈ 𝐵(𝑥0, 𝜌),∀1 ≤ 𝑖 ≤ 𝑛, |𝜎𝑖(𝑥)− 1| ≤ 𝜖,

where 𝜎𝑖(𝑥) = 𝜎𝑖(D𝜑(𝑥)) is the 𝑖-th singular value of the Jacobian D𝜑(𝑥). Then there
exists a constant 𝐶 dependent only of the dimension 𝑛 of R𝑛 and a rotation 𝑃 independent
of 𝑥 such that 𝜑 is close to be a rigid transformation on 𝐵(𝑥0, 𝜌):

∀𝑥 ∈ 𝐵(𝑥0, 𝜌), ||𝜑(𝑥)− 𝜑(𝑥0)− 𝑃 (𝑥− 𝑥0)|| ≤ 𝐶𝜌𝜖.

In the following, we say a set 𝒜𝑟𝑖𝑔𝑖𝑑 is rigid between the instants 0 and 𝑡 if the restriction
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of flow map 𝜑𝑡
0 to 𝒜𝑟𝑖𝑔𝑖𝑑 is close to be a rigid motion. We also designate in the following

by “polar distance” of a matrix the quantity

𝒫(𝐹 ) =
(︃

𝑛∑︁
𝑖=1

(1− 𝜎𝑖(𝐹 ))2
)︃ 1

2

, (1.12)

which is the euclidean distance of the matrix 𝐹 to the orthogonal group 𝒪𝑛, (see proposi-
tion 2.22 in chapter 2). Hence theorem 1.2 states that rigid sets 𝒜𝑟𝑖𝑔𝑖𝑑 may be obtained by
a simply thresholding the polar distance:

𝒜𝜖
𝑟𝑖𝑔𝑖𝑑 = {𝑥 ∈ Ω|𝒫(D𝜑𝑡

0(𝑥)) ≤ 𝜖}, (1.13)

the parameter 𝜖 allowing some tolerance over the scale at which one seeks such rigidity.
Connected components of 𝒜FTLE

𝑟𝑖𝑔𝑖𝑑 are transformed by 𝜑𝑡
0 in a approximate rigid manner,

with a possible stretching proportional to 𝜖𝑇𝜌 where 𝜌 is the size of the each component set
(a natural scaling factor for 𝜖 being ||∇𝑣||𝐿∞([0,𝑇 ],𝐿2), coming from the remark of equation
(1.11)). In 2D, i.e. 𝑛 = 2, and for a divergence free field, this criterion is more or less
equivalent to thresholding the FTLE field: indeed, the relation 𝜎𝑡

1(𝑥)𝜎𝑡
2(𝑥) = 1 holds for

all times 𝑡, therefore

{𝑥 ∈ Ω|FTLE𝑡
0(𝑥) ≤ log(1 + 𝜖/

√
2)/𝑡} ⊂ 𝒜𝜖

𝑟𝑖𝑔𝑖𝑑 ⊂ {𝑥 ∈ Ω|FTLE𝑡
0(𝑥) ≤ log(1 + 𝜖)/𝑡}.

Hence ridges of the FTLE that delimit regions where the FTLE is small may be considered
as true boundaries of rigid sets. This addresses the critic made on the ability of FTLE to
detect rigid structures: examples given in [65] for which FTLE ridges are disqualified to
be LCS, are particular in the sense that the value of the FTLE is high everywhere in the
domain. In these cases, the flow map 𝜑𝑡

0 exhibits high stretching everywhere in the domain
and the proposed criterion (1.13) can not be satisfied, even if the FTLE admits ridges.

Remark 1.2. Exploiting the duality of proposition 1.1, a possibly better definition for the
polar distance can be

𝒫(𝐹 ) =
(︃

𝑛∑︁
𝑖=1

(1− 𝜎𝑖(𝐹 ))2

𝜎𝑖(𝐹 )

)︃ 1
2

.

Indeed, this allows to obtain rigid sets in a way that is independent of the choice of the
initial or final time: 𝒫(D𝜑−𝑡

0 ) = 𝒫(D𝜑𝑡
0)∘𝜑−𝑡

0 . With this definition, rigid sets obtained from
the thresholding of equation (1.13) at time 0 coincide with those that would be obtained at
time 𝑡 from a thresholding of the backward flow map (𝒜𝜖

𝑟𝑖𝑔𝑖𝑑,𝑡 = {𝑥 ∈ Ω|𝒫(D𝜑−𝑡
0 (𝑥)) ≤ 𝜖}),

advected backward in time.

1.2.3 Numerical experiments and comparisons

Estimating the flow map and the FTLE field: particles vs. eulerian method

In most of the works mentioned above, the flow map 𝜑𝑡
0 is estimated through direct particle

advection (with their refinements [22]). In [97], Leung suggests to obtain the flow map by
solving the transport PDE (1.1). This Eulerian method has the advantage of not requiring
velocity interpolation outside grid points and to yield an accuracy that his uniform over
the grid. Nevertheless, these schemes are subject to a CFL condition that constrains the
time step Δ𝑡 ≤ 𝐶Δ𝑥 to be kept proportional to the grid spacing. Conversely, particle
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(a) Particles (b) WENO (c) 1st order Upwind scheme

Figure 1-5: Numerical schemes comparisons for the Double Gyre example (From top to
bottom: coordinates 𝑥 and 𝑦 of the flow map 𝜑𝑡

0 and forward FTLE)

methods are easy to implement, easily parallelizable and are found to be very efficient when
solving advection dominated problems [27]. In addition these methods may use a time
step independent of the grid resolution, and are less subject to numerical diffusion inherent
to advection schemes over large integration times. Diffusion tends to smear out sharp
features of the computed flow map, such as FTLE ridges which are especially desirable in
LCS computation. Nevertheless, this comes at the cost of furnishing an accuracy that is
spatially dependent (proportional to the local lyapunov exponent 𝜎𝑡

1(𝑥)), which is visible
by the presence of some numerical noise around sharp gradients of the flow map.

These effects are illustrated on Figs. 1-5 to 1-7 for the use of direct particle advection,
the TVDRK3/WENO scheme [108] that has high order accuracy and low diffusivity, and
the first order upwind scheme with euler time integration. For each example, we plot in
vertical order the 𝑥 and 𝑦 coordinates of the computed flow map and the corresponding
FTLE field. We used a CFL constant 𝐶𝐹𝐿 = 10 for the particle simulation and 𝐶𝐹𝐿 = 0.9
for the eulerian methods.

Repelling LCS

For each of the three examples, we extract a few LCS curves by integrating the vector field
of the right singular vector 𝜉2(𝑥) of D𝜑𝑡

0 associated with the lowest eigenvalue, according
to the definition of LCS proposed by Haller [66]. These are plotted on Figure 1-8. It is
interesting to notice that these curves follow qualitatively the ridges of the FTLE field,
implying that the condition < ∇𝜎𝑡

1(𝑥), 𝜉1(𝑥) >≃ 0 is satisfied for the three examples (see
[39, 15]), although there is no available justification in the literature about why it seems to
be often the case.

Polar distance criterion

For each of the three examples, we compute and plot the polar distance defined in eqn.
(1.12) on Figure 1-9. “Rigid sets” on which the flow map acts approximately as a rigid
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(a) Particles (b) WENO (c) 1st order Upwind scheme

Figure 1-6: Numerical schemes comparisons for the Flow Past a Cylinder example (From
top to bottom: coordinates 𝑥 and 𝑦 of the flow map 𝜑𝑡

0 and forward FTLE)

(a) Particles (b) WENO (c) 1st order Upwind scheme

Figure 1-7: Numerical schemes comparisons for the Fleat region example (From top to
bottom: coordinates 𝑥 and 𝑦 of the inverse flow map 𝜑−𝑡

0 and backward FTLE)
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(a) Repelling LCS for the Double Gyre example

(b) Repelling LCS for the Flow Past a Cylinder

(c) Attracting LCS for the Palau region

Figure 1-8: A few LCS (in red) obtained as tensor lines of the Cauchy Green Tensor D𝜑𝑡
0

(methodology of [66]). The FTLE field is plotted in greyscale in background
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(a) Double Gyre example

(b) Flow Past a Cylinder

(c) Palau region (Initial time) (d) Palau region (final time)

Figure 1-9: The polar distance log(𝒫(D𝜑𝑡
0(𝑥)))/𝑡 in logarithmic scale plotted for the three

examples

transformation are obtained as the blue regions. Since the flow is divergence free, one sees
a clear analogy with the FTLE field. These plots emphasize the fact that FTLE ridges
have a “thickness”. These examples show that the thresholding criterion (1.13) may be
used to identify key subregions that are advected in a rigid manner. It is interesting to
observe that the flow map acts as a rigid rotation and translation on each of the connected
components obtained, but these rotations and translations may be different for each rigid
region. Surrounding regions are characterized by an increased stretch.

1.3 Operator based LCS methods

In this section, we review and reformulate the transfer operator methods developed by
Froyland [46, 52, 47], and suggest a few improvements in order to apply them on highly
resolved, realistic velocity fields. We demonstrate their applicability on the three benchmark
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(a) Double Gyre

(b) Flow Past a Cylinder

(c) Palau region

Figure 1-10: Initial and final configurations of rigid sets. Colors have been added to help
the reader identify corresponding pairs of rigid sets.
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examples considered previously to allow for comparison.

1.3.1 Summary of the theory

Instead of analyzing the flow map 𝑥 ↦→ 𝜑𝑡
0(𝑥) that describes the motion of particles indi-

vidually, a second class of methods relies on functional operators of the form (1.6). In these
methods, “relevant” information that allows to best understand the dynamics is found by
analyzing the spectral or Singular Value Decompositions of these operators, in the same
way the SVD of the linearized dynamics induced by D𝜑𝑡

0 was used to extract the most
relevant Lagrangian directions in section 1.2. In fact, one can also interpret the method
as an attempt to select geometrically simple sets that remain simple when advected by the
flow, which is achieved by finding the functions that are the most regular in both the initial
and advected configuration. As it will be illustrated in the figures of the following numerical
examples, this method yields an information that is somewhat different and complementary
to the one obtained with FTLEs. Transfer operator methods have been used on realistic
data in [48]. Note and another technique of this class is proposed in [23].

Transfer operators A key tool in the study of dynamical systems [87] is the introduction
of the Perron-Frobenius operator

𝑃 : 𝐿2(Ω) → 𝐿2(Ω)
𝑓 ↦→ 𝑓 ∘ (𝜑𝑡

0)−1|det∇(𝜑𝑡
0)−1|, (1.14)

and of its adjoint, the Koopman operator

𝑃 𝑇 : 𝐿2(Ω) → 𝐿2(Ω)
𝑓 ↦→ 𝑓 ∘ 𝜑𝑡

0.
(1.15)

For autonomous flows, the first eigenvector of these operators allow to analyze long-term
characteristics of the system dynamics, such as ergodicity or the existence of an invariant
measure [87]. To extract coherent sets in a non-autonomous or time-dependent dynamics,
it is natural to consider the push forward

𝐿 : 𝐿2(Ω, d𝑥) → 𝐿2(Ω,𝑃 (d𝑥))
𝑓 ↦→ 𝑓 ∘ (𝜑𝑡

0)−1,
(1.16)

and the push backward operator

𝐿* : 𝐿2(Ω,𝑃 (d𝑥)) → 𝐿2(Ω, d𝑥)
𝑓 ↦→ 𝑓 ∘ 𝜑𝑡

0.
(1.17)

These operators are dual one another once an appropriate change of scalar product on the
𝐿2 spaces has been introduced: the notation 𝐿2(Ω, d𝑥) and 𝐿2(Ω,𝑃 (d𝑥)) refers to the 𝐿2

spaces endowed respectively with the scalar products induced by the Lebesgue measure d𝑥
and its image 𝑃 (d𝑥) = 𝑃 (1Ω)d𝑥. With these scalar products, the duality between the
operators 𝐿 and 𝐿* is written

< 𝐿𝑓, 𝑔 >𝑃 (d𝑥) =
∫︁

Ω
𝑓(𝜑−𝑡

0 (𝑥))𝑔(𝑥)𝑃 (d𝑥) =
∫︁

Ω
𝑓(𝜑−𝑡

0 (𝑥))𝑔(𝑥)| det∇(𝜑𝑡
0)−1|d𝑥

=
∫︁

Ω
𝑓(𝑥)𝑔(𝜑𝑡

0(𝑦))d𝑦 =< 𝑓,𝐿*𝑔 >d𝑥 .
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Froyland has shown that level-sets of the second dominant singular vectors of a diffusive
approximation of ℒ(𝑡) may allow to extract coherent sets, that are expected to be sub-
domains characterized by a slow mixing with their complementary when advected by the
flow [46, 51, 15, 53, 54, 52]. Under pure advection, the mass of a function 𝑓 is conserved
in the sense that ||𝑓 ||d𝑥 = ||𝐿𝑓 ||𝑃 (d𝑥) (the change of scalar product allowing to remove
the effects related to compressibility). If a small amount 𝜖 of diffusion 𝜖 is added (e.g. by
the introduction of some amount of gaussian noise in the particle motions in (1.2) or a
Laplacian operator in (1.1), see [49]), 𝐿 is approximated as 𝐿 ≃ 𝐿𝜖 and one has instead
||𝐿𝜖(𝑡)𝑓 ||𝑃 (d𝑥) ≤ ||𝑓 ||d𝑥. In that setting, 𝐿𝜖 becomes a compact operator and admits a non-
trivial SVD (without diffusion 𝐿 is a unitary operator since 𝐿𝐿* = 𝐿*𝐿 = 𝐼, all singular
values are equal to one) [52]. Since singular singular vectors (𝑓𝑖, 𝑔𝑖) (with respect to the
appropriate scalar products) are the solution of the maximization problem

𝜎𝑖 = 𝑢𝑇
𝑖 𝐿𝜖(𝑡)𝑣𝑖 = max

||𝑓 ||𝑃 (d𝑥)=||𝑔||d𝑥=1
𝑔∈Span(𝑔𝑗)⊥

𝑗<𝑖

𝑓∈Span(𝑓𝑗)⊥
𝑗<𝑖

< 𝑔,𝐿𝜖(𝑡)𝑓 >𝑃 (d𝑥), (1.18)

the subspace span(𝑓𝑖)𝑖≤𝑟 can naturally naturally be understood as the 𝑟 dimensional sub-
space of initial data that is the most resistant to diffusivity, since functions belonging to
this subspace see their norm being reduced by a factor of at most 𝜎𝑟 (with 𝜎1 = 1).

SVD of the push-forward operator seen as a compact operator More generally,
one can justify the method and the use of further dominant eigenvectors of 𝐿𝜖(𝑡) to extract
coherent sets by the intuition that these are level sets of functions 𝑓 such that 𝑓 and 𝐿𝑓
are simultaneously the smoothest as possible. This can be justified as follows: suppose
the velocity field is divergence free (𝑃 (d𝑥) = d𝑥, the extension to the general case being
possible, see [50]) and that the diffusive approximation 𝐿𝜖(𝑡) of 𝑙𝑒𝑣𝑒𝑙𝑠𝑒𝑡𝑠𝑜𝑓𝐿 is given by
𝐿𝜖(𝑡) = (𝐼 − 𝜖Δ)− 1

2𝐿(𝐼 − 𝜖Δ)− 1
2 where Δ is the laplacian equipped with suitable boundary

conditions. 𝐿𝜖 is a compact operator from the Sobolev space 𝐻1(Ω) to itself and hence
admits a singular value decomposition [30]. Equipping 𝐻1(Ω) with the equivalent scalar
product < 𝑓, 𝑔 >𝐻1,𝜖=

∫︀
Ω 𝑓𝑔d𝑥+ 𝜖

∫︀
Ω∇𝑓∇𝑔d𝑥 for 𝜖 > 0, one can rewrite (1.18) as

𝜎𝑖 =< 𝐿𝑓𝑖, 𝑔𝑖 >𝐿2= max
𝑓,𝑔∈𝐻1(Ω)

||𝑓 ||𝐻1,𝜖=1,||𝑔||𝐻1,𝜖=1,

𝑓∈Span(𝑓𝑗)𝑗<𝑖,𝑔∈Span(𝑔𝑗)𝑗<𝑖

< 𝐿𝑓, 𝑔 >𝐿2 , (1.19)

where 𝑓𝑖, 𝑔𝑖 ∈ 𝐻1(Ω), ||𝑓 ||𝐻1,𝜖 = ||𝑓 ||2𝐿2 + 𝜖||∇𝑓 ||2𝐿2 and || · ||𝐿2 and < ·, · >𝐿2 are the
standard 𝐿2 norm and scalar product. In that setting, we can write a “true” singular value
decomposition for the pure advective operator

𝐿 : 𝐻1(Ω) ⊂ 𝐿2(Ω) −→ 𝐿2(Ω) ⊂ 𝐻−1(Ω)

seen as a compact map from 𝐻1(Ω) to its dual 𝐻−1(Ω):

∀𝑓 ∈ 𝐻1(Ω), 𝐿𝑓 =
∞∑︁

𝑖=1
𝜎𝑖 < 𝑓, 𝑓𝑖 >𝐻1,𝜖 𝑔𝑖,
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where the equality must be understood in 𝐻−1(Ω). In other words, 𝐿𝑓𝑖 = 𝑔𝑖 means that
the induced linear forms on 𝐻1(Ω) are equal:

∀𝜑 ∈ 𝐻1(Ω), < 𝐿𝑓𝑖,𝜑 >𝐿2=< 𝑔𝑖,𝜑 >𝐻1,𝜖 .

Note that in that setting, < 𝐿𝑓, 𝑔 >𝐿2 in (1.19) (𝐿𝑓 and 𝑔 seen as 𝐿2 functions) is equal
to < 𝐿𝑓, 𝑔 >𝐻−1 (𝐿 and 𝑓 seen as elements of 𝐻−1(Ω)) where < ·, · >𝐻−1 is the natural
scalar product on 𝐻−1(Ω) that is inferred from the identification 𝐻1(Ω) ≃ 𝐻−1(Ω): for any
𝑓*, 𝑔* ∈ 𝐻−1(Ω), the scalar product on 𝐻−1(Ω) is defined by < 𝑓*, 𝑔* >𝐻−1=< 𝑓, 𝑔 >𝐻1,𝜖

where 𝑓 and 𝑔 are the functions of 𝐻1(Ω) satisfying ∀𝜑 ∈ 𝐻1, 𝑓*(𝜑) =< 𝑓,𝜑 >𝐻1,𝜖 and
𝑔*(𝜑) =< 𝑔,𝜑 >𝐻1,𝜖.

Zero diffusion limit If the flow map is smooth enough, then 𝐿 is also a map from 𝐻1(Ω)
to 𝐻1(Ω) because ||∇(𝐿𝑓)||𝐿2 ≤ 𝐶||∇𝜑𝑡

0||𝐿2 ||∇𝑓 ||𝐿2 for a given constant depending only
on the domain Ω. Then one can obtain (recall also that 𝐿𝑇𝐿 = 𝐼)

∀𝑓, 𝑔 ∈ 𝐻1(Ω),⟨
𝐼 − (𝐼 − 𝜖Δ)− 1

2𝐿𝑇 (𝐼 − 𝜖Δ)−1𝐿(𝐼 − 𝜖Δ)− 1
2

𝜖
𝑓, 𝑔

⟩
−−→
𝜖→0

∫︁
Ω
∇𝑓∇𝑔 +∇(𝐿𝑓)∇(𝐿𝑔)d𝑥,

(1.20)

the limit being the dynamic laplacian operator obtained by Froyland in [47] (equation
(3)). Froyland has in fact shown that the convergence still holds if the smoothing operator
(𝐼 −Δ)

1
2 is replaced with any isotropic regularizing kernel.

Therefore right singular vectors 𝑓𝑖 are expected to converge in some sense (this has not
been yet proven) to the eigenvectors of the dynamic Laplace operator −Δ−𝐿*Δ𝐿. These
eigenvectors satisfy the initial requirement of being functions 𝑓 such that both 𝑓 and 𝐿𝑓 are
the smoothest as possible since they minimize |∇𝑓 |2 + |∇(𝐿𝑓)|2 while satisfying ||𝑓 ||2𝐿2 = 1.
Note that the dynamic laplacian seems not to exist if the inclusion 𝐿(𝐻1(Ω)) ⊂ 𝐻1(Ω)
does not hold. We mention that the application of the Courant Nodal domain theorem (see
Theorem 13p111 in [30], vol. 3) would possibly allow to show that the number of connected
coherent sets obtained for the 𝑘-th pair of singular vectors is less or equal to 𝑘, which is
observed in the numerical examples to come.

Numerical methods The general procedure to extract coherent sets consists therefore
in building a finite-dimensional approximation of the operator 𝐿, before estimating the
singular value decomposition of either 𝐿𝜖 for a small diffusivity 𝜖 > 0 (as in [52, 48]) or
the eigenvectors of Δ + 𝐿*Δ𝐿. Coherent sets are obtained by thresholding functions in
the dominant subspaces spanned by the singular vectors. Note that it seems a priori that
evaluating the SVD of 𝐿𝜖 is more stable numerically and less expensive that targeting at
extracting eigenvectors of the limit −Δ−𝐿*Δ𝐿. Indeed, iteratives methods for computing
the eigenvectors associated with smallest eigenvalues of a positive definite operator require
matrix inversion. In contrast, dominant singular vectors of 𝐿𝜖 do not require such inversion
(but slow convergence can be achieved if singular values are not sufficiently separated).

Numerically, the implementation of the method in the general case where the velocity
field is not assumed divergence-free requires an estimation of the image measure 𝑃 (d𝑥).
This raises difficulties since the image measure should be found such that without diffusion,
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𝐿𝜖 is self-adjoint with respect to the change of scalar product. The inherent diffusivity of
numerical computations may result in poor estimates. Next, the SVD of the matrix 𝐿,
must be evaluated with respect to the change of scalar product. The procedure used in [52]
is summarized in algorithm 1. Last,

Algorithm 1 Computing coherent sets in the non-autonomous setting (from [52])
1: Compute a finite dimensional approximation of the Koopman operator 𝑃 𝑇 (𝑡) = 𝐿*

(denoted 𝑃 in [52]). If for example 𝑙 spatial cells of same dimension are used for
the discretization of both the starting and image spaces 𝐿2(Ω, d𝑥) and 𝐿2(Ω,𝑃 (d𝑥)),
𝐿* ∈ℳ𝑙,𝑙 is a 𝑙-by-𝑙 matrix.

2: Assuming 𝐿*1Ω = 1Ω, compute
𝑞 = 𝐿*𝑇 1Ω, (1.21)

to estimate | det∇(𝜑𝑡
0)−1| and set 𝑄 = diag(𝑞) the Gram matrix of the scalar product

induced by 𝑃 (d𝑥), where Δ𝑥 is the volume of one grid cell. In other words,

< 𝑢, 𝑣 >𝑃 (d𝑥)=
∫︁

Ω
𝑢(𝑥)𝑣(𝑥)|det∇(𝜑𝑡

0)−1|d𝑥 ≃
∑︁

𝑘

𝑢𝑘𝑣𝑘𝑞𝑘|Δ𝑥| = 𝑢𝑇 𝑄𝑣Δ𝑥.

3: Define 𝐿 = 𝑄−1𝐿*𝑇 so that the properties 𝐿1Ω = 1Ω and 𝑥𝑇 𝑄𝐿𝑦 = 𝑥𝑇𝐿*𝑇 (𝑡)𝑦 for
any 𝑥,𝑦 are satisfied.

4: Compute the SVD of 𝑄
1
2𝐿 = 𝐴Σ𝑉 𝑇 , with 𝐴𝑇 𝐴 = 𝐼 and 𝑉 𝑇 𝑉 = 𝐼. Set 𝑈 = 𝑄− 1

2 𝐴.
The SVD of 𝐿 with respect to the starting and image spaces is given by

𝐿 = 𝑈Σ𝑉 𝑇 with 𝑈𝑇 𝑄𝑈 = 𝐼 and 𝑉 𝑇 𝑉 = 𝐼.

5: Obtain initial and final positions of the coherent sets by thresholding the level-sets of
respectively the right and left eigenvectors 𝑉 and 𝑈 .

In the following, we therefore seek to evaluate the SVD of 𝐿𝜖 as an approximate, regu-
larized method to evaluate the eigenvectors of the dynamic laplacian.

1.3.2 An efficient matrix-free method for computing coherent sets for
highly resolved velocity data

Estimating numerically the operators 𝑃 (𝑡) or 𝐿 ∈ℳ𝑙,𝑙 is more expensive than a simple flow
map computation as in section 1.2. In the works of Froyland mentioned above, the space
𝐿2(Ω) is discretized with the Ulam Galerkin method, that is popular in the dynamical
system community (see e.g. chapter 4 in [15]). Ulam’s method estimates the image of
characteristic functions 1𝐵𝑖 associated with a finite partition Ω = ∪𝑖𝐵𝑖 of the domain. This
is done through trajectory integration of particles initially located in 𝐵𝑖. This method
is relatively fast for moderate spatial resolution as it is easily parallelizable and yields
moderately sparse operator matrices [51, 52], but has the drawback of furnishing a numerical
approximation of 𝑃 (𝑡) that has the resolution of the decomposition ∪𝑖𝐵𝑖 and not of the
number of particles employed. A sufficiently large number of particles must be integrated
per subdomain 𝐵𝑖, therefore the method can be expensive for highly-resolved velocity fields.
For instance, the numerical examples considered in [52] were advecting 400 particles for each
cell of a 256x128 grid. Hence for works involving realistic ocean velocities, the computation
of the transfer operators 𝑃 or 𝐿 was restricted to a subdomain of the area considered [48].
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We show in algorithm 2 that it is in fact possible to reduce the computational cost by
using a method that uses a number of particles that is identical to the grid resolution. We
exploit the fact that computing the matrix-vector product 𝐿𝑓 in an argument 𝑓 ∈ 𝐿2(Ω)
can be achieved very efficiently. We apply this method on the three benchmark examples

Algorithm 2 Matrix free method for coherent sets extraction
1: One computes a numerical approximation of the inverse flow map 𝜑−𝑡

0 , as in sec-
tion 1.2.3, using e.g. particle methods at the grid-resolution.

2: For any finite-dimensional approximation of a function 𝑓 , one can compute 𝐿𝑓 = 𝑓 ∘
𝜑−𝑡

0 and 𝐿*𝑓 = 𝑓 ∘ 𝜑𝑡
0 without solving the advection equation (1.1) by using linear

interpolation (e.g. mathrm in Matlab)
3: The “diffusive” approximation𝐿𝜖(𝑡) of𝐿 can be obtained by composition with a smooth-

ing operator 𝑗𝜖 (see [52]):
𝐿𝜖 = 𝑗𝜖𝐿𝑗𝜖, 𝐿

*
𝜖 = 𝑗𝜖𝐿

*𝑗𝜖.

The smoothing operator 𝑗𝜖 can for instance the inverse laplacian (𝐼−𝜖Δ)− 1
2 used above,

or a power of a shapiro filter as an explicit approximation of this inverse (Δ𝜖 = (ℱ (𝑘))𝑝

for 𝑝 ∈ N and ℱ (𝑘) defined at eqn. (3.32) in chapter 3).
4: An iterative method (e.g. Lanczos or Arnoldi iterations, see [143]) that requires to eval-

uate only matrix-vector multiplications, can be used to estimate dominant eigenvectors
of 𝐿𝜖𝐿

*
𝜖 .

introduced in section 1.2.3. For convenience we assume free divergence of the velocity fields
(that is we use 𝑄 = 𝐼 with the notations of algorithm 1) and we used the diffusive operator
Δ𝜖 = (ℱ (1))3. To allow for comparison with previous available works, we also plotted on
Figure 1-12 singular vectors corresponding to the double gyre with the parameters used
in [52] (𝐴 = 0.25, 𝜖 = 0.25, 𝜔 = 2𝜋 with the notations1 of (1.7), integrated from 𝑡 = 0
to 𝑡 = 2 on a 256x128 grid). Results are plotted on Figs. 1-11 to 1-14. Right singular
vectors, that correspond to the initial configuration, have been plotted on the left and
vice-versa. We note the ability of the method to deal (i) with flows having outlets, by
putting all the “mass” of the eigenvectors in the region of the flow that is not exiting the
domain, (ii) highly resolved velocity fields (see the Palau example of Figure 1-14). Coherent
partitions were extracted from the zero level sets of these eigenvectors, the color scale being
set such that red and blue correspond to positive and negative values respectively. It is
interesting to compare these figures to those of section 1.2.3 and observe the influence of
high forward or backward FTLE values on the shape of the coherent sets in respectively
the initial or final configuration. Note that the coherent sets identified with this criterion
are somewhat different from the rigid sets found from the thresholding of the polar distance
in eqn. (1.13): coherent sets partition the domain into regions that “mix” slowly but may
allow large stretching within their boundaries. This operator method yields therefore an
information that is complementary to the one obtained from the polar distance, as observed
by comparing the previous figures with Figure 1-10.

1.3.3 A DO “infinitesimal operator” approach

In this part, we discuss briefly another approach to estimate coherent sets, that could be
used, for example, in the case where computing many Lanczos iterations would be too costly.

1𝜖 = 0.25 being not the diffusivity parameter but the one of the Double Gyre example.
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Figure 1-11: Pairs of corresponding right and left singular vectors number 1 to 8 of the
diffusive operator 𝐿𝜖(𝑡) for the Double Gyre Example (as defined in section 3.4.1).

Figure 1-12: Pairs of corresponding right and left singular vectors number 1 to 8 of the
diffusive operator 𝐿𝜖(𝑡) for the Double Gyre Example (as defined in [52], for comparison).
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Figure 1-13: Pairs of corresponding right and left singular vectors number 2,3,5 and 12 of
the diffusive operator 𝐿𝜖(𝑡) for the Flow Past A Cylinder Example.

In fact the method reduces somehow to estimate singular vectors with a single Lanczos
iteration and from a “good” initial guess value. In general the main computational cost of
the operator method comes from the fact that one needs to estimate the singular vectors of
the matrix 𝐿 that has large dimensions and is dense. In view of the model order reduction
methods that will be developed in the next chapters, the DO methodology is natural: one
can evolve a low-rank approximation 𝐿 of 𝐿 and obtain at a low cost approximate singular
vectors.

To achieve this goal, consider a fully linear advection schemes for the transport PDE
(1.1) (such will be developed in section 3.3.1 of chapter 3) : computing 𝐿𝑓0 is achieved by
solving the transport PDE (1.1) forward in time with the initial data 𝑓0. At the discrete
level, this is done by solving an ODE of the form⎧⎪⎨⎪⎩

d
d𝑡

𝑓 = 𝐴(𝑡)𝑓

𝑓(0) = 𝑓0,
(1.22)

where 𝐴(𝑡) ∈ ℳ𝑙,𝑙 is the matrix discretization of the operator 𝑓 ↦→ −𝑣(𝑡, ·) · ∇𝑓 (that in-
cludes diffusivity, e.g. with artificial diffusion). Since 𝐴(𝑡) is a linear operator, the operator
𝐿 is the resolvent of (1.22) and obtained as the solution of the matrix ODE⎧⎪⎨⎪⎩

d
d𝑡
𝐿 = 𝐴(𝑡)𝐿

𝐿(0) = 𝐼.
(1.23)

This is naturally the discrete transposition of the fact that the unbounded operator 𝑓 ↦→
𝑣(𝑡, ·) · ∇𝑓 is the infinitesimal generator of the semi-group of transformations 𝐿 [87, 19,
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Figure 1-14: Pairs of corresponding right and left singular vectors number 3,7, 12, 17 and
20 of the diffusive koopman operator 𝐿𝜖(𝑡) for the Palau Region. (1.24).
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49]. Note that non-linear methods such as WENO or limiter-based finite-volumes schemes
involve an operator 𝐴(𝑡) that is also non-linear.

In this setting, for convenience, we still assume that the velocity field 𝑣 is divergent
free, hence we consider 𝑄 = 𝐼 and algorithm 1 reduces to estimate directly the SVD of 𝐿.
A particular reason for that is that the formula (1.21) may produce a poor estimation of
𝑞 due to the numerical diffusion induced by the numerical scheme itself, or because of the
way boundary conditions are handled.

The DO methodology (see [124] or later on in section 2.2.1) applied to (1.23) seeks to
evolve a low-rank approximation 𝐿 of 𝐿. Since initially 𝐿 = 𝐼, it is natural to initialize
𝐿 as a projector on a low dimensional space of smooth functions: if 𝑟 is the rank of the
approximation, one sets

𝐿(0) = 𝑈0𝑈𝑇
0 ,

where 𝑈0 ∈ ℳ𝑙,𝑟 contains typically the 𝑟 first eigenvectors of a smoothing operator (for
example −Δ or ℱ − 𝐼 where ℱ is a shapiro filter). With the notations of chapter 2, the DO
approximation is set initially as 𝑍(0) = 𝑈(0)𝑇 . The operator ℒ is ℒ(𝑡, 𝑅) = 𝐴(𝑡)𝑅 and DO
equations for modes and coefficients are written{︃

�̇� = ℒ(𝑡, 𝑈𝑍𝑇 )𝑇 𝑈 = 𝑍(𝑈𝑇 𝐴(𝑡)𝑇 𝑈)
�̇� = (𝐼 − 𝑈𝑈𝑇 )ℒ(𝑡, 𝑈𝑍𝑇 )𝑍(𝑍𝑇 𝑍)−1 = 𝐴(𝑡)𝑈 − 𝑈(𝑈𝑇 𝐴(𝑡)𝑈).

(1.24)

Alternatively, another way to build a low-rank approximation of ℒ(𝑡) is to estimate the
image of the subspace spanned by 𝑈0, i.e. to solve the transport PDE for each of the
columns of 𝑈0 and to obtain the low-rank approximation by approximating ℒ(𝑡) by its
restriction on the subspace 𝑈0:

𝐿 ≃ (𝐿𝑈0)𝑈𝑇
0 . (1.25)

It turns out that eqn. (1.24) and (1.25) yield the same approximation 𝐿(𝑡). This fact can
be seen can be seen by verifying that the DO solution 𝑈(𝑡)𝑍(𝑡)𝑇 of (1.24) and the matrix
(𝐿𝑈0)𝑈𝑇

0 are solution of a same ODE. More directly with the framework of chapter 2, this
is an immediate consequence of the geometric fact that the vector field ℒ in the matrix
space ℳ𝑙,𝑙 is tangent to the manifold of 𝑟 rank matrices: ℒ(𝑡, 𝑈𝑍𝑇 ) = 𝐴(𝑡)𝑈𝑍𝑇 is of the
form 𝛿𝑈𝑍𝑇 + 𝑈𝛿𝑍𝑇 with 𝛿𝑈 = 𝐴(𝑡)𝑈 and 𝛿𝑍 = 0. Hence the DO approximation (2.57)
for an initial rank 𝑟 data coincides with the exact time integration.

Remark 1.3. One can notice that the equation for the mode matrix 𝑈 coincides with
the equation for OTD modes introduced by Babaee and Sapsis in [13] with 𝐴(𝑡) being the
linearized operator of the dynamics. One therefore sees that the subspace spanned by OTD
modes coincides with the image of the initial subspace by the resolvant associated with the
system (1.23).

Numerically, the formulation (1.25) can be interesting because it preserves the evolu-
tion of the subspace spanned by ℒ𝑈0, while columns of ℒ𝑈0 tends to align exponentially
fast along dominant left singular vectors (see also the discussion in [13, 41]). Nevertheless
computing directly ℒ𝑈0 by solving (1.23) directly does not require constant reorthonormal-
ization and can be achieved by using the particle method described in algorithm 2.

We evaluated the method on the three benchmark example. Once the low-rank ap-
proximation is obtained, the SVD can be straightforwardly estimated by using algorithm 3
of chapter 2 (page 105). We plot the result of this method on Figs. 1-15 to 1-17 for the
double-gyre with the settings of [52], the Flow Past a Cylinder example and the Palau
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Figure 1-15: Coherent sets obtained from the 0 level-set thresholding of the approximated
right and left singular vectors 2,4,7 and 8 of the push forward operator 𝐿 computed by
using the DO approximation (1.25) with 𝑟 = 150 modes.

region. Note that a relatively large number 𝑟 of modes is needed to obtain moderately
accurate coherent sets. The method yields moderately accurate left singular vectors but
more poorly estimates of the right singular vectors because these belong to the initial space
Span(𝑈0). An additional Lanczos iteration (applying this method backward in time) would
allow to increase the accuracy.
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Figure 1-16: Coherent sets for the Flow Past a Cylinder example obtained from the 0 level-
set thresholding of the approximated right and left singular vectors 3,4,6 and 7 of the push
forward operator 𝐿 computed by using the DO approximation (1.25) with 𝑟 = 150 modes.

44



Figure 1-17: Coherent sets for the Palau Region obtained from the 0 level-set thresholding of
the approximated right and left singular vectors 1,4,5,7 and 17 of the operator 𝐿 computed
by using a DO approximation with 𝑟 = 60 modes (1.24).
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Chapter 2

Embedded geometry of matrix
manifolds and dynamic
approximation

Efficient and rigorous numerical schemes for the stochastic advection equation that will
be presented in chapter 3 require a rigorous understanding of the method (Dynamically
Orthogonal approximation) developed for stochastic PDEs by Sapsis and Lermusiaux in
2009 [124]. Following the prior analysis of Koch and Lubich [83] and Musharbash [103],
Riemannian geometry over matrix manifolds is an appropriate mathematical framework to
understand and analyze the method. In this chapter, we investigate the foundations of the
mathematical framework.

We start by reviewing the necessary background material relative to Riemannian geom-
etry on embedded manifolds in section 2.1. Most of the results of this section can be found
in classical literature [139, 11] but we have attached a particular importance on using tensor
free notations, which will turn to be especially convenient when computing geometric quan-
tities on matrix manifolds. This is achieved by expressing these almost exclusively in terms
of the projection operator onto tangent spaces and its differential. With these notations,
we provide definitions of the Weingarten map and of the extrinsic or principal curvatures of
the manifold with respect to a normal direction. The most important result is theorem 2.1,
a restatement of a result available in [11], that expresses the differential of the orthogonal
projection onto an embedded manifold in term of these curvatures. We investigate then in
section 2.1.3 a generalization of the framework to manifolds embedded in finite dimensional
spaces that are not necessary euclidean.

We apply this setting to matrix manifolds in section 2.2. We evaluate explicitely the
tangent and normal spaces, geodesics equations and principal curvatures for the fixed-rank,
the Stiefel and the Isospectral manifolds. For each of these, the orthogonal projection
onto the manifold is related to an algebraic operation, e.g. polar decomposition for the
Orthogonal group, truncated Singular Value Decomposition for the fixed-rank manifold
and projectors over the eigenspaces of symmetric matrices for the Isospectral manifold.
Having computed principal curvatures, we are able to provide explicit formulas for the
differential of these operations. We also apply the non-euclidean generalization to study
the differentiability of the eigenspaces of non-symmetric matrices, those map being not
orthogonal projections but sharing similar characteristics.

