
MIT Open Access Articles

Design and fabrication by example

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schulz, Adriana et al. “Design and Fabrication by Example.” ACM Transactions on 
Graphics 33, 4 (July 2014): 1–11 © 2014 Association for Computing Machinery (ACM)

As Published: http://dx.doi.org/10.1145/2601097.2601127

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/111080

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111080
http://creativecommons.org/licenses/by-nc-sa/4.0/


To appear in ACM TOG 4(33).

Design and Fabrication by Example

Adriana Schulz1 Ariel Shamir2 David I. W. Levin1 Pitchaya Sitthi-amorn1 Wojciech Matusik1

1Massachusetts Institute of Technology 2The Interdisciplinary Center Herzliya

… 

Figure 1: The design and fabrication by example pipeline: casual users design new models by composing parts from a database of fabricable
templates. The system assists the users in this task by automatically aligning parts and assigning appropriate connectors. The output of the
system is a detailed model that includes all components necessary for fabrication.

Abstract

We propose a data-driven method for designing 3D models that can
be fabricated. First, our approach converts a collection of expert-
created designs to a dataset of parameterized design templates that
includes all information necessary for fabrication. The templates
are then used in an interactive design system to create new fabri-
cable models in a design-by-example manner. A simple interface
allows novice users to choose template parts from the database,
change their parameters, and combine them to create new mod-
els. Using the information in the template database, the system
can automatically position, align, and connect parts: the system
accomplishes this by adjusting parameters, adding appropriate con-
straints, and assigning connectors. This process ensures that the
created models can be fabricated, saves the user from many tedious
but necessary tasks, and makes it possible for non-experts to design
and create actual physical objects. To demonstrate our data-driven
method, we present several examples of complex functional objects
that we designed and manufactured using our system.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems I.3.8 [Computer Graphics]: Applications

Keywords: fabrication, data-driven methods, design

1 Introduction

We are approaching a time when ordinary people can fabricate their
own 3D objects and products. However, to fabricate an object one
first needs to design it. Currently, only experienced experts pos-
sess the knowledge and design skills to build complex, functional
objects. This is because creating an object that can actually be fab-
ricated involves more than just designing its shape. How should
the parts be connected? Is the design stable and sturdy? Are the
parts available for purchase or even affordable? In this work, we
propose a data-driven method that addresses these and other design
challenges, allowing non-experts to design and fabricate complex
objects.

Data-driven methods have previously been used to make geometric
design easier and therefore more accessible to non-experts.
In the “modeling by example” approach, first presented by
Funkhouser and colleagues [Funkhouser et al. 2004], new objects
are constructed by assembling components of existing objects
in a database. This allows even novice users to model complex
3D geometry. However, in creating fabricable designs, several
challenges arise that have not been addressed in the previous
research. First, all the components in the example database must be
fabricable. Second, any manipulation applied to these components
must preserve structure and manufacturability. Third, standard
computer graphics techniques such as mesh blending cannot be
applied to connect and assemble components. In order to combine
parts, these parts must be accurately positioned, and real connectors
(e.g., screws or hinges) must be used. The best choice of connectors
will depend on the geometric, functional, and material properties of
the object. Finally, the resulting model must be structurally sound,
so that once it is built it will not topple or collapse.

In this work, we present an interactive design-by-example sys-
tem for fabrication that addresses these challenges. To build the
database of examples, we have worked with domain experts to cre-
ate a representative set of example designs for several categories of
objects. Each design is modeled using a commercial CAD software
and is composed of a collection of standard parts that can be pur-
chased from suppliers. It also includes all assembly details such as
connectors and support structures, ensuring the object is fabricable.
We automatically convert these specific designs to parameterized
templates by extracting constraints and parameters from the mod-
els. This allows us to perform structure–preserving manipulations
using both discrete and continuous parameters of the parts. The
template representation is hierarchical and includes connectivity
constraints between parts.

Using the dataset of templates and information extracted from
them, we create an assembly-based modeling system for novice
users. The user can pick and drag substructures from different de-
signs and add them to a working model. The system guides the user
through the snapping and connecting stages. Snapping involves
automatically positioning the parts relative to each other, and select-
ing template parameters of the new parts to allow connectivity and
alignment. Connecting involves automatically selecting the appro-
priate components and connectors that should be added to hold the

1



To appear in ACM TOG 4(33).

parts together. Our system also includes a physics-based simulation
component that can evaluate the stability of the composed model,
highlighting unstable parts in the design. This relieves users from
many tedious and complex tasks that are nevertheless necessary for
feasible fabrication of the models, allowing them to concentrate on
the creative process.

To the best of our knowledge, we are the first to propose a complete
data-driven system for digital fabrication. In addition to the system,
our work contains the following technical contributions:

• A hierarchical template representation for fabricable designs
and a method for automatically converting fabricable designs to
templates (Sections 3.2 )

• An efficient method for snapping fabricable templates together
(Section 4.4),

• An efficient method for connecting parts that guarantees manu-
facturability (Section 4.5).

To illustrate the generality of our data-driven method, we have used
the system to design and fabricate a variety of different objects,
from furniture to go-karts. We are also releasing a database of
parameterized fabricable models, which we believe will be an in-
valuable resource for future work in this research area.

2 Related Work
Our work employs methods in data-driven modeling, shape manip-
ulation, and fabrication-aware design.

Modeling by Example Shape collections have been widely used
to allow data-driven geometric modeling. Modeling by exam-
ple [Funkhouser et al. 2004] enables the design of new models by
combining parts of different shapes from a large database. More
recent work focuses on data-driven suggestions for adding de-
tails [Chaudhuri and Koltun 2010] and modeling [Chaudhuri et al.
2011]. Similarly, recombination of model parts has been used to
expand databases [Kalogerakis et al. 2012; Jain et al. 2012] and
repair low-quality 3D models [Shen et al. 2012]. Nevertheless,
none of this research explores the fabrication aspect of data driven
modeling. Creating models that can be physically realized adds a
number of challenges to the modeling pipeline that are addressed in
this work.

Template-based Shape Manipulations Many previously devel-
oped tools exist for the geometric editing of man-made shapes.
Kraevoy et al.[2008] present a method for shape-aware resizing
of man-made objects that can be non-uniformly scaled along three
main axes. Our work is also related to the iWires system [Gal et al.
2009], which preserves structural relationships during editing using
constrained non-linear optimization. Similarly, Zheng et al.[2011]
segment a man-made shape and associate a controller with each
component. The shapes of individual parts can be changed while
preserving the structural constraints. The work by Xu et al. [2011]
employs a similar strategy but uses an image as an input. Other
shape manipulation methods that work with discrete variations
(e.g., component repetitions) have been explored [Bokeloh et al.
2011; Lin et al. 2011; Bokeloh et al. 2012]. Finally, recent work
[Ovsjanikov et al. 2011; Kim et al. 2013] explores the creation and
use of parameterized templates in order to explore shape collec-
tions.

