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Consider the newsvendor model, but under the assumption that the underlying demand distribution is not

known as part of the input. Instead, the only information available is a random, independent sample drawn

from the demand distribution. This paper analyzes the sample average approximation (SAA) approach for

the data-driven newsvendor problem. We obtain a new analytical bound on the probability that the relative

regret of the SAA solution exceeds a threshold. This bound is significantly tighter than existing bounds, and

it matches the empirical accuracy of the SAA solution observed in extensive computational experiments.

This bound reveals that the demand distribution’s weighted mean spread (WMS) affects the accuracy of the

SAA heuristic.
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1. Introduction

In the classical single-period newsvendor problem, a retailer plans to sell a perishable product

which has a stochastic demand with a known distribution (Zipkin 2000). She needs to commit to an

order quantity before observing the actual demand. The retailer incurs an underage cost for each

unit of unsatisfied demand, and an overage cost for each unsold unit of product at the end of the

period. Unsold units are discarded at the end of the period. The goal of the retailer is to choose an

order quantity that minimizes the expected cost function C. If the demand distribution is known,

then the optimal order quantity q∗ = minq≥0C(q) is a well-specified quantile of the distribution

(sometimes called the critical quantile).
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In reality, managers need to make inventory decisions without having complete knowledge of the

demand distribution. Often, the only information available is a set of demand data. Nonparametric

data-driven heuristics assume the demand data is a random sample drawn from the unknown

demand distribution. Consider a random sample of size N drawn from the unknown distribution.

One popular nonparametric data-driven heuristic approach often used in practice is sample average

approximation (SAA) (Homem-De-Mello 2000, Kleywegt et al. 2001). The SAA solution, which we

denote by Q̂N , minimizes the cost averaged over the empirical distribution induced by the sample

of size N , instead of the true expected cost C that cannot be evaluated. The SAA solution is equal

to the sample critical quantile, which can be obtained by sorting the N samples in increasing value.

Note that Q̂N is stochastic since its value depends on the random sample.

In many practical settings, there is either not enough demand data available or data is gener-

ated from an expensive procedure. Under these settings, it is useful to understand the underlying

accuracy of a data-driven solution for a given sample size. The following are only a few examples

of such settings: (i) A retailer is planning to introduce a new product, and the retailer may want

to gather demand information for production and inventory planning purposes. One method is

through conducting pilot experiments where the product is introduced in a few pilot stores. Setting

up a pilot at a store is expensive, however the retailer can gather useful information to forecast

demand. How many pilot stores and pilot weeks are sufficient for the retailer to gather enough

demand information to have a production plan it can be confident with? (ii) When a fast fashion

retail company, such as ZARA, introduces a new collection for the season, it waits to receive some

initial set of sales samples. It then uses these samples to refine the estimation of demand to be

used for quick production. The longer the demand-gathering period, the more accurate the demand

forecasts. But shorter demand-gathering periods enable the company to plan smaller production

batches, resulting in shorter lead time and quicker abilities to react to demand. (iii) A retailer

is planning to introduce a new product. In order to gather information about the demand, the

retailer designed a simulation model that is computationally complex, but can accurately simulate

demand based on multiple factors. Due to the computational complexity of the simulation model,

the retailer may choose to generate limited demand data points for planning initial production.

In this paper, we develop a probabilistic understanding of the accuracy of the popular data-driven

SAA heuristic using a novel analysis. We asses the accuracy of the SAA heuristic using its regret,

which is the difference between its cost C(Q̂N) and the optimal cost C(q∗). The regret divided by

C(q∗) is called the relative regret. The contributions and insights of the paper are outlined next.

1.1. Contributions and Insights

1.1.1. An Informative Probabilistic Bound. We derive a new analytical bound on the

probability that the SAA solution has at most ϵ relative regret. This bound depends only on
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the sample size, the threshold ϵ, the underage and overage cost parameters, as well as a newly

introduced property of the demand distribution called weighted mean spread (WMS). To the best

of our knowledge, the WMS is an entirely new concept first introduced in this paper. The absolute

mean spread (AMS), ∆(q∗), is the difference between the conditional expectation of demand above

q∗ and the conditional expectation below the q∗ (Definition 1). The WMS is the AMS weighted by

the density function value, i.e. ∆(q∗)f(q∗). Our analysis shows that the WMS is the key property of

a distribution that determines the accuracy of the SAA method. Specifically, the probability that

the SAA solution has a relative regret greater than ϵ decays exponentially, with an exponential

decay constant proportional to ∆(q∗)f(q∗). Thus, the SAA solution is more likely to have a smaller

relative regret if the sample is drawn from a distribution with a large value for ∆(q∗)f(q∗).

1.1.2. A Tighter Bound that Predicts SAA’s Empirical Behavior. The probabilis-

tic bound we derive for SAA accuracy based on our analysis is significantly tighter than those

established in previous works (Kleywegt et al. 2001, Levi et al. 2007). In empirical experiments,

the theoretical guarantee of our bound is closer to the actual empirical performance of SAA.

Moreover, our bound accurately reflects the empirical relationship between regret–sample size and

regret–WMS predicted by regression models built from applying SAA on different sample sizes and

demand distributions.

1.1.3. A Probabilistic Bound for Log-Concave Distributions. The new notion of WMS

is used to develop a general optimization-based methodology to derive a probabilistic bound for the

accuracy of the SAA method over any nonparametric family of distributions. This is done through

a specified optimization problem that minimizes the WMS, ∆(q∗)f(q∗), over the family of distri-

butions. We are able to solve this problem in closed form for the important family of log-concave

distributions, providing a provably tight lower bound on ∆(q∗)f(q∗) of all log-concave distributions.

As a consequence, we obtain a uniform probabilistic bound for the accuracy of the SAA solution

under any log-concave demand distribution. This bound is independent of distribution-specific

parameters, and only depends on the sample size, the relative regret threshold, and the underage

and overage cost parameters. Note that many of the common distributions, some often assumed in

inventory and operations management, are log-concave, e.g., normal, uniform, exponential, logistic,

chi-square, chi, beta and gamma distributions. The methodology we developed could potentially be

used to derive probabilistic bounds for SAA accuracy under other distribution families. We believe

this is a promising future research direction.

1.1.4. A Minimax Regret Policy for Uncensored Demand under Continuous Dis-

tributions. Based on our probabilistic bound on SAA’s relative regret, we are able to derive an
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upper bound on the SAA’s cumulative regret overN periods that is O(lnN). A recent paper by Bes-

bes and Muharremoglu (2013) shows that, in a repeated newsvendor setting where in each period

an additional uncensored demand data point from a continuous distribution is revealed, there is no

nonanticipating policy that achieves a worst-case cumulative regret smaller than O(lnN). Based

on our analysis, the policy of ordering the SAA solution in each period achieves a cumulative regret

of O(lnN).

1.1.5. Comparing SAA with Other Data-Driven Approaches. Finally, we conduct a

computational study comparing the accuracy of the SAA method against another naive (but com-

monly used in industry) approach that first fits the sample to a specified distribution and then

solves the newsvendor problem with respect to that distribution. The comparison is made based

on the average single-period relative regret. In most cases, even when the critical quantile is high,

the accuracy of the SAA method are on par or dominate those of the distribution fitting approach.

Moreover, when the sample is drawn from a nonstandard distribution (e.g., mixed normals), the

distribution fitting method results in huge errors compared to the SAA method.

1.2. Literature Review

There exists a large body of literature on models and heuristics for inventory problems that can

be applied when limited demand information is known. One may use either a parametric approach

or a nonparametric approach. A parametric approach assumes that the true distribution belongs

to a parametric family of distributions, but the specific values of the parameters are unknown.

In contrast, a nonparametric approach requires no assumptions regarding the parametric form of

the demand distribution. The following are some examples of parametric approaches. Scarf (1959)

proposed a Bayesian procedure that updates the belief regarding the uncertainty of the parameter

based on observations that are collected over time. Liyanage and Shanthikumar (2005) introduced

operational statistics which, unlike the Bayesian approach, does not assume any prior knowledge on

the parameter values. Instead it performs optimization and estimation simultaneously. In another

work, Akcay et al. (2009) propose fitting the sample to a distribution in the Johnson Translation

System, which is a parametric family that includes many common distributions. Besides SAA,

the following are other examples of nonparametric approaches proposed in previous work. Con-

cave adaptive value estimation (CAVE) (Godfrey and Powell 2001) successively approximates the

objective cost function with a sequence of piecewise linear functions. Bookbinder and Lordahl

(1989) propose estimating the critical quantile of the demand distribution using the bootstrap

method. The infinitesimal perturbation approach (IPA) is a sampling-based stochastic gradient

estimation technique that has been used to solve stochastic supply chain models (Glasserman and
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Ho 1991). Huh and Rusmevichientong (2009) propose an online algorithm for the newsvendor

problem with censored demand data (i.e., data is on sales instead of demand) based on stochastic

gradient descent. Another nonparametric method for censored demand is proposed by Huh et al.

(2008), based on the well-known Kaplan-Meier estimator. Robust optimization addresses distribu-

tion uncertainty by providing solutions that are robust against different distribution scenarios. It

does this by allowing the distribution to belong to a specified family of distributions. Then one

can use a max-min approach, attempting to maximize the worst-case expected profit over the set

of allowed distributions. Scarf (1958) and Gallego and Moon (1993) derived the max-min order

quantity for the newsvendor model with respect to a family of distributions with the same mean

and variance. Another robust approach attempts to minimize the worst-case regret over the dis-

tribution family. Some recent works using a minimax regret criterion include Ball and Queyranne

(2009), Eren and Maglaras (2006), Perakis and Roels (2008), Levi et al. (2011).

In general, the sample average approximation (SAA) method is used to solve two types of

stochastic optimization problems. The first type of problems are those that are computationally

difficult even though the underlying distribution is known (e.g. two-stage discrete problems where

the expectation is difficult to evaluate due to complicated utility functions and multivariate con-

tinuous distributions). Sampling is used to approximate the complicated (but known) objective

function. The resulting sample approximation leads to a deterministic equivalent problem (e.g. an

integer program) that is finite, though possibly with a large dimension due to the sample size. Some

analytical results about probabilistic bounds for SAA accuracy have been derived for two-stage

stochastic integer programs (Kleywegt et al. 2001, Swamy and Shmoys 2005, Shapiro 2008). It was

shown by Kleywegt et al. (2001) that the optimal solution of the SAA problem converges to the

true optimal value with probability 1. They also derive a probabilistic bound on the SAA accuracy

that depends on the variability of the objective function and the size of the feasible region, however

they observe it to be too conservative for practical estimates.

The second type of problems SAA is used to solve are problems whose objective functions are easy

to evaluate if the distribution is known (like for the newsvendor problem), however the complication

is that the distribution is unknown. Samples are used to estimate the unknown objective function.

The problem we are dealing with in this paper falls under this second category of problems.

The accuracy of the SAA solution for the newsvendor problem is analyzed by Levi et al. (2007)

who derive a bound on the probability that its relative regret exceeds a threshold. This bound

is independent of the underlying demand distribution, and only depends on the sample size, the

error threshold, and the overage and underage cost parameters. Since it applies to any demand

distribution, it is uninformative and highly conservative. It is uninformative since it does not reveal

the types of distributions for which the SAA procedure is likely to be accurate. It is conservative
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because, as we demonstrate in computational experiments later in this paper, the probabilistic

bound in Levi et al. (2007) does not match the empirical accuracy of the SAA seen for many

common distributions. We show later in Section 5 that the analysis of Levi et al. (2007) greatly

underestimates the accuracy of the SAA method. Similar to the probabilistic bounds derived for

the first type of problems using SAA, our bound is distribution-specific. However, our bound is

significantly tighter compared to previously established bounds. Since the demand distribution is

unknown, we use an optimization-based framework to derive probabilistic bounds for SAA accuracy

that do not depend on any distribution-parameters.

There are other metrics that have been used in the literature to evaluate whether a data-driven

heuristic converges to the true optimal solution. In a repeated setting where the decision-maker

can adapt the policy based on new data, a popular metric is the cumulative regret over N periods

(Flaxman et al. 2005, Huh and Rusmevichientong 2009, Besbes and Muharremoglu 2013). A recent

paper by Besbes and Muharremoglu (2013) shows that, if the demand distribution is continuous, no

nonanticipating policy for uncensored demand can achieve a worst-case cumulative regret smaller

than O(lnN). However, since the adaptive policy by Huh and Rusmevichientong (2009) which

uses the censored demand data to estimate a cost-decreasing direction achieves a cumulative regret

that is O(lnN), then both the censored and uncensored setting have a minimax cumulative regret

that is O(lnN). A corollary of our analysis in this paper is that the commonly-used SAA heuristic

similarly achieves a cumulative regret of O(lnN) for the uncensored demand setting.

