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Kidney Exchange and the Alliance for Paired Donation 

Ross Anderson, Itai Ashlagi, David Gamarnik, Michael Rees, Alvin E. Roth, 
Tayfun Sönmez and M. Utku Ünver1 

 

Abstract 

Many end-stage renal disease sufferers who require a kidney transplant to prolong their lives 
have relatives or associates who have volunteered to donate a kidney to them, but whose kidney 
is incompatible with their intended recipient.  This incompatibility can be sometimes overcome 
by exchanging kidneys with another incompatible donor pair.  Such kidney exchanges have 
emerged as a standard mode of kidney transplantation in the United States. The Alliance for 
Paired Donation (APD) developed and implemented an innovative operations research based 
methodology of non-simultaneous extended altruistic donor (NEAD) chains, which, by allowing 
a previously binding constraint (of simultaneity) to be relaxed, allowed better optimized 
matching of potential donors to patients, which greatly increases the number of possible 
transplants.  Since 2006, the APD has saved more than 220 lives through its kidney exchange 
program, with more than 75% of these achieved through long non-simultaneous chains.  The 
technology and methods pioneered by APD have been adopted by other transplant exchanges, 
resulting in thousands of lives already saved, with the promise of increasing impact in coming 
years.  The percentage of transplants from non-simultaneous chains has already reached more 
than 6% of the total number of transplants from live donors (including directed living donors) in 
the last year. We describe the long-term optimization and market design research that supports 
this innovation.  We also describe how the team of physicians and operations researchers worked 
to overcome the skepticism and resistance of the medical community to the NEAD innovation. 

 

 

 

Introduction  

This paper describes how the Alliance for Paired Donation (APD) has used operations research 
methodology to make improved matches between kidney disease sufferers and potential kidney 
donors. To date, the APD has itself saved more than 220 lives through its development and 
implementation of so-called non-simultaneous extended altruistic donor (NEAD) chains.  In 

                                                           
1 The authors acknowledge helpful comments by Josh Morrison of the APD, and support from the National Science 
Foundation. 
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addition, other kidney transplant institutions and kidney exchange programs have adopted the 
APD originated methodology, thereby saving more than a thousand lives to date and we can 
expect that in the future thousands of lives will be saved annually. The percentage of transplants 
from non-simultaneous chains has reached more than 6% of the total number of transplants from 
live donors (including directed living donors) in the last year. We estimate that the number of 
transplants conducted through kidney exchange programs has increased due to non-simultaneous 
chains by more than 10%  and the percentage of very highly sensitized patients transplanted has 
increased by more than 50%. 

The project involved a blend of operations research methods including optimization algorithms 
for finding larger number of matches between donors and recipients, and market design 
mechanisms to ensure collaboration across organizational boundaries by hospitals, institutions 
and surgeons who otherwise compete in the 50 Billion dollars end-stage renal disease (ESRD) 
industry.  

Background:  About 100,000 sufferers of end-stage renal disease (ESRD) are currently on the 
waiting list in the United States for a kidney transplant -- the preferred treatment for this severe 
disease. Sadly, about 4,000 of them will die this year before receiving a transplant and another 
2,500 will be removed from the queue since they will have deteriorated so much that they are no 
longer viable transplant candidates.  In addition there will be about 5000 transplants from 
directed living donors and about 10000 transplants from deceased donors this year. The problem 
is growing worse, as the queue increases by about 7,000 patients per year, making ESRD one of 
the most expensive problems of the US health care system. 