Finally, we study in section 2.3 the approximation of a dynamical system by mean of a
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Figure 2-1: Illustration of an embedded manifold M ⊂ 𝐸 and geometric concept of interests.

reduced dynamical system set on a manifold (of small dimension). This approximation, that
consists in replacing the vector field of the original dynamical system with its tangent pro-
jection onto the manifold turns to be exactly the Dynamically Orthogonal or the Dynamical
low-rank methods introduced by Sapsis and Lermusiaux [124] and Koch and Lubich [83]
respectively, when the manifold considered is the set of fixed-rank matrices. We perform an
error analysis that extends the results of [83] and provide geometric interpretation of the
conditions under which the approximation error remains controlled.

Important geometric concepts that are the matter of this chapter are illustrated on
Figure 2-1.

2.1 Background material: Extrinsic geometry on Rieman-
nian manifolds

2.1.1 Tangent space, normal space, metric and geodesics

Let 𝐸 be a finite dimensional euclidean space.

Definition 2.1. An embedded smooth manifold M of dimension 𝑑 is a subset of 𝐸 that can
be parameterized locally with 𝑑 coordinates: for every point 𝑅 ∈ M there exists an open
set 𝑈 ⊂ R𝑑, an open neighborhood 𝑉 ⊂ 𝐸 of 𝑅 and a 𝒞∞ diffeomorphism 𝜑 : 𝑈 → 𝑉 ∩M
that is called a local coordinate chart.

Definition 2.2. The tangent space 𝒯 (𝑅) ⊂ 𝐸 at 𝑅 is the set of all velocity vectors �̇�(0)
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at time 0 for a 𝒞1 curve 𝑅(𝑡) drawn on M satisfying 𝑅(0) = 𝑅. This is a 𝑑 dimensional
vector space. The normal space 𝒩 (𝑅) is defined to be the orthogonal complement of 𝒯 (𝑅).

The main object of interest in embedded differential geometry is the orthogonal pro-
jection Π𝒯 (𝑅) onto the tangent space 𝒯 (𝑅) at a point 𝑅 on M . This map projects dis-
placements X = Ṙ ∈ E of a matrix R of the ambient space 𝐸 to the tangent directions
𝑋 = Π𝒯 (𝑅)X ∈ 𝒯 (𝑅). Most of geometric quantities defined later on are obtained from this
map.

Definition 2.3. We denote Π𝒯 (𝑅) : 𝐸 → 𝒯 (𝑅) the orthogonal projection onto the tangent
space, that is for any vector X ∈ 𝐸, Π𝒯 (𝑅) satisfies

||X−Π𝒯 (𝑅)X|| = min
𝑋∈𝒯 (𝑅)

||X−𝑋||.

The map 𝑅 ↦→ Π𝒯 (𝑅) is of class 𝒞∞ for smooth manifold M .

Proof. Consider 𝑥 ∈ M and a local coordinate map 𝜑 : R𝑝 : 𝐸 such that M = 𝜑(R𝑝).
Then the tangent space at 𝑥 is 𝒯 (𝑥) = span(D𝜑(𝑥)) and the projector on 𝒯 (𝑥) is Π𝒯 (𝑥) =
D𝜑(𝑥)(D𝜑(𝑥)𝑇 D𝜑(𝑥))−1D𝜑(𝑥) which is a map of class 𝒞𝑘−1 if 𝜑 is of class 𝒞𝑘.

A metric on M defines how distances are measured on the manifold, by prescribing a
smoothly varying scalar product on each tangent space. Since 𝐸 is an Euclidean space, any
embedded manifold M is a Riemannian manifold with the metric induced by the scalar
product < ·, · > of 𝐸. In the language of Riemannian geometry, the value 𝑔𝑅 of the metric
𝑔 at the point 𝑅 is the bilinear form over 𝒯 (𝑅) defined by 𝑔𝑅(𝑋, 𝑌 ) =< 𝑋, 𝑌 > for any
tangent vectors 𝑋, 𝑌 ∈ 𝒯 (𝑅).

In differential geometry, one distinguishes the geometric properties that are intrinsic,
i.e. that depend only on the metric 𝑔 defined on the manifold, from the ones that are
extrinsic, i.e. that depend on the ambient space in which the manifold M is defined. The
following proposition recalls the link between the extrinsic projection Π𝒯 (𝑅) and the intrinsic
notion of derivation onto a manifold. For embedded manifolds, i.e. defined as subsets of
an ambient space, the covariant derivative at 𝑅 ∈ M is obtained by projecting the usual
derivative onto the tangent space 𝒯 (𝑅), and the Christoffel symbol corresponds to the
normal component that has been removed [36].

Proposition 2.1. Let 𝑋 and 𝑌 be two tangent vector fields defined on a neighborhood
of 𝑅 ∈ M . The covariant derivative ∇𝑋𝑌 with respect to the metric inherited from the
ambient space is the projection of D𝑋𝑌 onto the tangent space 𝒯 (𝑅):

∇𝑋𝑌 = Π𝒯 (𝑅)(D𝑋𝑌 ).

The Christoffel symbol Γ(𝑋, 𝑌 ) is defined by the relationship ∇𝑋𝑌 = D𝑋𝑌 + Γ(𝑋, 𝑌 ) and
is characterized by the formula

Γ(𝑋, 𝑌 ) = −(𝐼 −Π𝒯 (𝑅))D𝑋𝑌 = −DΠ𝒯 (𝑅)(𝑋) · 𝑌. (2.1)

The Christoffel symbol is symmetric: Γ(𝑋, 𝑌 ) = Γ(𝑌, 𝑋).
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Proof. (see also [139], Vol.3, Ch.1.) The first fact comes from

D𝑍 < 𝑋, 𝑌 > =< D𝑍𝑋, 𝑌 > + < 𝑋, D𝑍𝑌 >
=< Π𝒯 (𝑅)D𝑍𝑋, 𝑌 > + < 𝑋, Π𝒯 (𝑅)D𝑍𝑌 >

=< ∇𝑍𝑋, 𝑌 > + < 𝑋,∇𝑍𝑌 >,

which is exactly the requirement that the connection is compatible with the metric. The
second fact comes from the definition of Γ(𝑋, 𝑌 ) as Γ(𝑋, 𝑌 ) = ∇𝑋𝑌 −𝐷𝑋𝑌 , and by differ-
entiation of the equality Π𝒯 (𝑅)𝑌 = 𝑌 along the direction 𝑋. The third fact reflects that the
Lie bracket [𝑋, 𝑌 ] = 𝐷𝑋𝑌 −𝐷𝑌 𝑋 lies in the tangent space: (𝐼 −Π𝒯 (𝑅))(D𝑋𝑌 −D𝑌 𝑋) = 0.
A proof is obtained as follows: consider a local coordinate chart 𝜑 : 𝑈 ⊂ R𝑑 → M and
R = 𝜑(𝑢). Any tangent vector 𝑋 can be written as 𝑋 = D𝜑(𝑢)(𝑥) for some 𝑥 ∈ R𝑑. Denote
𝑌 = D𝜑(𝑢)(𝑦). Then one can check that D𝑌 𝑋 −D𝑋𝑌 =

[︀
D2𝜑(𝑢)(𝑥, 𝑦)−D2𝜑(𝑢)(𝑦, 𝑥)

]︀
+

D𝜑(𝑢)(D𝑦𝑥 − D𝑥𝑦) where the bracket term vanishes because of Schwartz theorem. Hence
[𝑋, 𝑌 ] ∈ Span(D𝜑) = 𝒯 (𝑅).

Remark 2.1. An important feature of equation (2.1) is that the Christoffel symbol Γ(𝑋, 𝑌 )
depends only on the projection map Π𝑇 at the point 𝑅 and not on neighboring values of
the tangent vectors 𝑋, 𝑌 , which is a priori not clear from the equality Γ(𝑋, 𝑌 ) = −(𝐼 −
Π𝒯 (𝑅))D𝑋𝑌 .

The covariant derivative allows to obtain equations for the geodesics of the manifold
M . These geodesics (Figure 2-1) are the shortest paths among all possible smooth curves
drawn on M joining two points sufficiently close.

Definition 2.4. A geodesic 𝑅(𝑡) on M is a curve satisfying either of the following proper-
ties :

∙ 𝑅(𝑡) is a stationary curve joining two given points for the perimeter functional 𝑅(𝑡) ↦→
𝑆(𝑅(𝑡)) =

∫︀ 1
0 ||�̇�(𝑡)||d𝑡.

∙ the acceleration �̈�(𝑡) ∈ 𝒩 (𝑅) lies in the normal space to M at all instants ([36, 139])

∙ the velocity �̇� is stationary under the covariant derivative, i.e.

∇�̇��̇� = �̈�−DΠ𝒯 (𝑅)(�̇�) · �̇� = 0. (2.2)

Proof. (see also [139]) Consider a tangent variation 𝛿𝑅(𝑡) ∈ 𝒯 (𝑅(𝑡)) of 𝑅(𝑡). Then

𝜕𝑆

𝜕𝑅
· 𝛿𝑅 =

∫︁ 1

0
<

�̇�

||�̇�||
, ˙𝛿𝑅 > d𝑡 = −

∫︁ 1

0
<

d
d𝑡

(︃
�̇�

||�̇�||

)︃
, 𝛿𝑅 > d𝑡

must vanish for all tangent variations 𝛿𝑅 ∈ 𝒯 (𝑅(𝑡)). Consider 𝛾(𝑡) such that ||𝑅(𝛾(𝑡))|| is
constant (note that 𝑆 is invariant under such change of parameterization). The stationary
condition writes then �̈�(𝛾(𝑡)) ∈ 𝒩 (𝑅(𝛾(𝑡))) for all 𝑡 ∈ [0, 1]. Differentiating the relation
�̇� = Π𝒯 (𝑅)(�̇�) yields

�̈� = DΠ𝒯 (𝑅(𝑡))(�̇�(𝑡))�̇�(𝑡) + Π𝒯 (𝑅(𝑡))�̈�(𝑡).

Thus 𝑅(𝑡) is stationary curves for 𝑆 if and only if 𝑅(𝛾−1(𝑡)) is a solution of (2.2).
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Geodesics allow to define the exponential map and parallel transport [139], which in-
dicate respectively how to walk on the manifold from a point 𝑅 ∈ M along a straight
direction 𝑋 ∈ 𝒯 (𝑅) and how to transfer tangent vectors from one point to another.

Definition 2.5. The exponential map exp𝑅 at 𝑅 ∈M is the application

exp𝑅 : 𝒯 (𝑅) → M
𝑋 ↦→ 𝑅(1), (2.3)

where 𝑅(1) is the value at time 1 of the solution of the geodesic equation (2.32) with initial
conditions 𝑅(0) = 𝑅 and �̇�(0) = 𝑋. The value of 𝜏𝑅𝑅(1) = �̇�(1), is called is called the
parallel transport of 𝑋 from 𝑅 to 𝑅(1).

2.1.2 Curvature and differentiability of the orthogonal projection

Differentiability results for the orthogonal projection onto smooth embedded manifolds, as
presented with tensor notations in [11], are now centralized and restated with notations using
only the orthogonal projection Π𝒯 (𝑅). The main motivation is that algebraic operations on
matrices such as SVD truncation (section 2.2.1) or the polar decomposition (section 2.2.2)
can be directly related to orthogonal projections onto matrix manifolds. Hence general
geometric differentiability results for the projections transpose directly into formulas for
the differential of these algebraic matrix operations.

Definition 2.6. The orthogonal projection of a point R onto M is defined whenever there
is a unique point of M , denoted ΠM (R), minimizing the Euclidean distance 𝑅 ↦→ ||R−𝑅||
to R. When this occurs, the residual R−ΠM (R) must be normal to M at ΠM (R), namely

R−ΠM (R) ∈ 𝒩 (ΠM (R))⇔ Π𝒯 (ΠM (R))(R−ΠM (R)) = 0. (2.4)

Proof. For any tangent vector 𝑋 ∈ 𝒯 (𝑅), consider a curve 𝑅(𝑡) drawn on M such that
𝑅(0) = 𝑅 and �̇�(0) = 𝑋 where 𝑅 is minimizing 𝐽(𝑅) = 1

2 ||R − 𝑅||2. Then the stationary
condition d

d𝑡

⃒⃒⃒
𝑡=0

𝐽(𝑅(𝑡)) = − < R−𝑅, 𝑋 >= 0 states precisely (2.4).

Remark 2.2. The normality of R − 𝑅 for the point 𝑅 = ΠM (R) being the orthogonal
projection of R onto M is geometrically illustrated on Figure 2-1.

We motivate the introduction of the Weingarten map and extrinsic curvatures by the
following observation (also present in the proofs of [83]):

Proposition 2.2. Suppose the projection ΠM is defined and differentiable at R. Then the
differential DXΠM (R) of ΠM at the point R in the direction X ∈ 𝐸 satisfies :

DXΠM (R) = Π𝒯 (ΠM (R))(X) + DΠ𝒯 (ΠM (R))(DXΠM (R)) · (R−ΠM (R)). (2.5)

Proof. Differentiating equation (2.4) along the direction X yields

DΠ𝒯 (ΠM (R))(DΠM (R)(X)) · (R−ΠM (R)) + Π𝒯 (ΠM (R))(X−DXΠM (R)) = 0.

Since ΠM (R) ∈M for any R, the differential DXΠM (R) is a tangent vector, and the results
follows from the relation Π𝒯 (ΠM (R))(DXΠM (R)) = DXΠM (R).
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Let 𝑅 = ΠM (R) be the projection of the point R on M and 𝑁 = R − 𝑅 the corre-
sponding normal residual vector. Solving (2.5) for the differential 𝑋 = DXΠM (R) requires
to invert the linear operator 𝐼 − 𝐿𝑅(𝑁) where 𝐿𝑅(𝑁) is the map 𝑋 ↦→ DΠ𝒯 (𝑅)(𝑋) · 𝑁 .
𝐿𝑅(𝑁) would be zero if M were to be a “flat” vector subspace and can be interpreted as
a curvature correction. 𝐿𝑅(𝑁) is called the Weingarten map and turns to be a symmetric
endomorphism on 𝒯 (𝑅) whose eigenvalues are by definition the principal curvatures.

Definition 2.7 (Weingarten map). For any point 𝑅 ∈M , tangent and normal vector fields
𝑋, 𝑌 ∈ 𝒯 (𝑅) and 𝑁 ∈ 𝒩 (𝑅) defined on a neighborhood of 𝑅, the following relation, called
Weingarten identity holds:

< Π𝒯 (𝑅)(D𝑋𝑁), 𝑌 >=< 𝑁, Γ(𝑋, 𝑌 ) > . (2.6)

Also, the tangent variation Π𝒯 (𝑅)(D𝑋𝑁) depend only on the value of the normal vector
field 𝑁 at 𝑅 as it can be seen from the identity

DΠ𝒯 (𝑅)(𝑋) ·𝑁 = −Π𝒯 (𝑅)(D𝑋𝑁). (2.7)

The application
𝐿𝑅(𝑁) : 𝒯 (𝑅) → 𝒯 (𝑅)

𝑋 ↦→ DΠ𝒯 (𝑅)(𝑋) ·𝑁,

is therefore a symmetric map of the tangent space into itself and is called the Weingarten
map in the normal direction 𝑁 . The corresponding eigenvectors and eigenvalues are re-
spectively called the principal directions and principal curvatures of M in the normal di-
rection 𝑁 . The induced symmetric bilinear form on the tangent space,

II(𝑁) : (𝑋, 𝑌 ) ↦→< 𝐿𝑅(𝑁)𝑋, 𝑌 >= − < 𝑁, Γ(𝑋, 𝑌 ) >, (2.8)

is called the second fundamental form in the direction 𝑁 .

Proof. (See also [135] or the proof Theorem 5 of [139], vol.3, ch.1.) Differentiating the
relation Π𝒯 (𝑅)(𝑁) = 0 along a direction 𝑋 yields equation (2.7). Also, since the vector field
𝑁 is normal to M on a neighborhood of 𝑅, differentiating the relation < 𝑁, 𝑋 >= 0 in the
𝑌 directions allows to obtain < D𝑌 𝑁, 𝑋 >= − < 𝑁, 𝐷𝑋𝑌 >. Now, the identity follows
from the series of equalities

< Π𝒯 (𝑅)(D𝑋𝑁), 𝑌 > =< D𝑋𝑁, 𝑌 >= − < 𝑁, 𝐷𝑌 𝑋 >

= − < 𝑁, (𝐼 −Π𝒯 (𝑅)(𝑋))D𝑌 𝑋 >=< 𝑁, Γ(𝑋, 𝑌 ) > .

Remark 2.3. The notion of Weingarten map and principal curvatures is maybe more
commonly encountered in the literature on differential geometry for hypersurfaces, where
one can define 𝐿𝑅(𝑁)𝑋 = D𝑋𝑁 for a given normal vector (whose direction is unique
since dim(𝒩 (𝑅)) = 1. Nevertheless the more general definition definition 2.7 is present in
[135, 11, 5, 3, 139].

The Weingarten map is related to the covariant Hessian (see also [4, 5]), which will be
useful in the proof of the next theorem, and also for developing optimization onto the fixed
rank manifold later on in section 3.3.3.

52



Definition 2.8. Let 𝐽 a smooth function defined on M and 𝑅 ∈ M . The covariant
gradient of 𝐽 at 𝑅 is the unique vector ∇𝐽 ∈ 𝒯 (𝑅) such that

∀𝑋 ∈ 𝑇𝑅, 𝐽(exp𝑅(𝑡𝑋)) = 𝐽(𝑅) + 𝑡 < ∇𝐽, 𝑋 > +𝑜(𝑡).

The covariant Hessian ℋ𝐽 of 𝐽 at 𝑅 is the linear map on 𝒯 (𝑅) defined by

ℋ𝐽(𝑋) = ∇𝑋∇𝐽,

and the following second order Taylor approximation of 𝐽 holds:

𝐽(exp𝑅(𝑡𝑋)) = 𝐽(𝑅) + 𝑡 < ∇𝐽, 𝑋 > + 𝑡2

2 < 𝑋,ℋ𝐽(𝑋) > +𝑜(𝑡2).

The following proposition (see [5]) explains how these quantities are related to the usual
gradient and Hessian, so that they become accessible for computations.

Proposition 2.3. Let 𝐽 be a smooth function defined in the ambient space 𝐸 and denote
D𝐽 and D2𝐽 its respective euclidean gradient and Hessian. Then the covariant gradient and
Hessian are given by

∇𝐽 = Π𝒯 (𝑅)(D𝐽), (2.9)

ℋ𝐽(𝑋) = Π𝒯 (𝑅)(D2𝐽(𝑋)) + DΠ𝒯 (𝑅)(𝑋) ·
[︁
(𝐼 −Π𝒯 (𝑅))(D𝐽)

]︁
. (2.10)

Proof. Using the compatibility of the connection ∇𝑋 with the metric:

< ℋ𝐽𝑋, 𝑌 > =< ∇𝑋∇𝐽, 𝑌 >= D𝑋 < ∇𝐽, 𝑌 > − < ∇𝑋𝑌,∇𝐽 >

= D𝑋(D𝑌 𝐽)− < D𝐽, D𝑋𝑌 > − < Γ(𝑋, 𝑌 ), D𝐽 >

the second lines using the decomposition ∇𝑋𝑌 = D𝑋𝑌 + Γ(𝑋, 𝑌 ). Checking (using some
system of coordinates) that D𝑋(D𝑌 𝐽) =< 𝑋, D2𝐽(𝑌 ) > + < D𝐽, D𝑋𝑌 >, one obtains
finally the identity

∀𝑋, 𝑌 ∈ 𝒯 (𝑅), < ℋ𝐽(𝑋), 𝑌 >=< D2𝐽(𝑋), 𝑌 > − < Γ(𝑋, 𝑌 ), D𝐽 > . (2.11)

Now, equation (2.10) follows by using the Weingarten identity (2.6).

The differentiability of the projection map for arbitrary sets has been studied in [153, 2]
and more recently in the context of smooth manifolds in [11, 55, 24] with recent applications
in shape optimization [8]. The following theorem reformulates these results in tensor-free
notations. The proof given in the following is essentially a justification that one can indeed
invert the operator 𝐼 − 𝐿𝑅(𝑁) in (2.5) by using its eigendecomposition.

Recall that the closure M is the set of limit points of M and we refer to the set
𝜕M = M ∖M as the boundary of the manifold M (we have therefore 𝜕M ∩M = ∅: points
on the boundary are excluded of M ). The skeleton of M (see e.g. [32]) is the set Sk(M )
of all points that admit at least two possible minimizer of ||R− 𝑅|| on M (note that ΠM

is defined when there is a unique minimizer 𝑅 ∈M and that in addition 𝑅 ∈M ).

Theorem 2.1. Let Ω ⊂ 𝐸 be an open set of 𝐸 over which ΠM is defined and such that
Ω∩Sk(M ) = ∅. For R ∈ Ω, denote 𝜅𝑖(𝑁) and Φ𝑖 the respective eigenvalues and eigenvectors
of the Weingarten map 𝐿𝑅(𝑁) at 𝑅 = ΠM (R) with the normal direction 𝑁 = R−ΠM (R).
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Then all the principal curvatures satisfy 𝜅𝑖(𝑁) < 1 and the projection ΠM is differentiable
at R. The differential DXΠM (R) at R in the direction X satisfies

DXΠM (R) =
∑︁

𝜅𝑖(𝑁)

1
1− 𝜅𝑖(𝑁) < Φ𝑖,X > Φ𝑖

= Π𝑇 (ΠM (𝑅))(X) +
∑︁

𝜅𝑖(𝑁 )̸=0

𝜅𝑖(𝑁)
1− 𝜅𝑖(𝑁) < Φ𝑖,X > Φ𝑖.

(2.12)

Proof. The proof of this theorem (see also [11]) is done in three steps:
Step 1: Under the conditions of theorem 2.1, the projection ΠM is continuous on Ω.

Consider a sequence R𝑛 ∈ Ω converging in 𝐸 to R and denote ΠM (R𝑛) the corresponding
projections. Let 𝜖 > 0 be a real such that ∀𝑛 ≥ 0, ||R𝑛 −R|| < 𝜖. Since

||ΠM (R𝑛)−R|| ≤ ||ΠM (R𝑛)−R𝑛||+ ||R𝑛 −R||
≤ ||R𝑛 −ΠM (R)||+ ||R𝑛 −R||
≤ 2𝜖 + ||R−ΠM (R)||,

the sequence ΠM (R𝑛) is bounded. Denote 𝑅 ∈M a limit point of this sequence. Passing
to the limit the inequality ||R𝑛 − ΠM (R𝑛)|| ≤ ||R𝑛 − ΠM (R)||, one obtains ||R − 𝑅|| ≤
||R − ΠM (R)||. The unicity of the projection, and the fact that there is no 𝑅 ∈ M ∖M
satisfying this inequality, shows that 𝑅 = ΠM (R). Since the bounded sequence (ΠM (R𝑛))
has a unique limit point, one deduces the convergence ΠM (R𝑛) → ΠM (R) and hence the
continuity of the projection map at R.

Step 2: At any point R ∈ Ω, any principal curvature 𝜅𝑖(𝑁) in the direction 𝑁 at ΠM (R)
must satisfy 𝜅𝑖(𝑁) < 1.

A consequence of the formula (2.10) is that the covariant Hessian of the distance function
𝐽(𝑅) = 1

2 ||R− 𝐽 ||2 at 𝑅 = ΠM (R) is given by

ℋ𝐽 : 𝒯 (𝑅) → 𝒯 (𝑅)
𝑋 ↦→ 𝑋 − 𝐿𝑅(𝑁)(𝑋), (2.13)

where 𝑁 is the normal direction 𝑁 = R−ΠM (R). Since 𝑅 = ΠM (R) must be a local min-
imum of 𝐽 , this Hessian must be positive, namely any eigenvalue 𝜅𝑖(𝑁) of the Weingarten
map 𝐿𝑅(𝑁) must satisfy 1 − 𝜅𝑖(𝑁) ≥ 0. Now, consider 𝑠 > 1 such that 𝑅 + 𝑠𝑁 ∈ Ω and
notice that ||𝑅 + 𝑠𝑁 −ΠM (R)|| = 𝑠||𝑁 ||. Since

||𝑅 + 𝑠𝑁 −ΠM (𝑅 + 𝑠𝑁)|| ≤ ||𝑅 + 𝑠𝑁 −ΠM (R)|| = 𝑠||𝑁 ||,

the uniqueness of the projection in Ω implies that ΠM (𝑅 + 𝑠𝑁) = 𝑅 (i.e. the projection
is invariant along orthogonal rays). The linearity of the Weingarten map in 𝑁 implies
𝜅𝑖(𝑠𝑁) = 𝑠𝜅𝑖(𝑁), hence 𝜅𝑖(𝑁) ≤ 1

𝑠 < 1, which concludes the proof.
Step 3: Application of the implicit function theorem.
Consider the function 𝑓(R, 𝑅) = Π𝒯 (𝑅)(𝑅 −R) defined on M × 𝐸. The differential of

𝑓 with respect to the variable 𝑅 in a direction 𝑋 ∈ 𝒯 (𝑅) at 𝑅 = ΠM (R) is the application

𝑋 ↦→ Π𝒯 (𝑅)𝑋 −D𝑋Π𝒯 (𝑅)(R−𝑅) = (𝐼 − 𝐿𝑅(𝑁))(𝑋).

Step 2 implies that the Jacobian 𝜕𝑅,𝑋𝑓 has no zero eigenvalue and hence is invertible.
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Figure 2-2: A parabola M = P and its skeleton set Sk(P). The orthogonal projection
ΠM is not differentiable on the adherence Sk(P). Projected values 𝑅(𝑡) = ΠM (R(𝑡))
jump from 𝑅1 to 𝑅2 when R(𝑡) crosses the skeleton. A center of curvature 𝐶, for which
𝜅𝑖(𝐶 −ΠM (𝐶)) = 1, may admit a unique projection, 𝐴, but is a limit point of the skeleton
Sk(P).

The implicit function theorem ensures the existence of a diffeomorphism 𝜑 mapping an
open neighborhood Ω𝐸 ⊂ 𝐸 of R to an open neighborhood ΩM ⊂ M of 𝑅, such that
for any R′ ∈ Ω𝐸 , 𝜑(R′) is the unique element of ΩM satisfying 𝑓(R′,𝜑(R′)) = 0. By
continuity of the projection obtained in step 1, one can assume, by replacing Ω𝐸 with the
open subset Ω𝐸 ∩ Π−1

M (ΩM ), that ΠM (Ω𝐸) ⊂ ΩM . Then, the equality 𝑓(R′, ΠM (R′)) = 0
implies by uniqueness: 𝜑(R′) = ΠM (R′). Hence ΠM = 𝜑 on Ω𝐸 , and, in particular, ΠM

is differentiable. Finally, for a given 𝑋 ∈ 𝐸, one can now solve (2.5) by projection onto the
eigenvectors of 𝐿𝑅(𝑁) and obtain (2.12).

Remark 2.4. One cannot expect the projection map to be differentiable at points that
are in the adherence Sk(M ), as there is a “jump” of the projected values across Sk(M ), as
illustrated on Figure 2-2.

A useful remark coming from the step 2 of the proof is the following:

Corollary 2.1. A necessary condition for 𝑅 ∈ M to be a local minimum of the distance
functional 𝐽(𝑅) = 1

2 ||R − 𝑅||2 is that 𝑁 = R − 𝑅 ∈ 𝒩 (𝑅) is a normal vector at 𝑅 and
that all the eigenvalues of the Weingarten map 𝐿𝑅(𝑁) satisfy 𝜅𝑖(𝑁) ≤ 1. Therefore if the
following condition holds

∀𝑅 ̸= ΠM (R) ∈M , 𝑁 = R−𝑅 ∈ 𝒩 (𝑅)⇒ max
𝑖

𝜅𝑖(𝑁) > 1, (2.14)

then a solution 𝑅(𝑡) of the gradient flow

�̇� = −∇𝐽(𝑅) = Π𝒯 (𝑅)(R−𝑅). (2.15)

converges almost surely to ΠM (R). In particular, if condition (2.14) is satisfied for any
R ∈M and if 𝜕M = ∅, then M is connected.
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Proof. We refer the reader to chapter 7 of [79] (Morse theory) for the proofs that the solution
of a sufficiently smooth gradient flow converges almost surely to a local minimum.

Remark 2.5. The geometry of a connected manifold M is therefore relatively “simple”
when the condition (2.14) holds. We will see that it is the case for each of the matrix
manifolds studied in section 2.2. The gradient flow (2.15) is extremely powerful as it allows
to compute either the projection ΠM (R) or a path between two given points 𝑅1, 𝑅2 on M
(by considering R = 𝑅2 and 𝑅(0) = 𝑅1), which can be useful when no analytic expression is
available for the geodesic connecting 𝑅1 to 𝑅2. As an application, we obtain in section 2.2
dynamical systems (2.15) that achieve algebraic operations, in the continuity of [20, 31].

The following two results establish bounds for the differential of the projection operators
ΠM and DΠ𝒯 (𝑅) that will be useful later for the error analysis of section 2.3.
Lemma 2.1. For any R ∈ 𝐸 for which ΠM (R) is defined and X ∈ 𝐸, denoting 𝑁 =
R−ΠM (R) ∈ 𝒩 (𝑅) :

||DXΠM (R)−Π𝒯 (ΠM (R))X|| ≤ max
𝑖

𝜅𝑖(𝑁)
1− 𝜅𝑖(𝑁) ||X||.

Proof. This is immediate from the decomposition (2.12).

Lemma 2.2. For any points 𝑅 ∈M , X ∈ 𝐸 and tangent vector 𝑋 ∈ 𝒯 (𝑅),

||DΠ𝒯 (𝑅)(𝑋) · X|| ≤

⎛⎜⎝ max
𝑁∈𝒩 (𝑅)
||𝑁 ||=1

𝜅𝑖(𝑁)

⎞⎟⎠ ||𝑋|| ||X||.
The constant 𝜅∞(𝑅) = max

𝑁∈𝒩 (𝑅)
||𝑁 ||=1

𝜅𝑖(𝑁) < ∞ is optimal and is called the maximal curvature

of M at R.
Proof. 𝑁 ↦→ 𝐿𝑅(𝑁) is a continuous map from 𝒩 (𝑅) to the space of endomorphisms over
𝒯 (𝑅) (as a linear functional over finite dimensional spaces). As a consequence the eigenvalue
maps 𝑁 ↦→ 𝜅𝑖(𝑁) are continuous functions, implying 𝜅∞(𝑅) <∞. If 𝑁 ∈ 𝒩 (𝑅) is a normal
vector, the maximum eigenvalue of the map 𝐿𝑅(𝑁) : 𝑋 ↦→ DΠ𝒯 (𝑅)(𝑋) · 𝑁 is max 𝜅𝑖(𝑁).
As a result,

∀𝑋 ∈ 𝒯 (𝑅), ||DΠ𝒯 (𝑅)(𝑋) ·𝑁 || ≤ max
𝑁∈𝒩 (𝑅)

𝜅𝑖(𝑁)||𝑋|| ≤ 𝜅∞(𝑅)||𝑋|| ||𝑁 ||. (2.16)

If 𝑌 is a tangent vector, the vector Γ(𝑋, 𝑌 ) = DΠ𝒯 (𝑅)(𝑋) · 𝑌 is normal (proposition 2.1)
and the Weingarten identity (2.6) yields

||DΠ𝒯 (𝑅)(𝑋) · 𝑌 ||2 =< DΠ𝒯 (𝑅)(𝑋) · 𝑌, Γ(𝑋, 𝑌 ) >

= − < DΠ𝒯 (𝑅)(𝑋) · Γ(𝑋, 𝑌 ), 𝑌 >

≤ ||DΠ𝒯 (𝑅)(𝑋) · Γ(𝑋, 𝑌 )|| ||𝑌 ||
≤ 𝜅∞(𝑅)||𝑋|| ||DΠ𝒯 (𝑅)(𝑋) · 𝑌 || ||𝑌 || .

Therefore, one finds that (2.16) holds also for tangent vectors 𝑌 :

||DΠ𝒯 (𝑅)(𝑋) · 𝑌 || ≤ 𝜅∞(𝑅)||𝑋|| ||𝑌 ||.
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Hence, for any X = 𝑁 + 𝑌 where 𝑁 is normal and 𝑌 tangent,

||DΠ𝒯 (𝑅)(𝑋) · X||2 = ||DΠ𝒯 (𝑅)(𝑋) ·𝑁 ||2 + ||DΠ𝒯 (𝑅)(𝑋) · 𝑌 ||2

≤ 𝜅∞(𝑅)2||𝑋||2 (||𝑁 ||2 + ||𝑌 ||2) = 𝜅∞(𝑅)2||𝑋||2 ||X||2,

which proves the inequality claimed.

We mention a simple observation that results from this lemma and that allows to under-
stand what are the conditions for a geodesic to not be defined for all times on an embedded
manifold:

Corollary 2.2. A geodesic 𝑅(𝑡) on a finite dimensional manifold blows up in finite time
if and only if it reaches the boundary 𝜕M = M ∖M in finite time. There are two kinds of
scenario:

∙ the maximal curvature of M remains bounded and M could be extended on a neigh-
borhood of the exiting point on 𝜕M .

∙ the maximal curvature 𝜅∞(𝑅(𝑡)) blows up in finite time, that is 𝑅(𝑡) reaches a sin-
gularity around which M has a spiraling shape. M cannot be further extended at the
exiting point.

In particular, on an embedded closed finite dimensional manifold, geodesic are always defined
for all times.

Proof. We recall that the norm of the velocity ||�̇�|| is constant on a geodesic 𝑅(𝑡). Assume
that there is a finite time blowing up of 𝑅(𝑡) at time 𝑇 . The boundedness of �̇� on the interval
[0, 𝑇 [ implies that there exists a limit point 𝑅(𝑇 ) ∈ M such that 𝑅(𝑡) → 𝑅 when 𝑡 → 𝑇 .
Therefore the blowing up occurs at time 𝑇 if and only if ||�̈�|| → ∞ when 𝑡→ 𝑇 . Applying
now the bound of lemma 2.2 to the geodesic equation (2.2) yields ||�̈�|| ≤ 𝜅∞(𝑅)||�̇�||2.
Assume 𝑅(𝑇 ) ∈M . Then the blowing up implies 𝜅∞(𝑅(𝑇 )) =∞ which is a contradiction.
Therefore 𝑅(𝑇 ) ∈ 𝜕M .

2.1.3 Oblique projections and generalization to embedded manifolds in
non-euclidean spaces

As the applications of section 2.2 will motivate, we investigate in this part a generalization
of the previous results to a wider class of projection maps ΠM (R) that are not defined by a
minimization principle as in definition 2.6 but share similar properties. The generalization
consists in giving up the assumption that the ambient space is euclidean. Instead, we
assume to be given a bundle of “normal” subspaces 𝒩 (𝑅) satisfying 𝐸 = 𝒯 (𝑅) ⊕ 𝒩 (𝑅)
for each point of the manifold, where these normal subspaces are not necessary orthogonal
anymore. In this setting, one can consider the oblique projection ΠM that maps a point
R ∈ 𝐸 to a point 𝑅 ∈M such that R−𝑅 ∈ 𝒩 (𝑅). If 𝐸 is euclidean, then the orthogonal
projection ΠM is a special case of oblique projection where the normal spaces 𝒩 (𝑅) are
orthogonal to the tangent spaces 𝒯 (𝑅). The applications mapping a matrix to its truncated
SVD, polar part or projector over the eigenspaces of a symmetric matrix are examples of
orthogonal projections ΠM . Examples of oblique projections that are not orthogonal include
the applications that map a real matrix to the orthogonal linear projector over its stable
dominant subspaces (associated with the complex eigenvalues of maximal real parts), or
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to the non orthogonal linear projector whose image is the dominant subspace and whose
kernel is the complement stable subspace associated with the remaining eigenvalues. We
find generalizations of formula (2.12) to obtain the differential of such maps, and of equation
(2.15) to derive dynamical systems for which ΠM (R) is a stable equilibrium point.

In all this part, we consider M ⊂ 𝐸 a smooth manifold embedded in a finite-dimensional
vector space 𝐸, but 𝐸 is not assumed to be euclidean anymore: one does not have a natural
scalar product inducing a metric on M .

Definition 2.9. We say that an application ΠM is an oblique projection onto M if the
following conditions are satisfied:

1. There exists an open neighborhood 𝒱 ⊂ 𝐸 containing M and such that ΠM : 𝒱 →M
is an application from 𝒱 onto M .

2. ∀𝑅 ∈M , ΠM (𝑅) = 𝑅.

3. ∀𝑅 ∈M , there exists a vector space 𝒩 (𝑅) such that

𝒰(𝑅) = {𝑁 ∈ 𝐸 |𝑅 + 𝑁 ∈ 𝒱, ΠM (𝑅 + 𝑁) = 𝑅}.

is an open neighborhood of 𝒩 (𝑅) containing 0. We call 𝒩 (𝑅) the normal space at 𝑅.

The concept of oblique projection is illustrated on Figure 2-3. Geometrically, the third
condition means that ΠM maps all points of the affine subspace 𝑅 +𝒩 (𝑅) sufficiently close
to 𝑅 onto the same point. More informally, the bundle of normal spaces 𝒩 (𝑅) can be
understood as a set of “hairs” on the manifolds, and ΠM is a point mapping a point on a
hair to its root on the manifold. When two oblique normal spaces intersect, there is possibly
an ambiguity in the definition of ΠM (R), which explains why one must restrict the domain
of ΠM to a neighborhood 𝒱.

We now observe that if an oblique projection is sufficiently smooth, then one obtains
a bundle of normal spaces 𝒩 (𝑅) as well as a smooth map of linear projectors 𝑅 ↦→ Π𝒯 (𝑅)
whose image is 𝒯 (𝑅) and kernel 𝒩 (𝑅).

Proposition 2.4. If ΠM is a differentiable oblique projection, then for any 𝑅 ∈M ,

Π𝒯 (𝑅) : X ↦→ DXΠM (𝑅)

is the linear projector whose image is 𝒯 (𝑅) and whose kernel is 𝒩 (𝑅). In particular the
direct sum decomposition 𝐸 = 𝒯 (𝑅)⊕𝒩 (𝑅) holds and ΠM satisfies

∀R ∈ 𝒱, Π𝒯 (ΠM (R))(R−ΠM (R)) = 0.

Proof. 1. Π𝒯 (𝑅) is a projector. One obtains by differentiating ΠM (ΠM (R)) = ΠM (R) with
respect to R in the direction X the relation

∀X ∈ 𝐸, DDXΠM (R)ΠM (ΠM (R)) = DXΠM (R).

Setting R = 𝑅 ∈M yields DDXΠM (𝑅)ΠM (𝑅) = DXΠM (𝑅), and the result follows from the
identity Π𝒯 (𝑅) ∘Π𝒯 (𝑅) = Π𝒯 (𝑅).

