
MIT Open Access Articles

Computational multicopter design

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Du, Tao, et al. “Computational Multicopter Design.” ACM Transactions on Graphics 35, 6 
(November 2016): 1–10

As Published: http://dx.doi.org/10.1145/2980179.2982427

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/111061

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111061
http://creativecommons.org/licenses/by-nc-sa/4.0/


Computational Multicopter Design

Tao Du
MIT CSAIL

Adriana Schulz
MIT CSAIL

Bo Zhu
MIT CSAIL

Bernd Bickel
IST Austria

Wojciech Matusik
MIT CSAIL

Figure 1: We provide an interactive system for users to design, optimize and fabricate multicopters. We explore the design space to allow
multicopter design with free-form geometry and nonstandard motor positions and directions. Based on user-specified metrics, our system
optimizes the copter geometry and suggests a valid controller. Left: a multicopter example with free-form geometry, various motor heights
and different propeller sizes. Middle: a pentacopter with optimized motor positions and orientations, allowing 30% increase in payload.
Right: a classic hexacopter with three pairs of coaxial propellers.

Abstract

We present an interactive system for computational design, opti-
mization, and fabrication of multicopters. Our computational ap-
proach allows non-experts to design, explore, and evaluate a wide
range of different multicopters. We provide users with an intuitive
interface for assembling a multicopter from a collection of com-
ponents (e.g., propellers, motors, and carbon fiber rods). Our algo-
rithm interactively optimizes shape and controller parameters of the
current design to ensure its proper operation. In addition, we allow
incorporating a variety of other metrics (such as payload, battery
usage, size, and cost) into the design process and exploring trade-
offs between them. We show the efficacy of our method and system
by designing, optimizing, fabricating, and operating multicopters
with complex geometries and propeller configurations. We also
demonstrate the ability of our optimization algorithm to improve
the multicopter performance under different metrics.

Keywords: parametric modeling, optimization, fabrication

Concepts: •Computing methodologies → Modeling and simu-
lation;

1 Introduction

Multicopters are aerial vehicles that are becoming more and more
popular. They are mechanically simple and can be controlled man-
ually or automatically to have a stable and accurate motion. For this
reason, these vehicles are increasingly being used in many settings,
including photography, disaster response, search and rescue oper-
ations, hazard mitigation, and geographical 3D mappings. Most
current multicopter designs are fairly standard (e.g., symmetric
quadcopters or hexacopters). Designing a non-standard multicopter
that is optimized for a specific application is challenging since it
requires expert knowledge in aerodynamics and control theory.

In this work we propose a design process that allows non-expert
users to build custom multicopters that are optimized for specific
design goals. Our system allows users to concentrate on high-level
design while computation handles all the necessary elements to
ensure the correct function of the resulting physical models. Our
intuitive composition tool enables users to express their creativity

and to explore trade-offs between different objectives in order to
develop machines well suited for specific applications.

Our system also allows us to expand the design space of multi-
copters. Typical space encompasses a small set of standard designs
with a symmetric distribution of rotors and all propellers oriented
upright. In this design space, forces and torques induced by pro-
pellers are easily balanced and controllers can be easily adjusted.
However, this does not allow the design of nonsymmetric multi-
copters that are more optimal for some specific tasks. For example,
the field view of a camera in a hexacopter could be obstructed by
the motors, so one might prefer removing a motor in front of the
camera. Another example could be a multicopter carrying an ir-
regularly shaped object like a wide-band antenna. In this case, an
asymmetric design gives more freedom to specify mass distribution
for better flying stability. Finally, a nonstandard design with extra
motors can increase the payload and improve fault tolerance, which
are key factors for product delivery. Our computational design em-
ploys parametric representations that capture variably in the general
shape, rotor positions and orientations, and performs optimizations
based on user-specified metrics. This enables users to explore the
shape space and discover functional vehicles that significantly dif-
fer and outperform the standard models. For example, the penta-
copter shown in Figure 8 has a performance increase of about 30%
by a non-trivial variation of rotor position and orientation which
would be difficult to be modeled even by a skilled engineer.

An immediate challenge after we expand the design space is to find
a good controller for non-standard multicopter designs. Due to its
uneven distribution of mass and inertia tensor as well as its random
rotor position and orientation, applying a traditional controller from
classic multicopters directly requires nontrivial and tedious param-
eter adjustments. Moreover, during flight, the performance of a
multicopter is jointly influenced by its dynamics and control signals
and therefore optimization has to include both shape variables and
controller parameters. Finally, there is a tradeoff between allow-
ing users to freely express metrics and still keeping the optimiza-
tion problem tractable. In our system, we use Linear-Quadratic-
Regulator (LQR), an optimal control method for nonstandard mul-
ticopter designs, and the controller is automatically determined to
avoid tedious parameter adjustments. We formulate an optimization
problem which includes both shape and control variables and pro-
pose an algorithm to effectively find the optimal shape as well as the



control parameters for a given design. We specify the user metrics
as a bi-convex function, which is expressive enough to represent
many useful metrics.

To summarize, our main contributions include:

• Providing a complete pipeline that allows users to design, opti-
mize, and fabricate multicopters.

• Formulating an optimization problem that can jointly optimize
the shape and control parameters according to different design
metrics.

• Providing an efficient numerical scheme to solve the multicopter
optimization problem and show its efficacy by optimizing vari-
ous types of non-standard multicopter designs.

2 Related Work

Our work draws inspiration from dynamical system design and
analysis, fabrication-oriented design, and multicopter design.

Dynamical System Optimization Optimizing dynamical sys-
tems has recently drawn great attention in computer graphics.
These systems are governed by different physical models, rang-
ing from walking robots [Wampler and Popović 2009; Coros et al.
2011], mechanical characters [Coros et al. 2013], swimming char-
acters [Lentine et al. 2011; Tan et al. 2011], birds [Wu and Popović
2003; Ju et al. 2013], and gliders [Umetani et al. 2014]. Particu-
larly, for the sake of efficiently generating artist-desired animations,
a large variety of optimization algorithms have been developed in
the effort to edit and control the dynamics of passive rigid bod-
ies, including [Popović et al. 2000], [Twigg and James 2008], and
[Jain and Liu 2009], to name a few. Two main categories of opti-
mization problems were solved for these systems: optimizing the
shape and the controller. Geometry optimization methods were
mostly applied in passive dynamical systems, which receive con-
trol forces from the interaction between the body and the environ-
ment such as wind lift and buoyancy. Umetani et al. [2014] pre-
sented a system which allows the user to design the shape of free-
form hand-ranching gliders that actually fly. Martin et al. [2015]
presented a data-driven approach to capture parameters of omni-
directional aerodynamics model, which is then used to design three-
dimensional kites. Controller optimization methods were used in
optimizing the locomotion and balance of self-propelling systems,
such as bicycle riders [Tan et al. 2014] and swimming creatures
[Lentine et al. 2011]. In this paper we are aiming at jointly opti-
mizing both shape and control parameters for a dynamical system,
which to our knowledge has not been explored in this literature.

