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Abstract

Acoustic wave propagation as a technique for interrogating two-phase mix-

tures has the advantages of being non-intrusive, it has a very high frequency

response and is able to penetrate typically opaque highly concentrated mixtures.

There exists, however, an inherent compromise in the choice of the frequency

of the ultrasound between maximizing spatial resolution and ensuring adequate

beam penetration. To this end, the propagation of sound in solid-liquid mixtures

has been investigated experimentally and analytically for a range of frequencies

and concentrations of the dispersed phase. The attenuation of acoustic waves in

a suspension of monodisperse spheres in a viscous fluid has been found to be a

non-monotonic function of solids' fraction: for example, there is a maximum in

attenuation at a solids' fraction of about 30% for a system of 1 mm silica beads in

water. It has been found previously that the acoustic phase speed has a minimum

at intermediate concentrations, but this behavior is shown here to be a function

of ka, where the wavenumber k = T, and A and a are the wavelength and

particle radius respectively, and the dynamic particle Reynolds number R = a,

where 6 is the unsteady boundary layer thickness. A two component model that

includes viscous, inertial and history effects between the two phases has been

developed and it is shown to predict accurately sound speed and attenuation in

suspensions for three to four orders of magnitude of ka. The attenuation of an

acoustic wave propagating in a solid-liquid mixture at high frequencies is shown

to be proportional to (ka) 3/4 for A > a and to be strongly dependent on the sus-

pension microstructure - at 500 kHz in a suspension of 1.0 mm silica particles in
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water at the maximum packing concentration, the intensity of an acoustic wave

decreases by a factor of 1/e in a distance of approximately 500 particle diame-

ters and thus results in a useful range of penetration of tens of centimeters. The

viscous attenuation model is also shown to predict the dynamic permeability of

a porous medium made up of monodisperse spheres - the frequency dependence

of the permeability has been postulated as a good measure of the geometry of

the interstitial pores of such a medium.

The acoustic intensity field produced by a circular disc transducer in a two

phase medium at ka ~ 1 is shown to be in excellent agreement with the Rayleigh

theory, following the substitution of a modified complex wavenumber which takes

into account the attenuation behavior of the medium. This theory allows for the

prediction of the transducer beam geometry in an arbitrary attenuating two phase

mixture for a wide range of frequencies and solids' fractions. The limitations of

ultrasonic wave propagation as a non-intrusive diagnostic technique in terms of

spatial resolution, and the advantages of focussed transducers are discussed -

with the latter, focal regions of the order of 10 particle diameters on each side

are possible. Finally, velocity measurements obtained in highly concentrated

particulate suspensions, using an ultrasonic Doppler velocimeter in a sediment-

ing particulate bed and a Dynamic Shear Cell, are presented. Results of the

reflection, scattering and refraction characteristics of highly concentrated solid-

liquid mixtures are presented, and their implication for non-intrusive diagnostic

instrumentation discussed.

Thesis Supervisor: Dr. Harri K. Kyt6maa

Title: Esther and Harold E. Edgerton Assistant Professor

of Mechanical Engineering.
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NOMENCLATURE

a particle radius

A transducer area

A coefficient defined in Equation (3.30)

B coefficient defined in Equation (3.31)

c sound speed

C added mass coefficient

d pore size

D density ratio

e 2.71828...

f frequency

F phase interaction force

G parameter defined in Equation (3.35)

h particle separation distance

H(w) frequency response transfer function

Q imaginary part

k dynamic permeability

k wavenumber (complex)

L penetration depth or distance

M perturbation matrix defined in Equation (3.29)

n number density of particles

n refractive index

N number of points

p acoustic pressure

P fluid pressure

rH hydraulic radius

R radius

R Reynolds number

R real part

s distance from transducer face
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S distance from center of transducer face

t time

T period

u fluid velocity

U velocity

V velocity

V signal amplitude

x distance

x position vector

z axial distance

Z acoustic impedance

Subscripts

c characteristic

D drag

D Doppler

dec deconvoluted

eff effective

eq equivalent

f fluid

i incident

1 liquid

max maximum

min minimum

0 ambient or static

p particle

r refracted

rel relative

res resolution

R receiver

s solid

s sound
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trans transmitted

T transmitter

Superscripts

/ perturbation

0 ambient or undisturbed

~ dimensionless

Greek Symbols

a attenuation parameter

a tortuosity

0 conductivity ratio

6 boundary layer thickness

71 normalized solids' fraction

K bulk modulus

K extinction coefficient

A wavelength

A pore length scale

P viscosity

V gradient

v solids' volume fraction

W frequency

0 velocity potential

7r 3.14159...

0p phase

p density

Ir time period
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CHAPTER 1

INTRODUCTION

1.1 Background

Multiphase flows, that is those flows in which two or more different physical

phases (gaseous, liquid or solid) of the same or several different components co-

exist, are encountered in a wide range of chemical and physical processes. Highly

concentrated solid-liquid flows, a subset of these multiphase flows, are found in

the pipeline transport of mineral and coal slurries, the flow of drilling muds in oil-

fields, the flow of pastes in the food and pharmaceutical preparation industries,

the flow of concrete in construction applications, sediment transport in rivers

and ocean currents, catalytic reactors such as Fischer-Tropsch hydrogenators,

composite manufacture and polymer melts, fibrous and filamentaceous broths in

bioreactors and fermentors and in paper-making applications, and in solid-fuel

handling in rocket propulsion applications (amongst many others).

Flows of such mixtures are often susceptible to blockages and bridging at

high solids' loadings, and are typically difficult to monitor and control. At very

high solids' concentrations, small variations in pipe geometry or mixture velocity

can lead to concentration perturbations that may grow in amplitude, to ulti-

mately cause the mixture to pack or sediment locally. Once this occurs, blockages

in the flow system can occur leading to catastrophic damage to pumping equip-

ment. Furthermore, once a flowing slurry or suspension comes to a stop, there

is a strong hysteretic effect inasmuch as very high liquid velocities and pumping

pressures are then required to resuspend the dispersed phase after sedimenta-

tion. These problems have motivated the development of non-intrusive diagnostic
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II

techniques to describe the internal mechanics of these flows and to monitor their

behavior. Instrumentation for these flows is necessary for the measurement of

the velocity of the flowing mixture (in its simplest form, such measurement may

be a flow/no-flow indication), and for the measurement of the concentration of

the dispersed or solid phase. Most available instrumentation is intrusive, that is

to say that it intrudes into the flow, and thus has the potential to disturb the flow

locally. This is somewhat self-defeating as most intrusive instrumentation relies

on very local variations or fluctuations in mixture properties as a measurement

strategy. Such measurements thus typically interfere with the flow that they are

attempting to measure or monitor and raise questions as to their fidelity or accu-

racy or representability. In addition, abrasion in these flows can lead to problems

with instrument longevity and reliability. Non-intrusive instrumentation on the

other hand usually relies on some implicit averaging, inasmuch as the flow is

usually monitored across some length of the flow geometry or across a pipe cross

section. This type of measurement thus implies inaccuracies associated with spa-

tial averaging and less than optimum spatial resolution, but without interfering

with the flow under measurement.

The most common and useful measurements in highly concentrated solid-

liquid flows are particle and liquid velocity (and hence flowrate), and the con-

centration of the dispersed phase. The velocity of the moving mixture might be

inferred non-intrusively from the pressure drop down a known length of piping

or around a bend or through a fitting, or it might be measured at a point us-

ing intrusive conductance or resistivity probes such as those described by Shook

et al., 1982, or Hsu et al., 1989, which operate on the principle that the resis-

tance or capacitance measured locally in the flowing mixture varies with the local

particle concentration and with the passage of discrete solid particles. A more

12



sophisticated non-intrusive measurement is the relatively recent method of laser

Doppler anemometry (LDA) with refractive-index matching. In this laboratory

technique, the test liquid and solid particles are chosen with matching (or very

nearly so) indices of refraction to allow the light beams to penetrate deep into the

mixture to the measuring volume without prohibitively high signal attenuation.

This technique has been shown to be effective in slurries with solids' loadings of

up to about 50% by volume, (Kadambi, Bhunia and Dybbs, 1988). Gamma ray,

X-ray and microwave radiation have also been used in highly concentrated slurry

applications (Goldstein, 1983), but the extremely high capital costs and safety

concerns associated with the use of these techniques means that their widespread

use in industrial and laboratory applications is not feasible.

A remarkably underutilized method of non-intrusive measurement, on the

other hand, is acoustic or ultrasonic wave propagation. Ultrasound (typically in

the range of tens of kilohertz to several megahertz) has several distinct advantages

over other methods of measurement in the investigation of highly concentrated

mixtures. It is truly non-intrusive, it has an inherently high frequency response,

and can thus be used for the measurement of dynamic or transient phenomena; it

can penetrate highly concentrated and optically opaque (and hence physically re-

alistic) mixtures, and it operates at sufficiently high frequencies and hence short

wavelengths to afford good spatial resolution. In addition, acoustic instrumen-

tation is comparatively inexpensive to procure and maintain, and robust in its

operation.

High frequency acoustic wave propagation has been used for some time in

the measurement of predominantly single phase flowrates in such diverse areas as

in vivo blood flow measurement and water pipeline flow monitoring. Indeed in-

vasive and non-invasive ultrasonic cardiography and angiography are now widely

13



II

practiced medical diagnostic techniques (Marcus et al., 1991). These methods

typically utilize ultrasound in the range 5-20 MHz and measure Doppler-shifted

signals scattered off the platelets in flowing blood.

Table 1: Relative Performance of various Non-intrusive Instrumentation Tech-

niques for Highly Concentrated Solid-Liquid Flows.

Representative Visible Electrical Acoustic

Performance X-rays lasers techniques techniques

Wavelengths -1 A -, pm - ~_ mm

Source Coherence no yes yes

Scattering cross section medium large - small

Absorption small large - small

Penetration at high

solids' loading good poor - good

Spatial resolution poor good poor fair

Tomography yes unnecessary yes yes

Velocity measurement no yes possible yes

Fractional Doppler Shift - small - large

Signal to noise ratio high high fair fair

(after Penner et al., 1984).

In industrial pipeline applications, several proprietary devices are available

that measure fluid velocities in predominantly single phase systems, such as wa-

ter pipelines (cf. Controlotron Corporation, Nusonics, Polysonics and Texas

Nuclear); these devices, typically operated at frequencies around 1 MHz (and

above), require a low concentration of scatterers such as bubbles or small parti-

cles in the flow and are also considered suitable for measurements in suspensions
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with low solids' loading, such as those encountered in sewage lines. These de-

vices infer fluid velocity by measuring the Doppler shift in ultrasound scattered

off small particles (solids or bubbles) that are assumed to move at the fluid veloc-

ity. Ultrasonic Doppler anemometry has also been used in medium concentration

two phase mixtures in experimental settings (for a brief review of industrial ap-

plications see Lynnworth, 1989). For example, Hilgert and Hofmann (1986) have

investigated bubble rise velocities in bubble columns, while intensive testing of

Doppler instruments for use in measuring coal slurries has been undertaken in the

recent past at Argonne National Laboratories (Karplus and Raptis, 1979; Rap-

tis and Lau, 1981; Raptis, 1984). Beltran et al., 1989, describe the use of such

instrumentation for the measurement of slurry velocity in a copper ore grinding

circuit up to about 10% by volume concentration.

Acoustic wave propagation as a non-intrusive technique has certainly not

been used to its full potential in highly concentrated mixtures, due mainly to the

difficulties posed by signal attenuation due to beam spreading, viscous losses,

scattering and other mechanisms. There exists an inherent compromise in the

selection of operating frequency for an acoustic device between the need to min-

imize the wavelength for better spatial resolution, while maximizing the wave-

length for better penetration of such mixtures. This thesis describes, in part, an

experimental investigation of the acoustic characteristics of solid-liquid mixtures.

A systematic study of the effect on acoustic propagation of operating frequency,

particle concentration, particle properties such as size, density and solid stiffness,

and liquid properties such as density and viscosity was carried out. A theoret-

ical model for the acoustic wave speed and attenuation in a two phase mixture

of varying solids' concentration, incorporating particle and fluid properties, was

developed and compared to the experimental results. Based on the experimental

15



and analytical findings, the distinct advantages of acoustics as a method of in-

terrogating these mixtures were delineated, and the limitations of the technique

discussed. An ultrasonic Doppler flowmeter, capable of measurements of veloci-

ties in systems of up to maximum packing concentration, was developed for use

in sedimenting and packed mixtures, and shown to be able to measure velocities

at considerably higher concentrations than those previously reported.

1.2 Objectives of this work

The objectives of this work were to study acoustic wave propagation in

highly concentrated mixtures of elastic solid particles in Newtonian fluids, with

a view to the development of non-intrusive diagnostic instrumentation for highly

concentrated multiphase flows. Specifically, the aims of this work were:

1) to investigate experimentally the intensity field produced by ultrasonic

transducers in multiphase systems and to extend the classical Rayleigh theory

to predict beam geometry effects in such mixtures for A > a,

2) to measure linear acoustic wave propagation in mixtures and suspensions,

in terms of attenuation and sound speed,

3) to investigate theoretically the frequency and concentration dependence

of attenuation and sound speed in highly concentrated mixtures,

and

4) to show the application of non-intrusive measurements in multiphase sys-

tems by determining the velocity of particles in a highly concentrated solid-liquid

mixture.
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1.3 Thesis structure

Chapter 2 describes the theory for determining the acoustical intensity field

produced by ultrasonic transducers, and shows experimental results of the acous-

tical beam geometry obtained in single and two phase systems. Experimental

results of the sound speed and attenuation in both packed beds and in fluidized

beds for a range of solids' concentrations and ultrasonic frequencies are then

described. Chapter 3 details the viscous attenuation and sound speed that are

derived from a two component model and shows the agreement between pre-

dictions and experimental results. As an extension of this model, the dynamic

response of a fluid saturating a porous medium of spheres has been modelled.

The prediction of the dynamic permeability of a porous medium made up of

spheres via a dynamic drag approach is described in Chapter 4. The develop-

ment of an ultrasonic Doppler velocimeter for use in measuring particle velocities

at high mixture concentrations and an analysis of acoustic wave reflection, re-

fraction and scattering in highly concentrated solid-liquid mixtures is described

in Chapter 5. Finally, the conclusions and recommendations of this study are

detailed in Chapter 6.
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CHAPTER 2

ACOUSTIC WAVE PROPAGATION IN SUSPENSIONS

- EXPERIMENTS

2.1 The Theory of Linear Acoustics - A Review

The experimental study utilizes a flat, unfocussed ultrasonic transducer; it

is therefore appropriate to first outline the characteristics of the acoustic field

eminating from such a transducer in a pure fluid. A more complete review of

the classical theory may be found elsewhere (see, for example, Morse and Ingard,

1978). If a circular planar piston transducer is induced to vibrate, it will cause

sound to be radiated into the medium in which it is immersed. All points on

the face of the piston act as monopoles oscillating in phase with one another.

Away from the piston face, the monopole fields interfere both constructively and

destructively. By linear superposition, the velocity potential q(x, t) at any point

in the fluid is given by the Rayleigh integral (Morse and Ingard, 1978):

q(x, t) = ju e2  dA, (2.1)

where x is the position vector of the target point, u is the velocity distribution

across the face of the transducer, s is the distance from each point on the face

of the transducer to the target, k = 27r/A is the wavenumber, A is the acoustic

wavelength and A is the area of the emitting surface, as indicated in Figure 2.1.

The velocity, u, of the fluid at any point is given by u = V0, where q is the veloc-

ity potential. The acoustical pressure deviation from the undisturbed datum, po,

is given by p' = ipow, where po is the datum fluid density (Temkin, 1981). The

Rayleigh integral has been simplified and evaluated in approximate analytical

18



forms by numerous investigators (cf. Adach and Chivers, 1990; Goodsitt, Mad-

sen and Zagzebski, 1982; Harris, 1981). Here it is integrated numerically and the

radially symmetric intensity profile, normalized with respect to the maximum

value, is shown in Figure 2.2 for the case kR = 40, where R is the transducer

radius (the profile shown is actually one-half of the radially symmetric profile).

The acoustic field has the following characteristics. The amplitude goes through

a number of local maxima and minima in the near-field or Fresnel region while

far from the piston face, the amplitude decays monotonically (as b). In the in-

termediate region between the near and far fields, the intensity of the sound wave

goes through a final maximum at the point of natural focus of the transducer.