2. Span(Π𝒯 (𝑅)) = 𝒯 (𝑅). Differentiating ΠM (𝑅) = 𝑅 with respect to 𝑅 in a direction
𝑋 ∈ 𝒯 (𝑅), yields Π𝒯 (𝑅)𝑋 = 𝑋 hence 𝒯 (𝑅) ⊂ Span(Π𝒯 (𝑅)). Because ΠM is a map onto
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Figure 2-3: Oblique projection and bundle of tangent spaces 𝒯 (𝑅) and oblique normal
spaces 𝒩 (𝑅) onto a manifold M .

the manifold M , the rank of X ↦→ DXΠM (R) must be lower the dimension of M and this
implies Span(Π𝒯 (𝑅)) = 𝒯 (𝑅).

3. Ker(Π𝒯 (𝑅)) = 𝒩 (𝑅). For a given 𝑁 ∈ 𝒩 (𝑅), differentiating at 𝑡 = 0 the relation
ΠM (𝑅 + 𝑡𝑁) = 𝑅 yields D𝑁 ΠM (𝑅) = 0 hence 𝒩 (𝑅) ⊂ Ker(Π𝒯 (𝑅)). Reciprocally, note
that the differential of the map 𝑁 ↦→ ΠM (𝑅 + 𝑁) − 𝑅 has constant rank 𝑟 = dim(M ).
Therefore there exists a neighborhood 𝒲 ⊂ 𝐸 such that the set {𝑁 ∈ 𝒲 |𝑅 + 𝑁 ∈
𝒱, ΠM (𝑅+𝑁) = 𝑅} is a smooth manifold of dimension dim 𝐸−dim M . But by definition of
an oblique projection, this set is included in 𝒰(𝑅), an open neighborhood of 𝒩 (𝑅), therefore
dim𝒩 (𝑅) ≥ dim 𝐸 − dim 𝒯 (𝑅) = dim Ker(Π𝒯 (𝑅)). Hence 𝒩 (𝑅) = Ker(𝒯 (𝑅)).

We aim now at showing that conversely, if a manifold M is equipped with a differentiable
map of linear projectors 𝑅 ↦→ Π𝒯 (𝑅), then one can define a differentiable projection map
ΠM (R) associated with the normal spaces 𝒩 (𝑅) = Ker(Π𝒯 (𝑅)). We first notice that most
of the properties obtained in section 2.1 remain valid for projections Π𝒯 (𝑅) not necessary
orthogonal.

Proposition 2.5. Let M ⊂ 𝐸 be an embedded smooth manifold equipped with a differen-
tiable map 𝑅 ↦→ Π𝒯 (𝑅) of linear projections over the tangent spaces at M . Consider 𝑋 and
𝑌 two differentiable tangent vector fields in a neighborhood of 𝑅 ∈M . Then Π𝒯 (𝑅) defines
a torsion-free connection on M by the formula

∀𝑋, 𝑌 ∈ 𝒯 (𝑅), ∇𝑋𝑌 = Π𝒯 (𝑅)(D𝑋𝑌 ). (2.17)

In other words, one has Gauss formula

∀𝑋, 𝑌 ∈ 𝒯 (𝑅), ∇𝑋𝑌 = D𝑋𝑌 + Γ(𝑋, 𝑌 ),
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where the Christoffel symbol Γ(𝑋, 𝑌 ) = Γ(𝑌, 𝑋) = −(𝐼−Π𝒯 (𝑅))(D𝑋𝑌 ) ∈ 𝒩 (𝑅) is symmet-
ric and has values in the normal space 𝒩 (𝑅). Furthermore, its value depends only on the
values of the vector fields 𝑋 and 𝑌 at 𝑅 as it is visible from

Γ(𝑋, 𝑌 ) = −DΠ𝒯 (𝑅)(𝑋) · 𝑌.

Additionally, the Weingarten map

𝐿𝑅(𝑁) : 𝒯 (𝑅) → 𝒯 (𝑅)
𝑋 ↦→ DΠ𝒯 (𝑅)(𝑋) ·𝑁 = −Π𝒯 (𝑅)(D𝑋𝑁), (2.18)

defines a linear application of the tangent space 𝒯 (𝑅) into itself.

Proof. The proof is strictly identical to those given in proposition 2.1 and definition 2.7:
it suffices to differentiate the relations Π𝒯 (𝑅)(𝑌 ) = 𝑌 and Π𝒯 (𝑅)(𝑁) = 0 with respect to
𝑌 for given tangent vector fields 𝑋 and 𝑁 , and to use the fact that the Lie Bracket is a
tangent vector.

It is not clear that one can find a riemannian metric associated with the torsion-free
connection ∇ defined from Π𝒯 (𝑅)

1. One can also wonder whether a Weingarten identity
analogous to (2.6) still holds. The answer is positive provided the scalar product is replaced
with the duality bracket. In the following, we denote by 𝐸* the dual space of a finite
dimensional vector space 𝐸 and < , > the duality bracket, i.e. < 𝑣, 𝑥 >= 𝑣(𝑥) for any
linear form 𝑣 ∈ 𝐸* and vector 𝑥 ∈ 𝐸. Recall that if 𝐴 is a linear endomorphism of 𝐸,
one can define the transpose of 𝐴 to be the linear endomorphism 𝐴* of 𝐸* defined by the
relation < 𝐴*𝑣, 𝑥 >=< 𝑣, 𝐴𝑥 > for any 𝑥 ∈ 𝐸 and 𝑣 ∈ 𝐸*.

Proposition 2.6. For any 𝑅 ∈ M , the direct sum 𝐸* = 𝒯 (𝑅)* ⊕ 𝒩 (𝑅)* holds where
𝒯 (𝑅)* = Π*

𝒯 (𝑅)𝐸
* and 𝒩 (𝑅)* = (𝐼−Π*

𝒯 (𝑅))𝐸
*. In particular, Π*

𝒯 (𝑅) is the linear projector
whose image is 𝒯 (𝑅)* and whose kernel is 𝒩 (𝑅)*. The map of projections 𝑅 ↦→ Π*

𝒯 (𝑅)
induces a connection over the dual bundle 𝒯 (𝑅)* by the formula:

∀𝑉 ∈ 𝒯 (𝑅)*,∀𝑋 ∈ 𝒯 (𝑅), ∇𝑋𝑉 = Π*
𝒯 (𝑅)(D𝑋𝑉 ). (2.19)

The connection ∇ defined by (2.17) and (2.19) is compatible with the duality bracket :

∀𝑋, 𝑌 ∈ 𝒯 (𝑅), 𝑉 ∈ 𝒯 (𝑅)*, D𝑋 < 𝑉, 𝑌 >=< ∇𝑋𝑉, 𝑌 > + < 𝑉,∇𝑋𝑌 > .

One has Gauss formula

∀𝑉 ∈ 𝒯 (𝑅)*, 𝑋 ∈ 𝒯 (𝑅), ∇𝑋𝑉 = D𝑋𝑉 + Γ(𝑋, 𝑉 ),

where the Christoffel symbol Γ(𝑋, 𝑉 ) = −(𝐼 − Π*
𝒯 (𝑅))(D𝑋𝑉 ) ∈ 𝒩 (𝑅)* has values in the

normal dual space 𝒩 (𝑅)*. Furthermore, Γ(𝑋, 𝑉 ) depends only on the value of the tangent
vector and dual fields 𝑋 and 𝑉 at 𝑅 as it is visible from the formula

Γ(𝑋, 𝑉 ) = −DΠ*
𝒯 (𝑅)(𝑋) · 𝑉.

1The question of under which condition a torsion-free connection is the Levi-Civita connection of a
Riemannian metric has been investigated in [127].
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Finally, for any 𝑁 ∈ 𝒩 (𝑅)*, the dual Weingarten map

𝐿*
𝑅(𝑁) : 𝒯 (𝑅) → 𝒯 (𝑅)*

𝑋 ↦→ DΠ*
𝒯 (𝑅)(𝑋) ·𝑁 = −Π*

𝒯 (𝑅)(D𝑋𝑁),

defines a linear application of the tangent space 𝒯 (𝑅) into its dual 𝒯 (𝑅)* and the following
Weingarten identities holds:

∀𝑋, 𝑌 ∈ 𝒯 (𝑅), 𝑁 ∈ 𝒩 (𝑅)*, < 𝑁, DΠ𝒯 (𝑅)(𝑋) · 𝑌 >=< DΠ*
𝒯 (𝑅)(𝑋) ·𝑁, 𝑌 >,

∀𝑉 ∈ 𝒯 (𝑅)*, 𝑋 ∈ 𝒯 (𝑅), 𝑁 ∈ 𝒩 (𝑅), < DΠ*
𝒯 (𝑅)(𝑋) · 𝑉, 𝑁 >=< 𝑉, DΠ𝒯 (𝑅)(𝑋) ·𝑁 > .

Proof. The proof is almost identical to the ones of propositions 2.1 and 2.5 and definition 2.7
and is left to the reader.

We now show that given a manifold M equipped with a map of linear projectors 𝑅 ↦→
Π𝒯 (𝑅), one can find an open neighborhood 𝒱 of M and a unique differentiable projection
map ΠM satisfying the conditions of definition 2.9.

Proposition 2.7. The set 𝒬 = {(𝑅, 𝑁) ∈M×𝐸|𝑁 ∈ 𝒩 (𝑅)} is a submanifold of M×𝐸 of
dimension dim(𝐸). If M is compact, there exists an open neighborhood 𝑉 ⊂ 𝒬 containing
M × {0} such that the map

Φ : 𝒬 → 𝐸
(𝑅, 𝑁) ↦→ 𝑅 + 𝑁

is a diffeomorphism from 𝑉 onto its image 𝒱 = Φ(𝑉 ). The reciprocal map ΠM : 𝒱 →M
defined by ΠM (𝑅+𝑁) = 𝑅 satisfies the properties of definition 2.9 and is called the oblique
projection onto M relative to the normal subspaces 𝒩 (𝑅).

Proof. The proof is identical to the one of the “tubular neighborhood theorem” (see Theo-
rem IV.5.4 in [117] and Theorem II.2.4 in [18]). Consider the map

Ψ : ℳ× 𝐸 → 𝒬
(𝑅,X) ↦→ (𝑅, (𝐼 −Π𝒯 (𝑅))X).

whose differential at (𝑅,X) is (𝑋,A) ↦→ (𝑋,−DΠ𝒯 (𝑅)(𝑋)·X)+(0, (𝐼−Π𝒯 (𝑅))A) for (𝑋,A) ∈
𝒯 (𝑅)× 𝐸. This differential has constant rank that is equal to dim(𝒯 (𝑅)) + dim(𝒩 (𝑅)) =
dim(𝐸). Hence 𝒬 = Ψ(ℳ× 𝐸) is a smooth manifold of dimension dim 𝐸. The tangent
space at (𝑅, 𝑁) ∈ 𝒬 is the set {(𝑋 − 𝐿𝑅(𝑁)𝑋, 𝐴)|(𝑋, 𝐴) ∈ 𝒯 (𝑅) × 𝒩 (𝑅)}. Hence the
differential of Φ at (𝑋 − 𝐿𝑅(𝑁)𝑋, 𝐴) ↦→ (𝑋 − 𝐿𝑅(𝑁)𝑋) + 𝐴 which is invertible for ||𝑁 ||
sufficiently small, and in particular on the subset M×{0}. Then the local inversion theorem
ensures that for every 𝑅0 ∈M , there exists a ball

𝐵(𝑅0, 𝛿) = {(𝑅, 𝑁) ∈ 𝒬| ||𝑅−𝑅0|| ≤ 𝛿 and ||𝑁 || ≤ 𝛿}

of radius 𝛿 such that Φ is a local diffeomorphism from 𝐵(𝑅, 𝛿) to Φ(𝐵(𝑅, 𝛿)).
By compacity of M , one can extract a finite family (𝐵(𝑅𝑖, 𝛿𝑖)) of these balls such that

M ⊂
⋃︀

𝑖 Φ(𝐵(𝑅𝑖, 𝛿𝑖)). Denote 𝛿 the minimal radius of these. We show that there exists
0 < 𝜖 < 𝛿 such that Φ is injective on the set

𝑉 = {(𝑅, 𝑁) ∈ 𝒬| ||𝑁 || ≤ 𝜖}.
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If the contrary is false, there exists two sequences (𝑅𝑛
1 , 𝑁𝑛

1 ) and (𝑅𝑛
2 , 𝑁𝑛

2 ) such that 𝑅𝑛
1 +

𝑁𝑛
1 = 𝑅𝑛

2 +𝑁𝑛
2 with 𝑅𝑛

1 ̸= 𝑅𝑛
2 , ||𝑁𝑛

1 || → 0 and ||𝑁𝑛
2 || → 0 when 𝑛→∞. By compacity, one

can assume up to extract a subsequence that 𝑅𝑛
1 → 𝑅. But ||𝑅𝑛

1−𝑅𝑛
2 || ≤ ||𝑁𝑛

1 ||+||𝑁𝑛
2 || → 0

implies 𝑅𝑛
2 → 𝑅. Hence for 𝑛 large enough (𝑅𝑛

1 , 𝑁𝑛
1 ) and (𝑅𝑛

2 , 𝑁𝑛
2 ) belong to one of the

balls 𝐵(𝑅𝑖, 𝛿𝑖), which is a contradiction.

Before stating the result regarding the differentiability of ΠM , we first recall some simple
facts about eigenvectors of non symmetric endomorphisms. Consider 𝐴 a linear endomor-
phism over a finite-dimensional complex vector space 𝐸 that can be diagonalized. Denote
𝜆𝑖 ∈ C and (𝑢𝑖)1≤𝑖≤𝑛 ∈ 𝐸 a corresponding basis of eigenvectors. Consider now 𝐸* the dual
of 𝐸 (the space of linear forms over C) and (𝑣𝑖)1≤𝑖≤𝑛 ∈ 𝐸* the dual basis of (𝑢𝑖)1≤𝑖≤𝑛,
i.e. for all 𝑥 ∈ 𝐸, < 𝑣𝑗 , 𝑥 >= 𝑣𝑗(𝑥) is the coordinate of 𝑥 along the vector 𝑢𝑗 in the basis
(𝑢𝑖)1≤𝑖≤𝑛. Then by definition of a dual basis, (𝑢𝑖) and (𝑣𝑖) are bi-orthogonal, in the sense

∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, < 𝑣𝑖, 𝑢𝑗 >= 𝛿𝑖𝑗 ,

and we can rewrite the action of 𝐴 along the eigendecomposition as

𝐴𝑥 =
𝑛∑︁

𝑖=1
𝜆𝑖𝑢𝑖 < 𝑣𝑖, 𝑥 > . (2.20)

The dual family (𝑣𝑖) forms a basis of eigenvectors for 𝐴* with eigenvalues 𝜆𝑖: 𝐴*𝑣𝑖 = 𝜆𝑖𝑣𝑖. If
𝐸 is a subspace of C𝑛 equipped with the hermitian product ∀𝑥, 𝑦 ∈ C𝑛, < 𝑥, 𝑦 >= 𝑥𝑇 𝑦, then
dual eigenvectors can be identified to vectors 𝑣𝑖 ∈ 𝐸 by the relation ∀𝑥 ∈ 𝐸, < 𝑣𝑖, 𝑥 >= 𝑣𝑇

𝑖 𝑥.
One can rewrite (2.20) as

𝐴 =
𝑛∑︁

𝑖=1
𝜆𝑖𝑢𝑖𝑣

𝑇
𝑖 . (2.21)

The vectors 𝑣𝑖 are eigenvectors of 𝐴
𝑇 are also the columns of 𝑃

−𝑇 where 𝑃 is the invertible
matrix such that 𝑃 −1𝐴𝑃 = diag(𝜆𝑖)1≤𝑖≤𝑛. Since 𝐴𝑢𝑖 = 𝜆𝑖𝑢𝑖 and 𝑣𝑇

𝑖 𝐴 = 𝜆𝑖𝑣
𝑇
𝑖 , one refers to

(see [75]) 𝑢𝑖 and 𝑣𝑖 as being respectively the right and left eigenvectors of 𝐴. In section 2.2.4,
it will be convenient to use the representation (2.21) in the case of 𝐴 being a complex or
a real matrix, but we will keep in mind the representation (2.20) for more general linear
maps. We denote sp(𝐴) the set of complex eigenvalues of a linear operator 𝐴.
Theorem 2.2. The neighborhood 𝒱 ⊂ 𝐸 in proposition 2.7 can be chosen such that for
any R = 𝑅 + 𝑁 ∈ 𝒱 with 𝑅 ∈ M , 𝑁 ∈ 𝒩 (𝑅), 1 is not an eigenvalue of the Weingarten
map 𝐿𝑅(𝑁): 1 /∈ sp(𝐿𝑅(𝑁)). The oblique projection ΠM is differentiable on 𝒱 and the
differential is the map

X ↦→ DXΠM (R) = (𝐼 − 𝐿𝑅𝑁)−1Π𝒯 (𝑅)(X), (2.22)

In particular, if 𝐿𝑅(𝑁) is diagonalizable in C, and if we denote 𝜅𝑖(𝑁) the (complex) eigen-
values of 𝐿𝑅(𝑁) associated with a basis of eigenvectors (Φ𝑖)𝑖 and its dual basis (Φ*

𝑖 ), then

∀X ∈ 𝐸, DXΠM (R) =
∑︁

𝑖

1
1− 𝜅𝑖(𝑁) < Φ*

𝑖 , Π𝒯 (𝑅)X > Φ𝑖. (2.23)

Proof. The proof is a consequence of the implicit function theorem applied to the function
(R, 𝑅) ↦→ 𝑓(R, 𝑅) = Π𝒯 (𝑅)(R−𝑅), whose partial differential with respect to 𝑅 is 𝐿𝑅(𝑁)−𝐼.
Equations (2.22) and (2.23) follow similarly as in theorem 2.1.
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Remark 2.6. It can be useful to notice that formula (2.22) holds globally in 𝐸 for any
R = 𝑅 + 𝑁 with 𝑁 ∈ 𝒩 (𝑅) and 1 /∈ sp(𝐿𝑅(𝑁)), because the implicit function theorem
ensures the existence of a local inverse map 𝜑 (here ΠM ) in a neighborhood of R onto a
neighborhood of 𝑅 such that R− 𝜑(R) ∈ 𝒩 (𝜑(R)) remains normal when varying R.

Formula (2.23) is the generalization of (2.12) to the case of oblique projections. We also
obtain that ΠM (R) can also be computed by using a dynamical system, that coincides with
the gradient flow (2.15) when the projection ΠM is orthogonal.

Proposition 2.8. If the neighborhood 𝒱 of proposition 2.7 is chosen such that

𝒱 ⊂ 𝒲 = {𝑅 + 𝑁 ∈ 𝐸|𝑅 ∈M , 𝑁 ∈ 𝒩 (𝑅) and sp(𝐿𝑅(𝑁)) ⊂ {𝜆 ∈ C|ℜ(𝜆) < 1}}.

then for R ∈ 𝒱, ΠM (R) is an asymptotically stable equilibrium point of

�̇� = Π𝒯 (𝑅)(R−𝑅). (2.24)

Proof. Note that 𝒲 defined as above remain an open neighborhood of M in 𝐸. The
result is a trivial consequence of the fact that ΠM (R) is an equilibrium of (2.24) and that
the linear operator of the linearized dynamic is 𝐿𝑅(𝑁) − 𝐼, with 𝑁 = R − ΠM (R) and
𝑅 = ΠM (R). By assumption, R ∈ 𝒱, a region where the eigenvalues of 𝐿𝑅(𝑁) − 𝐼 are all
strictly negative.

As observed previously the local stability may become global if 𝑅 = ΠM (R) is defined
and is the only point such that the spectrum of 𝐿𝑅(R − 𝑅) lies in {𝜆 ∈ C|ℜ(𝜆) < 1}.
The local stability of the dynamical system (2.24) is a particularly powerful result, as it
yields systematically a continuous time algorithm to find the value of ΠM (R + 𝛿R) given
the knowledge of ΠM (R) and a small perturbation 𝛿R.

We have therefore at our disposal a framework to find in a systematic way the differential
of oblique projections and derive dynamical systems that compute them. The procedure
can be summed up in the following steps. Given a “candidate” continuous projection ΠM ,

1. Identify the image manifold M , on which ΠM is the identity, as well as the tangent
spaces 𝒯 (𝑅) of M .

2. Identify the normal space 𝒩 (𝑅) characterized by ΠM (𝑅+𝑡𝑁) = 𝑅 for all 𝑡 sufficiently
small.

3. Compute the linear projector Π𝒯 (𝑅) whose image is 𝒯 (𝑅) and kernel is 𝒩 (𝑅).

4. If the map 𝑅 ↦→ Π𝒯 (𝑅) is differentiable, and if ΠM is continuous, then one can apply
theorem 2.2 or its remark to obtain that ΠM (R) is differentiable. Compute the
Weingarten map 𝐿𝑅(𝑁) given a normal vector. If possible, diagonalize 𝐿𝑅(𝑁) and
obtain the differential of ΠM with the formula (2.23).

5. Derive the dynamical system (2.24) to obtain a continuous algorithm for computing
ΠM (R).
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2.2 Embedded geometry and curvature of matrix manifolds

In the following we apply the tools developed in the previous section to the exhaustive study
of three embedded matrix manifolds: the fixed-rank manifold, the Stiefel manifold and the
isospectral manifold. For each, we compute tangent space, normal space, geodesics, Wein-
garten map and principal curvatures. We relate the orthogonal projection onto the manifold
to an algebraic operation, namely the truncated SVD, polar decomposition, and the oper-
ation of replacing the eigenvalues of a symmetric matrix. Applying theorem theorem 2.4,
we obtain their differential, and we provide gradient flows that achieve these algebraic op-
erations. Such may be useful in practical computations when one is for example interested
in updating an algebraic decomposition of a time dependent matrix as in [20, 89, 31]. We
apply also the framework of oblique-projections to derive dynamical systems tracking the
eigenspaces of non-symmetric matrices.

2.2.1 The fixed rank manifold and the differentiability of the SVD trun-
cation

This section establishes the geometric framework of low-rank approximation, by unifying re-
sults sparsely available in [83, 124, 103], and by providing expressions for classical geometric
characteristics such as geodesics and covariant derivative.

Definition 2.10. The set of 𝑙-by-𝑚 matrices of rank 𝑟 is denoted by M :

M = {𝑅 ∈ℳ𝑙,𝑚|rank(𝑅) = 𝑟}. (2.25)

The following lemma [114] fixes the parametrization of M by conveniently representing
its elements 𝑅 in terms of mode and coefficient matrices, 𝑈 and 𝑍, respectively.

Lemma 2.3. Any matrix 𝑅 ∈M can be decomposed as

∙ 𝑅 = 𝑈𝑍𝑇 where 𝑈 ∈ ℳ*
𝑙,𝑟 and 𝑍 ∈ ℳ*

𝑚,𝑟 (rank(𝑈) = rank(𝑍) = 𝑟). This decom-
position is unique modulo an invertible matrix 𝐴 ∈ GL𝑟, namely if 𝑈1, 𝑈2 ∈ ℳ*

𝑙,𝑟,
𝑍1, 𝑍2 ∈ℳ*

𝑚,𝑟,

𝑈1𝑍𝑇
1 = 𝑈2𝑍𝑇

2 ⇔ ∃𝐴 ∈ GL𝑟, 𝑈2 = 𝑈1𝐴 and 𝑍2 = 𝑍1𝐴−𝑇 .

∙ 𝑅 = 𝑈𝑍𝑇 , where 𝑈 ∈ St𝑙,𝑟 and 𝑍 ∈ ℳ*
𝑚,𝑟, i.e. 𝑈𝑇 𝑈 = 𝐼 and rank(𝑍) = 𝑟, respec-

tively. This decomposition is unique modulo a rotation matrix 𝑃 ∈ 𝑂𝑟, namely if
𝑈1, 𝑈2 ∈ℳ𝑙,𝑟, 𝑍1, 𝑍2 ∈ℳ𝑚,𝑟, and 𝑈𝑇

1 𝑈1 = 𝑈𝑇
2 𝑈2 = 𝐼, then

𝑈1𝑍𝑇
1 = 𝑈2𝑍𝑇

2 ⇔ ∃𝑃 ∈ O𝑟, 𝑈1 = 𝑈2𝑃 and 𝑍1 = 𝑍2𝑃.

Proof. The existence is immediate by writing the SVD 𝑅 = 𝑈Σ𝑉 𝑇 . For the uniqueness, we
proceed as follows. Since 𝑈1, 𝑍1 have full rank, one can define 𝐴 = 𝑍𝑇

2 𝑍1(𝑍𝑇
1 𝑍1)−1 ∈ℳ𝑟,𝑟

and notice that

(𝑈𝑇
1 𝑈1)−1𝑈𝑇

1 𝑈2𝐴

= ((𝑈𝑇
1 𝑈1)−1𝑈𝑇

1 )(𝑈2𝑍𝑇
2 )(𝑍1(𝑍𝑇

1 𝑍1)−1) = ((𝑈𝑇
1 𝑈1)−1𝑈𝑇

1 )(𝑈1𝑍𝑇
1 )(𝑍1(𝑍𝑇

1 𝑍1)−1) = 𝐼.
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Therefore 𝐴 is invertible and 𝐴−1 = (𝑈𝑇
1 𝑈1)−1𝑈𝑇

1 𝑈2. This proves the first point since
𝑈1 = 𝑈2𝑍𝑇

2 𝑍1(𝑍𝑇
1 𝑍1)−1 = 𝑈2𝐴 and 𝑍𝑇

1 = (𝑈𝑇
1 𝑈1)−1𝑈𝑇

1 𝑈2𝑍𝑇
2 = 𝐴−1𝑍𝑇

2 . When in addition
𝑈𝑇

1 𝑈1 = 𝑈𝑇
2 𝑈2 = 𝐼, one can write

𝐴 = (𝑈𝑇
2 𝑈2)𝑍𝑇

2 𝑍1(𝑍𝑇
1 𝑍1)−1 = 𝑈𝑇

2 (𝑈1𝑍𝑇
1 )𝑍1(𝑍𝑇

1 𝑍1)−1 = 𝑈𝑇
2 𝑈1,

therefore 𝐴−1 = 𝑈𝑇
1 𝑈2 = 𝐴𝑇 , proving 𝐴 ∈ 𝒪𝑟.

We will use in the following exclusively and extensively the second factorization, and
the statement “let 𝑈𝑍𝑇 ∈ M ” will always implicitly assumes 𝑈 ∈ ℳ𝑙,𝑟, 𝑍 ∈ ℳ𝑚,𝑟,
𝑈𝑇 𝑈 = 𝐼, and rank(𝑍) = 𝑟. Other parameterizations of M are possible and give equivalent
results [101].

Proposition 2.9. M is a smooth manifold of dimension (𝑙 + 𝑚)𝑟 − 𝑟2.

Proof. (see also [139]). Consider the map

𝜑 : St𝑙,𝑟 ×ℳ𝑚,𝑟 −→ ℳ𝑙,𝑚

(𝑈, 𝑍) ↦−→ 𝑈𝑍𝑇 .

This map is a smooth submersion. Furthermore, the following proposition will show that
its differential D𝜑 has constant rank (𝑙 + 𝑚)𝑟 − 𝑟2. The property is then an immediate
consequence of the constant rank theorem.

Remark 2.7. The same argument will be used for the two other manifolds studied: one
considers a smooth parameterization of M , then one derives a candidate “tangent space”.
If that candidate tangent space has a constant dimension, then M is a smooth manifold by
application of the constant rank theorem.

The tangent space 𝒯 (𝑈𝑍𝑇 ) at a point 𝑅 = 𝑈𝑍𝑇 is the set of all possible vectors
tangent to smooth curves 𝑅(𝑡) = 𝑈(𝑡)𝑍(𝑡)𝑇 drawn on the manifold M . Therefore, any
such tangent vector at 𝑅(0) = 𝑈𝑍𝑇 is of the form �̇� = �̇�𝑍𝑇 +𝑈�̇�𝑇 , where �̇� and �̇� are the
time derivatives of the matrices 𝑈(𝑡) and 𝑍(𝑡) at time 𝑡 = 0. In the following, the notations
𝑋𝑈 , 𝑋𝑍 , and 𝑋 = 𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇

𝑍 will be used to denote the tangent directions �̇� , �̇�, and
�̇� for the respective matrices 𝑈 , 𝑍 and 𝑅. The orthogonality condition that 𝑈𝑇 𝑈 = 𝐼
must hold for all times implies that 𝑋𝑈 must satisfy �̇�𝑇 𝑈 + 𝑈𝑇 �̇� = 𝑋𝑇

𝑈 𝑈 + 𝑈𝑇 𝑋𝑈 = 0.
Nevertheless, this is not sufficient to parameterize uniquely tangent vectors 𝑋 from the
displacements 𝑋𝑈 and 𝑋𝑍 for 𝑈 and 𝑍, since 𝑋 = 𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇

𝑍 is invariant under the
transformation 𝑋𝑈 ← 𝑋𝑈 Ω and 𝑋𝑍 ← 𝑋𝑍Ω for any skew-symmetric matrix Ω = −Ω𝑇 .
Intuitively, this is related to the fact that rotations of the columns of the mode matrix, 𝑈 ,
do not change the subspace span(𝑢𝑖) supporting the modal decomposition (5) (see [124]).
A unique parameterization of the tangent space can be obtained by adding the condition
that this subspace must evolve orthogonally to itself, i.e. by requiring 𝑈𝑇 𝑋𝑈 = 0.

Proposition 2.10. The tangent space of M at 𝑅 = 𝑈𝑍𝑇 ∈M is the set

𝒯 (𝑈𝑍𝑇 ) = {𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇
𝑍 | 𝑋𝑈 ∈ℳ𝑙,𝑟, 𝑋𝑍 ∈ℳ𝑚,𝑟, 𝑈𝑇 𝑋𝑈 + 𝑋𝑇

𝑈 𝑈 = 0}. (2.26)

𝒯 (𝑈𝑍𝑇 ) is uniquely parameterized by the horizontal space

ℋ(𝑈,𝑍) = {(𝑋𝑈 , 𝑋𝑍) ∈ℳ𝑙,𝑟 ×ℳ𝑚,𝑟 | 𝑈𝑇 𝑋𝑈 = 0}, (2.27)
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that is for any tangent vector 𝑋 ∈ 𝒯 (𝑈𝑍𝑇 ), there exists a unique (𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍) such
that 𝑋 = 𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇

𝑍 .

Proof. (see also [83]) One can always write a tangent vector 𝑋 = 𝑈𝑋𝑇
𝑍 + 𝑋𝑈 𝑍𝑇 ∈ 𝒯 (𝑈𝑍𝑇 )

as 𝑋 = 𝑈(𝑋𝑇
𝑍 + 𝑈𝑇 𝑋𝑈 𝑍𝑇 ) + ((𝐼 − 𝑈𝑈𝑇 )𝑋𝑈 )𝑍𝑇 , implying that 𝒯 (𝑈𝑍𝑇 ) = {𝑋𝑈 𝑍𝑇 +

𝑈𝑋𝑇
𝑍 |(𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍)}. Furthermore, if 𝑋 = 𝑈𝑋𝑇

𝑍 + 𝑋𝑈 𝑍𝑇 with 𝑈𝑇 𝑋𝑈 = 0, then
𝑋𝑍 = 𝑋𝑇 𝑈 and 𝑋𝑈 = (𝐼 − 𝑈𝑈𝑇 )𝑋𝑍(𝑍𝑇 𝑍)−1 showing that (𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍) is defined
uniquely from 𝑋.

Remark 2.8. The denomination “horizontal space” for the set ℋ(𝑈,𝑍) (2.27) refers to the
definition of a non-ambiguous representation of the tangent space 𝒯 (𝑈𝑍𝑇 ) (2.26). This
notion is developed rigorously in the theory of quotient manifolds e.g. [101, 36].

In the following, the notation 𝑋 = (𝑋𝑈 , 𝑋𝑍) is used equivalently to denote a tangent
vector 𝑋 = 𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇

𝑍 ∈ 𝒯 (𝑈𝑍𝑇 ), where 𝑈𝑇 𝑋𝑈 = 0 is implicitly assumed.

Definition 2.11. At each point 𝑈𝑍𝑇 ∈M , the metric 𝑔 on M is the scalar product acting
on the tangent space 𝒯 (𝑈𝑍𝑇 ) that is inherited from the scalar product of ℳ𝑙,𝑚 :

𝑔((𝑋𝑈 , 𝑋𝑍), (𝑌𝑈 , 𝑌𝑍)) = Tr((𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇
𝑍 )𝑇 (𝑌𝑈 𝑍𝑇 + 𝑈𝑌 𝑇

𝑍 ))
= Tr(𝑍𝑇 𝑍𝑋𝑇

𝑈 𝑌𝑈 + 𝑋𝑇
𝑍 𝑌𝑍).

(2.28)

Remark 2.9. In [101] and other works of matrix optimization e.g. [6, 148, 130], one uses
the metric induced by the parametrization of the manifold M : the norm of a tangent vector
(𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍) is defined to be ||(𝑋𝑈 , 𝑋𝑍)||2 = ||𝑋𝑈 ||2St𝑙,𝑟

+ ||𝑋𝑍 ||2ℳ𝑚,𝑟
where || ||St𝑙,𝑟

is
a canonical norm on the Stiefel Manifold (see [36]) and || ||ℳ𝑚,𝑟 is the Frobenius norm on
ℳ𝑚,𝑟. In this work, one is rather interested in the metric inherited from the ambient full
space ℳ𝑙,𝑚, since it is the metric used to estimate the distance from a matrix R ∈ ℳ𝑙,𝑚

to its best 𝑟-rank approximation, namely the error committed by the truncated SVD.

Proposition 2.11. At every point 𝑈𝑍𝑇 ∈ M , the orthogonal projection Π𝑇 (𝑈𝑍𝑇 ) onto
the tangent space 𝒯 (𝑈𝑍𝑇 ) is the application

Π𝒯 (𝑈𝑍𝑇 ) : ℳ𝑙,𝑚 → ℋ(𝑈,𝑍)

X ↦→ ((𝐼 − 𝑈𝑈𝑇 )X𝑍(𝑍𝑇 𝑍)−1,X𝑇 𝑈).
(2.29)

Proof. (see also [83]) Π𝒯 (𝑅)X is obtained as the unique minimizer of the convex functional
𝐽(𝑋𝑈 , 𝑋𝑍) = 1

2 ||X − 𝑋𝑈 𝑍𝑇 − 𝑈𝑋𝑇
𝑍 ||2 on the space ℋ(𝑈,𝑍). The minimizer (𝑋𝑈 , 𝑋𝑍) is

characterized by the vanishing of the gradient of 𝐽 :

∀Δ ∈ℳ𝑙,𝑟, Δ𝑇 𝑈 = 0⇒ 𝜕𝐽

𝜕𝑋𝑈
·Δ = − < X−𝑋𝑈 𝑍𝑇 − 𝑈𝑋𝑇

𝑍 , Δ𝑍𝑇 >= 0,

∀Δ ∈ℳ𝑚,𝑟,
𝜕𝐽

𝜕𝑋𝑍
·Δ = − < X−𝑋𝑈 𝑍𝑇 − 𝑈𝑋𝑇

𝑍 , 𝑈Δ𝑇 >= 0,

yielding respectively 𝑋𝑈 = (𝐼 − 𝑈𝑈𝑇 )X𝑍(𝑍𝑇 𝑍)−1 and 𝑋𝑍 = X𝑇 𝑈 .

The orthogonal complement of the tangent space 𝒯 (𝑅) is obtained from the identity
(𝐼 −Π𝒯 (𝑈𝑍𝑇 )) · X = (𝐼 − 𝑈𝑈𝑇 )X(𝐼 − 𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 ):
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Proposition 2.12. The normal space at 𝑅 = 𝑈𝑍𝑇 is :

𝒩 (𝑅) = {𝑁 ∈ℳ𝑙,𝑚|(𝐼 − 𝑈𝑈𝑇 )𝑁(𝐼 − 𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 ) = 𝑁}
= {𝑁 ∈ℳ𝑙,𝑚 | 𝑈𝑇 𝑁 = 0 and 𝑁𝑍 = 0}.

(2.30)

In model order reduction, a matrix 𝑅 = 𝑈𝑍𝑇 ∈M is usually a low rank-𝑟 approximation
of a full rank matrix R ∈ℳ𝑙,𝑚. The following proposition shows that the normal space at
𝑅, 𝒩 (𝑅), can be understood as the set of all possible completions of the approximation (5) :

Proposition 2.13. Let 𝑁 be a given normal vector 𝑁 ∈ 𝒩 (𝑅) at 𝑅 = 𝑈𝑍𝑇 ∈M . Then
there exists an orthonormal basis of vectors (𝑢𝑖)1≤𝑖≤𝑙 in R𝑙, an orthonormal basis (𝑣𝑖)1≤𝑖≤𝑚

of R𝑀 , and 𝑟 + 𝑘 non zero singular values (𝜎𝑖)1≤𝑖≤𝑟+𝑘 such that

𝑈𝑍𝑇 =
𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 and 𝑁 =

𝑘∑︁
𝑖=1

𝜎𝑟+𝑖𝑢𝑟+𝑖𝑣
𝑇
𝑟+𝑖.

Proof. Consider 𝑁 = 𝑈𝑁 Θ𝑉 𝑇
𝑁 the SVD decomposition of 𝑁 [74]. Since 𝑈𝑇 𝑁 = 0, 𝑟

columns of 𝑈𝑁 are spanned by 𝑈 and associated with zero singular values of 𝑁 , therefore
𝑢𝑖 is obtained from the columns of 𝑈 for 1 ≤ 𝑖 ≤ 𝑟 and from the left singular vectors of 𝑁
associated with non zero singular values for 𝑟 + 1 ≤ 𝑖 ≤ 𝑟 + 𝑘, 𝑘 ≥ 0. The vectors 𝑣𝑖 and
𝑣𝑟+𝑗 are obtained similarly. The singular values 𝜎𝑖 are obtained by reunion of the respective
𝑟 and 𝑘 non-zeros singular values of 𝑍 and 𝑁 .