Our results are also related to quantile estimation literature. This is because the SAA solution

for the newsvendor problem is a particular sample quantile of the empirical distribution formed by

the demand sample. The confidence interval for the quantile estimator are well-known (Asmussen

and Glynn 2007). However, unlike in quantile estimation, the accuracy of the SAA solution does

not depend on the absolute difference between the true quantile and the quantile estimator. Rather

it depends on the cost difference between the true quantile and the estimator. In our work, we find

a relationship between the two types of accuracies.

1.3. Outline

This paper is structured as follows. In Section 2, we describe the data-driven single-period newsven-

dor problem and discuss the probabilistic bound on SAA’s relative regret by Levi et al. (2007).

Section 3 introduces a novel WMS-based analysis of the SAA relative regret. In Section 4, we intro-

duce an optimization-driven bound on WMS and apply it to log-concave distributions. In Section 5,

we discuss the implications of the WMS-based bound: it closely matches the empirical behavior

of SAA, and it implies that SAA achieves a cumulative regret of O(lnN) in a repeated setting.

Finally, in Section 6, we perform computational experiments that compare the performance of the
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SAA approach to another popular data-driven method. Unless given, the proofs are provided in

the electronic companion to this paper.

2. The Data-Driven Newsvendor Problem

In the newsvendor model, a retailer has to satisfy a stochastic demand D for a single product over

a single sales period. Prior to observing the demand, the retailer needs to decide how many units q

of the product to stock. Only then is demand realized and fulfilled to the maximum extent possible

from the inventory on hand. At the end of the period, cost is incurred; specifically, a per-unit

underage cost b > 0 for each unit of unmet demand, and a per-unit overage cost h > 0 for each

unsold product unit. The goal of the newsvendor is to minimize the total expected cost. That is,

min
q≥0

C(q)!E
[
b(D− q)+ +h(q−D)+

]
,

where x+ !max(0, x). The expectation is taken with respect to the stochastic demand D, which

has a cumulative distribution function (cdf) F .

Much is known about the newsvendor objective function and its optimal solution (see Zipkin

2000). In particular, C is convex in q with a right-sided derivative ∂+C(q) =−b+(b+h)F (q) and

a left-sided derivative ∂−C(q) = −b+ (b+ h)Pr(D < q). The optimal solution can be character-

ized through first-order conditions. In particular, if ∂−C(q) ≤ 0 and ∂+C(q) ≥ 0, then zero is a

subgradient, implying that q is optimal (Rockafellar 1972). These conditions are met by

q∗ ! inf

{
q : F (q)≥ b

b+h

}
,

which is the b
b+h

quantile of D, also called the critical quantile or the newsvendor quantile.

The basic assumption of the newsvendor problem is that the cdf F of the stochastic demand

is known. If F is unknown, then the optimal order quantity q∗ cannot be evaluated. Let

{D1,D2, . . . ,DN} be a random, independent sample of size N drawn from the true demand dis-

tribution, and let {d1, d2, . . . , dN} be a particular realization. Instead of optimizing the unknown

expected cost, C(·), the SAA method optimizes the cost averaged over the drawn sample:

min
q≥0

ĈN(q)!
1

N

N∑

k=1

(
b(dk − q)+ +h(q− dk)+

)
. (1)

Based on the particular sample, the empirical distribution is formed by putting a weight of 1
N

on

each of the demand data. Note the function ĈN is the expected cost with respect to the empirical

distribution. Hence, the optimal solution to (1) is the b
b+h

sample quantile. Formally, we denote

the empirical cdf as F̂N(q) ! 1
N

∑N
k=1 1[Dk≤q]. Let Q̂N denote the optimal solution to the SAA

counterpart with a sample of size N . Thus, Q̂N is the b
b+h

quantile of the random sample:

Q̂N ! inf

{
q : F̂N(q)≥

b

b+h

}
. (2)
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Figure 1 The intervals SLRS
ϵ and Sf

ϵ of a newsvendor cost function C. Note: SLRS
ϵ is defined in (3) and Sf

ϵ is

defined in (6).

Note that Q̂N is a random variable since its value depends on the particular realization of the

random sample.

2.1. Distribution-Free Analysis for SAA Accuracy

We first describe the analysis of Levi et al. (2007), with the goal of highlighting its difference with

the new WMS-based analysis presented in the next section. Levi et al. (2007) derive a bound on

the probability that the relative regret of the SAA solution exceeds an error threshold. We show

that, without additional assumptions, their bound can be improved.

An order quantity is called ϵ-optimal if its relative regret is no more than ϵ, where ϵ> 0. Let us

denote the set of all ϵ-optimal order quantities as Sϵ (see Figure 1). Levi et al. (2007) use the left

and right one-sided derivatives of C, denoted by ∂−C and ∂+C, to define the following interval:

SLRS
ϵ !

{
q : ∂−C(q)≤ ϵ

3
min(b,h) and ∂+C(q)≥− ϵ

3
min(b,h)

}
, (3)

then show that SLRS
ϵ ⊆ Sϵ (see Figure 1a). Using large deviations results, specifically the Hoeffding

inequality (Hoeffding 1963), they derive a bound on the probability that the SAA solution Q̂N

solved with a sample size N has one-sided derivatives bounded by γ. When γ = ϵ
3
min(b,h), the

property is equivalent to Q̂N ∈ SLRS
ϵ , implying that that Q̂N is ϵ-optimal since SLRS

ϵ ⊆ Sϵ. This

analysis gives the LRS probability bound (4).

Theorem 1 (LRS bound, Levi et al. (2007)). Consider the newsvendor problem with under-

age cost b > 0 and overage cost h> 0. Let Q̂N be the SAA solution (2) with sample size N . For a

given ϵ> 0, the SAA solution Q̂N with sample size N is ϵ-optimal with probability at least

1− 2exp

(
−2

9
Nϵ2

(
min{b,h}
b+h

)2
)
. (4)
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By using the Bernstein inequality (Bernstein 1927), we are able to prove a tighter bound than

(4). Unlike the Hoeffding inequality, it uses the fact that the SAA solution seeks to estimate the

specific b
b+h

quantile. The proof is provided in the electronic companion to this paper.

Theorem 2 (Improved LRS bound). Consider the newsvendor problem with underage cost b >

0 and overage cost h> 0. For any ϵ> 0, the SAA solution Q̂N with sample size N is ϵ-optimal with

probability of at least

1− 2exp

(
− Nϵ2

18+8ϵ
· min{b,h}

b+h

)
. (5)

The improved LRS bound (5) depends on min(b,h)
b+h

rather than on
(

min(b,h)
b+h

)2

. This is significant

because in many important inventory systems, the newsvendor quantile b
b+h

is typically close to 1,

reflecting high service level requirements. Thus, h
b+h

is close to zero, resulting in a very small value

for min(b,h)
b+h

. Hence, the improved LRS bound gives a significantly tighter bound on probability of

an ϵ-optimal SAA solution. As an illustration, consider the SAA method applied to a newsvendor

problem in which the service level increases from 95% to 99%. In order to maintain the likelihood

of achieving the same accuracy, the LRS bound suggests that the sample size needs to be increased

by 25 times. In contrast, the improved LRS bound suggests that the accuracy is maintained by a

sample size that is only five times as large.

The analysis of Levi et al. (2007) yields a probability bound that is general, since it applies to

any demand distribution. However, it is uninformative in that it does not reveal any relationship

between the accuracy of the SAA heuristic and the particular demand distribution. Furthermore,

the analysis is not tight since, as we will demonstrate in computational experiments in Section 5,

it significantly underestimates the actual accuracy of the SAA solution in simulations. This is

because the interval SLRS
ϵ is typically very small relative to Sϵ (see Figure 1a). In the next section,

we develop a new and informative probabilistic bound on the relative regret of the SAA solution

that identifies the important properties of the underlying demand distribution that determine the

procedure’s accuracy. This bound is significantly tighter than the previously known bound for the

single-period newsvendor problem by Levi et al. (2007).

3. Weighted Mean Spread-Based Analysis of SAA Accuracy

Suppose the demand is a continuous random variable with a probability density function (pdf)

f , which we assume to be continuous everywhere. (Later in Section 4, we will show that this

assumption is automatically satisfied under some simple conditions.) Let C̃ be the second-order
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Taylor series approximation of C at the point q= q∗, where q∗ is the optimal newsvendor quantile.

Note that since a pdf exists, the cost function is twice differentiable. It is straightforward to verify

that

C̃(q)! bh

b+h
∆(q∗)+

1

2
(b+h)(q− q∗)2f(q∗),

where ∆(q∗) is the absolute mean spread defined below.

Definition 1 (Absolute Mean Spread (AMS)). Let D be a random variable. We define the

absolute mean spread (AMS) as ∆(q∗)!E(D|D≥ q∗)−E(D|D≤ q∗).

Observe that∆(q∗) is simply equal to b+h
bh

C(q∗). Consider an approximation to Sϵ using a sublevel

set of C̃ (see Figure 1b):

Sf
ϵ !

{
q : C̃(q)≤ (1+ ϵ)C̃(q∗)

}
. (6)

The superscript f is to emphasize that the interval is defined by the particular distribution f . The

two endpoints of Sf
ϵ are:

q! q∗ −

√

2ϵ
bh

(b+h)2
∆(q∗)

f(q∗)
, q! q∗ +

√

2ϵ
bh

(b+h)2
∆(q∗)

f(q∗)
. (7)

Sf
ϵ is not necessarily a subset of Sϵ. However, by imposing a simple assumption on the pdf, we can

guarantee that Sf
ϵ ∩ [q∗,∞) is a subset of Sϵ.

Assumption 1. The cost parameters (b,h) are such that f(q) is decreasing for all q≥ q∗.

Observe that C̃ matches the first two derivatives of C at the point q = q∗. Moreover, C ′′(q) =

(b+ h)f(q) and C̃ ′′(q) = (b+ h)f(q∗). Thus, Assumption 1 implies that C̃ increases faster than C

over the interval [q∗,∞). That is, C̃(q)≥C(q) for each q ∈ [q∗,∞), implying that Sf
ϵ ∩ [q∗,∞) is a

subset of Sϵ. Hence, under Assumption 1, if an order quantity q falls within Sf
ϵ ∩ [q∗,∞), then this

implies that q ∈ Sϵ or, equivalently, C(q)≤ (1+ ϵ)C(q∗).

For distributions that are unimodal or with support ℜ+, then Assumption 1 is satisfied when

the newsvendor quantile b
b+h

is sufficiently large. Table EC.1 in the electronic companion to this

paper summarizes the range of b
b+h

values for which Assumption 1 holds under common demand

distributions. In many important inventory systems, the newsvendor quantile is typically close to

1, so Assumption 1 would hold in a broad set of cases.

Recall that Theorem 2 gives a lower bound on the probability that the SAA solution (i.e., the
b

b+h
sample quantile) lies in SLRS

ϵ , implying that it is ϵ-optimal. However, in our new analysis, the

SAA solution is ϵ-optimal if it lies in the interval Sf
ϵ and if it is at least as large as q∗. Therefore,

instead of taking the b
b+h

sample quantile, we bias the SAA solution by a small amount. Later
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in Theorem 3, we prove a lower bound on the probability that this biased SAA solution lies in

Sf
ϵ ∩ [q∗,∞), implying that it is ϵ-optimal. The biasing of the SAA solution is to facilitate the proof

of the probabilistic guarantee. However, we will show in Section 5 through empirical experiments

that the probabilistic guarantee derived for the biased solution is also empirically accurate for the

unbiased SAA solution.

Recall that F̂N is the empirical cdf of a random sample of size N drawn from the demand

distribution D. For some α≥ 0, define

Q̃α
N ! inf

{
q : F̂N(q)≥

b

b+h
+

1

2

α

b+h

}
. (8)

Note that Q̃α
N is a random variable since its value depends on the particular realization of the

random sample. The following theorem states that for an appropriately chosen bias factor α, the

probability that Q̃α
N is ϵ-optimal can be bounded. The proof is found in the electronic companion.

Theorem 3 (Distribution-dependent bound). Consider the newsvendor problem with under-

age cost b > 0 and overage cost h > 0. Let Q̃α
N be defined as in (8), with α=

√
2ϵbh∆(q∗)f(q∗) +

O(ϵ). Under Assumption 1, for a given ϵ> 0, Q̃α
N is ϵ-optimal with probability at least 1− 2U(ϵ),

where

U(ϵ)∼ exp

(
−1

4
Nϵ∆(q∗)f(q∗)

)
, as ϵ→ 0. (9)

Note that we say that g1(x)∼ g2(x) as x→ 0 if limx→0
g1(x)
g2(x)

= 1. Thus, in an asymptotic regime as

ϵ→ 0, the probability bound in Theorem 3 only depends on the distribution through the quantity

∆(q∗)f(q∗). In particular, the data-driven quantity Q̃α
N is more likely to be near-optimal when the

sample is drawn from a distribution with a high value for ∆(q∗)f(q∗). Next, we further formalize

this insight through the following definition.

