
MIT Open Access Articles

Fine-Grained Cryptography

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Degwekar, Akshay et al. “Fine-Grained Cryptography.” Advances in Cryptology –
CRYPTO 2016. Lecture Notes in Computer Science 9816 (2016): 533–562. © 2016 International
Association for Cryptologic Research

As Published: http://dx.doi.org/10.1007/978-3-662-53015-3_19

Publisher: Springer

Persistent URL: http://hdl.handle.net/1721.1/111069

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111069
http://creativecommons.org/licenses/by-nc-sa/4.0/

Fine-grained Cryptography∗

Akshay Degwekar Vinod Vaikuntanathan Prashant Nalini Vasudevan

Abstract

Fine-grained cryptographic primitives are ones that are secure against adversaries with an a-
priori bounded polynomial amount of resources (time, space or parallel-time), where the honest
algorithms use less resources than the adversaries they are designed to fool. Such primitives
were previously studied in the context of time-bounded adversaries (Merkle, CACM 1978),
space-bounded adversaries (Cachin and Maurer, CRYPTO 1997) and parallel-time-bounded
adversaries (H̊astad, IPL 1987). Our goal is come up with fine-grained primitives (in the setting
of parallel-time-bounded adversaries) and to show unconditional security of these constructions
when possible, or base security on widely believed separation of worst-case complexity classes.
We show:

1. NC1-cryptography: Under the assumption that NC1 6= ⊕L/poly, we construct one-way
functions, pseudo-random generators (with sub-linear stretch), collision-resistant hash
functions and most importantly, public-key encryption schemes, all computable in NC1

and secure against all NC1 circuits. Our results rely heavily on the notion of randomized
encodings pioneered by Applebaum, Ishai and Kushilevitz, and crucially, make non-black-
box use of randomized encodings for logspace classes.

2. AC0-cryptography: We construct (unconditionally secure) pseudo-random generators with
arbitrary polynomial stretch, weak pseudo-random functions, secret-key encryption and
perhaps most interestingly, collision-resistant hash functions, computable in AC0 and se-
cure against all AC0 circuits. Previously, one-way permutations and pseudo-random gener-
ators (with linear stretch) computable in AC0 and secure against AC0 circuits were known
from the works of H̊astad and Braverman.

∗MIT. E-mail: {akshayd,vinodv,prashvas}@mit.edu. Research supported in part by NSF Grants CNS-1350619
and CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven
and Renee Finn Career Development Chair from MIT. This work was also sponsored in part by the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226.

1

Contents

1 Introduction 3
1.1 Our Results and Techniques . 5

1.1.1 Constructions against NC1 Adversaries . 6
1.1.2 Constructions against AC0 Adversaries . 7

1.2 Other Related Work: Cryptography against Bounded Adversaries 10

2 Preliminaries 11
2.1 Notation . 11
2.2 Constant-Depth Circuits . 12
2.3 Graphs and Linear Codes . 13
2.4 Adversaries . 17
2.5 Primitives Against Bounded Adversaries . 18
2.6 Randomized Encodings . 20

3 OWFs from worst-case assumptions 21

4 PKE against NC1 from worst-case assumptions 23
4.1 Collision Resistant Hashing . 26

5 Cryptography Without Assumptions 26
5.1 High-Stretch Pseudo-Random Generators . 26
5.2 Weak Pseudo-Random Functions . 27
5.3 Symmetric Key Encryption . 31
5.4 Collision Resistant Hash Functions . 37
5.5 Candidate Public Key Encryption Scheme . 39

A H̊astad’s OWF Construction 44

2

1 Introduction

The last four decades of research in the theory of cryptography has produced a host of fantastic
notions, from public-key encryption [DH76, RSA78, GM82] and zero-knowledge proofs [GMR85]
in the 1980s, to fully homomorphic encryption [RAD78, Gen09, BV11] and program obfusca-
tion [BGI+01, GGH+13, SW14] in the modern day. Complexity theory is at the heart of these
developments, playing a key role in coming up with precise mathematical definitions as well as con-
structions whose security can be reduced to precisely stated computational hardness assumptions.

However, the uncomfortable fact remains that a vast majority of cryptographic constructions
rely on unproven assumptions. At the very least, one requires that NP * BPP [IL89], but that is
hardly ever enough — when designing advanced cryptographic objects, cryptographers assume the
existence of one-way functions as a given, move up a notch to assuming the hardness of specific
problems such as factoring, discrete logarithms and the approximate shortest vector problem for
lattices, and, more recently, even more exotic assumptions. While there are some generic trans-
formations between primitives, such as from one-way functions to pseudo-random generators and
symmetric encryption (e.g., [HILL99]), there are large gaps in our understanding of relationships
between most others. In particular, it is a wide open question whether NP * BPP suffices to
construct even the most basic cryptographic objects such as one-way functions, or whether it is
possible to construct public-key encryption assuming only the existence of one-way functions (for
some partial negative results, see [BT03, AGGM06, BB15, IR88]).

In this work, we ask if a weaker version of these cryptographic primitives can be constructed,
with security against a bounded class of adversaries, based on either mild complexity-theoretic as-
sumptions or no assumptions at all. Indeed, this question has been asked by several researchers in
the past.

1. Merkle [Mer78] constructed a non-interactive key exchange protocol (and thus, a public-key
encryption scheme) where the honest parties run in linear time O(n) and security is shown
against adversaries that run in time o(n2). His assumption was the existence of a random
function that both the honest parties and the adversary can access (essentially, the random
oracle model [BR93]). Later, the assumption was improved to exponentially strong one-
way functions [BGI08]. This work is timeless, not only because it jump-started public-key
cryptography, but also because it showed how to obtain a primitive with much structure
(trapdoors) from one that apparently has none (namely, random oracles and exponentially
strong one-way functions).

2. Maurer [Mau92] introduced the bounded storage model, which considers adversaries that have
an a-priori bounded amount of space but unbounded computation time. Cachin and Maurer
constructed symmetric-key encryption and key-exchange protocols that are unconditionally
secure in this model [CM97] assuming that the honest parties have storage O(s) and the
adversary has storage o(s2) for some parameter s. There has been a rich line of work on this
model [CM97, AR99, DM04] following [Mau92].

3. Implicit in the work of H̊astad [Has87] is a beautiful construction of a one-way permutation
that can be computed in NC0 (constant-depth circuits with AND and OR gates of unbounded
fan-in and NOT gates), but inverting which is hard for any AC0 circuit. Here is the function:

f(x1, x2, . . . , xn) =
(
x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn

)
3

Clearly, each output bit of this function depends on at most two input bits. Inverting the
function implies in particular the ability to compute xn, which is the parity of all the output
bits. This is hard for AC0 circuits as per [FSS84, Ajt83, H̊as86].

All these works share two common features. First, security is achieved against a class of ad-
versaries with bounded resources (time, space and parallel time, respectively, in the three works
above). Secondly, the honest algorithms use less resources than the class of adversaries they are
trying to fool. We propose to call the broad study of such cryptographic constructions fine-grained
cryptography, and construct several fine-grained cryptographic primitives secure against parallel-
time-bounded adversaries.

We study two classes of low-depth circuits (as adversaries). The first is AC0, which is the
class of functions computable by constant-depth polynomial-sized circuits consisting of AND, OR,
and NOT gates of unbounded fan-in, and the second is NC1, the class of functions computable by
logarithmic-depth polynomial-sized circuits consisting of AND, OR, and NOT gates of fan-in 2. In
both cases, we mean the non-uniform versions of these classes. Note that this also covers the case
of adversaries that are randomized circuits with these respective restrictions. This is because for
any such randomized adversary A there is a non-uniform adversary A′ that performs as well as A
– A′ is simply A hard-coded with the randomness that worked best for it.

Early developments in circuit lower bounds [FSS84, Ajt83, H̊as86] showed progressively bet-
ter and average-case and exponential lower bounds for the PARITY function against AC0 circuits.
This has recently been sharpened to an average-case depth hierarchy theorem [RST15]. We al-
ready saw how these lower bounds translate to meaningful cryptography, namely one-way permu-
tations against AC0 adversaries. Extending this a little further, a reader familiar with Braverman’s
breakthrough result [Bra10] (regarding the pseudorandomness of nε-wise independent distributions
against AC0) will notice that his result can be used to construct large-stretch pseudo-random gen-
erators that are computable by fixed-depth AC0 circuits and are pseudo-random against arbitrary
constant-depth AC0 circuits. Can we do more? Can we construct secret-key encryption, collision-
resistant hash functions, and even trapdoor functions, starting from known lower bounds against
AC0 circuits? Our first contribution is a positive answer to some of these questions.

Our second contribution is to study adversaries that live in NC1. In this setting, as we do not
know any lower bounds against NC1, we are forced to rely on an unproven complexity-theoretic
assumption; however, we aim to limit this to a worst-case, widely believed, separation of com-
plexity classes. Here, we construct several cryptographic primitives from the worst-case hardness
assumption that ⊕L/poly 6⊆ NC1, the most notable being an additively-homomorphic public-key en-
cryption scheme where the key generation, encryption and decryption algorithms are all computable
in AC0[2] (constant-depth circuits with MOD2 gates; note that AC0[2] (NC1 [Raz87, Smo87]), and
the scheme is semantically secure against NC1 adversaries. (⊕L/poly can be thought of as the
class of languages with polynomial-sized branching programs. Note that by Barrington’s Theorem
[Bar86], all languages in NC1 have polynomial-sized branching programs of constant width.)

Apart from theoretical interest stemming from the fact that these are rather natural objects, one
possible application of such constructions (that was suggested to us independently by Ron Rothblum
and Yuval Ishai) is in using them in conjunction with other constructions that are secure against
polynomial-time adversaries under stronger assumptions. This could be done to get hybrids that
are secure against polynomial-time adversaries under these stronger assumptions while also being
secure against bounded adversaries unconditionally (or under minimal assumptions). For instance,
consider an encryption scheme where the message is first encrypted using the AC0-encryption scheme

4

from Section 5.3, and the resultant ciphertext is then encrypted using a scheme that works in AC0

and is secure against polynomial-time adversaries under some standard assumptions (see [AIK04]
for such schemes). This resultant scheme can be shown to be secure against polynomial-time
adversaries under the same assumptions while being unconditionally secure against AC0 adversaries.

We now briefly describe the relation between our results and the related work on randomized
encodings [IK00, AIK04], and move on to describing the results in detail.

Relation to Randomized Encodings and Cryptography in NC0. Randomized encodings
of Ishai and Kushilevitz [IK00, AIK04] are a key tool in our results against NC1 adversaries. Using
randomized encodings, Applebaum, Ishai and Kushilevitz [AIK04] showed how to convert several
cryptographic primitives computable in logspace classes into ones that are computable in NC0.
The difference between their work and ours is two-fold: (1) Their starting points are crypto-
graphic schemes secure against arbitrary polynomial-time adversaries, which rely on average-case
hardness assumptions, whereas in our work, the focus is on achieving security either with no un-
proven assumptions or only worst-case assumptions; of course, our schemes are not secure against
polynomial-time adversaries, but rather, limited adversarial classes; (2) In the case of public-key
encryption, they manage to construct key generation and encryption algorithms that run in NC0,
but the decryption algorithm retains its high complexity. In contrast, in this work, we can construct
public key encryption (against NC1 adversaries) where the encryption algorithm can be computed
in NC0 and the key generation and decryption in AC0[2].

A Remark on Cryptographic vs. Non-Cryptographic Constructions An important
desideratum for us is that the (honest) algorithms in our constructions can be implemented with
fewer resources than the adversary that they are trying to fool. We call such constructions cryp-
tographic in contrast to non-cryptographic constructions where this is not necessarily the case.
Perhaps the clearest and the most well-known example of this distinction is the case of pseudo-
random generators (PRGs) [BM84, Yao82, NW94]. Cryptographic PRGs, pioneered in the works
of Blum, Micali and Yao [BM84, Yao82] are functions computable in a fixed polynomial time that
produce outputs that are indistinguishable from random against any polynomial-time machine.
The designer of the PRG does not know the precise power of the adversary: he knows that the
adversary is polynomial-time, but not which polynomial. On the other hand, non-cryptographic
(“Nisan-Wigderson type”) PRGs [NW94] take more time to compute than the adversaries they are
designed to fool.

Our constructions will be exclusively in the cryptographic regime. For example, our one-way
functions, pseudo-random generators and collision-resistant hash functions against AC0 are com-
putable by circuits of fixed polynomial size q(λ) and fixed (constant) depth d, and maintain security
(in the appropriate sense) against adversarial circuits of size p′(λ) and depth d′ for any polynomial
function p′ and any constant d′.

1.1 Our Results and Techniques

Our results are grouped into two classes — primitives secure against NC1 circuits based on minimal
worst-case assumptions, and those that are unconditionally secure against AC0 circuits. In the
description below and throughout the rest of the paper, all algebra is over F2.

5

1.1.1 Constructions against NC1 Adversaries

We construct one-way functions (OWFs), pseudo-random generators (PRGs), additively homo-
morphic public-key encryption (PKE), and collision-resistant hash functions (CRHFs) that are
computable in NC1 and are secure against NC1 adversaries, based on the worst-case assumption
that ⊕L/poly 6⊆ NC1. An important tool we use for these constructions is the notion of randomized
encodings of functions introduced in [IK00].

A randomized encoding of a function f is a randomized function f̂ that is such that for any input
x, the distribution of f̂(x) reveals f(x), but nothing more about x. We know through the work of
[IK00, AIK04] that there are randomized encodings for the class ⊕L/poly that can be computed
in (randomized, uniform) NC0. Randomized encodings naturally offer a flavor of worst-to-average
case reductions as they reduce the problem of evaluating a function on a given input to deciding
some property of the distribution of its encoding. Our starting point is the observation, implicit in
[AIK04, AR15], that they can be used to generically construct infinitely-often one-way functions
and pseudo-random generators with additive stretch, computable in NC0 and secure against NC1

adversaries (assuming, again, that ⊕L/poly 6⊆ NC1). We start with the following general theorem.

Theorem 1.1 (Informal). Let C1 and C2 be two classes such that C2 6⊆ C1 and C2 has perfect
randomized encodings computable in C1. Then, there are OWFs and PRGs that are computable in
C1 and are secure against arbitrary adversarial functions in C1.

Informally, the argument for Theorem 1.1 is the following: Let L be the language in C2 but
not C1. The PRG is a function that takes an input r and outputs the randomized encoding of the
indicator function for membership in L on the input 0λ, using r as the randomness (where λ is a
security parameter). Any adversary that can distinguish the output of this function from random
can be used to decide if a given x is in the language L by computing the randomized encoding of x
and feeding it to the adversary. This gives us a PRG with a non-zero additive stretch (and also a
OWF) if the randomized encoding has certain properties (they need to be perfect) — see Section
3 for details.