Proposition 2.14. Consider 𝑋 = (𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍) and 𝑌 = (𝑌𝑈 , 𝑌𝑍) ∈ ℋ(𝑈,𝑍) two
tangent vector fields. The covariant derivative ∇𝑋𝑌 on M is given by

∇𝑋𝑌 = (𝐷𝑋𝑌𝑈 + 𝑈𝑋𝑇
𝑈 𝑌𝑈 + (𝑋𝑈 𝑌 𝑇

𝑍 + 𝑌𝑈 𝑋𝑇
𝑍 )𝑍(𝑍𝑇 𝑍)−1, 𝐷𝑋𝑌𝑍 − 𝑍𝑌 𝑇

𝑈 𝑋𝑈 ) ∈ ℋ(𝑈,𝑍).
(2.31)

Therefore, geodesic equations on M are given by{︃
�̈� + 𝑈�̇�𝑇 �̇� + 2�̇� �̇�𝑇 𝑍(𝑍𝑇 𝑍)−1 = 0

𝑍 − 𝑍�̇�𝑇 �̇� = 0.
(2.32)

Proof. Writing 𝑋 = 𝑋𝑈 𝑍𝑇 + 𝑈𝑋𝑇
𝑍 and 𝑌 = 𝑌𝑈 𝑍𝑇 + 𝑈𝑌 𝑇

𝑍 , one obtains:

𝐷𝑋𝑌 = 𝐷𝑋𝑌𝑈 𝑍𝑇 + 𝑌𝑈 𝑋𝑇
𝑍 + 𝑋𝑈 𝑌 𝑇

𝑍 + 𝑈𝐷𝑋𝑌 𝑇
𝑍

= 𝐷𝑋𝑌𝑈 𝑍𝑇 + 𝑈𝐷𝑋𝑌 𝑇
𝑍 + 𝑋𝑈 𝑌 𝑇

𝑍 + 𝑌𝑈 𝑋𝑇
𝑍 .

Applying the projection Π𝑇 (𝑈𝑍𝑇 ) using eqn. (2.29), i.e.

∇𝑋𝑌 = Π(𝑈,𝑍)(𝐷𝑋𝑌 ) = ((𝐼 − 𝑈𝑈𝑇 )𝐷𝑋𝑌 𝑍(𝑍𝑇 𝑍)−1, 𝐷𝑋𝑌 𝑇 𝑈),

yields in the coordinates of the horizontal space:

∇𝑋𝑌 = ((𝐼 − 𝑈𝑈𝑇 )𝐷𝑋(𝑌𝑈 ) + (𝑋𝑈 𝑌 𝑇
𝑍 + 𝑌𝑈 𝑋𝑇

𝑍 )𝑍(𝑍𝑇 𝑍)−1, 𝐷𝑋(𝑌𝑍) + 𝑍𝐷𝑋(𝑌 𝑇
𝑈 )𝑈).

(2.31) is obtained by differentiating the constraint 𝑈𝑇 𝑌𝑈 = 0 along the direction 𝑋,
i.e. 𝑋𝑇

𝑈 𝑌𝑈 + 𝑈𝑇 𝐷𝑋𝑌𝑈 = 0, and replacing accordingly 𝑈𝑇 𝐷𝑋𝑌𝑈 into the above expression.
Since D(�̇� ,�̇�)(�̇�) = �̈� and D(�̇� ,�̇�)(�̇�) = 𝑍, ∇(�̇� ,�̇�)(�̇� , �̇�) = 0 yields eqs. (2.32).
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It is well known [59, 75] that the truncated SVD, i.e. the map that set all singular values
of a matrix R to zero except the 𝑟 highest, yields the best rank 𝑟 approximation.

Definition 2.12. Let R ∈ ℳ𝑙,𝑚 a matrix of rank at least 𝑟, i.e. 𝑟 + 𝑘, 𝑘 ≥ 0, and denote
R =

∑︀𝑟+𝑘
𝑖=1 𝜎𝑖(R)𝑢𝑖𝑣

𝑇
𝑖 its singular value decomposition. If 𝜎𝑟(R) > 𝜎𝑟+1(R), then the rank

𝑟 truncated SVD
ΠM (R) =

𝑟∑︁
𝑖=1

𝜎𝑖(R)𝑢𝑖𝑣
𝑇
𝑖 ∈M , (2.33)

is the unique matrix 𝑅 ∈M minimizing the Euclidean distance 𝑅 ↦→ ||R−𝑅||.

Proof. Definition 2.6 and proposition 2.13 show that 𝑁 = R − 𝑅 belongs to the normal
space 𝒩 (𝑅) and hence must be of the form 𝑁 =

∑︀
𝑖∈𝑆 𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 where 𝑆 is a subset of 𝑘

integers between 1 and 𝑟 + 𝑘. Since ||𝑁 ||2 =
∑︀

𝑖∈𝑆 𝜎2
𝑖 , it is clear that 𝐽(𝑅) is minimized

by setting 𝑅 =
∑︀𝑟

𝑖=1 𝜎𝑖(R)𝑢𝑖𝑣
𝑇
𝑖 . The condition 𝜎𝑟(R) > 𝜎𝑟+1(R) ensures the uniqueness of

the minimizer 𝑅.

Remark 2.10. The skeleton of M (Fig. 2-2) is therefore the set

Sk(M ) = {R ∈ℳ𝑙,𝑚|𝜎𝑟(R) = 𝜎𝑟+1(R)}.

characterized by the crossing of the singular values of order 𝑟 and 𝑟 + 1.

Proposition 2.15. The Weingarten map 𝐿𝑅(𝑁) of the fixed rank manifold M in the
normal direction 𝑁 ∈ 𝒩 (𝑅) is the application:

𝐿𝑅(𝑁) : ℋ(𝑈,𝑍) −→ ℋ(𝑈,𝑍)
(𝑋𝑈 , 𝑋𝑍) ↦−→ (𝑁𝑋𝑍(𝑍𝑇 𝑍)−1, 𝑁𝑇 𝑋𝑈 ). (2.34)

The second fundamental form is given by:

II : (𝑋, 𝑌 ) ↦→< 𝑋, 𝐿𝑅(𝑁)(𝑌 ) >= Tr((𝑋𝑈 𝑌 𝑇
𝑍 + 𝑌𝑈 𝑋𝑇

𝑍 )𝑇 𝑁). (2.35)

Proof. Differentiating (2.29) along the tangent direction (𝑋𝑈 , 𝑋𝑍) ∈ ℋ(𝑈,𝑍), and using the
relations 𝑈𝑇 𝑁 = 0 and 𝑁𝑍 = 0, yields

𝐿𝑅(𝑁) = 𝑈𝑋𝑇
𝑈 𝑁 + 𝑁𝑋𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 . (2.36)

The normality of 𝑁 implies that (𝑁𝑋𝑍(𝑍𝑇 𝑍)−1, 𝑁𝑇 𝑋𝑈 ) is a vector of the horizontal space
and therefore equation (2.34) follows. One obtains (2.35) by evaluating the scalar product
< 𝑋, 𝐿𝑅(𝑁)(𝑌 ) > with the metric 𝑔 (equation (2.28)).

Remark 2.11. The Christoffel symbol is deduced from equations (2.35) and (2.8):

Γ(𝑋, 𝑌 ) = −(𝐼 −Π𝒯 (𝑅))(𝑋𝑈 𝑌 𝑇
𝑍 + 𝑌𝑈 𝑋𝑇

𝑍 ). (2.37)

Theorem 2.3. Consider a point 𝑅 = 𝑈𝑍𝑇 =
∑︀𝑟

𝑖=1 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 ∈ M and a normal vector

𝑁 =
∑︀𝑘

𝑗=1 𝜎𝑟+𝑗𝑢𝑟+𝑗𝑣𝑇
𝑟+𝑗 ∈ 𝒩 (𝑅) (no ordering of the singular values is assumed). At 𝑅 and

in the direction 𝑁 , there are 2𝑘𝑟 non-zero principal curvatures

𝜅±
𝑖,𝑗(𝑁) = ±𝜎𝑟+𝑗

𝜎𝑖
,
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for all possible combinations of non-zero singular values 𝜎𝑟+𝑗 , 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤
𝑘. The normalized corresponding principal directions are the tangent vectors

Φ±
𝑖,𝑟+𝑗 = 1√

2
(𝑢𝑟+𝑗𝑣𝑇

𝑖 ± 𝑢𝑖𝑣
𝑇
𝑟+𝑗). (2.38)

The other principal curvatures are null and associated with the principal subspace

span{(𝑢𝑖𝑣
𝑇 )1≤𝑖≤𝑟|𝑁𝑣 = 0} ⊕ span{(𝑢𝑣𝑇

𝑖 )1≤𝑖≤𝑟|𝑢𝑇 𝑁 = 𝑢𝑇 𝑈 = 0}.

Proof. A principal curvature 𝜅±
𝑖,𝑗(𝑁) at 𝑅 = 𝑈𝑍𝑇 associated with a principal direction

𝑋 = (𝑋𝑈 , 𝑋𝑍) must satisfy the eigenvalue problem 𝐿𝑅(𝑁)(𝑋) = 𝜅±
𝑖,𝑗(𝑁)𝑋. Φ±

𝑖,𝑟+𝑗 is
indeed a tangent vector as one can write Φ±

𝑖,𝑟+𝑗 = 𝑋𝑈 𝑍𝑇 ± 𝑈𝑋𝑇
𝑍 with:

(𝑋𝑈 , 𝑋𝑍) = 1√
2𝜎𝑟+𝑗𝜎𝑖

(𝑁𝑣𝑟+𝑗𝑢𝑇
𝑖 𝑈, 𝑁𝑇 𝑢𝑟+𝑗𝑣𝑇

𝑖 𝑍).

One finds that Φ±
𝑖,𝑟+𝑗 is an eigenvector by using

√
2𝑋𝑈 𝑍𝑇 = 𝑢𝑟+𝑗𝑣𝑇

𝑖 and
√

2𝑈𝑋𝑇
𝑍 = 𝑢𝑖𝑣

𝑇
𝑟+𝑗

and replacing them into (2.36). This also leads to 𝜅±
𝑖,𝑗(𝑁) = ±𝜎𝑟+𝑗

𝜎𝑖
. One then checks that

𝑙𝑟+𝑚𝑟−𝑟2 eigenvalues (including multiplicities) have been obtained: there are 2𝑘𝑟 non-zeros
principal curvatures. The dimension of span{(𝑢𝑖𝑣

𝑇 )1≤𝑖≤𝑟|𝑁𝑣 = 0} is (𝑚−𝑘)𝑟 and the one of
span{(𝑢𝑣𝑇

𝑖 )1≤𝑖≤𝑟|𝑢𝑇 𝑁 = 𝑢𝑇 𝑈 = 0} is (𝑙−𝑘−𝑟)𝑟. The total is (𝑚−𝑘)𝑟+(𝑙−𝑘−𝑟)𝑟+2𝑘𝑟 =
𝑚𝑟 + 𝑙𝑟 − 𝑟2 as expected.

This theorem shows that the maximal curvature of M (for normalized normal directions
||𝑁 || = 1) is 𝜅∞(𝑅) = 𝜎𝑟(𝑅)−1 and hence diverges as the smallest singular value goes to 0.
This fact (as well as proposition 2.16 and lemma 2.2) confirms what is visible on Figure 1: the
manifold M can be seen as a collection of cones or as a multidimensional spiral, whose axes
are the lower dimensional manifolds of matrices of rank less than 𝑟 − 1. Applying directly
the formula (2.12) of theorem 2.1, one obtains an explicit expression for the differential of
the truncated SVD:

Theorem 2.4. Consider R ∈ℳ𝑙,𝑚 with rank greater than 𝑟 and denote R =
∑︀𝑟+𝑘

𝑖=1 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

its SVD decomposition, where the singular values are ordered decreasingly: 𝜎1 ≥ 𝜎2 ≥ . . . ≥
𝜎𝑟+𝑘. Suppose that the orthogonal projection ΠM (R) = 𝑈𝑍𝑇 of R onto M is uniquely
defined, that is 𝜎𝑟 > 𝜎𝑟+1. Then ΠM , the truncated SVD of order 𝑟, is differentiable at R
and the differential DXΠ(R) in a direction X ∈ℳ𝑙,𝑚 is given by the formula

DXΠM (R) = Π𝑇 (ΠM (𝑅))(X)

+
∑︁

1≤𝑖≤𝑟
1≤𝑗≤𝑘

[︃
𝜎𝑟+𝑗

𝜎𝑖 − 𝜎𝑟+𝑗
< X, Φ+

𝑖,𝑟+𝑗 > Φ+
𝑖,𝑟+𝑗 −

𝜎𝑟+𝑗

𝜎𝑖 + 𝜎𝑟+𝑗
< X, Φ−

𝑖,𝑟+𝑗 > Φ−
𝑖,𝑟+𝑗

]︃
, (2.39)
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where Φ±
𝑖,𝑟+𝑗 are the principal directions of equation (2.38). More explicitly,

DXΠM (R) = (𝐼 − 𝑈𝑈𝑇 )X𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 + 𝑈𝑈𝑇X

+
∑︁

1≤𝑖≤𝑟
1≤𝑗≤𝑘

𝜎𝑟+𝑗

𝜎2
𝑖 − 𝜎2

𝑟+𝑗

[(𝜎𝑖𝑢
𝑇
𝑟+𝑗X𝑣𝑖 + 𝜎𝑟+𝑗𝑢𝑇

𝑖 X𝑣𝑟+𝑗)𝑢𝑟+𝑗𝑣𝑇
𝑖

+ (𝜎𝑟+𝑗𝑢𝑇
𝑟+𝑗X𝑣𝑖 + 𝜎𝑖𝑢

𝑇
𝑖 X𝑣𝑟+𝑗)𝑢𝑖𝑣

𝑇
𝑟+𝑗 ]. (2.40)

Proof. The set Ω = {R ∈ ℳ𝑙,𝑚|𝜎𝑟+1(R) > 𝜎𝑟(R)} is open by continuity of the singular
values and the boundary M ∖M is the set of matrices of rank strictly lower than 𝑟, hence
condition of theorem 2.1 are fulfilled. Equation (2.39) follows by replacing 𝜅𝑖(𝑁) and
Φ𝑖 in (2.12) by the corresponding curvature eigenvalues ±𝜎𝑟+𝑗

𝜎𝑖
and eigenvectors Φ±

𝑖,𝑟+𝑗 of
theorem 2.3.

Corollary 2.3. Let R(𝑡) =
∑︀𝑟+𝑘

𝑖=1 𝜎𝑖(𝑡)𝑢𝑖(𝑡)𝑣𝑖(𝑡)𝑇 ∈ ℳ𝑙,𝑚 the SVD of a time dependent
matrix derivable with respect to 𝑡 such that 𝜎𝑟(𝑡) > 𝜎𝑟+1(𝑡) for all time. Then a dynamical
system tracking the truncated SVD of R is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = (𝐼 − 𝑈𝑈𝑇 )Ṙ𝑍(𝑍𝑇 𝑍)−1

+

⎡⎢⎢⎣ ∑︁
1≤𝑖≤𝑟
1≤𝑗≤𝑘

𝜎𝑟+𝑗

𝜎2
𝑖 − 𝜎2

𝑟+𝑗

(𝜎𝑖𝑢
𝑇
𝑟+𝑗Ṙ𝑣𝑖 + 𝜎𝑟+𝑗𝑢𝑇

𝑖 Ṙ𝑣𝑟+𝑗)𝑢𝑟+𝑗𝑣𝑇
𝑖

⎤⎥⎥⎦𝑍(𝑍𝑇 𝑍)−1

�̇� = Ṙ𝑇 𝑈 +

⎡⎢⎢⎣ ∑︁
1≤𝑖≤𝑟
1≤𝑗≤𝑘

𝜎𝑟+𝑗

𝜎2
𝑖 − 𝜎2

𝑟+𝑗

(𝜎𝑟+𝑗𝑢𝑇
𝑟+𝑗Ṙ𝑣𝑖 + 𝜎𝑖𝑢

𝑇
𝑖 Ṙ𝑣𝑟+𝑗)𝑣𝑟+𝑗𝑢𝑇

𝑖

⎤⎥⎥⎦𝑈.

(2.41)

Proof. One just needs to apply the projection Π𝒯 (ΠM (𝑅)) to DṘΠM (R) with formula (2.29)
to retrieve the coordinates of the horizontal space.

In practice (2.41) is not very convenient to evolve the truncated SVD because it requires
to keep track of all singular values and vectors. The following dynamical system allows to
compute the truncated SVD from an approximate initial guess:

Proposition 2.16. Consider R ∈ ℳ𝑙,𝑚 such that its projection ΠM (R) onto M is well
defined, that is 𝜎𝑟(R) > 𝜎𝑟+1(R). Then the distance function 𝐽(𝑅) = ||R − 𝑅||2 admits
no other local minima on M than ΠM (R). In other words, for almost any initial rank 𝑟
matrix 𝑈(0)𝑍(0)𝑇 , the solution 𝑈(𝑡)𝑍(𝑡)𝑇 of the gradient flow{︃

�̇� = (𝐼 − 𝑈𝑈𝑇 )R𝑍(𝑍𝑇 𝑍)−1

�̇� = R𝑇 𝑈 − 𝑍
(2.42)

converges to ΠM (R), the truncated SVD of R.

Proof. Let R =
∑︀𝑟+𝑘

𝑖=1 𝜎𝑖(R)𝑢𝑖𝑣
𝑇
𝑖 be the SVD of R and 𝑅 ∈ M such that ∇𝐽(𝑅) = 0. It

is known from definition 2.12 that such a point is of the form 𝑅 =
∑︀

𝑖∈𝐴 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 where 𝐴

is a subset of 𝑟 indices 1 ≤ 𝑖 ≤ 𝑟 + 𝑘. corollary 2.1 states that 𝑅 can be a local minimum
of 𝐽 only if all curvatures in the normal direction 𝑁 = R − 𝑅 satisfy 𝜅𝑖𝑗(𝑁) ≤ 1. The
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maximum of such curvatures being max𝑗 /∈𝐴 𝜎𝑗(R)
min𝑖∈𝐴 𝜎𝑖(R) , this condition holds only if 𝐴 = {1, . . . , 𝑟},

that is if 𝑅 = ΠM (R). The dynamical system (2.42) is obtained by replacing ∇𝐽(𝑅) with
the expression (2.15).

Remark 2.12. We cannot use directly corollary 2.1 to conclude that M is connected
because M is not closed. Nevertheless, the existence of the SVD and the connectedness
of the Stiefel manifold for 𝑟 < 𝑛 implies that M is connected when 𝑟 < 𝑛. Note that
when 𝑟 = 𝑛, M has two connected component constituted of the matrices of determinant
respectively strictly positive and negative.

2.2.2 Stiefel Manifold, Orthogonal group and differentiability of the Polar
decomposition

Definition 2.13. Let 𝑛 be an integer greater than 2 and 𝑝 ≤ 𝑛. The Stiefel manifold is
the set St𝑛,𝑝 embedded in the ambient space ℳ𝑛,𝑝

St𝑛,𝑝 = {𝑈 ∈ℳ𝑛,𝑝|𝑈𝑇 𝑈 = 𝐼}.

The orthogonal group 𝒪𝑛 is the Stiefel manifold for the particular case 𝑝 = 𝑛:

𝒪𝑛 = {𝑃 ∈ℳ𝑛,𝑛|𝑃 𝑇 𝑃 = 𝑃𝑃 𝑇 = 𝐼}.

Proposition 2.17. The tangent space 𝒯 (𝑈𝑈𝑇 ) at 𝑈 ∈ St𝑛,𝑝 is the set

𝒯 (𝑈𝑈𝑇 ) = {𝑋 ∈ℳ𝑛,𝑝|𝑋𝑇 𝑈 + 𝑋𝑈𝑇 = 0}
= {Δ + 𝑈Ω|Δ ∈ℳ𝑛,𝑝, Ω ∈ℳ𝑝,𝑝 and Δ𝑇 𝑈 = 0, Ω𝑇 = −Ω.}

Therefore St𝑛,𝑝 is a smooth manifold of dimension 𝑛𝑝− 𝑝2 + 𝑝(𝑝− 1)/2 = 𝑛𝑝− 𝑝(𝑝 + 1)/2.

Proof. (see also [36]) The first equality is obvious by differentiating 𝑈𝑇 𝑈 = 𝐼 and the second
equality is obtained by writing 𝑋 = 𝑈𝑈𝑇 𝑋 + (𝐼 − 𝑈𝑈𝑇 )𝑋 and setting Δ = (𝐼 − 𝑈𝑈𝑇 )𝑋
and Ω = 𝑈𝑇 𝑋.

We denote ℋ𝑈 = {(Δ, Ω) ∈ℳ𝑛,𝑝×ℳ𝑝,𝑝|Δ𝑇 𝑈 = 0, Ω𝑇 = −Ω} which we refer to as the
horizontal space at 𝑈 and which is just a convenient parameterization of the tangent space
𝒯 (𝑈𝑈𝑇 ). In the following we identify therefore an element (Δ𝑋 , Ω𝑋) ∈ ℋ𝑈 with a tangent
vector 𝑋 = Δ𝑋 + 𝑈Ω𝑋 ∈ 𝒯 (𝑈𝑈𝑇 ). The embedded metric over St𝑛,𝑝 is given by

𝑔(𝑋, 𝑌 ) = Tr(Δ𝑇
𝑋Δ𝑌 + Ω𝑇

𝑋Ω𝑌 ).

Proposition 2.18. The projection Π𝒯 (𝑈𝑈𝑇 ) on the tangent space 𝒯 (𝑈𝑈𝑇 ) is the map

Π𝒯 (𝑈𝑈𝑇 ) : ℳ𝑛,𝑝 −→ 𝒯 (𝑈𝑈𝑇 )
X ↦−→ (𝐼 − 𝑈𝑈𝑇 )X + 𝑈skew(𝑈𝑇X),

where skew(X) = (X− X𝑇 )/2.

Proof. (see also [36]) Π𝒯 (𝑈𝑈𝑇 )X is the minimizer of the distance functional 𝐽(Δ, Ω) =
||Δ + 𝑈Ω− X||2 on the set ℋ𝑈 . The vanishing of the gradient on that space is written:

∀𝛿 ∈ℳ𝑛,𝑝, 𝑈𝑇 𝛿 = 0⇒< Δ + 𝑈Ω− X, 𝛿 >= 0,
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∀𝛿 ∈ℳ𝑝,𝑝, 𝛿𝑇 = −𝛿 ⇒< Δ + 𝑈Ω− X, 𝑈𝛿 >=< Ω− 𝑈𝑇X, 𝛿 >= 0,

which yield respectively Δ = (𝐼 − 𝑈𝑈𝑇 )X and Ω = skew(𝑈𝑇X).

Remark 2.13. This proposition is also a reformulation of the “minimization principle”
proposed by Babaee and Sapsis in Theorem 2.1. of [13]. Note that the authors also found
𝑋𝑈 = (𝐼 − 𝑈𝑈𝑇 )X but forgot to minimize 𝐽 with respect to the antisymmetric matrix Ω.

Proposition 2.19. The normal space at 𝑈 is

𝒩 (𝑈) = {𝑈𝑇 |𝑇 ∈ Sym𝑝}.

Proof. This is an immediate consequence of

𝒩 (𝑈) = (𝐼 −Π𝒯 (𝑈𝑈𝑇 ))ℳ𝑛,𝑝 = {𝑈𝑈𝑇X− 𝑈skew(𝑈𝑇X)|X ∈ℳ𝑛,𝑝}.

Proposition 2.20. The covariant derivative on St𝑛,𝑝 is given by

∇𝑋𝑌 = (𝐼 − 𝑈𝑈𝑇 )D𝑋(Δ𝑌 ) + Δ𝑋Ω𝑌 + 𝑈skew(𝑈𝑇 D𝑋Δ𝑌 + Ω𝑋Ω𝑌 + D𝑋Ω𝑌 ).

In particular geodesic equations on St𝑛,𝑝 are given by{︃
Δ̇ = −𝑈Δ𝑇 Δ−ΔΩ
Ω̇ = 0,

or more explicitly
�̈� + 𝑈�̇�𝑇 �̇� = 0,

with Ω = 𝑈𝑇 �̇� being a constant.

Proof. We write that D𝑋𝑌 = D𝑋Δ𝑌 +(Δ𝑋 +𝑈Ω𝑋)Ω𝑌 +𝑈D𝑋Ω𝑌 and then we obtain Δ𝑋𝑌
by applying the projection Π𝒯 (𝑈𝑈𝑇 ). To obtain geodesic equations, the condition ∇�̇� �̇�

become (𝐼−𝑈𝑈𝑇 )Δ̇ + ΔΩ = 0 and Ω̇ + skew(𝑈𝑇 Δ̇ + Ω2) = 0. Differentiating the condition
Δ𝑇 𝑈 = 0, we obtain 𝑈𝑇 Δ̇ = −Δ𝑇 Δ and hence Δ̇ = 𝑈𝑈𝑇 Δ̇+(𝐼−𝑈𝑈𝑇 )Δ̇ = −𝑈Δ𝑇 Δ−ΔΩ
and Ω̇ = 0. To obtain the equation in terms of 𝑈 , we differentiate �̇� = Δ + 𝑈Ω to write

�̈� = Δ̇ + (Δ + 𝑈Ω)Ω = 𝑈(Ω2 −Δ𝑇 Δ) = −𝑈�̇�𝑇 �̇� .

Remark 2.14. The reader will find an explicit formula for 𝑈(𝑡) in [36]. When 𝑛 = 𝑝, the
geodesic equation reduces to Ω̇ = 0 and hence �̇� = 𝑈Ω implies 𝑈(𝑡) = 𝑈(0)𝑒𝑡Ω.

Proposition 2.21. Let 𝑁 = 𝑈𝑇 ∈ 𝒩 (𝑈) a normal vector and 𝑇 =
∑︀𝑝

𝑖=1 𝜆𝑖(𝑇 )𝑢𝑖𝑢
𝑇
𝑖 the

eigenvalue decomposition of the symmetric matrix 𝑇 . The Weingarten map of St𝑛,𝑝 with
respect to the normal direction 𝑁 is the application

𝐿𝑈 (𝑁) : 𝒯 (𝑈𝑈𝑇 ) −→ 𝒯 (𝑈𝑈𝑇 )
Δ + 𝑈Ω ↦−→ −Δ𝑇 − 𝑈(Ω𝑇 + 𝑇Ω)/2.

(2.43)
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The principal curvatures in the direction 𝑁 are constituted by the 𝑝 real numbers

𝜅𝑖(𝑇 ) = −𝜆𝑖(𝑇 ),

associated with the 𝑛− 𝑝 dimensional eigenspaces

{𝑣𝑢𝑇
𝑖 |𝑣 ∈ Span(𝑈)⊥},

and the 𝑝(𝑝− 1)/2 real numbers

𝜅𝑖𝑗(𝑇 ) = −𝜆𝑖(𝑇 ) + 𝜆𝑗(𝑇 )
2 ,

associated with the normalized eigenvectors

Φ𝑖𝑗 = 𝑈√
2

(𝑢𝑖𝑢
𝑇
𝑗 − 𝑢𝑗𝑢𝑇

𝑖 ).

Proof. We differentiate Π𝒯 (𝑈𝑈𝑇 )X with respect to 𝑈 in the direction 𝑋 = Δ + 𝑈Ω before
setting X = 𝑁 . We obtain as such

DΠ𝒯 (𝑈𝑈𝑇 )(𝑋) ·𝑁
= −2sym((Δ + 𝑈Ω)𝑈𝑇 )𝑁 + (Δ + 𝑈Ω)skew(𝑈𝑇 𝑁) + 𝑈skew((Δ + 𝑈Ω)𝑇 𝑁)
= −(Δ𝑈𝑇 + 𝑈Δ𝑇 )𝑁 − 𝑈skew(Ω𝑇 ),

which yields (2.43) by setting 𝑁 = 𝑈𝑇 . Therefore an eigenvector (Δ, Ω) ∈ ℋ𝑈 of 𝐿𝑈 (𝑁)
with an eigenvalue 𝜆 satisfies ⎧⎨⎩

−Δ𝑇 = 𝜆Δ

−1
2(Ω𝑇 + 𝑇Ω) = 𝜆Ω.

One checks then that the vectors (𝑣𝑢𝑇
𝑖 , 0) with 𝑣 a vector in Span(𝑈)⊥ and (0, 𝑈(𝑢𝑖𝑢

𝑇
𝑗 −

𝑢𝑗𝑢𝑇
𝑖 )/
√

2) are solution to this problem with the eigenvalues claimed. Because the total
dimension formed by these eigenspaces coincides with the dimension of the tangent space,
there are no other eigenvalues.

Remark 2.15. The maximal curvature of St𝑛,𝑝 is therefore equal to 𝜅∞(𝑅) = 1 when
𝑝 < 𝑛 and 𝜅∞(𝑅) =

√
2/2 when 𝑝 = 𝑛. We also obtain that Christoffel symbol is given by

Γ(𝑋, 𝑌 ) = 𝑈sym(Δ𝑇
𝑋Δ𝑌 − Ω𝑋Ω𝑌 ).

Proposition 2.22. If R ∈ℳ*
𝑛,𝑝 is a full-rank 𝑛-by-𝑝 matrix, there exists a unique orthog-

onal projection ΠSt𝑛,𝑝(R) ∈ St𝑛,𝑝 minimizing the Euclidean distance 𝑈 ↦→ ||R−𝑈 || from R
to a point 𝑈 in the Stiefel manifold. This unique matrix is the polar part 𝑃 ∈ St𝑛,𝑝 in the
polar decomposition R = 𝑃𝑆 with 𝑆 ∈ ℳ𝑝,𝑝 symmetric definite positive. The distance to
St𝑛,𝑝 is

||R−ΠSt𝑛,𝑝(R)||2 =
𝑛∑︁

𝑖=1
(1− 𝜎𝑖(R))2.

Note that if R = 𝑈Σ𝑉 𝑇 is the SVD of R with 𝑈 ∈ St𝑛,𝑝, Σ ∈ ℳ𝑝,𝑝 diagonal and 𝑉 ∈ 𝒪𝑝,
then 𝑃 = 𝑈𝑉 𝑇 and 𝑆 = 𝑉 Σ𝑉 𝑇 .
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Proof. (see also [144]) A necessary condition for 𝑃 to be the minimizer 𝑃 = ΠSt𝑛,𝑝(R) is
that the residual R − 𝑃 must be a normal vector at 𝑃 , namely R = 𝑃 (𝐼 + 𝑇 ) for some
symmetric matrix 𝑇 ∈ℳ𝑝,𝑝. Then the eigenvalues of 𝑇 are of the form 𝜆𝑖(𝑇 ) = 𝜎𝑖(R)−1 or
𝜆𝑖(𝑇 ) = −(𝜎𝑖(R)+1), and the distance to St𝑛,𝑝 is given by ||R−𝑃 ||2 =

∑︀𝑛
𝑖=1(±𝜎𝑖(R)−1)2.

This summation is minimized only when 𝜆𝑖(𝑇 ) = 𝜎𝑖(R) − 1, i.e. for 𝑆 = 𝐼 + 𝑇 symmetric
and positive. The condition that in addition, the singular values 𝜎𝑖(R) are non zero, that
is 𝑆 definite, ensures that that the polar part is uniquely defined [58], i.e. the uniqueness
of the orthogonal projection.

Proposition 2.23. Consider the polar decomposition R = 𝑃𝑆 of a full rank matrix
R ∈ ℳ*

𝑛,𝑝 with 𝑆 ∈ ℳ𝑝,𝑝 symmetric positive definite and 𝑃 ∈ St𝑛,𝑝. Denote 𝑆 =∑︀𝑟
𝑖=1 𝜎𝑖(R)𝑢𝑖𝑢

𝑇
𝑖 the eigendecomposition of 𝑆. Then the orthogonal projection ΠSt𝑛,𝑝, namely

the application R ↦→ 𝑃 is differentiable at R and the differential in the direction X is given
by the formula

DXΠSt𝑛,𝑝(R) =
∑︁
{𝑖,𝑗}

2
𝜎𝑖(R) + 𝜎𝑗(R)

(︁
𝑢𝑇

𝑖 skew(𝑃 𝑇X)𝑢𝑗

)︁
𝑃 (𝑢𝑖𝑢

𝑇
𝑗 − 𝑢𝑗𝑢𝑇

𝑖 )

+
𝑝∑︁

𝑖=1

1
𝜎𝑖(R)(𝐼 − 𝑃𝑃 𝑇 )X𝑢𝑖𝑢

𝑇
𝑖 .

(2.44)

Proof. The equation is immediately obtained by applying formula (2.12) of theorem 2.4
with the normal vector 𝑁 = R− 𝑃 = 𝑃 (𝑆 − 𝐼), for which one finds

1− 𝜅𝑖(𝑁) = 1− (1− 𝜎𝑖(R)) = 𝜎𝑖(R),∑︁
Span(𝑒𝑖)=Span(𝑃 )⊥

< X, 𝑒𝑖𝑢
𝑇
𝑖 > 𝑒𝑖𝑢

𝑇
𝑖 =

∑︁
Span(𝑒𝑖)=Span(𝑃 )⊥

(︀
(𝑒𝑇

𝑖 X𝑢𝑖)𝑒𝑖
)︀
𝑢𝑇

𝑖 = (𝐼 − 𝑃𝑃 𝑇 )X𝑢𝑖𝑢
𝑇
𝑖 ,

1− 𝜅𝑖𝑗(𝑁) = 1−
(︀
1− (𝜎𝑖(R) + 𝜎𝑗(R))/2) = (𝜎𝑖(R) + 𝜎𝑗(R))/2,

< Φ𝑖𝑗 ,X > Φ𝑖𝑗 =< 𝑃 skew(𝑢𝑖𝑢
𝑇
𝑗 ),X > 𝑃 (𝑢𝑖𝑢

𝑇
𝑗 − 𝑢𝑗𝑢𝑇

𝑖 )
=< 𝑢𝑖𝑢

𝑇
𝑗 , skew(𝑃 𝑇X) > 𝑃 (𝑢𝑖𝑢

𝑇
𝑗 − 𝑢𝑗𝑢𝑇

𝑖 ).

Remark 2.16. Formula (2.44) has been obtained by Chen for the orthogonal group (that
is in the case 𝑛 = 𝑝 for which the second summation is 0) by using purely algebraic (see
p. 181 in [25]). In continuum mechanics, one often consider R(𝑡) = 𝐹 (𝑡) = ∇𝜑𝑡0(𝑥) as
being the gradient of a transformation 𝜑𝑡0(𝑥), and X = ∇𝑣 as the gradient of the velocity
field evolving the transformation (namely d

d𝑡𝜑
𝑡
0(𝑥) = 𝑣(𝑡,𝜑𝑡

0(𝑥))). The orthogonal matrix
𝑃 and the symmetric matrix 𝑆 of the polar decomposition 𝐹 (𝑡) = 𝑃 (𝑡)𝑆(𝑡) are respectively
interpreted as the rotation and the stretching components of the transformation [144, 67].
At 𝑡 = 0, 𝐹 is the identity matrix and equation (2.44) becomes �̇�

⃒⃒⃒
𝑡=0

= (∇𝑣 − ∇𝑣𝑇 )/2.
Formula (2.44) generalizes the well known result that the instantaneous rotation rate of a
transformation is half the vorticity (see e.g. [67]).

The following proposition gives a dynamical systems that achieves the polar decompo-
sition analogously as proposition 2.16:
Proposition 2.24. Consider a full rank matrix R ∈ ℳ*

𝑛,𝑝 and R =
∑︀𝑝

𝑖=1 𝜎𝑖(R)𝑢𝑖𝑣
𝑇
𝑖 its

Singular Value Decomposition.
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∙ If 𝑝 < 𝑛, then ΠSt𝑛,𝑝(R) is the unique local minimum of the distance function 𝐽 :
𝑈 ↦→ 1

2 ||R−𝑈 ||2, and therefore, for almost any initial data 𝑈(0) ∈ St𝑛,𝑝, the solution
𝑈(𝑡) of the gradient flow

�̇� = R− 1
2(𝑈𝑈𝑇R + 𝑈R𝑇 𝑈) (2.45)

converges to the polar part ΠSt𝑛,𝑝(R) =
∑︀𝑝

𝑖=1 𝑢𝑖𝑣
𝑇
𝑖 of R. In particular, St𝑛,𝑝 is con-

nected for 𝑝 < 𝑛.

∙ If 𝑛 = 𝑝, then 𝐽 admits other local minima that are the matrices 𝑈 ∈ St𝑛,𝑝 of the
form

𝑈 =
𝑛−1∑︁
𝑖=1

𝑢𝑖𝑣
𝑇
𝑖 − 𝑢𝑛𝑣𝑇

𝑛 , (2.46)

where 𝑢𝑛 is a singular vector corresponding to the smallest singular value 𝜎𝑛(R).
Therefore any solution 𝑈(𝑡) of the gradient flow (2.45) converges almost surely to
the polar part ΠSt𝑛,𝑝(R) provided the initial data 𝑈(0) lies in the same connected
component of 𝒪𝑛. Otherwise, 𝑈(𝑡) converges almost surely towards an element 𝑈 ∈
𝒪𝑛 of the form (2.46).

Proof. Let 𝑈 ∈ St𝑛,𝑝 such that ∇𝐽(𝑈) = 0. Then (1.12) shows that R = 𝑈(𝐼 + 𝑇 ) with
𝜆𝑖(𝑇 ) = 𝜎𝑖(R)− 1 or 𝜆𝑖(𝑇 ) = −(𝜎𝑖(R) + 1). Denote 𝑁 = R−𝑈 = 𝑈𝑇 the residual normal
vector. If 𝑝 < 𝑛 then the condition ∀1 ≤ 𝑖 ≤ 𝑝, 𝜅𝑖(𝑁) = −𝜆𝑖(𝑇 ) ≤ 1 required for 𝑈 to be a
local cannot be satisfied if there exists 𝑖 such that 𝜆𝑖(𝑇 ) = −(𝜎𝑖(R) + 1). This proves that
the only local minimum is achieve by ΠM (R).

If 𝑝 = 𝑛, then the condition for 𝑈 to be a minimum is that 𝜅𝑖𝑗(𝑁) = −1
2(𝜆𝑖(𝑇 )+𝜆𝑗(𝑇 )) ≤

1 for all pair {𝑖, 𝑗}. This condition cannot be satisfied if there exists at least two indices
𝑖 and 𝑗 such that 𝜆𝑖(𝑇 ) = −(𝜎𝑖(R) + 1) and 𝜆𝑗(𝑇 ) = −(𝜎𝑗(R) + 1). If 𝑖 is an index such
that 𝜆𝑖(𝑇 ) = −(𝜎𝑖(R) + 1), then 𝜅𝑖𝑗(𝑁) ≤ 1 implies ∀𝑗 ̸= 𝑖, 𝜎𝑖(R) ≤ 𝜎𝑗(R) therefore 𝑖 = 𝑛
and 𝑈 is of the form (2.46). Finally the gradient flow is obtained by making �̇� = −∇𝐽(𝑈)
explicit with ∇𝐽(𝑈) = (𝐼 − 𝑈𝑈𝑇 )(𝑈 −R) + 𝑈skew(𝑈𝑇 (𝑈 −R)).

