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A BAYESIAN APPROACH FOR PREDICTING THE POPULARITY
OF TWEETS

By Tauhid Zaman, Emily B. Fox and Eric T. Bradlow

Massachusetts Institute of Technology, University of Washington

and University of Pennsylvania

We predict the popularity of short messages called tweets cre-
ated in the micro-blogging site known as Twitter. We measure the
popularity of a tweet by the time-series path of its retweets, which is
when people forward the tweet to others. We develop a probabilistic
model for the evolution of the retweets using a Bayesian approach,
and form predictions using only observations on the retweet times
and the local network or “graph” structure of the retweeters. We
obtain good step ahead forecasts and predictions of the final total
number of retweets even when only a small fraction (i.e., less than
one tenth) of the retweet path is observed. This translates to good
predictions within a few minutes of a tweet being posted, and has
potential implications for understanding the spread of broader ideas,
memes or trends in social networks.

1. Introduction. The rapid rise in the popularity of online social net-
works has resulted in an explosion of user-generated content. There is a
wide variety in the type of content—it can be a user comment, a photo-
graph, a movie or a link to a news article. Typically, in these online social
networks, users form connections with other users, producing a social graph.
For example, in the micro-blogging site Twitter, these connections are known
as followers and the resulting social graph is known as the follower graph.
When a user generates a piece of content, it becomes visible to all of his
or her followers in the social graph. The content spreads through the social
graph if these followers subsequently repost the content so their followers
can see it and potentially repost it further.

In this work we focus on the micro-blogging site Twitter which has over
230 million active users as of November 2013 [US Securities and Exchange
Commission (2013)]. The user-generated content in Twitter is composed of
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short messages known as tweets containing up to 140 characters, which can
also contain images or links to news articles or videos. Tweets are spread
through the Twitter follower graph by the act of retweeting, which is when
a user forwards a tweet to his or her followers.

Our goal in this work is to predict the popularity of a tweet by predicting
the time path of retweets it receives. We aim to make these predictions very
early on in the lifetime of the tweet, sometimes within minutes of it being
posted. We use a Bayesian model to describe the evolution of the retweets
of a tweet. With this model we make predictions for the total number of
retweets a tweet will receive using information from early retweet times, the
retweets of other tweets and summaries of the follower graphs.

The remainder of the paper is organized as follows. In Section 1.1 we de-
scribe related work. In Section 2 we provide a description of the data utilized
and an exploratory set of analyses of it that guide the proposed probabilistic
model of Section 3. We present our posterior computations via Markov chain
Monte Carlo (MCMC) in Section 3.5. In Section 4 we present an analysis of
our model’s predictive performance on our Twitter data, including a com-
parison to benchmark models from the extant literature and nested versions
of our model. We discuss extensions to this research in Section 5.

1.1. Previous work. There has been much recent interest in the retweet
prediction problem, albeit in terms of a slightly different type of prediction
task. In particular, recent extant research [Zaman et al. (2010), Bakshy et al.
(2010)] tried to predict the existence of a retweet between a particular pair
of users. While this is an important problem in graph formation or viral
spreading across vertices, it is a notably different problem than addressed
here due to the precision and pairwise specificity required.

Suh et al. (2010) used a generalized linear model to understand what
features influenced the chance of a tweet being retweeted by anyone. Other
work [Hong, Dan and Davison (2011), Bandari, Asur and Huberman (2012)]
built upon this and used a variety of algorithms to try to predict not the
exact number of retweets, but rather a coarse interval for the number of
retweets of a tweet. Similar techniques were used by Naveed et al. (2011)
and Petrovic, Osborne and Lavrenko (2011) to predict the probability that a
tweet receives any retweets, which by definition is nested within the problem
we consider.

In contrast to these previous works, we aim to predict the entire time path,
and hence the eventual number of retweets of a tweet. This is similar to Szabo
and Huberman (2010) who use a linear model to predict the popularity of
stories on Digg.com and videos on YouTube after 30 days by observing their
popularity after one hour and one week, respectively. Other related work
is Agarwal, Chen and Elango (2009) who attempt to make one-step ahead

http://www.Digg.com
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predictions of the click-through rates of online news stories with a spatial–
temporal model that utilizes the time-varying click-through rate of an article
along with its spatial position on a webpage. The problem of predicting the
structure of time evolving citation networks is studied in Vu et al. (2011).
Our prediction goal is similar to these works, but as we demonstrate in
Section 4, our approach produces accurate predictions for the final number
of retweets using only minutes of observations, rather than hours or days.
Given the Bayesian approach utilized here, accurate predictions are possible
for a given tweet’s retweet path even when there are no available data other
than that of other retweet paths observed so far, especially if one utilizes
covariates describing the tweets, retweets and their authors (an area for
future research).

2. Data overview. In this section we describe the retweet data we ob-
tained and present exploratory data analysis of some basic features. This
analysis is useful in providing an understanding of the scales associated with
the data (number of retweets of a typical tweet, time-scale over which a typ-
ical tweet is retweeted) and in guiding our more formal modeling choices.

2.1. Data description. We collected retweet data that cover a fairly wide
array of topics and also have a wide range of retweet graph sizes. The top-
ics include music, politics and miscellaneous everyday events. Our data set
consists of 52 different tweets which were selected through manual explo-
ration of Twitter and are available in the supplemental materials [Zaman,
Fox and Bradlow (2014)]. We refer to these original tweets as root tweets.
For each root tweet, we used the Twitter Search API [Twitter (2012)] to find
all retweets. We used root tweets which were at least a week old to make
sure that there were likely to be no more retweets occurring. The search API
provided us with the retweet times and identity of the users who retweeted.
Also, since the Search API could only return a maximum of 1800 results,
we did not look at root tweets with more than this many retweets. Based on
previous empirical studies [Zhou et al. (2010), Cha et al. (2010)], this max-
imum number of retweets covers a large fraction of tweets in Twitter and
does not represent a significant limitation. However, it is an open research
question as to what degree the empirical patterns we observe will hold for
tweets with a large number of retweets.

From the text of the retweet, we are able to identify the person that the
user retweeted (the username following the text “RT@”). For example, if
user Alice posted the tweet “Hello” and user Bob retweeted this root tweet,
it would appear as “RT@ Alice: Hello.” We then used the Twitter API to
find the number of followers of the root user and each user who retweeted
it. The number of followers will act as a covariate in our predictive model.
In particular, the number of followers for a given user represents both the
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potential retweet base for a given tweet and also a significant moderator of
the speed and timing of retweets.

We associate with each root tweet a directed retweet graph. We will utilize
the following notation for the different data associated with the retweet
graph. We denote the root tweet as x which is tweeted by root user vx0 .
The retweet graph associated with x which we observe at time t is denoted
Gx(t) = (V x(t),Ex(t)). The vertex set V x(t) includes the root user (who
tweets at t= 0) and all users who retweet the root tweet before time t. A
directed edge (u, v) ∈Ex(t) points from user u to user v if v retweets u before
t. We will denote the total number of retweets in Gx(t) by mx(t) = |V x(t)|−
1. We define the final number of retweets of x as limt→∞mx(t) =Mx and it
is the arrival of retweets and attained Mx that we wish to predict.

We will index the users in the retweet graph with the variable j. The
root user is indexed by j = 0, and all other users have j > 0. User j who
retweets x is denoted by vxj for j = 1,2,3, . . . . The time of this user’s retweet
is denoted T x

j , with T x
0 = 0 (the root tweet occurs at time 0). User vxj has fx

j

Twitter followers and is dxj “hops” from the root user vx0 in the retweet graph.
The parent of vxj in the retweet graph is denoted P x

j . To illustrate these

definitions, we show in Figure 1 an example of the retweet graph for a root
tweet. Included are pictures of the evolution of the retweet graph, a plot of
the number of retweets versus time and a table showing the aforementioned
summary data for several users in the retweet graph. As we can see, this
particular root tweet has almost all of its retweets at depth one (one hop
from the source), which is a common pattern for our data set as discussed
below.