In our work, we create a parametrized template representation for
manipulating shapes inspired by two classes of methods. The first
class preserves global relationships [Gal et al. 2009; Zheng et al.
2011] but only considers continuous variations in the shape. The
second class allows discrete variations [Bokeloh et al. 2012] but
only accounts for local relationships. We combine these two ideas
to construct models that both preserve global relationships such
as symmetry and perform topological changes to preserve discrete

regular patterns. Like Bokeloh et al. [2012], we construct a linear
model that allows us to express the space spanned by all possible
manipulations as a parameterized model. Our templates possess
two additional qualities that are essential for our application. First,
they follow a hierarchical tree structure that allows assembly of
new models by composing substructures at different levels of the
tree. Second, they encode information that guarantees fabricability.
For example, we represent how parts connect to each other in the
physical world, and we allow parts to be resized only if a corre-
sponding physical process is possible. Our template representation
is discussed in detail in Section 3.2.

Fabrication-aware Design Digital, personalized fabrication has
garnered a lot of interest in the computer graphics community. The
Plushie system by Mori and Igarashi [2007] allows non-experts to
convert 3D models to physical plush toys. Saul et al. [2011] propose
an interactive system for sketching chair models that can easily be
fabricated. More recently, Chen et al. [2013a] and Hildebrand et
al. [2012] have proposed systems to convert 3D models to sim-
plified, fabricable designs consisting of interlocking planar pieces.
Schwartzburg and Pauly [2013] extend these ideas by developing an
interactive design system that employs optimization and structure
analysis to provide instant feedback to users. Similarly, Umetani
et al.[2012] build an interactive system for furniture design that
is tightly coupled with a physically-based simulation in order to
correct invalid designs and provide users with design suggestions.
Finally, Lau and colleagues [2011] suggest a method for generat-
ing the parts and connectors needed to convert a 3D model into a
physical object. This work focuses on furniture models and defines
a formal grammar for IKEA tables and cabinets.

There has also been work in the computer-aided design commu-
nity related to creating fabricable designs from user input. Roy et
al. [2001] provide a natural language specification and iterative de-
sign process that transforms a simple functional specification into
a detailed design. Chiou et al. [1999] use a small set of primi-
tives and an accompanying matrix decomposition to accomplish the
same task. Finally Gui and Mäntylä [1994] provide a sketch-based
system for mechanical design.

The main difference between our approach and the previous work
is that we are the first to propose a data-driven method for fab-
rication. In data-driven methods, production rules are implied by
the dataset and they do not have to be explicitly distilled. It is this
feature that motivates our data-driven approach. In our work, we
illustrate the expressive power of data-driven methods by using the
same algorithm to build furniture and go karts.

3 A Database of Fabricable Templates

Our system relies on a database of fabricable templates. The user
can pick templates from the database, modify their parameters, and
assemble them to create new designs. To build this database, we
first collect fabricable models and then convert these designs to a
hierarchical template representation.

3.1 Collecting Fabricable Models

To the best of our knowledge, no available repository of 3D models
contains the necessary information for fabrication. We have there-
fore gathered a collection of fabricable models with the help of
design experts—in this case, a group of mechanical engineers. The
data is divided into two sections: an items catalog containing a list
of commercial items, and a set of designs constructed by domain
experts. Each part used in a design references a corresponding item
in the catalog. This imbues our data with the unique property that
all the designs can actually be manufactured. The data is available
at http://fabbyexample.csail.mit.edu.

2



To appear in ACM TOG 4(33).

Ref# 1789A25 
          $5.69 

Ref# 1057A51 
          $25.61 

Ref# 90198A105 
          $7.38/100 

Items Catalog 

Ref# 90198A105 
         12”X12”:  $7.38 

12”X24”: $13:54 
24”x24”: $24.62 

Figure 2: An example of a fabricable object from our collection
(left). Each design is detailed down to the level of individual screws,
and each part maintains a reference to the items used from the items
catalog (right).

Items Catalog An item is a physical part that can be purchased
from a variety of suppliers or manufacturers. The items catalog lists
the available items along with all information required for their use
during the design and fabrication process: their corresponding ma-
terial type (e.g., wood, metal, glass), their price, their dimensions,
and a 3D mesh representing their geometry.

The items within the catalog incorporate two additional pieces of
information that are used in later stages of our method. First, each
dimension of an item is labelled as either fixed or resizable. We
only allow resizing of items if a corresponding physical process is
possible. For example, we allow resizing of wooden components
because they may be cut using available tools. This information
is used during the design parameterization process. Second, each
item maintains links to external suppliers (e.g., McMaster-Carr),
allowing for easy sourcing during fabrication.

Set of Designs The design set contains a large number of man-
ufacturable models (henceforth called designs) created using com-
mercial CAD software (Solidworks). Each design is an assembly
of parts, and the parts all contain links to the corresponding items
in the items catalog (Figure 2). The parts are grouped into sub-
assemblies in a hierarchical fashion, as is common in standard CAD
tools. Once a design has been finalized, we build an associated
connectivity graph, where nodes represent parts and edges indicate
physical connectivity between them. We create this graph automat-
ically based on the proximity of parts.

Designs often feature complex moving parts connected by mechan-
ical joints. Such connections are used in various doors and drawers,
and in complex moving objects like swings, wheels and steering
assemblies. We rely on the experts to annotate their designs with
this functionality if it exists. We store moving components in the
standard way: as a hierarchy of joint transforms along with their
respective joint types (prismatic, ball joint, hinge joint) and joint
limits.

Domain experts also annotate parts that are purely structural (e.g.,
screws, hinges and brackets), henceforth called connecting parts.
The connecting parts are separated from the principal parts of the
design (e.g., shelves, legs, wheels) since the connecting parts will
not be used explicitly in the design-by-example process. Instead,
we relieve the user from the tedious task of specifying them by
inferring and adding them automatically during the design process
(see Section 4.5).

3.2 Parameterized Templates

Once we have the input collection of fabricable models, we cre-
ate a template representation of the designs that allows structure-
preserving manipulations and part recombination. First, we convert
the designs into hierarchical parameterized representations which
we call templates. Then, we augment this representation by incor-

Figure 3: An example of a template. The original design is shown
in gray, and new designs generated by varying the template param-
eters are shown in yellow.

porating information on how elements connect to each other in the
physical space.