2.2.3 The isospectral manifold, the Grassmannian, and the geometry of
mutually orthogonal subspaces

In this part we denote Sym𝑛 the set of 𝑛-by-𝑛 symmetric matrices. The focus is on the
isospectral manifold (also studied by [20, 31]), for which each point can be considered as a
collection of 𝑚 subspaces orthogonal one another of a 𝑛 dimensional Euclidean space, whose
given dimensions are 𝑛1, . . . , 𝑛𝑚 and such that 𝑛 = 𝑛1 + · · · + 𝑛𝑚. A symmetric matrix 𝑆
having 𝑚 eigenvalues with multiplicities 𝑛1, . . . , 𝑛𝑚 can be used to represent such collection
of subspaces: one identifies 𝑆 to the collection of its eigenspaces. In the particular case
where 𝑚 = 2, the isospectral manifold is more commonly known as the Grassman manifold
or Grassmanian, whose points are 𝑝 dimensional subspaces. This leads to the following
definition:

Definition 2.14. The isospectral manifold is the set I of all symmetric 𝑛-by-𝑛 matrices
𝑆 ∈ Sym𝑛 whose spectrum is constituted of 𝑚 distinct eigenvalues 𝜆1 > 𝜆2 > · · · > 𝜆𝑚 with
respective multiplicities 𝑛1, . . . , 𝑛𝑚. Denoting Λ such a matrix, I admits two convenient
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parameterizations :

I = {𝑃Λ𝑃 𝑇 |𝑃 ∈ 𝒪𝑛}

= {
𝑚∑︁

𝑖=1
𝜆𝑖𝑈𝑖𝑈

𝑇
𝑖 |𝑈𝑖 ∈ℳ𝑛,𝑚𝑖 , 𝑈𝑇

𝑖 𝑈𝑗 = 𝛿𝑖𝑗}.

The Grassman manifold 𝒢 is defined to be the set of all projectors over a 𝑑 dimensional
subspace :

𝒢 = {𝑈𝑈𝑇 ∈ℳ𝑛,𝑛|𝑈𝑇 𝑈 = 𝐼 and 𝑈 ∈ℳ𝑛,𝑝}.

A set of matrices 𝑈𝑖 ∈ℳ𝑛,𝑚𝑖 may be used to describe points on the manifold I , where
each 𝑈𝑖 represent each eigenspace Span(𝑈𝑖). When 𝑚 = 2, a single matrix 𝑈 can be used
more conveniently to represent points on the Grassmannian 𝒢, since the knowledge of a
vector space or of its orthogonal complement are equivalent.

The time derivative of a trajectory 𝑈𝑖(𝑡) can be decomposed along the basis given by
the union of the 𝑈𝑘 as �̇�𝑖 =

∑︀𝑚
𝑗=1 𝑈𝑗Δ𝑗

𝑖 with Δ𝑗
𝑖 ∈ℳ𝑚𝑗 ,𝑚𝑖 . The matrix Δ𝑗

𝑖 is related to the
magnitude of the rotation of the subspace Span(𝑈𝑖) around the axis given by the subspace
Span(𝑈𝑗). So as to remain orthogonal one another, a condition must be satisfied by the
Δ𝑗

𝑖 :

Proposition 2.25. The tangent space 𝒯 (𝑆) at 𝑆 ∈ I is the set

𝒯 (𝑆) = {[Ω, 𝑆] = Ω𝑆 − 𝑆Ω|Ω ∈ℳ𝑛,𝑛, Ω𝑇 = −Ω}

=

⎧⎨⎩ ∑︁
{𝑖,𝑗}⊂{1,...,𝑚}

(𝜆𝑖 − 𝜆𝑗)(𝑈𝑗Δ𝑗
𝑖 𝑈𝑇

𝑖 − 𝑈𝑖Δ𝑖
𝑗𝑈𝑇

𝑗 )
⃒⃒⃒
Δ𝑗

𝑖 ∈ℳ𝑛𝑗 ,𝑛𝑖 , Δ𝑖
𝑗 = −(Δ𝑗

𝑖 )𝑇

⎫⎬⎭
=

⎧⎨⎩∑︁
𝑖 ̸=𝑗

(𝜆𝑖 − 𝜆𝑗)𝑈𝑗Δ𝑗
𝑖 𝑈𝑇

𝑖

⃒⃒⃒⃒
Δ𝑗

𝑖 ∈ℳ𝑛𝑗 ,𝑛𝑖 , Δ𝑖
𝑗 = −(Δ𝑗

𝑖 )𝑇 .

⎫⎬⎭
(2.47)

The Δ𝑗
𝑖 defined in the above expressions for each pair {𝑖, 𝑗} ⊂ {1, . . . , 𝑚} parameterizes

uniquely the tangent space 𝒯 (𝑆). Therefore the I is a smooth manifold of dimension(︀
𝑛2 −

∑︀𝑚
𝑖=1 𝑛2

𝑖

)︀
/2.

Proof. (see also [31]). Consider first the parameterization of I by 𝒪𝑛, i.e. write 𝑆 =
𝑃Λ𝑃 𝑇 . Denote Ω a skew-symmetric matrix. Differentiating with respect to 𝑃 in the
direction 𝑃Ω tangent to 𝒪𝑛 at 𝑃 , one obtains that a tangent vector 𝑋 is of the form
𝑋 = 𝑃ΩΛ − ΛΩ𝑃 𝑇 = 𝑃Ω𝑃 𝑇 𝑃Λ𝑃 𝑇 − 𝑃Λ𝑃 𝑇 𝑃Ω𝑃 𝑇 = [𝑃Ω𝑃 𝑇 , 𝑆]. This shows the first
equality. Write now 𝑆 =

∑︀𝑚
𝑖=1 𝜆𝑖𝑈𝑖𝑈

𝑇
𝑖 with 𝑈𝑖 ∈ ℳ𝑛,𝑚𝑖 and 𝑈𝑇

𝑖 𝑈𝑗 = 𝛿𝑖𝑗 . Differentiating
the constraint 𝑈𝑇

𝑖 𝑈𝑗 = 0 yields (Δ𝑗
𝑖 )𝑇 = −Δ𝑖

𝑗 . This implies that a tangent vector is
of the form 𝑋 =

∑︀𝑚
𝑖,𝑗=1 𝜆𝑖(𝑈𝑗Δ𝑗

𝑖 𝑈𝑇
𝑖 − 𝑈𝑖Δ𝑖

𝑗𝑈𝑇
𝑗 ) which gives the expression claimed after

reordering. If 𝑋 is a tangent vector, the formula Δ𝑗
𝑖 = 𝑈𝑇

𝑗 𝑋𝑈𝑖/(𝜆𝑖−𝜆𝑗) determines uniquely
Δ𝑗

𝑖 . Finally, the dimension of 𝒯 (𝑆) is

∑︁
{𝑖,𝑗}

𝑛𝑗𝑛𝑖 = 1
2
∑︁
𝑖 ̸=𝑗

𝑛𝑖𝑛𝑗 = 1
2

⎛⎝∑︁
𝑖,𝑗

𝑛𝑖𝑛𝑗 −
𝑚∑︁

𝑖=1
𝑛2

𝑖

⎞⎠ =
(︃

𝑛2 −
𝑚∑︁

𝑖=1
𝑛2

𝑖

)︃
/2.
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Remark 2.17. For the Grassman manifold, the tangent space 𝒯 (𝑈𝑈𝑇 ) at 𝑈𝑈𝑇 is more
conveniently (and uniquely) described as

𝒯 (𝑈𝑈𝑇 ) = {Δ𝑈𝑇 + 𝑈Δ|Δ𝑇 𝑈 = 0, Δ ∈ℳ𝑛,𝑝}. (2.48)

where the matrix Δ can be understood as the time derivative Δ = �̇� of the column matrix
𝑈 ∈ℳ𝑛,𝑝 used to represent the point 𝑈𝑈𝑇 ∈ 𝒢. The dimension of the Grassman manifold
is 𝑝(𝑛− 𝑝) .

We denote ℋ the set of all Δ𝑗
𝑖 ∈ ℳ𝑛𝑗 ,𝑛𝑖 which we refer to as the horizontal space. In

the following, for a given 𝑋 ∈ 𝒯 (𝑆), we will denote (Δ𝑋)𝑗
𝑖 the associated coordinates in the

horizontal space. Note that the metric on I is given by

< 𝑋, 𝑌 >=
∑︁
𝑖,𝑗

(𝜆𝑖 − 𝜆𝑗)2Tr[(Δ𝑋)𝑗𝑇
𝑖 (Δ𝑌 )𝑗

𝑖 ].

Proposition 2.26. The projection Π𝒯 (𝑆) on the tangent space 𝒯 (𝑆) is the map

Π𝒯 (𝑆) : Sym𝑛 −→ 𝒯 (𝑆)
X ↦−→

∑︀
{𝑖,𝑗}⊂{1,...,𝑚}

(𝑈𝑗𝑈𝑇
𝑗 X𝑈𝑖𝑈

𝑇
𝑖 + 𝑈𝑖𝑈

𝑇
𝑖 X𝑈𝑗𝑈𝑇

𝑗 ),

that is with the coordinates of the horizontal space, Δ𝑗
𝑖 = 𝑈𝑇

𝑗 X𝑈𝑖/(𝜆𝑖 − 𝜆𝑗).

Proof. This is obtained by differentiating ||X−𝑋||2 with respect to Δ𝑗
𝑖 , for a tangent vector

𝑋 ∈ ℋ written with the coordinates Δ𝑗
𝑖 of the horizontal space.

Remark 2.18. For the Grassman manifold, with the coordinates of remark 2.17, this
projection is more conveniently written as ΔΠ𝒯 (𝑈𝑈𝑇 )X

= (𝐼 − 𝑈𝑈𝑇 )X𝑈 .

Proposition 2.27. The normal space 𝒩 (𝑆) at 𝑆 is the set of all symmetric matrices 𝑁
that let stable each eigenspace Span(𝑈𝑖) of 𝑆:

𝒩 (𝑆) =
{︃

𝑚∑︁
𝑖=1

𝑈𝑖𝑈
𝑇
𝑖 X𝑈𝑖𝑈

𝑇
𝑖 |X ∈ Sym𝑛

}︃
.

In other words, it is the set of all matrices 𝑁 ∈ Sym𝑛 of the form

𝑁 =
𝑚∑︁

𝑖=1

𝑛𝑖∑︁
𝑎=1

𝜆𝑖,𝑎(𝑁)𝑢𝑖,𝑎𝑢𝑇
𝑖,𝑎,

where for each 1 ≤ 𝑖 ≤ 𝑚, 𝜆𝑖,𝑎(𝑁)1≤𝑎≤𝑛𝑖 is a set of 𝑛𝑖 real eigen-values associated with 𝑛𝑖

eigenvectors (𝑢𝑖,𝑎)1≤𝑎≤𝑛𝑖 forming a basis of the eigenspace Span(𝑈𝑖).

Proof. This is an immediate consequence of 𝒩 (𝑆) = {(𝐼 −Π𝒯 (𝑆))X|X ∈ Sym𝑛}.

Proposition 2.28. The covariant derivative on I is given by, in the coordinates of the
horizontal space:

(Δ∇𝑋𝑌 )𝑗
𝑖 = 𝐷𝑋(Δ𝑌 )𝑗

𝑖 +
𝑚∑︁

𝑘=1

[︃
𝜆𝑖 − 𝜆𝑘

𝜆𝑖 − 𝜆𝑗
(Δ𝑋)𝑗

𝑘(Δ𝑌 )𝑘
𝑖 + 𝜆𝑗 − 𝜆𝑘

𝜆𝑖 − 𝜆𝑗
(Δ𝑌 )𝑗

𝑘(Δ𝑋)𝑘
𝑖

]︃
.
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Therefore geodesic equations on I are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
d𝑡

𝑈𝑖 = 𝑈𝑗Δ𝑗
𝑖

d
d𝑡

Δ𝑗
𝑖 = −

𝑚∑︁
𝑘=1

𝜆𝑖 − 2𝜆𝑘 + 𝜆𝑗

𝜆𝑖 − 𝜆𝑗
Δ𝑗

𝑘Δ𝑘
𝑖 .

Proof. Let 𝑌 a tangent vector parameterized by (Δ𝑌 )𝑗
𝑖 as in (2.47). We have

D𝑋𝑌 =
∑︁
𝑖 ̸=𝑗

(𝜆𝑖 − 𝜆𝑗)
[︂
𝑈𝑘(Δ𝑋)𝑘

𝑗 (Δ𝑌 )𝑗
𝑖 𝑈𝑇

𝑖 + 𝑈𝑗D𝑋(Δ𝑌 )𝑗
𝑖 𝑈𝑇

𝑖 − 𝑈𝑗(Δ𝑌 )𝑗
𝑖 (Δ𝑋)𝑖

𝑘𝑈𝑇
𝑘

]︂
,

where summation over the repeated index 𝑘 is assumed. Writing (Δ∇𝑌
𝑋

)𝑗
𝑖 = 1

𝜆𝑖−𝜆𝑗
𝑈𝑇

𝑗 D𝑋𝑌 𝑈𝑖

yields the result.

Remark 2.19. For the Grassman manifold 𝒢, denoting 𝑉 a matrix spanning the orthogonal
complement of Span(𝑈), we find that Δ2

1 = 𝑉 𝑇 𝑈 is a constant and geodesic equations are
written �̈� = 𝑈Δ2

1Δ1
2 = −𝑈�̇�𝑇 �̇� . This is the same equation than the one for the embedded

Stiefel manifold given previously. Noticing that �̇�𝑇 �̇� is a constant, one can find an explicit
formula for 𝑈(𝑡) (see [36]).

Proposition 2.29. Let 𝑁 =
∑︀𝑚

𝑖=1
∑︀𝑛𝑖

𝑎=1 𝜆𝑖,𝑎(𝑁)𝑢𝑖,𝑎𝑢𝑇
𝑖,𝑎 the eigenvalue decomposition of a

normal vector 𝑁 at 𝑆. The Weingarten map in the direction 𝑁 on I is given by

𝐿𝑆(𝑁) : ℋ −→ ℋ
(Δ𝑗

𝑖 ) ↦−→
(︁

1
𝜆𝑖−𝜆𝑗

(𝑈𝑇
𝑗 𝑁𝑈𝑗Δ𝑗

𝑖 −Δ𝑗
𝑖 𝑈𝑇

𝑖 𝑁𝑈𝑖)
)︁𝑗

𝑖
.

(2.49)

The principal curvatures are the real

𝜅𝑗,𝑏
𝑖,𝑎 = 𝜆𝑗,𝑏(𝑁)− 𝜆𝑖,𝑎(𝑁)

𝜆𝑖 − 𝜆𝑗
,

for all pairs {𝑖, 𝑗} ⊂ {1, . . . , 𝑚} and couples (𝑎, 𝑏) with 1 ≤ 𝑎 ≤ 𝑛𝑖 and 1 ≤ 𝑏 ≤ 𝑛𝑗. The
corresponding normalized eigendirections are the tangent vectors

Φ𝑗,𝑏
𝑖,𝑎 = 1√

2
(𝑢𝑖,𝑎𝑢𝑇

𝑗,𝑏 + 𝑢𝑗,𝑏𝑢
𝑇
𝑖,𝑎).

Proof. Differentiating Π𝒯 (𝑆)𝑁 with respect to the tangent direction 𝑋 = (Δ𝑗
𝑖 ) yields

DΠ𝒯 (𝑆)(𝑋) ·𝑁 =
∑︁
𝑖 ̸=𝑗

[︂
(𝑈𝑘Δ𝑘

𝑗 𝑈𝑇
𝑗 − 𝑈𝑗Δ𝑗

𝑘𝑈𝑇
𝑘 )𝑁𝑈𝑖𝑈

𝑇
𝑖 + 𝑈𝑗𝑈𝑇

𝑗 𝑁(𝑈𝑘Δ𝑘
𝑖 𝑈𝑇

𝑖 − 𝑈𝑖Δ𝑖
𝑘𝑈𝑇

𝑘 )
]︂
,

with summation over repeated indices 𝑘. Using the fact that 𝑁 is a normal vector, we
obtain:

DΠ𝒯 (𝑆)(𝑋) ·𝑁 =
∑︁
𝑖 ̸=𝑗

[︂
− 𝑈𝑗Δ𝑗

𝑖 𝑈𝑇
𝑖 𝑁𝑈𝑖𝑈

𝑇
𝑖 + 𝑈𝑗𝑈𝑇

𝑗 𝑁𝑈𝑗Δ𝑗
𝑖 𝑈𝑇

𝑖

]︂
.

Expression (2.49) follows from (ΔDΠ𝒯 (𝑆)(𝑋)·𝑁 )𝑗
𝑖 = 𝑈𝑇

𝑗 (DΠ𝒯 (𝑆)(𝑋) · 𝑁)𝑈𝑖/(𝜆𝑖 − 𝜆𝑗). It is
easy then to check that Δ𝑗,𝑏

𝑖,𝑎 = 𝑈𝑇
𝑗 𝑢𝑗,𝑏𝑢

𝑇
𝑖,𝑎𝑈𝑖 provide a basis of eigenvectors with eigenvalues
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𝜅𝑗,𝑏
𝑖,𝑎, whence the result after normalization.

Remark 2.20. The maximal curvature of the isospectral manifold is therefore given by
𝜅∞(𝑆) = max{𝑖,𝑗}

√
2

|𝜆𝑖−𝜆𝑗 | .

Proposition 2.30. Let S ∈ Sym𝑛 be a symmetric matrix and denote

S =
𝑚∑︁

𝑖=1

𝑛𝑖∑︁
𝑎=1

𝜆𝑖,𝑎(S)𝑢𝑖,𝑎𝑢𝑇
𝑖,𝑎

its eigenvalue decomposition, where the eigenvalues have been ordered decreasingly, i.e

∀1 ≤ 𝑎𝑖 ≤ 𝑛𝑖, 𝜆1,𝑎1 ≥ 𝜆2,𝑎2 ≥ . . . ≥ 𝜆𝑚,𝑎𝑚 ,

∀1 ≤ 𝑖 ≤ 𝑚, 𝜆𝑖,1 ≥ 𝜆𝑖,2 ≥ . . . ≥ 𝜆𝑖,𝑛𝑖 .

If for any 1 ≤ 𝑖 ≤ 𝑚 − 1, 𝜆𝑖+1,1(S) > 𝜆𝑖,𝑛𝑖(S), that is the eigenspaces of S are well
separated relatively to the ordering given by Λ, then S admits a unique projection onto I .
This projection is obtained by replacing the eigenvalues of S by those of Λ :

ΠI (S) =
𝑚∑︁

𝑖=1

𝑛𝑖∑︁
𝑎=1

𝜆𝑖𝑢𝑖,𝑎𝑢𝑇
𝑖,𝑎.

The distance of S to the manifold I is given by ||S−ΠI (S)||2 =
∑︀𝑚

𝑖=1
∑︀𝑛𝑖

𝑎=1(𝜆𝑖,𝑎 − 𝜆𝑖)2.

Proof. (see also [31]) For a given 𝑆 ∈ I , 𝑁 = S − 𝑆 is a normal vector at 𝑆 if S =
𝑆 + 𝑁 with 𝑆 and 𝑁 that can be diagonalized in the same basis. To make notations
easy, denote S =

∑︀𝑛
𝑙=1 𝜆𝑙(S)𝑢𝑙𝑢

𝑇
𝑙 the eigen decomposition of S (no ordering assumed).

We have 𝑁 =
∑︀𝑛

𝑙=1(𝜆𝑙(S) − Λ𝜎(𝑙))𝑢𝑙𝑢
𝑇
𝑙 where the Λ𝑙 are the eigenvalues 𝜆𝑖 of Λ ordered

decreasingly (including multiplicities), and 𝜎 a permutation. Noticing that for any given
numbers satisfying 𝑎 < 𝑏 and 𝑐 < 𝑑, we have (𝑎− 𝑐)2 + (𝑏− 𝑑)2 < (𝑎− 𝑑)2 + (𝑏− 𝑐)2, we see
that the norm of 𝑁 is minimized by selecting the permutation 𝜎 to be the identity.

Remark 2.21. A possible interpretation of this result in the case of the Grassman manifold,
is that each symmetric matrix S of the ambient space can be interpreted as a collection of
𝑛 orthogonal directions (𝑢𝑖)1≤𝑖≤𝑛 that have been assigned a “score” 𝜆𝑖(S). A point on the
Grassman manifold corresponds to selecting 𝑝 directions 𝑢𝑖 with the score 1 and rejecting
other directions. One projects a point S of the ambient space by selecting the 𝑝 directions
that have the highest score.

Proposition 2.31. Let S ∈ Sym𝑛 is a symmetric matrix defined as in proposition 2.30.
The projection onto I is differentiable at S and the derivative in a direction X ∈ Sym𝑛 is
given by

DXΠI (S) =
∑︁

{𝑖,𝑗}⊂{1,...,𝑚}
1≤𝑎≤𝑛𝑖
1≤𝑏≤𝑛𝑗

𝜆𝑖 − 𝜆𝑗

𝜆𝑖,𝑎(S)− 𝜆𝑗,𝑏(S)(𝑢𝑇
𝑖,𝑎X𝑢𝑗,𝑏)(𝑢𝑖,𝑎𝑢𝑇

𝑗,𝑏 + 𝑢𝑗,𝑏𝑢
𝑇
𝑖,𝑎). (2.50)

Proof. We apply the formula of theorem 2.1 with 𝑁 =
∑︀𝑚

𝑖=1
∑︀𝑛𝑖

𝑎=1(𝜆𝑖,𝑎(S)−𝜆𝑖)𝑢𝑖,𝑎𝑢𝑇
𝑖,𝑎. We

find
1− 𝜅𝑗,𝑏

𝑖,𝑎(𝑁) = 𝜆𝑗,𝑏(S)− 𝜆𝑖,𝑎(S)
𝜆𝑖 − 𝜆𝑗

,
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< X, Φ𝑗,𝑏
𝑖,𝑎 > Φ𝑗,𝑏

𝑖,𝑎 = 1
2 < X, 2sym(𝑢𝑖,𝑎𝑢𝑇

𝑗,𝑏) > (𝑢𝑖,𝑎𝑢𝑇
𝑗,𝑏 + 𝑢𝑗,𝑏𝑢

𝑇
𝑖,𝑎),

which yields the expression claimed.

Corollary 2.4. Consider S(𝑡) =
∑︀𝑛

𝑖=1 𝜆𝑖(𝑡)𝑢𝑖(𝑡)𝑢𝑖(𝑡)𝑇 the eigendecomposition of a time
dependent symmetric matrix. Consider 𝐼 ⊂ {1, . . . , 𝑛} a subset of 𝑝 indices such that the
subspace 𝒰(𝑡) = Span(𝑢𝑖(𝑡))𝑖∈𝐼 spanned by the corresponding 𝑝 eigenvectors is well defined
for all time, i.e. there is no couple of indices 𝑖 ∈ 𝐼 and 𝑗 /∈ 𝐼 such that 𝜆𝑖(𝑡) = 𝜆𝑗(𝑡).
Then the subspace 𝒰(𝑡) is differentiable with respect to 𝑡2 and an ODE for the evolution of
a corresponding orthonormal basis of vectors 𝑈 ∈ℳ𝑛,𝑝 satisfying Span(𝑈(𝑡)) = 𝒰(𝑡) is

�̇� =
∑︁
𝑖∈𝐼
𝑗 /∈𝐼

1
𝜆𝑖(𝑡)− 𝜆𝑗(𝑡)(𝑢𝑇

𝑖 Ṡ𝑢𝑗)𝑢𝑗𝑢𝑇
𝑖 𝑈. (2.51)

Proof. Consider the isospectral manifold I with the multiplicity of the spectrum Λ be-
ing adapted to 𝐼. The case where 𝐼 is a set of 𝑝 indices corresponding to a subspace
Span(𝑈𝑘) spanned by 𝑝 consecutive eigenvectors is obtained by writing �̇�𝑘 = 𝑈𝑗Δ𝑗

𝑘 with
Δ𝑗

𝑘 = 𝑈𝑇
𝑗 DṠΠI (S)𝑈𝑘/(𝜆𝑘 − 𝜆𝑗). For the general case, one writes the projector onto 𝒰 as

𝑈𝑈𝑇 =
∑︀

𝑘∈𝐼 𝑈𝑘𝑈𝑇
𝑘 , 𝐼 being a set of indices such that Span(𝑈𝑘)𝑘∈𝐼 = Span(𝑢𝑖)𝑖∈𝐼 and each

matrix 𝑈𝑘 spanning sets of consecutive eigenvectors. Then one obtains a time derivative for
𝑈 by writing �̇� = (𝐼 − 𝑈𝑈𝑇 )

(︁∑︀
𝑘∈𝐼

d
d𝑡(𝑈𝑘𝑈𝑇

𝑘 )
)︁

𝑈 , which gives the result.

As an application we provide a dynamical system that finds the dominant subspaces of
a symmetric matrix, which is the analogous of proposition 2.16 and proposition 2.24.
Proposition 2.32. Consider a symmetric matrix S =

∑︀𝑚
𝑖=1

∑︀𝑛𝑖
𝑎=1 𝜆𝑖,𝑎(S)𝑢𝑖,𝑎𝑢𝑇

𝑖,𝑎 ∈ Sym𝑛

such that its projection ΠI (S) is uniquely defined. Then the distance functional 𝑆 ↦→
||S − 𝑆||2 admits no other local minimum on I than ΠI (S). Therefore, for almost any
initial data 𝑆(0) ∈ Sym𝑛, the solution 𝑆(𝑡) =

∑︀𝑚
𝑖=1 𝜆𝑖𝑈𝑖𝑈

𝑇
𝑖 of the gradient flow

�̇�𝑖 =
∑︁
𝑗 ̸=𝑖

1
𝜆𝑖 − 𝜆𝑗

𝑈𝑗𝑈𝑇
𝑗 S𝑈𝑖 (2.52)

converges to ΠI (S), or in other words, each of the matrices 𝑈𝑖 converge to a matrix spanning
the same subspace as Span(𝑢𝑖,𝑎)1≤𝑎≤𝑛𝑖. In particular, the isospectral manifold is connected.
Proof. Denote 𝑁 = S − 𝑆 the residual normal vector of a critical point 𝑆 of the distance
functional. The condition for 𝑆 to be a local minimum is that all curvatures in the direction
𝑁 satisfy 𝜅𝑗,𝑏

𝑖,𝑎(𝑁) ≤ 1, which is equivalent to the condition 𝜆𝑖,𝑎−𝜆𝑗,𝑏

𝜆𝑖−𝜆𝑗
≥ 0. This condition

can be satisfied only for 𝑆 = ΠI (S).

Remark 2.22. In [20], Brockett considered the double-bracket flow �̇� = [𝐻, [𝐻, S]] on I
to achieve the diagonalization of a symmetric matrix starting from 𝐻(0) = Λ and proved
analogous convergence results (also in [31]). This flows coincides with the gradient descent
for the distance functional 𝐽(𝑃 ) = ||𝑃Λ𝑃 𝑇 − S||2 with respect to 𝑃 ∈ 𝒪𝑛. The reader can
check that the corresponding expression in the horizontal coordinates is

�̇�𝑖 =
∑︁
𝑗 ̸=𝑖

(𝜆𝑖 − 𝜆𝑗)𝑈𝑗𝑈𝑇
𝑗 S𝑈𝑖,

2in the sense that the projector over this subspace is differentiable.
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instead of (2.52). In other words, it reduces to use a gradient descent where each of the
components Δ𝑗

𝑖 of the covariant gradient ∇𝐽 = Π𝒯 (𝑆)(S − 𝑆) have been rescaled by the
positive numbers (𝜆𝑖 − 𝜆𝑗)2.

Remark 2.23. Applying this result to the particular case of the Grassman manifold, we
obtain that for almost any initial data 𝑈(0) ∈ St𝑛,𝑝, the solution 𝑈(𝑡) of the gradient flow

�̇� = (𝐼 − 𝑈𝑈𝑇 )S𝑈 (2.53)

converges to a matrix 𝑈 ∈ St𝑛,𝑝 whose columns span the dominant subspace of S. A
generalization of this result for the case where S is not necessary symmetric has also been
found recently by Babaee and Sapsis (Theorem 2.3 in [13]).

2.2.4 Non euclidean grassmanian, biorthogonal manifold, and derivative
of eigenspaces of nonsymmetric matrices

In [13], it has been found that even if 𝑆 is not symmetric, the solution 𝑈(𝑡) of the dynamical
system (2.52) converges almost surely , and the limit 𝑈 generates the same subspace than the
one spanned by the eigenvectors of 𝑆 associated with the eigenvalues of maximal real parts.
In the following, we recast this result in the framework of oblique projections developped
in section 2.1.3. We consider the matrix space ℳ𝑛,𝑛 and an integer 𝑝 ≤ 𝑛. Given a matrix
R ∈ ℳ𝑛,𝑛 we denote 𝜆𝑖(R) its complex eigenvalues, where these eigenvalues have been
ordered according to the real parts: ℜ(𝜆1(R)) ≥ ℜ(𝜆2(R)) ≥ . . . ≥ ℜ(𝜆𝑛(R)). When
ℜ(𝜆𝑝(R)) > ℜ(𝜆𝑝+1(R)), there exist a unique 𝑝-dimensional stable subspace on which the
complex eigenvalues of R are (𝜆𝑖(R))1≤𝑖≤𝑝 (see [75]), which we refer to as the dominant
subspace of R. If in addition R =

∑︀𝑛
𝑖=1 𝜆𝑖(R)𝑢𝑖𝑣

𝑇
𝑖 is diagonalizable in C, this dominant

subspace is given by Span(ℜ(𝑢𝑖),ℑ(𝑢𝑖))1≤𝑖≤𝑝 where 𝑢𝑖 and 𝑣𝑖 are the respective right and
left eigenvectors of R satisfying 𝑣𝑇

𝑖 𝑢𝑗 = 𝛿𝑖𝑗 (eqn. (2.21)).
In the following we investigate the differential of two applications, and provide dynamical

system to compute them:

1. R ↦→ 𝑈𝑈𝑇 where 𝑈𝑈𝑇 ∈ 𝒢 is the orthogonal projector over the dominant subspace
of R.

2. R ↦→
∑︀𝑝

𝑖=1 𝑢𝑖𝑣
𝑇
𝑖 (when R is diagonalizable), or in other words the application mapping

R to the (non-orthogonal) linear projector whose image is the dominant subspace of
R and kernel is the stable subspace spanned by the remaining eigenvectors.

Oblique projection on the Grassman manifold

In this part we consider again the Grassman manifold, embedded inℳ𝑛,𝑛 instead of Sym𝑛 :

𝒢 = {𝑈𝑈𝑇 ∈ℳ𝑛,𝑛|𝑈 ∈ℳ𝑛,𝑝 and 𝑈𝑇 𝑈 = 𝐼}.

We have seen (remark 2.17) that its tangent space is

𝒯 (𝑅) = {𝑈Δ𝑇 + Δ𝑈𝑇 |Δ ∈ℳ𝑛,𝑝, 𝑈𝑇 Δ = 0}.

Applying the methodology explained at the end of section 2.1.3, here is our candidate of
oblique projection:
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Proposition 2.33. Consider ΠM the application mapping a matrix R =
∑︀𝑛

𝑖=1 𝜆𝑖(R)𝑢𝑖𝑣
𝑇
𝑖

to 𝑈𝑈𝑇 the orthogonal projector over the dominant 𝑝-dimensional subspace Span(𝑈) =
Span(𝑢𝑖)1≤𝑖≤𝑝 of R. Then ΠM is an oblique projection on 𝒢, and the respective normal
space at 𝑅 = 𝑈𝑈𝑇 ∈ 𝒢 is the set of matrices R ∈ℳ𝑛,𝑛 for which Span(𝑈) is stable by R:

𝒩 (𝑈𝑈𝑇 ) = {𝑁 ∈ 𝐸|Span(𝑁𝑈) ⊂ Span(𝑈)}
= {𝑁 ∈ 𝐸|(𝐼 − 𝑈𝑈𝑇 )𝑁𝑈𝑈𝑇 = 0}.

Proof. We check the conditions of definition 2.9. The continuity of the eigenvalues of a
matrix imply that ΠM is well posed on an open neighborhood 𝒱 ⊂ ℳ𝑛,𝑛 containing 𝒢. It
is clear that ΠM (𝑈𝑈𝑇 ) = 𝑈𝑈𝑇 and that if 𝑁 ∈ 𝒱 satisfies ΠM (𝑈𝑈𝑇 + 𝑁) = 𝑈𝑈𝑇 , the
subspace spanned by 𝑈 must be stable by 𝑁 = (𝑁 + 𝑈𝑈𝑇 )− 𝑈𝑈𝑇 . Reciprocally consider
𝑁 ∈ 𝒩 (𝑈𝑈𝑇 ) and denote (𝜆𝑖(𝑁))1≤𝑖≤𝑛 the eigenvalues of 𝑁 where the first 𝑝 are associated
with the stable subspace Span(𝑈). Span(𝑈) is stable by 𝑁+𝑈𝑈𝑇 , with eigenvalues 𝜆𝑖(𝑁)+1
for 1 ≤ 𝑖 ≤ 𝑝, while Span(𝑈)⊥ is stable by 𝑁𝑇 + 𝑈𝑈𝑇 , with associated eigenvalues 𝜆𝑗(𝑁)
for 𝑝+1 ≤ 𝑗 ≤ 𝑛. Since 𝑁𝑇 +𝑈𝑈𝑇 and 𝑁 +𝑈𝑈𝑇 share the same eigenvalues, we deduce by
continuity that for 𝑁 ∈ 𝒩 (𝑅) in a neighborhood of 0, 1 + 𝜆𝑖(𝑁) > 𝜆𝑝+𝑗(𝑁) for 1 ≤ 𝑖 ≤ 𝑝
and 1 ≤ 𝑗 ≤ 𝑛− 𝑝. Hence ΠM (𝑈𝑈𝑇 + 𝑁) = 𝑈𝑈𝑇 .

Proposition 2.34. The linear projector Π𝒯 (𝑈𝑈𝑇 ) whose image is the tangent space 𝒯 (𝑈𝑈𝑇 )
and whose kernel 𝒩 (𝑈𝑈𝑇 ) is given by:

Π𝒯 (𝑈𝑈𝑇 ) : ℳ𝑛,𝑛 → 𝒯 (𝑈𝑈𝑇 )
X ↦→ (𝐼 − 𝑈𝑈𝑇 )X𝑈𝑈𝑇 + 𝑈𝑈𝑇X𝑇 (𝐼 − 𝑈𝑈𝑇 ).

Or with the coordinate of the horizontal space, ΔΠ𝒯 (𝑈𝑈𝑇 )X
= (𝐼 − 𝑈𝑈𝑇 )X𝑈 .

Proof. It is clear that Π𝒯 (𝑈𝑈𝑇 ) = Π𝒯 (𝑈𝑈𝑇 ) ∘Π𝒯 (𝑈𝑈𝑇 ) which shows that Π𝒯 (𝑈𝑈𝑇 ) is a linear
projector. One can check then that Ker(Π𝒯 (𝑈𝑈𝑇 )) = 𝒩 (𝑈𝑈𝑇 ) and Span(Π𝒯 (𝑈𝑈𝑇 )) ⊂
𝒯 (𝑈𝑈𝑇 ). Noticing that 𝒯 (𝑅) ∩𝒩 (𝑅) = {0}, one deduces Span(Π𝒯 (𝑈𝑈𝑇 )) = 𝒯 (𝑅).

Remark 2.24. Notice the difference with the orthogonal projection that assigned Δ =
(𝐼 − 𝑈𝑈𝑇 )sym(X)𝑈 .

Proposition 2.35. The Weingarten map in a direction 𝑁 ∈ 𝒩 (𝑈𝑈𝑇 ) for the manifold 𝒢
equipped with the map of projectors 𝑈𝑈𝑇 ↦→ Π𝒯 (𝑈𝑈𝑇 ) is given by

𝐿𝑈𝑈𝑇 (𝑁) : 𝒯 (𝑅) → 𝒯 (𝑈𝑈𝑇 )
𝑋 ↦→ 2× sym((𝐼 − 𝑈𝑈𝑇 )𝑁𝑋𝑈𝑈𝑇 −𝑋𝑈𝑈𝑇 𝑁𝑈𝑈𝑇 )

i.e. with the coordinate of the horizontal space, the map Δ ↦→ (𝐼 − 𝑈𝑈𝑇 )𝑁Δ −Δ𝑈𝑇 𝑁𝑈 .
If 𝑁 =

∑︀𝑛
𝑖=1 𝜆𝑖𝑢𝑖𝑣

𝑇
𝑖 is diagonalizable and Span(𝑈) = Span(𝑢𝑖)1≤𝑖≤𝑝, then 𝐿𝑈𝑈𝑇 (𝑁) is also

diagonalizable and the 𝑝(𝑛− 𝑝) eigenvalues are given by

𝜅𝑖(𝑝+𝑗)(𝑁) = 𝜆𝑝+𝑗(𝑁)− 𝜆𝑖(𝑁), 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑛− 𝑝.

A corresponding basis of eigenvectors Φ𝑖𝑗 ∈ 𝒯 (𝑈𝑈𝑇 ) is given by

Φ𝑖(𝑝+𝑗) = 𝑈𝑈𝑇 𝑣𝑖𝑢
𝑇
𝑝+𝑗(𝐼 − 𝑈𝑈𝑇 ) + (𝐼 − 𝑈𝑈𝑇 )𝑢𝑝+𝑗𝑣𝑇

𝑖 𝑈𝑈𝑇 ,
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associated with the dual basis of left eigenvectors defined by:

∀𝑋 ∈ 𝒯 (𝑅), < Φ*
𝑖𝑝+𝑗 , 𝑋 >= 𝑣𝑇

𝑝+𝑗𝑋𝑢𝑖.

Proof. The derivation of the expression of the Weingarten map is analogous to proposi-
tion 2.29 and is omitted. The reader is invited to check that the proposed expression for
Φ𝑖𝑗 yields indeed a basis of eigenvectors of 𝐿𝑈𝑈𝑇 (𝑁). To find the dual basis, one considers
𝑋 =

∑︀
𝑖𝑗 𝛼𝑖𝑗Φ𝑖𝑗 ∈ 𝒯 (𝑅) and checks that 𝛼𝑖𝑗 = 𝑣𝑇

𝑗 𝑋𝑢𝑖 as claimed.

Corollary 2.5. Let R(𝑡) ∈ℳ𝑛,𝑛 a time dependent matrix and denote 𝜆𝑖(𝑡) its eigenvalues.
Assume that ΠM (R(𝑡)) = 𝑈(𝑡)𝑈(𝑡)𝑇 is defined for all times, that is ℜ(𝜆𝑝(𝑡)) > ℜ(𝜆𝑝+1(𝑡)).
Then a dynamical system for 𝑈(𝑡) such that Span(𝑈(𝑡)) is the dominant subspace of R(𝑡)
at all times is

�̇� =
∑︁

1≤𝑖≤𝑝
1≤𝑗≤𝑛−𝑝

1
𝜆𝑖 − 𝜆𝑝+𝑗

[︁
𝑣𝑇

𝑝+𝑗Ṙ𝑢𝑖

]︁
(𝐼 − 𝑈𝑈𝑇 )𝑢𝑝+𝑗𝑣𝑇

𝑖 𝑈, (2.54)

where (𝑢𝑖)1≤𝑖≤𝑛 and (𝑣𝑖)1≤𝑖≤𝑛 are the right and left eigenvectors of R(𝑡) − 𝑈(𝑡)𝑈(𝑡)𝑇 , as-
sociated with the eigenvalues 𝜆𝑖(𝑡)− 1 for 1 ≤ 𝑖 ≤ 𝑝 and 𝜆𝑝+𝑗(𝑡) for 1 ≤ 𝑗 ≤ 𝑛− 𝑝.