Multicopter optimization has been studied recently in other engi-
neering disciplines. Magnussen et al. [2014; 2015] presented a
method for optimizing multicopter configurations to achieve longer
flying time and faster motor response. While their design procedure
assumed symmetric frames and their mixed-integer programming
approach was limited to discrete motor/propeller selections, our
method explores a larger design space that allows for nonstandard
shape with continuous motor positions and orientations.

Fabrication-Oriented Design Design tools for fabrication have
gained a lot of interest in the computer graphics community. Typ-
ically, these approaches optimize object properties to meet a spe-
cific functional goal, and often consist of a mix of interaction-
and numerical optimization-based approaches. Recent work, for
example, investigated the design of plush toys [Mori and Igarashi
2007], furniture [Saul et al. 2011; Umetani et al. 2012; Lau et al.
2011; Schulz et al. 2014], clothes [Umetani et al. 2011], inflatable
structures [Skouras et al. 2014], wire meshes [Garg et al. 2014],
mechanical objects [Koo et al. 2014; Zhu et al. 2012; Coros et al.

2013], and masonry structures [Whiting et al. 2012; Vouga et al.
2012].

While physical quantities such as center of mass and rotational in-
ertia play a crucial role in our process (related work has addressed
static [Prévost et al. 2013] and dynamic balancing [Bächer et al.
2014] of physical objects by internal hollowing and thereby re-
distributing its mass), our objective is significantly more complex.
Probably works that have come close to our work are model air-
planes [Umetani et al. 2014] and kites [Martin et al. 2015].

In the context of exploring stable motion, Bharaj et al. [2015] re-
cently presented a method that leverages physical simulation and
evolutionary optimization to refine the mechanical designs of au-
tomata such that the resulting toys are able to walk. However, while
their design approach is an evolutionary, discrete offline optimiza-
tion approach, ours is interactive and almost in real-time.

Probably the most important factor that distinguishes our work to
the above mentioned work is that none of these contain any sensors,
nor high-level controllers. To our knowledge, our work is the first
to investigate the challenge of designing multicopters while taking
into account the capabilities of the controller.

Multicopter Dynamics and Control Multicopters, especially
quadcopters, have drawn attention in aerodynamics and robotics
community for a long time due to its mechanical simplicity and
ease of control. Quadcopter modeling and dynamics have been
extensively studied [Hoffmann et al. 2007]. We extend quadcopter
dynamics model and explore a larger design space where a multi-
copter can have free-form geometry and nonsymmetric motors.

Various control methods have been successfully applied in quad-
copter, including PID [Tayebi and McGilvray 2004; Hoffmann et al.
2007], LQR [Bouabdallah et al. 2004; Hoffmann et al. 2004], non-
linear H∞ controller [Raffo et al. 2010], sliding mode controller and
reinforcement learning controller [Waslander et al. 2005]. How-
ever, in our work, controller design is still a new challenge as our
multicopter dynamics is generally more complicated than a quad-
copter, and directly applying existing control techniques usually
requires nontrivial parameter tweaking. We simplify the controller
design process by using LQR control and automatically solving its
parameters from our optimization problem. To our knowledge our
work is the first to provide a systematic way to select controller for
nonstandard multicopters.

Recently, multicopters have been applied to computer graphics re-
search problems. [Joubert et al. 2015; Roberts and Hanrahan 2016]
optimize quadcopter trajectories for better camera shots. In their
work an interactive design tool is provided for users to specify
camera key frames, and a smooth camera trajectory is generated.
Similarly, our work also provides an interactive tool for multicopter
design, but we focus on optimizing the geometry and control for
multiple metrics defined on the multicopter design itself.

3 System Overview

Figure 2 shows the overview of our system. Users start from de-
signing a multicopter with our interactive design tool, which in-
cludes a database of standard parts and parameterized free-form
body frames. The output of the design tool is a parametric mul-
ticopter with geometric constraints on shape parameters and is fed
into our optimization algorithm, which optimizes both the shape
and controller based on user-specified metrics and returns the re-
sults within seconds. Users can go back and adjust their design
using the interactive tool or verify the optimization results in a real-
time simulator. A real multicopter can be built based on the shape
parameters and the controller suggested by our optimization. Fi-
nally, a real flight test is performed for evaluation.



Figure 2: An overview of our system. The pipeline consists of multicopter design (Section 4), optimization (Section 7), simulation (Section 8),
fabrication (Section 9) and flight tests (Section 10).

4 Geometry Design

Our interactive design tool allows users to compose new models
from parts in a database, which contains standard parts like pro-
pellers, motors, carbon fiber rods, and a variety of free-form body
frames. Though the database is relatively small, users can create a
widely diverse set of designs by manipulating and composing them.

4.1 Part database

Following the ideas in [Schulz et al. 2014], both functional parts
and free-form body frames in the database are parametric, repre-
sented by a feasible parameter set and a linear mapping function
that returns different geometries for different parameter configura-
tions. The use of parametric shapes allows geometric variations
while guaranteeing that all shape manipulations preserve structure
and manufacturability. In our model, all parameter configurations
in the feasible set are guaranteed to be manufacturable geometries.
Linear maps were chosen because they speed up computation with-
out compromising too much on expressiveness. In this linear repre-
sentation, geometries are represented as meshes where each vertex
is a linear function of the parameters.

Each part in the database is annotated with connecting patches that
indicate regions where parts can be attached to each other. Since
every part is parametric, the position of each patch is also a func-
tion of the parameters. We define different patch types for different
composition methods. For example, carbon tubes are annotated
with circular patches while the bottom of a rotor has a flat patch (see
Figure 3). Each patch type includes a parametric representation of
its center and additional information for alignment (for example,
circular patches include the radius and main axis and flat patches
include the normal). Our collection was designed and parametrized
by mechanical engineers.

4.2 Composition

After the user drags in a new part and calls the connecting opera-
tion, the system aligns the parts with respect to the working model
and adds the appropriate connecting components. The two closest
patches are used to create a connection between the components.

Figure 3: Example of composition. Left: parts with highlighted
patches (circular patch with an annotated main axis and a diameter
in blue and flat patch with an annotated normal in orange). Right:
composed design.

We define a list of rules that designate appropriate connecting parts
for each type of patch pair. Connecting parts are selected from a
small list of standard components, e.g., patches of carbon fiber rods
need circular adapters and plates need mounts with screws.