The distance from the transducer face to this point is referred to as the natural

focal length, in reference to the (analytically) similar case in geometrical optics.

In the far-field, the transducer beam intensity is a maximum along its axis and

falls off with increasing radial distance from the center axis. The Rayleigh inte-

gral is sufficiently general to describe the acoustic field due to a transducer of any

geometry oscillating with an arbitrary velocity distribution, as was demonstrated

for a focussed transducer by O'Neil (1949).

2.2 Acoustic Wave Propagation in an Attenuating Medium

In an attenuating medium, the wavenumber of a propagating acoustic wave,

k, is generally complex and involves the angular frequency of oscillation, W, the

sound speed, c, and the frequency dependent attenuation parameter, a(w), which

is unique to the medium concerned,

k = - - ia(w) = k - ia(w). (2.2)
c
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Several theories exist that relate a(w) to fluid and particle properties, the

particle concentration and the frequency of excitation, and a comprehensive re-

view of these theories for the attenuation of sound in suspensions has been given

by Harker and Temple (1988). The acoustic field for a linearly attenuating

medium can be readily computed with the Rayleigh integral, with the substi-

tution of a modified wavenumber to take into account differences in sound speed

and attenuation. With reference to Figure 2.1, for all points sufficiently far from

the emitting surface such that S > R, where S is the distance from the center

of the transducer face, it follows that s ~ S. For these conditions, the purely

geometrical effect of the integration over the transducer face may be uncoupled

from the attenuation term to give the resultant velocity potential as

-iksO(x) 2- e s u -~2 dA (2.3)
A21rs

The condition S > R is not particularly restrictive when it is considered that

the transition to the far-field of an unfocussed transducer typically occurs at a

distance of several times the transducer radius, and that intensity measurements

are typically performed in the far-field. Thus by measuring the velocity potential

distribution in an attenuating medium, the attenuation parameter for that fluid

can be calculated.

Considering a non-homogeneous multiphase system consisting of discrete

solid particles suspended in a fluid, for the case in which the wavelength of the

sound is much larger than the particle radius, or A > a, the behavior of the

medium is known to become attenuative and to assume the above representa-

tion with a modified wave speed (Allegra and Hawley, 1972, and Waterman and

Truell, 1961). The validity of this representation and the functional dependence

of the attenuation parameter a with respect to A for the case A < a is further
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investigated in this study.

2.3 Ultrasonic Wave Propagation - Experimental Procedure

2.3.1 Experimental Apparatus

Experiments were performed to measure the intensity field of an unfocussed

circular disc transducer in single phase and multiphase systems. In particular,

acoustic velocity, attenuation and beam geometry were measured. These exper-

iments were conducted in a water bath of 30 cm width, 60 cm length and 25

cm height. The transmitting transducer was attached to a housing with three

degrees of linear motion provided by an x-y stage which itself was placed on

a movable rail. The transducer could thus be moved axially and radially with

respect to the receiver in a controlled and measureable fashion (Figure 2.3). The

receiving transducer was mounted on a 3 mm aluminum plate in a rigid mounting

in the water bath. The transmitter which was typically operated in a tone-burst

mode, was driven by a frequency generator (Wavetek Model 166) via a 100 W

RF amplifier (Amplifier Research AR15). The frequency generator was triggered

internally to emit bursts of 10-20 sinewaves in the frequency range 100 kHz to

1.0 MHz. The receiver was connected to an ultrasonic amplifier (Panametrics

5052PR) with variable gain in the range 0 dB to 60 dB, and the amplified signal

was then filtered (Krohn-Hite 3320) at a cut-off frequency of twice the emit-

ted frequency in each experiment. The transmitted and received signals were

displayed simultaneously on a digital oscilloscope from which the requisite in-

formation could be measured. The magnitudes of the transmitted and received

signals were compared to evaluate the attenuation and beam geometry features,
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and the delay time between the transmitted and the received signals was mea-

sured to give the sound speed. Thus the sound speed was evaluated from the

time of flight of a tone burst between the transmitter and receiver, with the

measurement in pure degassed water (having a well-defined sound speed) used

as a calibration. The signal intensity was measured at the same peak on both

the transmitted and received waveforms (typically the fourth or fifth peak after

the initial transients) to maintain consistency between experiments.

2.3.2 Transducers

The transmitting transducer used was a flat unfocussed and highly damped,

broadband immersion transducer of radius R = 9.5 mm, and nominal natural fre-

quency 1.0 MHz (Panametrics, V302). The intensity fields generated by the unfo-

cussed transmitter were measured by a 1.0 mm diameter bilaminar polyvinylidene

fluoromer (pvdf) hydrophone. The receiver was custom made from a small sec-

tion of pvdf film (Pennwalt Corp.). The active area of the transducer was coated

with a dot of silicon rubber sealant corresponding to the final area of the receiver,

and the excess metallized surface on the pvdf sheet was removed with acetone

and an aqua regia solvent. The piezoelectric polymer pvdf has several distinct

advantages in its use for acoustic receivers, including the fact that transducers

may be tailor-made to virtually any dimension, and such hydrophones have a very

flat frequency response in the range from DC to several MHz. The receiver used

in these experiments was chosen for its small size and hence the local nature of

its reception characteristics. The frequency response of the transmitter-receiver

system was measured under controlled conditions in pure water for each separate

experiment to allow effects associated with the medium, such as attenuation and
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beam geometry to be separated from the system characteristics. The system re-

sponse is shown in Figure 2.10 - the attenuation in pure water is considered to

be negligible to the attenuation in the two phase mixtures, and so the pure water

curve is taken to be the system frequency response. All measurements of ampli-

tude were made relative to the (unattenuated) water curve, with an additional

correction for beam geometry effects as discussed in Section 2.4.5.

2.3.3 Transducer Alignment

The acoustic intensity field produced by a transducer varies greatly with

position, and consequently accurate positioning of the transmitting and receiving

transducers is critical. Initial coaxial alignment is achieved in an iterative fashion.

The receiver is positioned at roughly the distance known to correspond to the

focal length of the transmitter at the particular frequency of operation, and is

then traversed axially and laterally in small increments until the maximum is

detected. The transmitter is then moved back and forth along the axis and at

each axial position, it is translated radially to ensure that the two are indeed

aligned coaxially. This procedure is conducted prior to all measurements.

2.3.4 Transducer Operation

Often ultrasonic instruments are operated in a pulsed mode, in which the

transducer is excited by a pulse of relatively high amplitude and short duration.

The transducer then rings down for some period of time (the length of which

depends on the degree of mechanical and electrical damping inherent in the

unit) at its natural or preferred frequency of operation. In contrast, in the

present experiments the transducer was excited by a tone burst or wave packet
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of adjustable frequency and amplitude. The length of the tone burst is limited

to remain less than the time of arrival of the first echo reflected by boundaries

in the system and the repetition rate or the time between successive bursts is

adjusted to be longer than the time required for all extraneous reverberations to

die away. A burst duration of 10-20 full waves at a repetition rate of about 1

kHz was found to be satisfactory. To avoid nonlinear effects, the amplitude of

the emitted signals were kept low. In these experiments, the maximum pressure

excursion measured was of the order of 0.15 kPa (or three orders of magnitude

less than the ambient), and the typical value was somewhat less than this. At

these pressure amplitudes and frequencies, cavitation, which could corrupt the

measurements, does not occur.

2.4 Experimental Results

2.4.1 Acoustic field in degassed water

It has previously been shown that commercial flat transducers create acous-

tic fields that are very close to those predicted theoretically (Adach and Chivers,

1990). Prior to making measurements for the purpose of characterizing the ul-

trasonic properties of concentrated solid-liquid mixtures, the acoustic field in

degassed water was measured as a verification of satisfactory operation of the ul-

trasonic transducer. This was done in terms of an axial and three radial traverses.

The location of the natural focus of a transducer is a near linear function of the

reduced transducer radius. The axial distribution for the 9.5 mm radius, 1 MHz

transducer has a measured natural focus at 58.4 mm as shown in Figure 2.4 while

the corresponding calculated value is 52 mm. This discrepancy is probably the
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consequence of the uncertainty in the effective radius of the active piezo-electric

ceramic element, which can also be the source of the minor and typical error in

the axial intensity decay. The radial profiles in intensity were measured at 58.4,

89.4 and 151.4 mm. These are shown in normalized form in Figure 2.5, and they

agree relatively well with the result of the Rayleigh integral particularly at the

greater axial distance. The measurements show qualitative agreement with the

off-peak oscillations in predicted intensity. Based on the measurements shown

and many others it is found that the measured fields consistently show good

predictability in the far field and a lesser agreement in the Fresnel region.

2.4.2 Acoustic field in packed beds

The properties of packed beds were characterized by means of similar acous-

tic field measurements for various fixed dimensions of the test cell. The active

transducer was positioned directly against the acoustically transparent window

of the container that held the packed mixture of 1.0 mm nominal diameter glass

beads in water (the actual average diameter of the beads was 1.034 mm, with

a standard deviation of 0.100 mm). Radial beam traverses were made for each

axial separation between the transmitter and receiver (50, 75 and 100 mm), and

are shown in Figure 2.6 for a frequency of 0.30 MHz. To calculate the amplitude

of the corresponding non-attenuating acoustic fields (i.e., the acoustic field due

solely to geometric effects) for the purpose of comparison, the medium sonic ve-

locity is required. To this end, the acoustic phase velocity was measured for the

packed bed as a function of frequency.
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2.4.3 Phase velocity in packed beds of glass beads and water

The phase velocity was derived from the measurement of the time of flight

between the transmitter and the receiver. The measurement was calibrated by

first measuring the transit time in pure degassed water, and comparing this

value to that calculated using accepted values of the sonic velocity in water

(Del Grosso and Mader, 1972). The residence time of the tone burst in the

transducer housings, established using this baseline, was then subtracted from

subsequent readings. In the packed bed of glass spheres and water, the phase

speed shown in Figure 2.7 displays a gentle, monotonic decrease as a function

of frequency, with no evidence of scale effects when ka becomes of order one or

greater. It is not understood whether this decrease is physical or whether it is an

experimental artifact, but it is clear that .this result directly disagrees with the

truncated theoretical representation of the "multiple scattering" model (Anson

and Chivers, 1989) which shows great fluctuations of sonic velocity with ka.

Further it is interesting to note that only one wave speed was detected in these

settled bed experiments. Plona (1980) has shown that porous media of finite

solids' stiffness may display three types of wave, a slow compressional, a shear

and a fast compressional wave in order of ascending speed. The present results

show a complete absence of the fast compressional wave which could either be

the result of the method of emission favoring only one wave mode, or that the

stiffness of the solids' matrix is minimal in these experiments. As is shown below

in the fluidized bed experiments, the absence in detectable difference between

the sound speed in the settled and incipiently fluidized states leads the authors

to believe that the settled beds are effectively cohesionless.
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Comparison with Rayleigh theory

The acoustic field in a non-attenuating medium can be fully represented by

the wave speed and the transducer geometry alone. The radial beam profiles

corresponding to the above packed bed conditions were computed and are shown

together with the data in Figure 2.6. In this figure, both the calculated and

measured curves are normalized with their respective peak values. Although

the dimensional magnitudes of these maxima differ, the geometrical similarity

between the theoretical curves and the data is striking, particularly near the axis,

and the Rayleigh theory is well able to represent beam width. It is hypothesized

that the decay of beam amplitude, which the unattenuated theory fails to capture,

may be described by the attenuated version of the Rayleigh integral (Equation

2.1). Using this representation, numerical values of the attenuation parameter,

a, could then be derived from measurements. It should be noted that the far field

intensity decays due to both geometrical spreading and due to the presence of

solids. Typically the inverse square geometrical attenuation effect has not been

taken into account in previous investigations (Machado et al., 1983) which leads

to an overestimation of the attenuation due to scattering. The purpose of the

present measurements is to extend the investigation of the effect of wavelength

down to ka ~ 1, and to include the effect of solids' concentration (discussed in

Section 2.5.2) on the attenuation in mixtures. To address the former, further

traverses for f = 0.8 MHz (ka = 1.5) were obtained. These are shown in Figure

2.8, with the corresponding unattenuated Rayleigh result based on the measured

mixture phase speed. The agreement persists even for high values of ka. The

non-focussed transducer is seen to have a radial beam width of approximately 25

mm at 50 mm in the two phase mixture. The measured radial profiles produced

by a focussed transducer (Panametrics, V314) at 70 mm in a packed bed of 1.0
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mm silica beads at 0.545 MHz and 0.700 MHz are compared with the theoretical

profiles predicted by the Rayleigh theory in Figure 2.9. The transducer is focussed

by the addition of an acoustically matched plastic spherically concave lens, and

has a natural focus of about 40 mm in water at 0.5 MHz. The theory was found

to match the behavior of the transducer, of nominal radius 12.7 mm and 3.2

mm lens depth, using a theoretical radius of 13.3 mm and 1.2 mm depth (this

specifies the shape of the surface where monopoles in phase are distributed). The

focussed transducer is seen to have a radial beamwidth of approximately 10 mm

at 70 mm, or somewhat less than half of that of the non-focussed transducer.

The Rayleigh integral is seen to be quite general in its form and to be able

to predict the intensity field for both focussed and non-focussed transducers. It

appears, therefore, that for this specific application, an equivalent single phase

characterization of the two component mixture is appropriate. Such a representa-

tion is adopted here and is utilized to represent all measured mixture attenuation

values in this study.

2.4.5 Attenuation in packed beds

Since the attenuation in pure water is found to be negligible compared to the

attenuation in the packed mixture, it is convenient to present the attenuation,

a, relative to degassed water measurements. In quantifying attenuation, the

following factors were recognized to affect the amplitude of the received signal:

a) the frequency response H(w) of the transmitter-receiver combination,

b) the position of the measuring location relative to the natural focus, and

c) the signal loss due to the presence of solids.

The received axial signal amplitude (Vw.ter) through degassed water at a

fixed separation, L, between transmitter and receiver can therefore be presented
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as

/ e-i(w/cte,-)LVwater = Vtran.H(W) U dA, (2.4)
A 27r

while the corresponding amplitude received through the mixture is

Vmixt = VtransH(w)e-"L U dA. (2.5)
JA 27rL

Dividing (5) by (4), an expression emerges for the attenuation parameter:

1 cos(W/CMiXt)L
a ~ [ln Vwater - in Vmixt] + ln . (2.6)

L 1cos(W/Cwater)LI

This form was used to evaluate a from experiments performed in the constant

dimension test section for L = 50, 75 and 100 mm. The trigonometric correc-

tion factor in Equation 2.6 accounts for the relative axial position of the receiver

with respect to the natural focus, and it is named the geometrical factor. At

the axial distances considered, namely L = 50, 75 and 100 mm, the magnitude

of this factor is small with a maximum deviation of the order of 20%. How-

ever all measurements were adjusted to take this correction into account. The

experiments consist of measuring the received signal for a full range of excita-

tion frequencies. Typical unreduced data for these tests are shown in Figure

2.10 for both water and settled beds. The degassed water curve contains the

combined transmitter-receiver frequency characteristics with a maximum at 0.9

MHz, which is consistent with the nominal transmitter natural frequency of 1

MHz, and the high receiver natural frequency. The mixture signal amplitudes

show little deviation from the water values at low frequencies, but they typi-

cally begin to deviate from the water curve at a frequency of approximately 0.4

MHz (ka = 0.75). These resulting attenuation parameter values are presented
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in Figure 2.11 in dimensionless form (aa) as a function of the reduced frequency

ka. The log-log presentation of the data exhibits two distinct regions. At low

frequencies, the attenuation parameter appears to depend approximately linearly

on frequency, while the change in slope indicates an apparently quadratic depen-

dence on frequency for ka > 0.75 (this result is consistent with the results of Salin

and Sch6n, 1981, for attenuation in porous media). Further tests were carried

out to verify these findings and to characterize the effect of solids' fraction using

a similar apparatus with the additional ability of fluidizing the mixture to lower

solids' concentrations.