Definition 2 (Weighted Mean Spread (WMS)). Let D be a random variable. We define the

weighted mean spread (WMS) at q∗ as ∆(q∗)f(q∗).

We briefly discuss the intuition behind the dependence of the bound (9) on the weighted mean

spread. The AMS ∆(q∗) can be thought of as a measure of dispersion around q∗. Note that the

slope C ′(q) =−b+ (b+ h)F (q) is zero at q∗. How fast the slope changes depends on how fast the

distribution changes around the neighborhood of q∗. In other words, a distribution whose mass is

concentrated around q∗ (i.e., has a small AMS) has a cost function C with a steeper slope around q∗.

This is illustrated in Figure 2. The left plot shows the pdf of a Normal and a uniform distribution.

The right plot shows the relative regret (as a function of q) when b= h= 5 and the optimal order
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Figure 2 Newsvendor problem with (b= 5, h= 5) for a uniform and normal distribution.

quantity is 100 units for both distributions. The uniform distribution, which has a smaller AMS,

has a steeper relative regret function. The decision of ordering 110 units has a larger relative regret

under the uniform distribution. Hence, distributions with a small AMS value incur a larger relative

regret for deviating from the optimal order quantity. On the other hand, the size of the confidence

interval for the quantile estimator of q∗ is inversely proportional to f(q∗) (Asmussen and Glynn

2007). Thus, if f(q∗) is small, a larger sample size is needed for the quantity Q̂N to be close (in

absolute terms) to q∗. Therefore, if a distribution has a small weighted mean spread ∆(q∗)f(q∗),

then the SAA solution Q̂N is likelier to incur a large relative regret.

The new WMS-based bound predicts that the probability the SAA single-period relative regret

exceeds ϵ decays exponentially in O(ϵ). This rate of decay is significantly faster than the best

known bound by Levi et al. (2007) which predicts this probability to decay exponentially in O(ϵ2).

However, computing the WMS-based bound requires information on the weighted mean spread

of the underlying demand distribution. In the next section, we shall develop a new optimization

framework to obtain a lower bound on the WMS for a family of distributions. Combined with

Theorem 3, this results in a uniform probability bound for the SAA heuristic that is independent

of distribution parameters when the demand distribution belongs to this family.

4. Optimization-Driven Bound on WMS

Suppose that the demand distribution f is such that it belongs to F, where F is a specified family

of distributions. Suppose v∗ is a lower bound on the weighted mean spread ∆(q∗)f(q∗) of any

distribution in F. Suppose we choose to bias Q̃α
N , as defined in (8), by the factor α=

√
2ϵbhv∗+O(ϵ).
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With minor changes to the proof of Theorem 3, we can show that C(Q̃α
N) ≤ (1 + ϵ)C(q∗) with

probability at least 1− 2U∗(ϵ), where

U∗(ϵ)∼ exp

(
−1

4
Nϵv∗

)
, as ϵ→ 0.

Note that both the bias factor and this new bound does not depend on specific parameters of the

distribution beyond v∗. That is, unlike the bound in Theorem 3 which depends on the weighted

mean spread, this bound is independent of any distribution parameters.

We introduce an optimization framework to find a lower bound v∗ for a family of distributions

F. This is accomplished by the following optimization problem:

inf
f,q∗

∆(q∗)f(q∗)

s.t. f ∈ F,
∫ q∗

−∞
f(s)ds=

b

b+h
.

(10)

Note that q∗ is a decision variable, but because of the second constraint, it is forced to take the

value of the b
b+h

quantile. Hence, (10) finds a distribution in F with the smallest WMS at the b
b+h

quantile. Solving (10) or finding a lower bound v∗ on its optimal value provides a probability bound

for the relative regret of Q̃α
N over all demand distributions that belong to F.

In what follows, we will restrict our attention to the family of log-concave distributions L, which
includes many of the distributions commonly used in inventory theory (Zipkin 2000). We shall

show that if F = L, then (10) can be solved in closed form. Moreover, the resulting probability

bound on the relative regret incurred by the SAA solution is significantly tighter than the LRS

bound (5).

Definition 3 (Log-Concave Distribution). A distribution f with support X is log-concave if

log f is concave in X .

It is known that the Normal distribution, the uniform distribution, the logistic distribution,

the extreme-value distribution, the chi-square distribution, the chi distribution, the exponential

distribution, and the Laplace distribution are all log-concave for any respective parameter values.

Some families have log-concave density functions for some parameter regimes and not for others.

Such families include the gamma distribution, the Weibull distribution, the beta distribution and

the power function distribution. Note that L is not characterized through any parameterization

(i.e, it does not depend on distributional parameters such as moments that need to be estimated),

but rather describes properties satisfied by many common distributions.

Log-concave distributions are necessarily unimodal (Chandra and Roy 2001). Any distribution in

this class must also have monotonic failure rate and reversed hazard rate (see Definition 4 below).
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Definition 4 (Failure Rate and Reversed Hazard Rate). The failure rate is defined as

f
1−F

. The reversed hazard rate is defined as f
F
.

Log-concave distributions have both an increasing failure rate (IFR) and decreasing reversed hazard

rate (DRHR). Intuitively, this implies that the distribution falls off quickly from its mode.

When we introduced our new analysis in Section 3, we made the technical assumption that f is

continuous everywhere. In fact, if f is log-concave, then it can have at most one jump discontinuity,

and the jump can only occur at the left end-point of its support (Sengupta and Nanda 1997).

Therefore, assuming that the demand distribution is log-concave automatically implies that this

continuity assumption is also satisfied.

4.1. Probability Bound for Log-Concave Distributions

To solve (10) for log-concave distributions, we first solve a constrained version of (10). Specifically,

for some γ0 > 0 and γ1, fix the value of q∗ and add the constraints f(q∗) = γ0 and γ1 ∈ ∂ log f(q∗),

where ∂ log f(q∗) is the set of all subgradients of log f at q∗. The following optimization problem

is obtained:

min
f

b+h

h

∫ ∞

q∗
sf(s)ds− b+h

b

∫ q∗

−∞
sf(s)(ds)

s.t. f ∈L,
∫ q∗

−∞
f(s)ds=

b

b+h
,

f(q∗) = γ0, γ1 ∈ ∂ log f(q∗).

(11)

Note that since the density value f(q∗) is fixed, the objective of the constrained problem reduces

to minimizing the absolute mean spread ∆(q∗). The following lemma provides necessary conditions

on values of γ0 and γ1 for the feasible set of (11) to be nonempty. The proof is provided in the

electronic companion.

Lemma 1. Let f be a log-concave pdf. Suppose q∗ is the b
b+h

quantile with f(q∗) = γ0 and γ1 ∈

∂ log f(q∗) for some γ0 > 0 and γ1. Then − b+h
h

≤ γ1
γ0

≤ b+h
b
.

Solving the constrained problem (11) for log-concave distributions proves to be much simpler

than solving (10). We shall first show that the optimal value of (11) is attained by an exponential-

type distribution. As a consequence, we are able to obtain a uniform lower bound for the WMS of

any log-concave distribution. Particularly, we show that ∆(q∗)f(q∗)≥ min(b,h)
b+h

.

To solve (11), we note that for a log-concave distribution f , specifying a value for a subgradient

of log f bounds how fast the pdf f can grow or decay. This is formalized in the next lemma. The

proof is provided in the electronic companion.
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Lemma 2. Let f be a log-concave pdf. Suppose that for some t in its support, f(t) = γ0 and γ1 ∈

∂ log f(t). Then for any x, f(x)≤ γ0eγ1(x−t).

In fact, the upper bound in Lemma 2 is sufficient to obtain the optimal solution to (11). The next

lemma characterizes useful conditions that imply the AMS of one random variable D2 is lower than

another random variable D1. The proof is given in the electronic companion.

Lemma 3 (Domination Lemma). Let f1 and f2 be two pdfs, with respective cdfs F1 and F2.

Suppose that f1(x) ≤ f2(x) for all x with f2(x) > 0, and that for some t, F1(t) = F2(t). Then

∆1(t)≥∆2(t), where ∆1 and ∆2 are the respective AMS of f1 and f2.

Finally, the following proposition constructs the optimal solution to optimization problem (11).

Proposition 1. Let Lq∗,γ0,γ1 be the set of all log-concave distributions with b
b+h

quantile q∗, and

f(q∗) = γ0 and γ1 ∈ ∂ log f(q∗). The distribution with the smallest AMS ∆(q∗) in Lq∗,γ0,γ1 is:

f̃(x) = γ0e
γ1(x−q∗), ∀x∈ [x,x], (12)

where x= q∗ + 1
γ1

log
(
1− γ1

γ0

b
b+h

)
and x= q∗ + 1

γ1
log
(
1+ γ1

γ0

h
b+h

)
.

Proof. Note that f̃ is log-concave and therefore belongs in the set Lq∗,γ0,γ1. The range of f̃

is well-defined since by Lemma 1, we have that γ1
γ0

∈
[
− b+h

h
, b+h

b

]
. From Lemma 2, we know that

f̃(x) ≥ f(x) for all x ∈ [x,x] for each f ∈ Lq∗,γ0,γ1. Thus, by the Domination Lemma 3, f̃ has a

smaller AMS than any f ∈Lq∗,γ0,γ1, and is therefore the optimal solution to problem (11). Q.E.D.

A graphical illustration of the distribution f̃ in (12) is given in the electronic companion to this

paper (Figure EC.1). Finally, using the optimal value for problem (11), we are able to derive a

uniform lower bound on the WMS of any log-concave distribution. To do this, we will need the

following Lemma 4. The proof is provided in the electronic companion.

Lemma 4. Let β ∈ (0,1) and η ∈
(
− 1

1−β
, 1
β

)
. Then, the following relationships are true:

(
1

1−β
+ η

)
log (1+ η(1−β))+

(
1

β
− η

)
log (1− ηβ)−min{β,1−β}η2 ≥ 0,

β

1−β
log

(
1

β

)
−β ≥ 0,

1−β

β
log

(
1

1−β

)
− (1−β) ≥ 0.

Proposition 2. Suppose D has a log-concave pdf f , with b
b+h

quantile q∗ and AMS ∆(q∗). Then

∆(q∗)f(q∗)≥ min(b,h)
b+h

.
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Proof. Suppose that f belongs to the set Lq∗,γ0,γ1, i.e., it has a b
b+h

quantile q∗ with f(q∗) = γ0

and γ1 ∈ ∂ log f(q∗). Denote the optimal value of problem (11) by z∗q∗,γ0,γ1. From Proposition 1, the

distribution f̃ defined in (12) is the optimal solution of problem (11), which achieves the minimum

AMS z∗q∗,γ0,γ1. We consider three cases. If γ1
γ0

∈
(
− b+h

h
, b+h

b

)
, then

z∗q∗,γ0,γ1 =
γ0
γ2
1

[(
b+h

h
+

γ1
γ0

)
log

(
1+

γ1
γ0

h

b+h

)
+

(
b+h

b
− γ1

γ0

)
log

(
1− γ1

γ0

b

b+h

)]
.

If γ1
γ0

= b+h
b
, then z∗q∗,γ0,γ1 =

1
γ0

b
h
log
(
b+h
b

)
. If γ1

γ0
=− b+h

h
, then z∗q∗,γ0,γ1 =

1
γ0

h
b
log
(
b+h
h

)
. By applying

Lemma 4 with η= γ1
γ0

and β = b
b+h

, we find that in all three cases z∗q∗,γ0,γ1 ≥
1
γ0

min(b,h)
b+h

. Since f is a

feasible solution of problem (11), we have that ∆(q∗)≥ z∗q∗,γ0,γ1 ≥
1
γ0

min(b,h)
b+h

= 1
f(q∗)

min(b,h)
b+h

. Q.E.D.

Recall our original objective is to find the smallest WMS among distributions in the set L. To
do this we partitioned the set into subsets Lq∗,γ0,γ1 . The derivation of Proposition 2 implies that

even solving the problem (11) restricted to a subset Lq∗,γ0,γ1 , regardless of the value of γ1, the

minimum absolute mean spread is always bounded below by a term that only depends on b, h

and γ0. Hence, we are able to prove that min(b,h)
b+h

is a uniform lower bound on the weighted mean

spread for any log-concave distribution. Finally, this implies a probability bound for log-concave

distributions. The proof is in the electronic companion.

Theorem 4 (Log-concave bound). Consider the newsvendor problem with underage cost b > 0

and overage cost h> 0. Suppose that D is log-concave and satisfies Assumption 1. Let Q̃α
N be defined

as in (8), with α=
√

2ϵbhmin{b,h}
b+h

+O(ϵ). Then for a given ϵ> 0, Q̃α
N is ϵ-optimal with probability

of at least 1− 2U∗(ϵ), where

U∗(ϵ)∼ exp

(
−1

4
Nϵ

min{b,h}
b+h

)
, as ϵ→ 0. (13)

We point out a few nonparametric tests proposed in the literature that check whether a sam-

ple has been drawn from a log-concave distribution. An (1995) proposes to test two necessary

conditions for log-concavity. Another test proposed by Sengupta and Paul (2005) involves finding

the Least Concave Majorant (LCM) to the log of empirical probability distribution function. The

distribution is log-concave with high probability if the “distance” between the LCM and the log of

the distribution function does not exceed a threshold.