Proof. theorem 2.2 ensures the existence of a differentiable trajectory 𝑢(𝑡)𝑢𝑇 (𝑡) such that
𝑢(𝑡) is stable by R(𝑡) and 𝑢(0) = 𝑈(0). The continuity of eigenvalues imply 𝑢(𝑡)𝑢(𝑡)𝑇 =
𝑈(𝑡)𝑈(𝑡)𝑇 = Π𝒢(R). Formula (2.54) follows identically as in corollary 2.4.

Remark 2.25. Note that (𝑢𝑖)1≤𝑖≤𝑝 and (𝑣𝑝+𝑗)1≤𝑗≤𝑛−𝑝 in (2.54) are also right and left
eigenvectors of R, but not (𝑢𝑝+𝑗)1≤𝑗≤𝑛−𝑝 and (𝑣𝑖)1≤𝑖≤𝑝.

We know already from the result of proposition 2.8 that d(𝑈𝑈𝑇 )/d𝑡 = Π𝒯 (𝑈𝑈𝑇 )(R −
𝑈𝑈𝑇 ) (eqn. (2.24)) is a dynamical system for which Π𝒢(R) is a stable equilibrium point
provided R is sufficiently close to 𝒢. Examining the eigenvalues of the Weingarten map, we
recover Theorem 2.3 of [13].

Corollary 2.6. Let R ∈ ℳ𝑛,𝑛 such that Π𝒢(R) is defined. Then Π𝒢(R) is the unique
stable equilibrium point of the dynamical system defined on 𝒢 by

�̇� = (𝐼 − 𝑈𝑈𝑇 )R𝑈.

Proof. This dynamical system coincides with (2.24) since (𝐼 − 𝑈𝑈𝑇 )(R − 𝑈𝑈𝑇 )𝑈 = (𝐼 −
𝑈𝑈𝑇 )R𝑈 . Equilibrium points 𝑈𝑈𝑇 are those for which 𝑁 = R − 𝑈𝑈𝑇 ∈ 𝒩 (𝑅), i.e.
those such that 𝑈 spans a subspace of R formed by 𝑝 eigenvectors. Denote (𝜆𝑖)1≤𝑖≤𝑝 the
corresponding eigenvalues and (𝜆𝑝+𝑗)1≤𝑗≤𝑛−𝑝 the remaining one. Then the eigenvalues of the
Weingarten map are 𝜅𝑖(𝑝+𝑗)(𝑁) = 𝜆𝑝+𝑗−(𝜆𝑖−1). The stability condition ℜ(𝜅𝑖(𝑝+𝑗)(𝑁)) < 1
can be satisfied for all eigenvalues only if 𝑈𝑈𝑇 = Π𝒢(R).

Oblique projection on the “bi-Grassman” manifold

In this part we get interested in the derivative of the application mapping a matrix (possibly
non symmetric) to the projector whose image is the dominant subspace and kernel the
complement stable subspace.
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Definition 2.15. We denote M the set of rank-𝑝 linear projectors of ℳ𝑛,𝑛:

M = {𝑅 ∈ℳ𝑛,𝑛|𝑅2 = 𝑅 and rank(𝑅) = 𝑝}
= {𝑈𝑉 𝑇 |𝑈 ∈ℳ𝑛,𝑝, 𝑉 ∈ℳ𝑛,𝑝, 𝑉 𝑇 𝑈 = 𝐼}.

Proof. We prove the ensemble equality. It is clear that with these notations, 𝑈𝑉 𝑇 is a
projector of rank 𝑝, because 𝑈𝑉 𝑇 𝑈𝑉 𝑇 = 𝑈𝑉 𝑇 and Tr(𝑈𝑉 𝑇 ) = Tr(𝑉 𝑇 𝑈) = 𝐼. Now, if 𝑅 is
a projector of rank 𝑝, denote 𝑃 an invertible matrix diagonalizing 𝑅. Then 𝑈 is obtained
from the first 𝑝 columns of 𝑃 and 𝑉 is obtained from the first 𝑝 columns of 𝑃 −𝑇 .

Remark 2.26. 𝑈𝑉 𝑇 is the unique projector whose image is Span(𝑈𝑉 𝑇 ) = Span(𝑈) and
whose kernel is Ker(𝑈𝑉 𝑇 ) = Span(𝑉 )⊥.

A tangent vector 𝑋 ∈ 𝒯 (𝑈𝑉 𝑇 ) has the form 𝑋 = 𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇
𝑉 where 𝑋𝑈 and 𝑋𝑉

can be understood as the time derivatives of the matrices 𝑈 and 𝑉 . Similarly as with the
grassman manifold, a “DO-condition” appears to uniquely parameterize the tangent spaces
of M :

Proposition 2.36. The tangent space of M is

𝒯 (𝑈𝑉 𝑇 ) = {𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇
𝑉 |𝑋𝑈 ∈ℳ𝑛,𝑝, 𝑋𝑉 ∈ℳ𝑛,𝑝 , 𝑉 𝑇 𝑋𝑈 + 𝑈𝑇 𝑋𝑉 = 0}

= {𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇
𝑉 |𝑋𝑈 ∈ℳ𝑛,𝑝, 𝑋𝑉 ∈ℳ𝑛,𝑝 , 𝑉 𝑇 𝑋𝑈 = 𝑈𝑇 𝑋𝑉 = 0}

We refer to ℋ𝑈𝑉 𝑇 = {(𝑋𝑈 , 𝑋𝑉 ) ∈ℳ𝑛,𝑝×ℳ𝑛,𝑝|𝑋𝑇
𝑈 𝑉 = 𝑋𝑇

𝑉 𝑈 = 0} as the horizontal space
at the point 𝑅 = 𝑈𝑉 𝑇 and the map (𝑋𝑈 , 𝑋𝑉 ) ↦→ 𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇

𝑉 from ℋ𝑈𝑉 𝑇 to 𝒯 (𝑈𝑉 𝑇 ) is
an isomorphism. Hence M is a smooth manifold of dimension 2𝑝(𝑛− 𝑝).

Proof. We first prove the inclusion ⊂, the inclusion ⊃ being obvious. Consider two given
𝑋𝑈 and 𝑋𝑉 and write {︃

𝑋𝑈 = (𝐼 − 𝑈𝑉 𝑇 )𝑋𝑈 + 𝑈𝑉 𝑇 𝑋𝑈

𝑋𝑉 = (𝐼 − 𝑉 𝑈𝑇 )𝑋𝑉 + 𝑉 𝑈𝑇 𝑋𝑉

Denote Ω = 𝑉 𝑇 𝑋𝑈 , the condition 𝑉 𝑇 𝑋𝑈 + 𝑈𝑇 𝑋𝑉 = 0 is equivalent to write{︃
𝑋𝑈 = (𝐼 − 𝑈𝑉 𝑇 )𝑋𝑈 + 𝑈Ω
𝑋𝑉 = (𝐼 − 𝑉 𝑈𝑇 )𝑋𝑉 − 𝑉 Ω𝑇

Denote now 𝑋 ′
𝑈 = (𝐼 − 𝑈𝑉 𝑇 )𝑋𝑈 and 𝑋 ′

𝑉 = (𝐼 − 𝑉 𝑈𝑇 )𝑋𝑉 . Then one has 𝑉 𝑇 𝑋 ′
𝑈 =

𝑈𝑇 𝑋 ′
𝑉 = 0 and 𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇

𝑉 = 𝑋 ′
𝑈 𝑉 𝑇 + 𝑈(𝑋 ′

𝑉 )𝑇 showing the ensemble equality. In
addition, if 𝑋 = 𝑋𝑈 𝑉 𝑇 + 𝑈𝑋𝑇

𝑉 with 𝑈𝑇 𝑋𝑉 = 𝑉 𝑇 𝑋𝑈 = 0 then one can obtain 𝑋𝑈 = 𝑋𝑈
and 𝑋𝑉 = 𝑋𝑇 𝑉 showing the uniqueness of the tangent space parameterization.

Proposition 2.37. Consider ΠM the application mapping a matrix R ∈ℳ𝑛,𝑛 to the linear
projector whose image is the dominant subspace of R and kernel the complementary stable
subspace spanned by the remaining eigenvectors:

ΠM : 𝐸 → M
R =

∑︀𝑛
𝑖=1 𝜆𝑖(R)𝑢𝑖𝑣

𝑇
𝑖 ↦→ ΠM (R) =

∑︀𝑛
𝑖=1 𝑢𝑖𝑣

𝑇
𝑖 .

Then ΠM is an oblique projection on M , and the respective normal space 𝒩 (𝑈𝑉 𝑇 ) at
𝑅 = 𝑈𝑉 𝑇 ∈ M is the set of matrices R ∈ ℳ𝑛,𝑛 for which both Span(𝑈) and Span(𝑉 )⊥
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are stable by R:

𝒩 (𝑈𝑉 𝑇 ) = {𝑁 ∈ℳ𝑛,𝑛|Span(𝑁𝑈) ⊂ Span(𝑈) and 𝑁 [Span(𝑉 )⊥] ⊂ Span(𝑉 )⊥}
= {𝑁 ∈ℳ𝑛,𝑛|𝑁 = (𝐼 − 𝑈𝑉 𝑇 )𝑁(𝐼 − 𝑈𝑉 𝑇 ) + 𝑈𝑉 𝑇 𝑁𝑈𝑉 𝑇 }.

Proof. The proof is identical to the one of proposition 2.33.

Proposition 2.38. The linear projector Π𝒯 (𝑈𝑉 𝑇 ) whose image is the tangent space 𝒯 (𝑈𝑉 𝑇 )
and whose kernel is 𝒩 (𝑈𝑉 𝑇 ) is given by:

Π𝒯 (𝑈𝑉 𝑇 ) : ℳ𝑛,𝑛 → 𝒯 (𝑈𝑉 𝑇 )
X ↦→ (𝐼 − 𝑈𝑉 𝑇 )X𝑈𝑉 𝑇 + 𝑈𝑉 𝑇X(𝐼 − 𝑈𝑉 𝑇 ),

or with the coordinates of the horizontal space, 𝑋𝑈 = (𝐼 − 𝑈𝑉 𝑇 )X𝑈 and 𝑋𝑉 = (𝐼 −
𝑉 𝑈𝑇 )X𝑇 𝑉 .

Proof. The proof is analogous to the one of proposition 2.34 and is left to the reader.

Proposition 2.39. The Weingarten map 𝐿𝑈𝑉 𝑇 (𝑁) with respect to a normal vector 𝑁 ∈
𝒩 (𝑈𝑉 𝑇 ) is given by

DΠ𝒯 (𝑈𝑉 𝑇 )(𝑋) ·𝑁 = 𝑁𝑋𝑈𝑉 𝑇 + 𝑈𝑉 𝑇 𝑋𝑁 −𝑋𝑈𝑉 𝑇 𝑁𝑈𝑉 𝑇 − 𝑈𝑉 𝑇 𝑁𝑈𝑉 𝑇 𝑋,

or with the coordinates of the horizontal space ;

𝐿𝑅(𝑁) : ℋ𝑈𝑉 𝑇 → ℋ𝑈𝑉 𝑇

(𝑋𝑈 , 𝑋𝑉 ) ↦→ (𝑁𝑋𝑈 −𝑋𝑈 𝑉 𝑇 𝑁𝑈, 𝑁𝑇 𝑋𝑉 −𝑋𝑉 𝑈𝑇 𝑁𝑇 𝑉 ).

Denote 𝑁 =
∑︀𝑛

𝑖=1 𝜆𝑖(𝑁)𝑢𝑖𝑣
𝑇
𝑖 the eigendecomposition of 𝑁 in C with 𝑈𝑉 𝑇 =

∑︀𝑝
𝑖=1 𝑢𝑖𝑣

𝑇
𝑖 .

The eigenvalues of 𝐿𝑅(𝑁) are the 𝑛(𝑛− 𝑝) reals

𝜅𝑖𝑗 = 𝜆𝑗(𝑁)− 𝜆𝑖(𝑁) ∀1 ≤ 𝑖 ≤ 𝑝, 𝑝 + 1 ≤ 𝑗 ≤ 𝑛.

For each eigenvalues one can find two independent eigenvectors:

Φ*
𝑖𝑗,𝑈 = 𝑢𝑖𝑣

𝑇
𝑗 , Φ𝑖𝑗,𝑉 = 𝑢𝑗𝑣𝑇

𝑖 ,

with respective dual forms

< Φ*
𝑖𝑗,𝑈 , 𝑋 >= 𝑣𝑇

𝑖 𝑋𝑢𝑗 , < Φ*
𝑖𝑗,𝑉 , 𝑋 >= 𝑣𝑇

𝑗 𝑋𝑢𝑖.

Proof. The derivation of the Weingarten map is identical to the one of proposition 2.29 and
is omitted. The dual basis is obtained by writing 𝑋 =

∑︀
𝑖𝑗 𝛼𝑖𝑗,𝑈 Φ𝑖𝑗,𝑈 + 𝛼𝑖𝑗,𝑉 Φ𝑖𝑗,𝑉 for a

given 𝑋 ∈ 𝒯 (𝑅) and extracting 𝛼𝑖𝑗,𝑈 and 𝛼𝑖𝑗,𝑉 by right and left multiplications by 𝑢𝑖 and
𝑣𝑇

𝑖 .

Corollary 2.7. The oblique projection ΠM is differentiable and its differential is given by

DXΠM (R) =
∑︁

1≤𝑖≤𝑝
1≤𝑗≤𝑛−𝑝

1
𝜆𝑖(R)− 𝜆𝑝+𝑗(R)

[︁
(𝑣𝑇

𝑖 X𝑢𝑝+𝑗)𝑢𝑖𝑣
𝑇
𝑝+𝑗 + (𝑣𝑇

𝑝+𝑗X𝑢𝑖)𝑢𝑝+𝑗𝑣𝑇
𝑖

]︁
.
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In other words, if R(𝑡) ∈ℳ𝑛,𝑛 is a time dependent matrix whose eigenvalue decomposition
is given by R(𝑡) =

∑︀𝑛
𝑖=1 𝜆𝑖(𝑡)𝑢𝑖𝑣

𝑇
𝑖 (where the eigenvalues have been ordered according to

their real parts) and if ΠM (R(𝑡)) is defined for all times, or in other words, ℜ(𝜆𝑝(𝑡)) >
ℜ(𝜆𝑝+1(𝑡)), then a dynamical system tracking the dominant stable subspace Span(𝑈) =
Span(𝑢𝑖)1≤𝑖≤𝑝 and its stable complementary Span(𝑉 )⊥ = Span(𝑢𝑝+𝑗)1≤𝑗≤𝑛−𝑝 is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̇� =
∑︁

1≤𝑖≤𝑝
1≤𝑗≤𝑛−𝑝

1
𝜆𝑖(𝑡)− 𝜆𝑝+𝑗(𝑡)(𝑣𝑇

𝑝+𝑗Ṙ𝑢𝑖)𝑢𝑝+𝑗𝑣𝑇
𝑖 𝑈

�̇� =
∑︁

1≤𝑖≤𝑝
1≤𝑗≤𝑛−𝑝

1
𝜆𝑖(𝑡)− 𝜆𝑝+𝑗(𝑡)(𝑣𝑇

𝑖 Ṙ𝑢𝑝+𝑗)𝑣𝑝+𝑗𝑢𝑇
𝑖 𝑉.

Finally, we explicit as well the dynamical system that allows to compute the projection
map ΠM .

Corollary 2.8. If R =
∑︀𝑛

𝑖=1 𝜆𝑖(R)𝑢𝑖𝑣
𝑇
𝑖 is a real matrix diagonalizable in C and such that

ℜ(𝜆𝑝(R)) > ℜ(𝜆𝑝+1(R)), then 𝑈𝑉 𝑇 =
∑︀𝑝

𝑖=1 𝑢𝑖𝑣
𝑇
𝑖 = ΠM (R) is the unique asymptotically

stable equilibrium point of the dynamical system{︃
�̇� = (𝐼 − 𝑈𝑉 𝑇 )R𝑈

�̇� = (𝐼 − 𝑉 𝑈𝑇 )R𝑇 𝑉.

Proof. The proof follows again immediately by noticing that 𝑁 = R−𝑅 with 𝑅 = ΠM (R)
is the unique normal vector 𝑁 and point 𝑅 such that R−𝑅 is a normal vector and the real
parts of the eigenvalues of 𝐿𝑅(R) are strictly lower than one.

2.3 Projected dynamical systems and dynamic approxima-
tion

In this part we apply the results of section 2.1.2 to analyze projected dynamical systems onto
smooth manifolds. The results presented here after will be readily applicable to the fixed
rank manifold, for which the corresponding projected dynamical system will be directly
related to the Dynamically Orthogonal approximation, which will be the focus of the next
chapter.

Consider a dynamical system associated with a time dependent vector field ℒ(𝑡, ·) ∈ 𝐸
in the full Euclidean space 𝐸:

Ṙ = ℒ(𝑡,R), (2.55)

If we know that the trajectory R(𝑡) lies approximately on some manifold M one can seek
to find an approximation of R(𝑡) obtained by evolving an approximation 𝑅(𝑡) directly on
M , i.e. one look for a dynamical system of the form

�̇� = 𝐿(𝑡, 𝑅) ∈ 𝒯 (𝑅), (2.56)

where 𝐿(𝑡, ·) is a tangent vector field on M . Such approximation can naturally be obtained
by replacing the vector field ℒ(𝑡, ·) of the ambient space with its tangent projection every-
where on M : this is the idea of “combing” the hair formed by the vector field ℒ(𝑡, ·) in 𝐸
onto the manifold M as illustrated in the introduction on Figure 2-1.
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Definition 2.16. The projected dynamical system on M ,{︃
�̇� = Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))

𝑅(0) = ΠM (R(0)), (2.57)

is called the dynamic approximation of (2.55), and 𝑅(𝑡) is called the reduced solution.

Remark 2.27. For model order reduction applications as motivated in the introduction,
𝐸 =ℳ𝑙,𝑚 is the space of all discretized solutions of (4), and M is the fixed rank manifold,
over which a rank 𝑟 approximation by evolving modes and coefficient separately. This will
be the focus of chapter 3.

For the approximation (2.57) to be perfect, the reduced solution 𝑅(𝑡) should coincide
at all times with the projection ΠM (R(𝑡)) of the original solution. Nevertheless, ΠM (R(𝑡))
is not the solution of a reduced system of the form (2.56) since its time derivative depends
directly on the value of R(𝑡) in the full space 𝐸: replacing X by Ṙ = ℒ(𝑡,R) in (2.5) yields

d
d𝑡

ΠM (R(𝑡)) = Π𝒯 (ΠM (R))(ℒ(𝑡,R)) + DΠ𝒯 (ΠM (R))

(︂ d
d𝑡

ΠM (R(𝑡))
)︂
· (R−ΠM (R)). (2.58)

One therefore sees from this equation that the projected dynamical system (2.57) is obtained
by replacing R(𝑡) in (2.58) with its approximation 𝑅(𝑡) ∈M , for which 𝑅 = ΠM (𝑅) makes
the curvature term DΠ𝒯 (ΠM (𝑅))

(︁
d
d𝑡ΠM (𝑅)

)︁
· (𝑅 − ΠM 𝑅)) vanish. Accounting for this

term in all generality would require external information to estimate the neglected normal
component R−ΠM (R).

The above is related to a “computational” interpretation of the dynamic approximation
(2.57). Consider a time integration of the dynamical system (2.55) over (𝑡𝑛, 𝑡𝑛+1),

R𝑛+1 = R𝑛 + Δ𝑡ℒ(𝑡𝑛,R𝑛, Δ𝑡), (2.59)

where ℒ(𝑡,R, Δ𝑡) denotes the full-space integral ℒ(𝑡,R, Δ𝑡) = 1
Δ𝑡

∫︀ 𝑡+Δ𝑡
𝑡 ℒ(𝑠,R(𝑠))d𝑠 for the

exact integration or the increment function [62] for a numerical integration. Examples of
the latter include ℒ(𝑡,R, Δ𝑡) = ℒ(𝑡,R) for forward Euler and ℒ(𝑡,R, Δ𝑡) = ℒ(𝑡+Δ𝑡/2,R+
Δ𝑡/2ℒ(𝑡,R)) for a second-order Runge-Kutta scheme. Assume that the solution R𝑛 at time
𝑡𝑛 is well approximated by an estimation 𝑅𝑛 ∈M . A natural way to obtain an estimation
of ΠM (R𝑛+1) at the next time step is to set{︃

𝑅𝑛+1 = ΠM (𝑅𝑛 + Δ𝑡ℒ(𝑡, 𝑅𝑛, Δ𝑡))
𝑅0 = ΠM (R(0)).

(2.60)

It turns out that (2.60) can be seen as a discretization of the dynamic approximation
(2.57). One finds that, for any point 𝑅 ∈M on the manifold,

ΠM (𝑅 + Δ𝑡ℒ(𝑡, 𝑅, Δ𝑡))−𝑅

Δ𝑡
−→

Δ𝑡→0
Π𝒯 (𝑅)(ℒ(𝑡, 𝑅)) (2.61)

holds true since the curvature term vanishes in (2.58), and ℒ(𝑡, 𝑅, 0) = ℒ(𝑡, 𝑅) by con-
sistency of the time marching with the exact integration (2.59) [62]. This implies, under
sufficient regularity condition on ℒ, that the continuous limit of the scheme (2.60) is the
projected dynamical system (2.57).
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Theorem 2.5. Assume that the reduced solution (2.57) is defined on a time interval [0, 𝑇 ].
Consider 𝑁𝑇 time steps Δ𝑡 = 𝑇/𝑁𝑇 , denote 𝑡𝑛 = 𝑛Δ𝑡 and consider 𝑅𝑛 the sequence
obtained from the scheme (2.60). Assume that ℒ is Lipschitz continuous, that is there exists
a constant 𝐾 such that

∀𝑡 ∈ [0, 𝑇 ], ∀R1,R2 ∈ 𝐸, ||ℒ(𝑡,R1)− ℒ(𝑡,R2)|| ≤ 𝐾||R1 −R2||. (2.62)

Then the sequence 𝑅𝑛 converges uniformly to the reduced solution 𝑅(𝑡) in the following
sense:

sup
0≤𝑛≤𝑁𝑇

||𝑅𝑛 −𝑅(𝑡𝑛)|| −→
Δ𝑡→0

0.

Proof. It is sufficient to check that the scheme (2.60) is both consistent and stable (see [62]).
Denote Φ the increment function of the scheme (2.60):

Φ(𝑡, 𝑅, Δ𝑡) = ΠM (𝑅 + Δ𝑡ℒ(𝑡, 𝑅, Δ𝑡))−𝑅

Δ𝑡
= 1

Δ𝑡

∫︁ 1

0

d
d𝜏

ΠM (𝑔(𝑅, 𝑡, 𝜏, Δ𝑡))d𝜏 (2.63)

with 𝑔(𝑅, 𝑡, 𝜏, Δ𝑡) = 𝑅 + 𝜏Δ𝑡ℒ(𝑡, 𝑅, Δ𝑡). Consider a compact neighborhood 𝒰 of 𝐸 con-
taining the trajectory 𝑅(𝑡) on the interval [0, 𝑇 ] and sufficiently thin such that 𝒰 does not
intersect the set (open, see [32]) where ΠM is not differentiable. On that set, ΠM is Lip-
schitz continuous. The consistency of (2.60) and continuity of Φ on [0, 𝑇 ] × 𝒰 × R follows
from (2.61). For usual time marching schemes (e.g. Runge Kutta), the Lipschitz condition
(2.62) also holds for the map 𝑅 ↦→ ℒ(𝑡, 𝑅, Δ𝑡). Therefore Φ is also Lipschitz continuous
with respect to 𝑅 on 𝒰 by composition. This is a sufficient stability condition.

Remark 2.28. The same results hold true if one uses

𝑅𝑛+1 = ΠM (𝑅𝑛 + Δ𝑡Π𝒯 (𝑅𝑛)ℒ(𝑡, 𝑅, Δ𝑡))

instead of (2.60), since (2.61) still holds3. This can be of interest in practice if the projection
operator ΠM is more easily computed in that fashion (this is the case for the fixed rank
manifold, as explained later on in algorithm 3).

Using theorem 2.4, a bound for the growth of the error committed by the reduced
solution is obtained. In order to state the result, we need to introduce a notation to
quantify the Lipschitz behavior of the projection onto tangent spaces 𝑅 ↦→ Π𝒯 (𝑅):

Definition 2.17. For any point 𝑅 ∈M there exists a constant 𝜌 such that

∀𝑅′ ∈M , ||Π𝒯 (𝑅) −Π𝒯 (𝑅′)|| ≤ 𝜌||𝑅−𝑅′||, (2.64)

where the norm of the left hand-side is the operator norm relative to the euclidean norm
|| || on 𝐸. We denote 𝜌∞(𝑅) the minimum constant 𝜌 such that the inequality above is
satisfied which we refer to as the “local” Lipschitz constant of Π𝒯 at 𝑅.

Proof. Consider a neighborhood 𝒱 of 0 in 𝒯 (𝑅) and 𝒰 a neighborhood of 𝑅 in M for which
the exponential map exp𝑅 is a local diffeomorphism from 𝒱 onto 𝒰 (see [139]). On that
neighborhood, the map 𝑅 ↦→ Π𝒯 (𝑅) is smooth, hence there exists a constant 𝐴 such that

∀𝑋 ∈ 𝒱, ||Π𝒯 (𝑅) −Π𝒯 (exp𝑅(𝑋))|| ≤ 𝐴||𝑋||
3We thank P.A. Absil for this remark.
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Since exp𝑅 is a local diffeomorphism and has hence a smooth inverse, there exists also a
constant 𝐵 such that ||𝑋|| = ||𝑋 − 0|| ≤ 𝐵|| exp𝑅(𝑋) − 𝑅||. Hence we have shown that
there exists 𝜂 such that

∀𝑅′ ∈M , ||𝑅−𝑅′|| ≤ 𝜂 ⇒ ||Π𝒯 (𝑅) −Π𝒯 (𝑅′)|| ≤ 𝐴𝐵||𝑅−𝑅′||.

Now it is a well known fact that for two projectors Π𝒯 (𝑅) and Π𝒯 (𝑅′), ||Π𝒯 (𝑅)−Π𝒯 (𝑅′)|| ≤ 1
(see e.g. Theorem 2.6.1 in [58]). Therefore (2.64) holds with 𝜌 = min( 1

𝜂 , 𝐴𝐵).

Remark 2.29. The local Lipschitz constant 𝜌∞(𝑅) on the fixed rank manifold is bounded
by 2/𝜎𝑟(𝑅), see lemma 3.1 in chapter 3.

Theorem 2.6. Consider R(𝑡) ∈ 𝐸 the solution of the original dynamical system (2.55).
Assume that the following conditions hold on a time interval [0, 𝑇 ]:

1. ℒ is Lipschitz continuous, i.e. equation (2.62) holds.

2. The original solution R(𝑡) stays close to the manifold M , in the sense that R(𝑡)
remains in a domain where ΠM is differentiable. In particular, R(𝑡) does not cross
the skeleton of M on [0, 𝑇 ] and

∀𝑡 ∈ [0, 𝑇 ], max
𝑖

𝜅𝑖(R(𝑡)−ΠM (R(𝑡))) < 1,

where the 𝜅𝑖 are the curvatures introduced in definition 2.7.

Then, the error of the reduced approximation 𝑅(𝑡) (eqn. (2.57)) remains controlled by the
best approximation error ||R−ΠM (R(𝑡))|| on [0, 𝑇 ]:

∀𝑡 ∈ [0, 𝑇 ], ||𝑅(𝑡)−ΠM (R(𝑡))|| ≤∫︁ 𝑡

0
||R(𝑠)−ΠM (R(𝑠))||

⎛⎝𝐾 + 𝜅∞(ΠM (R(𝑡)))||ℒ(𝑠,R(𝑠))||
1−max

𝑖
𝜅𝑖(R(𝑠)−ΠM (R(𝑠)))

⎞⎠ 𝑒𝜂(𝑡−𝑠)d𝑠, (2.65)

where 𝜅∞ is the maximal curvature defined at lemma 2.2, 𝜂 is the constant

𝜂 = 𝐾 + sup
𝑡∈[0,𝑇 ]

(︁
||ℒ(𝑡,R(𝑡))|| 𝜌∞(ΠM (R(𝑡)))

)︁
(2.66)

and 𝜌∞(ΠM (R(𝑡))) the local Lipschitz constant of Π𝒯 at ΠM (R(𝑡)).

Proof. The proof compares the derivative of the best approximation ΠM (R(𝑡)), obtained ex-
plicitly with the formula (2.12), to the derivative �̇� of the dynamic approximation (2.57), be-
fore applying Gronwall’s lemma. Denote 𝑅*(𝑡) = ΠM (R(𝑡)) and 𝑁(𝑡) = R(𝑡)−ΠM (R(𝑡)).
Since �̇�*(𝑡) = DṘΠM (R(𝑡)), bounding (2.5) and using lemma 2.1 yields:

||�̇�− �̇�*|| ≤ ||Π𝒯 (𝑅*)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))||+ max
𝑖

𝜅𝑖(𝑁(𝑡))
1− 𝜅𝑖(𝑁(𝑡)) ||ℒ(𝑡,R)||

≤ ||Π𝒯 (𝑅*)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))||+ 𝜅∞(𝑅*)||𝑁(𝑡)||
1−max𝑖 𝜅𝑖(𝑁(𝑡)) ||ℒ(𝑡,R)||.
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Furthermore,

||Π𝒯 (𝑅*)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))|| ≤ ||Π𝒯 (𝑅*)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡,R))||
+ ||Π𝒯 (𝑅)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅*))||
+ ||Π𝒯 (𝑅)(ℒ(𝑡, 𝑅*))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))||.

The Lipschitz continuity of ℒ and definition 2.17 together imply

||Π𝒯 (𝑅*)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡,R))|| ≤ 𝜌∞(𝑅*)||𝑅−𝑅*|| ||ℒ(𝑡,R)||,
||Π𝒯 (𝑅)(ℒ(𝑡,R))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅*))|| ≤ 𝐾||R−𝑅*||,
||Π𝒯 (𝑅)(ℒ(𝑡, 𝑅*))−Π𝒯 (𝑅)(ℒ(𝑡, 𝑅))|| ≤ 𝐾||𝑅−𝑅*||.

Finally, the following inequality is derived, combining all above equations together:

||�̇�− �̇�*|| ≤ (𝐾 + 𝜌∞(𝑅*)||ℒ(𝑡,R)||) ||𝑅−𝑅*||+
(︂

𝐾 + 𝜅∞(𝑅*)||ℒ(𝑡,R)||
1−max𝑖 𝜅𝑖(𝑁(𝑡))

)︂
||R−𝑅*||.

An application of Gronwall’s Lemma (see corollary 4.3. in [72]) yields (2.65).

Remark 2.30. This statement improves the result expressed in Theorem 5.1 of [83] (in the
case of M being the fixed rand manifold), since no assumption is made on the smallness
of the best approximation error ||R−ΠM (R)||, nor on the boundedness of ||𝑅−ΠM (R)||.
Note also that in the case one has access to the original derivative ℒ(𝑡,R(𝑡)) and consider
�̇� = Π𝒯 (𝑅)(ℒ(𝑡,R(𝑡))) instead of (2.57) (this is actually the framework considered in [83])
then the bounds above hold with 𝐾 = 0.

Theorem 3.1 highlights two sufficient conditions for the error committed by the DO
approximation to remain small :

Condition 1 The discrete operator ℒ must not be too sensitive to the error R(𝑡)−𝑅(𝑡),
namely the Lipschitz constant 𝐾 must be small. This error is commonly encountered by any
approximation made for evaluating the operator of a dynamical system (as a consequence
of Gronwall’s lemma [72]). If the Lipschitz constant is too big then one can expect (2.57)
not to be a really good approximation.

Condition 2 Independently of the choice of the reduced order model, the solution of
the initial system (2.55), R(𝑡), must remain close to the manifold M , or in other words,
must remain far from the skeleton Sk(M ) of M . As visible on Figure 2-2, the best rank
𝑟 approximation ΠM (R) of R exhibits a jump when R crosses the skeleton. (i.e. when
𝜎𝑟(R) = 𝜎𝑟+1(R) occurs for the fixed rank manifold). At that point, the discontinuity of
ΠM (R(𝑡)) cannot be tracked or any smooth dynamic approximation of the form (2.56).

Last, it should be noted that the growth rate 𝜂 (equation (2.66)) of the error is related
to the local lipschitz constant 𝜌∞(ΠM (R)) of Π𝒯 . This is related to the fact the tangent
projection Π𝑇 in (2.57) is applied at the location of the DO solution 𝑅(𝑡) instead of the one
of the best approximation ΠM (R). If 𝑅(𝑡) and ΠM (R(𝑡)) are too far from one another,
these tangent spaces may be oriented very differently because of the curvature of M .
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Chapter 3

Efficient simulation of stochastic
advection and Lagrangian
transport

3.1 Introduction

A typical challenge encountered in environmental Lagrangian flow predictions is the need for
dealing with velocity data that include a certain level of uncertainty, resulting from sparse
acquisitions, noise in direct measurements, or errors in the inferred numerical predictions
[94]. Uncertainty is modeled by “adding” randomness to the velocity field, each realization
𝑣(𝑡,𝑥; 𝜔) corresponding to a particular possible scenario 𝜔. An issue of great interest in
hazard predictions [88], is to quantify how this uncertainty reverberates in the Lagrangian
motion. A basic Monte-Carlo (MC) approach would then solve either the stochastic ODE{︃

�̇� =𝑣(𝑡,𝑥; 𝜔)
𝑥(0) =𝑥0,

(3.1)

or the stochastic partial differential equation (SPDE){︃
𝜕𝑡𝜓 + 𝑣(𝑡,𝑥; 𝜔) · ∇𝜓 = 0

𝜓(0,𝑥) = 𝑥,
(3.2)

for a large number of realizations, 𝜔. While performance of as well Monte-Carlo and particle
methods [27] can be optimized through parallelism, such methodologies are computationally
demanding for cases requiring high resolution in both the spatial and stochastic domains, i.e.
a large number of particles and realizations. Hence, while they have been useful in a variety
of applicationsm particle and MC methods are very expensive for uncertain advection.

A substantial benefit of the PDE formulation (3.2) is its compatibility with dynamical
model order reduction that take direct advantage of the spatial structures in the solution.
Classic reduced order methods aim to evolve low-rank decompositions such as 𝜓(𝑡,𝑥; 𝜔) ≃∑︀𝑟Ψ

𝑖=1 𝜁𝑖(𝑡; 𝜔)𝑢𝑖(𝑥) or 𝜓(𝑡,𝑥; 𝜔) ≃
∑︀𝑟Ψ

𝑖=1 𝜁𝑖(𝜔)𝑢𝑖(𝑡,𝑥) at a cost much smaller than the direct
realization methods [141, 57] by evolving independently a small number 𝑟Ψ of spatial modes,
𝑢𝑖, or stochastic coefficients, 𝜁𝑖. Challenges remain however because advection tends to
create fine features in the solution, with sharp gradients or shocks that evolve in time and
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space, and these shocks require to be handled with extreme care by numerical schemes
[109, 108, 134, 100]. For stochastic advection, the classic methods ranging from Polynomial
Chaos to stochastic Galerkin schemes [110, 77, 37] that either assume a priori choices of
time-independent modes 𝑢𝑖(𝑥), or rely on strong hypotheses on the probability distribution
of the coefficients 𝜁𝑖, may not be well suited for capturing these fine spatial patterns (because
requiring a high number of Fourier modes), or non Gaussian behaviors of the coefficients.
In addition, upwinding, total variation diminishing (TVD), or Essentially Non Oscillatory
(ENO) rules, must be adapted for reduced-order numerical advection schemes which is
challenging [145, 147, 125]. This is in part why most classic stochastic advection attempts
have essentially restricted themselves to one dimensional applications [57, 77, 37, 110] or
simplified 2D cases that do not exhibit strong shocks [149].

In contrast with classic reduced order methods, the Dynamically Orthogonal (DO)
methodology [124, 122] solves equations to simultaneously evolve a time-dependent basis of
modes, 𝑢𝑖(𝑡,𝑥), and coefficients, 𝜁𝑖(𝑡; 𝜔),

𝜓(𝑡,𝑥; 𝜔) ≃
𝑟Ψ∑︁
𝑖=1

𝜁𝑖(𝑡; 𝜔)𝑢𝑖(𝑡,𝑥) . (3.3)

Such dynamic approaches [91] can efficiently capture the evolving spatial flow features and
their variability. Numerical schemes for DO equations have been derived for a variety of
dynamics, from stochastic Navier-Stokes [147] to Hamilton-Jacobi [140] equations. The
question adapting advection schemes to the DO framework while maintaining consistency
of between determistic and stochastic integration has been investigated by Ueckermann
[147, 146] and has remained since then an active area of research in the MSEAS group.

The results developped in chapter 2 and provide a rigorous framework to further develop
the implementation and the numerical integration of the DO equations, understood as a
dynamic approximation over the fixed rank manifold (section 2.2.1). This chapter addresses
the implementation of the DO methodology [124] in view of its geometric interpretation, and
derives new numerical schemes for the stochastic advection equation (3.2) and Lagrangian
transports. We develop a deterministic/stochastic consistent methodology that attempts
at minimizing the between the MC and DO approximation “realization by realization”, in
contrast with an approach that would target at preserving only the statistical properties. As
an immediate benefit, an efficient computational methodology for evaluating an ensemble
of flow maps 𝜓(𝑡,𝑥; 𝜔) = 𝜑𝑡

0(𝑥; 𝜔) of the ODE (3.1) with random velocity is obtained. The
issue of capturing shocks is addressed in this work by considering fully linear but stabilized
advection schemes. This allows to apply in a compatible fashion reduced order methods that
rely on tensor decompositions of either the solution, 𝜓, or of its time derivative −𝑣 · ∇𝜓.
The schemes presented herein are not restricted to pure transport, they are also applicable
to stochastic PDEs that include advection terms of the form 𝑣 ·∇, such as the Navier Stokes
equations.