2.4.6 Experimental error analysis

Typically, the accuracy to which the received and transmitted signal ampli-

tudes could be measured was to within approximately 1mV. At the low and

high solids' fraction limits, this would correspond to as much as 5% of the total

measured amplitude, while being as low as 1-2% at the intermediate concentra-

tions (corresponding to the minimum attenuation). This indicates that the error

in the attenuation as calculated in Equation 2.6 is no more than about 10% at the

high and low concentration limits, and as low as 2-4% at v = 0.30. The error in

the sound speed measurements was minor - the typical time of flight durations

were 50-100 ps, measured with an accuracy of about 1.0 Ms. This would indicate

a relative error of no more than 2% in the sound speed estimation.

2.5 Fluidized Bed Acoustic Experiments

In order to obtain attenuation and wave speed behavior of acoustic prop-

agation in systems of varying concentration, experiments were conducted in a
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fluidized bed. Here the concentration of the solid-liquid mixture could be varied

by adjusting the upwards velocity of liquid through a bed of particles initially

supported on a porous plate. An ultrasonic transducer transmitter-receiver pair

was mounted horizontally on the vertically aligned 100 mm tube (Figure 2.16).

Liquid-solid fluidized beds are kinematically quite stable with small local fluc-

tuations of solids' fraction, due to the discrete nature of solid-liquid systems

(Foscolo and Gibilaro, 1985). Although such fluctuations are present, the period

of oscillation of the acoustic wave propagation used (T = = 2) is very much

smaller than the characteristic time scale of acceleration of the individual parti-

cles (T, = '2-), so that the particles may be considered to be frozen in space,

particularly for tone bursts of short duration. At intermediate concentrations,

that is to say at solids' fractions between those corresponding to infinite dilution

and maximum packing, there is some instability in these fluidized beds and this

can lead to ambiguity in the interpretation of the acoustic wave attenuation, for

example. This instability, which is related to particle inertia, is more pronounced

for larger solid to liquid density ratios, and is most significant in the concentra-

tions below about 50% by volume. Spatial variations in concentration along the

line of measurement, coupled with the non-linear behavior of attenuation with

concentration, can further complicate the interpretation of attenuation results.

In these experiments 1.0 mm glass beads were fluidized in water, and the

typical frequencies of the sound used were in the range 100 kHz to 1.0 MHz

(ka = 0.2 ~ 2). The apparent concentration of the solids in the fluidized bed

was determined from the height of the upper surface of the bed and was assumed

to be fairly constant across the bed height.

31



2.5.1 Sound speed variation with concentration

The variation of the speed of sound with solids' fraction is shown in Figure

2.12. It has the anticipated behavior at the two extremes of concentration: at

very low concentrations, the sound speed is roughly that in water under the same

conditions, it increases monotonically as a function of concentration and at the

maximum packing limit, the sound speed is the same as that in the packed bed

case. For comparison, the phenomenological model of Urick (1947) (described

in Section 3.2) that is based on the effective bulk modulus and density of the

mixture is also shown in this figure. In contrast to the experimental results, the

theory predicts that the sound speed has a minimum at intermediate concentra-

tions of the order of 20% by volume. It should be noted, however, that the theory

corresponds to the long wavelength limit, namely ka -+ 0, while the experimental

results are for ka - 1. As was found in the settled bed experiments, there is a

dependence (albeit rather weak) of sound speed on frequency. Consequently, the

simple although rather robust theoretical representation of Urick (which does not

contain any mechanism to describe frequency dependence) contains the relevant

ingredients to give a reasonable first order approximation to the sound propa-

gation velocity. (An analytical study of the variation of the sound speed with

frequency is given in Chapter 3).

2.5.2 Variation of attenuation with concentration

The variation of a with respect to frequency, described in Section (2.4.5),

showed a monotonic increase and two distinct regions of dependence. At low

frequencies, ka < 0.75, the attenuation grows approximately linearly with fre-

quency, while the relationship apparently becomes quadratic for ka > 0.75. As
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an extension of this, the dependence of the attenuation parameter on frequency

was evaluated for various values of the solids' fraction. The picture that emerges

is complex and to help its interpretation, the attenuation parameter is plotted

as a function of concentration with frequency as a parameter in Figure 2.13 from

which the following traits can be distinguished. At low concentrations (< 20%)

the attenuation increases with both frequency and concentration such that the

slope of attenuation vs. v increases with the frequency. Indeed, by linear super-

position of losses due to individual scatterers, one would expect that the increase

would be monotonic with concentration. In practice this signifies that penetra-

tion becomes poor with higher solids' loading, particularly at higher frequencies.

This has long been known, for example, as the reason why commercially available

ultrasonic Doppler velocimeters fail at higher solids' contents. As the concen-

tration is increased above 20% while maintaining a constant frequency, the at-

tenuation behaves in a dramatic and counterintuitive fashion by first leveling off

and then decreasing at higher concentrations. This phenomenon is particularly

marked at high frequencies of operation. For example, at an operating frequency

of 0.8 MHz (ka = 1.5), the attenuation in 62% solids (1 mm) is the same as in a

mixture with 6% solids, while the peak attenuation coefficient a assumes twice

the 62% value at a concentration of 25%. For the present system of 1 mm glass

beads and water, the non-monotonic character of the attenuation parameter is

most prominent at frequencies above 0.4 MHz, (ka = 0.75). This behavior has

previously been observed by Urick (1947, 1948) and Hampton (1967) in their

experiments with kaolinite suspensions (mean diameter of 2.26 and 0.83 Pm re-

spectively according to Gibson and Toks6z, 1989), and their data are included

in Figure 2.14 for comparison. It can be noted that the attenuation in these

colloidal suspensions is high relative to the present results for the same range of
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frequencies. But when these attenuation data are appropriately rendered dimen-

sionless with particle radius (aa), they are indeed found to scale approximately

linearly with reduced frequency (ka) with one another and with the new data

presented. This reinforces the assertion that the correct scaling for two phase

mixtures is the parameter ka, and that experiments at similar values of the non-

dimensional wavenumber may be compared directly, for mixtures with the same

material properties.

2.6 The Design of Ultrasonic Instrumentation and the Limitations

of the Technique

It is clear from the results of the attenuation at high concentration presented

above that it is possible to design an instrument to investigate such mixtures. The

parameters that must be taken into consideration in the design of an ultrasonic

instrument are

i) the solids' fraction, v, in the mixture

ii) the particle size, or more particularly the parameter, ka,

iii) the particle properties (density and compressibility),

iv) the fluid properties (density, compressibility and viscosity), and

v) the physical dimensions of the system to be interrogated.

The sound speed, c, in a particular solid-liquid mixture is determined by the

solid and liquid densities and compressibilities, as well as the solids' fraction, v.

At a particular frequency of operation, the sound speed fixes the wavelength of

the transmitted sound which in turn, with the dimensions of the transmitting

transducer, determines the spatial resolution of the ultrasonic measurement. The

depth of penetration of the ultrasound is dictated by the attenuation, which varies
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with the frequency of sound and the dispersed phase concentration, as well as

with the fluid viscosity (an effect not experimentally considered here).

It has been shown that the solids' fraction of the mixture does not repre-

sent a significant limitation to the use of ultrasound as a diagnostic technique

(particularly as the attenuation at maximum packing is far from its maximum

value, which has been shown to occur at around v - 30%), while the frequency of

operation may well be a limiting factor, due to the apparently quadratic increase

in attenuation with frequency for ka > 0.75 (Figure 2.11). The most significant

limiting consideration in the use of ultrasound for the non-intrusive measure-

ment of highly concentrated suspensions lies in the tradeoff between the spatial

resolution of the transmitting transducer (as determined by kR = - = 2f,
A C

where R is the transducer radius) and the depth of penetration of the signal, L.

Good spatial resolution implies a relatively short wavelength, or alternatively a

large value of kR (and hence ka). This, in turn, implies high attenuation and a

relatively short depth of penetration, L. For the system and the range of param-

eters studied, a simple expression (to be motivated in Chapter 3) can be used to

represent the attenuation parameter a for values of ka < 1, which is the range

of practical interest as attenuation becomes prohibitive at shorter wavelengths:

aa ~ (ka)l g(v). (2.7)

The function g(v) describes the nonmonotonic effect of concentration, and it is

plotted in Figure 2.15 for the data of the present study and those of Hampton

(1967) and Urick (1948). The comparison with the data of Hampton and Urick,

while far from perfect, is significant when one considers that the data spans one

order of magnitude in frequency (from 100 kHz to 1 MHz) and three orders of

magnitude in particle size (from 1 pm to 1 mm). This function is expected

to depend on the material properties of the specific constituents (such as bulk
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modulus, density, viscosity and particle shape), the effects of which remain to

be addressed. Spatial resolution is limited by the size of the natural focal re-

gion of typical circular disc transducers. To decrease the focal region, focussed

transducers may be used. The addition of an external focussing lens on a pis-

ton transducer has the effect of reducing the dimensions of the focal region and

increasing the maximum intensity at the focus. With regard to the temporal res-

olution of acoustic measurements, the frequency response of an ultrasonic system

such as the one described presents little or no limitation as phenomena of very

short duration can in theory be measured.

2.7 Discussion

The propagation of ultrasound in solid-liquid mixtures was investigated ex-

perimentally for a range of frequencies at concentrations spanning the range

from infinite dilution to maximum packing, in fluidized beds showing minor in-

stabilities, particularly at solids' fractions below about 50% by volume. The

measured attenuation has been shown to depend approximately linearly on ka

for ka < 0.75 and apparently quadratically for ka > 0.75. As a consequence,

because the attenuation coefficient, a, becomes prohibitively large for ka > 1,

it is appropriate to operate at ka < 1. This ensures an optimum wavelength,

A ~ 21ra, for the operation of acoustic instrumentation. In contrast, however, the

attenuation at a fixed frequency for ka < 0.75 displayed a maximum at a solids'

fraction of about 30% for 1 mm silica beads in water, with the attenuation at

very high concentrations considerably less than the maximum. The attenuation

results presented, correctly scaled, are consistent with the data of Urick (1947)

and Hampton (1967), and extend the range of available data by three orders of

magnitude in aa and ka. Furthermore, the experiments conducted with silica
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beads in water reflect the range of ka and the materials encountered in sediment

transport, slurry handling and many other mining and engineering applications.

The intensity field produced by a circular disc transducer in a two phase medium

at ka ~ 1 shows excellent agreement with the Rayleigh integral with the sub-

stitution of a modified wavenumber and attenuation parameter, which allows

for the prediction of the transducer beam geometry in two phase mixtures for

a wide range of frequencies and solids' fractions. This agreement is best in the

transducer far field. Errors in the measurement of acoustic attenuation in these

experiments are typically related to the reproducibility of experiments; that is to

say that experimental uncertainty is dominated by variations between successive

experiments. In these experiments, the variation in a was of the order of 5 - 10%,

while the variation in c was about 5% at worst due to concentration fluctuations

about the mean during the experiments.
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Figure 2.1 The geometry of the intensity field due to a plane piston transducer.

The circular disc transducer area is A and its radius is R, the location of the

target point is x at an axial distance of z and a radial distance of r, the distance

from each point on the surface of the transducer to the target point is s and the

distance from the center of the transducer face to the target is S at an angle 0

to the axis.
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Figure 2.2 One half of the radially symmetrical intensity profile for a plane

piston transducer, calculated using the Rayleigh integral (Equation 2.1), with

kR = 40. In this isometric view, the axial direction, which has a total length of

10 times the transducer radius, is angled to the right. The radial direction is to

the left in this square domain. The intensity goes through several maxima in the

near field, and then decreases as 1 in the far field, as well as falling off sharply

in the radial direction.
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Figure 2.3 Experimental apparatus for the measurement of sound speed and

attenuation in single phase and packed bed mixtures. WB: 60 cm by 30 cm by

25 cm acrylic water bath, T: transmitting transducer, XY: xy travelling stage, R:

pvdf receiving transducer, W: frequency generator, A: RF amplifier, P: receiver

amplifier, K: low pass filter, D: digital oscilloscope. The test medium is separated

from the rest of the water bath by a 10 pm acoustically transparent polythene

film.
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Figure 2.4 Axial intensity profile for a 9.5 mm radius, 1 MHz non-focussed

transducer in water. The intensity is normalized with respect to the maximum

value at the point of natural focus. The theoretical curve is calculated using the

Rayleigh integral (Equation 2.1).
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Figure 2.5a Radial intensity profile for a 9.5 mm non-focussed transducer, oper-

ating at 0.95 MHz in water, at 58.4 mm. The intensity is normalized with respect

to the maximum (axial) value while the radial distance is non-dimensionalized

with respect to the transducer radius, R.
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Figure 2.5b Radial intensity profile (as in Figure 2.5a) at 89.4 mm.
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Figure 2.5c Radial intensity profile (as in Figure 2.5a) at 151.4 mm.
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Figure 2.6a Radial intensity profile for a 9.5 mm transducer, operating at 0.30

MHz in a packed bed of 1.0 mm glass beads in water (ka ~ 0.55), at 50 mm. The

radial distance is non-dimensionalized with respect to the transducer radius.
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Two separate tests are shown on this plot. The sound speed decrease which

may be an experimental artifact, is shown to give an indication of the expected

experimental error.
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Figure 2.11 Dimensionless representation of the attenuation data of Figure 2.10,

showing (&a) as a function of the reduced frequency (ka) for sound transmission

in a bed of 1 mm silica beads in water for 50, 75 and 100 mm depths. At low

frequencies, the attenuation appears to depend roughly on frequency to the first

power, while the change in slope indicates a quadratic dependence on frequency

for ka > 0.75.
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Figure 2.16 Experimental fluidized bed apparatus for measuring the sound

speed and attenuation in a suspension as a function of solids' concentration

(determined by the average bed height). The transducer T transmits the signal

from the function generator W amplified by the RF amplifier A. The signal

received by the receiver R is amplified by the ultrasonic amplifier P and then

low pass filtered (K). The transmitted and received signals are displayed on the

digital oscilloscope D, which is triggered by the transmitted tone burst.



CHAPTER 3

ACOUSTIC WAVE PROPAGATION IN SUSPENSIONS

- THEORY

3.1 Introduction

Longitudinal acoustic waves travel through a single phase fluid with a ve-

locity that depends predominantly on the fluid density and compressibility, and

weakly on the viscosity. In suspensions and slurries, on the other hand, the wave

speed is known to be dependent on the material properties of the two constituents

as well as their relative concentrations. A simple phenomenological model for the

speed of sound in a two phase mixture, first proposed by Urick (1947), describes

the inhomogeneous mixture in terms of its averaged density and compressibility.

This 'effective medium' model fits the available experimental data for the sound

speed in suspensions very well for low non-dimensional acoustic wavenumbers

ka = 21ra/A, (where a is an average radius of the particles in the suspension) for

which the propagation is practically non-dispersive. The attenuation of sound in

two phase solid-liquid mixtures is known to increase with increasing frequency,

but the dependence of attenuation on dispersed phase concentration is less well

known. It has been found experimentally (as shown in Chapter 2) that the

acoustic attenuation of high frequency sound in suspensions of small particles

(corresponding to low values of ka) is non-monotonic with respect to the con-

centration of solids in suspension - there is a distinct maximum in attenuation

at an intermediate concentration between the dilute limit and the fully packed

state (Urick, 1948; Hampton, 1967). This has important implications in the

development of non-intrusive ultrasonic diagnostic techniques for the study of
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concentrated sprays, slurries, pastes and fluidized beds, only to mention a few

examples, which cannot readily be probed with existing optical methods. Few

attempts have been made to explain this behavior (Gibson and Toks6z, 1989;

Harker and Temple, 1988), and by their assumptions, these models are restricted

to low ka. In addition, they employ empirically motivated forms for the effec-

tive viscosity of the suspension, and in the case of the former treatment, steady

drag behavior. As an extension of this previous work the governing equations

for the acoustics of suspensions are used to describe the counter-intuitive behav-

ior of sound in the inertially dominated acoustic regime of considerably higher

dimensionless frequency a WP' than that previously studied.
A

There is a large body of literature on the propagation of acoustic waves in

porous media, which has been motivated by seismological, oil exploration and

oceanographical interests. However, acoustic wave propagation in porous media

and suspensions, while similar, have important differences. For example porous

media exhibit elastic resistance to shear stresses (Biot, 1956) while a suspension

typically does not. Both however can sustain isotropic stresses. One of the dif-

ficulties is in the representation of the relative motion between fluid and solids.