Theorems 3 and 4 require that f(q) is decreasing for all q ≥ q∗ (Assumption 1). We can in fact

use the log-concave statistical tests to check if this true. The advantage of the test by Sengupta

and Paul (2005) is that it estimates the mode of the log-concave distribution (every log-concave

distribution is unimodal). If the cumulative density at the estimated mode is significantly smaller

than b
b+h

, then Assumption 1 holds with high probability.
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Finally, we would like to stress that the insights from our results are not limited to log-concave

distributions. In fact, if we can find a lower bound on the weighted mean spread of any distribution

family, then we can bound the relative error of the SAA procedure applied to a distribution in that

family.

5. Implications of the WMS-Based Bound

In Section 3, we derived a bound on the probability that the SAA quantity is ϵ-optimal. This

derivation uses a novel analysis that is based on a tight approximation of the set of ϵ-optimal

quantities. In this section, we study the implications of this new bound. First, we test whether the

new WMS-based bound can match the empirical accuracy of SAA better than the previous bound

by (Levi et al. 2007). Second, we study whether the WMS-based bound predicts the empirical

relationship between the relative regret and sample size or relative regret and weighted mean

spread. Third, we analyze the implications of the WMS-based bound on the cumulative regret of

SAA over several time periods in a repeated newsvendor setting.

5.1. Empirical Accuracy of the SAA Heuristic

We conduct computational experiments to determine the empirical accuracy of the SAA heuristic.

In the experiments, 1000 random independent samples (with a sample size of N = 100) are drawn

from a demand distribution. The respective SAA solutions {q̂1100, . . . , q̂1000100 } are computed, where

q̂i100 is the SAA solution corresponding to random sample i. We note that although the sample

is drawn from specific distributions, the SAA solution is computed purely based on the resulting

empirical distribution. The respective relative regret of the SAA solutions are {ϵ1, . . . , ϵ1000} where

ϵi ! C(q̂i100)−C(q∗)
C(q∗) . We refer to the fraction of sets that incur a relative regret less than the target ϵ

to be the empirical confidence.

Using Theorem 2, we can infer the sample size required by the LRS bound to match the empirical

confidence level. Table 1 summarizes the results of the outlined experiment for a newsvendor critical

quantile of 0.9. Rows labeled NLRS correspond to the LRS sample size. One can see from the

table that if, for example, the SAA counterpart is solved with a sample drawn from a uniform

distribution, the relative errors are less than 0.02 in 81.8% of the sets. However, to match this same

error and confidence level, the LRS bound requires a sample size of 1,088,200. The results of this

experiment demonstrate that the LRS bound is not tight since the same accuracy and confidence

probability can be achieved with a smaller sample size of 100. This large mismatch between the

empirical SAA accuracy and the theoretical guarantee by the LRS bound prevails throughout

various target errors ϵ and distributions.
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Table 1 Theoretical bounds and actual empirical performance of SAA with N = 100. Note: “Emp conf” refers to

the proportion of random samples where the SAA solution incurs relative regret less than ϵ.

Distribution ϵ= 0.02 ϵ= 0.04 ϵ= 0.06 ϵ= 0.08 ϵ= 0.10

Uniform Emp conf 81.8% 93.7% 96.6% 99.0% 98.9%
(A= 0,B = 100) NLRS 1,088,200 395,900 209,200 154,300 97,800

Nf 956 692 544 428 416
Normal Emp conf 75.8% 89.7% 94.7% 97.3% 99.4%
(µ= 100,σ= 50) NLRS 958,830 339,630 186,370 125,390 109,210

Nf 3,812 2,676 2,184 1,940 2,096
Exponential Emp conf 69.6% 84.4% 91.5% 94.0% 98.2%
(µ= 100) NLRS 855,280 292,090 162,120 102,130 88,560

Nf 1,472 996 824 684 736
Lognormal Emp conf 75.1% 90.5% 96.5% 98.2% 98.7%
(µ= 1,σ= 1.805) NLRS 945,890 348,880 207,670 137,190 94,680

Nf 1,272 932 824 720 616
Pareto Emp conf 79.1% 92.6% 98.0% 98.1% 99.5%
(xm = 1,α= 1.5) NLRS 1,025,400 377,500 236,400 135,600 112,600

Nf 1,152 840 780 592 612

In the same experiment, we use Theorem 3 to infer the sample size required by the new WMS-

based bound to match the SAA accuracy. The results are reported in Table 1 under the rows labeled

Nf . We observe that the sample sizes predicted using the WMS-based analysis are empirically

significantly smaller than that of the LRS analysis. NLRS typically has an order of magnitude

between 100,000 to 1 million, whereas Nf is typically between 100 to 1,000. Hence, the new WMS-

based analysis results in a theoretical guarantee that is a better match to the empirical accuracy

observed for the SAA heuristic.

5.2. Empirical Regret–Sample Size and Regret–WMS Relationship

In the next set of experiments, we use regression analysis to estimate the empirical relationship

observed between: (i) relative regret and sample size, and (ii) relative regret and weighted mean

square.

We empirically estimate the regret–sample size relationship by estimating parameters C,k in the

equation ϵ=CNk in a regression model from error data resulting from applying SAA to different

sample sizes. We fix a 90% confidence level and cost parameters h= 1 and b. The sample size N is

varied from {100,200, . . . ,1000}. For each N , a total of 1000 random samples of size N are drawn

from a distribution. The SAA solutions {q̂1N , . . . , q̂1000N } are calculated, and the resulting errors are

labeled {ϵ1N , . . . , ϵ1000N } where ϵkN =
C(q̂kN )−C(q∗)

C(q∗) . The 90% quantile of the errors is denoted by ϵN .

We perform the regression using the data {(100, ϵ100), (200, ϵ200), . . . , (1000, ϵ1000)}. Table 2 shows

the estimated parameters as well as the R2 value. From Table 2, all estimates for k are close to -1,

and the estimated power function is almost a perfect fit to the data (since R2 is close to 1). Thus,
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Table 2 Regression analysis of ϵ=CNk

b
b+h

= 0.8 b
b+h

= 0.9 b
b+h

= 0.95

k C R2 k C R2 k C R2

Uniform (A= 0,B = 100) -0.992 2.620 0.994 -1.002 2.807 0.992 -1.051 3.903 0.998
Normal (µ= 100,σ= 50) -1.016 3.155 0.994 -1.026 4.729 0.994 -0.97 5.131 0.994
Exponential (µ= 100) -0.983 3.066 0.995 -0.979 4.556 0.991 -1.02 9.712 0.998
Lognormal (µ= 1,σ= 1.805) -0.994 1.933 0.994 -1.014 4.384 0.995 -0.948 5.731 0.997
Pareto (xm = 1,α= 1.5) -1.021 2.977 0.997 -0.999 4.73 0.991 -0.984 7.85 0.992

Table 3 Regression analysis of ϵ=C {∆(q∗)f(q∗)}k

N k C R2

100 -0.843 0.0166 0.928
300 -0.939 0.0048 0.990
500 -0.947 0.0029 0.993

the WMS-based bound reflects the empirical regret–sample size accuracy size it predicts, ceteris

paribus, that the regret is inversely proportional to the sample size.

Similar to the previous experiments, we estimate the empirical relationship between regret and

the weighted mean spread by estimating the parameters C,k in ϵ=C{∆(q∗)f(q∗)}k using a regres-

sion model on error data from SAA applied to different distributions with varying WMS values.

We fix a 90% confidence level and a sample size N . We consider a pool of ten distributions, i.e.,

the five distributions in Table 2 each under two values of the newsvendor quantile, 0.9 and 0.95

(note that the WMS value depends on the newsvendor quantile). Let ωi be the weighted mean

spread of distribution i. A total of 1000 independent samples of size N are drawn from distribution

i. We denote by ϵi the 90% quantile of the errors of the 1000 SAA solutions. We perform the

regression using the data {(ω1, ϵ1), (ω2, ϵ2), . . . , (ω10, ϵ10)}. The results of the regression are reported

in Table 3 for different values of N . Based on the results, the R2 value is close to 1, signifying

that empirically there is a strong inverse relationship between the weighted mean spread and the

relative regret. Hence, the WMS-based bound matches the empirical relationship of regret and

WMS since it predicts, ceteris paribus, that regret is inversely proportional to the distribution’s

weighted mean spread.

5.3. Cumulative Regret of SAA in a Repeated Newsvendor Setting

In a repeated newsvendor setting, where policy adapts based on additional demand information,

a metric to evaluate the performance of a data-driven policy is the cumulative regret it incurs

over consecutive time periods. Based on the WMS-based probabilistic bound for the single-period

relative regret of the SAA, we can derive a bound on the cumulative regret of the SAA over N

periods which is O(lnN).
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Note that the single-period regret of the SAA solution is a nonnegative random variable. Hence,

we can compute a bound on the expected single-period regret by integrating the WMS-based

probabilistic bound over all thresholds ϵ> 0. That is, suppose that an additional demand data is

revealed in each period, then the expected regret of the SAA heuristic at time period t is

E
(
C
(
Q̂t

)
−C(q∗)

)
=C(q∗)

∞∫

0

Pr

⎛

⎝
C
(
Q̂t

)
−C(q∗)

C(q∗)
> ϵ

⎞

⎠dϵ≤ 8C(q∗)

∆(q∗)f(q∗)t
=

8bh

(b+h)f(q∗)t
,

(14)

where the inequality results from applying the WMS-based bound in Theorem 3. Hence, the cumu-

lative regret over N periods is:

E

[
N∑

t=1

(
C
(
Q̂t

)
−C(q∗)

)]
≤ 8bh

(b+h)f(q∗)

N∑

t=1

1

t
≈ 8bh

(b+h)f(q∗)
lnN (15)

Hence, an implication of our analysis for the single-period regret implies that the SAA achieves an

cumulative regret over N periods that is O(lnN).

In a recent paper, Besbes and Muharremoglu (2013) show that if the demand distribution is

continuous, then for any nonanticipating policy on uncensored demand, the worst-case cumulative

regret cannot be smaller than O(lnN). Hence, based on our upper bound (15), we conclude that the

policy of ordering the SAA quantity in each time period results in a cumulative regret of O(lnN),

which matches the minimax cumulative regret derived by Besbes and Muharremoglu (2013).

This might seem surprising since under the censored demand setting, where the decision-maker

has less information, Huh and Rusmevichientong (2009) introduce an adaptive data-driven policy

(based on estimating the gradient from the censored demand) which incurs a cumulative regret

that is also O(lnN). However, as is shown in Besbes and Muharremoglu (2013), when demand is

continuous, the minimax regret of both censored and uncensored demand cases is O(lnN). As they

state in their paper, “To achieve the best rate of growth of the minimax regret one does not need to

actively explore, as a stochastic direction of cost improvement is available even when the demand

samples are censored, and as a result, one may apply stochastic gradient type algorithms such as

the [Huh and Rusmevichientong (2009)] policy.” We are able to show using our analysis that the

commonly-used SAA approach similarly matches the cumulative regret O(lnN) of the stochastic

gradient policy.

In our analysis of the SAA solution, we had to assume that demand is continuous in order to

approximate the ϵ-optimal set using Taylor series expansion around the critical quantile. Hence,

the SAA’s cumulative regret of O(lnN) only holds for continuous demand distributions. When the
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demand distribution is discrete, Besbes and Muharremoglu (2013) are in fact able to show that

the cumulative regret of the SAA policy does not depend on the number of time periods N . This

is because when the support is discrete, one may identify the critical quantile exactly with very

high probability, whereas for a continuous support, it is only possible to do so up to some error.

6. Empirical Comparison to Other Data-Driven Heuristics

In this section, we conduct computational experiments to compare the empirical accuracy of the

SAA solution vis-á-vis other data-driven heuristics, and how accuracy of both methods compare.

The SAA heuristic estimates the unknown demand distribution with the empirical distribution

formed by the sample. Another popular data-driven heuristic is a distribution-fitting approach.

This heuristic infers the true distribution by fitting the sample to a distribution family the true

distribution is assumed to belong. For instance, a common practice is to assume demand is normally

distributed, and the sample is used to estimate its parameters. The argument for a distribution-

fitting approach is that the tail of the distribution cannot be accurately approximated by the

empirical cdf. Hence, when the critical quantile is close to 1, a distribution-fitting approach results

in smaller ordering errors by hopefully better approximating the distribution tail. However, the

distribution-fitting approach is sensitive to the specification of the distribution family. That is,

if the true demand distribution is non-normal, then fitting the sample to a normal distribution

might potentially result in a suboptimal order quantity. However, to reduce this risk it is possible

to use distribution-fitting softwares, such as EasyFit, which finds the distribution that “best” fits

the sample. EasyFit in particular has more than 50 distributions in its database, and chooses the

distribution that has the smallest Kolmogorov-Smirnov statistic (based on the largest difference

between the fitted distribution and the empirical cdf).

