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Indistinguishability Obfuscation: from Approximate to Exact∗

Nir Bitansky† Vinod Vaikuntanathan‡

Abstract

We show general transformations from subexponentially-secure approximate indistinguisha-
bility obfuscation (IO) where the obfuscated circuit agrees with the original circuit on a 1/2 + ε
fraction of inputs on a certain samplable distribution, into exact indistinguishability obfuscation
where the obfuscated circuit and the original circuit agree on all inputs. As a step towards our
results, which is of independent interest, we also obtain an approximate-to-exact transformation
for functional encryption. At the core of our techniques is a method for “fooling” the obfuscator
into giving us the correct answer, while preserving the indistinguishability-based security. This
is achieved based on various types of secure computation protocols that can be obtained from
different standard assumptions.

Put together with the recent results of Canetti, Kalai and Paneth (TCC 2015), Pass and
Shelat (TCC 2016), and Mahmoody, Mohammed and Nemathaji (TCC 2016), we show how to
convert indistinguishability obfuscation schemes in various ideal models into exact obfuscation
schemes in the plain model.
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1 Introduction

Program obfuscation, the science of making programs “unintelligible” while preserving functionality,
has been a holy grail in cryptography for over a decade. While the most natural and intuitively
appealing notion of obfuscation, namely virtual-black-box (VBB) obfuscation [BGI+12], was shown
to have strong limitations [BGI+12, GK05, BCC+14], the recent work of Garg, Gentry, Halevi,
Raykova, Sahai and Waters [GGH+13b, SW14] opened new doors by demonstrating that the weaker
notion of indistinguishability obfuscation (IO) is both very useful and potentially achievable. Since
then, a veritable flood of applications has made indistinguishability obfuscation virtually “crypto-
complete”.

On the flip side, the tremendous power of IO also begets its reliance on strong and untested
computational assumptions. Indeed, it has been a major cryptographic quest to come up with
a construction of IO based on well-studied computational assumptions. Garg et al. [GGH+13b]
gave the first candidate construction of IO, however the construction came as-is, without a security
proof. We have recently seen several works [PST14, GLSW14, AJ15, BV15a] that shed light
on how a security proof for IO will look like. Pass, Seth and Telang show security of an IO
construction based on a “semantic security” assumption on multi-linear maps [GGH12]; Gentry,
Lewko, Sahai and Waters [GLSW14] (following [GLW14]) show security based on the “multilinear
subgroup elimination assumption” on multi-linear maps; Ananth and Jain [AJ15] and Bitansky
and Vaikuntanathan [BV15a] show how to construct IO from any functional encryption scheme.

Unfortunately, the first two of these works are based on the mathematical abstraction of multi-
linear maps which has had a troubled history so far (with several constructions [GGH13a, CLT13,
BWZ14, GGHZ14, GGH15, CLT15] and matching attacks [GGH13a, LS14, CHL+15, CGH+15,
HJ15]), and the last two rely on functional encryption with succinct encryption for which the only
known constructions, yet again, use multi-linear maps.

Yet another line of work focuses on proving the security of obfuscators in so-called idealized
models. In a typical idealized model, both the construction and the adversary have access to an
oracle that implements a certain functionality; in the random oracle model [BR93], this is a random
function; in the generic group model [Sho97], this is the functionality of a group; and the most recent
entrant to this club, namely the ideal multilinear map model, is an abstraction of the functionality
of multilinear maps. Several works [BR14b, BR14a, BGK+14, AB15, Zim15] along this route prove
security of (different) constructions of obfuscation (even in the sense of virtual black-box security)
in various ideal multi-linear map models.

An even more recent line of work, initiated by Canetti, Kalai, and Paneth [CKP15], inves-
tigates how to transform constructions of obfuscation in idealized models into ones in the plain
model, where there are no oracles. Indeed, this may lead to an aesthetically appealing avenue to
constructing obfuscation schemes:

1. Construct an obfuscation scheme in an appropriate idealized model.

2. “De-idealize” it: translate the ideal model obfuscation scheme into a scheme in the real world.

Even if eventual constructions of obfuscation schemes do not initially proceed along these lines,
we believe that this two-step process is a conceptually appealing route to eventual, mature, con-
structions of obfuscation schemes. Indeed, constructions in ideal models, while not immediately
deployable, typically give us an abstract, high level, understanding.



In more detail, the work of [CKP15] show that any obfuscator in the random oracle model
can be converted to an obfuscator in the plain model with the same security properties. Pass and
Shelat [Pas16] and subsequently, Mahmoody, Mohammed and Nematihaji [MMN16] extend this
to the generic group and ring models respectively, as well as ideal multilinear maps model with
bounded multi-linearity.

However, the resulting obfuscators suffer from a major drawback: they only have approximate
correctness. That is, the plain model obfuscator may err on a polynomially large fraction of inputs
(or more generally with some polynomial probability when inputs are taken from a given samplable
distribution). Roughly speaking, these results proceed by isolating a list of “heavy oracle queries”,
that is, queries that arise in the evaluation of the obfuscated circuit on a large fraction of inputs.
Once the (polynomially large set of) heavy queries are identified, the result of the oracle queries
on this set is published as part of the obfuscated circuit. This approach will inherently miss the
queries made by a rare set of inputs, resulting in an incorrect evaluation.

While these transformations already have interesting consequences (regarding the impossibility
of VBB in these idealised models), the lack of correctness presents a serious obstacle towards
fulfilling the above two-step plan. Indeed, it is far from clear that applications of IO will work when
we only have approximate IO at our disposal. Certainly, one could go through the applications of IO
one-by-one, and attempt to re-derive them from approximate IO, but in the absence of automated
theorem provers1, this seems neither particularly efficient nor aesthetically pleasing. This motivates
us to ask:

Can approximate indistinguishability obfuscation be made exact?

In other words, we are asking for “one transformation to rule them all”, a generic way to compile an
approximate obfuscation scheme into a perfectly correct obfuscation scheme, automatically enabling
to recover all the applications of IO even given only approximately correct obfuscation.

In this work, we provide exactly such a transformation, under standard additional assumptions.
Let us now describe our results in detail.

1.1 Our Results

We say that an obfuscator apO is (X , α)-correct for a given input sampler X and α ∈ [0, 1] (which
may depend on the security parameter), if it is correct with probability at least α over inputs sam-
pled by X . Security is defined as in the standard setting of (exact) indistinguishability obfuscation.
We shall refer to such an obfuscator as an approximate indistinguishability obfuscator.

Our main result is that approximate IO with subexponential security for a certain class of
samplers can be converted under standard assumptions into almost exact IO where for any circuit,
with overwhelming probability over the coins of the obfuscator algorithm the resulting obfuscation
is correct on all inputs. We present two routes towards this result based on different assumptions
and with different parameters.

Theorem 1.1 (informal). Assuming DDH, there exists an input sampler X1 and a transformation
that for any α ≥ 1

2 + λ−O(1), converts any (X1, α)-correct sub-exponentially secure IO scheme for
P/poly into an almost exact IO scheme for P/poly.

1Graduate students do not count.
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Theorem 1.2 (informal). Assuming sub-exponentially-secure puncturable PRFs in NC1, there
exists an input sampler X2, polynomial poly2(·), and a transformation that for any α ≥ 1− 1

poly2(λ) ,

converts any (X2, α)-correct sub-exponentially-secure IO scheme for P/poly into an almost exact
IO scheme for P/poly.

Since the works of [CKP15, Pas16, MMN16] apply to any efficient sampler X and any α that
is polynomially bounded away from 1, we obtain the following main corollary

Corollary 1.3 (Main Theorems + [CKP15, Pas16, MMN16]). Assume that there is an indistin-
guishability obfuscator in either the random oracle model, the ideal generic group/ring model,
or ideal multilinear maps model with bounded multi-linearity. Then, there is an (almost) exact
obfuscator in the plain model.

We note that our theorems result in IO that may still output an erroneous obfuscator, but only
with some negligible probability over the coins of the obfuscator alone. This is analogous to the
setting of correcting decryption errors in plain public key encryption [DNR04], and as far as we
know is sufficient in all applications. In subsequent work [BV15b], we show that under a worst-case
complexity assumption typically used in the setting of derandomization, we could transform any
such obfuscator to one that is perfectly correct.

We also show how to transform approximate functional encryption into exact functional encryp-
tion, where approximate FE is defined analogously to approximate IO with respect to a distribution
on the message space and decryption errors. Besides being of independent interest, this transfor-
mation will also serve as a building block to obtain the second theorem above.

Theorem 1.4 (Informal). Assuming weak PRFs in NC1, there exists a message sampler X , con-
stant η, and a transformation that for any α ≥ 1 − η, converts any (X , α)-correct FE scheme for
P/poly into an almost exact scheme FE scheme for P/poly.

We now proceed to provide an overview of our techniques.