Hierarchical Template Representation. We define a template as
a part of a design that can be manipulated in a structure-preserving
fashion. Templates provide a number of free parameters which can
be used to manipulate associated geometry. An example of a single
template is depicted in Figure 3. The figure illustrates the large
amount of geometric variety that a single template can encode: in
the figure, a cabinet becomes everything from a workbench to a
nightstand.

More formally, a template at the ith level of the template hierarchy
T i can be written as

T i =
{

qi,A i,F i} (1)

where qi are the degrees of freedom for the template; F i is a defor-
mation function that, given qi, computes new geometry; and A i is
the feasible space of qi, which is chosen to ensure that the geometry
produced by a template remains fabricable and collision-free.

We convert each design to a template tree, following the hierarchi-
cal representation determined by the experts. For each leaf node,
we explicitly define qi and F i, and we define A i based on the set of
constraints that act on qi. For the internal nodes, we specify qi and
F i as the composition of the children nodes. The feasible set on an
internal node can be defined as the intersection of the feasible sets
of its children restricted by additional “coupling constraints” that
bind multiple templates together.

Template Construction. Our method for automatically convert-
ing a design from the collection to a template comprises two steps.
First, we select the leaf nodes and assign their degrees of free-
dom qi and deformation functions F i. Second, we analyze the
semantic geometric (geosemantic [Shtof et al. 2013]) relationships
between parts of our model in order to define structure-preserving
constraints at each level of the hierarchy, thus determining A i (see
example in Figure 5).

We use the hierarchical structure of a design to guide the construc-
tion of the template tree. In most cases, we assign each part Pi

in the design to be a leaf-node. We then choose qi to be the 6-
vector composed of the 3-dimensional position of the center of the
part and the three axis-aligned scaling parameters. The deformation
function F i simply applies the prescribed scale and translation to Pi.

We also allow leaf nodes to represent repeating patterns of parts
(Figure 4). We automatically search the design for repeating pat-
terns and group them in a single leaf node. Although we can still
represent qi as the 6-vector that describes the scaling and trans-
lation of the pattern, the deformation function F i is slightly more
complex. Details of this process are given in Appendix A.

In our template model, a leaf-node in the template tree serves as a
“least-fabricable-unit”, the simplest single entity that can be con-
structed. Leaf-nodes play a crucial role in the remainder of our

3



To appear in ACM TOG 4(33).

C0 wagon 

conn 1 C1 handle C2 body 

conn 2 C3 wheel C4 bucket 
conn 2 conn 1 

Figure 5: From left to right: a design example of a toy wagon, the hierarchical template tree, and a visualization of the connections. The
arrow on the handle indicates that this part has an articulation, namely that it can rotate along the depicted axis. The template tree includes
the geosemantic relationships that are stored at each level of the hierarchy, C0 to C4 (shown in blue), as well as connections (depicted in red).
The vizualization on the right illustrates the information contained in each connection node.

Figure 4: A template with pattern elements. Upon resizing, both
the number of floor planks and the number of rungs in the monkey
bars change.

algorithm, and are therefore referred to as elements to clearly dis-
tinguish them from the internal nodes of the template hierarchy.
Elements that correspond to principal parts are called principal ele-
ments, while elements that correspond to connecting parts are called
connecting elements.

To define A i, we constrain the space of template variations by ex-
tracting geosemantic relationships from the design and ensuring
that they are preserved when the template parameters qi are ma-
nipulated. Following the ideas described in [Gal et al. 2009; Zheng
et al. 2011; Chen et al. 2013b], we take into account the following
types of relationships between elements: concentricity, coplanarity,
and symmetry. In addition, we consider relationships in the order
of the elements. Preserving order relationships guarantees that el-
ements do not penetrate each other or exchange position when the
template parameters are modified.

We also extract geosemantic relationships guided by experts’ an-
notations. First, we take into account the articulation information
to ensure that all geosemantic relationships hold for all design con-
figurations. Specifically, we consider the poses in which articulated
parts reach their joint limits. Second, we take into account the phys-
ical properties of elements in the design using information from the
corresponding items in the items catalog. For example, we con-
strain the scaling parameters of elements that are linked to items
that cannot be resized in a certain dimension.

The geosemantic relations are stored in the hierarchy at the lowest
internal node that is a parent of all the related elements. This allows
the use of any sub-tree in the hierarchy as a template by itself since
its defining relations are self-contained. Consider, for example, the
toy wagon in Figure 5. The template leaf-nodes store scaling con-

straints on each element (C1, C3, and C4). The body assembly stores
the coplanarity and concentricity relationships between the wheel
and the bucket (C2). Finally, the root node stores the coplanarity
relationships between the handle and the bucket (C0). Notice that
the handle has an articulation; therefore, we compute relationships
in both the horizontal and vertical rest configurations.

We characterize geosemantic relationships as functions that act on
the bounding box or prominent planes of each element. In most
cases, we choose the six planes that define the bounding box to be
the prominent planes. Since both the box and the planes are deter-
mined by qi, each geosemantic relationship can be expressed as a
linear equality or inequality that constrains q. For more details on
how to find these relationships and express them as linear equations,
please refer to Appendix B. Since we store the geosemantic rela-
tionships hierarchically, we can construct a linear system at each
node T i by aggregating the constraints of all its children. The feasi-
ble set A i is then the set of all solutions to that linear system. Note
that all of these relationships are computed automatically based on
the geometry of the original design and the annotations on the input
data.

Connections. Fabrication requires not only tracking abstract geo-
metric constraints, but also understanding where and how elements
connect to each other in the physical world. To accomplish this,
we augment our template representation with nodes that keep track
of the physical contact and connections between the principal ele-
ments. We represent these relationships as connection nodes. Con-
nections include references to the data that will be manipulated and
carried over when combining elements to compose a new model.
These include

• the set of principal elements that are in contact (usually two but
sometimes more),

• the set of connecting elements that are responsible for holding
the principal elements together,

• the set of geosemantic relationships between the connecting el-
ements and the principal elements, and

• a set of “soft” geosemantic relationships for placement of con-
necting elements (discussed below).