Consider the following experiment. A random sample is drawn from one of the following distri-

butions: (i) an exponential distribution with mean µ= 100, (ii) a Normal distribution with mean

µ= 100 and standard deviation σ = 100, (iii) a Pareto distribution with scale parameter xm = 1

and shape parameter α= 1.5, (iv) a scaled beta distribution with range [0,50] and shape param-

eters α= 5,β = 1, and (v) a mixture of three Normal distributions where µ= (100,500,1000), the

standard deviation for each is σ= 100 and the weight vector is w= ( 5
9
, 1
3
, 1
9
). The drawn sample is

used to generate two order heuristics. The first is the SAA order quantity, which is simply the b
b+h

quantile of the sample. The second is the Best Fit order quantity, which is the b
b+h

quantile of the

distribution F chosen by the software EasyFit to be the “best” fit for the sample.

We conduct the experiment for sample size N ∈ {25,50,100,200} and for cost parameters, where

we set h= 1, and vary b such that b
b+h

∈ {0.1,0.2, . . . ,0.9,0.95,0.99}. For a given b
b+h

, 100 random

samples of size N are drawn from a specific distribution. For the kth sample, the order quantity
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q̂k is found through one of the heuristics (SAA or Best Fit). If q∗ is the true solution, then the

relative error of q̂k is given by ϵk = C(q̂k)−C(q∗)
C(q∗) . The average relative error of the heuristic is the

average of {ϵ1, . . . , ϵ100}. Tables EC.2, EC.3, EC.4, EC.5 and EC.6 in the electronic companion

present the average errors for different critical quantiles b
b+h

and sample sizes N when the samples

are drawn from an exponential, a Normal, a Pareto, a beta distribution, and a mixture of Normal

distributions, respectively.

We first analyze the effect of the shape of the distribution on the inaccuracy of the SAA method

and the Best Fit method. Table EC.6 shows the average errors of the methods when the samples

are drawn from a nonstandard distribution: a mixture of three Normal distributions. Note that

when the sample size is at least 50, the average errors of the SAA heuristic is small (less than 5%,

and in most cases less than 1%). The largest average error of the SAA heuristic is about 10%.

However, the Best Fit method (which fits the data to standard distributions with at most two

modes) show instances when the errors are 25% or even 30%. This suggests that, overall, the SAA

method can handle nonstandard distributions better than the Best Fit heuristic, especially if the

available demand data is limited.

We next observe the effect of the sample size on the accuracy of the two heuristics. The cases

when the inaccuracy of the solution from the SAA method is most apparent is when the newsvendor

quantile is large, e.g. b
b+h

= 0.99, while the sample size is small. In fact, we observe that when

estimating a quantile that corresponds to a rare event (characterized by a small density), the

sample size must be sufficiently large (usually N = 100 or more) for the average errors to be small.

When N = 200, the average errors are uniformly small for all distributions.

7. Conclusions

The sample average approximation (SAA) method is a simple and powerful tool for solving stochas-

tic optimization problems without knowing the distribution. It relies only on observing a sample

drawn from the true distribution. Due to its simplicity, it is often used in practice when solving

distribution-free stochastic optimization problems. This work derived a bound on the probability

that the SAA solution applied to the newsvendor problem has a relative regret exceeding a spec-

ified threshold. The bound was derived through a novel analysis which approximates the set of

ϵ-optimal solutions to the newsvendor model through gradient information. Unlike the distribution-

free bound of Levi et al. (2007), the new bound derived in this work depends on the demand

distribution’s weighted mean spread (WMS). Hence, it is significantly tighter and can match the

empirical accuracy of the SAA observed in many computational experiments. We also derived a

distribution parameter-free bound for the family of log-concave distributions using an optimiza-

tion framework which minimizes the WMS over the family. This optimization framework can be
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also applied to other interesting distribution families, which seems to be a promising future direc-

tion. Other potential future directions are to extend the analysis to an objective function that is

piecewise linear, or to introduce a weighted mean spread for a multivariate demand distribution.
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Proofs, Tables and Figures
In this electronic companion to the paper, we provide proofs of the theorems and lemmas. This

companion also contains several accompanying tables and figures to the paper.

Table EC.1 Range of critical fractile values where Assumption 1 holds.

Distribution When is Assumption 1 satisfied? Notes

Normal(µ,σ) b
b+h

≥ 1
2

Exponential(λ) b
b+h

≥ 0
Lognormal(µ,σ) b

b+h
≥ 1

2
+ 1

2
erf
(
−σ

2

)
erf: error function

Pareto(xm,α)
b

b+h
≥ 0

Uniform(A,B) b
b+h

≥ 0
Gamma(α,β) b

b+h
≥ 1

Γ(α)
γ(α,α− 1) Γ: gamma function, γ: incomplete gamma function

Beta(α,β) b
b+h

≥ B( α−1
α+β−2 ;α,β)
B(α,β)

B: beta function

Power Law(α) b
b+h

≥ 0
Logistic(µ, s) b

b+h
≥ 1

2

GEV(µ,σ, ξ) b
b+h

≥ e−1−ξ for ξ ≥ 0
Chi(k) b

b+h
≥ P

(
k
2
, k−1

2

)
for k≥ 1; P : regularized gamma function

Chi-squared(k) b
b+h

≥
{

1

Γ( k
2 )
γ
(
k
2
, k−2

2

)
, if k≥ 2

0, if k < 2
Laplace(µ,β) b

b+h
≥ 1

2

Weibull(λ, k) b
b+h

≥
{
1− e−

k−1
k , if k≥ 1

0 if k < 1

Table EC.2 Average errors (%) with samples from an exponential distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.39 1.83 2.08 2.24 2.62 3.22 4.05 4.67 7.65 10.87 33.76
50 0.77 0.73 0.81 0.87 1.35 1.49 1.93 2.38 3.10 7.33 16.89
100 0.54 0.34 0.48 0.60 0.70 0.91 0.96 1.50 2.03 3.24 8.56
200 0.27 0.23 0.27 0.29 0.34 0.40 0.49 0.64 1.22 2.22 4.36

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 1.88 1.54 1.54 1.69 2.03 2.60 3.37 4.26 5.81 9.64 40.06
50 0.65 0.64 0.69 0.80 0.99 1.23 1.53 1.90 2.72 4.88 22.93
100 0.36 0.34 0.39 0.46 0.57 0.73 0.96 1.33 1.91 2.62 9.03
200 0.21 0.20 0.21 0.24 0.28 0.34 0.43 0.59 0.94 1.64 7.25
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Figure EC.1 Upper bound for a log-concave distribution with b
b+h quantile q∗.

Table EC.3 Average errors (%) with samples from a normal distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 6.03 3.84 3.81 3.11 2.60 2.95 3.50 4.91 6.23 8.71 42.85
50 2.31 1.69 1.62 1.58 1.41 1.60 1.59 2.06 3.26 4.57 13.76
100 1.63 1.15 0.92 0.86 0.83 0.75 0.92 1.08 1.56 2.18 5.94
200 0.81 0.45 0.38 0.36 0.30 0.29 0.38 0.47 0.81 1.41 3.65

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 4.65 3.53 3.07 2.73 2.62 2.77 3.16 3.74 5.48 12.83 75.12
50 1.91 1.43 1.27 1.20 1.24 1.38 1.60 1.87 2.53 4.41 18.77
100 1.13 0.90 0.78 0.71 0.68 0.69 0.76 0.89 1.17 1.75 6.59
200 0.47 0.36 0.28 0.25 0.25 0.27 0.33 0.42 0.63 1.03 3.92
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Table EC.4 Average errors (%) with samples from a Pareto distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.88 0.69 0.83 0.93 1.14 1.59 2.18 3.12 6.70 28.33 34.35
50 0.28 0.28 0.31 0.37 0.60 0.73 1.02 1.39 2.28 6.12 33.39
100 0.19 0.13 0.19 0.24 0.29 0.39 0.45 0.83 1.54 3.28 39.74
200 0.09 0.08 0.10 0.11 0.14 0.17 0.24 0.35 0.80 1.97 6.86

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.70 0.61 0.69 0.79 0.96 1.24 1.68 2.47 4.83 9.69 40.31
50 0.25 0.25 0.28 0.32 0.39 0.53 0.76 1.15 2.25 4.52 18.92
100 0.15 0.14 0.16 0.20 0.24 0.31 0.41 0.62 1.34 2.85 11.71
200 0.08 0.08 0.09 0.10 0.12 0.15 0.19 0.30 0.72 1.65 6.97

Table EC.5 Average errors (%) with samples from a Beta distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.15 4.80 4.07 3.07 3.06 2.63 2.92 2.90 4.30 4.27 14.99
50 2.69 2.28 2.15 1.99 1.63 1.41 1.26 1.25 1.34 1.88 2.47
100 1.86 1.17 0.94 0.82 0.88 0.85 0.73 0.77 0.79 0.89 0.78
200 1.11 0.59 0.40 0.35 0.36 0.35 0.32 0.31 0.32 0.30 0.41

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.62 4.42 3.41 2.70 2.38 2.32 2.34 2.39 3.40 7.13 35.94
50 2.90 2.24 1.77 1.50 1.43 1.49 1.61 1.65 1.68 2.88 9.40
100 1.43 1.06 0.83 0.69 0.62 0.61 0.62 0.63 0.64 0.99 4.45
200 0.70 0.43 0.30 0.26 0.25 0.25 0.26 0.26 0.24 0.37 2.29
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Table EC.6 Average errors (%) with samples from a mixed normal distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 3.99 2.64 1.89 2.14 6.17 3.98 5.52 11.72 5.78 3.84 4.41
50 1.29 0.86 0.61 0.39 0.38 0.35 0.53 0.79 1.81 1.62 4.26
100 0.74 0.43 0.35 0.27 0.39 0.45 0.33 0.39 0.55 0.71 2.51
200 0.37 0.21 0.16 0.13 0.08 0.08 0.12 0.19 0.22 0.59 1.47

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.96 1.67 1.86 3.32 3.09 2.36 10.46 16.65 6.55 13.74 32.75
50 1.56 1.14 0.52 0.47 0.33 0.54 0.49 2.18 0.24 1.84 25.18
100 0.90 0.40 0.35 1.08 0.81 0.18 0.16 1.85 0.33 1.19 7.76
200 0.69 0.38 0.15 0.59 0.42 0.48 0.57 0.37 0.94 4.61 2.97
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EC.1. Proof of Theorem 2

As a preliminary for the proof, let us first state a version of Bernstein’s inequality (Bernstein 1927):

Theorem EC.1 (Bernstein’s inequality). Let X1,X2, . . . ,XN be i.i.d. random variables such

that |X1|≤ c almost surely, and Var(X1) = σ2. Then, for any t > 0,

Pr

(
1

N

N∑

i=1

X i −E[X1]≥ t

)
≤ exp

(
−Nt2

2σ2 +2tc/3

)
.

For the proof of Theorem 2, we will require the following proposition.

Proposition EC.1. Suppose Q̂N is the b
b+h

quantile of a random sample from D with size N .

Then, for any γ > 0,

Pr
(
∂−C(Q̂N)≤ γ and ∂+C(Q̂N)≥−γ

)
≥ 1− 2exp

(
−3Nγ2

6bh+8γ(b+h)

)
.

Proof. Let F̄ be the complementary cdf of D, i.e., F̄ (q) = Pr(D ≥ q) = 1− F (q) + Pr(D = q).

For a random sample {D1, . . . ,DN} drawn from D, let Q̂N be the b
b+h

sample quantile. Define

F̂N(q)!
1

N

N∑

i=1

1[Di≤q],

ˆ̄FN(q)!
1

N

N∑

i=1

1[Di≥q].

For simplicity, define α! γ
b+h

and β ! b
b+h

. Define the events B ! [∂+C(Q̂N)<−γ] = [F (Q̂N)<

β−α] and L! [∂−C(Q̂N)> γ] = [F̄ (Q̂N)< 1−β−α]. To prove Proposition EC.1, we need to find

an upper bound for Pr(B) and for Pr(L).

Define the quantile q1 ! inf{q : F (q)≥ β−α}. Since F is nondecreasing, we have that B = [Q̂N <

q1]. Consider a monotonically decreasing, nonnegative sequence {τk}∞k=1, where τk ↓ 0. Define the

sequence of events {Bk}∞k=1, where

Bk ! [Q̂N ≤ q1 − τk] = [F̂N(q1 − τk)≥ β].

Note that since F̂N(q1 − τk)≤ F̂N(q1 − τk+1), then it follows that Bk ⊆ Bk+1. Thus, we have that

Bk ↑ limk→∞Bk ! B̄, which implies Pr(Bk) ↑Pr(B̄). Note also that B ⊆ B̄, thus Pr(B)≤Pr(B̄).