The long waiting times for transplants of so many ESRD sufferers have two dominant causes. 
First, is the shortage of kidneys available for transplant – kidneys are available either from a 
deceased donor, or from live persons who are willing to donate one of their two healthy kidneys.  
The second cause is potential incompatibility between live donors and their intended recipients.  
The thrust of kidney exchange programs is to significantly increase the number of live donor 
kidney transplants by bringing together incompatible donors and recipients and conducting 
cross-transplants, essentially developing a ‘’market’’ for kidney exchanges, taking into account 
that a monetary market is forbidden by law. Specifically, kidney exchange allows potential living 
donors whose kidneys are incompatible with their intended recipients to nevertheless donate a 
kidney to another patient so that their own recipient receives a compatible kidney from another 
donor. This is done by exchange between two or more incompatible patient-donor pairs: each 
donor gives a compatible kidney to another donor’s intended recipient (see Figure 1a).  Rapaport 
(1986) was first to suggest the idea of swapping donors between incompatible pairs, and the first 
such exchanges took place in Korea in the 1990’s (Park et al. (1999)). The first exchange in the 
United States was carried out in 2000 at the Rhode Island Hospital. 

Originally, most kidney exchanges were conducted through simple cyclic exchanges, as, for 
example, in the two cycles depicted in Figure 1a.  Out of fear of possible reneging, such cyclic 
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exchanges have been conducted simultaneously, making the exchange process a significant 
logistical challenge:  Four operating rooms and four surgical teams are required. For these 
reasons, cyclic exchanges with length more than three are rarely conducted. Another type of 
exchange took the form of a chain. Chains, initiated by  altruistic donors (kidney donors who 
decide to donate without having an intended recipient), were also conducted at first 
simultaneously, thus involving only 2 or 3 transplants at a time ending with a transplant to  a 
patient on the waiting list (see Figure 1b).  

Contribution: At first the APD adopted the design and optimization methods for identifying short 
cycles and chains. It  was, however, the introduction by APD of a new innovative, and in fact a 
highly controversial approach, based on long non-simultaneous (NEAD) chains that significantly 
increased the number of transplants that can be achieved through kidney exchange. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The added value derived from using NEAD chains is threefold. First, there is ample empirical 
evidence from current clinical practice, substantiated by conclusions drawn from mathematical 
models (see the body of the paper) that when exchanges are conducted in an optimal way, the 
bulk of the transplants (approximately 70%) are conducted via NEAD chains (with length at least 
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Figure 1a: A 2-way cyclic exchange between 
two blood type incompatible recipient-donor 
pairs, R1-D1 and R2-D2. 
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Figure 1b: A 2-way chain involving one non-directed 
donor, one blood type incompatible recipient -donor 
pair, R1-D1, and one sole recipient R2. 
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4). Thus NEAD chains are today responsible for the majority of successful kidney transplants 
conducted by the kidney exchange programs, both at APD and other exchange programs. By 
allowing only short (at most length three) chains the number of transplants would have been 
reduced by at least 12% and more than 30% of the recipients would have been transplanted after 
a longer waiting period. The number of very highly sensitized transplanted patients (further 
discussed below) would have been reduced by approximately 50%.  

Second, unlike cyclic exchanges, chains can be conducted non-simultaneously while assuring 
that every patient in each patient-donor pair receives a kidney before the donor of the same pair 
donates the kidney. The lack of the simultaneity requirement thus significantly reduces the 
logistical overhead and makes long chains possible, which accomplish many transplants. The 
longest NEAD chain to date achieved 30 transplants, i.e. it involved 60 people, 30 donors and 30 
patients (NY times, 2012). 

Finally, NEAD chains can provide transplants for many hard to match patients.  A patient 
receiving a donor’s kidney needs to be both blood-type and tissue-type compatible (meaning that 
the patient does not have an antibody that would lead to the rejection of the donor’s kidney).  
Chains offer particular hope to “highly sensitized” patients who are likely to be incompatible 
with the people who wish to donate a kidney for them.  Highly sensitized patients typically wait 
unusually long before a compatible kidney from a deceased donor becomes available, if one ever 
does. For many such patients, while no cyclic exchanges could be identified, chains involving 
these patients and originating with altruistic donors were found and implemented, providing 
what turned out to be the only kidney transplant option for them.  

Conducting kidney exchanges through cycles or chains introduces the challenge of finding a 
maximal set of compatible matches, a classical combinatorial optimization problem in operations 
research which we solve using integer programming techniques and insights from the theory of 
random graphs. Allowing chains to be long has significantly increased the size of the 
optimization models and with that has come computational challenges.   