Next, we position parts and appropriate connectors relative to each
other. Our goal is to preserve the parametric representation in the
composed designs so that users can continue to manipulate the ge-
ometry at every step in a structure-preserving fashion. In the com-
posed model the parameter set is the union of the parameters of
the containing parts and the feasible set is the intersection of the
feasible sets. Therefore, the alignment step must define constraints
on part positions so that parts are correctly placed relative to each
other in all feasible configurations. This is done in two steps: first
the patch information is used to appropriately rotate the models rel-
ative to each other (in the example in Figure 3, the normal of the flat
patch is made perpendicular to the main axis of the circular patch).
Rotations are dealt with first because these are not linear operations
and therefore cannot be represented by our linear parameter map-
ping. Since the position of each patch is represented as function of
the parameters, alignment translations involve constraining these
two functions to be equal. Therefore parts are aligned by adding
constraints to the feasible set of the composed parametric design
and solving for the closest feasible solution.

The parameters of the composed design are not only useful for
allowing users to better explore the design space, but they also
describe the possible variations for automatic design optimization.
Since both parts and composition schemes are defined using linear
models, linearity is preserved in the resulting composed designs,
which include a set of equality and inequality constraints. Equality
constraints can be removed by replacing the original shape param-
eters with free variables in the affine space defined by the linear
equations. As a result, we will use s to denote the new shape pa-
rameters and Aineqs ≤ bineq to represent these constraints in later
sections. The linear parameter variations allow parts of the copters
to scale and move relative to each other but do not define local rota-
tions. We therefore augment the feasible set by defining additional
variables, d, that represent the orientation of the propellers. These
are used in the optimization algorithm, as will be discussed next.

5 Multicopter Dynamics

In this section we provide the background information about multi-
copter dynamics. We first introduce the motor and propeller model,
then multicopter dynamics is provided based on Newton’s law and
Euler’s equations. Table 1 lists all the variables in this paper.

5.1 Motor and propeller

Our motor and propeller model is based on measuring multiple
properties (such as thrust, torque, voltage, and current) then fitting
them with analytical functions. All measurement data and fitting
results are provided in supplemental materials.



Symbol Domain Definition
n N+ Number of motors.
u R+ Propeller thrust.
τ R+ Propeller torque.
λ R+ Propeller torque-thrust ratio.

Pele R+ Electric power consumed by motor.
I R+ Current supplied to a motor.
p R3 Center of gravity in world frame.
R SO(3) Body-to-world rotation matrix.
ω R3 Angular velocity in body frame.
e R3 Euler angles: roll, pitch and yaw.

m R+ Mass.
J R3×3 Inertia tensor in body frame.
r R3 Motor position in body frame, linear

on shape parameters s.
d unit sphere Motor orientation in body frame.
b {−1, 1} Motor spin direction, -1 means

counterclockwise and 1 clockwise.
g R3 Gravitational acceleration in world

frame.
u Rn A column vector representing all

propeller thrusts.
M f R3×n Mapping from thrusts to net force.

The i-th column is di.
Mt R3×n Mapping from thrusts to net torque.

The i-th column is biλidi + ri × di.
x R12 Copter state. x = [p, e, ṗ, ė]

x∗ R12 State part of the fixed point in the
state-space model. Typically it
contains arbitrary positions, fixed
attitude and zero velocities.

u∗ Rn Thrust part of the fixed point in
the state-space model, i.e., gravity
is balanced and all torques are
canceled out.

s Rk Shape parameter satisfying
Aineqs ≤ bbineq

Table 1: Variable definitions in copter dynamics and control. For
a multicopter we use n to denote the number of motors, and k the
dimension of its shape parameter. Subscript i refers to the variable
corresponding to the i-th motor or propeller.

Thrust and torque We use u and τ to denote the magnitude of
thrust and torque developed by the propeller. At hover, the torque
is known to be proportional to the thrust [Leishman 2006]:

τ = λu (1)

where λ is a constant ratio determined by the blade geometry, and
is acquired by fitting the thrust and torque measurement.

Motor control The motor spinning rate is controlled by sending
desired Power-Width Modulation (PWM) signals to its Electric-
Speed-Controller (ESC). PWM signals control the power supplied
to the motor, and therefore its spinning rate, which further influ-
ences the thrust and torque induced by the motor. We measure the
mapping between PWM values, battery voltage and thrust, then use
its inverse mapping to convert the output thrust from the controller
to PWM values sent to each motor.

Power consumption When a motor loaded with a propeller is
powered on, the spinning motor converts electronic power Pele, the
product of voltage and current I, into mechanic power which ro-
tates the propeller, which then pushes surrounding air to generate
thrusts u. We directly measure u-Pele and u-I curves, which can be

well approximated by power functions, and use them to guide our
optimization on flight time and max amperage.

5.2 Equations of motion

We use North-East-Down (NED) coordinates as our world frame
to determine the position and orientation of the copter. Our body
frame is fixed at the center of the copter, and initially its three axis
are parallel to the axis of world frame. To use propellers efficiently,
we require all propellers to thrust upwards, not downwards. This
can be guaranteed by matching the propeller type and motor spin
direction. The thrust and torque produced by the i-th motor are uidi
and biλiuidi, as explained in Table 1. From Newton’s second law
and Euler’s equation the dynamics are:

mp̈ = mg + R
n

∑
i=1

uidi

Jω̇ + ω × Jω =
n

∑
i=1

(biλiuidi + ri × uidi)

(2)

Since the net thrust and torque on the right side are linear on ui, we
introduce matrices M f and Mt for compact representation:

mp̈ = mg + RM f u

Jω̇ + ω × Jω = Mtu
(3)

The explicit definitions of M f and Mt can be found in Table 1.
Since the motor positions {ri} can be computed from the shape pa-
rameter s by ri = Ais + bi, where all Ai and bi are constant matrices
and vectors from parametric shape representation, we will omit {ri}
and only use s in later sections.

6 Controller Design

In this section we introduce the controller used in our multicopters.
We start from reformulating the equations of motion into the state-
space model, then we use its linear approximation at a fixed point
to design an LQR controller.

6.1 State-space model and linear approximation

To design a controller, we rewrite the equations of motion into the
following nonlinear form, known as the state-space representation:

ẋ = f(x,u) (4)

where f is a nonlinear function determined by multicopter dynam-
ics. Intuitively the state-space representation describes the fact that
given the current state and the actuator output we can predict how
the state will change in the future.