From the definition of q1, observe that for every k≥ 1, there exists εk > α such that F (q1− τk) =

β− εk < β−α. Note that

F (q1 − τk)
(
1−F (q1 − τk)

)
< (β−α)(1−β+ εk). (EC.1)
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Thus, we have that

Pr(Bk) = Pr(F̂N(q1 − τk)≥ β),

=Pr(F̂N(q1 − τk)−F (q1 − τk)≥ εk),

≤ exp

(
−Nε2k/2

F (q1 − τk)(1−F (q1 − τk))+ εk
3

)
, (EC.2)

≤ exp

(
−Nεk/2

1
εk
(β−α)(1−β)+β−α+ 1

3

)
, (EC.3)

where (EC.2) follows from Bernstein’s inequality and (EC.3) follows from inequality (EC.1). Now,

since εk > α, for all k≥ 1, we have that

Pr(Bk)≤ exp

(
−Nα/2

1
α
β(1−β)− 2

3
+2β−α

)
,

≤ exp

(
−Nα/2

1
α
β(1−β)+ 4

3
− 2min(β,1−β)−α

)
,

≤ exp

(
−Nα/2

1
α
β(1−β)+ 4

3

)
= exp

(
−3Nγ2

6bh+8γ(b+h)

)
! δ.

Thus, Pr(B)≤Pr(B̄)≤ δ. In fact, by going through a similar argument, we can show that Pr(L)≤ δ.

Thus, by the union bound, we have that

Pr
(
∂−C(Q̂N)> γ or ∂+C(Q̂N)<−γ

)
=Pr(B ∪L)≤Pr(B)+Pr(L)≤ 2δ,

proving Proposition EC.1. Q.E.D.

We can now proceed with the proof of Theorem 2. Note that SLRS
ϵ consists of all q for which

∂−C(q)≤ γ and ∂+C(q)≥−γ, with γ = ϵ
3
min(b,h). From Proposition EC.1, the SAA solution from

a random sample with size N lies in SLRS
ϵ with probability at least

1− 2exp

(
−Nϵ2min{b,h}2

18bh+8ϵ(b+h)min{b,h}

)
= 1− 2exp

(
−Nϵ2min{b,h}

18max{b,h}+8ϵ(b+h)

)
.

≥ 1− 2exp

(
−Nϵ2

18+8ϵ
· min{b,h}

b+h

)
.

EC.2. Proof of Theorem 3

Since C is convex, Sf
ϵ ∩ [q∗,∞) can be equivalently expressed as {q :C ′(q)≤C ′(q) and q≥ q∗}. Note

that,

C ′(q) = (b+h)(F (q)−F (q∗)) = (b+h)
[
(q− q∗)f(q∗)+O(q− q∗)2

]

=
√
2ϵbh∆(q∗)f(q∗)+O(ϵ), (EC.4)

which follows from Taylor series approximation and from the definition of q in (7).
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To prove Theorem 3, note that the event that Q̃α
N ∈ Sf

ϵ ∩ [q∗,∞), where α=C ′(q), is equivalent

to the intersection of events [Q̃α
N ≥ q∗] and [C ′(Q̃α

N) ≤ α]. We will prove an upper bound on the

probability of [Q̃α
N < q∗] and on the probability of [C ′(Q̃α

N)> α]. It follows similar lines to the proof

of Lemma 3.5 in Levi et al. (2007), except we will use Bernstein’s inequality instead of Hoeffding’s

inequality.

Define β ! b
b+h

and γ ! 1
2

α
b+h

. First, let us bound the probability of B ! [Q̃α
N < q∗]. For a real-

valued sequence {τk}∞k=1 where τk ↓ 0, define

Bk ! [Q̃α
N ≤ q∗ − τk] =

[
−b+(b+h)F̂N(q

∗ − τk)≥ α

2

]
= [F̂N(q

∗ − τk)≥ β+ γ].

Note that since F̂N is monotonically increasing, it follows that Bk ⊆Bk+1. Thus, if B̄ is the limiting

event of the sequence of events {Bk}∞k=1, then Bk ↑ B̄, implying that Pr(Bk) ↑Pr(B̄). Note also that

B ⊆ B̄, thus Pr(B) ≤ Pr(B̄). Therefore, to bound Pr(B), we only need to find a uniform upper

bound for Pr(Bk).

Note that for any k≥ 1, there exists εk > 0 such that F (q∗ − τk) = β− εk. Thus,

F (q∗ − τk)
(
1−F (q∗ − τk)

)
= (β− εk)(1−β+ εk)< β(1−β+ εk).

From Bernstein’s inequality, we have that

Pr(Bk) = Pr
(
F̂N(q

∗ − τk)≥ β+ γ
)
=Pr

(
F̂N(q

∗ − τk)−F (q∗ − τk)≥ γ+ εk
)

≤ exp

(
−N(γ+ εk)2

2F (q∗ − τk)(1−F (q∗ − τk))+ 2
3
(γ+ εk)

)

= exp

(
−N(γ+ εk)

2
(γ+εk)

(β− εk)(1−β− γ)+ 2(β− εk)+ 2
3

)

≤ exp

(
−N(γ+ εk)

2
(γ+εk)

β(1−β− γ)+ 2β+ 2
3

)
≤ exp

(
−Nγ

2
γ
β(1−β− γ)+ 2β+ 2

3

)

where the inequality follows when 1−β− γ ≥ 0. Hence, for all k≥ 1,

Pr(Bk)≤ exp

(
−3Nα2

24bh+4α(b+h)

)
.

Since α=C ′(q), from (EC.4) we have that

Pr(Bk)≤ exp

(
−6Nϵbh∆(q∗)f(q∗)+O(ϵ3/2)

24bh+O(ϵ1/2)

)
!U(ϵ). (EC.5)

Now, let us bound the probability of L ! [C ′(Q̃α
N) > α] =

[
F̄ (Q̃α

N)<
h

b+h
− α

b+h

]
. Define q0 !

sup
{
q : F̄ (q)≥ h

b+h
− α

b+h

}
. Thus, L = [Q̃α

N > q0]. Note that Q̃α
N = sup{q : h− (b+ h) ˆ̄FN(q) ≤ α

2
}.

For a real-valued sequence {τk}∞k=1 where τk ↓ 0, define

Lk ! [Q̃α
N ≥ q0 + τk] =

[
h− (b+h) ˆ̄FN(q0 + τk)≤ α

2

]

=

[
ˆ̄FN(q0 + τk)≥ h

b+h
− 1

2

α

b+h

]
=
[
ˆ̄FN(q0 + τk)≥ 1−β− γ

]
.
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Since ˆ̄FN is nonincreasing, then it follows that Lk ⊆ Lk+1. Thus, if L̄ is the limiting event of the

sequence {Lk}∞k=1, then Lk ↑ L̄, implying that Pr(Lk) ↑Pr(L̄). Note also that L⊆ L̄, implying that

Pr(L) ≤ Pr(L̄). Therefore, to prove a bound on Pr(L), it is sufficient to prove a uniform upper

bound on Pr(Lk).

Note that for some ϵk > 0, we have that F̄ (q0 + τk) = 1−β− 2γ− ϵk. Thus, Lk = [ ˆ̄FN(q0 + τk)−

F̄ (q0 + τk)≥ γ+ ϵk]. Finally, from Bernstein’s inequality, we have that

Pr(Lk)≤ exp

(
−N(γ+ ϵk)2

2F̄ (q0 + τk)(1− F̄ (q0 + τk))+ 2
3
(γ+ ϵk)

)

= exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ− ϵk)(β+2γ+ ϵk)+ 2
3

)

= exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ− ϵk)(β+ γ)+ 2(1−β− 2γ− ϵk)+ 2
3

)

≤ exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ)(β+ γ)+ 2(1−β− 2γ)+ 2
3

)

≤ exp

(
−Nγ

2
γ
(1−β− 2γ)(β+ γ)+ 2(1−β− 2γ)+ 2

3

)

= exp

(
−Nγ

2
γ
β(1−β− 2γ)+ 4(1−β− 2γ)+ 2

3

)
.

Therefore, we have that for all k≥ 1,

Pr(Lk)≤ exp

(
−3Nα2

24bh+4α(7h− 5b− 6α)

)
.

Since α=C ′(q), we have from (EC.4) that

Pr(Lk)≤ exp

(
−6Nϵbh∆(q∗)f(q∗)+O(ϵ3/2)

24bh+O(ϵ1/2)

)
!U(ϵ). (EC.6)

Summarizing from (EC.5) and (EC.6), we have that Pr(B) ≤ Pr(B̄) ≤ U(ϵ) and that Pr(L) ≤

Pr(L̄)≤U(ϵ). Thus,

Pr
{
Q̃α

N < q∗ or C ′(Q̃α
N)>C ′(q)

}
=Pr(B ∪L)≤Pr(B)+Pr(L)

≤ 2U(ϵ)∼ 2exp

(
−1

4
Nϵ∆(q∗)f(q∗)

)
, as ϵ→ 0.

EC.3. Proof of Lemma 1

Denote by ∂−g(x) (or ∂+g(x)) the left-side (or right-side) derivative of a function g at x. The failure

rate and reverse hazard rate is given by r̄(x) = f(x)
1−F (x)

and r(x) = f(x)
F (x)

. Since f is a log-concave
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distribution, it has an increasing failure rate. This implies that log r̄(x) = log f(x)− log(1−F (x))

is increasing, and ∂− log r̄(x)≥ 0 for all x. Thus,

γ1 + γ0
b+h

h
= γ1 +

f(q∗)

1−F (q∗)
≥ ∂− log f(q∗)+

f(q∗)

1−F (q∗)
= ∂− log r̄(q∗)≥ 0. (EC.7)

A log-concave distribution also has a decreasing reversed hazard rate. This implies that log r(x) =

log f(x)− logF (x) is decreasing and ∂+ log r(x)≤ 0 for all x. Thus,

γ1 − γ0
b+h

b
= γ1 −

f(q∗)

F (q∗)
≤ ∂+ log f(q∗)− f(q∗)

F (q∗)
= ∂+ log r̄(q∗)≤ 0. (EC.8)

Combining (EC.7) and (EC.8), we have that − b+h
h

≤ γ1
γ0

≤ b+h
b
.

EC.4. Proof of Lemma 2

Note that since log f is concave, then log f(x) ≤ logγ0 + γ1(x− t), for all x such that f(x) > 0.

Taking the exponent on both sides proves our result.

EC.5. Proof of Lemma 3

Note that d
dx
F1(x)≤ d

dx
F2(x) by our assumption that f1(x)≤ f2(x). Moreover, since F1(t) = F2(t),

then F1(x)≥ F2(x) for all x≤ t and F1(x)≤ F2(x) for all x≥ t. Note that

E(D1 − t|D1 > t) =
∫∞
0

Pr(D1 > t+ s|D1 > t)ds,
= 1

1−F1(t)

∫∞
0
(1−F1(t+ s))ds,

≥ 1
1−F2(t)

∫∞
0
(1−F2(t+ s))ds,

= E(D2 − t|D2 > t)

With the same technique, we can also prove that E(t−D1|D1 ≤ t)≥E(t−D2|D2 ≤ t). Combining

these results proves the lemma.

EC.6. Proof of Lemma 4

We first introduce the following notation:

G(α)!
(

1

1−β
+α

)
log (1+α(1−β))+

(
1

β
−α

)
log (1−αβ)−min{β,1−β}α2,

U(β)! β

1−β
log

(
1

β

)
−β,

L(β)! 1−β

β
log

(
1

1−β

)
− (1−β).

We need to prove that each of the three functions are nonnegative.

1. Let us prove the result for G. First, we prove the result for the case when β ≥ 1
2
. Note that

G′(α) = log

(
1+α(1−β)

1−αβ

)
− 2(1−β)α.
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The derivative is nonnegative if and only if G1(α)! (1 + α(1− β))e−(1−β)α − (1− αβ)e(1−β)α ≥ 0.

Note that for α≥ 0,

G′
1(α) = −α(1−β)2e−(1−β)α +βe(1−β)α − (1−β)(1−αβ)e(1−β)α,

≥ −α(1−β)2e−(1−β)α +β(1−β)αe(1−β)α,
≥ α(1−β)2

(
e(1−β)α − e−(1−β)α

)
≥ 0

Note that G1(0) = 0, thus, G1(α)≥ 0 for all α ≥ 0. Now define G2(α)! (1 + α(1− β))e−(1−β)α −
(1−α(1−β))e(1−β)α. Note that G2(α)≥G1(α) if α≤ 0. We have

G′
2(α) = α(1−β)2

(
e(1−β)α − e−(1−β)α

)
≥ 0, for α≤ 0.