Grouping the elements into such structures is straightforward and
can be achieved by directly analyzing the connectivity graph of
the design described in Section 3.1. The set of “soft” relationships
encode additional constraints on the connecting elements. At each
connection, we compute the contact of the principal elements (the
contact patch), and we add linear constraints to ensure that the
dimensions and position of the connecting elements are preserved
with respect to this contact patch . When the designer manipu-
lates the template by changing the parameters of the principal el-

4



To appear in ACM TOG 4(33).

ements, the parameters of the connecting elements are optimized
using these additional relationships as soft constraints. This relieves
the designer from the tedious task of manipulating each connecting
element individually.

Like geosemantic relationships, connections are stored on the low-
est internal node that is a parent of all the principal elements they
reference. In the example of Figure 5, we have two connections.
One connects the handle to the bucket and is stored in the root node
of the toy wagon; the other connects the bucket to the wheel and is
stored in the internal node that groups the body assembly.

Constructing the template hierarchy in this manner ensures that
each node in the hierarchy is a complete representation that depends
only on its children. Therefore, the database of templates that we
construct includes not only full models of the original design (root
nodes) but also all the other nodes in each hierarchy, represent-
ing parts and sub-structures. The result is a much richer database
that supports the design-by-example mechanism of assembling new
models by composition of templates representing parts at various
levels.

4 Modeling
In this section we outline the design workflow of our system and
describe in technical detail the system’s main operational features.

4.1 Design Workflow

Our system is based on the design-by-example workflow
[Funkhouser et al. 2004; Chaudhuri and Koltun 2010]. Figure 6
illustrates our user interface. Icons that link to components of the
database are displayed on the left; and the canvas on the right is
used to design a new model, henceforth called the working model.
Users compose parts by dragging them onto the scene, and they
can also remove selected parts at any level of the hierarchy.

Figure 6: The user interface. Icons that link to components of the
database are displayed on the left, and the modeling canvas is on
the right.

As we explained in Section 3.2, the components of the database
are hierarchical parametrized templates. This allows us to compose
models from different designs at different levels, i.e., we can add
and remove small components (e.g., a single shelf), medium com-
ponents (e.g., a drawer), and large complex ones (e.g., an entire
cabinet). When creating a new model, we can either start from
scratch or work from an existing design.

The user can vary the shape of any component in the database by
manipulating its template parameters (see Section 4.2). Our sys-
tem handles composition to ensure that the working model, like the
components of the database, is a hierarchical, parametrized tem-
plate. Therefore, users can continue to manipulate parameters after
components are assembled.

Composition in a fabrication-aware system is difficult because
one cannot merely apply simple geometric operations to merge
parts. To combine two substructures, the substructures must be per-
fectly fitted and aligned, and appropriate connecting elements (e.g.,
screws and hinges) need to be added between them. This process is
not only tedious, but sometimes impossible for users who lack the
necessary expertise.

Our system addresses these difficulties with two crucial operational
features. First, when a user drags in a new component and drops
it onto the scene, the system automatically uses information stored
in the database to adjust the component’s position and size so that
it fits and aligns with the working model. We call this procedure
snapping. The snapping operation optimizes the component’s po-
sition and size based on the position in which the user dropped the
component and the component’s current dimensions. If the user is
not satisfied with the snapped configuration, the user can edit the
component (through template manipulations) and drag it around the
scene, and the snapping procedure will then automatically compute
the component’s new optimal position and size.

Second, our algorithm automatically retrieves new connecting el-
ements that attach the added component to the working model.
This is achieved by searching the database for similar examples of
connections. During this process, we compute new geosemantic
relationships between the added template and the working model.
Both the new connecting elements and the new geosemantic rela-
tionshops are added to the hierarchy of the working model together
with the added component. We call this process connecting.

4.2 Template Manipulations

Allowing users to manipulate template parameters adds variety to
the designs (see Figure 3) and allows fitting parts of different sizes.
Adjusting template parameters modifies a design’s shape and di-
mensions, but preserves its overall structure. This method of tem-
plate manipulation guarantees that the composed models are fabri-
cable.

We allow template parameters to be manipulated at all levels of our
hierarchical structure. The user can select elements (leaf nodes)
by clicking on them, and then traverse up the hierarchy to select
internal template nodes. When a template node is selected, controls
for scaling and translation are revealed (see Figure 7). At each level
of the hierarchy, the controls act on the bounding box of the se-
lected template. Therefore, the user can make higher-level changes
by selecting internal nodes and make more detailed adjustments by
selecting leaf nodes.

Template parameter manipulation is not an unconstrained proce-
dure. A given template is restricted to the feasible space A stored
at the root node of the hierarchy. As outlined in Section 3.2, we
define the parameters of the root node q as the stacked vector
of all the children qi. We can then represent all linear, geose-
mantic constraints (bilateral and unilateral) in the standard form:
Aq = b,Gq ≤ 0. We augment A with constraints that fix the center
of the model in order to prevent translation of the edited template.

To create the controls we use six functions c j, such that the cT
j q cor-

respond to the center and dimensions of the axis-aligned bounding
box. When manipulating leaf nodes, the c j are standard basis vec-
tors, since qi defines the axis-aligned bounding box of the element.
For larger substructures represented by internal nodes, we first com-
pare the bounds of the children elements to determine which ones
constrain the bounding box of the substructure in each dimension.
We can then use these elements to explicitly determine the functions
c j.

5



To appear in ACM TOG 4(33).

Figure 7: An illustration of how template variations can be ex-
plored in our system. The arrows control translation, while spheres
control scaling. On the left, we show the controls on a leaf node
of the hierarchy; on the right, we show the controls on an inter-
nal node. During manipulation, elements on the selected node are
represented in full color, while the others become semi-transparent.
Notice that constrained degrees of freedom are hidden. For exam-
ple, the user is unable to change the thickness of the shelf, since
our items catalog states that planks of wood can be cut only in two
directions.

As the user drags a control j, we calculate the new template config-
uration by solving the simple quadratic program

q∗ = argmin
q
‖cT

j q− (cT
j qcurrent + δ)‖2 + α‖q− qcurrent‖2

s. t. Aq = b,Gq ≤ 0
(2)

where qcurrent are the template parameters in the current state and
δ determines the amount of dragging. The second term penal-
izes large changes in parameter value. Accordingly, α is chosen
to be less than one to give more importance to the first term. To
reduce cluttering, we hide controls that manipulate a completely
constrained scaling direction. We determine whether the jth control
is constrained by checking if c j and A are linearly dependent.

4.3 Composition

We compose new designs by removing and adding components to
the working model. To remove a part, the user explores the work-
ing model’s hierarchy and selects a substructure of the model. The
corresponding node is excised from the template tree. The hierar-
chical nature of our templates is leveraged to quickly remove all
connections and geosemantic relationships incident on the deleted
structure. This frees the working model of unnecessary constraints
and connecting elements that serve no purpose in the new design.