1.2 Overview of Our Techniques

The starting point of our constructions comes from the notion of random self-reducibility [AFK89].
That is, imagine that you have an error-prone algorithm A that computes a (Boolean) function F
correctly on a 1/2 + ε fraction of inputs. Suppose that there is an efficient randomizer r(·) that
maps an input x into a random input r = r(x) such that given F (r), one can efficiently recover
F (x). Then, we can turn A into a BPP algorithm for computing F ; namely, A′(x) = A(r(x)).
The new algorithm computes F correctly for any input with high probability over its own random
coins. The probability of error can then be made arbitrarily small using standard amplification
(i.e., taking majority of ≈ ε−2 invocations).

In our setting, F is an arbitrary function, which is likely not random self-reducible. Nevertheless,
we show how to make the essence of this idea work, using various notions of (two-party and multi-
party) non-interactive secure function evaluation (SFE) [Yao86, BGW88, Gen09]. Indeed, certain
forms of non-interactive SFE (or homomorphic encryption) have been used in several instances in
the literature to obtain (sometimes computational) random self-reducibility [AIK06, CKV10, BP12,
BGJ+15]. The rough idea is that if we can get the obfuscator to homomorphically evaluate a given
function on encryptions for some fixed input distribution, then it must also behave correctly with
roughly the same probability on encryptions of any arbitrary input. This, however, should be done
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with care to ensure that homomorphic evaluation does not harm the security of the obfuscator. We
next go into more details on how we carry out this agenda.

Our First Construction. Our first construction uses a two-party non-interactive secure function
evaluation protocol with security against malicious senders. For simplicity, let us describe this
approach in the language of fully homomorphic encryption (FHE). Let (Enc,Dec,Eval) be a (secret-
key) FHE scheme (not necessarily compact). (We assume that the randomness of the key generation
algorithm acts as the secret key, and avoid explicitly dealing with key generation.)

To exactly obfuscate a circuit C, we use the approximate obfuscator apO to obfuscate the circuit
EvalC that, given as input an encryption of some x, homomorphically computes an encryption of
C(x). Assume that apO(EvalC) is correct on a 1/2 + ε fraction of encryptions of 0n. The key
observation is that semantic security of the encryption scheme means that apO(EvalC) is also correct
on a 1/2+ε−λ−ω(1) fraction of encryptions of any x; that is, it outputs EvalC(Enc(x)) = Enc(C(x)).
This gives the required randomizer and can be amplified to give us correctness for every input x.

The problem with this idea is the security of the final obfuscator. Indeed, EvalC(Enc(x)) may
reveal information about the circuit C beyond the output C(x). The problem goes even further:
since the evaluator in this setting is untrusted, she can try to run the obfuscated circuits with
malformed encryptions, potentially making the problem much worse. The solution is to rely on a
maliciously function-hiding homomorphic encryption scheme. Such an object can be constructed
using Yao’s garbled circuits combined with an oblivious transfer (OT) protocol secure against
malicious receivers (such as the Naor-Pinkas protocol based on the DDH assumption [NP01]). The
evaluation procedure, however, is randomized, but can be derandomized with a pseudo-random
function.

While the above works perfectly assuming ideal VBB obfuscation, this is not necessarily the
case for IO. Nevertheless, we observe that we can use apO to obfuscate this (de)randomized circuit
using the machinery of probabilistic IO [CLTV15]. This allows us to show that indistinguishability
obfuscation is maintained, but requires going through an exponential number of hybrids, in turn
requiring sub-exponential security from apO (and some of the other involved primitives).

Our Second Construction. Our second construction goes through the notion of functional
encryption (FE). In a (public-key) FE scheme, the owner of a functional secret key FSKF can
“decrypt” a ciphertext FE.Enc(MPK,m) to learn F (m), but should learn nothing else about m. In
an approximately correct FE scheme, the decryption algorithm could err on encryptions of certain
messages m, but should be correct with probability 1−ε on messages m drawn from a (sampleable)
distribution X .

We show how to transform an approximately correct FE scheme into an exact FE scheme. Here
the main advantage over the setting of approximate IO is that we are only concerned with honestly
generated encrypted messages and are not concerned with function hiding. In particular, we can
relax the assumptions required for the SFE and rely on (a non-interactive) information-theoretic
version of the Ben-Or-Goldwasser-Wigderson multi-party computation protocol for NC1 [BGW88].

This construction also provides an alternative route for the IO transformation. Concretely,
we show that starting from approximate IO, we can first apply the transformation of Garg et al.
[GGH+13b] to obtain approximate FE. For this to work, we need show how to obtain (almost
exact) NIZKs and public-key encryption directly from approximate IO, which are required for
the transformation. Then, in the second step, we apply our exact-to-approximate transformation
for FE, and finally invoke a transformation from (exact) FE to IO [AJ15, BV15a]. The latter
transformation requires that the size of the encryption circuit the FE scheme is relatively succinct.
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In our case, due to the BGW-based SFE, this size grows exponentially in the depth. Fortunately
though, in [BV15a], it is shown that this still suffices to obtain IO, assuming also puncturable PRFs
in NC1.

Overall, this leads to a construction of (almost exact) IO from subexponentially-secure approx-
imate IO and subexponentially-secure puncturable PRFs in NC1 (which in turn can be obtained
from standard assumptions such as LWE [BLMR13]).

2 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling security against non-
uniform adversaries. An efficient adversary A is modeled as a sequence of circuits A = {Aλ}λ∈N,

such that each circuit Aλ is of polynomial size λO(1) with λO(1) input and output bits. We often
omit the subscript λ when it is clear from the context.

When we refer to a randomized algorithm A, we typically do not explicitly denote its random
coins, and use the notation s ← A or s ← A(x) if A has an extra input x. When we want to be
explicit regarding the coins, we shall denote s← A(r), or s← A(x; r), respectively.

Whenever we refer to a circuit class C = {Cλ}, we mean that each set Cλ consists of Boolean
circuits of size at most poly(λ) for some polynomial poly(·), defined on the domain {0, 1}n(λ). When
referring to inputs x ∈ {0, 1}n(λ), we often omit λ from the notation.

2.1 Non-Interactive Secure Function Evaluation

We consider two-message secure function evaluation (SFE) protocols. Typically, such a protocol
consists of two parties (A,B) and has the following syntax. Party A is given input x, encrypts x
and sends the encrypted input to B. B given as additional input a function f , homomorphically
evaluates f on the encrypted x, and returns the result to A, who can then decrypt the result
f(x). The protocol is required to ensure input-privacy for A and function privacy for B (on top of
correctness).

Definition 2.1 (Secure Function Evaluation). A scheme SFE = (Enc,Eval,Dec), where Enc,Eval
are probabilistic and Dec is deterministic, is a two-message secure function evaluation protocol for
circuit class C = {Cλ}, where Cλ is defined over {0, 1}n(λ), if the following requirements hold:

• Correctness: for any λ ∈ N, C ∈ Cλ and input x ∈ {0, 1}n in the domain of C it holds that:

Pr

[
Dec(R, ĈT) = C(x)

∣∣∣∣ (CT,R)← Enc(x)

ĈT← Eval(CT, C)

]
≥ 1− ν(λ) ,

for some negligible ν(·), where the probability is over the coin tosses of Enc and Eval.

• Input Hiding: for any polysize distinguisher D there exists a negligible function µ(·), such
that for all λ ∈ N, and equal size inputs x0, x1 ∈ {0, 1}n:

|Pr[D(CT0) = 1]− Pr[D(CT1) = 1]| ≤ µ(λ) ,

where CTb ← Enc(xb).
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• Malicious Function Hiding: there exists a (possibly inefficient) function Ext, such that for
any polysize distinguisher D there exists a negligible function µ(·), such that for all λ ∈ N,
maliciously chosen CT∗, and equal size circuits C0, C1 ∈ Cλ that agree on x = Ext(CT∗):∣∣∣Pr[D(ĈT0) = 1]− Pr[D(ĈT1) = 1]

∣∣∣ ≤ µ(λ) ,

where ĈTb ← Eval(CT∗, Cb).

We say that the scheme is δ-function-hiding, for some concrete negligible function δ(·), if for
all poly-size distinguishers, the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Remark 2.2 (strong function privacy). For our most basic transformation from approximate IO to
exact IO, we will require 2−σ(λ) · λ−ω(1)-function-hiding, where σ(λ) is the size of encryptions in
the scheme. Below, we discuss an instantiation, based on the DDH assumption, that has perfect
function-hiding, and thus satisfies this requirement.

Distributed Secure Function Evaluation. We will also consider a notion of two-message
distributed function evaluation (DSFE). Such a protocol consists of k+2 parties (A,B1, . . . , Bk, C)
and has the following syntax. Party A, given input x, shares x into k shares and sends the shares
to B1, . . . , Bk. The parties B1, . . . , Bk given as additional input a function f , homomorphically
and non-interactively evaluate f on each share, and send the evaluated shares to C, who can then
decrypt and obtain the result f(x).