While we have one way functions and pseudorandom generators, a black-box construction of
public key cryptosystems from randomized encodings seems elusive. Our first contribution in this
work is to use the algebraic structure of the randomized encodings for ⊕L/poly to construct an
additively homomorphic public key encryption scheme secure against NC1 circuits (assuming that
⊕L/poly 6⊆ NC1).

Additively Homomorphic Public-Key Encryption. The key attribute of the randomized
encodings of [IK00, AIK04] for ⊕L/poly is that the encoding is not a structureless string. Rather,
the randomized encodings of computations are matrices whose rank corresponds to the result of
the computation. Our public-key encryption construction uses two observations:

• Under the assumption ⊕L/poly 6⊆ NC1, there exist, for an infinite number of values of n,
distributions Dn

0 and Dn
1 over n × n matrices of rank (n − 1) and n, respectively, that are

indistinguishable to NC1 circuits.

• It is possible to sample a matrix M from Dn
0 along with the non-zero vector k in its kernel.

The sampling can be accomplished in NC1 or even AC0[2].

6

The public key in our scheme is such a matrix M, and the secret key is the corresponding k.
Encryption of a bit b is a vector rTM + btT , where r is a random vector1 and t is a vector such
that 〈t,k〉 = 1. In effect, the encryption of 0 is a random vector in the row-span of M while
the encryption of 1 is a random vector outside. Decryption of a ciphertext c is simply the inner
product 〈c,k〉. Semantic security against NC1 adversaries follows from the fact that Dn

0 and Dn
1 are

indistinguishable to NC1 circuits. In particular, (1) We can indistinguishably replace the public key
by a random full rank matrix M′ chosen from D1

n; and (2) with M′ as the public key, encryptions
of 0 are identically distributed to the encryptions of 1. The following is an informal restatement of
Theorem 4.1.

Theorem 1.2 (Informal). If ⊕L/poly 6= NC1, there is a public-key encryption scheme secure
against NC1 adversaries where key generation, encryption and decryption are all computable in
(randomized) AC0[2].

The scheme above is additively homomorphic, and thus, Collision-Resistant Hash Functions
(CRHF) against NC1 follow immediately from the known generic transformations [IKO05] which
work in NC1.

Theorem 1.3 (Informal). If ⊕L/poly 6= NC1, there is a family of collision-resistant hash functions
that is secure against NC1 adversaries where both sampling hash functions and evaluating them can
be performed in (randomized) AC0[2].

We remark that in a recent work, Applebaum and Raykov [AR15] construct CRHFs against
polynomial-time adversaries under the assumption that there are average-case hard functions with
perfect randomized encodings. Their techniques also carry over to our setting and imply, for
instance, the existence of CRHFs against NC1 under the assumption that there is a language that
is average-case hard for NC1 that has perfect randomized encodings that can be computed in NC1.
This does not require any additional structure on the encodings apart from perfectness, but does
require average-case hardness in place of our worst-case assumptions.

1.1.2 Constructions against AC0 Adversaries

We construct one-way functions (OWFs), pseudo-random generators (PRGs), weak pseudo-random
functions (weak PRFs), symmetric-key encryption (SKE) and collision-resistant hash functions
(CRHFs) that are computable in AC0 and are unconditionally secure against arbitrary AC0 circuits.
While some constructions for OWFs and PRGs against AC0 were already known [H̊as86, Bra10],
and the existence of weak PRFs and SKE, being minicrypt primitives, is not that surprising, the
possibility of unconditionally secure CRHFs against AC0 is somewhat surprising, and we consider
this to be our primary contribution in this section. We also present a candidate construction for
public-key encryption, but we are unable to prove its unconditional security against AC0 circuits.

As we saw earlier, H̊astad [Has87] constructed one-way permutations secure against AC0 cir-
cuits based on the hardness of computing PARITY. When allowed polynomial running time,
we have black-box constructions of pseudorandom generators [HILL99] and pseudorandom func-
tions [GGM86] from one-way functions. But because these reductions are not implementable in
AC0, getting primitives computable in AC0 requires more effort.

1We maintain the convention that all vectors are by default column vectors. For a vector r, the notation rT

denotes the row vector that is the transpose of r.

7

Our constructions against AC0 adversaries are primarily based on the theorem of Braver-
man [Bra10] (and its recent sharpening by Tal [Tal14]) regarding the pseudo-randomness of polylog-
wise independent distributions against constant depth circuits. We use this to show that AC0 cir-
cuits cannot distinguish between the distribution (A,Ak), where A is a random “sparse” matrix
of dimension poly(n) × n and k is a uniformly random secret vector, from the distribution (A, r),
where r is a uniformly random vector. Sparse here means that each row of A has at most polylog(n)
many ones.

(This is shown as follows. It turns out that with high probability, a matrix chosen in this manner
is such that any set of polylog(n) rows is linearly independent (Lemma 2.9). Note that when a set
of rows of A is linearly independent, the corresponding set of bits in Ak are uniformly distributed.
This implies that if all polylog(n)-sized sets of rows of A are linearly independent, then Ak is
polylog(n)-wise independent. This fact, along with the theorems regarding pseudo-randomness
mentioned above prove the indistinguishability by AC0.)

We also crucially use the fact, from [AB84], that the inner product of an arbitrary vector with
a sparse vector can be computed in constant depth.

OWFs and PRGs This enables us to construct PRGs in NC0 with constant multiplicative stretch
and in AC0 with polynomial multiplicative stretch. The construction is to fix a sparse matrix A
with the linear independence properties mentioned above, and the PRG output on seed k is Ak.
Pseudo-randomness follows from the indistinguishability arguments above. This is stated in the
following informal restatement of Theorem 5.1(along with Remark 5.1). We need to show that
there exist such matrices A in which any polylog-sized set of rows are linearly independent, and yet
are sparse. As we show in Section 2.3, there are indeed matrices that have these properties.

Theorem 1.4 (Informal). For any constant c, there is a family of circuits
{
Cn : {0, 1}n → {0, 1}n

c
}

such that for any n, each output bit of Cn depends on at most O(c) input bits. Further, for large
enough n, AC0 circuits cannot distinguish the output distribution Cn(Un) from Unc.

We note that similar techniques have been used in the past to construct PRGs that fool circuit
families of a fixed constant depth - see, for instance, [Vio12].

Weak PRFs against AC0. A Pseudo-Random Function family (PRF) is a collection of functions
such that a function chosen at random from this collection is indistinguishable from a function
chosen at random from the set of all functions (with the appropriate domain and range), based
on just a polynomial number of evaluations of the respective functions. In a Strong PRF, the
distinguisher is allowed to specify (even adaptively) the input points at which it wants the function
to be evaluated. In a Weak PRF, the distinguisher is given function evaluations at input points
chosen uniformly at random.

We construct Weak PRFs against AC0 that are unconditionally secure. In our construction, each
function in the family is described by a vector k. The computation of the pseudo-random function
proceeds by mapping its input x to a sparse vector a and computing the inner product 〈a,k〉 over
F2. Given polynomially many samples of the form (a, 〈a,k〉), one can write this as (A,Ak), where
A is a matrix with random sparse rows. Our mapping of x’s to a’s is such that (A,Ak) is in some
sense the only useful information contained in a set of random function evaluations. This is now
indistinguishable from (A, r) where r is uniformly random, via the arguments mentioned earlier in
this section. The following is an informal restatement of Theorem 5.2.

8

Theorem 1.5 (Informal). There is a Weak Pseudo-Random Function family secure against AC0

adversaries and is such that both sampling a function at random and evaluating it can be performed
in AC0.

We note that while our construction only gives us quasi-polynomial security (that is, an ad-
versary might be able to achieve an inverse quasi-polynomial advantage in telling our functions
from random) as opposed to exponential security, we show that this is an inherent limitation of
weak PRFs computable in AC0. Roughly speaking, due to the work of [LMN93], we know that a
constant fraction of the Fourier mass of any function on n inputs computable in AC0 is concen-
trated on Fourier coefficients upto some polylog(n). So there is at least one coefficient in the case

of such a function that is at least Ω
(

1
2polylog(n)

)
in absolute value, whereas in a random function

any coefficient would be exponentially small. So, by guessing and estimating a Fourier coefficient
of degree at most polylog(n) (which can be done in AC0), one can distinguish functions computed

in AC0 from a random function with some Ω
(

1
2polylog(n)

)
advantage. See Observation 5.4 for more

details.

Symmetric Key Encryption against AC0. In the case of polynomial-time adversaries and
constructions, weak PRFs generically yield symmetric key encryption schemes, and this continues
to hold in our setting. However, we present an alternative construction that has certain properties
that make it useful in the construction of collision-resistant hash functions later on. The key in
our scheme is again a random vector k. The encryption of a bit b is a random sparse vector c such
that 〈c,k〉 = b over F2. (Similar schemes, albeit without the sparsity, have been employed in the
past in the leakage-resilience literature — see [GR12] and references therein.)

Encryption is performed by rejection sampling to find such a c, and decryption is performed by
computing 〈c,k〉, which can be done in constant depth owing to the sparsity of c. We reduce the
semantic security of this construction to the indistinguishability of the distributions (A,Ak) and
(A, r) mentioned earlier. Note that this scheme is additively homomorphic, a property that will be
useful later. The following is an informal restatement of Theorem 5.5.

Theorem 1.6 (Informal). There is a Symmetric Key Encryption scheme that is secure against
AC0 adversaries and is such that key generation, encryption and decryption are all computable in
(randomized) AC0.

Collision Resistance against AC0. Our most important construction against AC0, which is
what our encryption scheme was designed for, is that of Collision Resistant Hash Functions. Note
that while there are generic transformations from additively homomorphic encryption schemes to
CRHFs ([IKO05]), these transformations do not work in AC0 and hence do not yield the construction
we desire.

Our hash functions are described by matrices where each column is the encryption of a random
bit under the above symmetric encryption scheme. Given such a matrix M that consists of encryp-
tions of the bits of a string m, the evaluation of the function on input x is Mx. Note that we wish
to perform this computation in constant depth, and this turns out to be possible to do correctly
for most keys because of the sparsity of our ciphertexts.

Finding a collision for a given key M is equivalent to finding a vector u such that Mu = 0.
By the additive homomorphism of the encryption scheme, and the fact that 0 is a valid encryption

9

of 0, this implies that 〈m,u〉 = 0. But this is non-trivial information about m, and so should
violate semantic security. However showing that this is indeed the case turns out to be somewhat
non-trivial.

In order to do so, given an AC0 adversary A that finds collisions for the hash function with some
non-negligible probability, we will need to construct another AC0 adversary, B, that breaks semantic
security of the encryption scheme. The most straightforward attempt at this would be as follows.
B selects messages m0 and m1 at random and sends them to the challenger who responds with
M = Enc(mb). B then forwards this to A who would then return, with non-negligible probability,
a vector u such that 〈u,mb〉 = 0. If B could compute 〈u,m0〉 and 〈u,m1〉, B would then be able
to guess b correctly with non-negligible advantage. The problem with this approach is that u, m0

and m1 might all be of high Hamming weight, and this being the case, B would not be able to
compute the above inner products.

The solution to this is to choose m0 to be a sparse vector and m1 to be a random vector and
repeat the same procedure. This way, B can compute 〈u,m0〉, and while it still cannot check
whether 〈u,m1〉 = 0, it can instead check whether Mu = 0 and use this information. If it turns
out that Mu = 0 and 〈u,m0〉 6= 0, then B knows that b = 1, due to the additive homomorphism
of the encryption scheme. Also, when b = 1, since m0 is independent of m1, the probability that
A outputs u such that 〈u,m0〉 6= 0 is non-negligible. Hence, by guessing b = 1 when this happens
and by guessing b at random otherwise, B can gain non-negligible advantage against semantic
security. This achieves the desired contradiction and demonstrates the collision resistance of our
construction. The following is an informal restatement of Theorem 5.11.

Theorem 1.7 (Informal). There is a family of Collision Resistant Hash Functions that is secure
against AC0 adversaries and is such that both sampling a hash function at random and evaluating
it can be performed in (randomized) AC0.

Candidate Public Key Encryption against AC0 We also propose a candidate Public Key
Encryption scheme whose security we cannot show. It is similar to the LPN-based cryptosystem in
[Ale03]. The public key is a matrix of the form M = (A,Ak) where A is a random n× n matrix
and k, which is also the secret key, is a random sparse vector of length n. To encrypt 0, we choose
a random sparse vector r and output cT = rTM, and to encrypt 1 we just output a random vector
cT of length (n + 1). Decryption is simply the inner product of c and the vector (k 1)T , and can
be done in AC0 because k is sparse.

1.2 Other Related Work: Cryptography against Bounded Adversaries

The big bang of public-key cryptography was the result of Merkle [Mer78] who constructed a key
exchange protocol where the honest parties run in linear time O(n) and security is obtained against
adversaries that run in time o(n2). His assumption was the existence of a random function that
both the honest parties and the adversary can access. Later, the assumption was improved to
strong one-way functions [BGI08]. This is, indeed, a fine-grained cryptographic protocol in our
sense.

Ajtai and Wigderson [AW85] construct PRGs secure against AC0 and computable in AC0 with
arbitrary polynomial stretch. The construction in Section 5.1 achieves the same stretch and is much
simpler owing to improvements in the understanding of pseudo-randomness against constant-depth
circuits over the past 30 years.

10

The study of ε-biased generators [AGHP93, MST06] is related to this work. In particular, ε-
biased generators with exponentially small ε give us almost k-wise independent generators for large
k, which in turn fool AC0 circuits by a result of Braverman [Bra10]. This and other techniques
have been used in the past to construct PRGs that fool circuits of a fixed constant depth, with the
focus generally being on optimising the seed length [Vio12, TX13].

The notion of precise cryptography introduced by Micali and Pass [MP06] studies reductions
between cryptographic primitives that can be computed in linear time. That is, they show con-
structions of primitive B from primitive A such that if there is a TIME(f(n)) algorithm that breaks
primitive B, there is a TIME(O(f(n))) algorithm that breaks A.

Maurer [Mau92] introduced the bounded storage model, which considers adversaries that have
a bounded amount of space and unbounded computation time. There are many results known
here [DM04, Vad04, AR99, CM97] and in particular, it is possible to construct Symmetric Key
Encryption and Key Agreement protocols unconditionally in this model[CM97].