As mentioned earlier, adding new parts is more difficult; therefore,
our system assist the user in two ways. First, when a user chooses
a template T A, we adjust the dimensions and placement of T A to
snap it to its position. Second, we automatically compute new con-
straints and find the elements that connect T A to TW .

To define both snapping and connecting, we first examine the orig-
inal design T D from which the part T A originated. We examine
where and how T A connected to T D, and we try to use that infor-
mation to align and connect T A to TW . If the information we have
is not sufficient, we search the rest of the database for similar con-
nections. In the following two subsections, we explain the snapping
and connecting operations more fully.

4.4 Snapping

Snapping the additional template T A to the working model involves
computing a new template configuration qA, which is optimized
based on the user’s current positioning and dimensions of the part
(i.e., the current state of the template qA

current). If the user is not
satisfied with the solution, she can continue to change T A’s position

or its parameters to bring them closer to the desired configuration,
and the system re-optimizes qA given the new current state.

To find an optimal template configuration, we try to identify con-
straints that qA will have to satisfy when T A is added to the working
model. We do this in two steps. First, we analyze how T A connects
to the original design T D and try to find constraints on qA that would
allow T A to connect to TW in a similar manner. Second, we search
for prominent planes on T A that are sufficiently close to planes in
TW and try to align them. In what follows we discuss each of these
steps in detail.

Constraints Based on Original Design. To create constraints
based on the original design, we look at the elements (leaf nodes)
of T D that are connected to T A and extract the coplanarity relation-
ships between these elements and T A. As mentioned in Section 3.2
(and detailed in Appendix B), coplanarity relationships constrain
prominent planes—in this case a plane of T A with respect to a plane
of T D. To create an analogous constraint between T A and TW , we
need to find a plane on TW that has the same normal as the one
in T D. Since there might be many planes in TW that satisfy this
requirement, we take the K ones that are closest to T A in the current
configuration.

Figure 8: An example of snapping to constraints. We add a table-
top T A to the working model TW containing eight legs (right). The
coplanarity constraints on the original design T D that contained T A

are represented by the normals of the corresponding planes (left; we
show only the vertical ones). The feasible snapping configurations
for qA are shown on the right. The system will choose one of these
configurations: its choice will depend on the scale parameters and
the position on which the user places the tabletop.

Using the template representation, we can write each connectivity
relationship as a linear constraint aqA = b, where b depends on
the selected plane in TW . We then extract a subset of the linearly
independent constraints a that is also not restricted by the feasible
set AA of T A. Notice that the number R of constraints in this subset
cannot exceed the number of degrees of freedom of T A, which tends
to be small (usually six). Since b can be chosen in K different ways,
we end up with a set of N = KR possible constraints AqA = bn that
restrict the template parameters of T A. For each of these possible
constraints, we compute the optimal qA by solving the following
least squares problem:

min
qA
‖qA − qA

current‖2 s. t. AqA = bn, qA ∈ AA (3)

We then select the constraint matrix AqA = bn̄ whose optimal solu-
tion has the smallest cost. The value of K is chosen depending on
R to guarantee that N = KR does not become too large. Typically,
we set K = 4.

Alignment of Prominent Planes In many cases, the constraints
of the original design are not enough to position the part in the
working model. For example, in the working model shown in
Figure 8, the table legs were created by composing and snapping
two sets of four legs, which are aligned even though they are not
connecting and there is no resemblance to such a combination in
the original design of either set. To find additional alignment con-

6



To appear in ACM TOG 4(33).

straints, we select the set of planes in TA that are not restricted
by AqA = bn̄. For each of these planes, we find the closest paral-
lel plane in the working model, and we align them if the distance
between them is smaller then a certain threshold. This gives us a
new qA that will be used to connect the additional template to the
working model. For objects with functionality (i.e., several config-
urations), we construct prominent planes corresponding to all main
rest configurations (see Appendix B). This guarantees that func-
tional objects snap so that they align to the working model in all
rest configurations (see Figure 9).

Figure 9: An illustration of snapping for functional objects. When
a door is added to the side of a cabinet, it automaticaly rescales so
that, when shut, it will align with the oposite side. At left, a door
is added to the working model. From left to right: the added door
before snapping, the snapped configuration, and a visualization of
the snapped configuration when the door is closed. The rotation
axis of the articulations is depicted by the arrows.

4.5 Connecting

Once the user is satisfied with the fitted part, they invoke the con-
necting method. Connecting automatically places T A in the hier-
archy of the working model and adds the appropriate connections
and geosemantic relationships. Although the parameters qA may
still vary, the snapping result returns an approximate configuration
of T A. We use this information to find the elements in the working
model TW that should be connected to elements T A based on prox-
imity. We call these linked elements. We then search the database
for a connection that can be used to connect each pair of linked
elements. After these connections are selected, a final composition
step is performed to create a new working model that preserves
the hierarchical structure and is correctly parametrized. We discuss
each of these steps in the following paragraphs.

Searching for Connections As in our snapping algorithm, we
first search for connections in the original design T D. We consider
all the connections in T D that connect T A to elements in T D \ T A,
and we try to transfer these connections to the working model.
Transferring involves matching principal elements in T D \ T A to
elements in TW . Since we have the qA that resulted from the snap-
ping algorithm, we can first fit T D by finding qD that minimizes
‖SqD − qA‖, where S is a matrix whose columns are the standard
basis vectors that correspond to the indices of qD that refer to qA.
Once the fitting is done, we can use a standard distance function on
the bounding boxes of each element to retrieve the closest matches.
Finding the matches creates a candidate connection that acts on
TW ∪ T A.

Once we have candidate connections, we need to determine if they
can be used in the composed design. A connection contains the
set of relationships between the elements it references (see Section
3.2), which we can represent by the feasible set AC. We cannot
add a connection if the feasible set AC ∩ AA ∩ AW is empty. If the
feasible set is nonempty, we find the configuration of the template
TW ∪ T A in this set that is as close as possible to the snapped con-

figuration. We do this by solving a quadratic program:

min
qA,qW
‖qA − qA

current‖2 + ‖qW − qW
current‖2

s. t. qA ∈ AC ∩ AA, qW ∈ AC ∩ AW
(4)

We allow the error to be larger than zero because, in many cases,
principal elements need to be slightly shifted or scaled in order to
insert connecting elements (see Figure 10). Nevertheless, in order
to guarantee that we do not drift too much from the user’s design,
we use a connection only if the error of this minimization is smaller
then a fixed threshold.