The protocol is required to ensure that each individual share sent by A in the second message
hides all information regarding the input x. We also require that C gains no information on the
input, except for the output of the function (formally, we will require an indistinguishability-based
guarantee analogous to that of functional encryption.) Furthermore, we will require that correctness
holds even if some τ fraction of the parties B1, . . . , Bk are faulty.

Definition 2.3 (Distributed Secure Function Evaluation). A scheme DSFE = (Enc,Eval,Dec),
where Enc is probabilistic and Eval,Dec are deterministic, is a (k, τ)-secure distributed function
evaluation protocol for circuit class C = {Cλ}, where Cλ is defined over {0, 1}n for n = n(λ),
k = k(λ), and τ = τ(λ), if the following requirements hold:

• Correctness in the presence of faults: for any λ ∈ N, C ∈ Cλ and input x ∈ {0, 1}n in
the domain of C and any set S ∈ [k] of size smaller than τk, and functions {Erri : i ∈ S} it
holds that:

Pr

Dec(R, ĈT1, . . . , ĈTk) = C(x)

∣∣∣∣∣∣∣
(CT1, . . . ,CTk,R)← Enc(x)

∀i ∈ [k] \ S : ĈTi = Eval(CTi, C)

∀i ∈ S : ĈTi ← Erri(CTi)

 ≥ 1− ν(λ) ,

for some negligible ν(·), where the probability is over the coin-tosses of Enc.

• Input Hiding: for any polysize distinguisher D there exists a negligible function µ(·), such
that for all λ ∈ N, and equal size inputs x0, x1 ∈ {0, 1}n and any i ∈ [k]:

|Pr[D(CT0,i) = 1]− Pr[D(CT1,i) = 1]| ≤ µ(λ) ,

where CTb,i denotes the i-th ciphertext output by Enc(xb).
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• Residual Input Hiding: for any polysize distinguisher D there exists a negligible function
µ(·), such that for all λ ∈ N, inputs x0, x1 ∈ {0, 1}n, and circuit C ∈ Cλ such that C(x0) =
C(x1): ∣∣∣Pr[D(R0, ĈT0,1, . . . , ĈT0,k) = 1]− Pr[D(R1, ĈT1,1, . . . , ĈT1,k) = 1]

∣∣∣ ≤ µ(λ) ,

where for (b, i) ∈ {0, 1} × [k], ĈTb,i = Eval(CTb,i, C), and (CTb,1, . . . ,CTb,k,Rb)← Enc(xb).

Remark 2.4 (difference from SFE). There are two main differences from SFE. The first is in security,
in the above we do not require any type of function-hiding, but require residual input-hiding. The
second is the functionality: we allow distributed evaluation (with some resilience to faults). The
second difference is not essential, and is considered in order to reduce the underlying computational
assumptions. In particular, a (non-distributed) SFE with residual input-hiding implies DSFE with
k = 1, τ = 0.

Remark 2.5 (deterministic Eval). Jumping ahead, we remark that we will use distributed SFE in
a setting where the encryptor is always honest. Since we are not requiring any privacy against the
encryptor, we may assume w.l.o.g that Eval is deterministic. Indeed, we can always sample any
required randomness as part of the encryption process and embed it in the shares CT1, . . . ,CTk.

2.1.1 Instantiations

We now mention known instantiations of SFE and DSFE schemes, which we can rely on.

SFE. As mentioned above, for our application, we will require rather strong function-hiding. To
instantiate the scheme we may rely on the SFE protocol obtained by using the oblivious transfer
protocol of Naor and Pinkas [NP01] that is based on DDH and is secure against unbounded receivers
in conjunction with an information-theoretic variant of Yao’s garbled circuit [Yao86] for NC1 [IK02].
The resulting SFE scheme is for classes of circuits in NC1, which will suffice for our purposes.
Alternatively, we can use a strong enough computational variant of Yao based on sub-exponential
one-way functions, resulting in a construction for all polynomial-size circuits.

More generally, the Naor-Pinkas OT can be replaced with any OT that has statistical function-
hiding. In the CRS model, such two-message protocols exist from other standard assumptions as
well [PVW08]. While our main transformation is described using SFE in the plain model, it can
be naturally extended to the CRS setting (see Remark 3.4).

DSFE. An information-theoretically secure DSFE scheme for circuit classes in NC1 can be ob-
tained based on a non-interactive variant of the BGW protocol [BGW88] similar to that used in
[GVW12]. For the sake of completeness, we now outline this variant.In the resulting DSFE scheme,
the complexity of encryption does not grow with the size of the circuits evaluated, but does grow
exponentially with their maximal depth. As will be discussed later on, this will still be good enough
in our context, to bootstrap functional encryption to indistinguishability obfuscation, as shown in
[BV15a].

Given a class of circuits C = {Cλ} in NC1 defined on inputs in {0, 1}n(λ), we can interpret it as
a class of arithmetic circuits where any circuit C is defined over inputs (x1, . . . , xn) ∈ Fn, and
computes a polynomial of total degree at most D = 2d, where d = d(λ) is the maximal depth of
any circuit in Cλ.
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At a high-level, sharing the inputs in the scheme corresponds to encoding them using the Shamir
secret-sharing scheme (that is, as random Reed-Solomon polynomials), evaluation corresponds to
homomorphic evaluation over the polynomials, and residual input hiding is guaranteed by adding
a random zero polynomial to the evaluated shares.

Concretely, the scheme is defined as follows. Fix a field F, such that |F| ≥ 3D + 1, and let
k = 3D + 1. Let α1, . . . , αk be k distinct elements in the field.

• Enc(x1, . . . , xn):

1. sample n random degree-one polynomials p1(·), . . . , pn(·), where pi(0) = xi,

2. sample a random degree D polynomial z(·) such that z(0) = 0.

3. set CTj = p1(αj), . . . , pn(αj), z(αj).

4. output CT1, . . . ,CTk.

• Eval(CTj , C):

1. parse CTj = π1, . . . , πn, γ,

2. consider the univariate polynomial E(·) = C(p1(·), . . . , pn(·)) (that has degree at most
D), and compute homomorphically η = C(π1, . . . , πn). (The result is meant to be
E(αj).)

3. output ĈTj = η + γ.

• Dec(ĈT1, . . . , ĈTk):

1. parse (ĈT1, . . . , ĈTk) as a Reed-Solomon codeword in Fk, and decode a polynomial Ẽ(·),
2. output Ẽ(0).

We claim that the above scheme is (k, 1
3)-secure. The analysis follows the standard BGW

analysis (detailed in [AL11]). Very roughly, to show correctness, note that by the homomorphic
properties of the Reed-Solomon code the correct polynomial E is such that E(0) = C(x1, . . . , xn),
and this also holds for E(·) + z(·). Furthermore, decoding such that Ẽ = E + z is guaranteed as
long as there are at most D faults. Input-hiding follows from the fact that each individual CTj is
distributed uniformly at random on F. Residual input-hiding follows by the fact that after adding
z, the new polynomial E + z is a random polynomial with free coefficient C(x1, . . . , xn), and thus
can be completely simulated from this value. For more details, see [BGW88, AL11].

One point to notice is that the above is not entirely accurate if the output of the circuit C is
a large ` = `(λ). Indeed, näıvely to guarantee residual input-privacy, we will need to generate `
separate polynomials z1, . . . , z`, meaning the encryption size will grow linearly with `. This can
be avoided by shifting the randomness to the evaluation procedure (which will slightly complicate
our transformation). Alternatively, this can be avoided assuming the existence of a pseudo-random
generator, by adding to the ciphertexts a seed, and having Eval use it to generate the multiple
polynomials z1, . . . , z`.

Remark 2.6 (complexity of encryption). One measure of interest, when considering our application
to correcting errors in functional encryption, will be the complexity of the encryption procedure.
Here we note that this size is O(nk logD) = O(nD logD) = n · 2O(d); namely, it does not grow
with the size of the circuits, but does grow exponentially with the maximal depth d of the circuits.
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As will be discussed later on, this will still be good enough in our context, to bootstrap functional
encryption to indistinguishability obfuscation, as shown in [BV15a].

2.2 Symmetric Encryption

A symmetric encryption scheme Sym consists of a tuple of two PPT algorithms (Sym.Enc, Sym.Dec).
The encryption algorithm takes as input a symmetric key SK ∈ {0, 1}λ, where λ is the security
parameter, and a message m ∈ {0, 1}∗ of polynomial size in the security parameter, and outputs
a ciphertext SCT. The decryption algorithm takes as input (SK,SCT), and outputs the decrypted
message m. For this work, we only require one-time security.