Note that G2(0) = 0, thus, G1(α)≤G2(α)≤ 0 for all α≤ 0. Thus, G(α) is nondecreasing in α≥ 0,

and non-increasing in α ≤ 0. Since at α = 0, this function is zero, then G(α) ≥ 0 for all α. Now

we can also prove the result for β ≤ 1
2
, if we define the function β̃ = 1− β ≥ 1

2
and G̃(α) =G(−α).

Q.E.D.

2. Let us prove the result for U . The result is true if and only if − logβ ≥ 1−β. Note that − logβ

is a convex function of β, thus the linear approximation at β = 1 (i.e., the function 1− β) bounds

it from below. Q.E.D.

3. Let us prove the result for L. Defining β̃ = 1− β, note that L(β) = U(β̃)≥ 0, which follows

from (2).

EC.7. Proof of Theorem 4

Recall that if q ∈ Sf
ϵ ∩ [q∗,∞), then C(q) ≤ (1 + ϵ)C(q∗). Also, Sf

ϵ ∩ [q∗,∞) can be equivalently

expressed as {q :C ′(q)≤C ′(q) and q≥ q∗}. Let Q̃α
N be defined in (8), but with α=

√
2ϵbhmin{b,h}

b+h
+

O(ϵ). Since,

C ′(q) = (b+h)(F (q)−F (q∗)) = (b+h)
[
(q− q∗)f(q∗)+O(q− q∗)2

]

=
√
2ϵbh∆(q∗)f(q∗)+O(ϵ),

then it follows from Proposition 2 that α ≤ C ′(q) when the demand distribution is log-concave.

This implies that

[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N)≤ α
]
⊆
[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N)≤C ′(q)
]
.

Thus, we only need to derive a lower bound on the probability of the left-hand side event to prove

Theorem 4. Modifying the proof of Theorem 3 by letting α=
√

2ϵbhmin{b,h}
b+h

+O(ϵ), we can prove

that

Pr
(
Q̃α

N < q∗ or C ′(Q̃α
N)> α

)
≤ 2U∗(ϵ)∼ 2exp

(
−1

4
Nϵ

min{b,h}
b+h

)
, as ϵ→ 0.
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Proofs, Tables and Figures
In this electronic companion to the paper, we provide proofs of the theorems and lemmas. This

companion also contains several accompanying tables and figures to the paper.

Table EC.1 Range of critical fractile values where Assumption 1 holds.

Distribution When is Assumption 1 satisfied? Notes

Normal(µ,σ) b
b+h

≥ 1
2

Exponential(λ) b
b+h

≥ 0
Lognormal(µ,σ) b

b+h
≥ 1

2
+ 1

2
erf
(
−σ

2

)
erf: error function

Pareto(xm,α)
b

b+h
≥ 0

Uniform(A,B) b
b+h

≥ 0
Gamma(α,β) b

b+h
≥ 1

Γ(α)
γ(α,α− 1) Γ: gamma function, γ: incomplete gamma function

Beta(α,β) b
b+h

≥ B( α−1
α+β−2 ;α,β)
B(α,β)

B: beta function

Power Law(α) b
b+h

≥ 0
Logistic(µ, s) b

b+h
≥ 1

2

GEV(µ,σ, ξ) b
b+h

≥ e−1−ξ for ξ ≥ 0
Chi(k) b

b+h
≥ P

(
k
2
, k−1

2

)
for k≥ 1; P : regularized gamma function

Chi-squared(k) b
b+h

≥
{

1

Γ( k
2 )
γ
(
k
2
, k−2

2

)
, if k≥ 2

0, if k < 2
Laplace(µ,β) b

b+h
≥ 1

2

Weibull(λ, k) b
b+h

≥
{
1− e−

k−1
k , if k≥ 1

0 if k < 1

Table EC.2 Average errors (%) with samples from an exponential distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.39 1.83 2.08 2.24 2.62 3.22 4.05 4.67 7.65 10.87 33.76
50 0.77 0.73 0.81 0.87 1.35 1.49 1.93 2.38 3.10 7.33 16.89
100 0.54 0.34 0.48 0.60 0.70 0.91 0.96 1.50 2.03 3.24 8.56
200 0.27 0.23 0.27 0.29 0.34 0.40 0.49 0.64 1.22 2.22 4.36

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 1.88 1.54 1.54 1.69 2.03 2.60 3.37 4.26 5.81 9.64 40.06
50 0.65 0.64 0.69 0.80 0.99 1.23 1.53 1.90 2.72 4.88 22.93
100 0.36 0.34 0.39 0.46 0.57 0.73 0.96 1.33 1.91 2.62 9.03
200 0.21 0.20 0.21 0.24 0.28 0.34 0.43 0.59 0.94 1.64 7.25
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Figure EC.1 Upper bound for a log-concave distribution with b
b+h quantile q∗.

Table EC.3 Average errors (%) with samples from a normal distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 6.03 3.84 3.81 3.11 2.60 2.95 3.50 4.91 6.23 8.71 42.85
50 2.31 1.69 1.62 1.58 1.41 1.60 1.59 2.06 3.26 4.57 13.76
100 1.63 1.15 0.92 0.86 0.83 0.75 0.92 1.08 1.56 2.18 5.94
200 0.81 0.45 0.38 0.36 0.30 0.29 0.38 0.47 0.81 1.41 3.65

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 4.65 3.53 3.07 2.73 2.62 2.77 3.16 3.74 5.48 12.83 75.12
50 1.91 1.43 1.27 1.20 1.24 1.38 1.60 1.87 2.53 4.41 18.77
100 1.13 0.90 0.78 0.71 0.68 0.69 0.76 0.89 1.17 1.75 6.59
200 0.47 0.36 0.28 0.25 0.25 0.27 0.33 0.42 0.63 1.03 3.92
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Table EC.4 Average errors (%) with samples from a Pareto distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.88 0.69 0.83 0.93 1.14 1.59 2.18 3.12 6.70 28.33 34.35
50 0.28 0.28 0.31 0.37 0.60 0.73 1.02 1.39 2.28 6.12 33.39
100 0.19 0.13 0.19 0.24 0.29 0.39 0.45 0.83 1.54 3.28 39.74
200 0.09 0.08 0.10 0.11 0.14 0.17 0.24 0.35 0.80 1.97 6.86

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 0.70 0.61 0.69 0.79 0.96 1.24 1.68 2.47 4.83 9.69 40.31
50 0.25 0.25 0.28 0.32 0.39 0.53 0.76 1.15 2.25 4.52 18.92
100 0.15 0.14 0.16 0.20 0.24 0.31 0.41 0.62 1.34 2.85 11.71
200 0.08 0.08 0.09 0.10 0.12 0.15 0.19 0.30 0.72 1.65 6.97

Table EC.5 Average errors (%) with samples from a Beta distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.15 4.80 4.07 3.07 3.06 2.63 2.92 2.90 4.30 4.27 14.99
50 2.69 2.28 2.15 1.99 1.63 1.41 1.26 1.25 1.34 1.88 2.47
100 1.86 1.17 0.94 0.82 0.88 0.85 0.73 0.77 0.79 0.89 0.78
200 1.11 0.59 0.40 0.35 0.36 0.35 0.32 0.31 0.32 0.30 0.41

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 5.62 4.42 3.41 2.70 2.38 2.32 2.34 2.39 3.40 7.13 35.94
50 2.90 2.24 1.77 1.50 1.43 1.49 1.61 1.65 1.68 2.88 9.40
100 1.43 1.06 0.83 0.69 0.62 0.61 0.62 0.63 0.64 0.99 4.45
200 0.70 0.43 0.30 0.26 0.25 0.25 0.26 0.26 0.24 0.37 2.29
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Table EC.6 Average errors (%) with samples from a mixed normal distribution.

(a) Sample average approximation

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 3.99 2.64 1.89 2.14 6.17 3.98 5.52 11.72 5.78 3.84 4.41
50 1.29 0.86 0.61 0.39 0.38 0.35 0.53 0.79 1.81 1.62 4.26
100 0.74 0.43 0.35 0.27 0.39 0.45 0.33 0.39 0.55 0.71 2.51
200 0.37 0.21 0.16 0.13 0.08 0.08 0.12 0.19 0.22 0.59 1.47

(b) Distribution fitting

Critical quantile

Sample size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

25 2.96 1.67 1.86 3.32 3.09 2.36 10.46 16.65 6.55 13.74 32.75
50 1.56 1.14 0.52 0.47 0.33 0.54 0.49 2.18 0.24 1.84 25.18
100 0.90 0.40 0.35 1.08 0.81 0.18 0.16 1.85 0.33 1.19 7.76
200 0.69 0.38 0.15 0.59 0.42 0.48 0.57 0.37 0.94 4.61 2.97
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EC.1. Proof of Theorem 2

As a preliminary for the proof, let us first state a version of Bernstein’s inequality (Bernstein 1927):

Theorem EC.1 (Bernstein’s inequality). Let X1,X2, . . . ,XN be i.i.d. random variables such

that |X1|≤ c almost surely, and Var(X1) = σ2. Then, for any t > 0,

Pr

(
1

N

N∑

i=1

X i −E[X1]≥ t

)
≤ exp

(
−Nt2

2σ2 +2tc/3

)
.

For the proof of Theorem 2, we will require the following proposition.

Proposition EC.1. Suppose Q̂N is the b
b+h

quantile of a random sample from D with size N .

Then, for any γ > 0,

Pr
(
∂−C(Q̂N)≤ γ and ∂+C(Q̂N)≥−γ

)
≥ 1− 2exp

(
−3Nγ2

6bh+8γ(b+h)

)
.

Proof. Let F̄ be the complementary cdf of D, i.e., F̄ (q) = Pr(D ≥ q) = 1− F (q) + Pr(D = q).

For a random sample {D1, . . . ,DN} drawn from D, let Q̂N be the b
b+h

sample quantile. Define

F̂N(q)!
1

N

N∑

i=1

1[Di≤q],

ˆ̄FN(q)!
1

N

N∑

i=1

1[Di≥q].

For simplicity, define α! γ
b+h

and β ! b
b+h

. Define the events B ! [∂+C(Q̂N)<−γ] = [F (Q̂N)<

β−α] and L! [∂−C(Q̂N)> γ] = [F̄ (Q̂N)< 1−β−α]. To prove Proposition EC.1, we need to find

an upper bound for Pr(B) and for Pr(L).

Define the quantile q1 ! inf{q : F (q)≥ β−α}. Since F is nondecreasing, we have that B = [Q̂N <

q1]. Consider a monotonically decreasing, nonnegative sequence {τk}∞k=1, where τk ↓ 0. Define the

sequence of events {Bk}∞k=1, where

Bk ! [Q̂N ≤ q1 − τk] = [F̂N(q1 − τk)≥ β].

Note that since F̂N(q1 − τk)≤ F̂N(q1 − τk+1), then it follows that Bk ⊆ Bk+1. Thus, we have that

Bk ↑ limk→∞Bk ! B̄, which implies Pr(Bk) ↑Pr(B̄). Note also that B ⊆ B̄, thus Pr(B)≤Pr(B̄).

From the definition of q1, observe that for every k≥ 1, there exists εk > α such that F (q1− τk) =

β− εk < β−α. Note that

F (q1 − τk)
(
1−F (q1 − τk)

)
< (β−α)(1−β+ εk). (EC.1)
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Thus, we have that

Pr(Bk) = Pr(F̂N(q1 − τk)≥ β),

=Pr(F̂N(q1 − τk)−F (q1 − τk)≥ εk),

≤ exp

(
−Nε2k/2

F (q1 − τk)(1−F (q1 − τk))+ εk
3

)
, (EC.2)

≤ exp

(
−Nεk/2

1
εk
(β−α)(1−β)+β−α+ 1

3

)
, (EC.3)

where (EC.2) follows from Bernstein’s inequality and (EC.3) follows from inequality (EC.1). Now,

since εk > α, for all k≥ 1, we have that

Pr(Bk)≤ exp

(
−Nα/2

1
α
β(1−β)− 2

3
+2β−α

)
,

≤ exp

(
−Nα/2

1
α
β(1−β)+ 4

3
− 2min(β,1−β)−α

)
,

≤ exp

(
−Nα/2

1
α
β(1−β)+ 4

3

)
= exp

(
−3Nγ2

6bh+8γ(b+h)

)
! δ.

Thus, Pr(B)≤Pr(B̄)≤ δ. In fact, by going through a similar argument, we can show that Pr(L)≤ δ.

Thus, by the union bound, we have that

Pr
(
∂−C(Q̂N)> γ or ∂+C(Q̂N)<−γ

)
=Pr(B ∪L)≤Pr(B)+Pr(L)≤ 2δ,

proving Proposition EC.1. Q.E.D.

We can now proceed with the proof of Theorem 2. Note that SLRS
ϵ consists of all q for which

∂−C(q)≤ γ and ∂+C(q)≥−γ, with γ = ϵ
3
min(b,h). From Proposition EC.1, the SAA solution from

a random sample with size N lies in SLRS
ϵ with probability at least

1− 2exp

(
−Nϵ2min{b,h}2

18bh+8ϵ(b+h)min{b,h}

)
= 1− 2exp

(
−Nϵ2min{b,h}

18max{b,h}+8ϵ(b+h)

)
.