2.2. Size, lifetime and depth of retweet graphs. We first look at the size
and lifetime of the 52 retweet graphs. The root tweets we collected had
between 21 and 1260 retweets. The time for the final retweet to occur ranged
from a few hours to a few days as some of the final retweets had very large
retweet times. A more stable measure of the lifetime of a root tweet is the
time to reach 50% (the median) of its total retweet count. The median
retweet times ranged from four minutes to three hours, with most being less
than one hour.

We plot the total number of retweets versus the median retweet times for
the 52 root tweets in Figure 2. We also plot the rank of each tweet’s median
retweet time versus the rank of its total number of retweets among our 52
source tweets. The Pearson correlation coefficient for the median retweet
times and the eventual number of retweets is −0.12 (p-value = 0.49) and
the Kendall tau rank correlation coefficient is 0.03 (p-value = 0.84). There-
fore, we do not have evidence to reject the null hypothesis that the eventual
number of retweets is uncorrelated with the median retweet time. Instead,
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Fig. 1. Data for the root tweet “Cory Booker has never worked a day in his life. Not.
#corybookerstories” by root user pbsgwen. The table shows the relevant data for the retweet
graph for several users. The plot shows the number of retweets of the root tweet versus time.
Images of the retweet graph at different times are also shown.

this suggests the potential value of our model over purely exploratory ap-
proaches. In particular, it is important to model the retweet interarrivals for
our prediction task. Thus, simply predicting the total number of retweets

Fig. 2. (Left) total number of retweets versus median retweet time for different root
tweets. (Right) rank of total number of retweets versus rank of median retweet time for
different root tweets.
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Fig. 3. Histogram of (left) the fraction of users at different depths in all 52 retweet graphs
and (right) the fraction of vertices of depth greater than one in the retweet graph for each
root tweet.

from the median (or simple central summary) is unlikely to yield accurate
predictions.

We next explore the structure of the retweet graphs. In particular, we
look at the number of vertices one hop and more than one hop from the
root user. For the 52 root tweets, there are 11,882 retweeters who are one
hop from the root user and only 314 retweeters more than one hop from the
root user. Figure 3 shows the histogram of vertices at different depths in
all of the retweet graphs, along with a plot of the fraction of vertices more
than one hop from the root user for each retweet graph. As can be seen,
retweet graphs typically have most vertices at depth one, but occasionally
they have some vertices at depth greater than one, suggesting that root
tweets get retweeted much more often than the retweets get retweeted. This
fact agrees with previous studies done on retweet graph structures [Kwak
et al. (2010), Goel, Watts and Goldstein (2012)] and is key to our ability to
predictMx early, even before potential retweets from those two hops or more
are taken into account. We have found that the follower count of the root
user has little correlation with the retweet graph depth (Pearson correlation
coefficient = 0.13, p-value = 0.28). However, when a retweet graph has depth
greater than one, it is typically due to a user with a large number of followers.
The median follower count of users in the retweet graph who are not the
source but get retweeted is 1,142,923.

2.3. Reaction times. Given, as before, that user vxj retweets the root
tweet at time T x

j , we define the reaction time Sx
j = T x

j − T x
Px
j
as the elapsed

time between when the parent of vxj (re)tweets and vxj retweets. That is, Sx
j is

the time that it takes vxj to react and retweet after the root tweet becomes
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Fig. 4. Description of reaction times for a retweet graph. The vertical position of vertices
indicate when they retweeted, with time increasing as one goes down. The reaction time
on each edge is expressed in terms of the retweet times of the vertices.

visible to vxj via its parent’s (re)tweet. We define π as the permutation
that orders the Mx retweet times T x

j from minimum to maximum. That is,
T x
π(0) ≤ T x

π(1) ≤ · · · ≤ T x
π(Mx). It is important to note that π corresponds to

the sequence in which we observe the retweet times for a root tweet. Figure 4
provides a graphical explanation of the reaction times in terms of retweet
times.

To begin a more formal exploration of our data, we first consider a simple
and non-Bayesian model in which each Sx

j is assumed to be an i.i.d. log-

normal random variable with parameters τx and αx: log(Sx
j )∼N (αx, (τx)2).

We take the parameters of the log-normal to be different for each root tweet
x, but the same for each user within a given retweet graph. This assump-
tion takes into account the fact that there can be heterogeneity of these
parameters which depends on the content of the root tweet.

To assess the log-normal assumption, we calculate the maximum likeli-
hood (ML) estimate of αx and τx for each root tweet. Given a set of reaction
times Sx

j for j = 1,2, . . . ,Mx, the ML estimates are straightforwardly given
by

αx
ML =

1

Mx

Mx∑

j=1

log(Sx
j ), τxML =

√√√√ 1

Mx

Mx∑

j=1

(log(Sx
j )−αx

ML)
2.

In Figure 5 (top left) we show a scatter-plot of αx
ML and τxML for different

root tweets x. All parameter values are evaluated with reaction times mea-
sured in seconds. The mean and standard deviation of αx

ML is 7.31 and 0.73,
respectively. The mean and standard deviation of τxML is 2.31 and 0.31, re-
spectively, and we clearly see some heterogeneity over x. To assess fit, we
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Fig. 5. (Top left) scatter-plot of ML estimates of αx and τx for different root tweets.
The remaining figures are plots of the empirical reaction time complimentary cumulative
distribution function (CCDF) (black circles) and the CCDF of log-normal distributions
using the ML parameter estimates (solid line) for three different root tweets representing
the 2.5 (top right), 50 (bottom left) and 95 (bottom right) percentiles of retweet graph size
in our data set. For each root tweet, we show the root user for the tweet and the number
of retweets in total it received.

show in Figure 5 the empirical complimentary cumulative distribution func-
tion (CCDF) of the reaction times along with the CCDF of a log-normal
distribution using the ML estimates for the parameters for three root tweets
representing the 2.5 (small size, top right), 50 (medium size, lower left) and
95 (large size, lower right) percentiles of retweet graph size in our data set.
Qualitatively, the log-normal curves provide a reasonable fit for the reaction
times.

The observation of log-normally distributed reaction times has occurred
in other application areas. For instance, Stouffer, Malmgren and Amaral
(2006) observed that the time for people to respond to emails follows a log-
normal distribution. Brown et al. (2005) observed that call durations in call
centers follow a log-normal distribution. In the psychology literature there
have been different models proposed to explain the origin of log-normal
reaction times in different contexts [Ulrich and Miller (1993), van Breukelen
(1995)]. However, these models do not apply directly to Twitter and it is
interesting to see the same general empirical pattern replicated here.

2.4. Retweet graph structure. In this section we provide an initial explo-
ration of the effects of the number of followers, fx

j , and distance from the
root, dxj , on the probability of a user’s tweet being retweeted. Once a user
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vxj (re)tweets in the retweet graph for a root tweet x, the (re)tweet appears

in the Twitter feed (timeline) of all of vxj ’s followers. Some number of these
followers will subsequently retweet vxj . We denote this number by Mx

j , which

is equal to the out-degree of vxj in the completed retweet graph once the root
tweet has stopped spreading. We assume that each of the fx

j followers of vxj
will independently retweet vxj with probability 0≤ bxj ≤ 1. This gives Mx

j a
binomial distribution Bi(fx

j , b
x
j ). We note that this assumption of conditional

independence across followers is reasonable because retweeters are unlikely
to be connected to other retweeters and, hence, there is no “visibility” be-
tween the fx

j followers. In our data set, the average of ratio of cycle forming
follower edges to all possible follower edges is 0.01. This means that follower
edges which connect users in addition to those connected via retweets rep-
resent less than 1% of all possible follower edges. For other networks there
may be generalizations needed.