Moreover, because kidney exchange is decentralized-- there are over 200 transplant centers in 
the U.S. and innumerable dialysis clinics -- organizing kidney exchange is not just an 
optimization problem, but also a serious market design/coordination problem. A successful broad 
scale approach to designing kidney exchange  clearinghouses and protocols  needs to take into 
account the goals and interests of the hundreds of existing institutions in the $50Billion/year 
business of caring for patients with ESRD, since participating agents often have conflicting 
objectives.  Thus, market design issues are central to this work. 

In the body of the paper we describe both the optimization approach and the market design 
developed by the Alliance for Paired Donation (APD) for conducting kidney exchange. In 
addition to technical issues, we emphasize the cultural and political obstacles to implementation 
of long chains, and our multifaceted work to overcome them. We survey the steps, beginning in 
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2004 that led our team towards the current successful practices as conducted by the APD.  We 
will detail its direct impacts through the APD, describe how other organizations have adopted 
non-simultaneous chains, and provide estimates of the overall impact of these innovations.  

 

 Operations research for Kidney exchange - market design and optimization  

  

 Early experience: exchanges with short simultaneous cycles and chains 

In 2000 Michael Rees, the founder to be of the APD and his father, Alan, wrote the first 
computer program to heuristically identify all 2-way cyclic kidney exchanges possible within a 
pool of incompatible pairs This program applied a utility score to each exchange and produced a  
rank-ordered list of all possible exchanges. This program was modified in 2003 by Rees and 
Jonathan Kopke (at the University of Cincinnati) to be web-based and track participating patients 
and donors from registration through transplantation. The Ohio Solid Organ Transplantation 
Consortium (OSOTC) living donor kidney exchange program utilized this software from 2004 
until 2006, when the OSOTC was disbanded.  

Operations research methods for the first time were applied to kidney exchange when Roth, 
Sönmez and Ünver (Roth et al. 2004)  proposed organizing kidney exchange on a large scale, 
including integrating exchange cycles and chains. They proposed an allocation mechanism that 
made it safe for participating patients and their surgeons to reveal relevant information (e.g. 
revealing their medical data and which donors in the pool are acceptable). That proposal 
involved algorithms that could generate large cycles and long chains. The mathematical 
treatment of those algorithms dates back to the “top trading cycle” algorithm introduced by 
Shapley and Scarf (1974), who attributed it to David Gale. Its dominant strategy incentive 
properties, which would be relevant in the kidney exchange context, were established by Roth 
(1982), and the algorithm was adapted to more general settings by Abdulkadiroglu and Sönmez 
(1999) who modeled the allocation of dormitory rooms in a way that later provided a natural 
bridge to models for allocating kidneys.  

However, the surgical culture and infrastructure in 2004 permitted only pairwise simultaneous 
exchanges. To avoid the possibility that one pair would give a kidney and then not receive one 
(for example due to reneging), it was (and remains) the practice that all the surgeries in a cyclic 
exchange be conducted simultaneously. So even the simplest exchange between two patient-
donor pairs, required four operating rooms and four surgical teams for the two nephrectomies 
and two transplants to be conducted simultaneously. 

Responding to this limitation, Roth et al. (2005a) therefore stepped back and considered how to 
organize kidney exchange around only pairwise exchange. This constraint actually allowed the 
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application of classic graph theory methods (such as Edmond’s matching algorithm (Edmonds 
1965), Gallai-Edmonds decomposition (Gallai 1964) and the fact that the sets of match-able 
nodes in a graph constitute a matroid). They were able to show how to achieve a maximal set of 
kidney transplants in a way that continued to give patients and surgeons incentives to reveal all 
relevant information (including, e.g. the number of willing donors associated with a patient in 
cases there was more than one). In contrast to the simple OSTOC rank-ordered program, the 
New England Program for Kidney Exchange (NEPKE), established in 2005, was the first multi-
hospital kidney exchange program to optimize pairwise kidney exchanges (Roth et al. 2005b). 
While collaborating with NEPKE and gaining experience with pairwise exchanges, Saidman et 
al. (2006) and Roth et al. (2007) showed that efficiency gains could be achieved by incorporating 
chains (still short ones) and larger cyclic exchanges that would require only relatively modest 
additional surgical infrastructure. Ashlagi et al. (2013) have shown that 3-way cycles and 3-way 
chains would increase the number of transplants by more than 50% (see Ashlagi et al. 2013), and 
indeed 3-way cycles and short simultaneous chains fairly quickly began to be part of regular 
kidney exchange practice  