≥ 1− 2exp

(
−Nϵ2

18+8ϵ
· min{b,h}

b+h

)
.

EC.2. Proof of Theorem 3

Since C is convex, Sf
ϵ ∩ [q∗,∞) can be equivalently expressed as {q :C ′(q)≤C ′(q) and q≥ q∗}. Note

that,

C ′(q) = (b+h)(F (q)−F (q∗)) = (b+h)
[
(q− q∗)f(q∗)+O(q− q∗)2

]

=
√
2ϵbh∆(q∗)f(q∗)+O(ϵ), (EC.4)

which follows from Taylor series approximation and from the definition of q in (7).
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To prove Theorem 3, note that the event that Q̃α
N ∈ Sf

ϵ ∩ [q∗,∞), where α=C ′(q), is equivalent

to the intersection of events [Q̃α
N ≥ q∗] and [C ′(Q̃α

N) ≤ α]. We will prove an upper bound on the

probability of [Q̃α
N < q∗] and on the probability of [C ′(Q̃α

N)> α]. It follows similar lines to the proof

of Lemma 3.5 in Levi et al. (2007), except we will use Bernstein’s inequality instead of Hoeffding’s

inequality.

Define β ! b
b+h

and γ ! 1
2

α
b+h

. First, let us bound the probability of B ! [Q̃α
N < q∗]. For a real-

valued sequence {τk}∞k=1 where τk ↓ 0, define

Bk ! [Q̃α
N ≤ q∗ − τk] =

[
−b+(b+h)F̂N(q

∗ − τk)≥ α

2

]
= [F̂N(q

∗ − τk)≥ β+ γ].

Note that since F̂N is monotonically increasing, it follows that Bk ⊆Bk+1. Thus, if B̄ is the limiting

event of the sequence of events {Bk}∞k=1, then Bk ↑ B̄, implying that Pr(Bk) ↑Pr(B̄). Note also that

B ⊆ B̄, thus Pr(B) ≤ Pr(B̄). Therefore, to bound Pr(B), we only need to find a uniform upper

bound for Pr(Bk).

Note that for any k≥ 1, there exists εk > 0 such that F (q∗ − τk) = β− εk. Thus,

F (q∗ − τk)
(
1−F (q∗ − τk)

)
= (β− εk)(1−β+ εk)< β(1−β+ εk).

From Bernstein’s inequality, we have that

Pr(Bk) = Pr
(
F̂N(q

∗ − τk)≥ β+ γ
)
=Pr

(
F̂N(q

∗ − τk)−F (q∗ − τk)≥ γ+ εk
)

≤ exp

(
−N(γ+ εk)2

2F (q∗ − τk)(1−F (q∗ − τk))+ 2
3
(γ+ εk)

)

= exp

(
−N(γ+ εk)

2
(γ+εk)

(β− εk)(1−β− γ)+ 2(β− εk)+ 2
3

)

≤ exp

(
−N(γ+ εk)

2
(γ+εk)

β(1−β− γ)+ 2β+ 2
3

)
≤ exp

(
−Nγ

2
γ
β(1−β− γ)+ 2β+ 2

3

)

where the inequality follows when 1−β− γ ≥ 0. Hence, for all k≥ 1,

Pr(Bk)≤ exp

(
−3Nα2

24bh+4α(b+h)

)
.

Since α=C ′(q), from (EC.4) we have that

Pr(Bk)≤ exp

(
−6Nϵbh∆(q∗)f(q∗)+O(ϵ3/2)

24bh+O(ϵ1/2)

)
!U(ϵ). (EC.5)

Now, let us bound the probability of L ! [C ′(Q̃α
N) > α] =

[
F̄ (Q̃α

N)<
h

b+h
− α

b+h

]
. Define q0 !

sup
{
q : F̄ (q)≥ h

b+h
− α

b+h

}
. Thus, L = [Q̃α

N > q0]. Note that Q̃α
N = sup{q : h− (b+ h) ˆ̄FN(q) ≤ α

2
}.

For a real-valued sequence {τk}∞k=1 where τk ↓ 0, define

Lk ! [Q̃α
N ≥ q0 + τk] =

[
h− (b+h) ˆ̄FN(q0 + τk)≤ α

2

]

=

[
ˆ̄FN(q0 + τk)≥ h

b+h
− 1

2

α

b+h

]
=
[
ˆ̄FN(q0 + τk)≥ 1−β− γ

]
.
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Since ˆ̄FN is nonincreasing, then it follows that Lk ⊆ Lk+1. Thus, if L̄ is the limiting event of the

sequence {Lk}∞k=1, then Lk ↑ L̄, implying that Pr(Lk) ↑Pr(L̄). Note also that L⊆ L̄, implying that

Pr(L) ≤ Pr(L̄). Therefore, to prove a bound on Pr(L), it is sufficient to prove a uniform upper

bound on Pr(Lk).

Note that for some ϵk > 0, we have that F̄ (q0 + τk) = 1−β− 2γ− ϵk. Thus, Lk = [ ˆ̄FN(q0 + τk)−

F̄ (q0 + τk)≥ γ+ ϵk]. Finally, from Bernstein’s inequality, we have that

Pr(Lk)≤ exp

(
−N(γ+ ϵk)2

2F̄ (q0 + τk)(1− F̄ (q0 + τk))+ 2
3
(γ+ ϵk)

)

= exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ− ϵk)(β+2γ+ ϵk)+ 2
3

)

= exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ− ϵk)(β+ γ)+ 2(1−β− 2γ− ϵk)+ 2
3

)

≤ exp

(
−N(γ+ ϵk)

2
γ+ϵk

(1−β− 2γ)(β+ γ)+ 2(1−β− 2γ)+ 2
3

)

≤ exp

(
−Nγ

2
γ
(1−β− 2γ)(β+ γ)+ 2(1−β− 2γ)+ 2

3

)

= exp

(
−Nγ

2
γ
β(1−β− 2γ)+ 4(1−β− 2γ)+ 2

3

)
.

Therefore, we have that for all k≥ 1,

Pr(Lk)≤ exp

(
−3Nα2

24bh+4α(7h− 5b− 6α)

)
.

Since α=C ′(q), we have from (EC.4) that

Pr(Lk)≤ exp

(
−6Nϵbh∆(q∗)f(q∗)+O(ϵ3/2)

24bh+O(ϵ1/2)

)
!U(ϵ). (EC.6)

Summarizing from (EC.5) and (EC.6), we have that Pr(B) ≤ Pr(B̄) ≤ U(ϵ) and that Pr(L) ≤

Pr(L̄)≤U(ϵ). Thus,

Pr
{
Q̃α

N < q∗ or C ′(Q̃α
N)>C ′(q)

}
=Pr(B ∪L)≤Pr(B)+Pr(L)

≤ 2U(ϵ)∼ 2exp

(
−1

4
Nϵ∆(q∗)f(q∗)

)
, as ϵ→ 0.

EC.3. Proof of Lemma 1

Denote by ∂−g(x) (or ∂+g(x)) the left-side (or right-side) derivative of a function g at x. The failure

rate and reverse hazard rate is given by r̄(x) = f(x)
1−F (x)

and r(x) = f(x)
F (x)

. Since f is a log-concave
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distribution, it has an increasing failure rate. This implies that log r̄(x) = log f(x)− log(1−F (x))

is increasing, and ∂− log r̄(x)≥ 0 for all x. Thus,

γ1 + γ0
b+h

h
= γ1 +

f(q∗)

1−F (q∗)
≥ ∂− log f(q∗)+

f(q∗)

1−F (q∗)
= ∂− log r̄(q∗)≥ 0. (EC.7)

A log-concave distribution also has a decreasing reversed hazard rate. This implies that log r(x) =

log f(x)− logF (x) is decreasing and ∂+ log r(x)≤ 0 for all x. Thus,

γ1 − γ0
b+h

b
= γ1 −

f(q∗)

F (q∗)
≤ ∂+ log f(q∗)− f(q∗)

F (q∗)
= ∂+ log r̄(q∗)≤ 0. (EC.8)

Combining (EC.7) and (EC.8), we have that − b+h
h

≤ γ1
γ0

≤ b+h
b
.

EC.4. Proof of Lemma 2

Note that since log f is concave, then log f(x) ≤ logγ0 + γ1(x− t), for all x such that f(x) > 0.

Taking the exponent on both sides proves our result.

EC.5. Proof of Lemma 3

Note that d
dx
F1(x)≤ d

dx
F2(x) by our assumption that f1(x)≤ f2(x). Moreover, since F1(t) = F2(t),

then F1(x)≥ F2(x) for all x≤ t and F1(x)≤ F2(x) for all x≥ t. Note that

E(D1 − t|D1 > t) =
∫∞
0

Pr(D1 > t+ s|D1 > t)ds,
= 1

1−F1(t)

∫∞
0
(1−F1(t+ s))ds,

≥ 1
1−F2(t)

∫∞
0
(1−F2(t+ s))ds,

= E(D2 − t|D2 > t)

With the same technique, we can also prove that E(t−D1|D1 ≤ t)≥E(t−D2|D2 ≤ t). Combining

these results proves the lemma.

EC.6. Proof of Lemma 4

We first introduce the following notation:

G(α)!
(

1

1−β
+α

)
log (1+α(1−β))+

(
1

β
−α

)
log (1−αβ)−min{β,1−β}α2,

U(β)! β

1−β
log

(
1

β

)
−β,

L(β)! 1−β

β
log

(
1

1−β

)
− (1−β).

We need to prove that each of the three functions are nonnegative.

1. Let us prove the result for G. First, we prove the result for the case when β ≥ 1
2
. Note that

G′(α) = log

(
1+α(1−β)

1−αβ

)
− 2(1−β)α.
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The derivative is nonnegative if and only if G1(α)! (1 + α(1− β))e−(1−β)α − (1− αβ)e(1−β)α ≥ 0.

Note that for α≥ 0,

G′
1(α) = −α(1−β)2e−(1−β)α +βe(1−β)α − (1−β)(1−αβ)e(1−β)α,

≥ −α(1−β)2e−(1−β)α +β(1−β)αe(1−β)α,
≥ α(1−β)2

(
e(1−β)α − e−(1−β)α

)
≥ 0

Note that G1(0) = 0, thus, G1(α)≥ 0 for all α ≥ 0. Now define G2(α)! (1 + α(1− β))e−(1−β)α −
(1−α(1−β))e(1−β)α. Note that G2(α)≥G1(α) if α≤ 0. We have

G′
2(α) = α(1−β)2

(
e(1−β)α − e−(1−β)α

)
≥ 0, for α≤ 0.

Note that G2(0) = 0, thus, G1(α)≤G2(α)≤ 0 for all α≤ 0. Thus, G(α) is nondecreasing in α≥ 0,

and non-increasing in α ≤ 0. Since at α = 0, this function is zero, then G(α) ≥ 0 for all α. Now

we can also prove the result for β ≤ 1
2
, if we define the function β̃ = 1− β ≥ 1

2
and G̃(α) =G(−α).

Q.E.D.

2. Let us prove the result for U . The result is true if and only if − logβ ≥ 1−β. Note that − logβ

is a convex function of β, thus the linear approximation at β = 1 (i.e., the function 1− β) bounds

it from below. Q.E.D.

3. Let us prove the result for L. Defining β̃ = 1− β, note that L(β) = U(β̃)≥ 0, which follows

from (2).

EC.7. Proof of Theorem 4

Recall that if q ∈ Sf
ϵ ∩ [q∗,∞), then C(q) ≤ (1 + ϵ)C(q∗). Also, Sf

ϵ ∩ [q∗,∞) can be equivalently

expressed as {q :C ′(q)≤C ′(q) and q≥ q∗}. Let Q̃α
N be defined in (8), but with α=

√
2ϵbhmin{b,h}

b+h
+

O(ϵ). Since,

C ′(q) = (b+h)(F (q)−F (q∗)) = (b+h)
[
(q− q∗)f(q∗)+O(q− q∗)2

]

=
√
2ϵbh∆(q∗)f(q∗)+O(ϵ),

then it follows from Proposition 2 that α ≤ C ′(q) when the demand distribution is log-concave.

This implies that

[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N)≤ α
]
⊆
[
Q̃α

N ≥ q∗
]
∩
[
C ′(Q̃α

N)≤C ′(q)
]
.

Thus, we only need to derive a lower bound on the probability of the left-hand side event to prove

Theorem 4. Modifying the proof of Theorem 3 by letting α=
√

2ϵbhmin{b,h}
b+h

+O(ϵ), we can prove

that

Pr
(
Q̃α

N < q∗ or C ′(Q̃α
N)> α

)
≤ 2U∗(ϵ)∼ 2exp

(
−1

4
Nϵ

min{b,h}
b+h

)
, as ϵ→ 0.
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