2 Preliminaries

In this section we establish notation that shall be used throughout the rest of the presentation and
recall the notion of randomized encodings of functions. We state and prove some results about
certain kinds of random matrices that turn out to be useful in Section 5. In Sections 2.4 and
2.5, we present formal definitions of a general notion of adversaries with restricted computational
power and also of several standard cryptographic primitives against such restricted adversaries (as
opposed to the usual definitions, which are specific to probabilistic polynomial time adversaries).

2.1 Notation

For a distribution D, by x← D we denote x being sampled according to D. Abusing notation, we
denote by D(x) the probability mass of D on the element x. For a set S, by x ← S, we denote x
being sampled uniformly from S. We also denote the uniform distribution over S by US , and the
uniform distribution over {0, 1}λ by Uλ. We use the notion of total variational distance between
distributions, given by:

∆(D1, D2) =
1

2

∑
x

|D1(x)−D2(x)|

For distributions D1 and D2 over the same domain, by D1 ≡ D2 we mean that the distributions
are the same, and by D1 ≈ D2, we mean that ∆(D1, D2) is a negligible function of some parameter
that will be clear from the context. Abusing notation, we also sometimes use random variables
instead of their distributions in the above expressions.

For any n ∈ N, we denote by bnc2 the greatest power of 2 that is not more than n. For any n,

k, and d ≤ k, we denote by SpRk,d the uniform distribution over the set of vectors in {0, 1}k with

exactly d non-zero entries, and by SpMn,k,d the distribution over the set of matrices in {0, 1}n×k
where each row is distributed independently according to SpRk,d.

We identify strings in {0, 1}n with vectors in Fn2 in the natural manner. For a string (vector) x,
‖x‖ denotes its Hamming weight. Finally, we note that all arithmetic computations (such as inner
products, matrix products, etc.) in this work will be over F2, unless specified otherwise.

11

2.2 Constant-Depth Circuits

Here we state a few known results on the computational power of constant depth circuits that shall
be useful in our constructions against AC0 adversaries.

Theorem 2.1 (Hardness of Parity, [H̊as14]). For any circuit C with n inputs, size s and depth d,

Pr
x←{0,1}n

[C(x) = PARITY(x)] ≤ 1

2
+ 2−Ω(n/(log s)d−1)

Theorem 2.2 (Partial Independence, [Bra10, Tal14]). Let D be a k-wise independent distribution
over {0, 1}n. For any circuit C with n inputs, size s and depth d,∣∣∣∣ Pr

x←D
[C(x) = 1]− Pr

x←{0,1}n
[C(x) = 1]

∣∣∣∣ ≤ s

2Ω(k1/(3d+3))

Theorem 2.3 (Polylog Hamming Weight, [AB84, RW91]). For any constant c and for any function
t : N→ N such that t(λ) = O(logc λ), the family Ht =

{
htλ
}

is in AC0, where htλ takes inputs from

{0, 1}λ and is defined as:

htλ(x) = 1⇔ ‖x‖ = t(λ)

Lemma 2.4 (Polylog Parities). For any constant c and for any function t : N → N such that
t(λ) = O(logc λ), there is an AC0 family Gt =

{
gtλ
}

such that for any λ,

• gtλ takes inputs from {0, 1}λ.

• For any x ∈ {0, 1}λ such that ‖x‖ ≤ t(λ), gtλ(x) = PARITY(x).

Proof. Denote the family promised by Theorem 2.3 for function t′ by Ht′ =
{
ht
′
λ

}
. Then, for

any t satisfying the hypothesis for Lemma 2.4, a family Gt =
{
gtλ
}

that proves the lemma can be
computed as:

gtλ(x) =

 ∧
odd i≤t(λ)

hiλ(x)

Lemma 2.5 (Polylog Inner Products). For any constant c and for any function t : N → N such
that t(λ) = O(logc λ), there is an AC0 family It =

{
iptλ
}

such that for any λ,

• iptλ takes inputs from {0, 1}λ × {0, 1}λ.

• For any x, y ∈ {0, 1}λ such that min(‖x‖ , ‖y‖) ≤ t(λ), iptλ(x, y) = 〈x, y〉.

Proof. This follows from Lemma 2.4 and the fact that 〈x, y〉 = PARITY(x1 ∧ y1, . . . , xλ ∧ yλ).

12

2.3 Graphs and Linear Codes

In this section we describe and prove some properties of a sampling procedure for random matrices.
While it is not necessary to do so, the proofs in this section are most easily presented in terms
of properties of random bipartite graphs. Most of the analysis is as suggested in Gallager’s early
work ([Gal62]) on Low-Density Parity Check codes, but we repeat it here to make dependencies on
certain parameters explicit and to be able to easily derive certain lemmas that we need.

Notation. We denote a bipartite (undirected) graph with vertex sets L and R and set of edges
E between L and R by G(L ∪R,E). The adjacency matrix of this graph, denoted AG, is a {0, 1}-
matrix of dimension |L| × |R|. Its rows are labeled by vertices in L and columns by vertices in R
such that AG[u, v] is 1 if and only if (u, v) ∈ E. Given a {0, 1}-matrix M , GM denotes the bipartite
graph whose adjacency matrix is M .

Given a bipartite graph G(L ∪ R,E), for any vertex u, N(u) denotes the set of neighbors of
u. For a set S ⊆ L (or S ⊆ R), N(S) denotes the set of neighbors of vertices in S, that is,
N(S) =

⋃
u∈S N(u). And U(S) denotes the set of vertices that are neighbors of a unique vertex in

S, that is, U(S) = {v | |N(v) ∩ S| = 1}.

Definition 2.1 (Bipartite Expander). An (n, k, d, γ, α)-bipartite expander is a bipartite graph
G(L ∪R,E) where:

• |L| = n and |R| = k.

• The degree of any vertex in L is d.

• For every S ⊆ L with |S| ≤ γn, |N(S)| ≥ α |S|.

We describe the following two sampling procedures that we shall use later. SRSamp and SMSamp
abbreviate Sparse Row Sampler and Sparse Matrix Sampler, respectively. SRSamp(k, d, r) samples
unformly at random a vector from {0, 1}k with exactly d non-zero entries, using r for randomness
– it chooses a set of d distinct indices between 0 to k − 1 (via rejection sampling) and outputs the
vector in which the entries at those indices are 1 and the rest are 0. When we don’t specifically
need to argue about the randomness, we drop the explicitly written r. SMSamp(n, k, d) samples
an n × k matrix whose rows are samples from SRSamp(k, d, r) using randomly and independently
chosen r’s.

For any fixed k and d < k, note that the function Sk,d : {0, 1}d
2dlog(k)e → {0, 1}k given by

Sk,d(x) = SRSamp(k, d, x) can be easily seen to be computed by a circuit of size O((d3 +kd2) log(k))
and depth 8. And so the family S =

{
Sλ,d(λ)

}
is in AC0. When, in our constructions, we require

computing SRSamp(k, d, x), this is to be understood as being performed by the circuit for Sk,d that
is given as input the prefix of x of length d2 dlog(k)e. So if the rest of the construction is computed
by polynomial-sized constant depth circuits, the calls to SRSamp do not break this property.

Recall that we denote by SpRk,d the uniform distribution over the set of vectors in {0, 1}k with

exactly d non-zero entries, and by SpMn,k,d the distribution over the set of matrices in {0, 1}n×k
where each row is sampled independently according to SpRk,d. The following lemma states that
the above sampling procedures produce something close to these distributions.

Lemma 2.6 (Uniform Sparse Sampling). For any n, and d = log2(k), there is a negligible function

ν such that for any k that is a power of two, when r ← {0, 1}log5(k),

1. ∆(SRSamp(k, d, r), SpRk,d) ≤ ν(k)

13

Construction 2.1 Sparse row and matrix sampling.

SRSamp(k, d, r): Samples a vector with exactly d non-zero entries.

1. If r is not specified or |r| < d2 dlog(k)e, sample r ← {0, 1}d
2dlog(k)e anew.

2. For l ∈ [d] and j ∈ [d], set ulj = r((l−1)d+j−1)dlog(k)e+1 . . . r((l−1)d+j)dlog(k)e.

3. If there is no l such that for all distinct j1, j2 ∈ [d], ulj1 6= ulj2 , output 0k.

4. Else, let l0 be the least such l.

5. For i ∈ [k], set vi = 1 if there is a j ∈ [d] such that ul0j = i (when interpreted in binary), or
vi = 0 otherwise.

6. Output v = (v1, . . . , vk).

SMSamp(n, k, d): Samples a matrix where each row has d non-zero entries.

1. For i ∈ [n], sample ri ← {0, 1}d
2dlog(k)e and ai ← SRSamp(k, d, ri).

2. Output the n× k matrix whose i-th row is ai.

2. ∆(SMSamp(n, k, d), SpMn,k,d) ≤ nν(k)

Proof. (1) implies (2) because SMSamp(n, k, d) and SpMn,k,d simply consist of n independent sam-
ples from SRSamp(k, d, r) and SpRk,d, respectively.

SRSamp(k, d, r) parses r into d sets of d elements from [k] and outputs 0k when all of these
have at least one collision. The probability that any one set has a pair which collide is at most
d2

k , by the union bound. So the probability that all sets have at least one pair which collide is at

most
(
d2

k

)d
, which is a negligible function of k when d = log2(k). Further, conditioned on this not

happening, the output of SRSamp(k, d, r) is distributed according to SpRk,d. So its distance from
SpRk,d is exactly the probability that it outputs 0k.

The following lemma says that if we sample matrices using SMSamp, they will be adjacency
matrices of bipartite expanders with very high probability. It will be used later to argue about
certain linear algebraic properties of such matrices that find use in our contructions.

Lemma 2.7 (Sampling expanders). For any constant c > 0, any n ≤ kc, d = log2(k), α = 3d
4 , and

γ = k
log3(k)n

, there is a negligible function ν such that for any k that is a power of two,

Pr
AG←SMSamp(n,k,d)

[G is not an (n, k, d, γ, α)-expander] ≤ ν(k)

Proof. The proof of this Lemma is a probabilistic argument. By Lemma 2.6, the output of
SMSamp(n, k, d) for our parameters is negligibly close to SpMn,k,d. So it is sufficient to prove
the theorem when AG is sampled according to SpMn,k,d. This corresponds to a distribution over
graphs with vertex sets L and R such that |L| = n, |R| = k, and for each vertex in L, a set of d of
its k possible edges are chosen uniformly at random to be added to the graph. So each vertex in L
has degree exactly d.

By definition, a bipartite graph G(L ∪ R,E) where the degree of any vertex in L is d is not
an (n, k, d, γ, α)-expander if and only if there exist sets S ⊆ L and T ⊆ R such that |S| ≤ γn,

14

|T | = α |S| such that N(S) ⊆ T . We shall now estimate the probability that there exists such an
S, T in a graph whose adjacency matrix is randomly generated according to SpMn,k,d, given that
k is a power of 2 (so that dlog(k)e = log(k)).

Given vertex sets L and R, pick any pair of sets S ⊆ L and T ⊆ R. Let |S| = s and |T | = t.
The probability that all neighbours of S are in T is given by:

Pr [N(S) ⊆ T] = Pr [∀u ∈ S : all d edges chosen connect to vertices in T]

≤ Pr [∀u ∈ S : d independently chosen vertices of R are all in T]

≤
(
t

k

)ds
The probability that there exist such an S and T such that |S| ≤ γn and |T | = α|S|, is bounded

as follows:

Pr [∃S, T : |S| ≤ γn, |T | = α|S|, N(S) ⊆ T] ≤
γn∑
s=1

(
n

s

)(
k

αs

)
Pr [N(S) ⊆ T]

≤
γn∑
s=1

(
n

s

)(
k

αs

)(αs
k

)ds
≤

γn∑
s=1

(
ne

s

(
ke

αs

)α (αs
k

)d)s

where the last inequality follows from the fact that

(
n

k

)
≤
(
ne
k

)k
.

Now we consolidate the terms in the above expression, and use the fact that 1 ≤ s ≤ γn.
Further, as all terms are positive, extending the sum to infinity provides an upper bound.

γn∑
s=1

(
ne

s

(
ke

αs

)α (αs
k

)d)s
=

γn∑
s=1

(
neα+1

s

(αs
k

)d−α)s
≤
∞∑
s=1

(
neα+1

(αγn
k

)d−α)s
We now set the parameters as specified in the hypothesis: d = log2(k), γn = k

log3(k)
, α = 3d

4 ,

and n ≤ kc for some constant c to get:

∞∑
s=1

(
neα+1

(αγn
k

)d−α)s
≤
∞∑
s=1

(
kce

(
3e3 log2(k)

4

k

k log3(k)

) 1
4

log2(k)
)s

For large enough k, the term inside the paranthesis is smaller than 1
2 . For such k, the following

holds:

∞∑
s=1

(
kce

(
3e3

4 log(k)

) 1
4

log2(k)
)s
≤ 2kce

(
3e3

4 log(k)

) 1
4

log2(k)

15

Asymptotically, the following relation may be seen by moving all terms to the exponent:

2kce

(
3e3

4 log(k)

) 1
4

log2(k)

= exp

[
1 + c log(k) +

(
3

4
log2(k) + 1

)
log(e)− 1

4
log2(k) log

(
4

3
log(k)

)]
= 2−Ω(log2(k) log log(k))

As noted at the beginning, this is also an upper bound on the probability that a graph sampled
with SMSamp(n, k, d) conditioned on none of its calls to SRSamp failing is not an (n, k, d, γ, α)-
expander for these parameters. As the probability of any call to SRSamp failing was also seen to
be negligible, this shows the existence of a negigible function ν as required.

Expander codes are linear codes that are constructed by taking the adjacency matrix of a
bipartite expander as the parity check matrix of the linear code. We describe the following property
of such codes.

Lemma 2.8. Let G be an (n, k, d, γ, α) expander. If α > d/2, the [n, (n − k)]2 code whose parity
check matrix is AG has minimum distance greater than γn.

Proof. Recall that for any S ⊆ L, U(S) is the set of vertices in R that have exactly one neighbour
in S. We first show that in an (n, k, d, γ, α)-expander with α > d/2, U(S) is non-empty for all S of
size at most γn.

This is because for any S ⊆ L of size at most γn, G being an expander implies that |N(S)| ≥
α |S| > d |S| /2. We know that all vertices in S have degree at most d, and so the number of outgoing
edges from S is at most d |S|. If U(S) is empty, this implies that all vertices in N(S) have at least
2 edges from S, implying that the number of edges from S to N(S) is at least 2 |N(S)| > d |S|,
which is a contradiction.

Consider any non-zero codeword x in the [n, (n − k)]2 code that has AG as its parity check
matrix. The fact that x belongs to the code implies that the rows indexed by non-zero positions
in x sum to 0T . But if x ≤ γn, the fact that U(S) is non-empty implies that there is at least one
column such that exactly one of these rows is non-zero in that column, which implies that the sum
of all these rows cannot be 0T . So ‖x‖ > γn, and the distance of the code is more than γn.