Definition 2.7 (One-Time Symmetric Encryption). A pair of PPT algorithms (Sym.Enc, Sym.Dec)
is a one-time symmetric encryption scheme for message space {0, 1}∗ if it satisfies:

1. Correctness: For every security parameter λ and message m ∈ {0, 1}∗,

Pr

[
Sym.Dec(SK,SCT) = m

∣∣∣∣ SK← {0, 1}λ
SCT← Sym.Enc(SK,m)

]
= 1 .

2. Indistinguishability: for any polysize distinguisher D there exists a negligible function µ(·),
such that for all λ ∈ N, and any equal size messages m0,m1,

|Pr[D(Sym.Enc(SK,m0)) = 1]− Pr[D(Sym.Enc(SK,m1)) = 1]| ≤ µ(λ) ,

where SK← {0, 1}λ.

We further say that Sym is δ-secure, for some concrete negligible function δ(·), if for all
polysize distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

A symmetric encryption scheme meeting this definition can be constructed from any pseudo-
random generator, and thus any one-way function [HILL99].

2.3 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudo-random functions (PRFs) where any PRF may
be punctured at a single point. The definition is formulated as in [SW14], and is satisfied by the
Goldreich-Goldwasser-Micali PRF construction [GGM86, BW13, KPTZ13, BGI14].

Definition 2.8 (Puncturable PRFs). Let n, k be polynomially bounded length functions. An effi-
ciently computable family of functions

PRF =
{
PRFK : {0, 1}∗ → {0, 1}λ

∣∣∣ K ∈ {0, 1}k(λ), λ ∈ N
}

,

associated with an efficient (probabilistic) key sampler GenPRF , is a puncturable PRF if there exists
a poly-time puncturing algorithm Punc that takes as input a key K, and a point x∗, and outputs a
punctured key K{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}∗,

Pr
K←GenPRF (1λ)

[
∀x 6= x∗ : PRFK(x) = PRFK{x∗}(x)

∣∣ K{x∗} = Punc(K, x∗)
]

= 1 .
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2. Indistinguishability at punctured points: for any polysize distinguisher D there exists
a negligible function µ(·), such that for all λ ∈ N, and any x∗ ∈ {0, 1}∗,

|Pr[D(x∗,K{x∗},PRFK(x∗)) = 1]− Pr[D(x∗,K{x∗}, u) = 1]| ≤ µ(λ) ,

where K← GenPRF (1λ),K{x∗} = Punc(K, x∗), and u← {0, 1}λ.

We further say that PRF is δ-secure, for some concrete negligible function δ(·), if for all
polysize distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Remark 2.9 (uniform output). For some of our constructions, it will be convenient to assume that
the PRF family is one-universal; that is, for any fixed x, PRFK(x) is distributed uniformly at
random (when K is sampled at random). It is not hard to see that such a puncturable PRF can be
easily obtained from any puncturable PRF by adding a random string U to the key and XORing
U to every output.

3 Correcting Errors in Indistinguishability Obfuscation

In this section, we define approximate IO and show how to transform any approximate IO to
(almost) perfectly correct IO, based on SFE.

3.1 Approximate and Exact IO

We start by defining indistinguishability obfuscation (IO) with almost perfect correctness. The
definition is formulated as in [BGI+12].

Definition 3.1 (Indistinguishability obfuscation). A PPT algorithm O is said to be an indistin-
guishability obfuscator for a class of circuits C = {Cλ}, if it satisfies:

1. Almost Perfect Correctness: for any security parameter λ and C ∈ Cλ,

Pr
O

[
∀x : O(C, 1λ)(x) = C(x)

]
≥ 1− 2−λ .

2. Indistinguishability: for any polysize distinguisher D there exists a negligible function µ(·),
such that for any two circuits C0, C1 ∈ C that compute the same function and are of the same
size: ∣∣∣Pr[D(O(C0, 1

λ)) = 1]− Pr[D(O(C1, 1
λ)) = 1]

∣∣∣ ≤ µ(λ) ,

where the probability is over the coins of D and O.

We further say that O is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

We now define an approximate notion of correctness that allows the obfuscated circuit to err
with some probability over inputs taken from some samplable distribution.
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Definition 3.2 ((α,X )-correct IO). For α(λ) ∈ [0, 1] and an ensemble of input samplers X = {Xλ},
we say that O is (α,X )-correct if instead of (almost) perfect correctness, it satisfies the following
relaxed requirement:

1. Approximate Correctness: for any security parameter λ, C ∈ Cλ,

Pr
[
O(C, 1λ)(x) = C(x)

∣∣∣ x← Xλ] ≥ α(λ) ,

where the probability is also over the coins of O.

3.2 The Transformation

We now describe a transformation from approximately correct IO to (almost) perfectly correct IO
and analyze it. The transformation is based on SFE satisfying a strong function-hiding guarantee.
We discuss an instantiation based on standard computational assumptions in Section 3.3.

In Section 5, we discuss an alternative transformation through functional encryption based on
weaker computational assumptions.

A Worst-Case Approximate Obfuscator. The main step of the transformation is to obtain
random self-reducibility; that is,to convert an approximate obfuscator apO, which works reasonably
well on average for random inputs taken from an appropriate distribution, into a worst-case ap-
proximate obfuscator wcO that, for any (worst-case) input, works well on average over the random
coins of the obfuscator alone. Then, in the second step, we invoke standard “BPP amplification”.

Ingredients. In the following, let λ denote a security parameter, let ε < 1 be some constant,
η(λ) = λ−Ω(1) and let C = {Cλ} denote a circuit class. We rely on the following primitives:

• A secure function evaluation scheme SFE for C that is 2−ω(σ(λ)+log λ)-function-hiding, where
σ(λ) is the length of fresh ciphertexts generated by the encryption algorithm Enc for security
parameter λ (and inputs of size n = n(λ) in the domain of Cλ).

• A 2−λ̃
ε
-secure puncturable pseudo-random function family PRF , where the security param-

eter is λ̃ = ω(σ(λ) + log λ)1/ε.

• A (1
2 + η(λ),X )-correct, 2−λ̃

ε
-secure indistinguishability obfuscator apO for C, where the

security parameter is λ̃ = ω(σ(λ) + log λ)1/ε. The sampler class X depends on SFE and the
class C depends on SFE, PRF , and C. Both X and C are specified below as part of the
description of the constructed (exact) obfuscator O.

The Worst-Case Obfuscator wcO:

Given a circuit C : {0, 1}n → {0, 1} and security parameter λ, the obfuscator wcO(C, 1λ)

1. computes a new security parameter λ̃ = ω(σ(λ) + log λ)1/ε, where σ(λ) is the length of
ciphertexts as defined above,

2. samples a puncturable PRF seed K← GenPRF (1λ̃),

3. computes the augmented C-evaluation circuit CK defined in Figure 1,

4. outputs an approximate obfuscation C̃ ← apO(CK, 1
λ̃).
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CK

Hardwired: the circuit C and the seed K.
Input: a ciphertext CT.

1. derive randomness r ← PRFK(CT),

2. compute ĈT← Eval(CT, C; r),

3. output ĈT.

Padding: the circuit is padded to be of size `(|C|,K), for some polynomial ` specified in the analysis.

Figure 1: The augmented C-evaluation circuit.

We next describe the how the obfuscation C̃ is evaluated on any input x via a randomized procedure.

Randomized Evaluation:

Given an obfuscation C̃, an input x ∈ {0, 1}n, and security parameter λ:

1. compute (CT,R)← Enc(x),

2. compute ĈT = C̃(CT),

3. output y = Dec(R, ĈT).

The ensemble of samplers X consists of samplers X 0 that sample encryptions from Enc(0n) whereas
the class C consists of circuits CK as defined in Figure 1.

Proposition 3.1. wcO satisfies:

1. Worst-Case Approximate Correctness: for any λ, C ∈ Cλ, x ∈ {0, 1}n,

Pr
[
O(C, 1λ)(x) = C(x)

]
≥ 1

2
+ η(λ)− λ−ω(1) ,

where the probability is over the coins of apO.

2. Indistinguishability: as in Definition 3.1.

The intuition behind the proof is outlined in the introduction. We now turn to the actual
proof.

Proof. We first prove that the new obfuscator is worst-case approximately correct, and then prove
that it is secure.

Correctness. For any λ, n = n(λ), input x ∈ {0, 1}n, let us denote X x := Enc(x) a sampler for
encryptions of x. Then, by the input-hiding guarantee of SFE, and the approximate correctness of
apO, we claim that the approximate obfuscation is correct on encryptions of an arbitrary x ∈ {0, 1}n
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as on encryptions of 0n. That is, there exists a negligible µ(λ) such that

Pr
[
C̃(CT) = CK(CT)

∣∣∣ CT← X x] ≥
Pr
[
C̃(CT) = CK(CT)

∣∣∣ CT← X 0
]
− µ(λ) ≥

1

2
+ η(λ)− µ(λ) ,

where in both of the above K← GenPRF (1λ̃), C̃ ← apO(CK, 1
λ̃).