Designing a controller for a nonlinear system is not an easy task,
so we linearize the state-space model at a fixed point (x∗,u∗) and
find a controller for the linear model approximation. A fixed point
satisfies f(x∗,u∗) = 0, which can be explained as a combination of
state and thrust such that the copter can stay in this state forever, as
long as the thrust does not change.

Define x̄ = x− x∗, ū = u− u∗, A = ∂ f
∂x

∣∣∣
x∗,u∗

and B = ∂ f
∂u

∣∣∣
x∗,u∗

, we

can get the linear time-invariant (LTI) approximation of the state
space model around (x∗,u∗):

˙̄x ≈ A x̄ + Bū (5)

For brevity we leave the complete derivation of f, A and B in sup-
plemental materials.



6.2 Linear Quadratic Regulator

The state-space model in the last section is different from the actual
dynamics model because it is a linear approximation, and it assumes
the state is in the neighborhood of the fixed point. As a result, we
choose to use LQR because it is a robust controller with a phase
margin of at least 60 degrees and an infinite gain margin [Aström
and Murray 2010], which means it can remain stable even if the
dynamics model deviates a lot from our expectation. Given equa-
tion (5), LQR generates the control policy ū = −K x̄ by minimizing
the cost function

∫
∞

0 (x̄>Q x̄ + ū>R ū)dt, where Q and R are user-
specified weight matrices which are usually positive diagonal. The
first quadratic term tries to shrink x̄ to 0, so it penalizes the deviation
from stable states. Similarly, the second term discourages actuators
from saturation. The matrix K is found by solving the Continuous-
time Algebraic Riccati Equation (CARE) once A , B, Q and R are
given, which has been well-studied and implemented in many linear
algebra packages [Laub 1979; MATLAB 2016; SciPy 2014].

Given multicopter dynamics, designing an LQR controller consists
of two steps: selecting a fixed point for linearization, and solving
CARE. For traditional quadcopters the first step is not a problem
because it has a unique fixed point, i.e, each motor provides thrust
equal to 1/4 of the gravity and the quadcopter stays completely
level. However, we notice that general multicopter designs often
have nonunique fixed points, and the performance of a flying mul-
ticopter is influenced by the choice of fixed points so arbitrarily
picking a fixed point does not yield good results. To address this
issue, we select the fixed point by including it in an optimization
problem, which we will describe in the next section.

Although LQR is robust and straightforward to tweak, it is not well-
suited for heading control in our hardware platform. As explained
in the supplemental materials, applying LQR to control Euler an-
gles requires much more computation because it needs to update A
and B in every iteration. As a result, in our experiments we limit
LQR to position control and trajectory following.

7 Optimization

Optimizing a multicopter is a challenging problem because the per-
formance of a multicopter relies on both its geometry and con-
troller, which are usually coupled with each other. For example,
to make sure a multicopter can hover, one needs to find reasonable
motor positions and orientations, as well as good output thrusts sug-
gested by the controller. Another challenge comes from the metrics
that users want to optimize. For example, it could be a nonconvex
function with multiple local minimals, or a nonsmooth function so
a gradient-based solver is not applicable.

In this section we introduce our solution to the two challenges
above. We provide an algorithm to decouple geometry and control
variables during optimization. The geometry variables are motor
spin directions {bi}, motor orientations {di} and shape parameter
s. The control variables are the fixed point (x∗,u∗) and the control
matrix K , as explained in Section 6. As x∗ can be easily deter-
mined once u∗ and geometry variables are given, and K can be
determined after geometry and fixed point are known, the optimiza-
tion algorithm only focuses on finding the optimal u∗ and we leave
the derivation of x∗ in supplemental materials. For the metrics, we
formulate an objective function including bi-convex user-defined
metrics, and we demonstrate that many useful metrics can be rep-
resented as bi-convex functions.

The pseudocode for the complete optimization process is provided
in Algorithm 1. Our optimization starts from searching the discrete
variables {bi} and selecting the combination that is most control-
lable, then in the main loop we solve three subproblems to optimize
the control variable {u∗}, shape parameter s and motor orientations

{di} in every iteration. After that, we use the geometry variables to
build the multicopter and control variables to implement the con-
troller.

Input : Initial geometry variables, acquired from user design:
{di}, {ri}, s
User-specified LQR weight matrices Q , R

Output : Optimized geometry variables: {bi}, {di}, {ri}, s;
Optimized control variables(fixed point): x∗, u∗;
control matrix K

// Preprocessing ////////////////////////////////////////////////////////////////////////
bestCondNumber← +∞

foreach b ∈ {all 2n assignments to {bi} } do
Compute A , B, C ;
if cond(C ) ≤ bestCondNumber then

bestCondNumber = cond(C );
{bi} ← b;

end
end
// Main loop of the our optimization method ///////////////////////////////
while not converge do

Optimize u∗ by solving a convex subproblem;
Optimize s by solving a convex subproblem;
Optimize {di} from QCQP relaxation;
// Check controllability.
Compute A , B and C ;
if C is singular then

Revert all variables to their values in the last iteration;
break;

end
end
// Postprocessing //////////////////////////////////////////////////////////////////////
Compute x∗ from u∗;
Compute A , B from (x∗,u∗);
Compute K from A , B, Q and R ;

Algorithm 1: Optimization algorithm pseudocode.

7.1 Preprocessing

We first determine the spinning directions {bi} for each motor by
checking controllability. A system is controllable if for any initial
state x0 and final state x1 there exists a control signal such that the
system can steer from x0 to x1 in finite time [Aström and Murray
2010]. An LTI system is controllable if the corresponding control-
lability matrix defined on the state-space model has full row rank.
For equation (5), the controllability matrix C is defined as:

C =
[
B AB A2B · · · A11B

]
(6)

where the maximal exponent is 11 because x̄ consists of 12 vari-
ables. We check all 2n possible combinations to determine the best
{bi}: for each assignment to {bi} we do linear approximation at its
fixed point(if multiple fixed points exist we use the one with mini-
mal L2 norm)then pick the assignment with the smallest condition
number. Since n is up to 6 in our case, this straightforward method
does not cause any performance issue.

Once {bi} is determined we keep them fixed during the optimiza-
tion. Our algorithm in later sections checks at the end of each iter-
ation whether the multicopter is still controllable, and it terminates
with the best solution so far if controllability is violated. However,
in our experiments this check rarely fails and the controllability
property is preserved most of the time.