The following is implied immediately by Lemmas 2.7 and 2.8 and says that with high probability
the output of SMSamp defines a code with high distance.

Lemma 2.9 (Sampling codes). For any constant c > 0, set n = kc, and d = log2(k). For a matrix
H, let δ(H) denote the minimum distance of the code whose parity check matrix is H. Then, there
is a negligible function ν such that for any k that is a power of two,

Pr
H←SMSamp(n,k,d)

[
δ(H) ≥ k

log3(k)

]
≥ 1− ν(k)

Recall that a δ-wise independent distribution over n bits is a distribution whose marginal
distribution on any set of δ bits is the uniform distribution.

16

Lemma 2.10 (Distance and Independence). Let H (of dimension n×k) be the parity check matrix
of an [n, (n − k)]2 linear code of minimum distance more than δ. Then, the distribution of Hx is
δ-wise independent when x is chosen uniformly at random from {0, 1}k.

Proof. The distance of the [n, (n − k)]2 code being more than δ implies that there is no non-zero
vector y in {0, 1}n such that yTH = 0T and ‖y‖ ≤ δ. In particular, this implies that any set of δ
rows of H are linearly independent. Hence, the restriction of h(x) = Hx to any set of δ bits is a
full rank linear transformation, and if x is distributed uniformly at random, then so are these bits.
This implies that the distribution of Hx is δ-wise independent.

The following is immediately implied by Lemmas 2.9, 2.10 and Theorem 2.2. It effectively says
that AC0 circuits cannot distinguish between (A,As) and (A, r) when A is sampled using SRSamp
and s and r are chosen uniformly at random.

Lemma 2.11. For any polynomial n, there is a negligible function ν such that for any Boolean
family G = {gλ} ∈ AC0, and for any k that is a power of 2, when A ← SMSamp(n(k), k, log2(k)),

s← {0, 1}k and r← {0, 1}n(k),

|Pr [gλ(A,As) = 1]− Pr [gλ(A, r) = 1]| ≤ ν(λ)

2.4 Adversaries

Definition 2.2 (Function Family). A function family is a family of (possibly randomized) functions

F = {fλ}λ∈N, where for each λ, fλ has domain Df
λ and co-domain Rfλ.

In most of our considerations, Df
λ and Rfλ will be {0, 1}d

f
λ and {0, 1}r

f
λ for some sequences

{dfλ}λ∈N and {rfλ}λ∈N. Wherever function families are seen to act as adversaries to cryptographic
objects, we shall use the terms adversary and function family interchangeably.

The following are some examples of natural classes of function families. These are in the vein
of classes like FP and FNP, which are defined starting from P and NP, respectively. For the sake of
brevity, we refer to classes of function families as function classes. Also, we will abuse taxonomy
and use the same name for a class of languages and its corresponding class of functions (we would,
for instance, simply say P instead of FP for the class of deterministic polynomial-time computable
functions).

Definition 2.3 (AC0). The class of (non-uniform) AC0 function families is the set of all function
families F = {fλ} for which there is a polynomial p and constant d such that for each λ, fλ can
be computed by a (randomized) circuit of size p(λ), depth d and unbounded fan-in using AND, OR
and NOT gates.

Definition 2.4 (AC0[2]). The class of (non-uniform) AC0[2] function families is the set of all
function families F = {fλ} for which there is a polynomial p and constant d such that for each λ,
fλ can be computed by a (randomized) circuit of size p(λ), depth d and unbounded fan-in using
AND, OR, NOT and PARITY gates.

Definition 2.5 (NC1). The class of (non-uniform) NC1 function families is the set of all function
families F = {fλ} for which there is a polynomial p and constant c such that for each λ, fλ can be
computed by a (randomized) circuit of size p(λ), depth c log(λ) and fan-in 2 using AND, OR and
NOT gates

17

Definition 2.6 (⊕L/poly). ⊕L/poly is the set of all Boolean function families F = {fλ} for which
there is a constant c such that for each λ, there is a Non-Deterministic Turing Machine Mλ such
that for each input x of length λ, Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the
PARITY of the number of accepting paths of Mλ(x).

Definition 2.7 (BPP). The class of BPP function families is the set of all function families F =
{fλ} for which there is a randomized polynomial-time algorithm BF such that for each λ and x,
fλ(x) ≡ BF (1λ, x).

2.5 Primitives Against Bounded Adversaries

In this section, we generalize the standard definitions of several standard cryptographic primitives
to talk about security against different classes of adversaries. In the following definitions, C1 and
C2 are two function classes, and l, s : N→ N are some functions.

Implicit (and hence left unmentioned) in each definition are the following conditions:

• Computability, which says that the function families that are part of the primitive are in the
class C1. Additional restrictions are specified when they apply.

• Non-triviality, which says that the security condition in each definition is not vacuously
satisfied – that there is at least one function family in C2 whose input space corresponds to
the output space of the appropriate function family in the primitive.

Definition 2.8 (One-Way Function). Let F =
{
fλ : {0, 1}λ → {0, 1}l(λ)

}
be a function family. F

is a C1-One-Way Function (OWF) against C2 if:

• Computability: For each λ, fλ is deterministic.

• One-wayness: For any G =
{
gλ : {0, 1}l(λ) → {0, 1}λ

}
∈ C2, there is a negligible function ν

such that for any λ ∈ N:

Pr
x←Uλ

[fλ(gλ(y)) = y | y ← fλ(x)] ≤ ν(λ)

For a function class C, we sometimes refer to a C-OWF or an OWF against C. In both these
cases, both C1 and C2 from the above definition are to be taken to be C. To be clear, this implies
that there is a family F ∈ C that realizes the primitive and is secure against all G ∈ C. We shall
adopt this abbreviation also for other primitives defined in the above manner.

Definition 2.9 (Pseudo-Random Generator). Let F =
{
fλ : {0, 1}λ → {0, 1}l(λ)

}
be a function

family. F is a C1-Pseudo-Random Generator (PRG) against C2 if:

• Computability: For each λ, fλ is deterministic.

• Expansion: l(λ) > λ for all λ. a(λ) = (l(λ) − λ) is called the additive stretch of the PRG,

and m(λ) = l(λ)
λ is called its multiplicative stretch.

• Pseudo-randomness: For any G =
{
gλ : {0, 1}l(λ) → {0, 1}

}
∈ C2, there is a negligible

function ν such that for any λ ∈ N:∣∣∣∣ Pr
x←Uλ

[gλ(fλ(x)) = 1]− Pr
y←Ul(λ)

[gλ(y) = 1]

∣∣∣∣ ≤ ν(λ)

18

Definition 2.10 (Collision Resistant Hashing). Let KeyGen = {KeyGenλ : ∅→ Kλ} and Eval ={
Evalλ : Kλ × {0, 1}λ → {0, 1}l(λ)

}
be function families. For a function s : N→ N, (KeyGen, Eval)

is a C1-Collision Resistant Hash Family (CRHF) against C2 with compression s if:

• Computability: For each λ, Evalλ is deterministic.

• Compression: For all large enough λ, l(λ) ≤ λ
s(λ) < λ.

• Collision Resistance: For any G =
{
gλ : Kλ → {0, 1}λ × {0, 1}λ

}
∈ C2, there is a negligible

function ν such that for any λ ∈ N:

Pr
k←KeyGenλ

[Evalλ(k, x) = Evalλ(k, y) | (x, y)← gλ(k)] ≤ ν(λ)

Definition 2.11 (Weak Pseudo-Random Functions). Let KeyGen = {KeyGenλ : ∅→ Kλ} and

Eval =
{
Evalλ : Kλ × {0, 1}λ → {0, 1}l(λ)

}
be function families. (KeyGen, Eval) is a Weak C1-

Pseudo-Random Function Family (Weak PRF) against C2 if:

• Computability: For each λ, Evalλ is deterministic.

• Pseudo-randomness: Let Fl,λ be the set of all functions from {0, 1}λ to {0, 1}l(λ). For any

function n : N → N and any G =

{
gλ :

(
{0, 1}λ × {0, 1}l(λ)

)n(λ)
→ {0, 1}

}
∈ C2, there is a

negligible function ν such that for any λ ∈ N:∣∣∣∣∣∣∣ Pr
k←KeyGenλ

x1,...,xn(λ)←Uλ

[gλ ({(xi,Evalλ(k, xi))}) = 1]

− Pr
f←Fl,λ

x1,...,xn(λ)←Uλ

[gλ ({(xi, f(xi))}) = 1]

∣∣∣∣∣∣∣ ≤ ν(λ)

The adjective Weak in the above definition is present because the adversary gets evaluations of
the PRF or a random function on randomly chosen input values. In the standard definition of a
PRF, the adversary is allowed to choose inputs at which to receive functions evaluations. While this
is a natural definition for polynomial-time adversaries, it is unclear how to extend this definition
to other classes of adversaries, especially to classes like AC0.

Definition 2.12 (Symmetric Key Encryption). Consider a triple of function families KeyGen =
{KeyGenλ : ∅→ Kλ}, Enc = {Encλ : Kλ × {0, 1} → Cλ}, and Dec = {Decλ : Kλ × Cλ → {0, 1}}.
(KeyGen, Enc,Dec) is a C1-Symmetric Key Encryption Scheme against C2 if:

• Correctness: There is a negligible function ν such that for any λ ∈ N and any b ∈ {0, 1}:

Pr

[
Decλ (k, c) = b

∣∣∣∣ k ← KeyGenλ
c← Encλ(k, b)

]
≥ 1− ν(λ)

19

• Semantic Security: For any polynomials n0, n1 : N→ N, and any family G =
{
gλ : C

n0(λ)+n1(λ)+1
λ → {0, 1}

}
∈

C2, there is a negligible function ν ′ such that for any λ ∈ N:

Pr

gλ ({c0
i

}
,
{
c1
i

}
, c
)

= b

∣∣∣∣∣∣∣∣∣
k ← KeyGenλ, b← U1

c0
1, . . . , c

0
n0(λ) ← Encλ(k, 0)

c1
1, . . . , c

1
n1(λ) ← Encλ(k, 1)

c← Encλ(k, b)

 ≤ 1

2
+ ν ′(λ)

Definition 2.13 (Public Key Encryption). Let KeyGen = {KeyGenλ : ∅→ SKλ × PKλ}, Enc =
{Encλ : PKλ × {0, 1} → Cλ}, and Dec = {Decλ : SKλ × Cλ → {0, 1}} be function families.
(KeyGen, Enc,Dec) is a C1-Public Key Encryption scheme against C2 if:

• Correctness: There is a negligible function ν such that for any λ ∈ N and any b ∈ {0, 1}:

Pr

[
Decλ (sk, c) = b

∣∣∣∣ (sk, pk)← KeyGenλ
c← Encλ(pk, b)

]
≥ 1− ν(λ)

• Semantic Security: For any G = {gλ : PKλ × Cλ → {0, 1}} ∈ C2, there is a negligible
function ν ′ such that for any λ ∈ N:

Pr

[
gλ (pk, c) = b

∣∣∣∣ (pk, sk)← KeyGenλ, b← U1

c← Encλ(pk, b)

]
≤ 1

2
+ ν ′(λ)

2.6 Randomized Encodings

The notion of randomized encodings of functions was introduced by Ishai and Kushilevitz [IK00] in
the context of secure multi-party computation. Roughly, a randomized encoding of a deterministic
function f is another deterministic function f̂ that is easier to compute by some measure, and
is such that for any input x, the distribution of f̂(x, r) (when r is chosen uniformly at random)
reveals the value of f(x) and nothing more. This reduces the computation of f(x) to determining
some property of the distribution of f̂(x, r). Hence, randomized encodings offer a flavor of worst-
to-average case reduction — from computing f(x) from x to that of computing f(x) from random
samples of f̂(x, r).

We work with the following definition of Perfect Randomized Encodings from [App14]. We note
that constructions of such encodings for ⊕L/poly which are computable in NC0 were presented in
[IK00].

Definition 2.14 (Perfect Randomized Encodings). Consider a deterministic function f : {0, 1}n →
{0, 1}t. We say that the deterministic function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a Perfect Ran-
domized Encoding (PRE) of f if the following conditions are satisfied.

• Input independence: For every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random variables
f̂(x, Um) and f̂(x′, Um) are identically distributed.

• Output disjointness: For every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′),
Supp(f̂(x, Um)) ∩ Supp(f̂(x′, Um)) = φ.

• Uniformity: For every x, f̂(x, Um) is uniform on its support.

• Balance: For every x, x′ ∈ {0, 1}n,
∣∣∣Supp(f̂(x, Um))

∣∣∣ =
∣∣∣Supp(f̂(x′, Um))

∣∣∣
20

• Stretch preservation: s− (n+m) = t− n

Additionally, the PRE is said to be surjective if it also has the following property.

• Surjectivity: For every y ∈ {0, 1}s, there exist x and r such that f̂(x, r) = y.

We naturally extend the definition of PREs to function families – a family F̂ =
{
f̂λ

}
is a PRE

of another family F = {fλ} if for all large enough λ, f̂λ is a PRE of fλ. Note that this notion only
makes sense for deterministic functions, and the functions and families we assume or claim to have
PREs are to be taken to be deterministic.

3 OWFs from worst-case assumptions

In this section and in Section 4, we describe some constructions of cryptographic primitives against
bounded adversaries starting from worst-case hardness assumptions. The existence of Perfect Ran-
domized Encodings (PREs) can be leveraged to construct one-way functions and pseudo-random
generators against bounded adversaries starting from a function that is hard in the worst-case for
these adversaries. We describe this construction below.

Remark 3.1 (Infinitely often primitives). For a class C, the statement F = {fλ} 6∈ C implies that
for any family G = {gλ} in C, there are an infinite number of values of λ such that fλ 6≡ gλ. Using
such a worst case assumption, we only know how to obtain primitives whose security holds for an
infinite number of values of λ, as opposed to holding for all large enough λ. Such primitives are
called infinitely-often, and all primitives constructed in this section and Section 4 are infinitely-often
primitives.

On the other hand, if we assume that for every G ∈ C, there exists λ0 such that for all λ > λ0,
fλ 6≡ gλ we can achieve the regular stronger notion of security (that holds for all large enough
security parameters) in each case by the same techniques.