It now follows that decryption is correct with probability noticeably larger than half. Concretely,

Pr

[
Dec(R, ĈT) = C(x)

∣∣∣∣ CT,R← Enc(x)

ĈT = C̃(CT)

]
≥

Pr

[
Dec(R, ĈT) = C(x)

∣∣∣∣ CT,R← Enc(x)

ĈT = CK(CT)

]
· Pr

[
C̃(CT) = CK(CT)

∣∣∣ CT← X x] =

Pr

Dec(R, ĈT) = C(x)

∣∣∣∣∣∣
CT,R← Enc(x)
r = PRFK(CT)

ĈT = Eval(CT, C; r)

 · Pr
[
C̃(CT) = CK(CT)

∣∣∣ CT← X x] ≥
(1− ν(λ)) ·

(
1

2
+ η(λ)− µ(λ)

)
,

where in all of the above K← GenPRF (1λ̃), C̃ ← apO(CK, 1
λ̃), and ν(·) is some negligible function

(corresponding to the negligible decryption error of SFE). In the last step, we relied on the fact that
for any fixed CT, PRFK(CT) is distributed uniformly at random (Remark 2.9), and the (almost)
perfect correctness of SFE.

This completes the proof of correctness.

Security Analysis. Consistently with the notation above, for K ← GenPRF (1λ̃), and a circuit

C ∈ Cλ, we denote by C̃ ← apO(CK, 1
λ̃) the corresponding approximate obfuscation of the (deran-

domized) evaluation circuit. We show that for any polysize distinguisher there exists a neglgible
µ(·), such that for any C0, C1 ∈ Cλ that compute the same function it holds that∣∣∣Pr[D(C̃0) = 1]− Pr[D(C̃1) = 1]

∣∣∣ ≤ µ(λ) .

Roguhly, the above follows from the fact that the output of the two underlying obfuscated cir-
cuits on any point CT ∈ {0, 1}σ(λ) is indistinguishable even given C0, C1. Indeed, because the
circuits C0, C1 compute the same function, by the function-hiding of SFE, for any ciphertext
CT ∈ {0, 1}σ(λ), the evaluated ciphers Eval(CT, C0) and Eval(CT, C1) are indistinguishable. Canetti,
Lin, Tessaro, and Vaikuntanathan [CLTV15] show that (sub-exponential) IO in conjunction with
(sub-exponential) puncuturable PRFs are sufficient in this setting, which they formalize by proba-
bilistic IO notion. For the sake of completeness, we next sketch the argument.

We consider a sequence of 2σ+1 hybrids {HCT}CT∈{0,...,2σ}, where we naturally identify integers

in [2σ] with strings in {0, 1}σ. In HCT, we obfuscate a circuit CCT(CT′) that computes C0,K for all
CT′ > CT and C1,K for all CT′ ≤ CT; the circuit is padded to size ` (as in Figure 1).
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We first note that C0 computes the same function as C0,K and that C2σ computes the same
function as C1,K, and thus by the IO security,∣∣∣Pr

[
D(C̃0) = 1

]
− Pr [D(H0) = 1]

∣∣∣ ≤ 2−λ̃
ε
,∣∣∣Pr [D(H2σ) = 1]− Pr

[
D(C̃1) = 1

]∣∣∣ ≤ 2−λ̃
ε
.

We show that for any CT ∈ [2σ],

|Pr [D(HCT−1) = 1]− Pr [D(HCT) = 1]| ≤ O(2−λ̃
ε
) .

This follows a standard puncturing argument with respect to the point CT, consisting of:

• puncturing PRFK at CT, and hardwiring C0,K(CT) = Eval(CT, C0;PRFK(CT)), which relies
on IO security,

• replacing PRFK(CT) with true randomness, which relies on pseudorandomness at punctured
points,

• replacing Eval(CT, C0) with Eval(CT, C1), which relies on function hiding.

• reversing the above steps.

Each of the steps induces a loss of 2−λ̃
ε

= 2−ω(σ(λ)+log λ) in the indistinguishability gap.

This completes the security analysis.

The (Almost) Exact Obfuscator O: to obtain an (almost) exact obfuscator O from the worst-
case approximate obfuscator we apply standard “BPP amplification”. Such a transformation is
given in [KMN+14, Appendix B]. For the sake of completeness, we sketch it here.

Obfuscation: Given a circuit C : {0, 1}n → {0, 1} and security parameter λ, the obfuscator

O(C, 1λ) outputs N = ω(n+λ)
η2(λ)

obfuscations C̃1, . . . , C̃N , where C̃i ← wcO(C, 1λ), and N random

strings r1, . . . , rN , where ri ← {0, 1}λ.

Evaluation: Given an obfuscation
{
C̃i, ri

∣∣∣ i ∈ [N ]
}

, input x ∈ {0, 1}n, and security parameter λ:

1. For i ∈ [N ], invoke the randomized evaluation procedure for C̃i, for input x, using randomness
ri, store the result yi.

2. Output y = majority(y1, . . . , yN ).

Remark 3.3 (deterministic evaluator). Publishing the random strings ri is done to match the usual
obfuscation syntax where the evaluation is deterministic. We may also let the evaluator sample
this randomness.

Proposition 3.2. O is an (almost) perfectly correct indistinguishability obfuscator.
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Proof sketch. We show correctness and security.

Correctness. By a Chernoff bound, for large enough λ, and any x ∈ {0, 1}n, the probability that
the majority value y among all decrypted y1, . . . , yN is incorrect is bounded by

Pr [y 6= C(x)] ≤ 2−Ω(N ·η2(λ)) ≤ 2−n+λ .

The required correctness follows by a union bound over all inputs in {0, 1}n.

Security. The obfuscation consists of N independent copies of worst-case obfuscations C̃i ←
wcO(C), where wcO satisfies indistinguishability. Security thus follows by a standard hybrid argu-
ment.

Remark 3.4 (SFE in the CRS model). The above construction can be naturally extended to rely
also on non-interactive SFE schemes in the CRS model (rather than the plain model). Indeed, the
CRS can be generated by the (honest) obfuscator.

3.3 Instantiating the Scheme

As discussed in Section 2.1.1, we can instantiate the SFE based on the (polynomial) DDH assump-
tion and sub-exponential one-way functions. Sub-exponential one-way functions are also needed
here in order to obtain sub-exponentially-secure puncturable PRFs.

We can thus state the following theorem

Theorem 3.5. Assuming sub-exponentially secure approximate IO for P/poly, (polynomial) DDH,
and sub-exponentially-secure one-way functions, there exists (almost) perfectly correct IO for P/poly.

Alternative instantiations of the above under more computational assumptions [PVW08] can
be obtained when extending the scheme to SFE in the CRS model.

4 Correcting Errors in Functional Encryption

In this section, we define approximate FE and show how to transform any approximate FE to
(almost) perfectly correct FE, based on DSFE. For the sake of concreteness, we focus on the
public-key setting. We also focus on selective-security, which can be generically boosted to adaptive
security [ABSV14].

4.1 Approximate and Exact FE

We recall the definition of public-key functional encryption (FE) with selective indistinguishability-
based security [BSW12, O’N10], and extend the definition to the case of approximate correctness.

A public-key functional encryption (FE) scheme FE, for a function class F = {Fλ} (represented
by boolean circuits) and message spaceM =

{
{0, 1}n(λ) : λ ∈ N

}
, consists of four PPT algorithms

(FE.Setup, FE.Gen, FE.Enc, FE.Dec) with the following syntax:

• FE.Setup(1λ): Takes as input a security parameter λ in unary and outputs a (master) public
key and a secret key (MPK,MSK).
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• FE.Gen(MSK, f): Takes as input a secret key MSK, a function f ∈ Fλ and outputs a functional
key FSKf .

• FE.Enc(MPK,M): Takes as input a public key MPK, a message M ∈ {0, 1}n(λ) and outputs
an encryption of M .

• FE.Dec(FSKf ,FCT): Takes as input a functional key FSKf , a ciphertext FCT and outputs M̂ .

We next recall the required security properties as well the common (almost) perfect correctness
requirement.

Definition 4.1 (Selectively-secure public-key FE). A tuple of PPT algorithms FE = (FE.Setup,
FE.Gen, FE.Enc, FE.Dec) is a selectively-secure public-key functional encryption scheme, for func-
tion class F = {Fλ}, and message space M =

{
{0, 1}n(λ) : λ ∈ N

}
, if it satisfies:

1. Almost Perfect Correctness: for every λ ∈ N, message M ∈ {0, 1}n(λ), and function
f ∈ Fλ,

Pr

f(M)← FE.Dec(FSKf ,FCT)

∣∣∣∣∣∣
(MPK,MSK)← FE.Setup(1λ)
FSKf ← FE.Gen(MSK, f)
FCT← FE.Enc(MPK,M)

 ≥ 1− 2−λ.