We assume the retweet probability bxj depends upon two pieces of infor-
mation: the number of followers fx

j of vxj and the distance dxj of vxj from
vx0 in the retweet graph. This makes conceptual sense as these two variables
represent the potential retweet base and the “degree of closeness” of each
vertex, respectively. We model logit(bxj ) as

logit(bxj ) = β0 + βf log(f
x
j +1) + βd log(d

x
j + 1) + εxj ,(1)

where εxj ∼ N (0, σ2
b ). For this exploratory analysis (formal model in Sec-

tion 3), for each user vxj we estimate bxj as b̂xj =Mx
j /f

x
j . We then perform a

linear regression of logit(̂bxj ) on log(fx
j +1) and log(dxj +1) for all users in all

root tweets. Here, we only include users for which Mx
j ≥ 1 so that logit(̂bxj )

will be finite.
The ML estimates of the regression coefficients are β̂0 = 1.99, β̂f =−0.79

and β̂d = −4.31 and the p-values of the corresponding t-statistic are all
significantly less than 0.001, indicating a high significance for each coef-
ficient. In Figure 6 we plot logit(̂bxj ) − β̂0 − β̂d log(d

x
j + 1) versus fx

j and

logit(̂bxj )− β̂0 − β̂f log(f
x
j +1) versus dxj in order to show the isolated effect

of each covariate.
The value for β̂f is negative, which is expected given the way b̂xj is defined,

but the value is greater than −1. This result says that after controlling for dxj ,
the average value of Mx

j scales as bxj f
x
j ∼ (fx

j )
c for some 0< c< 1. Therefore,

the number of retweets should grow with the number of followers a user has,
but at a decreasing rate. The value for β̂d is also negative, indicating that
after controlling for fx

j , a retweet is less likely the farther we get from the
root user. Both of these findings are in accordance with previous research
on retweet graph structure [Kwak et al. (2010), Goel, Watts and Goldstein
(2012)] and provide face validity to our results.
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Fig. 6. Plots for all 52 root tweets of (left) logit(̂bxj )− β̂0 − β̂d log(d
x
j +1) versus fx

j and

(right) logit(̂bxj )− β̂0 − β̂f log(f
x
j +1) versus dxj . The values of dxj are slightly perturbed in

order to improve visibility of the data.

3. Retweet model. Our data analysis in Section 2 provides us with in-
sights on the important properties of the dynamics of retweeting and the
structure of retweet graphs. Based on these insights, we propose a Bayesian
model for the evolution of the retweet graph of a root tweet.

3.1. Generative model for retweet graph evolution. Our generative model
for the evolution of a retweet graph can be described as follows. We start
with a single user vx0 who posts the root tweet x. This user has a reaction
time Sx

0 = 0 and Mx
0 children who will eventually retweet x. Each child vxj

of Mx
0 generates a random reaction time Sx

j and an independent random
number of children Mx

j . This process repeats recursively with every child
generating a reaction time and an independent random number of its own
children.

The process terminates when all children which are leaves in the retweet
graph have Mx

j = 0. As we show in our model specification of Section 3.3,
the distribution of Mx

j depends on the depth of the node and in Section 4 we
show that we typically learn that Mx

j is likely to be smaller for higher depth
nodes. The graphical model of this generative model is shown in Figure 7.

In what follows, we specify the components of our generative process by
defining the conditional distributions of Sx

j and Mx
j .

3.2. Log-normal model for reaction times. From our exploratory anal-
ysis, we saw that a log-normal distribution provided a reasonable fit for
the reaction times. There was some variation in the ML estimates of the
log-normal parameters, αx and τx, across tweets. Therefore, we choose the
following model for the reaction times. For each root tweet x we model
log(Sx

j ) as normal with a tweet specific mean αx and standard deviation
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Fig. 7. Graphical model of the Bayesian log-normal-binomial model for the evolution
of retweet graphs. The plates denote replication over tweets x and users vxj . Nested plates
denote retweets occurring at larger depths from the root user. The process terminates when
all children which are leaves in the retweet graph have Mx

j = 0. Hyperpriors are omitted
for simplicity.

τx. We place a normal prior on αx and an inverse-gamma prior on (τx)2,
in accordance with standard hieararchical Bayesian models [cf. Gelman and
Hill (2007)]. In particular,

log(Sx
j )|αx, τx,Mx ∼N (αx, (τx)2), j = 1, . . . ,Mx,(2)

αx|α,σ∆ ∼N (α,σ2
∆),(3)

(τx)2 ∼ IG(aτ , bτ ).(4)

To complete our hierarchical Bayesian specification and ameliorate issues
with hyperparameter sensitivity, we use the following hyperpriors:

α∼N (µα, σ
2
α),(5)

σ2
∆ ∼ IG(a∆, b∆),(6)

log(aτ )∼N (µa, σ
2
a),(7)

bτ ∼Gamma(kb, θb),(8)
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and note that exact hyperparameter values, selected to be uninformative,
are provided in Appendix A. The graphical model for the reaction time
component of the model is shown in Figure 7 (see node Sx

j and all associated

connections) and demonstrates the cross-tweet shrinkage that is allowed by
our model.

3.3. Binomial model for retweet graph structure. As in our exploratory
analysis, we assume independence of retweets between the pool of potential
retweeters, specifically assuming that each follower of user vxj retweets with
probability bxj . We saw initial evidence that the retweet probabilities bxj
showed dependence on the number of followers and depth of the user, fx

j

and dxj . Using this insight, we propose the following model for the retweet

graph structure:

Mx
j |fx

j , b
x
j ∼ Bi(fx

j , b
x
j ),(9)

logit(bxj )|µx
j , σb ∼N (µx

j , σ
2
b ),(10)

where we define

µx
j = β0 + βf log(f

x
j +1) + βd log(d

x
j + 1).(11)

This model allows for the possibility of the number of followers, fx
j , and the

depth of the retweet from the root, dxj , to influence the number of eventual
retweeters. The influence of the covariates, as determined by βf and βd,
is shared across root tweets x. As with the reaction time model, we put
hyperpriors on these global model parameters:

β0 ∼N (µβ0 , σ
2
β0
),(12)

βf ∼N (µβf
, σ2

βf
),(13)

βd ∼N (µβd
, σ2

βd
),(14)

σ2
b ∼ IG(aσb

, bσb
),(15)

where we specify the specific (uninformative) hyperparameter values in Ap-
pendix A. The combined model for reaction times and the graph structure
is shown in Figure 7.

3.4. Likelihood function. We now derive the likelihood function for our
retweet model. We partition our data set into two types of tweets, training
tweets and prediction tweets. The training tweets are fully observed retweet
graphs. That is, we observe all reaction times (Sx

j ) along with the final
degree (Mx

j ) of each vertex in the retweet graph. For the prediction tweets,
we observe the retweet graph up to a time tx and therefore only observe a
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fraction of the reaction times and the current degree of each vertex which
we denote by mx

j (t
x). We do not observe the Mx

j ’s in a prediction tweet1

and, therefore, we treat these as missing data.
First, we derive the likelihood of the observations for a training tweet. We

define the number of observed retweets for a training tweet x as mx. The
observed data for a training tweet are S

x =
⋃mx

j=1S
x
j and M

x =
⋃mx

j=0M
x
j .