Theorem 3.1 (OWFs, PRGs from PREs). Let C1 and C2 be two function classes satisfying the
following conditions:

1. Any function family in C2 has a surjective PRE computable in C1.

2. C2 6⊆ C1.

3. C1 is closed under a constant number of compositions.

4. C1 is non-uniform or randomized.

5. C1 can compute arbitrary thresholds.

Then:

1. There is a C1-OWF against C1.

2. There is a C1-PRG against C1 with non-zero additive stretch.

Theorem 3.1 in effect shows that the existence of a language with PREs outside C1 implies
the existence of one way functions and pseudorandom generators computable in C1 secure against
C1. Instances of classes that satisfy its hypothesis (apart from C2 6⊆ C1) include NC1 and BPP.
Note that this theorem does not provide constructions against AC0 because AC0 cannot compute
arbitrary thresholds.

21

Proof. Let F =
{
fλ : {0, 1}n(λ) → {0, 1}

}
be a function family in C2 that is not in C1, and let

F̂ =
{
f̂λ : {0, 1}n(λ) × {0, 1}m(λ) → {0, 1}s(λ)

}
be its PRE that is in C1. We define the family

G =
{
gλ : {0, 1}m(λ) → {0, 1}s(λ)

}
as:

gλ(x) = f̂λ(0n(λ), x)

We claim that G is both a C1-OWF and a C1-PRG against C1 with non-zero additive stretch. In
both cases, computability and non-triviality are easily seen to be satisfied. The non-zero additive
stretch follows from the stretch-preserving property of f̂λ, which guarantees that (s(λ)−m(λ)) = 1.

We now show the pseudorandomness of G against adversaries in C1. It is easily shown by
standard arguments that this implies that G is also one-way against adversaries in C1.

Suppose there is a familyA =
{
aλ : {0, 1}s(λ) → {0, 1}

}
in C1 such that aλ distinguishes between

the output of gλ and the uniform distribution with non-negligible advantage. We show how to use
A to show that F ∈ C1, which is a contradiction.

The advantage aλ has in distinguishing between the output of gλ and the uniform distribution
is given by:∣∣∣∣ Pr
x←Uλ

[aλ(gλ(x)) = 1]− Pr
y←Us(λ)

[aλ(y) = 1]

∣∣∣∣ =

∣∣∣∣ Pr
x←Uλ

[
aλ(f̂λ(0n(λ), x)) = 1

]
− Pr
y←Us(λ)

[aλ(y) = 1]

∣∣∣∣
which is assumed to be non-negligible. Due to the surjectivity of f̂λ, the uniform distribution

over {0, 1}s(λ) is the same as the equal convex combination of the distributions of f̂λ(0n(λ), r) and
f̂λ(z1, r) for any z1 such that fλ(z1) = 1. So we can rewrite the above advantage as:∣∣∣∣ Pr

x←Uλ

[
aλ(f̂λ(0n(λ), x)) = 1

]
−
(

1

2
Pr

x←Uλ

[
aλ(f̂λ(0n(λ), x)) = 1

]
+

1

2
Pr

x←Uλ

[
aλ(f̂λ(z1, x)) = 1

])∣∣∣∣
=

1

2

∣∣∣∣ Pr
x←Uλ

[
aλ(f̂λ(0n(λ), x)) = 1

]
− Pr
x←Uλ

[
aλ(f̂λ(z1, x)) = 1

]∣∣∣∣
which is non-negligible. Let p = Prx←Uλ

[
aλ(f̂λ(0n(λ), x)) = 1

]
and q = Prx←Uλ

[
aλ(f̂λ(z1, x)) = 1

]
.

To decide fλ(z) = fλ(0n(λ)) given z, by the input independence property of f̂λ, it is sufficient

to determine whether Prx←Uλ

[
aλ(f̂λ(z, x)) = 1

]
is less than

(p+q
2

)
. This may be done by taking

several samples from aλ(f̂λ(z, x)) and using the threshold function to check whether more than a(p+q
2

)
fraction of these are 1. The fact that p and q are non-negligibly separated implies that some

poly(λ) samples should suffice to be able to do this with exponentially small failure probability.
By the hypothesis, the function family that performs all these operations is in C1, and the

non-uniformity of C1 implies that fλ(0n(λ)) can be used as non-uniform advice to actually decide
fλ, and as noted in Section 1, the randomness involved above can be traded for non-uniformity.
This implies that F is in C1, which is a contradiction. This proves the pseudo-randomness of G for
adversaries in C1 (though only in the weak sense mentioned in Remark 3.1).

22

4 PKE against NC1 from worst-case assumptions

In Theorem 3.1 we saw that we can construct one way functions and PRGs with a small stretch
generically from Perfect Randomized Encodings (PREs) starting from worst-case hardness assump-
tions. We do not know how to construct Public Key Encryption (PKE) in a similar black-box
fashion. In this section, we use certain algebraic properties of a specific construction of PREs
for functions in ⊕L/poly due to Ishai-Kushilevitz [IK00] to construct Public Key Encryption and
Collision Resistant Hash Functions against NC1 that are computable in AC0[2] under the assump-
tion that ⊕L/poly 6⊆ NC1. We state the necessary implications of their work here. We start by
describing sampling procedures for some relevant distributions in Construction 4.1.

Construction 4.1 Sampling distributions from [IK00]

Let Mn
0 and Mn

1 be the following n× n matrices:

M0 =

0 · · · 0 0
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

 ,M1 =

0 · · · 0 1
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

LSamp(n):

1. Output an n×n upper triangular matrix where all entries in the diagonal are 1 and all other
entries in the upper triangular part are chosen at random.

RSamp(n):

1. Sample at random r← {0, 1}n−1.

2. Output the following n× n matrix:
1 0 · · · 0

0 1
. . .

... r
...

. . .
. . . 0

0 · · · 0 1
0 · · · 0 0 1

In the randomized encodings of [IK00], the output of the encoding of a function f on input x
is a matrix M sampled identically to R1M

λ
0R2 when f(x) = 0 and identically to R1M

λ
1R2 when

f(x) = 1, where R1 ← LSamp(λ) and R2 ← RSamp(λ). Notice that R1M
λ
1R2 is full rank, while

R1M
λ
0R2 has rank (λ−1). The public key in our encryption scheme is a sample M from R1M

λ
0R2,

and the secret key is a vector k in the kernel of M. An encryption of 0 is a random vector in the
row-span of M (whose inner product with k is hence 0), and an encryption of 1 is a random vector
that is not in the row-span of M (whose inner product with k is non-zero). Decryption is simply
inner product with k. (This is very similar to the cryptosystem in [ABW10] albeit without the
noise that is added there.)

23

Security follows from the fact that under our hardness assumption M is indistinguishable from
R1M

λ
1R2 (see Theorem 4.2), which has an empty kernel, and so when used as the public key results

in identical distributions of encryptions of 0 and 1.

Construction 4.2 Public Key Encryption

Let λ be the security parameter. Let Mλ
0 be the λ×λ matrix described in Construction 4.1. Define

the families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ} as follows.
KeyGenλ:

1. Sample R1 ← LSamp(λ) and R2 ← RSamp(λ).

2. Let k = (r 1)T be the last column of R2.

3. Compute M = R1M
λ
0R2.

4. Output (pk = M, sk = k).

Encλ(pk = M, b):

1. Sample r ∈ {0, 1}λ.

2. Let tT = (0 . . . 0 1), of length λ.

3. Output cT = rTM + btT .

Decλ(sk = k, c):

1. Output 〈c,k〉.

In randomized encodings, encoding is efficient while decoding is not. But notice that this is not
an issue in our case, as our scheme never tries to decode any encoding - we rely on the correctness
of the randomized encoding only for its implication of Theorem 4.2.

Theorem 4.1 (Public Key Encryption Against NC1). Assume ⊕L/poly 6⊆ NC1. Then, the tuple
of families (KeyGen, Enc,Dec) defined in Construction 4.2 is an AC0[2]-Public Key Encryption
Scheme against NC1.

Before beginning with the proof, we describe some properties of the construction. We first begin
with two sampling procedures that correspond to sampling from f̂(x, ·) when f(x) = 0 or f(x) = 1
as described earlier. We describe these again in Construction 4.3.

Construction 4.3 Sampling procedures

ZeroSamp(n): f̂(x, r) where f(x) = 0

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).

2. Output R1M0R2.

OneSamp(n): f̂(x, r) where f(x) = 1

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).

2. Output R1M1R2.

24

Theorem 4.2 ([IK00, AIK04]). For any boolean function family F = {fλ} in ⊕L/poly, there is a
polynomial n such that for any λ, fλ has a PRE f̂λ such that the distribution of f̂λ(x) is identical
to ZeroSamp(n(λ)) when fλ(x) = 0 and is identical to OneSamp(n(λ)) when fλ(x) = 1.

This implies that if some function in ⊕L/poly is hard to compute on the worst-case then it is
hard to distinguish between samples from ZeroSamp and OneSamp. In particular, the following
lemma follows immediately from the observation that ZeroSamp and OneSamp can be computed in
NC1.

Lemma 4.3. If ⊕L/poly 6⊆ NC1, then there is a polynomial n and a negligible function ν such that
for any family F = {fλ} in NC1, for an infinite number of values of λ,∣∣∣∣ Pr

M←ZeroSamp(n(λ))
[fλ(M) = 1]− Pr

M←OneSamp(n(λ))
[fλ(M) = 1]

∣∣∣∣ ≤ ν(λ)

Now we are in a position to use the indistinguishability result in Lemma 4.3 to prove Theorem
4.1.
Proof of Theorem 4.1. To prove the theorem, we need to show that the functions in the construc-
tion are computable in AC0[2] and that they are secure against NC1 adversaries. It is straightforward
to see that KeyGen, Enc, and Dec are in AC0[2], as multiplication of any constant number of ma-
trices can be done in constant depth with PARITY gates, and LSamp and RSamp simply involve
sampling random bits. Non-triviality is also easily seen to be satisfied.

Let t be as described in Construction 4.2. For any (M,k)← KeyGenλ, note that M = R1M
λ
0R2,

and k = (r 1)T is the last column of R2. It can be verified easily that Mk = R1(Mλ
0R2s) = 0, and

that 〈t,k〉 = 1. So for any b, Decλ(k,Encλ(M, b)) = 〈MT r + bt,k〉 = rTMk + b〈t,k〉 = b. This
proves correctness.

To prove semantic security, we need to show that the distributions of (pk,Encλ(pk, 0)) and
(pk,Enc(pk, 1)) are indistinguishable to adversaries in NC1. Note that by the action of KeyGenλ
and Encλ,

(pk,Encλ(pk, 0)) = (M, rTM | M← ZeroSamp(λ), r← {0, 1}λ)

For any adversary in NC1, we know by Lemma 4.3 that there are an infinite number of values of λ
for which:

(M, rTM | M← ZeroSamp(λ), r) ≈ (M, rTM | M← OneSamp(λ), r)

But the output of OneSamp is always full rank. Hence the distribution of rTM is uniform over
{0, 1}λ. Then,

(M, rTM | M← OneSamp(λ), r) = (M, rTM + tT | M← OneSamp(λ), r)

For the same adversary and the same infinite set of values of λ as before,

(M, rTM + tT | M← OneSamp(λ), r) ≈ (M, rTM + tT | M← ZeroSamp(λ), r)

which is the distribution of (pk,Encλ(pk, 1)). This proves the indistinguishability necessary for
semantic security.

25

Remark 4.1. The computation of the PRE from [IK00] can be moved to NC0 by techniques noted
in [IK00] itself. Using similar techniques with Construction 4.2 gives us a Public Key Encryption
scheme with encryption in NC0 and decryption and key generation in AC0[2]. The impossibility of
decryption in NC0, as noted in [AIK04], continues to hold in our setting.

Remark 4.2. (This was pointed out to us by Abhishek Jain.) The above PKE scheme has what are
called, in the terminology of [PVW08], “message-lossy” public keys – in this case, this is simply M
when sampled from OneSamp, as in the proof above. Such schemes may be used, again by results
from [PVW08], to construct protocols for Oblivious Transfer where the honest parties are computable
in NC1 and which are secure against semi-honest NC1 adversaries under the same assumptions (that
⊕L/poly 6⊆ NC1).

4.1 Collision Resistant Hashing

Note that again, due to the linearity of decryption, Construction 4.2 is additively homomorphic
– if c1 and c2 are valid encryptions of m1 and m2, (c1 ⊕ c2) is a valid encryption of (m1 ⊕ m2).
Furthermore, the size of ciphertexts does not increase when this operation is performed. Given
these properties, we can use the generic transformation from additively homomorphic encryption
to collision resistance due to [IKO05], along with the observation that all operations involved in
the transformation can still be performed in AC0[2], to get the following.

Theorem 4.4. Assume ⊕L/poly 6⊆ NC1. Then, for any constant c < 1 and function s such that
s(n) = O(nc), there exists an AC0[2]-CRHF against NC1 with compression s.

5 Cryptography Without Assumptions

In this section, we present some constructions of primitives unconditionally secure against AC0

adversaries that are computable in AC0. This is almost the largest complexity class (after AC0

with MOD gates) for which we can hope to get such unconditional results owing to a lack of better
lower bounds. In this section, we present constructions of PRGs with arbitrary polynomial stretch,
Weak PRFs, Symmetric Key Encryption, and Collision Resistant Hash Functions. We end with a
candidate for Public Key Encryption against AC0 that we are unable to prove secure, but also do
not have an attack against.

5.1 High-Stretch Pseudo-Random Generators

We present here a construction of Pseudo-Random Generators against AC0 with arbitrary poly-
nomial stretch that can be computed in AC0. In fact, the same techniques can be used to obtain
constant stretch generators computable in NC0— see Remark 5.1 for details..

The key idea behind the construction is the following: [Bra10] implies that for any constant ε,
an nε-wise independent distribution will fool AC0 circuits of arbitrary constant depth. So, being
able to sample such distributions in AC0 suffices to construct good PRGs. As shown in Section 2.3,
if H is the parity-check matrix of a code with large distance d, then the distribution Hx is d-wise
independent for x being a uniformly random vector (by Lemma 2.10). Further, as was also shown
in Section 2.3, even for rather large d there are such matrices H that are sparse, allowing us to
compute the product Hx in AC0.

26

Construction 5.1 AC0-PRG against AC0

For any polynomial l, we define the family F l =
{
f lλ : {0, 1}λ → {0, 1}l(λ)

}
as follows.

Lemma 2.9 implies for large λ, there is an [l(λ), (l(λ)− λ)]2 linear code with minimum distance at
least λ

log3(λ)
whose parity check matrix has log2(λ) non-zero entries in each row. Denote this parity

check matrix by Hl,λ. The dimensions of Hl,λ are l(λ)× λ.

f lλ(x) = Hl,λx

Theorem 5.1 (PRGs against AC0). For any polynomial l, the family F l from Construction 5.1 is

an AC0-PRG with multiplicative stretch
(
l(λ)
λ

)
.