2. Selective-security: for any polysize adversary A, there exists a negligible function µ(λ) such
that for any λ ∈ N, it holds that

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between
the challenger and the adversary A, is defined as follows:

(a) The adversary submits the challenge message-pair M0,M1 ∈ {0, 1}n(λ) to the challenger.

(b) The challenger executes FE.Setup(1λ) to obtain (MPK,MSK). It then executes FE.Enc(MPK,Mb)
to obtain FCT. The challenger sends (MPK,FCT) to the adversary.

(c) The adversary submits function queries to the challenger. For any submitted func-
tion query f ∈ Fλ, if f(M0) = f(M1), the challenger generates and sends FSKf ←
FE.Gen(MSK, f). In any other case, the challenger aborts.

(d) The output of the experiment is the output of A.

We further say that FE is δ-secure, for some concrete negligible function δ(·), if for all polysize
adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

We now define an approximate notion of correctness that allows decryption to error with some
probability over encryption of messages taken from some given distribution.

Definition 4.2 ((α,X )-correct FE). For α(λ) ∈ [0, 1] and an ensemble of samplers X = {Xλ} with
support M =

{
{0, 1}n(λ) : λ ∈ N

}
, we say that FE is (α,X )-correct if instead of (almost) perfect

correctness, it satisfies the following relaxed requirement:
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1. Approximate Correctness: for every λ ∈ N, and function f ∈ Fλ,

Pr

f(M)← apFE.Dec(apFSKf ,FCT)

∣∣∣∣∣∣∣∣
(apMPK, apMSK)← apFE.Setup(1λ)
apFSKf ← apFE.Gen(apMSK, f)

M ← Xλ
apFCT← apFE.Enc(apMPK,M)

 ≥ α(λ).

4.2 The Transformation

We now describe the transformation from approximately correct FE to (almost) perfectly correct
FE and analyze it. The transformation is based on DSFE. We discuss instantiations in Section 4.3.

A Worst-Case Approximate FE. As in the case of obfuscation, the main step of the FE trans-
formation is to obtain random self-reducibility; that is,to convert an approximate FE scheme apFE,
which works reasonably well on average for random messages taken from some appropriate distri-
bution, into a worst-case approximate scheme wcFE that, for any (worst-case) message, works well
on average over the random coins of the obfuscator alone. Then, in the second step, we invoke
standard “BPP amplification”.

Ingredients. In the following, let λ denote a security parameter, and let F = {Fλ} denote a
function class. Consider functions k(λ) ∈ N, and ρ(λ), η(λ) ∈ [0, 1] such that η = 1

2 −
√
ρ ∈

[ 1
λO(1) ,

1
2 −

1
λO(1) ]. We rely on the following primitives:

• A (k,
√
ρ)-secure distributed function evaluation scheme DSFE for C. We shall further as-

sume that when encrypting an input, the shares CT1, . . . ,CTk all have the same marginal
distribution (i.e., CTi ≡ CTj).

2

• A (1 − ρ,X )-correct (single-key, selectively-secure) functional encryption scheme apFE =
(apFE.Setup, apFE.Gen, apFE.Enc, apFE.Dec) for C. The sampler class X depends on DSFE
and the class F depends on DSFE, and F . Both X and F are specified below as part of the
description of the constructed (almost exact) scheme FE.

• A one-time symmetric key encryption scheme Sym = (Sym.Enc, Sym.Dec).

The Worst-Case Scheme wcFE: The scheme wcFE, for function class F = {Fλ} and message
space M =

{
{0, 1}n(λ) : λ ∈ N

}
, consists of the algorithms (wcFE.Setup, wcFE.Gen, wcFE.Enc,

wcFE.Dec) defined as follows:

• wcFE.Setup(1λ): generate (apMPK, apMSK) ← apFE.Setup(1λ). The public key MPK and
secret key MSK are accordingly set to be the apMPK and apMSK.

• wcFE.Gen(wcMSK, f): sample SCT ← Sym.Enc(SK, 0`×k), where ` = `(λ) is a polynomial
specified in the security analysis, and SK ← {0, 1}λ. Consider the augmented f -evaluation
function fSCT as defined in Figure 2. Generate apFSKSCT ← apFE.Gen(apMSK, fSCT). The
functional key wcFSKf will consists of the functional key apFSKSCT.

• wcFE.Enc(wcMPK,M):

2This is just to simplify the construction and is satisfied the instantiation discussed in Section 2. In Remark 4.3,
we explain how this assumption can be removed (at the cost of complicating the construction).
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1. Compute (CT1, . . . ,CTk,R)← DSFE.Enc(M),

2. For j ∈ [k]

– let apMj = (norm,CTj ,⊥,⊥)

– generate apFCTj ← apFE.Enc(apMPK, apMj).

Output wcFCT = {apFCT1, . . . , apFCTk,R}.

• wcFE.Dec(wcFSKf ,wcFCT):

1. Parse wcFSKf = apFSKSCT and wcFCT = (apFCT1, . . . , apFCTk,R).

2. for j ∈ [k], compute ĈTj ← apFE.Dec(apFSKSCT, apFCTj).

3. output y = DSFE.Dec(R, ĈT1, . . . , ĈTk).

fSCT

Hardwired: the circuit f and a symmetric key ciphertext SCT.
Input apM = (b,CT,SK, j):

• a flag bit b,

• a DSFE ciphertext CTj ,

• a symmetric encryption key SK.

• index j ∈ [k].

1. If b = norm (normal mode of operation, ignoring inputs SK, j),

• compute ĈT = Eval(CT, f).

2. If b = trap (trapdoor mode of operation, ignoring input CT),

• compute (ĈT1, . . . , ĈTk) = Sym.Dec(SK,SCT),

• let ĈT := ĈTj .

3. Output ĈT.

Figure 2: The augmented f -evaluation circuit.

The ensemble of samplers X consists of samplers X 0 that sample FE plaintexts of the form
apM = (norm,CT,⊥,⊥) where CT is the first of k ciphertext components sampled from DSFE.Enc(0n),
i.e. it is a share of a zero-encryption in the underlying DSFE scheme. The class F consists of circuits
fSCT as in Figure 2.

Proposition 4.1. wcFE satisfies:

1. Worst-Case Approximate Correctness: for every λ ∈ N, function f ∈ Fλ, and message
M ∈ {0, 1}n,

Pr

f(M)← wcFE.Dec(wcFSKf ,wcFCT)

∣∣∣∣∣∣
(wcMPK,wcMSK)← wcFE.Setup(1λ)
wcFSKf ← wcFE.Gen(wcMSK, f)
wcFCT← wcFE.Enc(wcMPK,M)

 ≥ 1

2
+ η − λ−ω(1) .
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2. Selective security: as in Definition 4.1.

We now turn to the proof.

Proof. We first prove that the new obfuscator has worst-case approximate correctness, and then
prove that it is selectively secure.

Correctness. For any λ, n = n(λ), message M ∈ {0, 1}n, let us denote XM a sampler for FE
plaintexts of the form apM = (norm,CT,⊥,⊥) that is defined just like X 0 except that CT is a share
of an encryption of M sampled from DSFE.Enc(M) in the underlying DSFE scheme, rather than a
share of an encryption of 0n.

Then, by the input-hiding guarantee of SFE, and the approximate correctness of apFE, we claim
that, for any function f ∈ F and corresponding fSCT, decryption in apFE is correct on encryptions
of an arbitrary M ∈ {0, 1}n as on encryptions of 0n. That is, there exists a negligible µ(λ) such
that

Pr
[
apFE.Dec(apFSKfSCT , apFCT) = fSCT(apM)

∣∣ apM ← XM] ≥
Pr
[
apFE.Dec(apFSKfSCT , apFCT) = fSCT(apM)

∣∣ apM ← X 0
]
− µ ≥

1− ρ− µ ,

where (apMPK, apMSK) ← apFE.Setup(1λ), apFSKfSCT ← apFE.Gen(apMSK, fSCT), apFCT ←
apFE.Enc(apMPK, apM), as defined above in the construction of the exact scheme, and apM =
(norm,CT,⊥,⊥).

We now consider alternative samplers
{
XMj

∣∣∣ j ∈ [k]
}

that sample apMj just as in the canonical

XM , except that CT is sampled as the the jth share of a DSFE encryption of M (rather than the
first). Note that by our assumption that the shares CT1, . . . ,CTk ← DSFE.Enc(M) have the same
marginal distribution, the samplers XM ,XM1 , . . . ,XMk all sample from the same distribution. In
particular, they satisfy the above statement regarding the probability of correct decryption, satisfied
by XM .

We shall denote by XMj |CTj the corresponding sampler conditioned on CT = CTj for some fixed

CTj . We now consider the joint sampler (apM1, . . . , apMk)← XM[k] where first shares (CT1, . . . ,CTk)

are sampled from DSFE.Enc(M), and then each apMj is sampled from Xj |CTj . Note that this
sampler corresponds to the way that encryption is done in our actual scheme wcFE defined above.