This, in porous media is described in terms of a frequency dependent perme-

ability, which has recently received attention (Attenborough, 1983, Johnson et

al., 1987): with a pore size, d, as a characteristic geometric length scale, if the

viscous boundary layer thickness, ~ 2'ppw is significantly greater than d, the

permeability scales with viscosity and equals its steady flow value. On the other

hand if d > 2p/ppo, the flow is essentially inviscid, is dominated by inertia

and can be computed using potential theory. In the latter case, the dissipation

is restricted to the thin boundary layer surrounding each particle. While similar

scaling arguments can be made with suspensions, the analog of permeability is
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inherently coupled with the motion of the particles and cannot be described with

linear elasticity. Below, the general solution of the Navier-Stokes equations to the

problem of a sphere oscillating at small amplitudes in a viscous fluid is general-

ized to accommodate oscillatory fluid motion, and it is included in the equations

describing the acoustic behavior of a suspension. The sound speed and attenua-

tion are then evaluated for the regime in which inertial effects dominate particle

drag, and these predictions are then compared to experimental results.

3.2 Measurement of acoustic phase speed and attenuation

Results of the acoustic phase speed in suspensions reported by Hampton

(1967) and Urick (1947, 1948) for ka - O(10-) and O(10-4), respectively, bear

out the utility of the phenomenological approach for small ka. Here the wave

speed c is given by

(3.1)C = F ff
Peff

where the effective bulk modulus of the system is given by

Kef f (

and the suspension density is

(3.2)Peff = VP's + (1 - v)pi.

For a system of silica particles in water, Equation (3.1) predicts a minimum in

sound speed at a solids fraction of about 25 - 30%, and this prediction is borne

out in the available experimental results at low ka, and hence low a .PI. Results

obtained in the present study (Figure 3.1), however, show differing behavior. For
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ka ~ 0(1), there is no minimum at intermediate concentrations and the velocity

increases monotonically with concentration.

The acoustic attenuation in concentrated suspensions is known to scale with

the sound frequency, or in this case the non-dimensional wavenumber ka (Fig-

ure 2.13). In contrast to the sound speed results, the attenuation measured by

Hampton (1967), Urick (1947, 1948) and in the present study shows consistently

non-monotonic behavior as a function of solids fraction or dispersed phase con-

centration (Figure 3.2), albeit for ka spanning three to four orders of magnitude.

A model is derived below to explain the respective behavior of attenuation and

phase speed in suspensions for a wide range of ka (and a

Table 2: Particle and Fluid Properties

Reference Hampton (1967) Urick (1948) This study

Experimental kaolin/ kaolin/ silica/

System water water water

Frequency 100 kHz 1 MHz 100 kHz -1 MHz

Particle Radius 1.0 pm 0.5 pm 0.5 mm

ka ~ 6.66x10- 5  - 3.35x10- 4  - 0.2 - 0.6

a ,0.56 -0.89 -280-886

3.3 Governing equations

A two component model for a suspension of monodisperse spheres in a New-

tonian liquid is developed, and by performing a linear perturbation analysis, the

expected infinitesimal compressional wave speed as well as the wave attenuation

in the composite medium are derived.
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K
The procedure for the formulation of the model is as follows: it is assumed

that the solid particles as well as the liquid phase constitute a continuum. Once

the two interacting continua assumption is made, a general continuity relation

and a volume averaged momentum balance for each of the two phases may be

written. Thereafter by invoking an equation of state for each phase, closure of

the fluid dynamic equations is achieved.

For a solids fraction v of the total volume, the liquid phase continuity equa-

tion is
lv)p1 + V [(1 - V)pIVI] = 0 (3.3)

where vi is the liquid velocity. Similarly, the solid phase continuity equation

takes the form
Ol/Pa + V[vpV8 ,] = 0

at (3.4)

In developing the momentum conservation equations for high frequency

acoustics in a concentrated mixture, it is helpful to evaluate the relative im-

portance of viscous and inertial effects. It is shown below that inertial effects

dominate the interphase drag for the range of parameters of interest in the present

study, i.e. large ka. For these the Reynolds number for oscillatory motion of a

particle of radius a in a fluid of kinematic viscosity ",

R = piwa
2

2p
(3.5)

is very high and it is evident therefore that the flow is essentially inviscid, with

the exception of thin viscous boundary layers surrounding the particles. It is to

these thin boundary layers that the viscous dissipation in the system is restricted.

While they are specifically discussed below, the appropriate form of the one-

dimensional momentum equations, neglecting gravitational effects, is:
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pq V=Fv 8  + 1] Ft solids momentum (3.6)
i0 & v ax

pi(l - )[O + vi = + Fl. liquid momentum (3.7)

For the conditions of interest where the bulk of the fluid behaves in an

inviscid manner, viscous dissipation beyond the particle boundary layers can be

neglected, hence the absence of a pV2v term. In this analysis, only viscous

effects that arise due to interactions between the two phases are considered.

In general, the momentum interaction force between the solid and the liquid,

Fi = -F, consists of the dynamic drag (containing viscous and inertial effects)

and buoyancy forces (see Section 3.3.1).

Equations 3.3, 3.4, 3.6 and 3.7 represent four equations in six unknowns,

V1I V,, p1, ps, P and v. In order to achieve closure of this set of equations, two

equations of state that relate the density variation of each of the two phases to

the pressure perturbation, P', are invoked, namely

P1 = P 1+ - (3.8)

and

Ps = P01+--. (3.9)
11 P']

3.3.1 The interaction between the phases

The momentum interaction force between the solid and the liquid, F1 =

-F,, consists in general of dynamic drag (containing viscous and inertial effects)

and buoyancy forces. In order to ascertain the momentum interaction force due to

drag alone for a concentrated mixture, the result for the drag on a single particle
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in an assembly of like particles must be extended to arbitrary concentrations. The

analysis proceeds as follows: the drag on a single isolated particle (Section 3.3.2)

is modified to give the drag on a single particle in an assembly of like particles

(Section 3.3.3). This result is then scaled up to arbitrary concentrations to give

the dynamic drag component of the momentum interaction force between the

phases.

3.3.2 Drag on an isolated sphere

The unsteady drag force on a single isolated sphere (i.e. at infinite dilution)

was derived by Landau and Lifshitz (1959) and this formulation is extended here

for the case of particle and fluid motion:
FVO ~ 1 a\ ) 22 +)D(v 8 -vi)

FL~ 67rpa(1 + )(v, - vi) + 3rap ( 2a + b) Dt (3.10)

where
D(v, - vi) &v , + - g + (3.11)

The specific form of this time derivative satisfies the condition of objectivity

(Drew, 1983). The parameter b (= /2pw) is the unsteady viscous boundary

layer thickness surrounding the particle. Its dimension relative to the separa-

tion between nearest neighbors provides a measure of the importance of viscous

effects. At low frequencies, 6 is large, while the converse is true at high frequen-

cies. For oscillatory, or harmonic, relative motion between the phases, where

Ure = v, - v1 = UoeiWt, the drag force is given by
P a2p .ap W 2jtP _

Fr-' =6rpaUre [1 + a 2+ W +i p

=6rpaUrei[1+a F - +ia i w yW] (3.12)

a .a 2a 2

= 6irpaUrei[1 + a +i+i2b6 ~
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This implies that for 6 > a, or alternatively R < 1, the drag force reduces to the

steady Stokesian drag, i.e. viscous forces dominate. On the other hand for large

W, or 6 < a, the steady drag term becomes negligible compared to the dissipative

term associated with the unsteady generation of vorticity in the boundary layer

near the particle surface and its motion away from the particle surface. This

latter limit shows the dominance of inertial forces (as manifested in the added

mass term i ) over viscous forces in the interphase drag. As will be seen later,

it is the history force terms in the drag expression (the terms a and i.) that

contribute most significantly to the attenuation of acoustic waves in suspensions

at high frequencies.

To give an indication of the regime of validity of each of the terms in the

equation above, for a 1 mm particle in water the crossover frequency at which

the steady viscous drag term (i.e. the wo term) equals the transition terms (these

contain 6~1) is 0.25 Hz. Correspondingly the second crossover frequency at which

the wl term (the inertial term) starts to dominate the drag is at about 18 Hz.

From this the following asymptotic behavior can be recognized. At very low W,

the expression reduces to the well known steady Stokes drag result,

lim
FL- =0 6rpa(v, - vi) (3.13)

and at high w, the dominant term is

_ im 1 41ra 3 D(v, - vj)FL' W-+0 -pj . (3.14)w-+oo 2 3 Dt

This latter equation be recognized as the added mass term for the drag on an

isolated sphere where the added mass coefficient, C is }. So clearly for frequencies

very much greater than the second cross-over frequency (say, for example >1 kHz)

it would seem appropriate to use the inertial asymptotic behavior of the drag law.
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However, while the drag becomes inertially dominated for high w, the dissipation

associated with the particle and fluid oscillation remains viscous in origin but is

restricted to a boundary layer surrounding each particle that becomes thinner

with increasing frequency of oscillation. As is shown below, for the case of w >

100 kHz, the terms that contain viscosity as a parameter have little effect on the

sound speed, but do significantly affect the attenuation.

3.3.3 The added mass term and its dependence on concentration

Equation (3.10) may thus be represented as

2 D(v8 -vi) (.5Fr-o = 67rpa(1 + )(v, - vi) (3.15)+ 3 9aPk-C 6 Dt

It has long been recognized, however, that the added mass coefficient C asso-

ciated with each sphere in a suspension is not a constant but is a function of

concentration as well as the geometrical configuration of the suspension. By

analogy, this dependence is directly related to Maxwell's relation for the effective

conductivity of such an assembly of non-conducting spheres in a conducting fluid.

This analogy is appropriate as Laplace's equation describes both the electrical

potential equation and the potential flow equation in the two processes. Wallis

(1989) showed that the relationship between the added mass coefficient and the

normalized mixture conductivity is

21

where P is the ratio of the liquid conductivity to that of the mixture. Maxwell

(1881) obtained the following for the conductivity of a random assembly of non-

conducting spheres
1 + v/2 (3.16)

1 -V
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which has been shown to be a good approximation up to maximum packing con-

centrations of mono-dispersed spheres (Turner, 1976). The added mass coefficient

then is

C(V) V (3.17)

which will be used in the momentum equation. It must be remembered here that

this coefficient is very sensitive to the geometrical configuration (which explains

the differences between existing models) and that this chosen representation is

strictly valid for random distributions. The drag on a single particle in an as-

sembly of like particles at a solids' fraction of v is thus

FL = 61rpa(1 + a)(v, - vi) + 37ra 2 pi(4 C(v) a + 6) Dt .v) (3.18)

3.3.4 The momentum interaction force

It is well known that for very low particle concentrations the drag on an

assemblage of particle increases linearly with the solids' fraction; we assume

here that linear superposition of the drag on a single particle in an assembly of

similar particles FL is appropriate up to maximum packing, or roughly 62 %

by volume for monodisperse spheres. This in effect assumes an assembly of non-

interacting particles as it neglects viscous interactions between adjacent particles.

To extend the single particle drag result to higher concentrations, we assume that

the equivalent drag per unit volume for the suspension Fq is equal to the drag per

sphere multiplied by the number of spheres per unit volume, n, or Fq = n FL.

This result is an approximation and is tantamount to neglecting hindered settling

effects in particle sedimentation - the non-linear viscous interactions between

adjacent particles at high concentrations are neglected. It is known that the
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solids' fraction, which is the volume of particles per unit total volume, is related

to the number of particles per unit volume by

47ra3

v =n( 3

Thus
_3i'

3 

= r .(3.19)

47raa

As was mentioned previously, there is also a component of the phase interaction

force which is due to the instantaneous pressure gradients. This buoyancy force is

included in the momentum interaction force between the phases in the following

manner

F1. = F + V- (3.20)
4ira3  Ox

where FLS is the unsteady force on a single sphere of radius a in an assembly of

like spheres executing oscillatory motion in a fluid, given in Section 3.3.3. This

theory is valid in the limit that 6 < h/2, where h is the average inter-particle

spacing and is thus strongly concentration dependent. Now from geometrical

arguments h is given by
h 1 - ri

a 713

where
V

77 =
Vmax

and the maximum particle packing fraction Vmax ~ 0.635 0.005 for a random

close packed structure of monodisperse spheres and Vmax ::e 0.555 for random

loose packing (Onoda and Liniger, 1990).

The requirement for the particles in the suspension to be non-interacting is

6 < h/2
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which implies that the frequencies for which the present theory is valid are such

that

W> .7 / (3.21)
a2p 1 - __,i3)21

The long wavelength assumption implicit in the continuum approximation in

equations (3.4) and (3.6), places an upper bound on the frequencies for which

this theory is valid. This assumption may be written

ka < 1

which implies
C

a

For a system of 0.5 mm radius particles at maximum packing in water, this

implies frequencies less than 525 kHz. The regime of w and v for which this

restriction holds in a suspension of particles of radius 0.5 mm in water is shown

in Figure 3.3.

3.3.5 Linearized Equations

It is assumed that the state variables vi, v,, P, v, pl and p, (denoted collec-

tively by f = f0 + f ') are perturbed from their steady state values by some small

amount. The frequencies of excitation of the particles in the fluid due to the

acoustic wave propagation are high enough that the timescale of the duration of

an individual wave or a series of waves is very much smaller than the timescale

for any other fluctuation in the flow. This implies that the motion of the parti-

cle due to its oscillation in the sound wave may be completely decoupled from

its gross motion in whatever flow situation is being considered, be it flow in a
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pipeline or in a fluidized bed. The time averaged velocity of the particles and

the liquid may be taken to be zero, or

V, = V* = 0 .

Likewise, the datum pressure may be arbitrarily assumed to be zero or

P0 = 0.

The state variables thus reduce to

vi
Vs
P
V

P1
P's

\I/ vi'

I VS1

0P'

p? + pV'
0P8 + P11

I (3.22)

The linearized perturbation equations are (to first order in the perturbed vari-

ables):

a(1 - V )p'I ap v' +(1 - v0 )p vj = 0at at + x

at +at

- VO) a + 2P 257 a (1a

9pV0 a

2a2 )(V'

+ a S a 0
ax

a 9v0 , 2
+.) (v',- 4) + 4a~P (a+&)

- i4 )-
9V O 2
4a A 9 +)

p P'Pi

P'
K s
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Dispersion Relation

Wave-like solutions to these equations of the form

f = f Oei(t+kx)

are sought, where

k = - + ia,
C

c is the wave speed in the medium and a is the attenuation parameter. Substitut-

ing the perturbed variables into the full equations and neglecting terms higher

than first order in the perturbation variables, we obtain the following matrix

equation

(VI'
V'

P'[M] ,J =0

\ p'/

(3.29)

where M =

-A -iwB

Aiw(B + po[1-/0])
kpo(1 - vO)

0

0

0

A+iw(B+ p )
-A -iwB

0

kpo zA

0

0

A= (1 + a)2a2

B = pi C ) + - .
4 a

( ik

ik[V-#]

0

0
0

0

-K

0

0

p 0

P0w ps

0

0

where

vo)

0

0

w(1 -

0

1

0

0

0

0

WV 0

0

1

and

I
(3.30)
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k 2= _W2 [-
,,

+(1 - V)
+x I

The wavespeed c is given by

and the attenuation

- v)pj(A + iwB + iWp,) + vp,(A + iwB))
A + iw((1 - v) 2p, + v(1 - v)pi + B)

W
C =W"k

~R(k )

Results

Sound Speed

The sound speed is given by

A 2
4 2 (G(v))

~,">] [ +2G(v)(B*p* +

D1

D( - v))]_

A 9[y

P- (1
9pI9a (1 + R)2a2 PI

B*= = C(v) + -b = C(v) +-
pi 4 a 4AR
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. (3.32)

(3.33)

ao(w) = Q (k).

3.5

3.5.1

(3.34)

where

(3.35)

This implies that the column vector has a non-trivial solution if and only if

det M = 0

which in turn for the above case implies that

C =
pi[ +



D -
P1

p* (1 - v) +vD

and

G(v) = (1 -v)p* + B*.

The sound speed can be seen to be dependent on the frequency of the acoustic

wave and hence the parameters ka and R, through the terms A and B*, which

involve the unsteady boundary layer thickness 6.