Proof. For any l, the most that needs to be done to compute f lλ(x) is computing the product Hl,λx.
We know that each row of Hl,λ contains at most log2(λ) non-zero entries. Hence, by Lemma 2.5,

F l is in AC0. The multiplicative stretch being
(
l(λ)
λ

)
is also easily verified.

For pseudo-randomness, we observe that the product Hl,λx is Ω
(

λ
log3(λ)

)
-wise independent, by

Lemma 2.10. And hence, Theorem 2.2 implies that this distribution is pseudo-random to adversaries
in AC0.

Remark 5.1. For any constant c, NC0-PRGs against AC0 that provide a multiplicative stretch
of kc−1 can be obtained by noting that if we strengthen the hypothesis of Lemma 2.7 by setting
d = 8c, α = 6c, and γ = ω(polylog(k))

n , the lemma still holds, except that the negligible function is
now replaced with an inverse polynomial function, which is still smaller than 1 for large enough k.
As all we need for Construction 5.1 is that a matrix of the necessary form exists, this suffices to
construct a PRG that is computable in NC0 using the same techniques.

5.2 Weak Pseudo-Random Functions

In this section, we describe our construction of Weak Pseudo-Random Functions against AC0 com-
putable in AC0 (Construction 5.2). Roughly, we know that for a random sparse matrix H, (H,Hk)
is indistinguishable from (H, r) where r and k are chosen uniformly at random. We choose the key
of the PRF to be a random vector k. On an input x, the strategy is to use the input x to generate
a sparse vector y and then take the inner product 〈y,k〉.
Theorem 5.2 (PRFs against AC0). The pair of families (KeyGen, Eval) defined in Construction
5.2 is a Weak AC0-PRF against AC0.

The intuitive reason one would think Construction 5.2 might be pseudo-random is that a collec-
tion of random function values from a randomly sampled key seems to contain the same information
as (H,Hk) where k is sampled uniformly at random and H is sampled using SMSamp: a matrix
with sparse rows. We know from Lemma 2.9 that except with negligible probability, H is going
to be the parity check matrix of a code with large distance, and when it is, the arguments from
Section 5.1 show that (H,Hk) is indistinguishable from (H, r), where r is sampled uniformly at
random.

27

Construction 5.2 AC0-PRF against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in Lemma 2.5.
Define families KeyGen = {KeyGenλ} and Eval = {Evalλ} as follows.
KeyGenλ:

1. Output a random vector k← {0, 1}bλc2 .

Evalλ(k, r):

1. Compute y← SRSamp(bλc2 , log2(bλc2), r).

2. Output ip
log2(λ)
bλc2

(k,y).

The only fact that prevents this from functioning as a proof is that what the adversary gets is
not (y, 〈y,k〉) where y is an output of SRSamp, but rather (r, 〈y,k〉), where r is randomness that
when used in SRSamp gives y. One way to show that this is still pseudo-random is to reduce the
case where the input is (y, 〈y,x〉) to the case where the input is (r, 〈y,x〉) using an AC0-reduction.
To do this, one would need an AC0 circuit that would, given y, sample from a distribution close to
the uniform distribution over r’s that cause SRSamp to output y when used as randomness. We
implement this proof strategy below.

To prove Theorem 5.2, we first show that there exists an AC0 circuit that would, given y, sample
from a distribution close to the uniform distribution over r’s that cause SRSamp to output y when
used as randomness.

Lemma 5.3 (Inverting SRSamp). For any constant c, there exists another constant c′ and a poly-
nomial s such that for any k that is a power of 2 and d = Θ(logc(k)), there is a (randomized) circuit
Cinvk,d of size at most s(k) and depth c′, and a negligible function ν such that for any y ∈ {0, 1}k
that has exactly d non-zero entries,

∆(Cinvk,d (y), URy) ≤ ν(k)

where Ry = {r | SRSamp(k, d, r) = y}.

Proof. For any k that is a power of 2 and any d, given input y of length k and with exactly d
non-zero entries, consider the following inverting procedure:

1. Let z = (z1, . . . , zd), where the zj ’s are the indices (written as strings in {0, 1}log(k)) of non-
zero entries in y.

2. Permute the elements of z at random. Let z′ be the result of this operation.

3. Generate d sets {vi = (vi1, . . . , vid)}i∈[d], where each vij ∈ {0, 1}log(k). If there is no i ∈ [d]
such that there are no collisions among the elements of vi, output v = (v1, . . . , vd).

4. Otherwise, replace the first ri that has no collisions with z′ and output as the inverse v =
(v1, . . . , vi−1, z

′, vi+1, . . . , vd).

We first describe why this samples from a favourable distribution and then how to sample from
a distribution negligibly close to this in AC0. If none of the ri’s are free of collisions, then the

28

output of this procedure when used as randomness will actually not cause SRSamp to output y.

But the probability that this happens is at most
(
d2

k

)d
(see proof of Lemma 2.6).

Conditioned on the above not happening, we claim that the distribution of outputs is uniform
over Ry. It is clear by the definition of SRSamp that for any v′ that is output by this procedure,
v ∈ Ry, and also that any v ∈ Ry is output by this procedure with non-zero probability.

Consider any v′ = (v′1, . . . , v
′
d) ∈ Ry. Let z be as described in the above procedure. The fact

that v′ is in Ry implies that there is some i ∈ [d] such that v′i is some permutation of z and for
all j < i, r′j contains a collision. The probability that v′ is output by the above procedure is the
probability that all of the following three events happen:

1. v′1, . . . , v
′
i−1, v

′
i+1, . . . , v

′
d are sampled in step 3 of the procedure when a random v is sampled.

2. vi is sampled to be free of collisions.

3. z′ is equal to v′i.

Note that all three of these events are independent, and their probabilities do not depend on the
value of i or that of any of the v′js. Hence, conditioned on outputting a v′ ∈ Ry, the above procedure
outputs a uniformly random element from Ry, and so the distance of its output distribution from

the uniform distribution over Ry is at most the probability that it fails, which is
(
d2

k

)d
, which is

negligible when d = Θ(logc(k)) for some constant c.
Now we explain why each of the steps above can be performed by a constant depth circuit in

the case where d = O(logc(k)) for some c, with a negligible probability of failure. Recall that the
input is a string y of length k that has exactly d non-zero entries.

1. To compute z, let Hamj−1,l−1 be the constant depth circuit that computes that takes inputs
of length (l− 1) and checks whether the Hamming weight of its input is (j− 1). By Theorem
2.3, such a circuit exists for j ≤ d = O(logc(k)). Note that out of all l ∈ [d], exactly one of
(yl ∧Hamj−1,l−1(y1 . . . yl−1)) is true. So zj can be computed as follows:

zj =
∨
l∈[d]

[l ∧ (yl ∧Hamj−1,l−1(y1 . . . yl−1))]

where by (l ∧ φ), we mean the log(k)-bit string whose ith bit is equal to the ith bit of l if φ
is true, and is 0 otherwise.

2. While it is not clear how to sample uniformly from the set of all permutations of a given
tuple of elements in constant depth, it turns out to be possible to sample from a distribution
sufficiently close to this when there are only O(logc(k)) elements that are all distinct.

• Choose d numbers p1, . . . , pd ∈ [k]. The probability that two of them are equal is at

most
(
d2

k

)
.

• Repeat this process at most d times, till a set of p1, . . . , pd are chosen without collisions.
If no such set is found, output z′ = z itself.

• Note that all this - checking whether there are any collisions and picking the first set
without any - can be done in parallel in constant depth, and the probability that the

above step fails is at most
(
d2

k

)d
.

29

• Compute the string s ∈ {0, 1}k where si = 1 iff there is a j such that pj = i. Also

compute o ∈ {0, 1}k log(k) where oi = j if pj = i, and oj = 0log(k) otherwise.

• Compute the permuted string z′ as:

z′j =
∨
l∈[d]

[ol ∧ (sl ∧Hamj−1,l−1(s1 . . . sl−1))]

3. As noted in the point above, steps 3 and 4 of the procedure, which involve finding and
replacing with z′ a set that has no collisions, can also be done in constant depth.

The above randomized circuit computes the same distribution as the inversion procedure de-

scribed above except with probability at most
(
d2

k

)d
. So the distance of the distribution produced

from the uniform distribution over Ry is at most O

((
d2

k

)d)
= O

((
log2c(k)

k

)logc(k)
)

, which is

negligible.

Proof of Theorem 5.2. KeyGen and Eval are both in AC0 because KeyGenλ simply outputs random
strings, and Evalλ first calls SRSamp, which can be done in constant depth and outputs a vector
with at most log2(λ) non-zero entries, and then computes inner product of this sparse vector with

another vector using ip
log2(λ)
bλc2

, which can again be done in constant depth as noted in Lemma 2.5.

Non-triviality is also easily seen to be satisfied.

Consider any AC0 family G =
{
gλ : {0, 1}(λ+1)n(λ) → {0, 1}

}
, where n is some polynomial. To

simplify presentation, we prove pseudo-randomness when λ is a power of 2; the other case may be
proven very similarly.

We show that any pair of consecutive distributions among the following are indistinguishable
by AC0 adversaries for large enough λ. Below, k,xi ← {0, 1}λ, yi ← SpRλ,log2(λ), wi ← Ryi ,

zi ← Cinv
λ,log2(λ)

(yi), ri ← {0, 1}λ−log5(λ), and bi ← {0, 1}.

D1: {(xi,Evalλ(k,xi))}i∈[n(λ)]

D2: {(wi||ri,Evalλ(k,wi))}i∈[n(λ)]

D3: {(wi||ri, 〈k, yi〉)}i∈[n(λ)]

D4: {(zi||ri, 〈k, yi〉)}i∈[n(λ)]

D5: {(zi||ri, bi)}i∈[n(λ)]

D6: {(wi||ri, bi)}i∈[n(λ)]

D7: {(xi, bi)}i∈[n(λ)]

D1 and D2 are statistically close because wi is uniformly distributed over strings that do not
cause SRSamp(λ, log2(λ), wi) to fail, which is shown to be a negligible fraction in Lemma 2.6. D3

is simply a re-writing of D2 because of how Evalλ works.
D3 and D4 are statistically close by Lemma 5.3. D4 and D5 are indistinguishable by AC0

adversaries because Lemma 2.11 says that {(yi, 〈k, yi〉)} and {(yi, bi)} are indistinguishable by AC0,

30

and D4 and D5 can be sampled using samples from these two distributions, respectively, in AC0,
as shown in Lemma 5.3.

D5 and D6 are statistically close by Lemma 5.3. D6 and D7 are statistically close for the same
reason as D1 and D2.

D1 is the distribution of random evaluations of Construction 5.2, and D7 is the distribution of
random evaluations of a random function. So we have shown that gλ cannot distinguish between
these, which proves the pseudo-randomness of Construction 5.2 against AC0 adversaries.

Remark 5.2. Note that this construction cannot be a strong PRF for any reasonable definition
of that notion. If the adversary is able to select the inputs for function evaluations, it could easily
distinguish a function from Construction 5.2 from a random function by choosing x1,x2,x3 such
that SRSamp(λ, log2 λ,x1) + SRSamp(λ, log2 λ,x2) = SRSamp(λ, log2 λ,x3) and then checking if
f(x1) + f(x2) = f(x3).

Construction 5.2 of Weak PRFs achieves only quasi-polynomial security — that is, there is
no guarantee that some AC0 adversary may not have an inverse quasi-polynomial advantage in
distinguishing between the PRF and a random function. Due to the seminal work of Linial-
Mansour-Nisan [LMN93] and subsequent improvements in [Tal14], we know that this barrier is
inherent and we cannot hope for exponential security — see Observation 5.4.

Observation 5.4. For any set of Boolean functions, all of which are computable by circuits of size
m and depth d, there is a circuit of size poly(m) and depth O(d) which can distinguish a random
function from this set from a random function with an advantage of 1

mΩ(logd−1 m)
given only function

evaluations on randomly chosen inputs.

Proof. By [LMN93], any Boolean function f computed by a circuit of size m and depth d has over
a constant fraction of its Fourier mass on coefficients of degree O(logd−1m). So, there is a Fourier
Coefficient of degree ≤ O(logd−1m) with over 1

mΩ(logd−1 m)
Fourier mass.

This gives us a simple AC0 attack - try to guess this Fourier coefficient and estimate the corre-
lation using two samples - r1, r2 ← {0, 1}λ.

A((r1, f(r1)), (r2, f(r2)):

1. Guess a Fourier coefficient s of degree ≤ O(logd−1m)

2. If (χs(r1)⊕ f(r1)) = (χs(r2)⊕ f(r2)) Output 1 else 0.

For a random function, this adversary would output 1 exactly with probability 1/2. On the
other hand, let f̂(s) = E [f(x)⊕ χs(x)] be the Fourier coefficient. Then the probability of two

samples being equal would be (1−f̂(s)
2)2 + (1+f̂(s)

2)2 = 1
2 + f̂(s)2

2 . So, in expectation over s, the

distinguishing advantage of this adversary would be Es

[
f̂(s)2

]
= Ω(1

mΩ(logd−1)m
).

5.3 Symmetric Key Encryption

In this section, we present a Symmetric Key Encryption scheme against AC0 computable in AC0,
which is also additively homomorphic – a property that shall be useful in constructing Collision
Resistant Hash Functions later on.

In Section 5.2, we saw a construction of Weak PRFs. And Weak PRFs give us Symmetric Key
Encryption generically (where Enc(k, b) = (r,PRF(k, r)⊕b)). For the Weak PRF construction from

31

Section 5.2, this implied scheme also happens to be additively homomorphic. But it has the issue
that the last bit of the ciphertext is an almost unbiased bit and hence it is not feasible to do more
than polylog(λ) homomorphic evaluations on collections of ciphertexts in AC0. So, we construct
a different Symmetric Key Encryption scheme that does not suffer from this drawback and is
still additively homomorphic. Then we will use this scheme to construct Collision Resistant Hash
Functions. This scheme is described in Construction 5.3. In this scheme we choose the ciphertext
by performing rejection sampling in parallel. For encrypting a bit b, we sample a ciphertext c such
that c is sparse and 〈c,k〉 = b. This ensures that the we have an additively homomorphic scheme
where all the bits are sparse.

Construction 5.3 AC0-Symmetric Key Encryption against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in Lemma 2.5.
Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ} as below.
KeyGenλ:

1. Output k← {0, 1}bλc2 .

Encλ(k, b):

1. For i ∈ [λ], sample ci ← SRSamp(bλc2 , log2(bλc2)).

2. Choose the first i such that 〈ci,k〉 = b.

3. If such an i exists, output ci, else output 0bλc2 .

Decλ(k, c):

1. Output ip
log2(λ)
bλc2

(k, c).