Recall that in our model log(Sx
j )∼N (αx, (τx)2) for j = 1, . . . ,mx. Therefore,

if we define b
x =

⋃mx

j=0 b
x
j , the likelihood of the observations is given by

P(Sx,Mx|αx, τx,bx,mx)

= P (Mx
0 |bx0 , F x

0 )(16)

×
mx∏

j=1

1√
2πτx

exp

(
−
(log(Sx

j )− αx)2

2(τx)2

)
P (Mx

j |bxj , fx
j ),

where P (Mx
j |bxj , fx

j ) is given by the binomial of equation (9). We note that
Sx
j is not conditionally independent of Mx

j because the total number of Sx
j

that exist depend upon Mx
j (which is an element in defining the observed

mx).
For the prediction tweets, we do not observe the Mx

j ’s and so will need

to marginalize over them. Also, we observe only a subset of the reaction
times which comes from retweets that occur before time tx. Using the pre-
vious definitions of π and mx(tx), the observed data for a prediction tweet

are S
x
tx =

⋃mx(tx)
j=1 Sx

π(j) and m
x
tx =

⋃mx(tx)
j=0 mx

π(j)(t
x). First, we derive the

conditional distribution of the observations S
x
tx and m

x
tx conditional on

M
x
tx =

⋃mx(tx)
j=0 Mx

π(j), α
x and τx. With this conditioning, the contribution

to the probability from each vertex vx
π(j) observed by time tx has three com-

ponents:

(1) The log-normal likelihood of its observed reaction time [equation (2)].
(2) The unobserved retweets of its children in the retweet graph. That

is, for each vertex vx
π(j) that retweets at time T x

π(j) ≤ tx, we have mx
π(j)(t

x)

observed retweets by time t and Mx
π(j)−mx

π(j)(t
x) unobserved retweets. Be-

cause we are making the observations at time tx, these Mx
π(j) −mx

π(j)(t
x)

reaction times must be greater than tx−T x
π(j). Therefore, if we define the cu-

mulative distribution function of N (αx, (τx)2) as F (·|αx, τx), the
contribution to the conditional distribution is (1 − F (log(tx − T x

π(j))|
αx, τx))

Mx
π(j)

−mx
π(j)

(tx)
. That is, Mx

π(j)−mx
π(j)(t

x) potential retweeters of vx
π(j)

have not done so yet (or we would have observed them by time tx).

1Except in the degenerate case where mx
j = fx

j , in which case Mx
j =mx

j .
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(3) A combinatorial term
( Mx

π(j)

mx
π(j)

(tx)

)
which must be included because the

unobserved retweets from the children of vx
π(j) could be any Mx

π(j)−mx
π(j)(t

x)

of its Mx
π(j) children.

Putting these components together, the likelihood of the prediction tweet
observations, conditional on the missing Mx

π(j), is given by

P(Sx
tx ,m

x
tx |αx, τx,Mx

tx ,m
x(tx))

=

(
Mx

0
mx

0(t
x)

)
(1−F (log(tx − T x

0 )|αx, τx))M
x
0 −mx

0 (t
x)

(17)

×
mx(tx)∏

j=1

1√
2πτx

exp

(
−
(log(Sx

π(j))−αx)2

2(τx)2

)(
Mx

π(j)

mx
π(j)(t

x)

)

× (1−F (log(tx − T x
π(j))|αx, τx))

Mx
π(j)

−mx
π(j)

(tx)
.

As can be seen from equaton (17), for prediction tweets Sx
j and Mx

j are not
conditionally independent. Because of this dependency we can use temporal
observations (retweet times) to predict the final retweet graph structure (and
hence the final retweet count of the tweet).

To obtain the complete data likelihood, we simply multiply equation (17)
by P(Mx

π(j)|bxπ(j), F x
π(j)) and sum over all possible values of Mx

π(j). If we define

b
x
tx =

⋃mx(tx)
j=0 bx

π(j), then the marginal likelihood is

P(Sx
tx ,m

x
tx |αx, τx,bx

tx)

=
∑

Mx
0

(
Mx

0
mx

0(t
x)

)
(1−F (log(tx − T x

0 )|αx, τx))M
x
0 −mx

0 (t
x)

×
mx(tx)∏

j=1

1√
2πτx

exp

(
−
(log(Sx

π(j))−αx)2

2(τx)2

)

×
∑

Mx
π(j)

P (Mx
π(j)|bxπ(j), F x

π(j))

(
Mx

π(j)

mx
π(j)(t

x)

)

× (1−F (log(tx − T x
π(j))|αx, τx))

Mx
π(j)

−mx
π(j)

(tx)
.

Since this equation does not yield a closed form, we rely on imputing the
missing Mx

j as described next in Section 3.5.

3.5. Posterior computations. To summarize, our goal is to calculate a
predictive distribution for reaction times, and hence the number of eventual
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retweets of a prediction tweet x, given a set of observed (training) retweet
paths and the partial history of x observed up to time tx. Recall that our
model consists of three types of parameters. First, there are the global pa-
rameters Φ = {α,σ∆, aτ , bτ , β0, βf , βd, σb} which are shared between tweets.
Second, there are tweet specific parameters α=

⋃
xα

x and τ =
⋃

x τ
x. Third,

there is a tweet and user specific parameter: the retweet probability bxj . We
define the set of all retweet probabilities as b=

⋃
x,j b

x
j .

The final vertex degrees (Mx
j ) are missing data for the prediction tweets.

We define P as the set of prediction tweets and T as the set of training
tweets. We define the set of unobserved Mx

j for a tweet x as Mx =
⋃

j M
x
j .

For the prediction tweets we define MP =
⋃

x∈P M
x and for the training

tweets we define MT =
⋃

x∈T M
x. We define the set of observed reaction

times for a tweet x as S
x =

⋃
j S

x
j and the set of all reaction times for

both the training and prediction tweets as S=
⋃

xS
x. Using the conditional

dependencies in our model as laid out in Figure 7, the posterior distribution
of the model parameters and MP given S and MT can be written as

P(Φ,α,τ ,b,MP |S,MT )∝P(Φ)
∏

x

P(αx|α,σ∆)P(τx|aτ , bτ )

×
∏

x,j

P(Mx
j |bxj , fx

j )P(bxj |µx
j , σb)

(18)
×

∏

x∈T

P(Sx|αx, τx,Mx)

×
∏

x∈P

P(Sx,mx
tx |αx, τx,Mx).

To examine our desired predictive distribution of MP , we sample from equa-
tion (18) using an MCMC sampler which involves sampling the model pa-
rameters in addition to MP . The predictive distribution is approximated by
utilizing samples of MP . Also, despite being potentially very high dimen-
sional, the structure of the posterior distribution lends itself to an efficient
parallelized implementation which can result in significant speedup. The de-
tails of the stages of our sampler along with the parallelized implementation
are provided in the Appendix.

4. Results. We partition our data set into a set of 26 training tweets T
and a set of 26 prediction tweets P . We randomly divide the tweets such that
the training and prediction sets have similar retweet count distributions. The
specific partition used can be found in the supplemental materials [Zaman,
Fox and Bradlow (2014)]. We aim to calculate the predictive distribution
for MP using a fixed observation fraction of retweets for each prediction.
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For instance, for an observation fraction of 10%, we used as observations all
data from the 26 training tweets and the first 10% of the total number of
reaction times for each of the 26 prediction tweets. Note that by fixing the
observation fraction, we are observing each prediction tweet up to a different
time. We use observation fractions ranging from 10% to 100%. 100 represents
a fully in-sample analysis, and lower fractions are used to understand how
early on in a tweet’s life predictions can be made.