The low frequency limit for the sound speed as predicted by the two com-

ponent model is given by

C (3.36)
W,-0 + 1~V ] pj(1 - v + vD)_

which is entirely independent of the frequency and material properties other than

the fluid and solid densities and compressibilities. In the limit that ka -+ 0 or

R -+ 0, the sound speed as a function of ka reduces to that predicted by the

phenomenological model of Urick (1947) (Figure 3.4). In addition, the low fre-

quency expression has the expected behavior for the high and low concentration

limits: for v -+ 0, or pure fluid, the velocity tends to that of the single phase

fluid,

C =(3.37)
_P1

The high frequency limit for the sound speed is given by

crn (1 V)p* + C(v)
[ + ]pi(C(v)p* + D(1 - v))

which is independent of frequency and hence ka and R, but is quite strongly

dependent on the added mass coefficient C(v). The phase velocity of a com-

pressional wave in a suspension as defined by Equation (3.35) is compared with
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available data for a range of ka in Figure 3.5. For ka - 0(1) which is of interest

in this study, the sound speed profile can be seen to be somewhat different to

the low frequency case, and does not show a minimum at intermediate concen-

trations, but rather increases monotonically with increasing solids fraction. The

difference in the behavior of c across four orders of magnitude of ka is not large,

and the sound speed thus shows a relative insensitivity to frequency and all other

factors except the fluid and particle densities and compressibilities.

3.5.2 Attenuation

The attenuation of an acoustic wave propagating in a suspension is given by

S[-L + (~)]wa -A(1 - v)(p*^ - D)
apw = Oc' I' I' (3.39)

_)(A)2 + W 2(G(v)) 2

where

p = v + (1 - v)D

The low frequency limit for the attenuation as predicted by the two component

model is given by

tim [[ + (") ]3(1.-v)(p*/ - D)
a = (3.40)

and is therefore proportional to w as A - a -F for ka -+ 0. The term domi-

nating the drag on the particles at the low frequency limit is the steady Stokesian

drag, and it is this term that predominates in the attenuation expression as well.

At high frequencies the attenuation is given by

[ + "A]w (- v)(p*# - D)]2
a -= ((1-v)p* + C(v)) 2
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and A --+ 2 .1 as ka -+ oo, or R -+ oo. This leads to the result that the1 2 api 6

attenuation at high frequencies is proportional to plwl. As p -+ 0, the attenu-

ation tends to zero, which is to be expected as the dissipation is purely viscous

in nature. However, it should be noted that for high values of ka the chief at-

tenuation mechanism is not viscous forces arising from the steady or Stokesian

drag, but viscous interactions due to the Basset or history terms that dominate

the particle drag at high frequencies of oscillation.

There are few reported sets of data in the literature that show attenuation

in suspensions, as opposed to porous media. As it can be seen, the data that

is available show a distinct maximum at intermediate concentrations, and this

result is borne out in the simulations. The data of Hampton (1967) are for

ka ~ 6.66 x 10- (Figure 3.6) and that of Urick (1948) are for ka ~ 3.4 x 104

(Figure 3.7), while the data of the present study correspond to ka ~ 0.2 - 0.6

(Figure 3.8). The present calculations show the dependence of the attenuation on

concentration and frequency for the range of dynamic particle Reynolds number

R, which had essentially been overlooked by these previous studies.

3.6 Discussion

A consistent physical argument to describe acoustic wave propagation in sus-

pensions has been presented and its agreement with experimental results span-

ning a range of the non-dimensional wavenumber ka of approximately four orders

of magnitude has been shown. It has been shown that the attenuation of acoustic

waves propagating in a suspension of monodisperse spheres in a viscous fluid at

high frequency is primarily due to the Basset or history forces exerted on the

oscillating particles by the fluid. At low frequencies of oscillation corresponding
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to large boundary layer thicknesses relative to the particle radius, the chief atten-

uation mechanism is steady or Stokesian drag on the particles and a , p- 2Wi.

In contrast to its effect on the attenuation, the effect of varying ka on the speed

of sound of the propagating wave is small.

Predictions of the attenuation of sound in porous media using Biot's theory

(1956) give the attenuation in the high frequency limit proportional to p1,

whereas it is found here that for the case of a suspension that the attenuation

scales as p (Figure 3.9). Indeed, Salin and Sch6n (1981) have found exper-

imentally that for the attenuation of sound in a packed bed of spheres in water

increases at a rate "between Vw' and w".

As has been noted, for large ka the present theory predicts that the atten-

uation varies almost linearly with frequency. However at a ka of about unity, it

has been found experimentally that the attenuation becomes non-linear and ap-

parently quadratic in frequency (Figure 3.10). This is probably due to multiple

scattering effects which are known to dominate the attenuation behavior of sus-

pensions at high frequencies (Allegra and Hawley, 1971; Waterman and Truell,

1961). Multiple scattering effects are also known to occur in porous media at

kd - 1 where d is some representative pore size (Salin and Sch6n, 1981). How-

ever, for all ka up to - 0(1) the primary attenuation mechanism for acoustic

wave propagation in a particulate suspension appears to be viscous interactions

due to steady drag and Basset or history forces between the oscillating fluid and

the particles.
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Figure 3.1: The variation of sound speed in a suspension with particle concen-

tration. The data of Hampton (1967) (o) are for ka ~ 6.66 x 10-5 (R ~- 0.40)

and that of Urick (1948) (o) are for ka ~ 3.4 x 10-4 (R ~ 0.63). The data of

this study corresponding to ka ~ 0.2 - 0.6 (R ~ 200 - 625), show some scatter

due to concentration fluctuations about the measured mean, but no minimum at

intermediate solids fractions.
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CHAPTER 4

DYNAMIC PERMEABILITY IN POROUS MEDIA -

A DYNAMIC DRAG APPROACH

4.1 Introduction

The measurement of the dynamic response of fluid saturating a porous

medium to an infinitesimal oscillatory pressure gradient has been postulated

as an effective non-intrusive method for the determination of the geometry of

the interstitial pores that constitute the flow path through the medium. Var-

ious models of the predicted response have been presented, based mostly on a

combination of phenomenological results for internal flows in passages of various

geometries, numerical predictions in simulated capillary and pore geometries as

well as experimental data. Johnson, Koplik and Dashen (1987) have presented

a model combining phenomenological and analytical arguments to describe the

response of a Newtonian fluid saturating the pore space of a rigid, isotropic

porous medium under the influence of an infinitesimal oscillatory pressure gradi-

ent. Sheng and Zhou (1988), using the approach of Burridge and Keller (1981),

have derived a first principles model for the dynamic permeability of a periodic

medium of various simulated microstructures. They have shown that there exists

an universal behavior for the dynamic permeability, when it is scaled by its static

value ko and the frequency by a characteristic wc, that is largely independent of

the microstructure of the porous medium.

In an approach parallel to the method of simulating a porous medium as

a packed bed of spheres for the determination of steady drag and permeability

(Happel, 1958), an analytical model for the dynamic permeability of a packed

bed of spheres based on a dynamic drag model is presented. The result of Landau
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and Lifshitz (1959) for the drag on a sphere in an oscillating fluid is extended to

higher particle concentrations and it is shown that the results for the dynamic

permeability and tortuosity agree well at intermediate and high frequencies, with

the available experimental results in porous media made up of spheres.

4.2 Background

This work was been motivated by the fundamental study of acoustic wave

propagation through a suspension of spheres in a Newtonian fluid detailed in

Chapter 3. There is a large body of literature on the propagation of acoustic

waves in porous media, which has been motivated by seismological, oil explo-

ration and oceanographical interests. However, acoustic wave propagation in

porous media and suspensions, while similar, have important differences. For

example porous media exhibit elastic resistance to shear stresses while a sus-

pension typically does not. Both however can sustain isotropic stresses. One of

the difficulties is in the representation of the relative motion between fluid and

solids. This, in porous media is described in terms of a frequency dependent per-

meability, which has recently received attention (Attenborough, 1983; Johnson

et al., 1987): with a pore size, d, as a characteristic geometric length scale, if the

viscous boundary layer thickness, 6 = ,2p/pw, is significantly greater than d,

the permeability scales with viscosity and equals its steady flow value. On the

other hand if d > V2Mpw, the flow is essentially inviscid, is dominated by in-

ertia and can be computed using potential theory in conjunction with boundary

layer analysis. Under these conditions, the dissipation is restricted to the thin

boundary layer surrounding each particle.

While similar scaling arguments can be made with suspensions, the analog of

permeability is inherently coupled with the motion of the particles that cannot be
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described with linear elasticity. However, by assuming that a porous medium may

be modelled as a suspension of spheres at high solids' fraction, with the added

restriction that the particles are restrained and may not move relative to one

another, it is of interest to see how the suspension theory predicts the dynamic

permeability and tortuosity of the simulated porous medium, and in addition if it

can shed some light on the somewhat intractable geometric parameters inherent

in the models available. In general this analysis is restricted to those frequencies

and porosities such that the boundary layers on adjacent particles do not overlap

or interact with each other.

Probstein (1989) discusses capillary and drag models for the determination

of the pressure drop due to steady flow through porous media. Recent work

(Johnson et al., 1987) has extended the capillary or Darcy type models for the

pressure drop-velocity relationship to the case of oscillatory pressure gradients.

Instead the approach that Happel (1958) and others have used for the steady

flow case is adopted, and it is chosen to model the porous medium as a random

assemblage of monodisperse spheres. By determining the drag on a single sphere

for the case of oscillatory fluid flow, and scaling up the results to the whole

medium, the pressure drop across the porous medium can be determined. To this

end we present a model for the flow in a porous medium made up of monodisperse

spheres.

Specifically, the small amplitude solution of the Navier-Stokes equations to

the problem of oscillatory fluid flow around a sphere in a viscous fluid is general-

ized to the case of a high concentration of spheres. The dynamic permeability and

tortuosity are then calculated as a function of frequency, and these predictions

are compared to the available models and experimental results.

92



4.3 Governing equations

4.3.1 Momentum equation

A general model for a suspension of monodisperse spheres in a Newtonian

liquid is adopted here, and it is assumed that in the limit that the particle con-

centration or solids' fraction tends to the maximum packing limit, v --+ max,

that the suspension approaches the behavior of a porous medium made up of

packed spheres. Then, by relating the instantaneous pressure gradient to the in-

stantaneous fluid velocity in the packed bed (by casting the momentum equation

for the fluid into a form analogous to that of the Darcy model), the expected re-

sponse to a infinitesimal oscillatory pressure gradient in the composite medium,

and hence the dynamic permeability, may be derived.

The procedure for the formulation of the model is as follows: a volume

averaged momentum balance for the liquid phase is written. Thereafter by in-

voking the theoretical result of Landau and Lifshitz (1959) for the drag between

the phases and scaling this result to higher concentrations, the response of the

interstitial fluid velocity to a fluctuating pressure gradient may be calculated.

In developing the momentum conservation equation for high frequency os-

cillatory fluid velocities in a concentrated mixture, it is helpful to evaluate the

relative importance of viscous and inertial effects. It is shown below that inertial

effects dominate the particle drag for high frequencies. For these the Reynolds

number for oscillatory motion of a particle of radius a in a fluid of kinematic

viscosity A,
P,

R pwa2(4.1)

is very high and it is evident therefore that the flow around the particles is essen-

tially inviscid, with the exception of thin viscous boundary layers surrounding
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the particles. It is to these thin boundary layers that the viscous dissipation

in the system is restricted. While it is specifically discussed below, the appro-

priate form of the one-dimensional momentum equation for the fluid, neglecting

gravitational and fluid compressibility effects, is:

p(1 - v)[-F + 1 v-] = 9- + F, liquid momentum (4.2)

Viscous dissipation within the bulk of the fluid (beyond the particle bound-

ary layers) is neglected, hence the absence of a pV2 vl term. Only dissipation due

to phase interactions is considered, the origin of which is considered next.

4.3.2 The solid-liquid interaction force

The momentum interaction force between the solid and the liquid, Fj1 =

-Fl,, consists in general of dynamic drag (containing viscous and inertial effects)

and buoyancy forces. In order to ascertain the momentum interaction force due

to drag alone for a flow through a packed bed of spheres, the result for the

drag on a single particle in an assembly of like particles must be extended to

arbitrary concentrations. The analysis proceeds as follows: the drag on a single

isolated particle (Section 4.3.3) is modified to give the drag on a single particle

in an assembly of like particles (Section 4.3.4). This result is then scaled up to

arbitrary concentrations to give the dynamic drag component of the momentum

interaction force between the phases (Section 4.3.5).

4.3.3 Drag on an isolated sphere

The unsteady drag force on a single isolated sphere (i.e. at infinite dilution)

was derived by Landau and Lifshitz (1959) for the case of oscillatory fluid motion:

Fro< = - 6ia(1 + )r+ 37ra2p( 2a+6) D.] (4.3)
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where
D [1  + V1 ]. (4.4)

The specific form of this time derivative satisfies the condition of objectivity

(Drew, 1983). The quantity 6 (= N2p/pjw) is the unsteady viscous boundary

layer thickness surrounding the particle. Its dimension relative to the separation

between nearest neighbors provides a measure of the importance of viscous ef-

fects. At low frequencies, 6 is large, while the converse is true at high frequencies.

For oscillatory, or harmonic, motion of the fluid v1 = voe-it, it is found that

0=-6ipav,[1+a ap-i wPi w](4.5)

= -67rpavi [1 + a w- - ia - aP .( 4 .6) (4-7)

a a 2a 2
=-67rpavi[1 + -i -i 2

This implies that for 6 > a, or alternatively (noting that R = j) R < 1, the

drag force reduces to the steady Stokesian drag, i.e. viscous forces dominate. On

the other hand for large w, or 6 < a, the steady drag term becomes negligible

compared to the dissipative terms that arise from the Basset or history terms

and iA) and the inertial term (i ).

To give an indication of the regime of validity of each of the terms in Equation

(4.7) above, for a 1 mm diameter particle in water the crossover frequency at

which the steady viscous drag term (i.e. the wo term) equals the transition terms

(these contain 6-1) is 0.25 Hz. Correspondingly the second crossover frequency

at which the wl term (the inertial term) starts to dominate the drag is at about

18 Hz. From this the following asymptotic behavior can be recognized. At very

low W, the expression reduces to the well known steady Stokes drag result,

Ff-0  = -6rpavi (4.8)
W-0
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and at high w, the dominant term is

urm 1 47ra' Dv
F,-0 = -- p1 -- (4.9)

W-+o 2 3 Dt

This latter equation be recognized as the added mass term for the drag on an

isolated sphere where the added mass coefficient, C is 1. So clearly for frequencies

very much greater than the second cross-over frequency (say, for example >1

kHz) it is appropriate to use the inertial asymptotic behavior of the drag law.

However, while the drag becomes inertially dominated for high w, the dissipation

associated with the particle and fluid oscillation remains viscous in origin but is

restricted to a boundary layer surrounding each particle that becomes thinner

with increasing frequency of oscillation.

4.3.4 The added mass term and its dependence on concentra-

tion

It has long been recognized that the added mass coefficient associated with

each sphere in a suspension is not a constant but is a function of concentration

as well as the geometrical configuration of the suspension. An expression for

the added mass coefficient as a function of particle concentration is developed.

By analogy, the dependence of added mass on solids' fraction is directly related

to Maxwell's relation for the effective conductivity of such an assembly of non-

conducting spheres in a conducting fluid. This analogy is appropriate as Laplace's

equation describes both the electrical potential equation and the potential flow

equation in the two processes. Wallis (1989) showed that the relationship between

the added mass coefficient and the normalized mixture conductivity is

C = - (4.10)
20'
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where # is the ratio of the liquid conductivity to that of the mixture. Maxwell

(1881) obtained for a random assembly of spheres

1 + 2 (4.11)
1 - V

which has been shown to be a good approximation up to maximum packing con-

centrations of mono-dispersed spheres (Turner, 1976). The added mass coefficient

then is

C(V) = (4.12)

which will be used in the momentum equation. It must be remembered here that

this coefficient is very sensitive to the geometrical configuration of the particles

in the mixture, which explains the differences between existing predictions of the

added mass coefficient for a sphere in a highly concentrated suspension. The

drag on a single particle in an assembly of like particles at a solids' fraction of v

is thus

FL = 67rpa(1 + a)(V, - vi) + 37ra 2 ( C(v) a + 6) D(v -vj) (4.13)
6 9'~0() 6 Dt

The tortuosity a is defined for a porous medium by the inertially dominated

momentum balance (Johnson et al., 1987)

o9vj
a pi = - VP.