7.2 Problem formulation

Here we give the formal definition of the optimization problem:

min
s,di,u∗

E(u∗, s) + η‖M f u∗ + mg‖2
2 + µ‖Mtu∗‖2

2

s.t. Aineqs ≤ bineq

d>i di = 1

0 ≤ u∗ ≤ umax

(7)

where E is the user-selected metrics, which we will describe in
the next section. We require that E rely on the shape parame-
ters s and thrust u∗ only, and be bi-convex. The second and third
terms model soft constraints required by the fixed point with user
specified weights η and µ: by definition at a fixed point the net
thrust should try to balance the gravity, and the net torque should be
zero. Compared with the equations of motion the rotational matrix
R is removed to reduce the complexity, and to indicate that it is
preferable for the copter to maintain its original attitude as much
as possible, i.e., R is equal to an identity matrix, which makes the
copter easier to take off. Note that M f relies on di and Mt depends
on di and s.

The first constraint gives the feasible set of the shape parameter.
Constraints on di require that each di should be a unit vector. The
last constraint requires that no motor saturation should occur.

7.3 Metrics

Although we limit the energy function to be bi-convex, we demon-
strate that a lot of metrics can fit into this representation either
directly or after reasonable reformulation. Here we list some:

Payload We define the payload to be the maximal weight the
copter can take at its mass center while hovering. Maximizing the
payload directly results in a non-convex formulation with all vari-
ables closely coupled with each other. Instead, we minimize the
following indirect metric:

Epayload = max(
u∗1

umax
1

,
u∗2

umax
2

, · · · , u∗n
umax

n
) (8)

E can be explained as searching all the motors and finding the one
that is most likely to become saturated. If a copter can hover with
thrust equal to u, scaling u uniformly allows a copter with same
geometry but heavier weight to stay in the air. As a result, smaller
E indicates possibly larger payload.

Max amperage The relation between thrust and current supplied
to the motor can be well approximated by a power function I = auα .
Since the power module unit in hardware platform distributes the
current from the battery to all motors, for safety reasons we are
interested in minimizing the total current so that we do not exceed
the maximal amperage of the power module cable:

Eamp_sum =
n

∑
i

aiu
∗αi
i (9)

where aiu
∗αi
i represents the current supplied to i-th motor. Alterna-

tively, we can minimize the max current supplied to a single motor
so that it does not exceed the maximum amperage of the electric
speed controller of each motor:

Eamp_max = max(a1u∗α1
1 , a2u∗α2

2 , · · · , anu∗αn
n ) (10)

Size and flight time To minimize the copter size, we choose to
minimize the total length of rods used in the copter, which is linear
on the shape parameter s:

Esize = c>rods + drod (11)

We can also relate the copter size to its flight time. From our mea-
surement we notice that larger propellers are more efficient than
smaller ones with the motors we use. As a result, we can increase
the flight time by maximizing the copter size so that it has enough
space to install larger propellers:

Etime = −Esize = −(c>rods + drod) (12)

The negative sign comes from the fact that we minimize the ob-
jective function. It should be pointed out that this energy function
is based on the observation that larger propellers are more efficient
than smaller ones with our motor, which is not always true for all
combinations of motors and propellers. Careful measurement needs
to be taken before applying this metric.

Cost For a multicopter without a free-form body frame the cost is
fully determined by the shape parameter s in a linear form:

Ecost = c>costs + dcost (13)

where ccost represents the linear cost like carbon fiber rods, and dcost
is the constant cost from components such as battery, controlling
board and motors.

Mass For a multicopter without a free-form body frame the mass
is linear on the shape parameter s

Emass = c>masss + dmass (14)

When applying this metric, m in the objective function is replaced
with m(s) = Emass. However, this modification won’t break our
proposed algorithm as the mass is linear on the shape parameters,
so it should not break the convexity of the subproblem.

Multi-objective metric Since a non-negative weighted sum pre-
serves convexity, any nonnegative weighted combination of the
metrics above meets our bi-convexity requirement. For examples,
users may choose to define a metric mixed with both payload and
mass, and use weights to express the tradeoff between them. Also
note that although all metrics above are defined solely on u∗ or s, a
mixed metric can include both of them.

7.4 Algorithm

Directly optimizing the objective function proposed in the previ-
ous section is challenging due to the fact that the product between
M f , Mt and u∗ couples all variables together, and it may contain
non-smooth energy functions like the payload or max amperage.
However, if we focus on u∗ or s only it reduces to a simple convex
problem. This motivates us to propose our algorithm which alterna-
tively optimizes the thrust, shape parameters and motor directions,
as described in Algorithm 1. It terminates when the energy con-
verges within a given threshold (1e-6 in our setting) or it breaks the
controllability. With the assumption that user metrics are bi-convex
functions, the problem is convex when restricted to optimizing ei-
ther u∗ or s, which can be efficiently solved in CVX [Grant and
Boyd 2014; Grant and Boyd 2008], a package for specifying and
solving convex programs.

Optimizing {di} is more subtle and bears some discussion. The ob-
jective function is quadratic and convex on {di} due to the fact that
both M f and Mt are linear on {di}, but the unit-length constraints
on {di} breaks the convexity. Because of its quadratic form in the
objective function, we choose Sequential Quadratic Programming
(SQP) [Nocedal and Wright 2006] to solve {di}. The initial guess
is acquired from relaxing the unit length constraints to d>i di ≤ 1,
and then solving the convex Quadratic Constrained Quadratic Pro-
gramming (QCQP) problem [Boyd and Vandenberghe 2004].

We demonstrate that our algorithm is more suitable than three other
general solvers for our optimization problem in Figure 4. In most
of the time our algorithm manages to find a better solution, but with



iteration

0 20 40 60 80 100 120 140 160 180 200

e
n

e
rg

y

0.4

0.45

0.5

0.55

0.6

0.65

our method

interior point

sqp

active set

iteration

0 50 100 150 200 250 300 350 400

e
n

e
rg

y

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

our method

interior point

sqp

active set

iteration

0 20 40 60 80 100 120

e
n

e
rg

y

24.8

25

25.2

25.4

25.6

25.8

26

our method

interior point

sqp

active set

iteration

0 2 4 6 8 10 12 14

e
n

e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

our method

interior point

sqp

active set

Figure 4: Comparing our method in multiple copter examples with interior point, sequential quadratic programming and active set methods,
all implemented in MATLAB’s fmincon command. All examples have η = 0.3 and µ = 0.7, and all methods share the same initial guess
and termination conditions. The horizontal axis shows the iterations (note that it does not reflect the true running time as the time an
iteration takes varies in different methods) and the vertical axis is the value of the objective function in Equation 7 after each iteration. Left:
pentacopter with payload metric. Middle left: bunny with mixed metrics of payload and amperage. Middle right: pentacopter with mixed
metrics of max amperage and cost. Right: quadcopter with size metric.

the cost of longer time. However, this is not a big issue as our solver
usually terminates within a few seconds.