For each observation fraction, we generated posterior samples using three
independent MCMC chains with dispersed starting points run for 3000 it-
erations and discarding a burn-in period of 1000 iterations. Convergence of
the MCMC sampler was assessed using the Gelman–Rubin statistic [Gel-
man and Rubin (1992)]. A histogram of the posterior samples of the global
parameters for an observation fraction of 100% is shown in Figure 8 and the
corresponding posterior means are shown in Table 1.

We find that the posterior mean of α is 7.42, which is comparable to
the mean of the ML estimates of αx from Section 2.3 (7.31). Also, the 90%
posterior credible interval of the β parameters do not contain 0, indicating
that these parameters are important to the predictive power of our model
and agree with our earlier analyses from Section 2.4.

In Section 4.1 we describe our prediction results for the number of eventual
retweets, followed by an analysis in Section 4.3 that looks at the impact of
the number of followers (fx

j ) and the depth of the retweeters (dxj ) on our
predictions.

Fig. 8. Histograms of posterior samples of global parameters with an observation fraction
of 100%.
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Table 1

Posterior means and standard deviations
(s.d.) for the global model parameters with
an observation fraction of 100% (a fully

in-sample analysis)

Parameter Posterior mean (s.d.)

α 7.42 (0.10)
σ∆ 0.65 (0.07)
aτ 0.45 (0.07)
bτ 2.11 (0.55)
σb 1.69 (0.18)
β0 −4.61 (0.85)
βf −0.28 (0.06)
βd −8.22 (0.59)

4.1. Retweet prediction results. The predictions of our model for the to-
tal number of retweets come from Mx

j , the eventual number of retweets
from retweeter vxj . For instance, if at time tx we observe mx(tx) retweets,

our prediction of the total number of retweets is given by the predictive dis-

tribution of
∑mx(tx)

j=0 Mx
π(j). This serves as a step-ahead forecast of Mx. We

discuss possibilities to go beyond this step-ahead prediction in Section 5.1.
Our predictions are for observation fractions ranging from 10% to 100%.

The prediction results for four different root tweets are shown in Figure 9.
We plot the median and 90% posterior credible intervals for the total number
of retweets for different observation fractions. The predictions are plotted
along with the number of observed retweets versus time. From these plots,
it can be seen qualitatively that the predictions made within a few minutes
for the eventual number of retweets are relatively close to the true value.
We have found for all the prediction tweets that the median time for the
total number of retweets to enter the 90% posterior credible interval of the
prediction is 3 minutes.

To better understand the model predictions at the individual tweet level,
we show boxplots of the posterior distribution of the absolute percent error
(APE) for each prediction tweet (using the posterior median as the pre-
diction value) for different observation fractions in Figure 10. The whiskers
on the boxplots are the 90% posterior credible intervals. As can be seen,
as we increase the observation fraction, the prediction error tends to de-
crease. There are a few tweets which have exceptionally large errors at a
40% observation fraction. We discuss these tweets in Section 5.2.

We can aggregate these results across all prediction tweets by looking at
the APE of predictions made using the posterior median as our prediction
value. We have found no significant relationship between the APE of a pre-
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Fig. 9. Prediction of the total number of retweets for four different root tweets. The
solid line represents the number of observed retweets versus time. The solid square is the
posterior median of the predictive distribution for the total number of retweets based on
observations only up to that time point. The error bars correspond to the 90% credible
intervals. The horizontal dashed line is the final number of observed retweets Mx. The
root user and total number of retweets of each tweet are shown in the plots.

diction and the final number of retweets. For instance, at 25%, 50% and 75%
observation fractions the correlation between the APE and final number of
retweets is 0.14 (p-value 0.49), 0.14 (p-value 0.49) and 0.14 (p-value 0.49),
respectively. In Figure 11 we show a boxplot of the APE for all 26 prediction
tweets versus observation fraction.

As can be seen, for our model the median APE (MAPE) is below 40% for
observation fractions ranging from 10% to 100%. The average retweet time of
the prediction tweets at a 10% observation fraction is 4.4 minutes. Therefore,
we see that using only a few minutes of observations, we can predict with
reasonable accuracy the total number of retweets given a small fraction of
observations. To check robustness, we have repeated the predictions on 10
different random partitions of the tweets. We have found for 10% observation
fraction the MAPE of each partition was between 20% and 36%, with an
average value of 28%.
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Fig. 10. Boxplots of prediction absolute percent error (APE) for 26 prediction tweets.
Each plot corresponds to a different observation fraction of retweets.

To get a sense of how good the predictions are, consider the MAPE at
10% and 100%. At 10%, if one thought that there were no more retweets, the
error would be 90%. Our model’s median error is less than 40%, which means
that the model predicts that the tweet will receive many more retweets. At
90%, if one thought the there were no more retweets, the error would be
10%. Our model’s median error is less than 10%, which means that the
model predicts that the tweet is almost done spreading. Therefore, we see
that our model can predict if a tweet has a significant amount of (retweet)
life left or if it is near its end.

Fig. 11. Boxplots of the APE of the retweet model and strawman model at different
observation fractions.
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4.2. Comparison with benchmark models. We next compare our model
with three different benchmark models. First, we consider a linear regression
model that uses no temporal information and only the follower count of the
root user (source tweeter). Second, we consider the regression model of Szabo
and Huberman (2010) which uses only the current retweet count. Finally, we
consider a dynamic Poisson model with exponentially decaying rate based
on the work of Agarwal, Chen and Elango (2009). We will see that our model
outperforms each of these approaches.

The linear regression model is as follows:

log(Mx) = β0 + β1 log(f
x
0 ) + εx,(19)

where εx is a zero mean, normally distributed error term. This model only
uses the root users’ follower count to predict the final retweet count, but no
information about the retweet times or followers and depth of retweeters.

The regression model of Szabo and Huberman (2010) for the final retweet
count is

log(Mx) = β(t) + log(mx(t)) + εx,(20)

where εx is a zero mean, normally distributed error term. Here the final
retweet count is modeled as a log-linear function of the current retweet
log count at time t, where the intercept β(t) is time varying. Since mx(t)
approaches Mx(t) as t goes to infinity, we also expect β(t) to approach zero
in this model.

For the dynamic Poisson model with exponentially decaying rate, we
bin time into 5 minute intervals indexed by k = 0,1,2, . . . . The number of
retweets in the kth bin is a Poisson random variable with rate λδk. Here λ
is the initial retweet rate, and δ describes the exponential decay of the rate.

We perform ML estimation of these models on the training tweets, and
then predict on the prediction tweets. For the linear regression model which
only uses the follower count, the MAPE is 65%. This is much higher than
our model that is able to use observations of retweet times. For the other
two models which utilize retweet times, we plot their MAPE in Figure 12.
We plot the MAPE of both the final retweet count and also the remaining
retweet count (so that the maximum possible MAPE = 100%). For each type
of MAPE, we can see that our retweet model outperforms the other models.