For an inviscid flow, the tortuosity is thus given by

a = 1 + C(v) (4.14)
(1 - V)

For a packed bed of spheres of porosity 0.365 (or a solid fraction of 63.5%)

we obtain a = 1.24 which compares well to tortuosities of ~ 1.50 measured
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electrically in porous media of sintered glass beads of 30% porosity (Johnson et

al., 1982).

4.3.5 The extension of the single particle result to an assembly

of particles

The momentum interaction force between the solid and the liquid, F., con-

sists in general of dynamic drag (containing viscous and inertial effects) and

buoyancy forces. In order to ascertain the momentum interaction force due to

drag alone for a concentrated mixture, the single particle drag result must be

extended to arbitrary concentration. It is well known that for very low particle

concentrations the drag on an assemblage of particles increases linearly with the

solids' fraction; it is assumed here that linear superposition of the viscous inter-

actions is appropriate up to maximum packing, or roughly 62% by volume for

monodisperse spheres.

To extend the single particle drag result to higher concentrations, we assume

that the equivalent drag per unit volume for the suspension Feq is equal to the

drag per sphere multiplied by the number of spheres per unit volume, n, or

F, = n F'. This result is an approximation and is tantamount to neglecting

hindered settling effects in particle sedimentation - the non-linear interactions

between adjacent particles at high concentrations are neglected. It is known that

the solids' fraction, which is the volume of particles per unit total volume, is

related to the number of particles per unit volume by

4ira3

v=n( 4 3

Thus

n = . (4.15)
41raa
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As was mentioned previously, there is also a component of the phase interaction

force which is due to the instantaneous pressure gradients. This buoyancy force

is added to the equivalent drag force for the suspension to give the momentum

interaction force between the phases

3vF O- (4.16)4i8= ra3  
(4.16)~4f7rasg

where FL, is the unsteady force on a single (stationary) sphere of radius a in an

assembly of like particles subjected to oscillatory fluid motion, given in Equation

(4.13).

This theory in effect assumes an assembly of non-interacting particles as

it neglects viscous interactions between adjacent particles, which is valid in the

limit that 6 < rH, where rH is the hydraulic radius of an average flow channel

between the particles. The hydraulic radius is related to the average inter-particle

spacing h and is thus strongly concentration dependent. Now from geometrical

arguments h is given by
h 1 - q's

h 1 -1 (4.17)
a 7s

where
V

7 Vmax

and vtmax ~ 0.635 t 0.005 for a random close packed structure of monodisperse

spheres and Vmax ~ 0.555 for random loose packing (Onoda and Liniger, 1990).

Now the mean hydraulic radius for the passages formed in a packed bed of spheres

is given by

rH =2 pore volume - (1 - a (4.18)
interfacial area 3v

which equals 0.383a for umax = 0.635 and 0.535a for umax = 0.555. A more re-

strictive pore dimension is the minimum hydraulic radius, which for a suspension
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of spheres at a given concentration arises at the throat formed by three particles

lying in the same plane in a triangular formation. For this configuration, the

minimum hydraulic radius is given by

(rH)min = a 2 /V31 1(4.19)

which equals 0.103a at the maximum close packing limit.

Now the requirement for the particles that make up the porous medium to

be non-interacting is

6 < (rH)min.

(The frequency at which b = (rH)min is denoted as Wmin). The above require-

ment implies that the frequencies for which the present theory is valid are such

that

W Wmin 2M 2

The regime of w and v for which this restriction holds is shown for 1.0 mm

diameter particles in water in Figure 4.1.

4.4 Dynamic Permeability

4.4.1 General solution

The dynamic pressure drop-velocity relationship for the case of the porous

medium of packed spheres may now be derived along with the relationship for

the frequency dependent permeability. Substituting the expression for the mo-

mentum interaction force between the phases into the liquid momentum equation

gives

pi+ VPI 9 b) (OV, + 0 vai+[9 V Y a Pp /P+ (C(v)+--6 -- v -- )+[ (1-v+- 0
V) ( +4 a W OX 2(1-v) 2 (1 ax(.0

(4.20)
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In their analysis of the flow in a porous medium due to an oscillating pressure

gradient, Johnson et al. (1987), define the dynamic permeability k(w), such that

(1- vvi - k(w)
(1 - v)Vj = - VP.

Casting Equation (4.20) into the same form, linearizing and assuming an

harmonic liquid velocity

V1 = Vo e-iw

gives

k(w)= -21+- - 1+ v C(V) + - .
2a 2 ( _ ) 2  S p(1-v) (1-v), 4a

Expanding k(w) gives

) [+ j) +i e 1+ -(C(v)+
k(w) =22 (4.21)

+ _" + ] + 1 + -(C(v) + )

which is applicable for all w such that 6 < (rH)min, i.e. O > Wmin-

The low frequency limit for the permeability is

irn 2 2 (1_V)2
k(w) = a = ko (4.22)

W-+0 9 V

which is, strictly speaking, valid only for very low solids' concentrations as it

neglects non-linear effects that arise due to viscous interactions at high concen-

trations. However for a porous medium made up of 0.85 mm radius spheres at

the maximum packing fraction, the predicted ko ~ 3.2 x 10-2 MM2 , which is of

the same order as experimental results obtained by Charlaix et al. (1988) (1.2 x

10-2 mm 2 for 0.85 mm radius beads). The discrepancy between the experimental

result and that predicted by this analysis is of the same order as the difference
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between hindered and unhindered drag laws for particles sedimenting at high

concentrations. The dc permeability ko is thus related to the mean hydraulic

radius of the pore spaces in the porous medium (defined in Equation 4.18) by

ko = 2 r2 2 , (4.23)

implying that as the hydraulic radius of the pores increases, so the medium

permeability increases.

4.4.2 High frequency permeability

Using the fact that for w -- oo,

R = - > 1

or conversely

R-1 =-< 1
a

the high frequency asymptote for the permeability is obtained as

k(Lo) L( 9V 1 (1j+k(w) I +( - ) (4.24)
-- oo 2V2a p a2 a PI

where a is the tortuosity of the medium. This result has no restrictions on v

for all w > Wmin. The cross-over frequency at which this theory predicts that

the contribution to the permeability of the w-2 term equals that of the w-1

term for the case of 0.85 mm spheres (0.475 mm) is approximately 9.3 Hz (29.8

Hz), which compares very well to experimental results of 6.2 Hz for the case of

0.85 mm spheres and 25 Hz for 0.475 mm spheres established by Charlaix et al.

(1988).

Sheng and Zhou (1988) have proposed the following non-dimensional scaling

for the frequency

WC
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k

ko'
(4.25)

The dynamic permeability (Equation 4.24) may thus be represented in the non-

dimensional form

~a Li v 9 b
k(J)= [1+--i-{1+ 1 (C(v)+--)}

+ a + -v 4a

a 41v

(4.26)

where a is the (inertial) tortuosity of the medium. The non-dimensional dynamic

permeability thus depends on the Reynolds number, R, the suspension porosity

(1 - v) and the tortuosity a alone.

4.5 Discussion: Comparison to Existing Models

Using an approach analogous to Darcy's law, Sheng and Zhou (1988) obtain

from a first principles analysis of oscillatory flow in capillaries (in dimensionless

variables)
I + iF~I'0, W -- 0,

k V '=3 + W400.

where

ak2
C1 (1 - V)
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F2 =( 2(-V) (4.27)
ako

The parameter C1 is a geometric shape coefficient and -1 is a flow velocity-A

weighted surface area to pore volume ratio, and is thus directly analogous to the

hydraulic radius ri of the present treatment. Charlaix et al. (1988) have found

experimentally that for packed beds of spheres of radii in the range 0.25 to 0.85

mm, F1 ~ 0.71 - 0.75 and F2 ~ 2.8 - 3.0.

From the present derivation by comparison, (in primitive variables)

k(w) = ( - )(1 )- + i(1 - v)a-)w-. (4.28)
2 a/2a a2 pf pf

In non-dimensional terms this reduces to

1 + i L,0 - 0,

-+ oo. (4.29)

or, R W-2 + 2 W-1 0 _, 00.

Equations (4.27) and (4.29) give expressions for the dynamic permeability re-

sulting from two quite different approaches. However, these two independent ap-

proaches give the same frequency dependence for both the high and low frequency

asymptotes, and in fact Figures 4.2 and 4.3 show that the dynamic permeabil-

ity predicted by this theory and that calculated from Equation (4.27) using the

experimental values reported by Charlaix et al., (1988), are quite close in value.

Figure 4.2 shows the magnitude of the real part of the permeability, while Figure

4.3 shows the imaginary component. Figure 4.4 shows the phase associated with

the permeability, which translates into the phase lag that the velocity experiences

with respect to the pressure perturbation at increasing frequencies. It should be

noted that the present treatment gives a result that is independent of any scaling

factors other than those inherent in the tortuosity and concentration. For the
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purposes of predicting the permeability of porous media, the models of Sheng

and Zhou (1988), Zhou and Sheng (1989) and Johnson et al. (1987) require val-

ues of the parameter A which do not appear to be analytically predictable. On

the other hand, this model which is admittedly limited to high frequencies at

low medium porosities, requires knowledge of the porosity (1 - v), the particle

Reynolds number and the tortuosity alone.

It has been found that the dynamic permeability of a porous medium made

up of monodisperse spheres is governed by the unsteady Reynolds number of the

oscillatory flow around the particles, the particle added mass, the porosity of

the medium, and most importantly the mean hydraulic radius of the interstitial

pores. This theory provides a mechanism whereby the pore size and geometry

in a packed bed of spheres may be ascertained in a non-intrusive fashion. In the

case of a polydisperse system with a wide range of pore sizes and geometries, it

is anticipated that the experimental results might deviate significantly from the

present theory, due to the fact that the dominant viscous attenuation mechanism

in such a system would be due to the oscillatory flow through the smallest pore

spaces, these being quite significantly smaller than the average in the polydisperse

case.

A derivation for the frequency dependent dynamic permeability of a porous

medium of spheres has been presented by considering the external flow around

particles in a suspension and extending these results to high solids' fractions.

This approach has been shown to give results that are consistent with those

obtained by considering internal flow in cylindrical and sinuous pores.
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Inertial Regime

no viscous interactions

Transitional Regime

Viscous Regime

I I I I I I I I I I , I , i

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 4.1: Regime map of the range of frequencies for which the assumption of

non-interacting particles is valid in the dynamic permeability model. The lower

curve is the frequency constraint calculated according to Equation 4.18, while the

upper curve is calculated from the more restrictive Equation 4.19. For frequencies

above the theoretical curve, the 0.5 mm radius pores may be considered to have

non-overlapping viscous boundary layers.
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Figure 4.2: Real part of the dynamic permeability W(k(v)), as a function of

the dimensionless frequency D showing the crossover frequency w ~ 1. The

upper curve is the prediction of the present theory (Equation 4.29) while the

lower curves are for the theory of Sheng and Zhou (1988) (Equation 4.27) with

F1 = 0.71, F2 = 2.8 and F = 0.75, F2 = 3.0.
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Figure 4.3: Frequency dependence of the Imaginary part of the dynamic per-

meability a(k(&)). Refer to Figure 4.2.
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CHAPTER 5

ULTRASONIC DOPPLER VELOCIMETRY

5.1 Introduction

Ultrasound as a technique for interrogating two-phase mixtures has the ad-

vantages of being non-intrusive, it has a very high frequency response and is

able to penetrate typically opaque highly concentrated mixtures. It has been

shown in this thesis that there exists an inherent compromise in the choice of

the frequency of the ultrasound between maximizing spatial resolution (high ka)

and ensuring adequate beam penetration (low ka). To this end, the propagation

of ultrasound in solid-liquid mixtures has been investigated experimentally for a

range of frequencies and concentrations of the dispersed phase. The limitations

of ultrasonic wave propagation as a non-intrusive diagnostic technique, in terms

of spatial resolution, are clear: to maximize resolution while maintaining ade-

quate beam penetration into a highly concentrated mixture requires ka - 0(1).

Acknowledging these limitations, ultrasonic instrumentation for determining the

velocity of moving particles at or near maximum packing was developed. Pre-

liminary results from a prototypical ultrasonic Doppler velocimeter show good

agreement with observations of the settling velocity of a silica beads at high

concentrations. A new version of this velocimeter was used to measure par-

ticle velocities in a Dynamic Shear Cell (Figure 5.1) (Poutiatine, 1990), and to

quantify the scattering characteristics of particulate mixtures for further acoustic

instrumentation development.

Ultrasound (typically in the range of tens of kilohertz to several megahertz)

has several distinct advantages over other methods of measurement in the in-

vestigation of highly concentrated mixtures. It is truly non-intrusive (unlike
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resistive or capacitive point probes such as those described by Shook et al., 1982,

or Hsu et al., 1989), it has an inherently high frequency response, and can thus

be used for the measurement of dynamic or transient phenomena; it can pen-

etrate highly concentrated and optically opaque mixtures (unlike laser Doppler

anenometry or other optical techniques which require index of refraction match-

ing, as described by Kadambi, Bhunia and Dybbs, 1988, for example) and it has

the capability of providing good spatial resolution. Ultrasonic wave propagation

has been used extensively in the measurement of single phase flowrates (for in

vivo blood flow measurements (McLeod, 1967)). A wide variety of acoustic and

ultrasonic instruments for the measurement of single phase fluid velocities in

industrial applications have been developed. The earliest acoustic flow measure-

ments made were based on the contrapropagating transmission technique (see,

for example the comprehensive review by Lynnworth, 1990). These flowmeters,

developed for use in predominantly single phase systems such as gas and water

pipelines, rely on the mechanism that the time of flight of sound between two

points in a flowing fluid will change with the fluid velocity. Other more sophis-

ticated devices such as ultrasonic cross-correlation flowmeters (Ong and Beck,

1975), and ultrasonic vortex flowmeters (Joy, 1984) have also found widespread

use in single phase flows. Several proprietary devices are available that infer

fluid velocities from the Doppler shift due to particles moving along with the

fluid (cf. Controlotron Corporation, Nusonics, Polysonics, Leeds and Northrup

and Texas Nuclear); these devices are also considered suitable for measurements

in suspensions with low solids' loading, such as those found in sewage and waste

treatment.

The search for new non-intrusive diagnostic instrumentation for use in ad-

vanced coal combustion technology has driven research into acoustic measure-
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ment techniques in multiphase systems (Penner et al., 1984). Passive techniques,

such as the measurement of flow noise and its correlation with flow velocity (Rap-

tis, 1984) as well as active techniques, such as those employing the Doppler effect

have been developed (Karplus and Raptis, 1979; Beltran et al., 1989). Colwell

et al. (1988) found that for Doppler measurements at ka = 0.56 the velocity

of a flowing sand-water slurry could be determined quite accurately at up to

35% particles by volume. In addition, they found that at ka = 1.12 the signal

attenuation was too high to allow for Doppler measurements. Hilgert and Hof-

mann (1986) used an ultrasonic Doppler flowmeter to measure the rise velocity

of bubbles in a bubble column at gas hold-ups of up to 10% and velocities of up

to 0.25 ms- 1 . Ricker and Forster (1985) have measured velocities in 3% aqueous

pulp fiber suspensions at velocities of up to 0.1 ms- 1 using a pulsed, focussed

Doppler system at 4.7 MHz, giving a claimed spatial resolution of 2 mm. Lit-

tle work has been performed on measuring slurry velocities at up to maximum

packing concentrations, and it is this omission that this work seeks to address.

Acoustic wave propagation as a non-intrusive technique has certainly not

been used to its full potential in highly concentrated mixtures, due mainly to

the difficulties posed by signal attenuation. There exists an inherent compro-

mise in the selection of operating frequency for an acoustic device between the

need to minimize the wavelength (with respect to the physical dimensions of

the system under investigation) for better spatial resolution, while maximizing

the wavelength (with respect to the particle size) for better penetration of such

mixtures.

Described here is the use of an ultrasonic Doppler velocimeter for the mea-

surement of particle velocities in mixtures at up to the maximum packing con-

centration.
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5.2 Theory

The Dynamic Shear Cell (Figure 5.1) is a large (400 mm diameter) annu-

lar rotating device designed to study the dynamic behavior of saturated beds

of particles in response to steady and oscillatory imposed motion. A packed or

sedimented bed of particles in water (typically glass beads), of several centime-

ters in depth, is sheared from below by a rotating roughened plate, and the pore

pressure, bed surface height and other features of the mixture are monitored. It

was anticipated that the velocity of the particles in the bed could be measured

using ultrasonic Doppler velocimetry. Initially, the velocity of the particles at

the bed surface below several centimeters of water were measured (Figure 5.2).