Noting that the marginal distribution of each apMj sampled accordingly to XM[k] is the same as

XMj , it follows that the expected number of successful decryptions for a sample from XM[k] can be
lower bounded as follows

E
[
|{j | apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)}|

∣∣∣ (apM1, . . . , apMk)← XM[k]

]
=

k · Pr
[
apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)

∣∣ apMj ← XM
]
≥

k · (1− ρ− µ) ,

where (apMPK, apMSK) ← apFE.Setup(1λ), apFSKfSCT ← apFE.Gen(apMSK, fSCT), apFCTj ←
apFE.Enc(apMPK, apMj).

It follows by averaging that with probability at least 1 − √ρ − 2µ√
ρ the number of successful

decryptions as defined above is larger than k · (1 − √ρ). In particular, (for large enough λ) the
fraction of faults is below the threshold

√
ρ allowing to reconstruct fSCT(apM).

19



Going to our actual encryption scheme wcFE, we now claim that decryption is correct with proba-
bility noticeably larger than half. Concretely,

Pr

[
DSFE.Dec(R, ĈT1, . . . , ĈTk) = f(M)

∣∣∣∣ CT1, . . . ,CTk,R← DSFE.Enc(M)

ĈTj = apFE.Dec(apFSKfSCT , apFCTj)

]
≥

Pr

[
DSFE.Dec(R, ĈT1, . . . , ĈTk) = f(M)

∣∣∣∣∣ CT1, . . . ,CTk,R← DSFE.Enc(M)∣∣∣{ĈTj = fSCT(apMj)
}∣∣∣ ≥ √ρ · k

]
·

Pr [|{apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)}| ≥
√
ρ · k | CT1, . . . ,CTk,R← DSFE.Enc(M)] =

Pr

[
DSFE.Dec(R, ĈT1, . . . , ĈTk) = f(M)

∣∣∣∣∣ CT1, . . . ,CTk,R← DSFE.Enc(M)∣∣∣{ĈTj = DSFE.Eval(CTj , f)
}∣∣∣ ≥ √ρ · k

]
·

Pr
[
|{apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)}| ≥

√
ρ · k

∣∣∣ CT1, . . . ,CTk ← XM[k]

]
≥

(1− ν) ·
(

1−√ρ− 2µ
√
ρ

)
≥ 1

2
+ η − λ−ω(1) ,

where in all of the above (apMPK, apMSK)← apFE.Setup(1λ), apFSKfSCT ← apFE.Gen(apMSK, fSCT),
apMj = (norm,CTj ,⊥,⊥), apFCTj ← apFE.Enc(apMPK, apMj), and ν(·) is some negligible function
(corresponding to the negligible decryption error of DSFE).

This completes the proof of correctness.

Security Analysis. We prove the selective security of wcFE in a sequence of hybrids, showing
that any adversary A cannot tell the case that the challenge is an encryption of M0 from the case
that the challenge is an encryption of M1, for the corresponding (M0,M1) of his choice.

H1: this corresponds to the usual security game where the challenge is an encryption of M0.

H2: here, when generating a key FSKf for a function f , and accordingly generating an (approxi-
mate) key apFSKfSCT for the function fSCT, the symmetric ciphertext SCT is not an encryption of
0`×k as in the previous hybrid, but rather an encryption of the DSFE evaluation corresponding to
the challenge ciphertext. Concretely, consider the generation of the challenge ciphertext FCT∗:

• FE.Enc(MPK,M0):

1. Compute (CT∗1, . . . ,CT
∗
k,R

∗)← DSFE.Enc(M0),

2. For j ∈ [k]

– let apM∗j = (norm,CT∗j ,⊥,⊥)

– generate apFCT∗j ← apFE.Enc(apMPK, apM∗j ).

Output FCT∗ = (apFCT∗1, . . . , apFCT
∗
k,R

∗).

Then SCT will now encrypt ĈT
∗
f,1, . . . , ĈT

∗
f,k, where ĈT

∗
f,j = DSFE.Eval(CT∗j , f).

Indistinguishability from the previous hybrid follows by the semantic-security of symmetric encryp-
tion. (At this point, a corresponding symmetric secret key SK is not present – in all encryptions
the symmetric-key slot is set to ⊥.)

H3: here, we change the generation of the challenge ciphertext so to invoke the trapdoor mode
rather than the normal mode. Concretely, for each j ∈ [k], we generate apM∗j = (trap,⊥,⊥, SK, j),
where SK is the symmetric key corresponding SCT.
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Indistinguishability from the previous hybrid follows from the security of the underlying scheme
apFE. Indeed, at this point, for every function f for which a key apFSKfSCT was generated,

fSCT(trap,⊥,⊥,SK, j) = fSCT(norm,CTj ,⊥,⊥) = ĈT
∗
f,j .

H4: here, we change how the evaluations ĈT
∗
f,j are generated. Recall that in the previous

hybrid ĈT
∗
f,j = DSFE.Eval(CT∗j , f), where CT∗j was generated as part of (CT∗1, . . . ,CT

∗
k,R

∗) ←
DSFE.Enc(M0). Now, instead of encrypting M0 in the latter we encrypt M1.

Indistinguishability now follows from the residual input privacy of the underlying DSFE, since
f(M0) = f(M1). (Recall, that this is guaranteed also in the presence of R∗, provided that
CT∗1, . . . ,CT

∗
k are absent from the adversary’s view, which is indeed the case in this hybrid.)

H5-H8: symmetrically follow the above hybrids in reverse order, until the usual security game
where M1 is encrypted in the challenge.

This completes the security analysis.

Remark 4.3 (removing the assumption on equally-distributed shares). In the above construction we
have assumed that the DSFE shares CT1, . . . ,CTk have the same marginal distribution (for which
we have also exhibited an instantiation in Section 2.1.1). To remove this assumption, we could
have an instance of an approximate FE scheme apFEi for each i with respect to the corresponding
distribution on CTi (whereas in the construction above we relied on one instance of an approximate
FE defined with respect to the marginal distribution which was the same for all shares).

The (Almost) Exact Scheme FE: to obtain an (almost) exact scheme from the worst-case
approximate scheme we again apply standard “BPP amplification”. Namely, we consider N parallel
copies of the scheme for a large enough N .

Formally, the scheme FE, for function class F = {Fλ} and message spaceM =
{
{0, 1}n(λ) : λ ∈ N

}
,

consists of the algorithms (FE.Setup, FE.Gen, FE.Enc, FE.Dec) defined as follows:

• FE.Setup(1λ): let N = ω(n+λ)
η2

. For i ∈ [N ], generate (wcMPKi,wcMSKi) ← wcFE.Setup(1λ).
The public key MPK and secret key MSK are accordingly set to be all of the public keys
{wcMPKi}i∈[N ] and secret keys {wcMSKi}i∈[N ].

• FE.Gen(MSK, f): For i ∈ [N ], generate wcFSKf,i ← wcFE.Gen(wcMSKi, f). The functional
key FSKf will consists of the functional keys {wcFSKf,i}i∈[N ].

• FE.Enc(MPK,M): For i ∈ [N ], compute wcFCTi ← wcFE.Enc(wcMPKi,M). The ciphertext
FCT consists of the ciphertexts (wcFCT1, . . . ,wcFCTN ).

• FE.Dec(FSKf ,FCT):

1. Parse FSKf = {wcFSKf,i}i∈[N ] and FCT = {wcFCTi}i∈[N ].

2. For i ∈ [N ], compute yi = wcFE.Dec(wcFSKf,i,wcFCTi).

3. Output y = majority(y1, . . . , yN ).

Proposition 4.2. FE is an (almost) perfectly correct selectively-secure functional encryption scheme.
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Proof sketch. We show correctness and security.

Correctness. By a Chernoff bound, for large enough λ, and message M ∈ {0, 1}n, the probability
that the majority value y among all decrypted y1, . . . , yN is incorrect is bounded by

Pr [y 6= f(M)] ≤ 2−Ω(N ·η2(λ)) ≤ 2−n+λ .

The required correctness follows by a union bound over all messages in {0, 1}n.

Security. The scheme consists of N independent copies of the worst-case scheme that is selectively
secure. Security thus follows by a standard hybrid argument.

4.3 Instantiating the Scheme

As discussed in Section 2.1.1, we can instantiate the DSFE based an information-theoretic variant
of BGW for NC1, resulting in an FE scheme for NC1. The scheme can then be generically
bootstrapped to P/poly assuming weak PRFs in NC1 [ABSV14].

Theorem 4.4. Assuming approximate FE for P/poly and weak PRFs in NC1, there exists (al-
most) perfectly correct FE for P/poly.