4.3. Comparison with nested models: Impact of fx
j and dxj . To show the

importance of fx
j and dxj to our retweet model, we compare to a strawman

model which ignores these covariates. The strawman model assumes that
Mx

j comes from a Poisson distribution (not binomial as before since fx
j is

unknown) with global rate λ. We keep the reaction time component of the
retweet model the same. We put an uninformative gamma prior on λ with
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Fig. 12. Plots of the median absolute percentage error (MAPE) for the total retweet
count (left) and remaining retweet count (right) versus observation fraction of retweets for
26 root tweets. The three curves are the MAPE for the retweet model, the linear regression
model of Szabo and Huberman (2010) and the dynamic Poisson model with exponentially
decaying rate.

shape and scale parameters 1 and 500, respectively. We use the median of
the predictive distribution as a point estimate of the number of retweets in
comparing our model’s performance to that of the strawman. In Figure 11
we show boxplots for the absolute percent error (APE) of the two models’
predictions for all of the prediction tweets versus the observation fraction.
For an observation fraction of 10% (where predictions are most useful) the
error of the strawman model is very high (MAPE = 80%) compared to our
model (MAPE = 29%). Also, while our model’s error tends to decrease as
more retweets are observed, the strawman model’s error decreases to a point
and then increases again. The strawman model’s prediction for the total
number of retweets is essentially a constant multiplied by the number of
observed retweets. To make this more evident, in Figure 13 we plot the
MAPE versus observation fraction for both models and a naive model which
predicts 1.4mx(tx) for the eventual number of retweets. The factor of 1.4 was
chosen to make the minimum MAPE of the naive model occur at the same
observation fraction as the strawman model. As can be seen, the error of
the strawman is very similar to the naive model.

To assess the overall fit of the two models, we compare their average
log-likelihood (LL) and deviance information criterion (DIC) [Spiegelhalter
et al. (2002)] for an observation fraction of 100% in Table 2. Models which
fit better have larger values for the LL and smaller values for the DIC. As
can be seen from Table 2, our model has a significantly better fit than the
strawman model. This analysis demonstrates that fx

j (user information) and
dxj (retweet graph structure) are important elements for predicting retweets

accurately.
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Fig. 13. Plot of the median absolute percentage error (MAPE) versus observation frac-
tion of retweets for 26 root tweets. The three curves are the MAPE for the retweet model,
a strawman model which ignores fx

j and dxj , and a naive model which always predicts
1.4mx(tx).

5. Model extension opportunities. We next discuss various extensions to
our retweet model. We first discuss improving our predictions using future
potential retweeters. Then we discuss evidence in our data which suggests
possible extensions to our reaction time model. Finally, we discuss the in-
corporation of side information for the tweets.

5.1. Distribution over future potential retweeters. Our current predic-
tions are based on eventual retweets from existing users in the observed
retweet graphs and do not take into account retweets of future retweeters
who have not yet been observed. We can think of this prediction as a step-
ahead forecast of the total eventual number of retweeters. In practice, it
quickly provides a good estimate since most retweet graphs have low depth
and retweets occur quickly. However, one could extend our prediction to ac-
count for the eventual retweets from users who have not yet been observed,
in particular, by integrating over our uncertainty. This type of prediction
would require greater knowledge of the structure of the underlying follower

Table 2

Average log-likelihood (LL) and deviance
information criterion (DIC) for a 100%

observation fraction for the full retweet model
and a nested strawman model

Retweet model Strawman model

LL −38,860 −103,907
DIC 83,848 208,026
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graph. For instance, if a user has a follower with a large number of fol-
lowers, this user may receive a large number of retweets due to a retweet
from this follower. Therefore, incorporation of unobserved retweeters could
potentially improve our predictions, but would require obtaining more data
on the follower graph. Note, however, that under the (experimentally vali-
dated) assumption that the probability of retweeting decreases with depth,
the sensitivity of our predictions to inaccuracies of future retweeter infor-
mation may be minimal.

5.2. Reaction time modeling. As seen in Figure 10 (top right), at an
observation fraction of 40% there are four different tweets with very large
errors compared to the other tweets. We looked at these tweets more closely
to try to understand the source of this error. The number of retweets for
these tweets ranged from 73 to 608. What these tweets had in common
was the fact that the number of retweets increased very rapidly at first,
and then slowed down considerably. This behavior deviated from the log-
normal reaction time model. If the reaction times were log-normal, then
their logarithms would be normally distributed and the difference between
the median and mean of their logarithms would be zero. Any deviation of
this difference from zero can be viewed as a deviation from log-normality.
We define ∆x as this difference normalized by the median of the logarithm
of the reaction times:

∆x =
mean(log(Sx

j ))−median(log(Sx
j ))

median(log(Sx
j ))

.

To show the similarities of the four high error tweets, in Figure 14 we
plot ∆x versus the median reaction time for each prediction tweet. The four
triangles in the plot are the tweets with the large errors. As can be seen, these
tweets have a short median reaction time along with a large value for ∆x.
Therefore, it seems that these tweets have reaction times that are not well

Fig. 14. Plot of median reaction time versus ∆x for the prediction tweets. The triangle
points are the tweets with large prediction errors at 40% observation from Figure 10.
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modeled by the log-normal distribution, which leads to the larger prediction
errors. It is an interesting area of future research to try and understand what
properties of these tweets and the users who posted them cause this type
of retweeting behavior and why the reaction times are not well modeled by
the log-normal distribution.

5.3. Incorporation of side information. Our model relied primarily on
the timing information of retweets, depth in the retweet graph and number of
followers for predictions. However, there are other types of side information
that we could incorporate which may potentially improve the accuracy of
the predictions. One type of side information is the time of day. It may be
that the retweet behavior of a tweet depends upon the time it was posted.
Another type of side information is the content of the tweet. For instance,
retweet behavior may depend upon the topic of the tweet, and whether or
not that topic is a currently trending topic in Twitter. These types of side
information can be readily incorporated into our modeling framework as
covariates for the parameters such as αx and bxj .

6. Conclusion. We have presented a model for retweet dynamics in Twit-
ter. Our Bayesian approach allowed us to provide predictions for the total
number of retweets, along with posterior credible intervals for the predic-
tions. The predictions had a MAPE of less than 40% when at least 10% of
the total number of retweets were observed. For most tweets, this translated
to an average error less than 40% within 5 minutes of the tweet being posted.

We have shown that given the size of the retweeter network and depth
from the source tweet, we are able to predict the number of potential viewers
of a tweet. The level of accuracy in our predictions allows us to consider using
this model for different applications. For example, it can be used to turn
tweets into a potential source of impressions for display ads. Because tweets
are typically only actively retweeted for a few hours, the early predictions
our model provides are key to detecting a popular tweet before it receives
a large amount of retweets. Also, the similarity of the manner by which
people spread content in social networks suggest that this model can be
used for other social networks such as Facebook. Therefore, our model’s
early predictions could create a whole new source of impressions for online
advertising on dynamic social network content with a finite “lifetime.”

Finally, because this model is for a single tweet, it can be used as the
foundation for a more general model for the spread of broader ideas which
involve multiple tweets from multiple users. Our model can easily be par-
allelized to analyze very large collections of tweets. With a model for the
spread of ideas, we could develop a better understanding of how memes
and trends spread and potentially predict the speed and magnitude of their
popularity.
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APPENDIX A: DETAILS OF MCMC SAMPLER

We use a Metropolis-within-Gibbs scheme to sample from the posterior
distribution of the model parameters. We define the set of model parameters
as Θ= {Φ,b,αx,τx,MP} and for any parameter γ ∈Θ, we define the set of
parameters excluding γ as Θ−γ . We also define the set of observed reaction
times as S. For our MCMC sampler, we must sample from the conditional
distribution P(γ|S,MT ,Θ−γ) for each model parameter. We will now derive
these conditional distributions and show how to sample from them.

A.1. Retweet graph structure parameters.