In the first two examples, we run our method on two different mul-
ticopter designs with single and mixed metrics. For both examples
our algorithm quickly finds a better solution after the first few it-
erations, while the other solvers either fail to make progress or get
trapped into a worse local minimal solution. There exist some cases
where our algorithm ends up with similar optimal values, in which
case it is still acceptable to call our solver as the system is not sen-
sitive to its running time.

Finally, as a sanity check we provide an example where the global
minimizer is known. In this example a standard quadcopter is op-
timized to have minimal size. Without other constraints the copter
shrinks to a single point and the energy function becomes zero. In
this case all solvers agree on the global minimizer in the end.

8 Simulation

We provide a real-time physics simulator to help users verify the
shape and controller design suggested by the optimization. Users
can interactively change the input from a virtual RC transmitter
and see the flight performance of the copter. Random noises are
added to the sensor data to simulate real world environment. If the
optimized shape and controller are not satisfactory, users can either
manually tweak control parameters in simulation, or go back to the
interactive design tool to change the shape representation.

9 Fabrication

Once the shape parameter and motor orientations are determined,
we generate a fabrication plan by computing rod lengths, motor
angles, and geometry meshes if it contains a free-form body frame
(Figure 5). We use 3D printing to fabricate connectors and the

Figure 5: Some multicopter components used in fabrication. Left:
3D printed connectors that support various motor orientations.
Right: propellers, carbon fiber rods and motors.

Figure 6: Classic designs. Left: a quadcopter with a free-form
body frame. Right: a hexacopter with coaxial propellers.

Figure 7: Bunny copter (left) and its top-down view (right). Note
that the positions of motors are not symmetric, their propeller sizes
are different and are at various heights.

body frame. Specifically, we design parametric compound angle
clip pieces so that the connectors can support tilted motors.

Our hardware platform consists of a ground station laptop and a
multicopter flight controller. The ground station subscribes the Vi-
con motion tracking system and sends out real-time position and
orientation data to the copter. The flight controller runs our modi-
fied version of the open source software ArduPilot [APM 2015] on
a Pixhawk [Meier et al. 2012] flight computer hardware.

10 Results

In this section we show multiple examples to demonstrate the ef-
fectiveness of our design system, physical simulator, control loop
and optimization method. We start from two classic multicopters:
an X-frame quadcopter and a Y6 hexacopter. We provide a bunny
example to show the expressiveness of our design tool. A penta-
copter demonstrates the correctness of our controller and its ability
to handle nonstandard copters with odd number of motors. A more
challenging pentacopter with tilted motors, which is optimized for
the payload metric, shows the efficacy of our optimization method.
Finally, we provide a rectangular quadcopter optimized for longer
flight time and compare it with a standard quadcopter.



Figure 8: Pentacopter pairs. Left: original pentacopter design.
Right: optimized pentacopter for larger payload.

Figure 9: Optimizing a quadcopter with flight time metric and ge-
ometry constraints. Left: a standard quadcopter. Right: optimized
rectangular quadcopter.

Quadcopter We designed a simple quadcopter with a 3D printed
red body frame, shown in Figure 6. The red frame is a parametric
shape so users can change its size by specifying different shape
parameters in the interactive design tool. For simplicity the default
quadcopter PID controller in ArduPilot is used here so Vicon is not
needed, and no modification to ArduPilot firmware is required.

Hexacopter We designed and fabricated a classic Y6 hexacopter
with three pairs of coaxial propellers (Figure 6). As in the previous
example, the default Y6 PID controller in ArduPilot is applied and
no additional hardware is needed. The hexacopter can change its
heading, stabilize itself and fly to a target during the flight.

Bunny A bunny copter is designed and fabricated by using our
system (Figure 7). The bunny copter is challenging to fly as the four
propellers have different sizes, their positions are not symmetric
and they are placed at different heights. Based on its dynamics we
compute an LQR controller to control its position in the air. The
bunny copter can take off, hover, fly to a target and land.

Unoptimized pentacopter Figure 8 shows a multicopter with
five rotors all pointing upright. Flying a multicopter with odd num-
ber of rotors, even if it is symmetric, is challenging because there is
no straightforward way to distribute thrust so that all motor torques
can be balanced easily. However, with the LQR controller sug-
gested by our system this pentacopter can reliably take off, land,
hover, and carry over 1kg payload to the destination.

Figure 10 shows the real-time output of all the 5 motors when this
pentacopter carries maximal payload from one place to another.
Although by default the motor won’t saturate until PWM reaches
2000, in this example and its optimized counterpart we clamp PWM
at 1800 for safety reasons.

Pentacopter optimized for payload Given the initial unopti-
mized pentacopter, our optimization improves its payload by chang-
ing its geometry and tilting motors to balance thrust from all mo-
tors. Figure 10 shows the PWM values from all 5 motors when
the optimized pentacopter carries its maximal payload, and Table 2
compares the specifications of two pentacopters. Our optimization
result predicts the new pentacopter is able to take off with a 15.8%
increase in the overall weight. Note that in theory the maximal

time(s)

0 5 10 15 20 25 30 35 40

p
w

m

1000

1100

1200

1300

1400

1500

1600

1700

1800

motor 1

motor 2

motor 3

motor 4

motor 5

time(s)

0 5 10 15 20 25 30 35 40

p
w

m

1000

1100

1200

1300

1400

1500

1600

1700

1800

motor 1

motor 2

motor 3

motor 4

motor 5

Figure 10: Left: motor outputs of the unoptimized pentacopter
with 1047g payload. Motor 1 and 3 reach saturation point
(PWM=1800) at 23s. Increasing the payload will cause them to
saturate constantly and therefore fail to balance the torques from
other motors. Note that motor 5 is not fully exploited in this copter.
Right: motor outputs of the optimized pentacopter with 1392g pay-
load. Motor 2 and 4 reach saturation during the flight. Compared
with the unoptimized pentacopter, all five motors are now well bal-
anced, making it possible to take over 30% more payload.

Unoptimized Optimized
Size (mm×mm×mm) 750×420×210 650×670×210

Weight (g) 2322 2353
Max payload (g) 1047 1392

Max overall weight (g) 3369 3745
Max motor angle (degree) 0 10.6

Table 2: Pentacopter specifications. Motor angle is the angle be-
tween motor orientation and up direction.

possible increase in the overall weight is less than 25% because
even the unoptimized pentacopter outperforms a quadcopter whose
maximal overall weight is 4umax, and the maximal possible overall
weight of a pentacopter is not greater than 5umax. Table 2 shows
that we get 11.1% actual gain in our experiments. The main reason
for this loss is that we did not take into account the interference
between propellers, which we leave as future work.