Theorem 5.5 (Symmetric Encryption Against AC0). The tuple of families (KeyGen, Enc,Dec)
defined in Construction 5.3 is an AC0-Symmetric-Key Encryption Scheme against AC0.

The key idea behind the proof is showing that for most keys k, the distribution of a uniformly
random bit along with its encryption, that is,

D1 = {(b,Encλ(k, b)) | b← {0, 1}}

is statistically close to the distribution of a random sparse vector along with its inner product with
k, that is,

D2 =
{

(〈r,k〉, r) | r← SRSamp(λ, log2 λ)
}

The second distribution is similar to the one that came up in the security proof of the weak PRF
construction earlier, where we effectively showed that we can replace 〈r,k〉 with an independent
random bit without being caught by AC0 adversaries. We now prove the statistical closeness and
complete the above idea to a proof.

We begin by establishing some properties of the encryption scheme. This first lemma says that
most keys generated by KeyGenλ are balanced. It follows easily from the Chernoff bound when
applied to the Hamming weight of a random string of length λ.

32

Lemma 5.6. For the family KeyGen = KeyGenλ defined in Construction 5.3, for any λ,

Pr
k←KeyGenλ

[
‖k‖ ∈

(
λ

2
−
√
λ log2 λ,

λ

2
+
√
λ log2 λ

)]
> 1− negl(λ)

The following lemma states that for a vector k that is almost balanced, its inner product with
a random sparse vector is almost unbiased.

Lemma 5.7. For k of length λ such that ‖k‖ ∈
(
λ
2 −
√
λ log2 λ, λ2 +

√
λ log2 λ

)
,∣∣∣∣∣ Pr

r←SRSamp(λ,log2(λ))
[〈r,k〉 = 0]− Pr

r←SRSamp(λ,log2(λ))
[〈r,k〉 = 1]

∣∣∣∣∣ < negl(λ)

Proof. Let n = ‖k‖ and m = λ− ‖k‖. Below, r is sampled using SRSamp(λ, log2(λ)).
In the inner product 〈r,k〉, we start with an almost balanced k, the randomness r is used to

choose log2 λ coordinates of the key and then we xor these. We want to show that his output is
almost unbiased.

The number of possibilities for 〈r,k〉 = 0 is
∑

i is even

(
n

i

)(
m

d− i

)
. That is number of ones

chosen is even. This gives us:

Pr
r

[〈r,k〉 = 0]− Pr
r

[〈r,k〉 = 1] =

∑
i+j=d(−1)i

(
n

i

)(
m

j

)
(
m+ n

d

)
We want to show that this is negligible. The way we do this is by considering the gener-

ating function of the term and interpreting it differently. So, consider the generating function

of
∑

i+j=d(−1)i
(
n

i

)(
m

j

)
. It is (1 − x)n(1 + x)m with the coefficient of xd being the required

value. Without loss of generality say m ≥ n. We get an identity by rewriting (1− x)m(1 + x)n =

(1 − x2)n(1 + x)m−n and then looking at the coefficient of xd. It is -
∑

i≤d/2(−1)i
(
n

i

)(
m− n
d− 2i

)
.

So we get the identity: ∑
i+j=d

(−1)i
(
n

i

)(
m

j

)
=
∑
i≤d/2

(−1)i
(
n

i

)(
m− n
d− 2i

)

We know that
∑

i≤d/2(−1)i
(
n

i

)(
m− n
d− 2i

)
< d

(
n

d/2

)(
m− n
d

)
. We want to show that this is

negligible compared to

(
m+ n

d

)
.

d

(
n

d/2

)(
m− n
d

)
(
m+ n

d

) <
d
(√

ne
d

)d (
ne
d/2

)d/2
(

2n
d

)d <

(
e3/2

d

)d

which is negligible.

33

The following lemma states that the rejection sampling performed in Encλ fails only with negli-
gible probability for balanced keys. It follows from the statement of Lemma 5.7 that each 〈ri,k〉 is
an independent coin flip with negligible bias. Hence the probability that none of them would equal
b is exponentially small.

Lemma 5.8. For every b ∈ {0, 1} and any k of length λ such that ‖k‖ ∈
(
λ
2 −
√
λ log2 λ, λ2 +

√
λ log2 λ

)
,

Pr
r1,...,rλ←SRSamp(λ,log2(λ))

[∀i : 〈ri,k〉 6= b] < negl(λ)

The following lemma states that for keys that are almost balanced in Hamming weight, the
distribution of random bits with their encryptions under a key is similar to the distribution of inner
products of random sparse vectors with the key with the sparse vectors.

Lemma 5.9. For any k ∈ {0, 1}λ such that ‖k‖ ∈
(
λ
2 −
√
λ log2 λ, λ2 +

√
λ log2 λ

)
, define the

following distributions:

• D1 = {(b,Encλ(b,k)) | b← {0, 1}}
• D2 =

{
(〈r,k〉, r) | r← SRSamp(λ, log2 λ)

}
Then,

∆(D1, D2) < negl(λ)

Proof. It follows from the definition of Encλ and Lemma 5.8 that the when conditioned on 〈r,k〉 = b,
the distributions of r and Encλ(k, b) are negligibly close. According to Lemma 5.7, 〈r,k〉 is almost
unbiased, and its distribution is negligibly close to that of b. These two facts together imply that
D1 and D2 are negligibly close.

The semantic security definition is presented as a game in Figure 1. Here we choose a non-
adaptive notion of security because it is a bit-encryption scheme and for the given adversary model
considered - AC0 adversaries, adaptivity can only be very limited because it increases depth. We
also define two other games as shown in the same figure. The advantage of the adversary in each
game is:

∣∣Pr [b′ = b]− 1
2

∣∣. The following claims state that the advantage of AC0 adversaries in all
these games are comparable, a fact that will be useful in proving Theorem 5.5.

34

Game 1 - Semantic Security

Ch Adv

k← KeyGenλ

{
c0i
}
i
← Encλ (k, 0){

c1i
}
i
← Encλ(k, 1)

b← {0, 1} c = Encλ(k, b)

b′

Game 2 - Random Samples

Ch Adv

k← KeyGenλ,

{bi}i ← {0, 1} {(bi,Encλ(k, bi))}i

b← {0, 1} c = Encλ(k, b)

b′

Game 3 - Assumption

Ch Adv

k← KeyGenλ,

{ri}i ← SRSamp {(〈k, ri〉, ri)}i

b← {0, 1} c = Encλ(k, b)

b′

Figure 1: Security Games

Claim 5.1. For any adversary A ∈ AC0 with advantage ε(λ) in the Game 1, we can construct an
adversary B ∈ AC0 that has advantage

(
ε(λ)− 2−λ(n0(λ) + n1(λ))

)
in Game 2.

Proof. The adversary B takes (n1(λ) + n2(λ))λ samples and then selects n0(λ) samples with b = 0
and n1(λ) samples with b = 1 and feeds them to A along with the challenge b. The way it does this
is it for every sample required, it takes λ samples from the set of samples it has and selects the first
one that has the required bit b encrypted. It can do this for all the required bits in parallel and
constant depth. The only case when B diverges from A is when all of some set of λ samples are of
b. Happens with probability 2λ. We take a union bound over the (n0(λ) + n1(λ)) samples.

Claim 5.2. Any adversary A ∈ AC0 has comparable advantage in Game 2 and Game 3.

Proof. The input distributions - {(bi,Encλ(k, bi))}i and {(〈k, ri〉, ri)}i have negligible statistical dis-
tance. Because from Lemma 5.9 we know that for balanced keys the distributions {(bi,Encλ(k, bi))}
and {(〈k, ri〉, ri)} have negligible statistical distance. Hence the input distributions which are m(λ)
independent copies of the distributions also have negligible statistical distance. We also know from
Lemma 5.6 that the key is balanced except with negligible probability. And hence any adversary
cannot have a non-negligible difference in the advantage.

Proof of Theorem 5.5. It is easy to see that KeyGen ∈ AC0. Encλ can be computed in constant
depth because SRSamp can, the inner product in step 2 is with an output of SRSamp, which is
sparse, and the first i such that 〈ri,k〉 = b can also be found in constant depth. Decλ can be
computed in constant depth as stated in Lemma 2.5. So computability is satisfied. Non-triviality
is also easily seen to be satisfied.

Correctness follows from Lemma 5.8, which implies that if the key generated by KeyGenλ is
balanced, the ciphertext is generated correctly by Encλ except with negligible probability. Lemma
5.6 says that the key is unbalanced only with negligible probability. Also, for any k and any

35

ciphertext c generated by Encλ, Decλ(k, c) is actually equal to 〈k, c〉 because the are outputs of
Encλ are always sparse. So except with negligible probability over the randomness in the generation
of keys and encryption, decryption is correct.

Due to Claims 5.1 and 5.2, it is sufficient to prove that any AC0 adversary has negligible
advantage in Game 3 to prove semantic security. We prove this for the case where λ is a power of
2; the proof for the other case then follows immediately from the observation that bλc2 = Θ(λ).

Essentially in the form of samples, the adversary gets (R,Rk) where R is sampled using
SMSamp(m(λ), λ, log2 λ) and k← {0, 1}λ. Let the challenge be (r?, b), where b← {0, 1} and r? ←

Encλ(k, b). Consider the matrix

(
R Rk
r? b

)
. This matrix is indistinguishable from

(
R r
r? r′

)
where r ← {0, 1}λ, r′ ← {0, 1}, and r? ← SRSamp(λ, log2(λ)) for AC0 circuits from Lemmas 2.11
and 5.9. Any adversary that has non-negligible advantage in Game 3 can be used to distinguish
these two distributions. Hence no adversary has non-negligible advantage in Game 3.

We further claim that the adversary cannot distinguish between encryptions of two messages
of its own choosing. We formalize this using the security game in Theorem 5.10.

Theorem 5.10. No AC0 adversary (A1,A2) has non-negligible advantage against the Symmetric
Key Encryption scheme from Construction 5.3 in the Multibit Semantic Security game given below.

1. k← KeyGenλ

2. (m0,m1, state)← A1 where |m0| = |m1| = poly(λ).

3. b′ = A2(Encλ(k,mb), state) where b← {0, 1}.
4. Adversary wins if b = b′.

Proof. The way we prove this is by a sequence of hybrids. Consider m′i to be the message obtained
by concatenating the first i bits of m0 and the last n− i bits of m1.

m′i(x) =

{
m0(x) if x ≤ i
m1(x) if x > i

In hybrid i, the adversary has to distinguish the Enc(k,m′i) from Enc(k,m′i+1). The advantage
the adversary has in distinguishing between Enc(k,m0) and Enc(k,m1) is at most the sum of
advantages in each of the hybrids. We show that the adversary has negligible advantage in each of
the hybrids from the fact that the messages m′i and m′i+1 differ only in one bit.

If there exists an AC0 adversary A that has a non-negligible advantage in distinguishing between
Enc(k,m′i) and Enc(k,m′i+1) we use the adversary to construct an adversary B that has non-
negligible advantage in the Single bit semantic security game. Let c be the challenge. We use the
encryptions

{
c0
i

}
of 0 and

{
c1
i

}
of 1 to construct the input -

c?(j) =

c If j = i+ 1

Enc(k,m0(j)) If j ≤ i
Enc(k,m1(j)) If j > i+ 1

c? has the same distribution as
{
m′i,m

′
i+1

}
and hence we can use this adversary to distinguish

in the one-bit semantic security game.
Hence the advantage in each of the hybrids is negligible.

36

5.4 Collision Resistant Hash Functions

To construct Collision Resistant Hash Functions (CRHFs), we use the additive homomorphism of
the Symmetric Key Encryption scheme constructed in Section 5.3. Each function in the family of
hash functions is given by a matrix whose columns are ciphertexts from the encryption scheme, and
evaluation is done by treating the input as a column vector and computing its product with this
matrix (effectively computing a linear combination of ciphertexts). To find collisions, the adversary
needs to come up with a vector in the kernel of this matrix. We show that constant depth circuits of
polynomial size cannot do this for most such matrices. This is because the all-zero vector is a valid
encryption of 0 in our encryption scheme, and as this scheme is additively homomorphic, finding a
subset of ciphertexts that sum to zero is roughly the same as finding a subset of the corresponding
messages that sum to 0, and this is a violation of semantic security.

Construction 5.4 AC0-CRHFs against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in Lemma 2.5. Let

(KeyGenEnc, EncEnc) be the SKE scheme from Construction 5.3. Let l(λ) =
⌊

λ
s(λ)

⌋
2
.

For any s : N → N such that s(λ) = O(logc(λ)) for some constant c, we define the families
KeyGens = {KeyGensλ} and Evals = {Evalsλ} as follows.

KeyGensλ:

1. Sample k← KeyGenEncl(λ) , and b1, . . . , bλ ← {0, 1}.

2. Output M = (m1, . . . ,mλ), where mi ← EncEncl(λ) (k, bi).

Evalsλ(M,x):

1. Note that M = (m1, . . . ,mλ), where each mi is of length l(λ).

2. For j ∈ [l(λ)], let rj = (m1j , . . . ,mλj) (the jth bit of each mi).

3. Output (h1, . . . , hl(λ)) , where hj = ip
4s(λ) log2(λ)
λ (rj ,x).

Theorem 5.11 (CRHFs Against AC0). For any polylogarithmic function s, the pair of families
(KeyGens, Evals), from Construction 5.4 is an AC0-CRHF with compression s.

Proof. Throughout this proof, it will be useful to think of the hash function index M as a matrix
whose columns are the mi’s, and whose rows are the rj ’s. What Evalsλ(M,x) effectively does now

is compute the product Mx. As in the construction, let l(λ) =
⌊

λ
s(λ)

⌋
2
.

We first observe that we can actually compute both the function families KeyGens and Evals
in AC0. This is easy to observe for KeyGensλ because of Construction 5.3 being in AC0, and for Evalsλ
because of Lemma 2.5. Non-triviality and compression are easily seen to be satisfied.

Observe about that since we choose b1, . . . , bλ and k at random, the distribution of the matrices
M is negligibly close to that of the transpose of matrices sampled from SpMλ,l(λ),log2(l(λ)), by
Lemmas 5.6, 5.9, and 2.6. Now we use a Chernoff bound to see that every row will also have less

than
(

2λ log2(l(λ))
l(λ)

)
≤ 4s(λ) log2(λ) Hamming weight with all but negligible probability. So, except

with negligible probability, Evalsλ(M,x) = Mx.

37

Hence, to prove security, it is sufficient to show that for an adversary in AC0, for most such M,
it is hard to find an x ∈ {0, 1}λ, x 6= 0 such that Mx = 0, except with negligible probability. This
is because our hash function is linear with high probability and when it is, finding a collision is the
same as finding a non-zero pre-image for 0l(λ).