5 An Alternative Transformation for IO based on FE

Recall that the transformation from (subexponential) approximate IO to (almost) exact IO de-
scribed in Section 3.2 required SFE with function hiding against malicious receivers, and was
instantiated based on (polynomial) DDH and subexponential one-way functions. In this section,
we show an alternative transformation based on any subexponential puncturable PRF in NC1.
The transformation is based on a combination of the FE transformation from Section 4 and known
results from the literature.

The high-level idea consists of three basic steps:

1. Start with a (subexponentially-secure) approximate IO and implement directly (subexponentially-
secure) approximate FE with compact ciphertexts by following a construction from the exact
IO setting [GGH+13b].

2. Apply the transformation from approximate FE to obtain exact FE with compact ciphertexts,
based on weaker assumptions.

3. Apply a transformation from exact FE to (exact) IO [AJ15, BV15a].

Fulfilling this high-level plan requires some care though. The transformation of Garg et al.
[GGH+13b] from IO to FE naturally extends to the the approximate setting, but relies on additional
assumptions: (exact) public-key encryption and (exact, or rather complete) NIZKs. While these
primitives are known based on exact IO [SW14, BP15], they do not work in the approximate setting.
Nevertheless, we show how these constructions can be extended to imply the exact versions of the
primitives (from approximate IO). A second issue that should be addressed is how the approximate
FE to exact FE transformation affects the complexity of FE encryption. Indeed, the transformations
of [AJ15, BV15a] require certain succinctness properties. We observe that the transformation,
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when instantiated with the BGW-based DSFE, satisfies the required compactness, when assuming
additionally (sub-exponentially-secure) puncturable PRFs in NC1.

Overall, we prove

Theorem 5.1. Assuming approximate IO for P/poly and puncturable PRFs in NC1, both with
sub-exponential security there exists (almost) perfectly correct IO P/poly.

We next provide further details.

5.1 Approximate FE from Approximate IO

The starting point for this step is the Garg et al. [GGH+13b]. To obtain FE from IO and PKE,
and NIZKs, the transformation works as follows. Each encryption has the form (e0, e1, π), where
e0, e1 encrypt a message M under two independent copies of a plain (exact) public-key encryption
scheme, and π is a proof that (e0, e1) are indeed well-formed using an (exact) NIZK with statistical
simulation-soundness.

A functional key for a function f is an obfuscation of a circuit CSK0,CRS that given (e0, e1, π):

• verifies the correctness of π with respect to the hardwired common reference string CRS,

• if the proof is accepting, decrypts e0 using the hardwired secret key SK0 to obtain M ,

• and outputs f(M).

It follows readily that if we replace exact IO in this transformation with approximate IO (say
while still using exact PKE and NIZKs) the resulting FE scheme would be approximately-correct.
Concretely to get α-correct FE for a message sampler X , we start with IO that is α-correct for an
input sampler X ′ that samples FE encryptions (e0, e1, π) of random messages M taken from X .

In fact, even if we start with α-correct versions of PKE and NIZKs we would get Ω(α)-correct
FE, however, the security of the FE scheme might no longer hold; indeed, the exact correctness of
the PKE and NIZK play an important role in the security proof in [GGH+13b]. To fill this gap we
will show how to obtain exact NIZK and PKE directly from approximate IO. More accurately, we
would obtain almost exactly correct versions where the NIZK and PKE are exactly correct with
overwhelming probability over the choice of their public parameters (i.e., the common reference
string and public-keys), which is sufficient for the security proof in [GGH+13b].

(Almost) Exact PKE. To obtain (almost) exact PKE, we start with the PKE of Sahai and Waters
[SW14] based on exact IO and one-way functions. Here the public key consists of an obfuscation C̃ of
a circuit CK that given a PRG seed s outputs PRFK(PRG(s)) for an appropriately stretching pseudo-
random generator and a puncturable PRF. An encryption of M consists of PRG(s),M ⊕ C̃(s).
Replacing exact IO with α-correct IO in their transformation results in approximate PKE in two
senses: (a) the scheme is correct with probability α over an encryption of any message M ; (b)
it is weakly semantically secure, the probability of guessing a random encrypted message M can
be bounded by β = 2−|M | + λ−ω(1) + (1 − α). Schemes such as the latter can be corrected using
techniques from the literature [DNR04, Theorem 4] so long that β < O(α4), which holds for
constant α that is sufficiently close to 1.

In the resulting scheme, the probability of decryption error is over the choice of public-key and
the randomness used in encryption. In the same work [DNR04], Dwork, Naor, and Reingold show
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how to shift the error probability to the choice of the public-key alone; namely, get a scheme where
with overwhelming probability over the choice of keys there are no decryption errors at all. This is
done as follows, assume the decryption error is bounded by 2−λ, and encryption uses r(λ) = λO(1)

bits of randomness. We will now publish together with the public key a random string R← {0, 1}r.
Encryption will now be done with randomness R′ = R⊕PRG(s), where PRG : {0, 1}λ/2 → {0, 1}r is
a pseudo-random generator and s← {0, 1}λ/2 is a random seed. Due to the sparseness of the PRG
with probability 2−Ω(λ) over the choice of the keys the are no decryption errors. Semantic-security
is maintained due to the security of the PRG.

(Almost) Exact NIZK. Statistical simulation-sound NIZKs can be constructed from any NIZK
proof and non-interactive commitment schemes in the common reference string model [GGH+13b].
The same also holds for the case that the NIZK is almost exact (where the resulting SSS NIZK
will also be almost exact). The required commitments can be constructed from one-way functions
[Nao91]. We now describe how to obtain the required NIZKs from approximate IO.

Concretely, we examine the NIZK construction of Bitansky and Paneth [BP15] based on exact IO
and one-way functions. In their construction, IO is used to implement invariant signatures [GO92],
which are in turn used to implement the hidden-bit model [FLS99]. Concretely, a verification key VK
in their scheme consists of an obfuscated circuit CCRS,K that given a message M ∈ {0, 1}n, computes
(b, r)← PRFK(M) using a puncturable PRF, and outputs a Naor commitment C = COMCRS(b, r),
with respect to common reference string CRS.

Replacing exact IO with α-correct IO preserves two of the guarantees of the invariant signatures:
1) it is invariant in the sense that for every verification key VK and message M , C = VK(M) can be
opened to a unique bit b, due to the binding of the commitment; 2) it satisfies pseudorandomness
of the unique property b, since the obfuscator is as secure as in the exact case. However, now
completeness only holds with probability α over random messages M . The implementation of the
hidden bit model indeed invokes the invariant signatures for random messages. This leads to a
corresponding NIZK with completeness error (1− α) · poly(λ), for some poly that depends on the
NIZK construction (and soundness error 2−λ). Assuming α > 1 − 1

λ·poly(λ) , we can then take say

λ2 independent copies, requiring that the prover succeeds only on a single instance, resulting in a
NIZK with completeness error 2−λ and soundness error λ2 · 2−λ.

In the resulting scheme, the completeness error is over the choice of the common-reference string
and the randomness used by the prover. As before we can use the technique from [DNR04], to
shift the error probability to the choice of the CRS alone by sparsifying the coins used by the
prover using a PRG. This transformation still maintains computational zero-knowledge due to the
pseudo-randomness of the PRG, and has the same unconditional soundness.

A caveat of the latter transformation is that it can only correct a polynomial fraction 1− α =
λ−Θ(1) of errors (and not say a constant, as in the previous construction). We stress that in the
de-idealized constructions of obfuscation [CKP15, Pas16, MMN16] the error rate can be made an
arbitrary small polynomial. Thus the implication to constructions of IO with an ideal assisting
oracle still holds.

5.2 FE to IO

Exact FE vs Almost Exact FE. The transformations of [AJ15, BV15a] from FE to IO are
naturally described in terms of perfectly correct FE, nevertheless it is easy to verify that they also
work starting from FE that is perfectly-correct with overwhelming probability only over the setup
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phase generating the keys. The resulting IO will be almost perfectly correct.
To almost exact FE given in Section 4 can be turned to one that satisfies the above property

using again the randomness sparsification technique of [DNR04] described above.

Succinctness. In the previous subsection, we described how to obtain an approximate FE scheme
where the complexity of encryption is independent of the circuit and output size of the corresponding
functions, as inherited from the exact scheme of [GGH+13b]. To fulfill our approach we need to make
sure that applying our transformation to exact FE still preserves certain succinctness properties
required by the transformations in [AJ15, BV15a]. Concretely, we note that our approximate to
exact FE transformation inherits its succinctness from the underlying DSFE scheme. As discussed
in 4.3, using the BGW-based DSFE, incurs a 2O(d) overhead in the complexity of encryption, where
d is the maximal depth of any circuit in the class, but is otherwise as efficient. Fortunately, Bitansky
and Vaikuntanathan [BV15a] show that this is still sufficient for a variant of their transformation
from FE to IO, under the additional assumption of sub-exponentially-secure puncturable PRFs in
NC1.
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