Quadcopter optimized for flight time Figure 9 shows a standard
quadcopter and its optimized version which has longer flight time.
Our optimization tries to increase the total length of rods so that it
makes room for larger propellers. In this example we add an upper
bound constraint on the copter width so it only scales in the other di-
rection, allowing us to replace the propellers in the longer rod with
larger ones. This geometry constraint is useful when a quadcopter
is designed to fly into a tunnel. Both copters are controlled by LQR
controllers computed with our system. In our experiments we let
both copters hover for 5 minutes and record the battery voltage and
current, shown in Figure 11.

11 Limitation and Future Work

One limitation in our pipeline is that the system responds passively
to user inputs for design, optimization and simulation. A potential
extension in the future is to have a system that can actively give
design suggestions in this case, for example by suggesting to place
additional motors and propellers, so the whole design process can
be accelerated. In particular, our system fails when the initial geo-
metric design is uncontrollable. For example, a quadcopter initial-
ized with 4 rotors in a line is obviously not fully controllable. In this
case, our algorithm gets trapped in assigning spinning directions
(Section 7.1), and therefore fails to find a controllable solution,
which clearly exists for a quadcopter.

In terms of design, our assembly based approach depends on the
library of parts and is therefore limited by its size. In the future it
would be nice to define ways to easily grow the database. In addi-



time(s)

0 50 100 150 200 250 300 350

v
o
lt
a
g

e
(m

V
)

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

1240

unoptimized

optimized

time(s)

0 50 100 150 200 250 300 350

c
u

rr
e
n

t(
m

A
)

0

200

400

600

800

1000

1200

1400

1600

1800

unoptimized

optimized

Figure 11: Battery change when a quadcopter hovers. Left: battery
voltage. Given the same amount of time the optimized quadcopter
ends up having a larger voltage; Right: battery current. In steady
state the optimized copter requires less current.

tional, the parametrization is constrained to be linear which restricts
geometry variability.

In terms of the optimization, the metrics we proposed are limited
to functions defined on the fixed points, i.e., the steady states of
the copter. While this simplifies the optimization by decoupling
the geometry and control variables, it would be useful to extend
the optimization so that dynamic metrics can be included and op-
timized, for example the responsive time to a control signal, or the
maneuverability of the copter.

Another limitation is that our real-time physics simulation does not
model aerodynamic effects. While a rigid-body simulation provides
reasonable results for cases with slow velocity, aerodynamic effects
such as interferences between propellers and ground effects need to
be modeled to simulate a high speed copter correctly.

12 Conclusion

In this paper we proposed a new pipeline for users to efficiently de-
sign, optimize, and fabricate multicopters. Users can easily design
a multicopter by interactively assembling components in a user in-
terface. We proposed a new optimization algorithm that can jointly
optimize the geometry and controller to improve the performance of
a given multicopter design under different metrics, such as payload
and battery usage, and can be further verified in a real-time simula-
tor. We demonstrated the ability of our system by designing, fabri-
cating, and flying multicopters with nonstandard designs including
asymmetric motor configurations and free-form body frames.

13 Acknowledgments

We thank Nobuyuki Umetani for his insightful suggestions in our
discussions. We thank Alan Schultz and his colleagues at NRL for
building the hexacopter and for the valuable discussions. We thank
Randall Davis, Boris Katz, and Howard Shrobe at MIT for their
advice. We are grateful to Nick Bandiera for preprocessing me-
chanical parts and providing 3D printing technical support; Charles
Blouin from RCBenchmark for dynamometer hardware support;
Brian Saavedra for the composition UI; Yingzhe Yuan for data ac-
quisition and video recording in the experiments; Michael Foshey
and David Kim for their comments on the draft of the paper.

This work was partially supported by Air Force Research Lab-
oratory’s sponsorship of Julia: A Fresh Approach to Technical
Computing and Data Processing (Sponsor Award ID FA8750-15-2-
0272, MIT Award ID 024831-00003), and NSF Expedition project
(Sponsor Award ID CCF-1138967, MIT Award ID 020610-00002).
The views expressed herein are not endorsed by the sponsors. This
project has also received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No 645599.

References
APM, 2015. APM autopilot suite. http://ardupilot.org.

ASTRÖM, K. J., AND MURRAY, R. M. 2010. Feedback systems:
an introduction for scientists and engineers. Princeton University
Press.

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: optimizing moment of inertia for
spinnable objects. ACM Trans. Graph. 33, 4, (July), 96:1–96:10.

BHARAJ, G., COROS, S., THOMASZEWSKI, B., TOMPKIN, J.,
BICKEL, B., AND PFISTER, H. 2015. Computational design of
walking automata. In Proc. Symposium on Computer Animation,
93–100.

BOUABDALLAH, S., NOTH, A., AND SIEGWART, R. 2004. PID
vs LQ control techniques applied to an indoor micro quadrotor.
In Intelligent Robots and Systems (IROS) 2004.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex optimization.
Cambridge University Press.

COROS, S., KARPATHY, A., JONES, B., REVERET, L., AND
VAN DE PANNE, M. 2011. Locomotion skills for simulated
quadrupeds. ACM Trans. Graph. 30, 4, (July), 59:1–59:12.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4, (July), 83:1–83:12.

GARG, A., SAGEMAN-FURNAS, A. O., DENG, B., YUE, Y.,
GRINSPUN, E., PAULY, M., AND WARDETZKY, M. 2014. Wire
mesh design. ACM Trans. Graph. 33, 4, (July), 66:1–66:12.

GRANT, M., AND BOYD, S. 2008. Graph implementations for
nonsmooth convex programs. In Recent Advances in Learning
and Control. Springer, 95–110. http://stanford.edu/~boyd/graph_
dcp.html.

GRANT, M., AND BOYD, S., 2014. CVX: MATLAB software for
disciplined convex programming, version 2.1. http://cvxr.com/
cvx.

HOFFMANN, G., RAJNARAYAN, D. G., WASLANDER, S. L.,
DOSTAL, D., JANG, J. S., AND TOMLIN, C. J. 2004. The
Stanford testbed of autonomous rotorcraft for multi agent control
(STARMAC). In Digital Avionics Systems Conference (DASC)
2004.

HOFFMANN, G. M., HUANG, H., WASLANDER, S. L., AND
TOMLIN, C. J. 2007. Quadrotor helicopter flight dynamics
and control: theory and experiment. In Proc. AIAA Guidance,
Navigation, and Control Conference.

JAIN, S., AND LIU, C. K. 2009. Interactive synthesis of human-
object interaction. In Proc. Symposium on Computer Animation,
47–53.