When not all connections are found in T D, we extend the search to
all templates in the database. We use a priority based on a similarity
metric that compares connections by evaluating: 1) similarity of
principal components, and 2) the relative distance between them.
We compare principal components by first making sure that the
materials match and then measuring the distance between the sizes
of the bounding boxes. Since the dimensions of the components
can vary according to template manipulations, we would like our
similarity metric to encode a weighted average of the amount of
template manipulation necessary and the final distance between the
two components. We accomplish this by giving extra weight to di-
mensions that are constrained, which naturally encode the distance
between the models after fitting.

We compare relative distances between elements using the distance
between the bounding planes of the axis-aligned bounding boxes
of each element. For each dimension, we compare both bounding
planes against each other—a total of four evaluations. By doing so,
we encode not only coplanarity relationships but also order. This is
important because parts often need to have an intersecting area in
order to be connected.

We pre-compute the descriptors for all the connections in the
database, so that a simple weighted distance function efficiently
retrieves the closest candidate connections at runtime. After the
candidate connections are retrieved, we evaluate them using the
method described above. We try only the K closest connections:
if none of them pass the evaluation, we refrain from adding a con-
nection and warn the user that no connection was found. Typically,
we set K = 5.

Final Composition Once we retrieve the set of edges, we are
ready to generate the new working model T W̄ that incorporates T A

into TW . We place T A into the hierarchy of TW by adding it as
a sibling to the lowest node that groups the elements that connect
to T A. We add all the connections found by transferring the con-
necting elements to the working model and adding the relationships
between them and the elements of T W̄ . These relations constrain
qA. Once these constraints are built, we optimize qW̄ so that it is
as close as possible to the current snapped configuration (solving
a least squares problem). This may effect minor changes in the
parameters of T A. For instance, the parameters may change to allow
connecting elements to fit between parts, as in Figure 10. Finally,
we find and add geosemantic relationships between elements of T A

and TW automatically in the same manner in which we built the
original templates (see Section 3.2).

4.6 Physical Tests

The template manipulation and composition procedures guarantee
that the objects modeled by our system can actually be fabricated
by assembling parts purchased from suppliers. They assure that the
manufactured objects will have the same appearance as the virtual
design, but nothing can be said about the way the object will behave
in the physical world. Therefore, a necessary step in modeling for
fabrication is to examine the real-world physical behavior of the
working model.

7



To appear in ACM TOG 4(33).

Figure 10: An example of changing parameters to fit connectors.
From left to right: the bottom shelf snapped to the bottom of the
table, the resulting configuration of the model after the connecting
step, and the vizualization of the connectors (principal elements are
made semi-transparent). Notice that, in order to connect the bottom
shelf to the table legs, the system raises the shelf above the ground
to leave room for l-brackets.

Many possible “product testing” tools can be used to verify a de-
sign’s safety and feasibility. In this work we illustrate this by per-
forming rigid-body stability analysis on the model. We assume
that the working model is in static equilibrium inside a (potentially
moving) rigid body frame. We model each principal element in the
model as a rigid body. We exclude connecting elements from the
analysis due to their sheer number and their negligible mass. When-
ever the user checks the stability, we perform a single time-step dy-
namic simulation using the staggered projections algorithm [Kauf-
man et al. 2008] for resolving frictional contact, and then examine
the forces acting on each component. We label elements on which
the acting forces are balanced as stable and color them green. All
other parts are considered unstable and colored red. The user can
then take appropriate action to correct stability problems in the de-
sign.

5 Results and Discussion
In this section we discuss the main steps in our method and show a
variety of designed and fabricated results.

5.1 A Database of Fabricable Templates

With the help of domain experts, we have built what we believe to
be the first open collection of fabricable designs. It typically takes
experts many hours to design a complete model using a commercial
CAD software package. The simplest model in our database took
approximately one hour to design, and the most complex (the go-
kart) took three months. In this context, the time that is required
to add the few annotations described in Section 3.1 (between 10 to
20 minutes) is almost negligible. More time is needed to create the
items catalog: most of that time is spent finding suppliers for each
of the items. But designers always need to find suppliers if they
want to manufacture their models. Also, creating the items catalog
can be viewed as a preprocessing step because, once completed, the
items catalog can be reused for subsequent designs.

One of the key features of our method is the use of hierarchical
parametrized templates that are fabrication-aware. By allowing
only shape manipulations that correspond to template parameter
variations, we are able to generate a bill of materials for every
model designed in our system. This allows us to directly manu-
facture models that are created by our tool, as shown later in this
section. Another important aspect of our template representation is
that it handles the connecting elements differently from principal
parts. While principal parts have degrees of freedom that have to be
specified by the user, the parameters for the positioning and scaling
of connecting parts are completely determined by the hard and soft
constraints on the connections. This relieves the users from the
tedious task of dealing with connecting parts.

5.2 Modeling

Figure 11 depicts a few results built using our tool. We indicate in
the figure the number of individual parts in each design. Observe
that even models that appear to be simple are composed by over
one hundred parts. It would take an expert from one to four hours
to build each of these models with commercial CAD software.
However, using our system, users with no expertise in mechanical
engineering were able to create these designs in less than twenty
minutes.

In Figure 11, we highlight the different templates that were added
to the model using different colors. Notice how the number of ele-
ments in each color-coded template varies. This illustrates how the
users can explore the hierarchy by composing parts using smaller
or larger substructures.

While the snapping and connecting steps of our system are re-
sponsible for the speed in which users can create such complex
objects, the template manipulation feature helps to add diversity
to the models. By adding new geosemantic relationships each
time parts are added to the working model, we guarantee that the
working model maintains the template representation which allows
structure–preserving manipulations. Figure 12 shows an example
of how the user can continue to explore the space of template vari-
ations of a composed model.

Figure 12: An example of different manipulations of a working
model after it has been composed from multiple templates.

5.3 Fabrication

We tested the full data-driven fabrication pipeline to build four de-
signs, illustrated in Figures 1 and 13. These models were created by
combining parts from multiple designs, also shown in the figures.
The output of the system is a comprehensive bill of materials that is
generated by looking up the items for each part in the items catalog.
Then, using the information provided by the external supplier, we
could easily order the items and then assemble them. We can also
minimize the total cost of materials by grouping together and com-
bining items – for instance, by cutting many wood elements from a
few pieces of stock material.