Hyperparameters β0, βF , βd, σ
2
b . The prior distributions for β0, βF and

βd are normal with mean 0 and standard deviation σβ = 100. It can be shown
that the joint conditional distribution of (β0, βF , βd) is multivariate normal
with mean µ and covariance matrix C. Because of this, we can directly
sample the β’s in a Gibbs step. We simply need to determine µ and C. To
do this, first we let N be the total number of observed reaction times for all
training and prediction tweets. To express the mean and covariance of the
conditional distribution, it is helpful to define the following variables:

N1 =N + σ2
bσ

−2
β , E =

∑

x,j

log(fx
j + 1) log(dxj +1),

D =
∑

x,j

log(dxj + 1), D2 =
∑

x,j

log2(dxj +1) + σ2
bσ

−2
β ,

F =
∑

x,j

log(fx
j + 1), F2 =

∑

x,j

log2(fx
j +1) + σ2

bσ
−2
β ,

Y0 =
∑

x,j

log(bxj +1), YF =
∑

x,j

log(bxj + 1) log(fx
j +1),

Yd =
∑

x,j

log2(bxj + 1) log(dxj +1) + σ2
bσ

−2
β .

Then the covariance matrix of the conditional distribution is given by

C= σ2
b



N1 F D
F F2 E
D E D2



−1

and its mean is given by

µ=



N1 F D
F F2 E
D E D2



−1


Y0

YF

Yd


 .
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The prior distribution of σ2
b is inverse-gamma with shape and scale pa-

rameters aσb
= 0.5 and bσb

= 0.5, respectively. We can directly sample from
the conditional distribution for σ2

b because it is inverse-gamma with shape
parameter a′σb

and scale parameter b′σb
given by

a′σb
= aσb

+
N

2
,

b′σb
= bσb

+
1

2

∑

x,j

(logit(bxj )− µx
j )

2,

where µx
j = β0 + βF log(fx

j + 1) + βd log(d
x
j +1).

Parameters bxj . The conditional distribution of bxj is given by

P(bxj |S,MT ,Θ−bxj
)∝P(Mx

j |bxj )P(bxj |β0, βF , βd, σb)

∝ (bxj )
Mx

j (1− bxj )
fx
j −Mx

j exp

(
−
(logit(bxj )− µx

j )
2

2σ2
b

)
.

To sample from this conditional distribution, we use a Metropolis–Hastings
step with the proposal value for logit(bxj ) drawn from a normal distribution
with mean µx

j and standard deviation σb.

Missing Mx
j . The conditional distribution for Mx

j is

P(Mx
j |S,MT ,Θ−Mx

j
)∝

(
Mx

j

mx
j

)
(1− F (log(t− Sx

j )|αx, τ))M
x
j −mx

j

×
(

fx
j

Mx
j

)
(bxj )

Mx
j (1− bxj )

fx
j −Mx

j 1{Mx
j ≥mx

j }.

We generate samples from this conditional distribution using a Metropolis–
Hastings step with the proposal for Mx

j drawn from a binomial distribution
Bi(fx

j , b
x
j ).

A.2. Retweet time parameters.

Hyperparameters α, σ2
∆, aτ , bτ . We utilized an extremely diffuse prior

distribution for α that is normal with mean 0 and standard deviation σα =
100. The conditional distribution of α is again normal with mean µ′

α and
variance σ′2

α , so it can be directly sampled. If we define the total number of
root tweets (training and prediction) as Nt, then the mean and variance are

µ′
α = (Nt + σ2

∆σ
−2
α )−1

∑

x

αx,

σ′2
α = (Nt + σ2

∆σ
−2
α )−1σ2

∆.
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The prior distribution of σ2
∆ is inverse-gamma with shape and scale pa-

rameters aσ∆
= 0.5 and bσ∆

= 0.5, respectively. We can directly sample from
the conditional distribution for σ2

∆ because it is again inverse-gamma with
shape parameter a′σ∆

and scale parameter b′σ∆
given by

a′σ∆
= aσ∆

+
Nt

2
,

b′σ∆
= bσ∆

+
1

2

∑

x

(αx −α)2.

The prior distribution of log(aτ ) is normal with mean µa = 0 and standard
deviation σa = 10. The conditional distribution of aτ is given by

P(aτ |S,MT ,Θ−αx)∝P(aτ )

Nt∏

x=1

P(τx|aτ , bτ )

= exp

(
− log2(aτ )

2σ2
a

) Nt∏

x=1

baττ
Γ(aτ )

(τx)−aτ .

To sample from this conditional distribution, we use a random walk
Metropolis–Hastings step. That is, if we define the ith sample of aτ as aτ,i,
the proposal for the (i+1) sample is drawn from a normal distribution with
mean aτ,i and standard deviation 0.2, where 0.2 is chosen to balance the
acceptance rate with step size.

The prior distribution of bτ is gamma with shape parameter kb = 1 and
scale parameter θb = 500. We can sample directly from the conditional dis-
tribution of bτ because it is gamma with shape parameter k′b and scale
parameter θ′b given by

k′b = kb +Ntaτ ,

θ′b =

(
θ−1
b +

∑

j

(τx)−1

)−1

.

Parameters αx, τx. The conditional distribution of αx depends upon
whether the root tweet is in the training or prediction set. For training
tweets, the conditional distribution of αx is normal with mean µαx and
variance σ2

αx
with

µαx = (Mx + τ2σ−2
∆ )−1

Nt∑

j=1

log(Sx
j ),

σ2
αx = (Mx + τ2σ−2

∆ )−1τ2.
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For a prediction tweet with n observed retweets, the conditional distribution
of αx is given by

P(αx|S,MT ,Θ−αx)

∝ exp

(
(αx −α)2

2σ2
∆

)

×
n−1∏

j=0

exp

(
−
(log(T x

j+1)−αx)2

2τ2

)
(1−F (log(t− Sx

j )|αx, τ))M
x
j −mx

j .

To sample from this conditional distribution, we use a random walk Metro-
polis–Hastings step. We define the ith sample of αx as αx

i , and the proposal
for the (i+ 1) sample is drawn from a normal distribution with mean αx

i

and standard deviation 0.2, where 0.2 is chosen to balance the acceptance
rate with step size.

The prior distribution of (τx)2 is inverse-gamma with shape and scale
parameters aτ and bτ , respectively. We denote the inverse-gamma density
function by IG(·|aτ , bτ ). The conditional distribution of (τx)2 can be written
as

P((τx)2|S,MT ,Θ−τ )

∝ IG((τx)2|a′τ , b′τ )
∏

x∈P

(1− F (log(t− Sx
j )|αx, τ))M

x
j −mx

j ,

where the parameters of the inverse-gamma density function above are

a′τ = aτ +
mx(t)

2
,

b′τ = bτ +
1

2

mx(t)∑

j=1

(log(Sx
j )− αx)2.

For training tweets, Mx
j = mx

j , so the conditional distribution is inverse-
gamma and we can sample τx directly. For prediction tweets, we must use
a Metropolis–Hastings step with the proposal value for (τx)2 drawn from
an inverse-gamma distribution with shape and scale parameters a′τ and b′τ ,
respectively.

APPENDIX B: DISTRIBUTED IMPLEMENTATION OF
MCMC SAMPLER

The MCMC sampler lends itself naturally to distributed computation.
The variables to be sampled are global (shared) and local (tweet/user spe-
cific). The main computational burden comes from the local random vari-
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ables, of which there can be thousands or millions, depending on the size
of the observations. However, the steps for sampling many of these local
variables can be done simultaneously, which can result in a considerable
speedup.

There are two random variables associated with each tweet/user pair
(x, j) : bxj and Mx

j . The only local variable the sampling step of bxj depends
on is Mx

j . For sampling Mx
j , the only local variables needed are bxj , α

x and
τx. Therefore, the sampling steps of bxj and Mx

j must be done sequentially.