A synopsis of the coupled DO PDEs as initially introduced by [124] and of the methodol-
ogy that allows to derive a set of coupled PDEs “in the continuous domain” for the evolution
of the tensor decomposition (3.3) is given in section 3.2. Numerical schemes for this set of
PDEs are obtained by applying the DO methodology directly onto the spatial discretization
of the stochastic transport PDE rather than its continuous version (3.2). In that discrete
setting, it is found that the formally derived DO equations coincide with the projected dy-
namical system defined in definition 2.12 of the previous chapter, with M being the fixed
rank-𝑟 manifold. Applying directly the results developped previously, we obtain that (i)
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the Dynamically Orthogonal approximation (DO) coincides with the reduced order method
that that applies the SVD truncation after every time step Δ𝑡 with Δ𝑡→ 0 (ii) the approxi-
mation error is controlled over large integration times provided the original solution remains
close to the low rank manifold M , in the sense that it remains far from the skeleton of M .
This geometric condition can be expressed as an explicit dependence of the error on the
gaps between singular values of order 𝑟 and 𝑟+1. Section 3.3 focuses on the implementation
in practice of the DO machinery to solve the stochastic transport PDE (3.2). Factoriza-
tion properties of the advection operator must be preserved at the discrete level to avoid
additional level of approximations. This is ensured through the selection of a fully linear
advection scheme, whose accuracy and stability is obtained by the use of high order spatial
and temporal discretization combined with linear filtering, a technique popular in ocean en-
gineering [131]. It is explained how stochastic boundary conditions can be accounted for by
the model order reduced method in an optimal and convenient manner. Different possible
time discretization strategies for the DO approximation are discussed, as well as the issue of
modifying dynamically the stochastic dimensionality 𝑟Ψ of the tensor approximation (3.3).
It is explained how Riemannian gradient descents and geodesic equations can be integrated
to the time stepping to adaptively track the truncated SVD of the stochastic solution, and
to account for the curvature of the low-rank manifold. Finally, as a requirement of both
the DO method and multi-steps time marching schemes, an efficient method is proposed
for preserving the orthonormality of the modal basis (𝑢𝑖) during the time integration, as
well as the smooth evolution of this basis and the coefficients 𝜁𝑖. Numerical results of the
overall methodology are presented in section 3.4 using the bi-dimensional stochastic analytic
double-gyre flow and stochastic flow past a cylinder, both of which include sharp gradients.
The DO results are finally contrasted with those of direct Monte-Carlo.

3.2 Model order reduction of the stochastic transport equa-
tion with the Dynamically Orthogonal approximation

3.2.1 Mathematical setting for the transport PDE

The stochastic transport PDE (3.2) is set on a smooth bounded domain Ω of R𝑑 where 𝑑
denotes the spatial dimension. The flow map 𝜑𝑡

0 of the ODE (3.1) is defined for all time
if particle trajectories don’t leave the domain Ω, which is ensured if the normal flux 𝑣 · 𝑛
vanishes on the boundary 𝜕Ω, 𝑛 denoting the outward normal of Ω. In the following, one
deals with the more general case where 𝑣 · 𝑛 may have an arbitrary sign on 𝜕Ω. Inlet and
outlet boundaries are denoted respectively

𝜕Ω−(𝑡; 𝜔) = {𝑥 ∈ 𝜕Ω|𝑣(𝑡, 𝑥; 𝜔) · 𝑛 < 0}
𝜕Ω+(𝑡; 𝜔) = {𝑥 ∈ 𝜕Ω|𝑣(𝑡, 𝑥; 𝜔) · 𝑛 ≥ 0},

and several works [30, 16, 17] have shown that the transport eqn. (3.2) is well posed (under
suitable regularity assumptions on 𝑣), provided a Dirichlet boundary condition is prescribed
at the inlet 𝜕Ω−(𝑡; 𝜔). Following Leung [97], we consider the dirichlet boundary condition

𝜓(𝑡,𝑥; 𝜔) = 𝑥 on 𝜕Ω−(𝑡; 𝜔), (3.4)

which ensures that the solution 𝜓(𝑡,𝑥; 𝜔) carries the value of the initial entering location
of the particle that arrived in 𝑥 at time 𝑡. Theoretically no boundary conditions is required
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on the outlet boundary 𝜕Ω+(𝑡; 𝜔), but those may be needed for convenience in numeri-
cal schemes. In numerical applications of section 3.4, similarly as in [97], the Neumann
boundary condition was considered:

𝜕𝜓

𝜕𝑛
(𝑡,𝑥; 𝜔) = 0 on 𝜕Ω+(𝑡; 𝜔). (3.5)

This boundary condition naturally arises when considering 𝜓 as a viscous limits of eqn.
(3.2) (see Theorem 4.1 in [17]). For simplicity, it is assumed that a modal decomposition of
the stochastic velocity field 𝑣 is available:

𝑣(𝑡,𝑥; 𝜔) =
𝑟𝑣∑︁

𝑘=1
𝛽𝑘(𝑡; 𝜔)𝑣𝑘(𝑡,𝑥). (3.6)

3.2.2 Derivation of DO field equations in the continuous setting

The DO methodology uses equations to evolve adaptively modes 𝑢𝑖(𝑡,𝑥) and stochastic
coefficients 𝜁𝑖(𝑡; 𝜔) considered both as time-dependent quantities, so as to most accurately
update the modal approximation (3.3). Such equations can formally be found [124] by
replacing the solution 𝜓 with its tensor approximation (3.3) in the transport equation (3.2) :

(𝜕𝑡𝜁𝑗)𝑢𝑗 + 𝜁𝑗𝜕𝑡𝑢𝑗 + 𝜁𝑗𝛽𝑘𝑣𝑘 · ∇𝑢𝑗 = 0, (3.7)

where the Einstein summation convention over repeated indexes is used. The family of
modes is assumed orthonormal, namely

∀1 ≤ 𝑖, 𝑗 ≤ 𝑟 < 𝑢𝑖,𝑢𝑗 >=
∫︁

Ω
𝑢𝑖(𝑡,𝑥)𝑢𝑗(𝑡,𝑥)d𝑥 = 𝛿𝑖𝑗 , (3.8)

where <, > denotes the scalar product on 𝐿2(Ω). Furthermore, the “dynamically orthogonal
condition”

∀1 ≤ 𝑖, 𝑗 ≤ 𝑟, < 𝜕𝑡𝑢𝑖,𝑢𝑗 >= 0 (3.9)

is imposed to remove the redundancy in (3.3), coming from the fact that the modal decom-
position is invariant under rotations of modes 𝑢𝑖 and coefficients 𝜁𝑖 [124]. Assuming these
conditions, equations for the coefficients, 𝜁𝑖, are obtained by 𝐿2 projection of eqn. (3.7)
onto the modes, 𝑢𝑖:

∀1 ≤ 𝑖 ≤ 𝑟, 𝜕𝑡𝜁𝑖 + 𝜁𝑗𝛽𝑘 < 𝑣𝑘 · ∇𝑢𝑗 ,𝑢𝑖 >= 0. (3.10)

Governing equations for the modes, 𝑢𝑖, are obtained by 𝐿2 projection in the probability
space onto the coefficients: multiplying eqn. (3.7) by 𝜁𝑖, replacing 𝜕𝑡𝜁𝑖 by using eqn. (3.10),
applying the expectation and multiplying by the inverse (E[𝜁𝑖𝜁𝑗 ])−1 of the moment matrix
(E[𝜁𝑖𝜁𝑗 ])1≤𝑖,𝑗≤𝑘 yields :

𝜕𝑡𝑢𝑖 + (E[𝜁𝑖𝜁𝑗 ])−1E[𝜁𝑗𝛽𝑘]𝑣𝑘 · ∇𝑢𝑗 = (E[𝜁𝑖𝜁𝑗 ])−1E[𝜁𝑗𝛽𝑘] < 𝑣𝑘 · ∇𝑢𝑗 ,𝑢𝑙 > 𝑢𝑙. (3.11)

Deriving boundary conditions is slightly more delicate as (3.4) and (3.5) involve a stochastic
partition 𝜕Ω = 𝜕Ω−(𝑡; 𝜔) ∪ 𝜕Ω+(𝑡; 𝜔) of the boundary. They are obtained by rewriting
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equations (3.4) and (3.5) as

𝑟∑︁
𝑗=1

[︂
𝜁𝑗𝑢𝑗1𝑣·𝑛<0 + 𝜁𝑗

𝜕𝑢𝑗

𝜕𝑛
1𝑣·𝑛≥0

]︂
= 𝑥1𝑣·𝑛<0 on 𝜕Ω,

where 1𝑣·𝑛<0(𝑡,𝑥; 𝜔) is the random indicator variable equal to 1 when 𝑣 · 𝑛 < 0 and 0
otherwise, and 1𝑣·𝑛≥0 = 1− 1𝑣·𝑛<0. Projecting again onto the coefficients, 𝜁𝑖, yields mixed
boundary conditions for the modes, 𝑢𝑖:

E[𝜁𝑖𝜁𝑗1𝛽𝑘𝑣𝑘·𝑛<0]𝑢𝑗 + E[𝜁𝑖𝜁𝑗1𝛽𝑘𝑣𝑘·𝑛≥0]𝜕𝑢𝑗

𝜕𝑛
= E[𝜁𝑖1𝛽𝑘𝑣𝑘·𝑛<0]𝑥 on 𝜕Ω. (3.12)

So far, the methodology followed by works that have used DO equations to solve stochastic
PDEs [124, 140, 103] has been deriving a set of coupled PDEs for modes and coefficients
such as (3.10) to (3.12), before attempting to design appropriate time and spatial numerical
schemes for these equations. However this approach makes unclear how to deal with numer-
ical difficulties that are encountered in the discretization of the original PDE (1.1) and will
arise in a similar manner in the model order reduced system. In the same way unadapted
discretizations of the convective terms 𝑣 · ∇𝜓 in eqn. (1.1) lead to the blowing up of the
numerical solution, a great deal of attention must be given to the discretization of the fluxes
𝑣𝑘 · ∇𝑢𝑗 . Popular advection schemes [108] are using up-winding, in the sense that spatial
derivatives are discretized according to the orientation of the velocity, 𝑣, but it is unclear
how this rule translates when the velocity 𝑣 becomes stochastic. These difficulties were
actually acknowledged in previous works dealing with stochastic Navier-Stokes equations.
Ueckermann [147] proposed as an empirical remedy to average numerical fluxes according
to the probability distribution of the velocity direction.

3.2.3 DO approximation in the discrete matrix setting: projected dy-
namical system on the fixed rank manifold

Instead of seeking numerical schemes for the continuous DO partial differential equations
(3.10) to (3.12), a more rigorous approach is found by applying the DO methodology directly
on the spatial discretization chosen for the original SPDE (3.2). This idea may indicate
in general what should be the proper discretization of DO equations, assuming these are
well-posed, given available numerical schemes to simulate each deterministic realization.

In the following, we denote by Ψ𝑖,𝑗(𝑡) = 𝜓(𝑡,𝑥𝑖; 𝜔𝑗) ∈ ℳ𝑙,𝑚 the entries of a 𝑙-by-𝑚
matrix of realizations stored in computer memory. Here, 𝑙 denotes the spatial dimension
(typically 𝑙/𝑑 nodes 𝑥𝑖 are used for a 𝑑-dimensional domain) and 𝑚 is the number of
realizations 𝜔𝑗 are considered. The numerical solution Ψ(𝑡) of the SPDE (3.2) is obtained
by solving the matrix ODE in the ambiant space of 𝑙-by-𝑚 matrices ℳ𝑙,𝑚:

.
Ψ = ℒ(𝑡, Ψ) ∈ℳ𝑙,𝑚, (3.13)

where ℒ is a matrix operator that includes spatial discretization of the realizations of the
fluxes −𝑣 · ∇𝜓, and of the boundary conditions (3.4). As in section 2.2.1, we denote

Ψ(𝑡) = 𝑈(𝑡)𝑍(𝑡)𝑇 ≃ Ψ(𝑡) (3.14)

a rank 𝑟 approximation Ψ(𝑡) ∈ M , where 𝑈(𝑡) and 𝑍(𝑡) are respectively lower dimen-
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sional 𝑙-by-𝑟Ψ and 𝑚-by-𝑟Ψ matrices containing the discretizations 𝑈𝑖𝑘(𝑡) = 𝑢𝑘(𝑡,𝑥𝑖) and
𝑍𝑗𝑘(𝑡) = 𝜁𝑘(𝑡; 𝜔𝑗) of the modes and coefficients appearing in the decomposition (3.3). The
orthogonality of the modes (3.8) and the DO condition (3.9) are written at the discrete
level as

𝑈𝑇 𝑈 = 𝐼 and 𝑈𝑇 �̇� = 0. (3.15)

In this setting, the low-rank manifold is M = {Ψ ∈ ℳ𝑙,𝑚|rank(Ψ) = 𝑟Ψ} and the DO
approximation Ψ(𝑡) is defined to be the solution of the projected dynamical system on M
studied in the general case in section 2.3:{︃

Ψ̇ = Π𝒯 (Ψ)(ℒ(𝑡, Ψ))
Ψ(0) = ΠM (Ψ(0)). (3.16)

Using the expression (2.29) for the projection Π𝒯 (Ψ), this ODE system can be written as
the set of coupled evolution equations for the mode and coefficient matrices 𝑈 and 𝑍, that
turns to be exactly a discrete version of the continuous DO equations (3.10) and (3.11):{︃

�̇� = ℒ(𝑡, 𝑈𝑍𝑇 )𝑇 𝑈

�̇� = (𝐼 − 𝑈𝑈𝑇 )ℒ(𝑡, 𝑈𝑍𝑇 )𝑍(𝑍𝑇 𝑍)−1.
(3.17)

These equations are exactly those presented as DO equations in [124]. With the notation
of (4) and (5), using <· , ·> to denote the continuous dot product operator (an integral
over the spatial domain) and E the expectation, they were written as the following set of
coupled stochastic PDEs:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝜁𝑖 =< L (𝑡,𝑢DO; 𝜔),𝑢𝑖 >

𝑟∑︁
𝑗=1

E[𝜁𝑖𝜁𝑗 ]𝜕𝑡𝑢𝑗 = E

⎡⎣𝜁𝑖

⎛⎝L (𝑡,𝑢DO; 𝜔)−
𝑟∑︁

𝑗=1
< L (𝑡,𝑢DO; 𝜔),𝑢𝑗 > 𝑢𝑗

⎞⎠⎤⎦ .
(3.18)

However, when dealing with infinite dimensional Hilbert spaces, the vector space of solutions
of (4) depends on the PDEs, which complicates the derivation of a general theory for
(3.18). Considering the DO approximation as a computational method for evolving low
rank matrices relaxes these issues through the finite-dimensional setting.

Applying directly theorem 2.5, one finds that the DO approximation (3.17) corresponds
to the limit when the time step goes to 0 of a time integrating scheme for the original ODE
(3.13) that would apply the truncated SVD after each time step to remove the optimal
amount of information required to constrain the rank of the solution. Therefore, other re-
duced order models of the form (2.56) are characterized by larger errors on short integration
times for solutions whose initial value are low-rank.

Remark 3.1. Other dynamical systems that perform instantaneous matrix operations have
been studied in [20, 138, 31] (e.g. see Lemma 3.4 and Corollary 3.5) for tracking the full SVD
or QR decomposition. Continuous SVD has been combined with adaptive Kalman filtering
in uncertainty quantification to continuously adapt the dominant subspace supporting the
stochastic solution [89, 90, 91]. The dominant singular vectors of state transition matrices
and other operators have also found varied applications in atmospheric and ocean sciences
[43, 111, 76, 93, 102, 80, 33].

To obtain a precise bound for the approximation error, we need to state a result for the
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local lipschitz constant of the projection operator of the fixed rank manifold:
Lemma 3.1. For any points 𝑅1, 𝑅2 ∈M such that ||𝑅1 −𝑅2|| < 1

2(𝜎𝑟(𝑅1) + 𝜎𝑟(𝑅2)) ,

||Π𝒯 (𝑅1) −Π𝒯 (𝑅2)|| ≤
||𝑅1 −𝑅2||

1
2(𝜎𝑟(𝑅1) + 𝜎𝑟(𝑅2))− ||𝑅1 −𝑅2||

≤ ||𝑅1 −𝑅2||
𝜎𝑟(𝑅1)− 3

2 ||𝑅1 −𝑅2||
, (3.19)

where the norm of the left-handside is the operator norm. Also the following more global
estimate holds (see [150] and Theorem 2.6.1 in [59]):

||Π𝒯 (𝑅1) −Π𝒯 (𝑅2)|| ≤ max
(︂

1,
2

𝜎𝑟(𝑅1) ||𝑅
1 −𝑅2||

)︂
. (3.20)

Therefore the local lipschitz constant 𝜌∞(𝑅) of the projection operator Π𝒯 on the fixed rank
manifold satisfies 𝜌∞(𝑅) ≤ 2/𝜎𝑟(𝑅).
Proof. We give a purely geometric proof for the estimate (3.19), locally stronger than (3.20)
(although the better global bound (3.20) is obtained algebraically in [150] and sufficient for
our application). The idea is to consider a smooth curve 𝑅(𝑡) ∈ M joining 𝑅1 = 𝑅(0) to
𝑅2 = 𝑅(1) and to use lemma 2.2 to bound

||Π𝒯 (𝑅1) −Π𝒯 (𝑅2)|| =
⃒⃒⃒⃒⃒⃒⃒⃒∫︁ 1

0
DΠ𝒯 (𝑅(𝑡))(�̇�(𝑡))d𝑡

⃒⃒⃒⃒⃒⃒⃒⃒
≤ sup

𝑡∈[0,1]
||DΠ𝒯 (𝑅(𝑡))(�̇�(𝑡))||. (3.21)

Following [83], one defines 𝑅(𝑡) = ΠM (R(𝑡)) as being the orthogonal projection of the
straight line R(𝑡) = (1− 𝑡)𝑅1 + 𝑡𝑅2 joining 𝑅1 to 𝑅2 onto the manifold. Since 𝜎𝑟+1(𝑅1) =
𝜎𝑟+1(𝑅2) = 0, the following bounds hold (see p.448 in [75]):

𝜎𝑟+1(R(𝑡)) ≤ min(𝑡, 1− 𝑡)||𝑅1 −𝑅2|| ≤ 1
2 ||𝑅

1 −𝑅2||,{︃
𝜎𝑟(R(𝑡)) ≥ 𝜎𝑟(𝑅1)− 𝑡||𝑅1 −𝑅2||
𝜎𝑟(R(𝑡)) ≥ 𝜎𝑟(𝑅2)− (1− 𝑡)||𝑅1 −𝑅2||.

Therefore
𝜎𝑟(R(𝑡))− 𝜎𝑟+1(R(𝑡)) ≥ 𝜎𝑟(𝑅1) + 𝜎𝑟(𝑅2)

2 − ||𝑅1 −𝑅2|| . (3.22)

A consequence of lemma 2.1 is that:

||�̇�(𝑡)|| = ||DṘΠM (R(𝑡))|| ≤ 𝜎𝑟(R(𝑡))
𝜎𝑟(R(𝑡))− 𝜎𝑟+1(R(𝑡)) ||𝑅

2 −𝑅1||. (3.23)

Therefore, combining the bound of lemma 2.2 with (3.22) and (3.23):

||DΠ𝒯 (𝑅(𝑡))(�̇�(𝑡))|| ≤ 1
𝜎𝑟(𝑅(𝑡)) ||�̇�(𝑡)|| ≤ ||𝑅2 −𝑅1||

1
2(𝜎𝑟(𝑅1) + 𝜎𝑟(𝑅2))− ||𝑅2 −𝑅1||

,

which together with (3.21) and 𝜎𝑟(𝑅2) ≥ 𝜎𝑟(𝑅1) − ||𝑅1 − 𝑅2|| proves the result. Notice
that (3.19) combined with ||Π𝒯 (𝑅1) − Π𝒯 (𝑅2)|| ≤ 1 allows to obtain ||Π𝒯 (𝑅1) − Π𝒯 (𝑅2)|| ≤

5
2𝜎𝑟(𝑅1) ||𝑅

1 −𝑅2||, but the constant 2 is an improvement of [150].

Using this lemma and the fact that the maximal curvature of the fixed rank manifold at
a point 𝑅 ∈M is 𝜅∞ = 1/𝜎𝑟(𝑅) (see section 2.2.1), we can restate theorem 2.6 as follows :
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Theorem 3.1. Consider Ψ(𝑡) ∈ℳ𝑙,𝑚 the solution of the original dynamical system (3.13).
Assume that the following conditions hold on a time interval [0, 𝑇 ] :

1. ℒ is Lipschitz continuous, i.e. equation (2.62) holds.

2. The original solution Ψ(𝑡) remains close to the low rank manifold M , in the sense
that Ψ(𝑡) does not cross the skeleton of M on [0, 𝑇 ], i.e. that is there is no crossing
of the singular value of order 𝑟:

∀𝑡 ∈ [0, 𝑇 ], 𝜎𝑟(Ψ(𝑡)) > 𝜎𝑟+1(Ψ(𝑡)).

Then, the error of the DO approximation Ψ(𝑡) (equation (3.17)) remains controlled by the
best approximation error ||Ψ−ΠM (Ψ(𝑡))|| on [0, 𝑇 ]:

∀𝑡 ∈ [0, 𝑇 ], ||Ψ(𝑡)−ΠM (Ψ(𝑡))|| ≤∫︁ 𝑡

0
||Ψ(𝑠)−ΠM (Ψ(𝑠))||

(︂
𝐾 + ||ℒ(𝑠, Ψ(𝑠))||

𝜎𝑟(Ψ(𝑠))− 𝜎𝑟+1(Ψ(𝑠))

)︂
𝑒𝜂(𝑡−𝑠)d𝑠, (3.24)

where 𝜂 is the constant

𝜂 = 𝐾 + sup
𝑡∈[0,𝑇 ]

2
𝜎𝑟(Ψ(𝑡)) ||ℒ(𝑡, Ψ(𝑡))||. (3.25)

As observed numerically in [103], the DO solution may diverge sharply from the SVD
truncation after a crossing of the singular values 𝜎𝑟(Ψ) and 𝜎𝑟+1(Ψ). From the point of view
of model order reduction, the resulting error can be related to the evolution of the residual
Ψ − ΠM (Ψ) that is not accounted for by the reduced order model. When the crossing of
singular values occurs, neglected modes in the approximation (5) become “dominant”, but
cannot be captured by a reduced order model that has evolved only the first modes initially
dominant. Note that if one would track exactly the best 𝐿2 approximation of Ψ(𝑡), one
would need to use the dynamical system (2.41) of corollary 2.3, that require the knowledge
of the non reduced solution Ψ(𝑡), or a closure to model the unknown modes and singular
values.

3.3 Implementation of the DO approximation for stochastic
advection

In the following, it is explained how the DO approximation (3.17) can be implemented in
practice to solve the stochastic transport equation (3.2).

3.3.1 Motivations for linear advection schemes

The DO approximation is computationally attractive because it allows to replace the dy-
namical system (3.13) that requires to evolve 𝑙𝑚 matrix coefficients with (3.17), that evolves
a solution set on the manifold of the – much smaller – dimension (𝑙 + 𝑚)𝑟− 𝑟2, by evolving
the 𝑙𝑟+𝑚𝑟 coefficients of the matrices 𝑈 and 𝑍. Nevertheless, the DO matrix system (3.17)
offers a true gain of computational efficiency only if the evaluation of 𝑙-by-𝑚 matrices can
be avoided. This is not a priori achievable in this formulation as the operator ℒ needs to be
evaluated on the 𝑙-by-𝑚 matrix Ψ = 𝑈𝑍𝑇 . In the case where all 𝑙𝑚 coefficients of Ψ need
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to be computed from 𝑈 and 𝑍, the method provides no computational benefit other than
a reduction of memory storage in comparison with solving the initial non-reduced system
(3.13).

The gain of efficiency can be achieved if the operator ℒ(𝑡, ·) maps a rank 𝑟Ψ decompo-
sition Ψ = 𝑈𝑍𝑇 onto a factorization

ℒ(𝑡, 𝑈𝑍𝑇 ) = 𝐿𝑈 𝐿𝑇
𝑍 (3.26)

of rank at most 𝑟′, where 𝐿𝑈 is a 𝑙-by-𝑘 matrix, 𝐿𝑍 a 𝑚-by-𝑘 matrix, and 𝑟′ an integer
typically largely inferior to 𝑙 and 𝑚. In that case, the system (3.17) can be computed
efficiently as {︃

�̇� = [(𝐼 − 𝑈𝑈𝑇 )𝐿𝑈 ][𝐿𝑇
𝑍𝑍(𝑍𝑇 𝑍)−1]

�̇� = 𝐿𝑍 [𝐿𝑇
𝑈 𝑈 ]. (3.27)

where brackets have been used to highlight products that allow to compute the derivatives
�̇� and �̇� without having to deal with 𝑙-by-𝑚 matrices. Such factorization occurs for instance
when ℒ(𝑡, ·) is polynomial of order 𝑑, for which rank 𝑟Ψ matrices are mapped onto rank
𝑟′ ≤ 𝑟𝑑 matrices.

In the spatially continuous view point, the differential operator 𝜓 ↦→ 𝑣 ·∇𝜓 satisfies this
condition, as the rank 𝑟Ψ decomposition (3.3) is mapped to a one of rank 𝑟𝐿 = 𝑟Ψ × 𝑟𝑣 :

𝑣 · ∇𝜓 =
∑︁

1≤𝑗≤𝑟Ψ
1≤𝑘≤𝑟𝑣

𝜁𝑗𝛽𝑘𝑣𝑘 · ∇𝑢𝑗 . (3.28)

This equation further highlights why adapting advection schemes to model order reduction
is challenging, as popular discretizations of 𝑣 · ∇𝜓 involve non-polynomial nonlinearities in
the matrix operator ℒ. These schemes rely indeed on the use of min-max functions required
by upwinding or high order discretizations such as ENO or TVD schemes that are selecting
a smooth approximation of the spatial derivative ∇𝜓. In theses cases, the nonlinearity of
the operator ℒ prevents the decomposition (3.28) to hold at the discrete level without intro-
ducing further approximations, which may alter drastically the stability of time integration
and the accuracy of the numerical solution. A very natural approach followed by [124, 147]
is to assume that the decomposition (3.28) holds before applying non linear schemes to
discretize the fluxes 𝑣𝑘 · ∇𝑢𝑗 in (3.10) and (3.11). A key issue includes maintaining the
consistency between the deterministic MC and DO solutions. In the example considered in
section 3.4 for which high gradients especially occur, such approaches were observed to lead
to either numerical explosion or very large errors on long integration time.

Consequently, this work investigated the use of linear central advection schemes that
do not require upwinding and that have the property to preserve the decomposition (3.28).
Therefore, the flux −𝑣 · ∇𝜓 is discretized as

ℒ(𝑡, Ψ)𝑖,𝛼 = −𝑣(𝑡,𝑥𝑖; 𝜔𝛼) ·DΨ𝑖,𝛼 (3.29)

where D is a linear finite-difference operator approximating the gradient ∇. With Ψ = 𝑈𝑍𝑇

as in (3.14), this allows to obtain ℒ(𝑡, Ψ) = 𝐿𝑈 𝐿𝑇
𝑍 as required in (3.27), with 𝐿𝑈 and 𝐿𝑍

the 𝑙-by-𝑟𝐿 and 𝑚-by-𝑟𝐿 matrices

(𝐿𝑈 )𝑖,𝑗𝑘 = 𝑣𝑘(𝑡,𝑥𝑖) ·D𝑢𝑗(𝑡,𝑥𝑖), (𝐿𝑍)𝛼,𝑗𝑘 = 𝜁𝑗(𝑡; 𝜔𝛼)𝛽𝑘(𝑡, 𝜔𝛼).
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In one dimension, the gradient can be approximated by the second order operator

DΨ𝑖,𝛼 = Ψ𝑖+1,𝛼 −Ψ𝑖−1,𝛼

2Δ𝑥
, (3.30)

and we will also consider the sixth order finite difference operator

DΨ𝑖,𝛼 = 3
2

Ψ𝑖+1,𝛼 −Ψ𝑖−1,𝛼

2Δ𝑥
− 3

5
Ψ𝑖+2,𝛼 −Ψ𝑖−2,𝛼

4Δ𝑥
+ 1

10
Ψ𝑖+3,𝛼 −Ψ𝑖−3,𝛼

6Δ𝑥
, (3.31)

where Δ𝑥 denotes the spatial resolution and a natural numbering is assumed for the index
𝑖. These formula are adapted in a straightforward manner to discretize partial derivatives
in higher dimension [108]. This approach might seem unexpected, since central schemes
are known to be numerically unstable under Euler time integration. In addition, Godunov
theorem expresses that it is not possible to devise a linear scheme higher than first order
accuracy that do not create false extrema in numerical solutions [56]. These extrema are
produced by numerical dispersion and manifest under the form of spurious oscillations. In
fact, it is possible to contain this phenomenon near shocks, and obtain high order accuracy
where the solution is smooth. Stability and the removal of part of the oscillations can be
achieved by the introduction of a right amount of numerical dissipation, either by using
artificial viscosity [136] or filtering [131, 38, 85, 115, 35]. Shapiro filters are especially
attractive because easy to implement, fully linear, and designed to remove optimally the
shortest resolvable numerical frequency without affecting other wave components [131, 132,
133]. In one dimension, denoting 𝛿2 the operator 𝛿2Ψ𝑖,𝛼 = Ψ𝑖+1,𝛼 − 2Ψ𝑖,𝛼 + Ψ𝑖+1,𝛼, the
Shapiro filters ℱ (𝑖) of order 𝑖 = 2, 4 and 8 are defined by the formulas (see [131])

ℱ (2)Ψ𝑖,𝛼 = (1 + 𝛿2/4)Ψ𝑖,𝛼

ℱ (4)Ψ𝑖,𝛼 = (1− 𝛿2/4)(1 + 𝛿2/4)Ψ𝑖,𝛼

ℱ (8)Ψ𝑖,𝛼 = (1 + 𝛿4/16)(1− 𝛿4/16)Ψ𝑖,𝛼.

(3.32)

Their linearity allows to filter the decomposition 𝜓 = 𝜁𝑖𝑢𝑖 efficiently by filtering the dis-
cretization of the modes 𝑢𝑖, or in other words, ℱ (𝑖)(𝑈𝑍𝑇 ) = (ℱ (𝑖)𝑈)𝑍𝑇 . The order and
frequency of applications can be turned to the desired filter-spectrum [89], and linear limiters
may be combined with Shapiro filters. To achieve further stability, higher order discretiza-
tions of the temporal derivative are generally used in complement to these filters. Popular
linear multi-step methods range from Leap-Frog [152], Runge-Kutta and Adam Bashforth
[35]. For instance, the second order Leap-Frog scheme evolves the value Ψ𝑛 of the numerical
solution Ψ at time 𝑡𝑛 according to the rule

Ψ𝑛+1 −Ψ𝑛−1

2Δ𝑡
= ℒ(𝑡𝑛, Ψ𝑛), (3.33)

while the third order Runge Kutta (RK3) method uses

Ψ𝑛+1 −Ψ𝑛

Δ𝑡
= 𝑘𝑛

1 + 4𝑘𝑛
2 + 𝑘𝑛

3
6 with

⎧⎪⎨⎪⎩
𝑘𝑛

1 = ℒ(𝑡𝑛, Ψ𝑛)
𝑘𝑛

2 = ℒ (𝑡𝑛 + Δ𝑡/2, Ψ𝑛 + 𝑘𝑛
1 Δ𝑡/2)

𝑘𝑛
3 = ℒ(𝑡𝑛 + Δ𝑡, Ψ𝑛 + Δ𝑡(2𝑘𝑛

2 − 𝑘𝑛
1 )).

(3.34)

A comparison of several combinations of these techniques is illustrated on Figure 3-1 for
the one dimensional advection equation 𝜕𝑡𝜓 + 𝑣𝜕𝑥𝜓 = 0, a benchmark case for selecting
an appropriate linear scheme for the transport eqn. (3.2) in higher dimension. A boxcar
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(b) Leap Frog - 2nd order -
Shapiro filter [1,1]
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(c) Leap Frog - 2nd order -
Shapiro filter [1,2]
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(d) RK3 - 2nd order
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(e) RK3 - 6th order
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(f) RK3 - 6th order - Shapiro
filter [10,3]

Figure 3-1: Comparison of different linear centered schemes for the 1D advection equation. The
mention Shapiro filter [𝑛1, 𝑛2] indicates that the Shapiro filter of order 2𝑛2 (see [131]) has been
applied after every 𝑛1 iterations. The initial box-car function is visible in dashed line on the first
plot.

function is advected to the right with a velocity 𝑣 = 0.7 in the domain [0, 1] until the time
𝑡 = 10. The spatial resolution is set to Δ𝑥 = 0.002 and the CFL condition Δ𝑡 ≤ 0.6𝑣Δ𝑥
is used to define the time increment Δ𝑡. The figure illustrates how accuracy and stability
can be achieved by (i) using multi-step time marching schemes, (ii) using high order spatial
discretization and (iii) adding a proper amount of numerical dissipation to remove spurious
oscillations.

3.3.2 Boundary conditions

Boundary conditions of the reduced solution have been formally obtained in section 3.2.
They could be treated more rigorously by incorporating original boundary conditions (3.4)
and (3.5) explicitly in the discretization operator ℒ. However, such view point is inconve-
nient in the implementation. In this work, boundary nodes are stored in a 𝑙𝑏𝑐 ×𝑚 “ghost”
matrix and it is assumed that the 𝑙-by-𝑚 matrix of realizations Ψ contains only the values
at internal nodes. These ghost cells allow to evaluate conveniently the differential operator
D in the definition (3.29) of ℒ(𝑡, Ψ). Their values are reinitialized at the beginning of each
time step according to the boundary conditions (3.4) and (3.5). In the following, the opera-
tor which assigns the values of these boundary cells at time 𝑡 is denoted ℬ𝐶(𝑡, ·). With this
notation, the solution that includes both internal nodes and boundary values is the block

matrix Ψ𝑏𝑐 =
[︃
ℬ𝐶(𝑡, Ψ)

Ψ

]︃
. For example on the one-dimensional domain Ω = [0, 1], the value
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of the boundary node 𝑥1 = 0 is determined by the relation

ℬ𝐶(𝑡, Ψ)1,𝛼 =
{︃

0 if 𝑣(𝑡, 0; 𝛼) ≥ 0
(18Ψ2,𝛼 − 9Ψ3,𝛼 + 2Ψ4,𝛼)/11 if 𝑣(𝑡, 0; 𝛼) < 0,

if one uses a third order reconstruction for the Neumann boundary condition (3.5). The
difficulty of determining how these boundary conditions should be accounted for by the
reduced solution Ψ = 𝑈𝑍𝑇 comes from the fact that assigning boundary values does in
general not preserve the rank: rank(Ψ𝑏𝑐) > 𝑟. Boundary conditions may be enforced on
the reduced solution while ensuring minimal error by solving the minimization problem

min
rank(Ψ𝑏𝑐)=𝑟

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒Ψ𝑏𝑐 −

[︃
ℬ𝐶(𝑡, Ψ)

Ψ

]︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

. (3.35)

This yields the best rank 𝑟Ψ approximation of the (𝑙 + 𝑛𝐵𝐶)-by-𝑚 matrix Ψ𝑏𝑐, whose de-
composition Ψ𝑏𝑐 = 𝑈𝑏𝑐𝑍

𝑇
𝑏𝑐 allows to compute conveniently the discrete differential operator

D in (3.29) requiring boundary values. The minimization can for example be achieved by
using a gradient descent starting from the initial rank 𝑟Ψ matrix Ψ, as explained in the next
subsection and in [44, 101].

When boundary conditions are deterministic or homogeneous, they can be directly im-
plemented as boundary conditions for the discretization of the modes, 𝑢𝑖 [124]. For example,
prescribing zero or Neumann boundary conditions for all the realizations of 𝜓 is found by
prescribing directly the same boundary conditions for the modes, 𝑢𝑖. For more general
cases, it can still be desirable to avoid solving (3.35) by seeking boundary values for the
modes so as to optimally approximate the original boundary conditions. This is achieved
by replacing the minimization problem (3.35) with a one for the 𝑙𝑏𝑐-by-𝑟Ψ ghost matrix 𝑈𝐵𝐶

containing boundary values for the matrix 𝑈 :

min
𝑈𝐵𝐶∈ℳ𝑙𝑏𝑐,𝑟

||𝑈𝐵𝐶𝑍𝑇 − ℬ𝐶(𝑡, Ψ)||2. (3.36)

The solution of this linear regression problem is easily obtained by

𝑈𝐵𝐶 = ℬ𝐶(𝑡, Ψ)𝑍(𝑍𝑇 𝑍)−1, (3.37)

and it turns out that this optimality condition is the discrete analogous of the original
boundary conditions (3.12) obtained formally in section 3.2. The decomposition of the

reduced solution including boundary values considered is therefore Ψ𝑏𝑐 =
[︃
𝑈𝐵𝐶

𝑈

]︃
𝑍𝑇 .

3.3.3 Low-rank Time stepping and continuous SVD tracking

One issue commonly encountered in the time discretization of dynamical systems defined
on differentiable manifolds is the fact that the discrete time stepping tends to make the
numerical solution exit the manifold. If Ψ𝑛 is a point on the manifold M at 𝑡𝑛, and Ψ̇𝑛 ∈
𝒯 (𝑅) is the time derivative, any straight move Ψ𝑛 +Δ𝑡Ψ̇𝑛 leaves M . An application, called
retraction [6, 148, 4], must be used to convert the tangent direction 𝑋 = Δ𝑡Ψ̇𝑛 ∈ 𝒯 (Ψ𝑛)
into a point 𝜌Ψ𝑛(𝑋) back onto the manifold.

Definition 3.1. A retraction 𝜌Ψ is an application from the tangent space at Ψ ∈ 𝒯 (Ψ)
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onto the manifold,
𝜌Ψ : 𝒯 (Ψ) → M

𝑋 ↦→ 𝜌Ψ(𝑋).

that in addition satisfies the following consistency conditions:

1. 𝜌Ψ(0) = Ψ

2. ∀𝑋 ∈ 𝒯 (Ψ), D𝑋𝜌Ψ(0) = d
d𝑡𝜌Ψ𝑛(𝑡𝑋)

⃒⃒⃒
𝑡=0

= 𝑋.

The two conditions require a retraction to approximate at the first order the exponential
map. They are restatement that (1.) if one walks on the manifold starting from Ψ with zero
velocity, one stays at the initial position Ψ, and (2.), if 𝑋 ∈ 𝒯 (Ψ) is the argument of the
retraction, then one indeed move on the manifold with a velocity 𝑋. One can show that if
in addition, d2

d𝑡2 𝜌Ψ(𝑡𝑋)
⃒⃒⃒
𝑡=0
∈ 𝒩 (Ψ) then the retraction is a second order approximation of

the exponential map [6]. Depending on the choice of the retraction, several implementations
can be considered for the explicit discretization of (3.17).