JOUBERT, N., ROBERTS, M., TRUONG, A., BERTHOUZOZ, F.,
AND HANRAHAN, P. 2015. An interactive tool for designing
quadrotor camera shots. ACM Trans. Graph. 34, 6, (November),
238:1–238:11.

JU, E., WON, J., LEE, J., CHOI, B., NOH, J., AND CHOI, M. G.
2013. Data-driven control of flapping flight. ACM Trans. Graph.
32, 5, (September), 151:1–151:12.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph. 33, 6, (November), 217:1–217:9.

http://ardupilot.org
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://cvxr.com/cvx


LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3D furniture models to fabricatable parts and connec-
tors. ACM Trans. Graph. 30, 4, (July), 85:1–85:6.

LAUB, A. 1979. A Schur method for solving algebraic Riccati
equations. IEEE Transactions on Automatic Control 24, 6, 913–
921.

LEISHMAN, J. G. 2006. Principles of helicopter aerodynamics.
Cambridge University Press.

LENTINE, M., GRÉTARSSON, J. T., SCHROEDER, C.,
ROBINSON-MOSHER, A., AND FEDKIW, R. 2011. Creature
control in a fluid environment. IEEE TVCG 17, 5, 682–693.

MAGNUSSEN, Ø., HOVLAND, G., AND OTTESTAD, M. 2014.
Multicopter uav design optimization. In IEEE/ASME 10th Inter-
national Conference on Mechatronic and Embedded Systems and
Applications (MESA), 1–6.

MAGNUSSEN, Ø., OTTESTAD, M., AND HOVLAND, G. 2015.
Multicopter design optimization and validation. Modeling, Iden-
tification and Control 36, 2„ 67.

MARTIN, T., UMETANI, N., AND BICKEL, B. 2015. OmniAD:
data-driven omni-directional aerodynamics. ACM Trans. Graph.
34, 4, (July), 113:1–113:12.

MATLAB, 2016. Linear-Quadratic Regulator (LQR) design. http:
//www.mathworks.com/help/control/ref/lqr.html.

MEIER, L., TANSKANEN, P., HENG, L., LEE, G. H., FRAUN-
DORFER, F., AND POLLEFEYS, M. 2012. PIXHAWK: a micro
aerial vehicle design for autonomous flight using onboard com-
puter vision. Autonomous Robots 33, 1-2.

MORI, Y., AND IGARASHI, T. 2007. Plushie: an interactive design
system for plush toys. ACM Trans. Graph. 26, 3, (July), 45:1–
45:8.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical optimization.
Springer Science & Business Media.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body sim-
ulations. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 209–217.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: balancing shapes for 3d
fabrication. ACM Trans. Graph. 32, 4, (July), 81:1–81:10.

RAFFO, G. V., ORTEGA, M. G., AND RUBIO, F. R. 2010. An
integral predictive/nonlinear H∞ control structure for a quadrotor
helicopter. Automatica 46, 1, 29–39.

RCBENCHMARK, 2016. Dynamometer. https://www.
rcbenchmark.com/.

ROBERTS, M., AND HANRAHAN, P. 2016. Generating dynam-
ically feasible trajectories for quadrotor cameras. ACM Trans.
Graph. 35, 4, (July).

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
Sketchchair: an all-in-one chair design system for end users. In
Proc. International Conference on Tangible, Embedded, and Em-
bodied Interaction, 73–80.

SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P.,
AND MATUSIK, W. 2014. Design and fabrication by example.
ACM Trans. Graph. 33, 4, (July), 62:1–62:11.

SCIPY, 2014. CARE solver. http://docs.scipy.org/doc/scipy-0.14.
0/reference/generated/scipy.linalg.solve_continuous_are.html.

SKOURAS, M., THOMASZEWSKI, B., KAUFMANN, P., GARG,
A., BICKEL, B., GRINSPUN, E., AND GROSS, M. 2014. De-
signing inflatable structures. ACM Trans. Graph. 33, 4, (July),
63:1–63:10.

TAN, J., GU, Y., TURK, G., AND LIU, C. K. 2011. Articulated
swimming creatures. ACM Trans. Graph. 30, 4, (July), 58:1–
58:12.

TAN, J., GU, Y., LIU, C. K., AND TURK, G. 2014. Learning
bicycle stunts. ACM Trans. Graph. 33, 4, (July), 50:1–50:12.

TAYEBI, A., AND MCGILVRAY, S. 2004. Attitude stabilization of
a four-rotor aerial robot. In Proc. IEEE Conference on Decision
and Control. 2, 1216–1221.

TEDRAKE, R., 2014. Underactuated robotics: algorithms
for walking, running, swimming, flying, and manipulation
(course notes for MIT 6.832). http://underactuated.csail.mit.edu/
underactuated.html.

TWIGG, C. D., AND JAMES, D. L. 2008. Backward steps in
rigid body simulation. ACM Trans. Graph. 27, 3, (August), 25:1–
25:10.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment mod-
eling and editing. ACM Trans. Graph. 30, 4, (July), 90:1–90:12.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4, (July), 86:1–86:11.

UMETANI, N., KOYAMA, Y., SCHMIDT, R., AND IGARASHI, T.
2014. Pteromys: interactive design and optimization of free-
formed free-flight model airplanes. ACM Trans. Graph. 33, 4,
(July), 65:1–65:10.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN,
H. 2012. Design of self-supporting surfaces. ACM Trans. Graph.
31, 4, (July), 87:1–87:11.

WAMPLER, K., AND POPOVIĆ, Z. 2009. Optimal gait and form for
animal locomotion. ACM Trans. Graph. 28, 3, (August), 60:1–
60:8.

WASLANDER, S. L., HOFFMANN, G. M., JANG, J. S., AND TOM-
LIN, C. J. 2005. Multi-agent quadrotor testbed control design:
integral sliding mode vs reinforcement learning. In Intelligent
Robots and Systems (IROS) 2005.

WHITING, E., SHIN, H., WANG, R., OCHSENDORF, J., AND DU-
RAND, F. 2012. Structural optimization of 3D masonry build-
ings. ACM Trans. Graph. 31, 6, (November), 159:1–159:11.

WU, J.-C., AND POPOVIĆ, Z. 2003. Realistic modeling of bird
flight animations. ACM Trans. Graph. 22, 3, (July), 888–895.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. ACM Trans.
Graph. 31, 6, (November), 127:1–127:10.

http://www.mathworks.com/help/control/ref/lqr.html
http://www.mathworks.com/help/control/ref/lqr.html
https://www.rcbenchmark.com/
https://www.rcbenchmark.com/
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve_continuous_are.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve_continuous_are.html
http://underactuated.csail.mit.edu/underactuated.html
http://underactuated.csail.mit.edu/underactuated.html