However, this sequence of steps can be done in parallel across all tweet/user

pairs (x, j).
There are two random variables associated solely with each tweet x: αx

and τx. The sampling of αx needs the values of τx and all Mx
j associated

with tweet x. Similarly, the sampling of τx depends on the values of αx and

all Mx
j associated with tweet x. Therefore, the sampling steps of αx and

τx must be done sequentially, but this can be done in parallel across all
tweets x.

Putting all this together, we obtain the following distributed implemen-

tation of the MCMC sampler to generate a sample from the full posterior
distribution. First, sequentially sample the global parameters Φ. Second,
sequentially sample the parameters αx and τx for a tweet x, but simultane-
ously for all tweets. Third, sequentially sample the parameters bxj andMx

j for
all tweet/user pairs (x, j), but simultaneously for all tweet/user pairs. This
results in a classic data parallel setup that can be efficiently implemented
using frameworks such as MapReduce.

SUPPLEMENTARY MATERIAL

Supplement: Retweet time series data (DOI: 10.1214/14-AOAS741SUPP;

.zip). These files contain the data of the retweet time series for the root
tweets studied in this paper. They also include the files which contain the
different partitions of the tweets into training and prediction sets used for
the analysis in this paper.

REFERENCES

Agarwal, D., Chen, B. and Elango, P. (2009). Spatial–temporal models for estimating
click-through rates. Unpublished manuscript.

Bakshy, E., Hofman, J. M., Mason, W. A. and Watts, D. J. (2010). Everyone’s an

influencer: Quantifying influence on Twitter. In Proc. WSDM. ACM, New York.
Bandari, R., Asur, S. and Huberman, B. A. (2012). The pulse of news in social me-

dia: Forecasting popularity. In AAAI Conference on Weblogs and Social Media. AAAI,
Dublin, Ireland.

http://dx.doi.org/10.1214/14-AOAS741SUPP


30 T. ZAMAN, E. B. FOX AND E. T. BRADLOW

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S. and
Zhao, L. (2005). Statistical analysis of a telephone call center: A queueing-science
perspective. J. Amer. Statist. Assoc. 100 36–50. MR2166068

Cha, M., Haddadi, H., Benevenuto, F. and Gummadi, K. P. (2010). Measuring user
influence in Twitter: The million follower fallacy. In Proc. AAAI Conf. on Weblogs and
Social Media. AAAI, Washington, DC.

Gelman, A. and Hill, H. (2007). Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge Univ. Press, Cambridge.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statist. Sci. 7 457–472.

Goel, S., Watts, D. J. and Goldstein, D. G. (2012). The structure of online diffusion
networks. In Proc. EC. ACM, New York.

Hong, L., Dan, O. and Davison, B. D. (2011). Predicting popular messages in Twitter.
In Proceedings of the 20th International Conference Companion on World Wide Web
57–58. ACM, New York.

Kwak, H., Lee, C., Park, H. and Moon, S. (2010). What is Twitter, a social network
or a news media? In Proc. WWW. ACM, New York.

Naveed, N., Gottron, T., Kunegis, J. and Alhadi, A. C. (2011). Bad news travels
fast: A content-based analysis of interestingness on Twitter. In ACM Web Science.
ACM, New York.

Petrovic, S., Osborne, M. and Lavrenko, V. (2011). RT to win! Prediction mes-
sage popularity in Twitter. In AAAI Conference on Weblogs and Social Media. AAAI,
Barcelona. Spain.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002).
Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol.
64 583–639. MR1979380

Stouffer, D. B.,Malmgren, R. D. andAmaral, L. A. N. (2006). Log-normal statistics
in e-mail communication patterns. Available at ArXiv:physics/0605027.

Suh, B., Hong, L., Pirolli, P. and Chi, E. H. (2010). Want to be rewteeted? Large
scale analysis on factors impacting retweet in Twitter network. In IEEE International
Conference on Social Computing 177–184. IEEE, Minneapolis, MN.

Szabo, G. and Huberman, B. A. (2010). Predicting the popularity of online content.
Commun. ACM 8 80–88.

Twitter (2012). Using the Twitter search API. Available at https://dev.twitter.com/
docs/using-search.

Ulrich, R. and Miller, J. (1993). Information processing models generating lognormally
distributed reaction times. J. Math. Psych. 37 513–525.

US Securities and Exchange Commission (2013). Twitter, Inc. Form S-1. Avail-
able at http://www.sec.gov/Archives/edgar/data/1418091/000119312513424260/

d564001ds1a.htm.
van Breukelen, G. J. P. (1995). Theoretical note: Parallel information processing mod-

els compatible with lognormally distributed response times. J. Math. Psych. 39 396–399.
Vu, D. Q., Asuncion, A. U., Hunter, D. R. and Smyth, P. (2011). Dynamic egocentric

models for citation networks. In International Conference on Machine Learning. ACM,
New York.

Zaman, T., Fox, E. B. and Bradlow, E. T. (2014). Supplement to “A Bayesian ap-
proach for predicting the popularity of tweetss.” DOI:10.1214/14-AOAS741SUPP.

Zaman, T., Herbrich, R., Gael, J. V. and Stern, D. (2010). Predicting information
spreading in Twitter. In Proc. Workshop on Computational Social Science and the
Wisdom of Crowds, NIPS. NIPS, Vancouver, Canada.

http://www.ams.org/mathscinet-getitem?mr=2166068
http://www.ams.org/mathscinet-getitem?mr=1979380
http://arxiv.org/abs/ArXiv:physics/0605027
https://dev.twitter.com/docs/using-search
https://dev.twitter.com/docs/using-search
http://www.sec.gov/Archives/edgar/data/1418091/000119312513424260/d564001ds1a.htm
http://www.sec.gov/Archives/edgar/data/1418091/000119312513424260/d564001ds1a.htm
http://dx.doi.org/10.1214/14-AOAS741SUPP


PREDICTING POPULARITY OF TWEETS 31

Zhou, Z., Bandari, R., Kong, J., Qian, H. and Roychowdhury, V. (2010). Informa-
tion resonance on Twitter: Watching Iran. In ACM Workshop on Social Media Analytics
123–131. ACM, New York.

T. Zaman

Sloan School of Management

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

USA

E-mail: zlisto@mit.edu

E. B. Fox

Department of Statistics

University of Washington

Box 354322

Seattle, Washington 98195

USA

E-mail: ebfox@stat.washington.edu

E. T. Bradlow

The Wharton School

University of Pennsylvania

Philadelphia, Pennsylvania 19104

USA

E-mail: ebradlow@wharton.upenn.edu

mailto:zlisto@mit.edu
mailto:ebfox@stat.washington.edu
mailto:ebradlow@wharton.upenn.edu

	1 Introduction
	1.1 Previous work

	2 Data overview
	2.1 Data description
	2.2 Size, lifetime and depth of retweet graphs
	2.3 Reaction times
	2.4 Retweet graph structure

	3 Retweet model
	3.1 Generative model for retweet graph evolution
	3.2 Log-normal model for reaction times
	3.3 Binomial model for retweet graph structure
	3.4 Likelihood function
	3.5 Posterior computations

	4 Results
	4.1 Retweet prediction results
	4.2 Comparison with benchmark models
	4.3 Comparison with nested models: Impact of fjx and djx

	5 Model extension opportunities
	5.1 Distribution over future potential retweeters
	5.2 Reaction time modeling
	5.3 Incorporation of side information

	6 Conclusion
	A Details of MCMC sampler
	A.1 Retweet graph structure parameters
	A.2 Retweet time parameters

	B Distributed implementation of MCMC sampler
	Supplementary Material
	References
	Author's addresses