1. Direct time marching scheme for the DO system (3.17)

As in [147, 103], a very intuitive idea for moving a rank 𝑟Ψ matrix Ψ𝑛 = 𝑈𝑛𝑍𝑛𝑇 onto
a direction Ψ̇𝑛 = �̇�𝑛𝑍𝑛𝑇 + 𝑈𝑛�̇�𝑛𝑇 with a step Δ𝑡 is to update independently the mode
and coefficient matrices 𝑈𝑛 and 𝑍𝑛 by using the following scheme, which is a direct time-
discretization of the system (3.17):{︃

𝑍𝑛+1 = 𝑍𝑛 + Δ𝑡�̇�𝑛

𝑈𝑛+1 = 𝑈𝑛 + Δ𝑡�̇�𝑛,
(3.38)

where �̇�𝑛 and �̇�𝑛 are the approximations of the time derivatives �̇� and �̇� being used. This
corresponds to use the retraction 𝜌𝑈𝑍𝑇 defined by

𝜌𝑈𝑍𝑇 (�̇�𝑍𝑇 + 𝑈�̇�𝑇 ) = (𝑈 + �̇�)(𝑍 + �̇�)𝑇 = 𝑈𝑍𝑇 + (�̇�𝑍𝑇 + 𝑈�̇�𝑇 ) + �̇� �̇�𝑇 . (3.39)

2. Geodesic equations in between time steps to deal with ill-conditioned matri-
ces

The ideal retraction is the exponential map 𝜌Ψ𝑛 = expΨ𝑛 (see [6]) computed from geodesic
paths 𝛾(𝑠) on M , which are the direct analogous of straight lines onto curved manifolds.
These curves are parametrized as 𝛾(𝑠) = expΨ𝑛(𝑠

.
Ψ𝑛) (see Figure 2-1), indicating how to

“walk” onto the manifold from Ψ𝑛 into the straight direction
.

Ψ𝑛 = �̇�𝑛(𝑍𝑛)𝑇 + 𝑈𝑛(�̇�𝑛)𝑇 .
It was shown in chapter 2 that the value of expΨ𝑛(𝑠

.
Ψ𝑛) is given by the solution 𝛾(𝑠) =

𝑈(𝑠)𝑍(𝑠)𝑇 at time 𝑠 of the geodesic equations (eqn. (2.32)):⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̈� + 𝑈�̇�𝑇 �̇� + 2�̇� �̇�𝑇 𝑍(𝑍𝑇 𝑍)−1 = 0

𝑍 − 𝑍�̇�𝑇 �̇� = 0.
𝑈(0) = 𝑈𝑛, 𝑍(0) = 𝑍𝑛

�̇�(0) = �̇�𝑛, �̇�(0) = �̇�𝑛.

(3.40)

Without direct analytical solutions to (2.32), numerical schemes are used. Computing
retractions that approximate well the exponential map is a challenge commonly encountered
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in optimization on matrix manifolds with orthogonality constraints [101], as discussed in [6].
One can check that the retraction 𝜌𝑈𝑍𝑇 of equation (3.39) is approximating the exponential
map only to the first order (see [6]), which can lead to numerical errors at locations of high
curvature on the manifold M . The curvature of the rank 𝑟Ψ manifold M at the point Ψ𝑛

is inversely proportional to the lowest singular value 𝜎𝑟Ψ(Ψ𝑛) [44]. As a consequence, errors
can be incurred by the direct time stepping (3.38) when the matrix 𝑍𝑛 is ill conditioned.
Equations (2.32) can be solved during the DO time integration in between time steps, to
move more accurately on the manifold without the need for recomputing values of the
operator ℒ. For instance, Euler steps (3.38) can be replaced with

𝑈𝑛+1(𝑍𝑛+1)𝑇 = expΨ𝑛(Δ𝑡
.

Ψ𝑛). (3.41)

This can be done using high order time marching schemes for the discretization of (2.32).
The intermediate time step 𝛿𝑡 for these can be set adaptively: a rule of thumb is to use time
steps having a length lower than the minimal curvature radius 𝜎𝑟Ψ(𝑍) at the point 𝑈𝑍𝑇 :

𝛿𝑡||�̇�𝑍𝑇 + 𝑈�̇�𝑇 || < 𝐶𝜎𝑟Ψ(𝑍),

where 𝐶 ≃ 1 is a constant set by the user.

3. Algebraic computation of the truncated SVD after each time step

It has been highlighted in section 3.2 that DO eqs. (3.27) define a dynamical system that
truncates the SVD at all instants so as to optimally constrain the rank of the reduced solu-
tion (eqn. theorem 2.5). Denoting Ψ𝑛 = 𝑈𝑛(𝑍𝑛)𝑇 the DO solution at time 𝑡𝑛, integrating
the non-reduced dynamical system (3.13) for a time step [𝑡𝑛, 𝑡𝑛+1] yields a rank 𝑟𝐿 > 𝑟Ψ
prediction

Ψ𝑛+1 = Ψ𝑛 + Δ𝑡ℒ(𝑡𝑛, Ψ𝑛), (3.42)

where ℒ(𝑡𝑛, Ψ𝑛) represent the full-space integral for the exact integration or the increment
function for a numerical integration. For the latter, it can be an approximation of the time
derivative ℒ(𝑡𝑛, Ψ(𝑡𝑛)), e.g. ℒ(𝑡𝑛, Ψ𝑛) = ℒ(𝑡𝑛, Ψ𝑛) for explicit Euler.

One way to proceed for evolving the low rank approximation Ψ𝑛 to Ψ𝑛+1 is to compute
directly the rank 𝑟Ψ SVD truncation ΠM (Ψ𝑛+1) (eqn. (2.33))

Ψ𝑛+1 = 𝑈𝑛+1(𝑍𝑛+1)𝑇 = ΠM (Ψ𝑛 + Δ𝑡ℒ(𝑡𝑛, Ψ𝑛)) (3.43)

so as to obtain modes and coefficients 𝑈𝑛+1 and 𝑍𝑛+1 at time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. Such
scheme has been shown to be a consistent time-discretization of the DO equations (2.57)
(see [44]). For an Euler step, it corresponds to using the retraction 𝜌Ψ(𝑋) = ΠM (Ψ + 𝑋),
a second-order accurate approximation of the exponential map [6].

The scheme (3.43) can be computed efficiently an in a fully algebraic manner when the
operator ℒ factors as (3.26). Indeed, the linear approximation of the time derivative then
admits a decomposition ℒ(𝑡𝑛, 𝑈𝑛(𝑍𝑛)𝑇 ) = 𝐿𝑛

𝑈 (𝐿𝑛
𝑍)𝑇 of rank at most 𝑟𝐿 = 𝑟𝐿 × 𝑝𝑡, 𝑝𝑡 being

the order of the time integration scheme utilized. Therefore Ψ𝑛+1 factors as

Ψ𝑛+1 = 𝑈𝑛(𝑍𝑛)𝑇 + Δ𝑡𝐿𝑛
𝑈 (𝐿𝑛

𝑍)𝑇

= Ψ𝑛+1
𝑈 (Ψ𝑛+1

𝑍 )𝑇 with Ψ𝑛+1
𝑈 = [𝑈𝑛 𝐿𝑛

𝑈 ] and Ψ𝑛+1
𝑍 = [𝑍𝑛 Δ𝑡𝐿𝑛

𝑍 ],
(3.44)
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with 𝐿𝑛
𝑈 ∈ℳ𝑙,𝑟

𝐿
, 𝐿𝑛

𝑍 ∈ℳ𝑚,𝑟
𝐿
. The rank of Ψ𝑛+1 is therefore at most rank(Ψ𝑛+1) = 𝑟Ψ <

𝑟 + 𝑟𝐿 which can be assumed to be largely inferior to 𝑙 and 𝑚. This can be exploited to
compute the truncated SVD through an algorithm that avoids computing large matrices of
size 𝑙-by-𝑚 (see algorithm 3).

Algorithm 3 Rank 𝑟Ψ truncated SVD of Ψ = Ψ𝑈 Ψ𝑇
𝑍 with Ψ𝑈 ∈ ℳ𝑙,𝑟Ψ , Ψ𝑍 ∈ ℳ𝑚,𝑟Ψ and

𝑟 < 𝑟Ψ << min(𝑙, 𝑚)

1: Orthonormalize the columns of the matrix Ψ𝑈 (see the discussion in section 3.3.5), i.e
find a basis change matrix 𝐴 ∈ℳ𝑟Ψ,𝑟Ψ such that (Ψ𝑈 𝐴)𝑇 (Ψ𝑈 𝐴) = 𝐼 and set

Ψ𝑈 ← Ψ𝑈 𝐴, Ψ𝑍 ← Ψ𝑍𝐴−𝑇

so as to preserve the product Ψ = Ψ𝑈 Ψ𝑇
𝑍 .

2: Compute the “compact” SVD of the smaller 𝑚-by-𝑟Ψ matrix Ψ𝑍 :

Ψ𝑍 = 𝑉 Σ𝑃 𝑇 ,

where Σ is a 𝑟Ψ-by-𝑟Ψ diagonal matrix of singular are values, and 𝑉 ∈ ℳ𝑚,𝑟Ψ and
𝑃 ∈ ℳ𝑟Ψ,𝑟Ψ orthogonal matrices of singular vectors. This is achieved by computing
the eigen decomposition of the “covariance” matrix Ψ𝑇

𝑍Ψ𝑍 .
3: The SVD of Ψ = Ψ𝑈 Ψ𝑇

𝑍 is given by Ψ = 𝑈Σ𝑉 𝑇 with 𝑈 = Ψ𝑈 𝑃 an orthogonal 𝑙-by-𝑟Ψ
matrix of left singular vectors. The truncated SVD of order 𝑟Ψ is straightforwardly
obtained from the first 𝑟Ψ columns of 𝑈, 𝑉 and Σ.

This first algorithm has some issues. First, reorthonormalizations and eigenvalue de-
compositions such as in steps 1 and 2 do not allow to keep track of the smooth evolution of
the modes 𝑈(𝑡) and coefficients 𝑍(𝑡) solutions of the system (3.17). Additional procedures
are needed [147, 146]. Second, with the repeated use of such algebraic operations, additional
round off errors may be introduced.

4. Riemannian gradient descent on the low-rank manifold for continuous up-
dates of the truncated SVD

Alternatively, a gradient descent on the low-rank manifold M can be used to find the
correction that needs to be added to modes 𝑈𝑛 and coefficients 𝑍𝑛, so as to evaluate the
SVD truncation Ψ𝑛+1 = ΠM (Φ𝑛) (eqns. (3.43) and (3.44)). In a more general setting,
consider Ψ ∈ ℳ𝑙,𝑚 a 𝑙-by-𝑀 matrix for which one wants to evaluate the truncated SVD
ΠM (Ψ). By definition, ΠM (Ψ) is the solution of the minimization problem

min
𝑈𝑍𝑇 ∈M

𝐽(𝑈𝑍𝑇 ) = 1
2 ||Ψ− 𝑈𝑍𝑇 ||2. (3.45)

In the DO time stepping, Ψ = Φ𝑛 and Ψ = 𝑈𝑛𝑍𝑛𝑇 ≃ ΠM (Ψ) is a low-rank approximation
of M . Therefore a Riemannian gradient descent on the manifold M can be used (see also
[4, 101, 148]) to improve the quality of this low-rank approximation Ψ at a cheap expense.
As reviewed in [36], usual optimization algorithms such as gradient and Newton methods
can be straightforwardly adapted to matrix manifolds. The differences with their euclidean
counterparts is that: (i) usual gradient and Hessians must be replaced by their covariant
equivalents (definition 2.8); (ii) one needs to follow geodesics instead of straight lines to
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move on the manifold; and, (iii) directions followed at the previous time steps, needed for
example in the conjugate gradient method, must be transported to the current location
(definition 2.5).

In proposition 2.16, it has been proven that as a geometric feature of the fixed-rank
manifold M , the distance function 𝐽 may admit several critical points, but a unique local,
hence global, minimum on M . As a consequence, saddle points of 𝐽 are unstable equilibrium
solutions of the gradient flow Ψ̇ = −∇𝐽(Ψ) and hence are expected to be avoided by gradient
descent, which will converge in practice to the global minimum ΠM (Ψ). This does not apply
to the Newton method which seeks a zero of the gradient ∇𝐽 rather than a true minimum.
This result is a convergence guarantee for the gradient descent and may be compared to
[113, 150].

Applying directly proposition 2.3, the gradient and the Hessian of 𝐽 at 𝑅 = 𝑈𝑍𝑇 ∈M
are given by:

∇𝐽 = ((𝐼 − 𝑈𝑈𝑇 )(𝑈𝑍𝑇 −Ψ)𝑍(𝑍𝑇 𝑍)−1, (𝑈𝑍𝑇 −Ψ)𝑇 𝑈), (3.46)

ℋ𝐽 : ℋ(𝑈,𝑍) → ℋ(𝑈,𝑍)(︃
𝑋𝑈

𝑋𝑍

)︃
↦→

(︃
𝑋𝑈 −𝑁𝑈𝑍𝑇 (Ψ)𝑋𝑍(𝑍𝑇 𝑍)−1

𝑋𝑍 −𝑁𝑈𝑍𝑇 (Ψ)𝑇 𝑋𝑈

)︃
,

(3.47)

where 𝑁𝑈𝑍𝑇 (Ψ) = (𝐼 − Π𝒯 (𝑈𝑍𝑇 ))(Ψ − 𝑈𝑍𝑇 ) = (𝐼 − 𝑈𝑈𝑇 )Ψ(𝐼 − 𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 ) is the
orthogonal projection of Ψ − 𝑅 onto the normal space. The Newton direction 𝑋 is found
by solving the linear system ℋ𝐽(𝑋) = −∇𝐽(Ψ), that reduces to{︃

𝑋𝑈 𝐴 + 𝐵𝑋𝑍 = 𝐸
𝐵𝑇 𝑋𝑈 + 𝑋𝑍 = 𝐹,

with 𝐴 = (𝑍𝑇 𝑍), 𝐵 = −𝑁𝑈𝑍𝑇 (Ψ), 𝐸 = (𝐼 −𝑈𝑈𝑇 )Ψ𝑍 and 𝐹 = −𝑍 + Ψ𝑇 𝑈 . This requires
to solve the Sylvester equation 𝑋𝑈 𝐴 − 𝐵𝐵𝑇 𝑋𝑈 = 𝐸 − 𝐵𝐹 for 𝑋𝑈 , that can be done in
theory by using standard techniques [82], before computing 𝑋𝑍 from 𝑋𝑍 = 𝐹 − 𝐵𝑇 𝑋𝑈 .
As a “proof of concept”, a matrix Ψ ∈ ℳ𝑙,𝑚 with 𝑚 = 100 and 𝑙 = 150 is considered,
with singular values chosen to be equally spaced in the interval [1, 10]. Three optimization
algorithms detailed in [36] (gradient descent with fixed step, conjugate gradient descent,
and Newton method) are implemented to find the best rank 𝑟 = 5 approximation of Ψ,
with a random initialization. Convergence curves are plotted on Figure 3-2: linear and
quadratic rates characteristic of respectively gradient and Newton methods are obtained.
As expected from proposition 2.16, gradient descents globally converge to the truncated
SVD, while Newton iterations may be attracted to a saddle point. Turning back to the
DO time stepping with Ψ = Ψ𝑛+1 = 𝑈𝑛+1(𝑍𝑛+1)𝑇 one uses the procedure described in
algorithm 4 as an efficient method to update the truncated SVD of Ψ𝑛+1 given the initial
guess Ψ𝑛 = 𝑈𝑛(𝑍𝑛)𝑇 . If Δ𝑡 is small enough, the method is expected to converge after
a small number of iterations, while preserving the continuous evolution of the mode and
coefficient matrix 𝑈 and 𝑍. In comparison with the use of geodesics, this method offers
the benefit to ensure the accuracy of the reduced solution, while being less sensitive to the
singularity of the matrix 𝑍. Also, this method is a direct improvement of the DO time
stepping (3.38), as one can see that one step of (3.38) coincides with the first step of the
gradient descent (3.48) starting from the current value 𝑈𝑛(𝑍𝑛)𝑇 and with 𝜇 = 1.
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Figure 3-2: Convergence curves of optimization algorithms for minimizing the distance
function 𝐽 (equation (3.45)). Newton does not converge to the global minimum and hence
is not represented on the left curve.

Algorithm 4 Gradient descent for updating a rank 𝑟Ψ truncated SVD of Ψ = Ψ𝑈 Ψ𝑇
𝑍 with

Ψ𝑈 ∈ℳ𝑙,𝑟Ψ , Ψ𝑍 ∈ℳ𝑚,𝑟Ψ and 𝑟 < 𝑟Ψ << min(𝑙, 𝑚)

1: Initialize a rank 𝑟 guess 𝑈0𝑍𝑇
0 ≃ Ψ

2: So as to minimize 𝐽(𝑈, 𝑍) = ||Ψ− 𝑈𝑍𝑇 || on M , compute the gradient step{︃
𝑍𝑘+1 = 𝑍𝑘 − 𝜇∇𝐽𝑈 (𝑈𝑘, 𝑍𝑘)
𝑈𝑘+1 = 𝑈𝑘 − 𝜇∇𝐽𝑍(𝑈𝑘, 𝑍𝑘), (3.48)

where 𝜇 is a constant set by the user and the gradient (∇𝐽𝑈 ,∇𝐽𝑍) of 𝐽 on the manifold
is given by [44] {︃

∇𝐽𝑈 (𝑈, 𝑍) = (−(𝐼 − 𝑈𝑈𝑇 )Ψ𝑈 [(Ψ𝑍)𝑇 𝑍(𝑍𝑇 𝑍)−1]
∇𝐽𝑍(𝑈, 𝑍) = 𝑍 −Ψ𝑍 [(Ψ𝑈 )𝑇 𝑈 ]),

(3.49)

brackets highlighting matrix products that render the computation efficient.
3: Orthonormalize the modes 𝑈𝑘 (see section 3.3.5) after each iteration and repeat until

convergence is achieved.
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3.3.4 Increasing dynamically the rank of the approximation

In the SPDE (3.2), all realizations of the solution share the same initial value 𝜓(0,𝑥; 𝜔) = 𝑥.
Hence the DO approximation coincides with the exact solution at time 𝑡 = 0 and is given by
the rank 1 decomposition Ψ = 𝑈𝑍𝑇 where 𝑈 is a normalized column vector proportional to
the discretization of the coordinate function 𝑥, while 𝑍 is a column vector identically equal
to the normalization factor. Obviously, 𝜓(𝑡,𝑥; 𝜔) becomes random immediately after 𝑡 > 0
and hence the rank of the DO solution must be modified dynamically to capture dominant
stochastic subspaces that are forming throughout the time evolution of the solution. This
is a common issue in model order reduction of stochastic PDEs.

Reducing the dimension 𝑟Ψ of the DO stochastic subspace is straightforward: it is
sufficient to truncate the SVD of the current DO solution Ψ = 𝑈𝑍𝑇 , using for example
algorithm 3, when the lowest singular value 𝜎𝑟Ψ(Ψ) < 𝜎 becomes lower than a threshold 𝜎
[123]. Increasing the stochastic dimension from 𝑟Ψ to 𝑟Ψ

′ > 𝑟Ψ is more involved, as 𝑟Ψ
′−𝑟Ψ

new dominant directions 𝑢𝑖 supporting the decomposition (3.3) must be found. Sapsis
and Lermusiaux [123] suggested to add modes aligned with the most sensitive directions of
the operator ℒ (i.e. with the gradient of ℒ in the ambient space ℳ𝑙,𝑚), but without the
guarantee of tracking the best rank 𝑟Ψ

′ approximation at the next time step. An additional
major difficulty lies in the issue of detecting when the dimension of the DO subspace must be
increased. Sapsis and Lermusiaux [123] suggested to increase the rank 𝑟Ψ when 𝜎𝑟Ψ(Ψ) > 𝜎
reaches another threshold 𝜎 > 𝜎. Nevertheless, when the rank of the original solution
remains equal to 𝑟Ψ while 𝜎𝑟Ψ(Ψ) increases, the dimensionality 𝑟Ψ might be increased when
it should not. Conversely, the rank of the original solution may truly increase while new
singular values remain lower than the threshold 𝜎.

Theses issues can be solved by examining the component of the time derivative ℒ(𝑡, Ψ)
that is normal to the manifold and neglected by the DO approximation (Figure 2-1). The
value of this component is given by (see [44])

𝑁(𝑈𝑍𝑇 ) = (𝐼 − 𝑈𝑈𝑇 )ℒ(𝑡, 𝑈𝑍𝑇 )(𝐼 − 𝑍(𝑍𝑇 𝑍)−1𝑍𝑇 ). (3.50)

Since the singular value 𝜎𝑟Ψ+1(Ψ𝑛 + Δ𝑡𝐿(𝑡𝑛, Ψ𝑛)) after a step Δ𝑡 is of typical magnitude of
𝜎1(𝑁(Ψ𝑛))Δ𝑡 (see [75]), this first and other singular values of 𝑁(𝑈𝑍𝑇 ) are related to the
speed at which the solution exits the rank 𝑟Ψ matrix manifold M . Therefore, a quantitative
criterion that is expected to track accurately the rank of the true original solution is

𝜎1(𝑁(𝑈𝑛(𝑍𝑛)𝑇 ))Δ𝑡 > 𝜎. (3.51)

A common value 𝜎 can be used for the threshold 𝜎 = 𝜎 = 𝜎 to detect when the rank of the
DO subspace must be decreased, hence the setting of this single 𝜎 provides a lower bound
desired for the smallest singular value of the covariance matrix 𝑍. Singular vectors of 𝑁
contain the new dominant directions. They can be combined with a gradient descent similar
to (3.48), so as to compute the rank 𝑟Ψ

′ (instead of 𝑟Ψ) truncated SVD of Ψ𝑛+1 = Ψ𝑛 +
Δ𝑡𝐿(𝑡𝑛, Ψ𝑛), while preserving the smooth evolution of the first 𝑟Ψ modes and coefficients
(in contrast with the direct use of the algebraic algorithm 3). The procedure is summarized
in algorithm 5.
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Algorithm 5 Augmenting the rank of the DO solution

1: Compute Φ𝑛 = 𝑈𝑛(𝑍𝑛)𝑇 + Δ𝐿𝑛
𝑈 (𝐿𝑛

𝑍)𝑇 with 𝐿𝑛
𝑈 ∈ℳ𝑙,𝑟

𝐿
, 𝐿𝑛

𝑍 ∈ℳ𝑚,𝑟
𝐿

as in (3.44).
2: Compute the normal component (of rank at most 𝑟𝐿).

𝑁(𝑈𝑛(𝑍𝑛)𝑇 ) = [(𝐼 − 𝑈𝑛(𝑈𝑛)𝑇 )𝐿𝑛
𝑈 ][(𝐿𝑛

𝑍)𝑇 (𝐼 − 𝑍𝑛((𝑍𝑛)𝑇 𝑍𝑛)−1(𝑍𝑛)𝑇 )].

3: Compute the rank 𝑟Ψ
′ − 𝑟Ψ < 𝑟𝐿 truncated SVD 𝑁𝑛

𝑈 (𝑁𝑛
𝑍)𝑇 of 𝑁(𝑈𝑛(𝑍𝑛)𝑇 ) by using

algorithm 3.
4: Use the gradient descent (3.48) starting from the initialization values 𝑈𝑛

0 = [𝑈𝑛𝑁𝑛
𝑈 ] and

[𝑍𝑛𝑁𝑛
𝑍 ], so as to find the truncated SVD 𝑈𝑛+1(𝑍𝑛+1)𝑇 of rank 𝑟Ψ

′ > 𝑟Ψ of Φ𝑛.

3.3.5 Preserving the orthonormality of the mode matrix 𝑈

As highlighted in [147], an issue with time discretization, e.g. (3.38) or (3.48), is that in
general, the matrix 𝑈𝑛+1 obtained after a discrete time step does not exactly satisfy the
orthogonality constraint 𝑈𝑛+1𝑇

𝑈𝑛+1 = 𝐼. A numerical procedure must therefore be used
to reduce the truncation errors committed by the discretization, even though the true
trajectory 𝑈(𝑡)𝑍𝑇 (𝑡) on M and the DO equations (3.17) ensure and assume 𝑈𝑇 𝑈 = 𝐼 at
all instants. This procedure must be accurate as numerical orthonormalization may also
introduce round off errors that can lead to significant error over large integration times.
For example, standard and modified Gram Schmidt orthonormalization present numerical
instabilities when 𝑈𝑍𝑇 becomes close to being rank deficient (see [143]). For this reason,
[146, 147] used the following procedure: compute the eigendecomposition of the Gram
matrix 𝐾 = 𝑈𝑇 𝑈 ,

𝑃𝐾𝑃 𝑇 = Σ. (3.52)

Then rotate and scale accordingly modes and coefficients by setting{︃
𝑈 ← 𝑈𝑃Σ−1/2

𝑍 ← 𝑍𝑃Σ1/2.
(3.53)

The eigenvalue problem (3.52) can be solved using Householder factorization which is known
to be numerically stable in comparison with Gram Schmidt orthonormalization [143]. An
issue is that this procedure may introduce permutations or sign changes, leading to artificial
discontinuities in the time evolution of the mode and coefficient matrices 𝑈 and 𝑍. Figure 3-
3 illustrates the problem by plotting the typical evolution of a coefficient of the matrix 𝑍
with this orthonormalization procedure. Even though sign checks alleviate the problem
[147], they are a burden. Hence, to reinforce orthogonality between time steps and provide
smooth evolutions for both 𝑈 and 𝑍 (3.17), one can employ a gradient flow, as was done
in the DO time-stepping (3.48). Reorthonormalization is then performed by finding an
invertible matrix 𝐴 ∈ ℳ𝑟,𝑟 such that (𝑈𝐴)𝑇 (𝑈𝐴) = 𝐴𝑇 𝐾𝐴 = 𝐼 and by setting 𝑈 ← 𝑈𝐴
and 𝑍 ← 𝑍𝐴−𝑇 . Such matrix 𝐴 actually solves the following optimization problem:

min
𝐴∈ℳ𝑟,𝑟

𝐺(𝐴) = 1
4 ||𝐴

𝑇 𝐾𝐴− 𝐼||2.
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Figure 3-3: Time evolution of a coefficient of the matrix 𝑍𝑛 obtained by the time integration of
(3.17). On the left, reorthonormalization of the matrix 𝑈𝑛 is performed by solving the eigenvalue
problem (3.53) while the gradient flow (3.54) has been used on the right. Eigenvalue decomposi-
tions introduce sign flips and permutations, that results in artificial discontinuities in the individual
matrices 𝑈𝑛 and 𝑍𝑛.

Therefore, one can find a reorthonormalization matrix 𝐴 close to the identity by solving
the gradient flow

d𝐴

d𝑠
= −𝜕𝐺

𝜕𝐴
= −𝐾𝐴(𝐴𝑇 𝐾𝐴− 𝐼), (3.54)

with the initial value 𝐴(0) = 𝐼. The inverse 𝐴−1 of 𝐴 can be simultaneously tracked by
solving the ODE

d𝐴−1

d𝑠
= −𝐴−1 d𝐴

d𝑠
𝐴−1.

The resulting numerical procedure is summarized in algorithm 6. Typically, one expects
𝐴 = 𝐼 + 𝑂(||𝑈𝑇 𝑈 − 𝐼||) and hence both corrections 𝑈𝐴 ≃ 𝑈 and 𝑍𝐴−𝑇 ≃ 𝑍 will have
an order of magnitude identical to the initial error, hence ensuring the smooth evolution
of 𝑈 and 𝑍. Figure 3-3 shows the time evolution of a coefficient of the matrix 𝑍 using
this method. Only a few number of Euler steps are necessary to obtain convergence, which
makes the method efficient. The matrix 𝐴 ≃ 𝐼 is well conditioned and algorithm 6 has
small round off errors.

Algorithm 6 Reorthonormalization procedure
1: Define a tolerance parameter 𝜖 and a time step 𝜇 (typically 𝜇 ≃ 1)
2: 𝐾 ← 𝑈𝑇 𝑈
3: 𝐴← 𝐼, 𝐴−1 ← 𝐼
4: while ||𝐴𝑇

𝑘 𝐾𝐴𝑘 − 𝐼||2 > 𝜖 do
5: d𝐴𝑘 ← −𝐾𝐴𝑘(𝐴𝑇

𝑘 𝐾𝐴𝑘 − 𝐼)
6: 𝐴𝑘+1 ← 𝐴𝑘 + 𝜇d𝐴𝑘

7: 𝐴−1
𝑘+1 ← 𝐴−1

𝑘 − 𝜇𝐴−1
𝑘 (d𝐴𝑘)𝐴−1

𝑘

8: 𝑘 ← 𝑘 + 1
9: end while

10: 𝑈 ← 𝑈𝐴𝑘

11: 𝑍 ← 𝑍𝐴−𝑇
𝑘
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(a) Spatial modes 𝑣𝑖(𝑥) of the velocity (b) Realization 𝜔 = 2𝜋/10 at 𝑡 = 10

Figure 3-4: Streamlines of the double gyre flow with stochastic oscillation frequency. The intensity
of the vorticity is displayed in background color.

3.4 Numerical results

In this section we apply the numerical methodology described previously to two stochastic
version of the double gyre flow and of the flow past a cylinder whose material transport
was analyzed for individual deterministic cases in section 1.1.3. In both of the following
examples, the threshold used for increasing the stochastic dimensionality (eqn. (3.51)) is
set to 𝜎 = 10−2 and the retraction used in the DO time-marching is the one described in
section 3.3.3, computed with the gradient descent.

3.4.1 Stochastic double gyre flow

We consider again the benchmark double gyre flow of (1.7) in the setting of section 1.1.3.
One can be interested how the Lagrangian motion of particles is impacted by the oscil-
lation frequency 𝜔, that is therefore the random parameter considered. In this numerical
application, the stochastic PDE (3.2) is solved up to the time 𝑡 = 10 and for 𝜔 uniformly
distributed in [𝜋/10, 8𝜋/10]. The parameters are set according to 𝐴 = 0.1, 𝜖 = 0.1. For
the DO computations, the spatial domain [0, 2]× [0, 1] is discretized using a 257× 129 grid
with 𝑙𝑏𝑐 = 768 boundary nodes, and the stochastic domain [𝜋/10, 8𝜋/10] using 𝑚 = 10, 000
The velocity is decomposed onto 4 time-independent modes 𝑣𝑖(𝑥) (Figure 3-4), and coef-
ficients 𝛽𝑖(𝑡; 𝜔) =< 𝑣𝑖(𝑥),𝑣(𝑡,𝑥; 𝜔) > are obtained by orthogonal projection. The initial
value 𝜓(0,𝑥; 𝜔) = 𝑥 of the solution is visible on Figure 3-5. The PDE (3.2) is solved di-
rectly with 𝜔 = 2𝜋/10 until 𝑡 = 10 in order to validate the advection scheme selected in
section 3.3.1. The result is confronted to the popular 5th order WENO scheme combined
with the TVDRK3 time stepping [108] on Figure 3-6. Although the central scheme smears
some small details on this example, both solutions obtained are fairly comparable, which
demonstrates the broad applicability of this fully linear scheme for advection. This scheme
is therefore used to solve the DO equations (3.17) as discussed in section 3.3.

The DO simulation is run with 𝑟Ψ = 20 modes. For numerical stability, the 8th order
Shapiro filter ℱ (8) (eqn. (3.32)) is applied at every step instead of 10. The first 4 modes
obtained by the SVD truncation of the solution at 𝑡 = 10 are displayed on Figure 3-7. This
figure illustrates the ability of the DO solution to capture dominant modes that are far from
being Fourier modes, and multi-modal distributions of the coefficients that are far from being
Gaussian. Deterministic realizations, obtained by solving directly the transport PDE (3.2)
for 𝜔 ∈ {2𝜋/10, 5𝜋/10, 8𝜋/10}, are compared against their DO solution on Figure 3-8. The
figure shows an excellent agreement between results. The approximation of the solution by
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(a) 𝑥 coordinate (b) 𝑦 coordinate

Figure 3-5: Initial value 𝜓(0,𝑥; 𝜔) = 𝑥 of the advection eqn. (3.2)

(a) 6th order central scheme - RK3 - Shapiro filter [10,3]

(b) 5th order WENO scheme - TVDRK3

Figure 3-6: Comparison between linear and non linear advection schemes for the direct resolution
of (3.2) (without model order reduction) for the realization 𝜔 = 2𝜋/10.
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(a) 𝑥 coordinate (b) 𝑦 coordinate (c) Coefficients distribu-
tion

Figure 3-7: Dominant 4 first modes 𝜓𝑖 and histogram of the corresponding distributions of the
coefficients 𝜁𝑖 of the solution 𝜓 of the transport PDE (3.2) at 𝑡 = 10.

20 modes incurs the loss of some sharp features, but the agreement between Monte-Carlo
and DO realizations shows that the variability of the solution is well captured by the low
dimensional time-dependent basis. The CPU time (estimated with Matlab) required by the
DO simulation is CPUDO = 3530 while each Monte-Carlo realization require CPUMC = 135.
The observed computational speed up is therefore of CPUMC×𝑚

CPUDO
≃ 382. This is coherent with

the prediction given by the ratio 𝑙𝑚
(𝑙+𝑚)𝑟Ψ−𝑟Ψ2 ≃ 433 between the dimension of the ambient

space and the one of the manifold M .
The mean and the variance of the solution are computed efficiently in a straightforward

manner from the DO approximation and displayed on Figure 3-9. This figure highlights the
mean behavior of the flow and the regions characterized by an increased level of uncertainty,
which illustrates the applicability of the method for the study of Lagrangian motion under
a stochastic velocity.

3.4.2 Stochastic flow past a cylinder

In this part, we consider again the Flow Past a Cylinder example of section 1.1.3. A random
perturbation is used to initiate a stochastic flow 𝑣0(𝑡,𝑥; 𝜔) with periodic regime. 𝑚 = 10000
realizations of this flow are computed by using a DO simulation with the numerical schemes
described in [147]. The time window considered is [0,10], the time 𝑡 = 0 being chosen once
the periodic regime is established. The first four dominant modes of this flow along with
one particular realization are displayed on Figure 3-11. The stochastic (forward) flow-map
is computed analogously to the previous example with 𝑟Ψ = 20 modes and the Shapiro
filter ℱ (8) being applied at every time step. Figure 3-11 displays the values of the first 4
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(a) 𝜔 = 2𝜋/10

(b) 𝜔 = 5𝜋/10

(c) 𝜔 = 8𝜋/10

Figure 3-8: Comparison between DO solution (above) versus direct Monte Carlo (below)
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(a) 𝑥 coordinate (b) 𝑦 coordinate

(c) Mean E[𝜓] at 𝑡 = 10

(d) Standard deviation distribution 𝜎Ψ = E[||Ψ − E[Ψ]||2]1/2 for the stochastic double gyre. Red
highlights initial positions characterized with the most uncertainty.

Figure 3-9: Statistical quantities computed from the DO simulation

(a) Spatial modes 𝑣𝑖(0,𝑥) of the velocity (b) A particular realization at 𝑡 = 0

Figure 3-10: Streamlines of the stochastic flow past of a cylinder with stochastic initialization. The
intensity of the vorticity is displayed in background color.
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(a) 𝑥 coordinate (b) 𝑦 coordinate (c) Distribution

Figure 3-11: Dominant 4 first modes 𝜓𝑖 and histogram of the corresponding distributions of the
coefficients 𝜁𝑖 of the solution 𝜓 of the transport PDE (3.2) at 𝑡 = 10.

dominant modes and the corresponding coefficient distributions of the resulting solution at
time 𝑡 = 10. Three particular realizations 𝜔1, 𝜔2, 𝜔3 are evaluated directly and compared
to the DO simulation on Figure 3-12. One still observe an excellent agreement between
the Monte-Carlo realizations and the DO reconstructed solutions. Similarly as above,
mean positions and variability of the resulting Lagrangian motion are plotted on Figure 3-
13. Since particles may exit the domain, the value of 𝜓(10,𝑥; 𝜔) is the final position
occupied by a particle initially located at 𝑥 at time 𝑡 = 0 if this particle does not leave the
domain, or the position of where the particle left the domain otherwise. For this example,
𝑙 = 42848 and 𝑚 = 10000. The observed CPU times required for the DO simulation and
one Monte-Carlo realization are respectively CPUDO = 940 and CPUMC ≃ 32 which yields
an effective computational speed up of CPUMC×𝑚

CPUDO
≃ 340, still consistent with the prediction

𝑙𝑚
(𝑙+𝑚)𝑟Ψ−𝑟Ψ2 ≃ 405.

3.5 Conclusion and future works

The overall contribution of this work is twofold : we first provided a mathematical framework
of oblique projections that allows to obtain the time derivative of implicit matrix maps and
to derive convergent time matrix algorithms to compute them. Applying it to the fixed
rank manifold, we obtained an error analysis of the DO method and new methodologies for
its implementation. A future work could investigate whether this mathematical framework
can be exported into the infinite dimensional setting. For example gradient descent and
dynamical systems that achieve reinitializations have been used in level set methods when
evolving signed distance functions[108].

We then improved and reviewed the implementation of the Dynamically Orthogonal
methodology by exploiting its relation to truncated Singular Value Decomposition. Its broad
applicability to treat advection has been illustrated, offering a novel method for computing
a large number of realizations of the flow map of an ODE with stochastic velocity. Fully
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(a) 𝜔1

(b) 𝜔2

(c) 𝜔3

Figure 3-12: Comparison between DO solution (above) versus direct Monte Carlo realizations
(below) for the flow past a cylinder
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(a) 𝑥 coordinate (b) 𝑦 coordinate

(c) Mean E[𝜓] at 𝑡 = 10

(d) Standard deviation distribution 𝜎Ψ = E[||Ψ − E[Ψ]||2]1/2 for the stochastic double gyre. Red
highlights initial positions characterized with the most uncertainty.

Figure 3-13: Statistical quantities computed from the DO simulation for the flow past a cylinder
example

linear advection scheme have been proven to be effective when integrated in linear model
order reduction. One issue that must be acknowledged, still, is the fact that in general,
advective processes are not well captured by low rank approximation [119]. Future works
could investigate on finding what low-dimensional manifolds could better capture advective
dynamics. One could think for example on wavelet expansions, and symmetry reductions, a
challenge being that the inferred computational methodologies should remain at a moderate
cost.

Regarding Lagrangian coherent structures, we believe this work opens directions towards
the quantification of uncertainty in advection dominated systems. Our approximation tends
to smear out sharp gradients (still in a minimized way thanks to the linear advection
schemes) but preserve the overall behavior of the dynamics, and is expected to speed up
the computation of averaged statistics such as mean and standard deviation. One will notice
that this approach is not immediately connected to the LCSs methodologies presented in
chapter 1, for example it yields flow maps and not FTLE realizations or coherent sets.
Future research directions could focus on finding how relevant features of stochastic flow
maps can be vizualized, and uncertainty of Lagrangian Structures be quantified. A challenge
of great interest could be finding appropriate modelling of shape statistics, namely how to
best “represent” the common features of a large number of realizations of shapes. The issue
is mathematically not trivial due to the complexity of spaces of shapes [7], but one can
expect it to open potential advances in this field.
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