Thereafter internal velocities of the rotating mixture were measured by reposi-

tioning the transmitter and receiver such that their foci coincided below the bed

surface. It is thus appropriate to review the physics of the interaction of a sound

wave with an interface between a single phase liquid and a two phase mixture as

well as the interaction of sound with a packed bed of scatterers.

5.2.1 Acoustic reflection, refraction and scattering at a wa-

ter/sediment interface

In direct analogy to the theory of geometrical optics, when sound passes

from a medium of some sonic velocity c' to a second medium of sonic velocity

c, some component of the energy of the incident wave will be reflected while the

remaining energy will be transmitted into the second medium and refracted. The

relative proportions of energy in the reflected and transmitted waves are given by

the acoustic impedances of the two media. In terms of the acoustic impedance
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Z = pc,, the reflection coefficient Ri,, is given by

Z2 - Z1 (5.1)

Z2 + Z1

This implies that the greater the mismatch in acoustic impedances between the

two media, the greater will be the proportion of the incident energy that is

reflected back into the first medium. As for the transmitted wave that is refracted

at the surface, the angle of refraction measured from the normal 0, is related to

the angle of incidence 9, by Snell's Law (Figure 5.2), namely

sin Oi _ sin 0,. (5.2)
C1 C

2

In general, for the case of an absorbing (or attenuating) medium, the index of

refraction is a complex quantity, and is given by (Jenkins and White, 1957)

n = n (1 - i K) (5.3)

where , is an extinction coefficient and is related to the attenuation coefficient

a by

K = -A (5.4)
47r

and
1

n = C. (5.5)

Now
aa

aA = a- 27r. (5.6)
ka

In this study ka 0(1) while aa 0(10-3), and this implies that K ~0(10-'),

or that the medium is weakly absorbing and hence that the index of refraction

may be approximated by its real component alone with little loss of accuracy.

Assuming that a plane acoustical wave encounters a smooth interface between

water (Z1 ~ 1.5 x 106 kgm- 2s-' and c, - 1500 ms-1) and a settled bed of silica

particles (Z2 ~ 3.3 x 106 kgm- 2 s-1 and c2 ~- 1650 ms-1) at various angles Oi to

the normal, the corresponding angles of refraction are given in Table 3.
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Table 3: Angles of Refraction

Oj 00 100 20* 300 400 500 600 65.4*

O, 00 11.00 22.10 33.40 45.00 57.40 72.30 900

This shows that at angles of 65.40 from the normal and greater, there will be

total reflection from the settled bed interface - additionally, at angles of - 500

and more, there will be some uncertainty as to the exact path of the refracted

wave. Moreover, as the incident acoustic wave will in general not be planar, and

noting that for propagation at ka ~ 1 that the wavelength is of the same order

as the size of the surface features at the medium interface, the uncertainty in the

actual acoustic path will be even more significant.

The scattering behavior of a single elastic particle in a viscous fluid has

been studied by many authors, but the more successful studies have been quite

recent, beginning with the work of Waterman (1969). In theory, scattering may

be fully described by the solution to the equations of motion in the particle and

in the surrounding fluid under the influence of an infinitesimal compressional

wave, once the boundary conditions have been taken into account. In reality,

however, the problem is quite intractable analytically and complex numerically.

B6strom (1980) has studied the scattering of a single mobile elastic particle in a

standing acoustical wave, and has presented polar diagrams of the total intensity

of the scattered wave as a function of ka for an aluminum sphere in water. The

scattering behavior as a function of ka is shown in Figure 5.3. The acoustic

impedance of aluminum is roughly 1.7 x 107 kgm 2 s-1, while that for silica glass

is about 1.3 x 10 7 kgm- 2 s 1.

What is less well known and considerably more difficult to predict analyti-

cally than the scattering response of a single isolated particle, is the scattering

performance of an ensemble of particles (Twersky, 1978). An approach termed
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"configurational averaging" is sometimes employed to evaluate the non-linear

multiple scattering behavior of an arrangement of particles in space. This is of

importance in the development of ultrasonic instrumentation operating in the

frequency regime ka > 0(1), as it will determine the response of an interrogated

group of particles to an incident compressional wave, but it is not considered

here.

5.2.2 The Doppler frequency shift

The theory behind ultrasonic Doppler velocimetry borrows much from that

of laser Doppler anemometry (LDA), although the non-dimensional wavenumbers

in the latter case are several orders of magnitude greater (the frequency of visible

light being of the order of 1015 Hz). As in LDA measurements, the Doppler shift

of sound that is scattered off a moving particle is calculated thus: a particle

moving with a velocity v, at an angle OT relative to a transducer TT (Figure 5.2)

transmitting at a frequency fo 'observes' an apparent frequency f' given by

f' (i + V cos T). (5.7)
P /Cg

A receiving transducer TR aligned at an angle OR from the direction of motion

of the particle 'sees' sound scattered from the moving particle of frequency f"
where

1 -
a CO

= ' i- cos9R)

(1+g cos9T)
= fo c (5.8)

1 -? PCOSOR
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The Doppler frequency shift measured AfD is thus the difference

-. (cos OT + COS OR

AfD = f"-fo=fo ( ' . (5.9)

For most physical processes of interest (solid particles in a continuous liquid)

<<V< (5.10)
Ce

so that

AfD = fo (cos OT + cos OR). (5.11)

This implies that the Doppler shift measured is maximized by maximizing fo

(subject to the attenuation limitations), and by aligning the transmitting trans-

ducer along the line of flight of the particle (either in the same direction as or

opposing the direction of motion), and by having the receiver aligned at the same

angle as the transmitter. However, if the transmitter angle and the receiver angle

are related by the expression

OT + OR = 1800, (5.12)

the resultant shift measured is zero: this situation is obviously to be avoided.

For the measurement of the velocity of a flowing suspension of particles, the

orientation of the transmitter and receiver with respect to the flowing mixture

is restricted by the geometry of the system - typically the transmitter and

receiver cannot be placed in the plane of the flow, which would result in the

maximum detectable frequency shift, but must be offset slightly from that plane

in order to prevent disturbing the flow. For particles that scatter predominantly

in the forward direction (with respect to the incident compressional wave), the

choice of transducer orientation is problematic due to the 180* restriction. For
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particles that scatter in the rearward direction (ka - 1) the selection of geometry

is clearer: the transducers should preferably be aligned with as large an angle

between them and the direction of the flowing mixture.

In ultrasonic Doppler velocimetry the frequency shift is determined by de-

modulating the backscattered (received) signal with the original (transmitted)

signal and measuring the beat or heterodyne signal that arises. This is normally

performed by a multiplier or double balanced mixer. The demodulated signal

contains two major components at frequencies that are the sum of and the differ-

ence between the two signals, and the lower frequency component (which is the

one of interest) is isolated through the application of a low-pass filter (see the cir-

cuit diagram in the Appendix). Consider the multiplication of two cosinusoidal

signals, the monochromatic incident wave of frequency fo, A cos(21rfot), and the

backscattered and shifted signal B cos [27r(fo + AfD)t + V] = B cos(27rFt + 0)

where i is the phase difference between the transmitted and received signals and

F = (fo +AfD), where the sign of AfD depends on the direction of motion of the

scattering particles. In practice, due to the finite size of the scattering volume,

velocity distributions across the measuring volume and the scattering behavior

of the moving particles, the backscattered signal will be rich in frequency content

and will have some distribution of phase information.

A cos(27rfot) -B cos(27rFt + 0)

= AB [cos(27rfot) cos(27rFt)] cos - [cos(27rfot) sin(27rFt)] sin }
= AB [cos(27rFt - 27rfot) - sin(27rFt) sin(27rfot)] cos 0 (5.13)

- [sin(27rFt - 27rfot) + sin(27rfot) cos(27rFt)] sin 0

After low pass filtering, the deconvoluted signal will be

ABIcos(27r AfDt) cos 0 - sin(27r AfDt) sin } (5.14)

= AB cos(21r AfDt + 4)
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On the other hand, instead of demodulating the received Doppler shifted signal

with a signal at the incident frequency, fo, a signal at some small frequency offset

from the original may be used, namely fo - Afdec. The result is that the final

demodulated signal is measured to be Afdec + AfD and not simply AfD. The

advantage to such a demodulation scheme is that the direction of motion of the

moving particles may be determined depending on whether the Doppler shifted

frequency is greater than or less than the frequency offset. If v, > 0, then the

resultant frequency is Afdec + IAfD1, whereas if v, < 0, it is Afdec - IAfD1. This

technique, used in LDA, is accomplished with a frequency shifting Bragg cell,

whereas here the same effect is accomplished electronically. Experimentally the

Doppler shifted frequency can be evaluated using an efficient frequency deconvo-

lution scheme such as the Fast Fourier Transform (FFT) technique. In practice

while the transmitted signal will be monochromatic (of a single frequency), the

received signal will have some frequency bandwidth related to the manner in

which the signal is scattered from the moving particles and the fact that the

measurement volume is of finite extent.

5.3 Experimental Procedure

5.3.1 The prototype ultrasonic Doppler velocimeter

Based on the results obtained in the packed bed and fluidized bed experi-

ments, it was clear that an ultrasonic transducer operating at or near ka = 1

could provide information on a flowing mixture of 1.0 mm particles in a 100 mm

tube at concentrations up to the maximum packing fraction, where the atten-

uation factor, e-,L -_ 0.40. To confirm this supposition, the prototypical ul-

trasonic Doppler velocimeter shown schematically in Figure 5.4 was constructed
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and tested. The device was operated in the following manner; an unfocussed 100

kHz transducer (Massa Corporation) with a natural focal length of about 100

mm, inclined at an angle of about 450 to the vertically flowing solid-liquid mix-

ture, insonified the mixture in a tone-burst mode with ultrasound of a frequency

at ka ~ 0.75. Approximately 10 complete waveforms were used in each tone-

burst. A receiving transducer, aligned with its region of natural focus coincident

with that of the transmitter, detected the signal shifted in frequency due to the

velocity of the scattering particles with respect to the incident ultrasound.

The Doppler shifted frequency was obtained by demodulating the received

signal with the driving signal in a double balance mixer (see the Appendix).

This yielded a signal that had components at the sum and the difference of the

frequencies of the two waveforms, and the low frequency content, which was

proportional to the velocity of the scatterers, was obtained from a low pass filter

stage. The Doppler shifted signal (in these experiments in the range 0 to 1000 Hz)

was first digitized by a data acquisition system and its spectrum was analyzed by

determining its Fast Fourier Transform. The device was tested by measuring the

settling velocity of 1 mm glass beads at a range of concentrations in a 100 mm

diameter vertical column; the frequency spectra of the velocity corresponding to

settling at two different initial volume fractions, namely v0 = 0.45 and v, = 0.50,

are shown in Figure 5.5. The particle settling speed was independently verified

by visual measurement of the downward velocity of the mixture-water interface,

which for a monodispersion settles (on average) at the same speed as the particles.

A comparison between the measured settling velocities and the visually observed

values corresponding to a range of initial concentrations is shown in Figure 5.6.

This graph shows that the settling velocity, as deduced from the Doppler shifted

frequency, is a good measure of the actual velocity.
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5.3.2 Device Refinements

A second generation velocimeter was constructed for use in measuring par-

ticle velocities in a Dynamic Shear Cell (Poutiatine, 1990). Among the more

significant modifications to the instrument were the use of a smaller transmitter

(Panametrics, V310 500 kHz, 12.7 mm radius) and a focussed receiver (Panamet-

rics, V314 1.0 MHz, 12.7 mm radius, 60 mn focal length), and the introduction

of a calibrated frequency shift in the demodulation stage for the measurement

of directional changes in velocities. The received Doppler shifted signal is de-

modulated with a signal at some small frequency offset from the original, namely

fo - Afdec. The result is that the final demodulated signal is measured to be

Afdec + AfD. If vP > 0, then the resultant frequency is Affec + jLfDj, and if

vP < 0, it is Affec - IAfD|. This effect is accomplished experimentally by the

use of two function generators (Hewlett-Packard 3314A) with a small frequency

offset between them, the first being used as the incident or driving signal and the

second as the demodulation signal. In addition, the modified velocimeter allowed

the orientation of the transmitter and receiver to be varied independently so that

the scattering and reflection characteristics of the two phase mixture could be

measured as a function of angle.

5.3.3 Frequency Resolution and Signal Processing Considerations

The Doppler shifted frequency AfD is known to be proportional to the ve-

locity of the scattering particles that travel through the receiver's focal region

and the frequency of the incident acoustic wave. If the particle velocity is time-

invariant, it is possible to use continuous wave transmission. In order to mea-

sure velocity data in dynamically accelerating or decelerating flows, however, the

length of the Doppler bursts is limited to being very much less than the timescale
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T over which the velocity varies, or

,r < T. (5.15)

This imposes certain limitations on the method that are addressed below. To

resolve the frequency shift accurately, a sufficiently long burst of information of

duration -r is required such that the demodulated signal contains at least one

complete wavelength at the frequency of interest or

1
7 > . Constraint 1 (5.16)

(Afdec AfD)*

The data acquisition sampling frequency faample must be somewhat greater than

twice the frequency of interest (the Nyquist criterion) or

fsample > 2 (Afdec + AfD). Constraint 2 (5.17)

The frequency resolution of the FFT is given by

fres = FFTm"l (5.18)
# FFT

where #FFT is the number of points in each FFT deconvolution. To maintain

good frequency resolution (low fre,), requires a low sampling rate fLample (which

translates into fewer data points per burst N for a fixed length burst r), and a

large number of points in the FFT convolution. Alternatively, it is desirable to

minimize fre, with respect to the Doppler shift AfD, subject to the constraints

1 and 2. Thus

mm = min f"a=ple #= (--fAec +1) (5.19)
AfD #FFT AfD #FFT \ (

This function is minimized by maximizing #FFT, and minimizing fdec but there
A fD

is a restriction on Afdec such that

Afdec ! AfD Constraint 3 (5.20)
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that must be met in order to obtain directional information. Constraint 1 may

be written as

(Afdec - AfD) T> 1 (5.21)

or
1

Afdec > - + AfD. (5.22)
T

Thus
fres 2min fD = min #FF+2. (5.23)

Af FFT 'rbfD

Now there is an added restriction on the number of points in the FFT decon-

volution #FFT such that this number should not exceed the number of points

sampled in the burst. If #FFT > N, then the FFT is calculated from a data

record which contains the N points of the Doppler burst and a series of trailing

zeroes. This leads to an unfortunate deconvolution artifact which manifests itself

as a frequency spreading or 'smearing' effect. To avoid this requires

#FFT = fsample 7 = 2(AfD + Afdec)T = 2(1 + 2AfDT ). (5.24)

and so
fres 1 1 1

AfD (1 + 2AfDr) -rAfD +J = TAfD(

Now for a burst of length 0.1 second, and for Doppler shifts of the order of 100

Hz, this implies that the minimum resolution is 10% of the total frequency shift.