5.4 Limitations

As with all data-driven methods, the main limitation of our system it
that we are restricted to the designs in the database. If a connection
is not in an example, we are not able to retrieve it. For example, we
cannot connect a go kart wheel to a table because go kart wheels
attach to metal axles that do not resemble any part of a table. The
only way to solve this problem would be to add to the database a
design that has a similar type of wheel connected to some kind of
wooden frame.

Another limitation is that we have so far only dealt with simple
mechanical models. Although we can handle some functionality
like drawers, cabinet doors, and wheels, our system cannot handle

8



To appear in ACM TOG 4(33).

156 parts 
(140 connectors) 

128 parts 
(99 connectors) 

139 parts 
(122 connectors) 

217 parts 
(197 connectors) 

139 parts 
(121 connectors) 

179 parts 
(163 connectors) 

147 parts 
(124 connectors) 

101 parts 
(90 connectors) 

 
Figure 11: Examples of models designed using our system and the number of individual parts they comprise. Different colors indicate the
different parts that were added to the model.

Figure 13: From left to right: input designs, models created using the system, and fabricated results. We highlight the connecting elements
on the first model by making all principal elements semi-transparent.

more complex dynamic components such as electronics. In the go
kart examples shown in the teaser, we were able to compose wheels
(adding bearings), the seat (adding connecting planks with bolts)
and the steering (adding in tierods). However, we could not inter-
change motors and controls, and so we considered them as part of
the frame assembly of the go kart.

The templates themselves are limited in two ways. First, we choose
to use a linear representation of our templates, because this al-
lows for solving for parameter constraints using simple linear and
quadradic programs, which can be efficiently computed. Though
this computational efficiency is essential in an interactive system,
the linearity condition constrains our manipulations to scaling and
translation of parts, since rotations are non-linear. Second, we
base most of our computations on coplanarity relationships between
prominent planes. This works well for many man-made models, but

our system would have difficulties with models that have a more
curved or complex geometry.

6 Conclusion and Future Work

In this paper we have presented what we believe to be the first
complete data-driven system for digital fabrication. Our algorithm
successfully leverages a database of parameterized fabricable tem-
plates, allowing casual users to design models that can be physically
realized. The output of our algorithm is comprehensive in that it
provides a list of all parts necessary for construction, as well as a
detailed bill of materials that lists where parts can be purchased and
the total cost of construction. We have demonstrated the power of
our method by fabricating different models. We have shown the
scope of the data-driven method by applying the same algorithm to

9



To appear in ACM TOG 4(33).

fabricate furniture and go karts.

We believe that this work, together with the database we are re-
leasing, will spur interesting future work. For example, it would
be interesting to present relevant components to the user during the
modeling session. Chaudhuri et al. [2011] propose a probabilistic
model that suggests components based on style and geometrical se-
mantics. In the context of fabrication, such suggestions should also
include metrics such as construction time, required tools, and cur-
rently available materials. We could also use this database and com-
position method to automatically synthesize new fabricable models
by finding plausible combinations of components, as accomplished
for virtual shapes by Kalogerakis et al. [2012]. Also, it would be
interesting to output assembly instructions along with the bill of
materials. Though the output of our system could be used as input
to the automatic algorithm proposed by Agrawala et al. [2003], it
would be interesting in the future to add assembly information to
the catalog and use this data to automatically generate instructions.

One of the most under-explored elements of our pipeline is the use
of physical simulation. Though we perform rigid-body stability
analysis, there are many other properties that could be investigated.
Future work could test alternate failure modes (such as strength
of joints and stress distributions in objects) and check for fracture
and potential future areas of material fatigue. Furthermore, while
our database contains fabricable objects, much more information
could be stored to make them truly physical entities. Extending the
database to include usage data such as the typical forces an object
encounters in the world would allow us to more rigorously validate
a design’s durability. Finally, because the items in our database are
continually reused, there are opportunities to leverage preprocess-
ing to dramatically accelerate our physics computations.

Finally, it would be interesting to test our algorithm for other cat-
egories of objects such as architecture and clothing, or for more
complex mechanical systems. Since the annotations are simple and
the template generation method is automatic, adding new models
to the database is straightforward. In the future, we would like to
create a web-based environment with a verification system to allow
for the crowd-sourcing of database creation. We feel that a data-
driven approach is the most general method for design and fabrica-
tion, and this paper represents an initial step in the exploration of
such systems. We believe that, in the future, data-driven fabrication
will allow us to design and manufacture a plethora of user-designed
physical objects, from furniture to vehicles to robots, and beyond.

A Defining the mapping function F

In this appendix we discuss how we define our mapping function F i

(Equation 1) for elements which contain multiple parts that form a
discrete regular pattern (e.g., an array of screws or a row of wooden
planks).

We select regular patterns by searching for identical parts that have
uniform inter-component spacing in one or two dimensions. Parts
are said to be identical if they have the same corresponding item and
the same dimensions. We perform the search by first grouping all
identical parts and then extracting all the non-intersecting subsets
of that group which form a regular pattern. We select the subsets
in order of number of parts (highest first) to guarantee that the non-
intersecting rule does not prevent us from extracting the larger sets.

Following the notation of Bokeloh et al. [2012], we consider only
translational patterns. One-dimensional patterns are parameterized
by (o, l,p), where o is the center of the first part (with respect to the
bounding box of the element), l is the number of parts, and p is the
generator translation. Two-dimensional rectangular patterns can be
represented in the same manner.

Given qi, the deformation function Fi calculates the new optimal
values of l and p, which we call l̄ and p̄, respectively. We choose p̄
to be as close to p as possible. In the case of connecting elements,
we are conservative when computing l̄ in order to guarantee manu-
facturability. However, we ensure that p̄ does not shrink to the point
that parts intersect. Finally, if the parts have resizable dimensions
in the directions of p, we scale them according to p̄.

B Geosemantic Relationships

In this appendix we show how to extract geosemantic relationships
and represent them as linear constraints. Consider the table in Fig-
ure 14 (in 2D for simplification). It consists of three elements,
namely, the tabletop and two legs. The parameters of each element
are qi = [pi

x, pi
y,∆i

x,∆i
y], which correspond to positions and sizes

in each dimension. Rules for coplanarity will stipulate that the
bottom of the tabletop must coincide with the top of the legs, i.e.,
pTop

y − ∆
Top
y

2 = pLeg1
y +

∆
Leg1
y

2 = pLeg2
y +

∆
Leg2
y

2 . Rules for concentricity
constrain the center of the bounding boxes in each dimension. In
rules for order, we simply replace the equality by an inequality.

Figure 14: We show a simple 2D table consisting of three parts, a
top and two legs (Leg1 and Leg2). Each part is contained within
a single element for which the qi are the positions (x, y) and sizes
(∆x,∆y) of the bounding box of the part.