These proposals were instrumental in stimulating the founding the Alliance for Paired Donation 
(APD) in 2006 under the direction of Dr. Michael Rees. While the APD’s predecessor, the 
OSOTC identified all 2-way cycles and then greedily ranked them, and thus did not find the 
largest number of 2-way cycles, the APD adopted optimization software designed by Roth, 
Sönmez and Ünver that maximized the weighted number of transplants in existing pools. 
Weights are used in order to define and account for priorities between different matches. This 
algorithm found optimal solutions consisting of cycles and chains whose length was bounded by 
3 or 4, depending on the circumstances. The algorithm was based on solving an integer program 
in which each feasible cycle and chain was assigned a decision variable. The cycles and chains 
were found first by simply searching the graph induced by the compatibilities between donors 
and patients. Until 2007 cycles and chains were implemented simultaneously, thus significantly 
limiting the length of these cycles and chains. For example a three-way exchange required six 
operating rooms and six surgical teams (for three nephrectomies and three transplants). 

Relaxing the simultaneity constraints and the benefit of long chains.  

In 2006 Roth, Sönmez and Ünver together with Drs. Frank Delmonico and Susan Saidman 
observed that the growing number of altruistic non-directed donors would allow the simultaneity 
constraint to be relaxed for transplant chains initiated by non-directed donors (Roth et al. 2006). 
When a chain is initiated by a non-directed donor, it can be organized so that the non-directed 
donor makes the initial donation, and no patient-donor pair has to donate a kidney before they 
receive one. By reducing the cost of a broken link, we open the door to the potential benefits of 
chains in which operations are conducted non-simultaneously. The benefit is that non-
simultaneous chains can be longer, as more operating rooms and surgical teams can be 
assembled over a longer time frame.  



7 
 

But practitioners in the transplant community raised objections about the use of non-
simultaneous chains.  They were concerned that a broken chain or chains (due to reneging) 
would cause patients and the public to lose trust in the kidney exchange system. Dr. Rees 
disagreed and felt that the utilitarian gains outweighed the risk of equity losses. Therefore, after 
careful planning to minimize this danger, the APD was the first to implement a NEAD chain and 
began to carry out the first non-simultaneous, long chain of kidney transplants in July 2007. The 
incompatible donors of the recipients of the first two transplants were trusted to donate in the 
future after their intended recipient had already received a transplant.  Neither donor reneged! 
Furthermore, as of now, while the scope of kidney exchanges based on non-simultaneous 
expanded greatly, the incidence of reneging is very low.   Subsequently, APD makes the last 
donor of each identified segment of the chain be the bridge donor for future segments of the 
chain. They trusted bridge donors to “pay-it-forward” in the future. Segments of the first NEAD 
chain were actually identified dynamically as the process unfolded and transplants were 
sometimes separated by months and thousands of miles. By March 2008, this first NEAD chain 
included 10 transplants and 11 donors, ten of whom had donated kidneys to ten patients they 
didn’t know. Rees et al. (2009) reported it in the New England Journal of Medicine (See Figure 2 
for details).  