If possible, let A be an adversary given M of dimension l(λ) × λ whose columns are sampled
from KeyGensλ, can actually find a vector in the kernel. We will use this adversary to break the
semantic security of Construction 5.3. Say there is a polynomial p such that

Pr
M←KeyGensλ

[M · A(M) = 0] ≥ 1

p(λ)

We know from Theorem 5.10 that the symmetric encryption scheme is semantically secure even
for chosen multi-bit messages.

From the given adversary A that breaks the collision resistant hash function, we construct an
adversary B that breaks the multibit semantic security. B works as follows:

1. It chooses m0 ← {0, 1}λ and m1 ← SRSamp(λ, 1) and sends them to the challenger

2. Upon receiving ciphertext M from the challenger, it computes v = A(M).

3. If Mv = 0 and 〈v,m1〉 6= 0, it sets b′ = 0.

4. Else, it sets b′ at random.

We need to show that this adversary breaks multibit semantic security with a polynomial
advantage and that it can be computed in AC0. That it can be computed in AC0 is easy to see
because SRSamp and A can, and the inner product in step 3 is with m1, which has at most one
non-zero entry.

Note that by the correctness of Construction 5.3, the probability that EncEncl(λ) produces a ci-
phertext that does not decrypt correctly is negligible. This means that except with negligible
probability, if c is an encryption of m under key k, then 〈c,k〉 = m; in this case the construction
is additively homomorphic - if c1 and c2 are encryptions of m1 and m2 under the same key, then
(c1⊕c2) is an encryption of (m1⊕m2). Then the following arguments follow except with negligible
probability.

If b = 1 (m1 was encrypted), then Mv = 0 implies that 〈m1,v〉 = 0 and hence B will always
output a random bit b′ and hence gains or loses no advantage.

On the other hand, if b = 0 (m0 was encrypted), then the distribution of M is the same as that
generated by KeyGensλ. In this case, the adversary A will generate a vector v 6= 0 in the kernel of
M with probability at least 1

p(λ) . Conditioned on this happening, if it turns out that 〈m1,v〉 6= 0,
then B will guess b correctly as 0. If this does not happen, then again B guess randomly and loses
nothing. So we would be done if we can show that in this case the inner product 〈m1,v〉 is non-zero
with some inverse polynomial probability.

When b = 0, m1 - the sparse vector - is sampled independently from M and hence from v.
As observed earlier, by Lemmas 5.6 and 5.9, the distribution of MT is negligibly close to that of
SMSamp(λ, l(λ), log2(l(λ))). So Lemma 2.9 implies that except with negligible probability, the code
whose parity check matrix is MT has distance at least λ

log3 λ
. In this case, ‖v‖0 ≥

λ
log3 λ

.

Since the Hamming weight of m1 is 1, the probability of the 〈m1,v〉 being non-zero is simply
‖v‖0
λ ≥ 1

log3 λ
. So, B achieves non-negligible advantage (almost 1

p(λ) log3(λ)
) in the multibit semantic

security game, which contradicts the semantic security of Construction 5.3 that was established in

38

Theorem 5.10, which is a contradiction. This completes the argument, demonstrating the collision
resistance of Construction 5.4.

5.5 Candidate Public Key Encryption Scheme

In Lemma 2.11 we showed that the distribution (A,Ak) where A was sampled as a sparse matrix
and k was a random vector is indistinguishable from (A, r) where r is also a random vector, for
a wide range of parameters. We need at least one of the two A or k to be sparse to enable the
computation of Ak in AC0. If we make the analogous indistinguishability assumption with the
key being sparse – that is, that (A,Ak) is indistinguishable from (A, r) where A ← {0, 1}λ×λ,
k ← SRSamp(λ, log2 λ) and r ← {0, 1}λ – this allows us to construct a Public Key Encryption
scheme against AC0 computable in AC0.

This is presented in Construction 5.5, and is easily seen to be secure under Assumption 5.12.
This candidate is very similar to the LPN based cryptosystem due to Alekhnovich [Ale03]. Note
that while the correctness of decryption in Construction 5.5 is not very good, this may be easily
amplified by repetition without losing security, as the error is one-sided.

Assumption 5.12. Distributions D1 = (A,Ak) where A ← {0, 1}λ×λ, k ← SRSamp(λ, log2 λ)
and D2 = (A, r) where r ← {0, 1}λ are indistinguishable by AC0 adversaries with non-negligible
advantage.

Construction 5.5 Public key encryption

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in Lemma 2.5.
Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ} as below.
KeyGenλ:

1. Sample A← {0, 1}λ×λ−1, k← SRSamp(λ− 1, log2 λ)

2. Output (pk, sk) = ((A,Ak) ,k ◦ 1).

Encλ(pk, b):

1. If b = 0, sample t← SRSamp(λ, log2 λ) and output tTpk

2. Else if b = 1, output t← {0, 1}λ

Decλ(sk, c):

1. Output ip
log2(λ)
bλc2

(sk, c).

The most commonly used proof technique in this paper – showing k-wise independence for a
large k – cannot be used to prove the security of this scheme because due to the sparsity of the
key, the distribution (A,Ak) is not k-wise independent.

Conclusions and Open Questions. We construct various cryptographic primitives secure
against parallel-time-bounded adversaries. Our constructions against AC0 are unconditional whereas
our constructions against NC1 require the assumption that NC1 6= ⊕L/poly. Our constructions make
use of circuit lower bounds [Bra10] and non-black-box use of randomized encodings for logspace
classes [IK00].

There are several open questions that arise out of this work. Perhaps the most immediate are:

39

1. Unconditional lower-bounds are known for slightly larger classes like AC0[p] when p is a prime
power. Can we get cryptographic primitives from those lower-bounds?

2. Construct a public key encryption scheme secure against AC0, either by proving the security
of our candidate proposal (see Section 5.5) or by completely different means.

Natural ways of doing this lead us to a fascinating question about the complexity of AC0

circuits. Braverman [Bra10] shows that any nε-wise independent distribution fools all AC0

circuits. Our candidate encryption, however, produces ciphertexts that come from a logc(n)-
wise distribution for some constant c. This raises the following question: Can we show some
fixed polylog-wise independent distribution (that is not nε-wise independent) that fools AC0

circuits of arbitrary depth? (This question came up during discussions with Li-Yang Tan.)

3. We relied on the assumption that ⊕L/poly 6⊂ NC1 to construct primitives secure against NC1.
It would be desirable to relax the assumption to P 6⊂ NC1.

A related extension of Merkle’s work is to construct a public-key encryption scheme resistant
against O(nc) time adversaries (for some c > 2) under worst-case hardness assumptions.

References

[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-
tations. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 471–474, 1984.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 171–180. ACM, 2010.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-
way functions on np-hardness. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701–710, 2006.

[AGHP93] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Addendum to ”simple
construction of almost k-wise independent random variables”. Random Struct. Algo-
rithms, 4(1):119–120, 1993.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nco. In FOCS
2004: 45th Annual IEEE Symposium on Foundations of Computer Science: proceed-
ings: 17-19 October, 2004, Rome, Italy, page 166. IEEE Computer Society Press, 2004.

[Ajt83] M. Ajtai. 11-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1
– 48, 1983.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In Foun-
dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on,
pages 298–307. IEEE, 2003.

[App14] Benny Applebaum. Cryptography in nc 0. In Cryptography in Constant Parallel Time,
pages 33–78. Springer, 2014.

40

[AR99] Yonatan Aumann and Michael O Rabin. Information theoretically secure communica-
tion in the limited storage space model. In Advances in CryptologyCRYPTO99, pages
65–79. Springer, 1999.

[AR15] Benny Applebaum and Pavel Raykov. On the relationship between statistical zero-
knowledge and statistical randomized encodings. Electronic Colloquium on Computa-
tional Complexity (ECCC), 22:186, 2015.

[AW85] Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits (preliminary version). In 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 11–19, 1985.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. In Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 1–5, 1986.

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions on
np-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptog-
raphy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science,
pages 1–6. Springer, 2015.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology - CRYPTO 2001, pages 1–18, 2001.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography
on strong one-way functions. In Ran Canetti, editor, Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.,
volume 4948 of Lecture Notes in Computer Science, pages 55–72. Springer, 2008.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Virginia, USA, November
3-5, 1993., pages 62–73. ACM, 1993.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC 0 circuits. J. ACM, 57(5),
2010.

[BT03] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP
problems. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-
14 October 2003, Cambridge, MA, USA, Proceedings, pages 308–317. IEEE Computer
Society, 2003.

41

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.
Invited to SIAM Journal on Computing.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded
adversaries. In Advances in CryptologyCRYPTO’97, pages 292–306. Springer, 1997.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DM04] Stefan Dziembowski and Ueli Maurer. On generating the initial key in the bounded-
storage model. In Advances in Cryptology-EUROCRYPT 2004, pages 126–137.
Springer, 2004.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[Gal62] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Information Theory,
8(1):21–28, 1962.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS 2013, pages 40–49, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC 1982, pages 365–377, 1982.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 291–304, 1985.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 31–40, 2012.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceed-
ings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 6–20, 1986.

[Has87] Johan Hastad. One-way permutations in nc 0. Information Processing Letters,
26(3):153–155, 1987.

[H̊as14] Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014.

42

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on, pages 294–304. IEEE, 2000.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for collision-
resistant hashing. In Theory of Cryptography, Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, pages
445–456, 2005.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pages 230–235. IEEE Computer Society, 1989.

[IR88] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Advances in Cryptology - CRYPTO ’88, 8th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceed-
ings, pages 8–26, 1988.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[Mau92] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Commun. ACM,
21(4):294–299, 1978.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages
306–315, 2006.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators in

nc0. Random Struct. Algorithms, 29(1):56–81, 2006.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, pages 554–571, 2008.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

43

[Raz87] A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the
USSR, 41(4):333–338, 1987.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth
hierarchy theorem for boolean circuits. Electronic Colloquium on Computational Com-
plexity (ECCC), 22:65, 2015.

[RW91] Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-treshold cir-
cuits. Inf. Process. Lett., 39(3):143–146, 1991.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean cir-
cuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 77–82, 1987.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484. ACM,
2014.

[Tal14] Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic Colloquium on
Computational Complexity (ECCC), 21:174, 2014.

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved
derandomization of AC0. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 242–247,
2013.

[Vad04] Salil P Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded-storage model. Journal of Cryptology, 17(1):43–77, 2004.

[Vio12] Emanuele Viola. The complexity of distributions. SIAM Journal on Computing,
41(1):191–218, 2012.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Computer Society, 1982.

A H̊astad’s OWF Construction

H̊astad([Has87]) constructed One-Way Functions (actually One Way Permutations) against AC0

based on the average-case hardness of the PARITY function against low-depth circuits. This is
presented in Construction A.1.

Theorem A.1 (OWFs against AC0). The family F from Construction A.1 is an NC0-One-Way
Function against AC0.

44

Construction A.1 NC0-One-Way Function against AC0

F = {fλ} is given by:

fλ(x1, . . . , xλ) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xλ−1 ⊕ xλ, xλ)

The intuition behind the proof is that given the output (x1⊕ x2, x2⊕ x3, . . . xλ−1⊕ xλ, xλ), the
first bit of the inverse is the parity of the output. Since the output is uniform distribution for the
input being uniform, the average case hardness of parity implies that AC0 adversaries cannot invert
this function.
Proof of Theorem A.1. Computability and non-triviality are easily seen to be satisfied - each
output bit of fλ for any λ depends on at most two input bits, fλ is deterministic.

Note that fλ is bijective. Any y = (y1, . . . , yλ) has a unique inverse under fλ, which is
(⊕ni=1yi,⊕ni=2yi, . . . , yn−1 ⊕ yn, yn). In particular, the first bit of the inverse is PARITY(y).

Consider any AC0 function family G = {gλ}. Define another function family H = {hλ}, where
hλ does the follwing on input y:

1. Compute z ← gλ(y).

2. Check whether fλ(z) = y.

3. If so, output the first bit of z.

4. If not, output a random bit.

H is also an AC0 function family because fλ and gλ can be computed in constant depth, and
so can checking equality. This means that there is a polynomial s and constant d such that gλ is
computed by a circuit of size at most s(λ) and depth at most d.

By the above observation about the first bit of fλ, we have for any λ:

Pr
y←{0,1}λ

[hλ(y) = PARITY(y)] = Pr
y←{0,1}λ

[
gλ(y) = f−1

λ (y)
]

+
1

2
Pr

y←{0,1}λ

[
gλ(y) 6= f−1

λ (y)
]

=
1

2
+

1

2
Pr

y←{0,1}λ

[
gλ(y) = f−1

λ (y)
]

By the injectivity of fλ, we have:

Pr
x←{0,1}λ

[fλ(gλ(y)) = y | y = fλ(x)] = Pr
y←{0,1}λ

[
gλ(y) = f−1

λ (y)
]

Hence, to prove one-wayness, we only need to show that hλ cannot compute PARITY correctly
with probability noticeably greater than 1

2 . This follows directly from Theorem 2.1 as:

Pr
y←{0,1}λ

[hλ(y) = PARITY(y)] ≤ 1

2
+ 2−Ω(λ/(log s(λ))d−1)

45

Hence, there cannot be an AC0 family of functions G that has non-negligible advantage in
inverting F , and this proves the theorem.

Remark A.1. Construction A.1 is, in fact, a permutation.

Remark A.2. It is not difficult to generalise Construction A.1 by noting that the only properties
of fλ used in the proof are that:

1. fλ(x) is uniform over {0, 1}λ
′

when x is uniform over {0, 1}λ.

2. PARITY(fλ(x)) is computable from x in AC0.

One example of a function with these properties is f(x) = Ax, where A is a full rank λ′ × λ for
some λ′ < λ, and the sum of all the rows of A is a vector of low (polylog in λ) Hamming weight.

46

	Introduction
	Our Results and Techniques
	Constructions against NC1 Adversaries
	Constructions against AC0 Adversaries

	Other Related Work: Cryptography against Bounded Adversaries

	Preliminaries
	Notation
	Constant-Depth Circuits
	Graphs and Linear Codes
	Adversaries
	Primitives Against Bounded Adversaries
	Randomized Encodings

	OWFs from worst-case assumptions
	PKE against NC1 from worst-case assumptions
	Collision Resistant Hashing

	Cryptography Without Assumptions
	High-Stretch Pseudo-Random Generators
	Weak Pseudo-Random Functions
	Symmetric Key Encryption
	Collision Resistant Hash Functions
	Candidate Public Key Encryption Scheme

	Håstad's OWF Construction