Notice that the legs have a reflective symmetry. To write this re-
lationship as a function of q, we need to find a third element that
has a center on the symmetry plane. In this case, we observe that
this is true for the tabletop. Hence, if n is the normal of the sym-
metry plane (in the example, n = [1 0]T ), we can write down sym-
metry relationships as (pLeg1+pLeg2)T n

2 = (pTop)T n. (In the example,
pLeg1

x − pTop
x = pTop

x − pLeg2
x .)

While concentricity and symmetry constraints are written directly
as functions on the bounding box, we define coplanarity relation-
ships on the prominent planes of the model. In most cases, we use
the six bouding planes as the prominent planes. However, in ele-
ments with more complex geometry, such as the go kart frames, we
extract additional planes to describe relationships (for example, the
plane on the axle that connects to the wheel). In this implementation
we have manually annotated such prominent planes, but one could
use simple geometry processing tools to infer them automatically.

We also create additional prominent planes in the case in which we
have functional elements that assume multiple rest configurations.
In this case, we create planes for every rest pose. We consider the
centers of the joints qc. For every resting pose j, we can write the
variables of the transformed element as linear combinations of qi

and qc. By adding qc to the q vector, we can write q j
i = Vq and

proceed to add constraints in the standard linear notation described
above.

10



To appear in ACM TOG 4(33).

Acknowledgements
The authors would like to thank Ilya Baran for his helpful discus-
sions, Katie Bartel for implementation of user interface, and Baker
Logan, Keneth Pinera, Helena Wang, Nilu Zhao, Kendall Helbert,
Molly Donalson, Saul Lopez, Alexxis Isaac, and Jackson Wirekoh
for designing the models in the database. This research was funded
by NSF grant 1138967. Ariel Shamir is partly supported by the
Israel Science Foundation (grant no. 324/11).

References

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003.
Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics 22, 3, 828–837.

BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P.
2011. Pattern-aware shape deformation using sliding dockers.
ACM Transactions on Graphics 30, 6, 123:1–123:10.

BOKELOH, M., WAND, M., SEIDEL, H.-P., , AND KOLTUN, V.
2012. An algebraic model for parameterized shape editing. ACM
Transactions on Graphics 31, 4.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven sugges-
tions for creativity support in 3d modeling. ACM Transactions
on Graphics 29, 6, 183:1–183:10.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L. J., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3d modeling. ACM Transactions on Graphics 30, 4, 35.

CHEN, D., SITTHI-AMORN, P., LAN, J., AND MATUSIK, W.
2013. Computing and fabricating multiplanar models. Computer
Graphics Forum (Proceedings of Eurographics 2013) 32, 2.

CHEN, T., ZHU, Z., SHAMIR, A., HU, S.-M., AND COHEN-OR,
D. 2013. 3sweep: Extracting editable objects from a single
photo. ACM Trans. Graph. 32, 6, 195:1–195:10.

CHIOU, S.-J., AND SRIDHAR, K. 1999. Automated conceptual
design of mechanisms. Mechanism and Machine Theory 34, 3,
467 – 495.

FUNKHOUSER, T. A., KAZHDAN, M. M., SHILANE, P., MIN,
P., KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN,
D. P. 2004. Modeling by example. ACM Transactions on Graph-
ics 23, 3, 652–663.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. Iwires: an analyze-and-edit approach to shape manipu-
lation. ACM Transactions on Graphics 28, 3.

GUI, J.-K., AND MÄNTYLÄ, M. 1994. Functional understanding
of assembly modelling. Computer-Aided Design 26, 6, 435 –
451.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. crdbrd:
Shape fabrication by sliding planar slices. Computer Graphics
Forum (Proceedings of Eurographics 2012) 31, 2.

JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H.-
P. 2012. Exploring shape variations by 3d-model decomposition
and part-based recombination. Comp. Graph. Forum (Proc. Eu-
rographics 2012) 31, 2.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Transactions on Graphics 31, 4.

KAUFMAN, D. M., SUEDA, S., JAMES, D. L., AND PAI, D. K.
2008. Staggered projections for frictional contact in multibody
systems. ACM Trans. Graph. 27, 5 (Dec.).

KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI,
S., AND FUNKHOUSER, T. 2013. Learning part-based tem-
plates from large collections of 3d shapes. ACM Transactions on
Graphics (Proc. of SIGGRAPH 2013).

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
Transactions on Graphics 27, 5, 111:1–111:9.

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3d furniture models to fabricatable parts and connec-
tors. ACM Transactions on Graphics 30, 4, 85.

LIN, J., COHEN-OR, D., ZHANG, H., LIANG, C., SHARF, A.,
DEUSSEN, O., AND CHEN, B. 2011. Structure-preserving
retargeting of irregular 3d architecture. ACM Transactions on
Graphics 30, 6, 183:1–183:10.

MORI, Y., AND IGARASHI, T. 2007. Plushie: An interactive de-
sign system for plush toys. ACM Transactions on Graphics 26,
3, 45:1–45:8.

OVSJANIKOV, M., LI, W., GUIBAS, L. J., AND MITRA, N. J.
2011. Exploration of continuous variability in collections of 3d
shapes. ACM Transactions on Graphics 30, 4, 33.

ROY, U., PRAMANIK, N., SUDARSAN, R., SRIRAM, R., AND
LYONS, K. 2001. Function-to-form mapping: model, repre-
sentation and applications in design synthesis. Computer-Aided
Design 33, 10, 699 – 719.

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
Sketchchair: an all-in-one chair design system for end users. In
Proceedings of the fifth international conference on tangible, em-
bedded, and embodied interaction, TEI ’11, 73–80.

SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware
design with intersecting planar pieces. Computer Graphics Fo-
rum (Proceedings of Eurographics 2013) 32, 2.

SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. 2012. Structure
recovery by part assembly. ACM Transactions on Graphics 31,
6.

SHTOF, A., AGATHOS, A., GINGOLD, Y., SHAMIR, A., AND
COHEN-OR, D. 2013. Geosemantic snapping for sketch-based
modeling. Computer Graphics Forum 32, 2, 245–253. Proceed-
ings of Eurographics 2013.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Transactions on Graphics 31, 4.

XU, K., ZHENG, H., ZHANG, H., COHEN-OR, D., LIU, L., AND
XIONG, Y. 2011. Photo-inspired model-driven 3d object model-
ing. ACM Transactions on Graphics 30, 4, 80.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. Computer Graphics Forum 30,
2, 563–572.

11