Unfortunately, the above argument show that the FFT is not particularly ef-

ficient in determining frequency information in a burst mode of operation, which

is obviously necessary when attempting to resolve fluctuating velocities or tran-

sient motion. The use of other advanced signal processing algorithms is recom-

mended for establishing the frequency spectrum of short, finite length Doppler

bursts (Erk, 1990).
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5.4 Experimental Results

5.4.1 Interface Reflection

The velocity at the upper surface of a moving bed of silica particles was

determined by measuring the Doppler shift in the annular shear cell. The trans-

mitting transducer was aligned at 450 from the vertical with its natural focus

(about 60 mm from the face of the transducer) situated at the water-bed in-

terface, while the focussed receiver was aligned at a variety of angles, with its

focal region arranged to coincide with the bed surface (Figure 5.2). Initially, the

intensity of the reflected signal was measured as a function of angle of the re-

ceiver, for a range of rotational speeds of the shear cell. It was found that for the

low frequency case (ka = 1.05, Figure 5.7) that the reflection was predominantly

specular - that is to say that the maximum intensity of the received signal was

found when the angle of incidence equalled the angle of reflection. A further

maximum was found for intermediate bed rotational speeds corresponding to a

particle velocity of 0.25 ms' - at higher speeds, the bed surface deviated from

the horizontal due to centrifugal forces, and was somewhat higher at the outer

edge of the annular gap in the shear cell that at the inner edge. At increas-

ing velocities, as the bed surface tilted from the horizontal, so the transmitted

wave did not reflect off the bed surface in the same plane as the (directional)

focussed receiver, thus reducing the received intensity of the reflected signal. At

ka = 2.10, the reflection changed from specular or directional to diffuse reflection

as seen in Figure 5.8. This occurred as the wavelength was significantly smaller

than the surface irregularities at the bed interface (which are of the order of the

particle radius). Thus there are two distinct frequency regimes for the reflection

of an acoustic wave off the packed bed-water interface - the long wavelength

regime in which the bed surface appears smooth, and the short wavelength limit,
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in which it appears rough. This result is qualitatively similar to results obtained

by Kobayashi et al. (1991) in their study of the reflection of ultrasonic waves in

air off two types of moving surfaces. It was found that for the smooth surface

(ka < 1) the reflection was specular, while for the rough surface (ka = 6.6) the

reflection was diffuse.

5.4.2 Surface Velocity Measurements

The velocity was determined from the measured Doppler frequency shift.

One such frequency spectrum appears in Figure 5.9. There is a distinct intensity

peak at the center frequency with a reasonably broad frequency spread, and an

appreciable bandwidth. The frequency bandwidth, measured to be the range

of frequency over which the intensity is greater than half of its maximum value

normalized with respect to the center frequency, is shown in Figure 5.10 as a

function of the Doppler frequency shift. This -6 dB bandwidth in most cases was

of the order of 20-30% of the total frequency shift. The surface velocity of the

particle bed in the shear cell may be calculated from knowledge of the rotational

speed of the shear cell f and the radius R at which the transmitter and receiver

are focussed, namely

VP = 2 7r R f. (5.26)

Due to the fact that the receiving transducer has a finite beam-width which is

of the order of 10 mm at the focal length of 60 mm, there will be a velocity

gradient in the particles across the measurement volume. This will correspond

to a variation in the velocity Av, given by

AvP _ ARmea (5.27)
VP R

which will be of the order of 6-7% for a radius of 150 mm, and will be independent

of particle velocity. Furthermore due to the finite beam-width, the angles OT
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and OR should not be regarded as single valued but should be considered as

OT AOT and OR AOR. Substituting in the nominal values of 45* 100 and

900 100, the function cos 9 T + cos 9 R varies between 0.400 and 0.992, with

the nominal center value of 0.707. Assuming a linear decrease in intensity of

the backscattered signal as a function of angular deviation from the nominally

stated orientation, this would lead to an approximately 30% -6 dB frequency

bandwidth. The measured frequency bandwidth is seen to be of the same order

and is independent of velocity, as would be expected from the above reasoning.

The spectral broadening is thus assumed to be the result of the finite volume of

the measurement cell, the velocity distribution across the cell, and the angular

spreading of the receiving and transmitting transducer beams. The observed

signal to noise ratio (SNR) was high (as can be seen from the frequency spectra)

and typically in the range of 40 to 100 dB.

5.4.3 Scattering and Interior Velocity Measurements

By moving the transmitting and receiving transducers together in a vertical

plane, measurements of the particle velocity below the water-packed bed inter-

face were taken. The velocity profile and the frequency bandwidth are shown as

a function of depth of penetration into the mixture in Figure 5.11 - both the

measured velocity and the bandwidth are seen to be reasonably constant with

depth. The velocity measurement at depth is subject to some geometrical uncer-

tainty due to the refraction of the acoustic beams discussed in Section 5.2.1. The

path length for a transmitter angle of 450 and a receiver oriented at 90* to the

bed interface is about 47 mm for a nominal target depth below the interface of

25 mm (the unrefracted path length would be about 60 mm). This path length

should be taken into account in calculating the expected beam attenuation. A

polar diagram of the scattered intensity as a function of the receiver orientation
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was obtained with the transmitter aligned at 45* to the normal (Figure 5.12),

and this shows that the preferred angle at which the maximum scattered in-

tensity is measured is the 900 position, i.e. the angle between the incident and

the maximum scattering direction is 45*. In addition, this maximum is evident

for ka - 1 - 3. This result, which shows that the interaction of the incident

sound and the particles at depth is indeed one of scattering as opposed to the

mechanism of reflection seen at the bed surface, bears striking similarity to the

results of B6strom (1980) who showed that the maximum intensity in the signal

scattered off a single particle for ka = 1 occurs at an angle of about 45* from

the incident. This angle corresponds exactly with the maximum seen at the 90*

receiver position in the velocimeter geometry.

5.5 Discussion

There is a distinct change in mechanism between reflection at the wa-

ter/sediment surface and scattering from particles at depth in the packed bed.

However, in both cases the velocity of the moving particles may be accurately

measured from the Doppler frequency shift. In the case of the measurement at

depth, the maximum backscattered intensity for ka 0 0(1) occurs at an angle

of about 45* from the incident, and this coincides exactly with the prediction

of scattering from a single mobile elastic particle. The frequency spectra, which

are similar for both the surface reflection and the internal scattering cases, show

significant spectral broadening which is fully accounted for by the finite beam

geometry of the transmitter and receiver. (In contrast, the Doppler spectra ob-

tained in the sedimenting bed (Figure 5.5) have significantly smaller bandwidths

due to the fact that there was not an appreciable velocity gradient across the

measuring volume in this case). The use of very sharply focussed transducers

127



would reduce the frequency bandwidth somewhat, but this effect must also be

seen as an artifact of the particular rotational setup studied. In the case of a

flowing two phase mixture in a horizontal pipe, for example, the spatial velocity

gradients will not be as severe as those encountered in the Dynamic Shear Cell,

and so the spectral bandwidth will not be as large.
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and oscillatory motion of highly concentrated solid-liquid mixtures. Particle
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Figure 5.2: Geometrical acoustics for refraction at an interface between two

media of dissimilar acoustic indices of refraction, showing Snell's Law, and the

geometry of the ultrasonic Doppler velocimeter. The transmitter and receiver

could be moved together in the same vertical plane to allow subsurface as well

as surface velocity measurements to be made.
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Figure 5.3: Scattering behavior of a single mobile elastic particle in a standing

acoustical wave. These polar diagrams of the total intensity of the scattered wave

as a function of ka for an aluminum sphere in water are from B6strom (1980).
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Figure 5.6 Comparison of particle velocities measured visually and using the

ultrasonic Doppler technique. The data show some scatter due to error in the

visual technique and the short duration of the tone bursts that were used in

the ultrasonic method. Longer time records would introduce averaging, and the
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Figure 5.7 Intensity of the wave reflected off the moving interface between clear

water and the sedimented packed bed as a function of angle of the receiver from

the vertical. The transmitter, operating at ka = 1.05, is aligned at 450 from

the vertical in the left-hand quadrant. The reflection is seen to be essentially

specular for the range of particle velocities considered.
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Figure 5.8 Intensity of the reflected wave as in Figure 5.7 for the case ka = 2.10.

The reflection can be seen to be essentially diffuse, as the wavelength is somewhat

smaller than the surface features of the interface.
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Figure 5.11 Velocity profile (as represented by the frequency shift) and frac-

tional bandwidth (the -6 dB bandwidth as a fraction of the center frequency of

the Doppler shift) as a function of depth of penetration of the focal regions of the

transmitter and receiver into the rotating packed mixture (in mm, the bed/water

interface is at 40 mm and the bottom of the silica particle bed is at 0 mm). The

velocity profile can be seen to be quite invariant with depth into the mixture.

The frequency bandwidth is given by the lower points (A 0).
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Figure 5.12 Polar diagram of the scattered intensity as a function of angle of

the receiver for sound scattered from a depth of 25 mm below the surface of a

sedimented bed of 1 mm silica particles in water. The transmitter is positioned at

450 from the vertical in the left-hand quadrant. The preferred angle of scattering

is approximately the vertical which shows good agreement with the prediction of

B6strom (1980) in Figure 5.3.
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CHAPTER 6

CONCLUSIONS

Acoustic wave propagation in highly concentrated suspensions of elastic solid

particles in Newtonian fluids has been considered from both an experimental

and an analytical point of view. The motivation for this work has been the

development of non-intrusive instrumentation for highly concentrated multiphase

flows. The major findings of this study are summarized below.

For acoustic wave propagation in solid-liquid mixtures at wavelengths larger

than the particle radius, that is to say for ka < 1, the single phase classical

Rayleigh theory (O'Neil, 1949) describing the acoustic field intensity produced

by an oscillating transducer has been shown to accurately predict the geometrical

beam characteristics of non-focussed circular disc transducers. The substitution

of a modified complex wavenumber, which takes into account the attenuation

behavior of the medium, allows the beam geometry of a disc transducer in an ar-

bitrary attenuating medium to be predicted. This is of importance, for example,

in evaluating the performance of an instrument that determines the concentra-

tion of the dispersed phase in a two phase mixture by measuring the attenuation

of sound in the medium. Beam geometry effects, which are strongly influenced

by the medium sound speed and frequency of operation, are not typically con-

sidered in non-intrusive acoustic instrumentation, but have been shown in this

study to be important in some cases. Typically, for acoustic wave propagation

in a highly concentrated mixture of 1.0 mm silica particles in water, the focal

region for focussed transducers is of the order of 10 particle diameters on each

side. In the same mixture due to attenuation, the intensity decreases by a factor

of 1/e in a distance of approximately 500 particle diameters and this results in a

useful range of penetration of tens of centimeters.
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The attenuation of sound in both packed and fluidized beds of spherical par-

ticles has been shown experimentally and analytically in this study to be domi-

nated by viscous effects for frequencies such that ka < 1 and for high dynamic

particle Reynolds number R. Moreover, for the high R regime, the attenuation

has been shown both experimentally and analytically to vary with (ka)3/ 4 . The

frequency dependence of the Biot model (Biot, 1956) most widely used in pre-

dicting attenuation in porous media is (ka)'/2 , but experimental results have

shown a somewhat greater functional dependence than this (Salin and Sch6n,

1981). For low R or below about 25 Hz for 1 mm silica beads in water, the

attenuation is predicted to exhibit a 2 power dependence on frequency.

The present study confirms previous experimental results for attenuation

in porous media, and provides new data for the fluidized case, as a function of

solids' concentration. For ka > 1, highly non-linear attenuation occurs - this is

presumed to be due to multiple scattering effects not considered in this study.

A comprehensive theory for viscous attenuation in solid-liquid mixtures,

including viscous, inertial and history effects between the phases, has been pro-

posed and has been shown to predict accurately sound speed and attenuation as a

function of particle and fluid properties, and both frequency and solids' fraction.

Through a perturbation analysis of the continuity and momentum equations for

the two phases, the complex wavenumber k has been shown to depend on the

unsteady particle Reynolds number, R (related to the thickness of the unsteady

viscous boundary layer surrounding each particle), the particle added mass coef-

ficient, the dispersed phase concentration and the frequency of excitation. The

dissipation around an oscillating particle in an incident sound wave has been

shown to be dominated by Basset or history forces at high frequencies.

The sound speed of a compressional wave in a highly concentrated solid-
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liquid mixture has been shown to be a weak function of ka, and it has been

shown that the sonic velocity may in some cases (for ka -+ 0) be a non-monotonic

function of particle concentration. For ka ~ 1 the speed of sound in a mixture of

silica beads and water increases monotonically with the dispersed phase concen-

tration. For three to four orders of magnitude in ka, the sound speed variation

is of the order of 5-10%.

In addition, for ka ~ 1 the attenuation has been shown to be a non-

monotonic function of concentration, with a maximum occuring at intermediate

solids' fractions. This, along with the frequency dependence of attenuation, has

important implications for the use of ultrasonic instrumentation in concentrated

suspensions as prohibitively low penetration can occur at high frequencies and

intermediate concentrations. It has been shown that there exists a compromise

between maximizing ka with respect to the physical dimensions of the system

being interrogated for better spatial resolution of the measurement technique,

and minimizing ka for better beam penetration into the mixture.

The theory developed in this study to model viscous attenuation losses in

the propagation of an infinitesimal pressure perturbation through a two phase

mixture has been modified to predict the dynamic permeability associated with

the flow of a fluid through a porous medium of spheres under the influence of an

infinitesimal oscillatory pressure perturbation. It has been previously postulated

that the variation of dynamic permeability with frequency of oscillation of the

flow would provide valuable insights into the pore geometry of such media (John-

son et al., 1987) - indeed the model developed here shows that the permeability

is a function of the mean hydraulic radius of the interstitial pores of the medium,

as well as the added mass coefficient of the particles, both of which are strong

functions of the microstructure of the mixture.

143



I.

The application of ultrasonic instrumentation to the measurement of dis-

persed phase velocity in highly concentrated suspensions has been shown in the

use of an ultrasonic Doppler velocimeter for the measurement of sedimentation

velocities in the hindered settling regime, and in measuring surface and inte-

rior velocities in a packed mixture in a Dynamic Shear Cell. Particle velocities

have been measured accurately at up to the maximum packing concentration,

although the finite beam width of the transducers used and the velocity profiles

in the latter system are shown to adversely affect the frequency bandwidth. The

accuracy of the measurement of the velocities of particles in unsteady motion

has been shown to be governed by the length of the Doppler burst r and the

magnitude of the Doppler shift AfD, and the minimum resolution of the mea-

surement is limited to 1D . In the case of laser Doppler velocimetry this is less

of a restriction, as the Doppler shifts measured can be of the order of megahertz.

For ultrasonic Doppler measurements in contrast, with a Doppler shift of say 100

Hz and a required temporal resolution of 0.1 seconds, the best resolution possible

is 10% of the total frequency shift.

It has been shown, however, that for the case of steady particle velocities

at least, accurate measurements of dispersed phase velocity are quite feasible

in highly concentrated solid-liquid particulate mixtures at up to the maximum

packing concentration.
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APPENDIX

Figure 1 Steady Velocity Measurements In the Dynamic Shear Cell.

Figure 2 Unsteady Velocity Measurements In the Dynamic Shear Cell.
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Figure 1 Steady Velocity Measurements In the Dynamic Shear Cell.

A tone burst of frequency fo and several waveforms in duration generated

by the Hewlett-Packard 3314A Function Generator (H1) and amplified by the

Amplifier Research RF Amplifier (A), is transmitted by the transmitter (T).

The signal from the receiver (R) at a frequency fo AfD is amplified by the

Panametrics 5055PR receiver (P). The first function generator triggers a second

identical unit (H2) which operates at some small frequency shift from the original,

namely fo - Afdec. This offset frequency is multiplied by the received signal in

a double balanced mixer (M) and the resultant signal is low pass filtered (K).

The final signal has the frequency Afdec + IAfDj if the velocity of the particles

is towards the transmitter and Afdec + IAfDI if the velocity is away from the

transmitter.
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Figure 2 Unsteady Velocity Measurements In the Dynamic Shear Cell.

The Hewlett-Packard 3314A Function Generator (H1) is triggered by a ro-

tational position measurement from the oscillating bottom plate of the Dynamic

Shear Cell. The rotational transducer output is used to trigger a Tektronix 465B

oscilloscope, which has two TTL outputs. The first (Gate A) is used to trigger

H1. It in turn generates a tone burst of frequency fo and several waveforms in

duration, which in turn is amplified by the Amplifier Research RF Amplifier (A).

The signal from the receiver (R) at a frequency fo AfD is amplified by the

Panametrics 5055PR receiver (P). The first function generator triggers a second

identical unit (H2) which operates at some small frequency shift from the origi-

nal, namely fo - Afdec. This offset frequency is multiplied by the received signal

in a double balanced mixer (M). The Tektronix Oscilloscope (TO) has a second,

delayed TTL output (Gate B), which is used to operate a Matec RF Switch

(MT). The RF switch is used to gate the received output to ensure that only

information from the desired portion of the oscillatory cycle of the rotation of the

shear cell is analyzed. The resultant signal is then low pass filtered (K). The final

signal has the frequency Afdec + VAfD if the velocity of the particles is towards

the transmitter and Afdec + |AfDI if the velocity is away from the transmitter,

as in the steady case. Sampling and frequency selection considerations are given

in Section 5.3.3.
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