 
Figure 2, the first NEAD chain, reported in Rees et al. 2009 

The end of the chain was the 11th donor, whose blood type was AB, and who was the last bridge 
donor at the time the paper was published.  She eventually waited three years before she donated 
to continue the chain. (AB is the least frequent blood type in the population and most AB 
patients who join kidney exchange are highly sensitized, since AB patients are never blood- type 
incompatible with any donor, and so are only incompatible with their donor due to tissue type 
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incompatibilities.)2 That initial chain was eventually extended to 16 transplants, and only ended 
when the APD participated with UNOS in an exchange and they chose to end the chain 

Since 2007, NEAD chains were adopted by several other Kidney exchange matching services for 
arranging kidney exchanges in the US. Most notably, the National Kidney Registry built their 
matching service around this approach and subsequently produced the longest NEAD chain so 
far reported, including 60 people, 30 transplants and thirty nephrectomies (NY Times, 2012). 
The NKR has so far conducted more than 900 transplants and more than 67% of them done 
through NEAD chains. While long chains may seem intuitively attractive, it was not initially 
clear whether they were actually advantageous. Long chains might not increase efficiency if they 
simply identify transplants that could otherwise have been done in multiple short cycles. In 
addition, as we remarked earlier many in the transplant community still continued to worry that 
non-simultaneous chains and trusting bridge donors to carry through on their promise to donate 
their kidney in the future to a stranger was fraught with the danger of eroding trust in the entire 
kidney exchange enterprise. 

Allowing chains to be non-simultaneous and thus longer than 3, meant optimizing over a huge 
solution space. For example in a pool with 150 pairs with just  one non-directed donor the 
number of chains bounded by length 3 can reach up to a few thousands while there can be more 
than one million chains if we permit them to be of  length 6. (We will discuss further 
computational issues and algorithms in the Algorithms section). 

Simultaneous or non-simultaneous chains? Criticism and objections.  

Whether or not to proceed with NEAD chains or to just to continue with short simultaneous 
chains became a major debate in the (medical) kidney transplant community in 2009. An 
influential team from Johns Hopkins Hospital, argued, based on computer simulations, that non-
simultaneous chains were a bad idea and should not be conducted, because even a modest risk of 
a broken chain implied that more transplants would be accomplished via short simultaneous 
chains (Gentry et al. 2009).  They called these Domino Paired Donation (DPD) chains, which 
are short simultaneous chains including up to 2 incompatible pairs that end with a patient on the 
waiting list for deceased donors. Since the waiting list always contains many patients (today 
almost 100,000), it is always possible to find a compatible patient on the waiting list for the last 
kidney in a chain, and if this transplant is done simultaneously with the others, there is no bridge 
donor who might break the chain by failing to donate at a later date.    

We engaged in the debate and our paper in the American Journal of Transplantation (Ashlagi et 
al. 2011) noted that the Hopkins team failed to capture some of the potential for NEAD chains to 
accomplish many transplants, because their model constrained NEAD chain to have 3 or fewer 
transplants in each round of optimization. We showed that their conclusions were reversed when 
                                                           
2 Exchange progams no longer wait with an AB bridge donor to continue a chain within the 
kidney exchange pool, but rather close the chain with a donation of the AB donor to a patient on 
the (overloaded) waiting list for deceased donors. 
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long chain segments were allowed. Moreover, most of the additional transplanted patients arising 
from using long chains rather than shorter ones would be very highly sensitized patients. This 
debate within the medical academic community continued (see Gentry et al. (2011)  and Ashlagi 
et al. 2011b ), but did not prevent the continued adoption of long chains by APD and a few  other 
transplant networks.  As additional favorable clinical experience and data accumulated, the 
debate was settled in favor of NEAD chains. 

A team from Carnegie Mellon University also conducted simulations that led them to conclude 
that while NEAD chains result in more transplants than DPDs, NEAD chain segments should be 
capped at 4 transplants (Dickerson et al. 2012). This constraint on chains has been adopted in the 
national UNOS pilot program.  

However, as of the time of writing this paper, the accumulated clinical success of  NEAD chains, 
including some very  long ones, has become  so apparent that early opponents (such as Johns 
Hopkins Hospital)  have now adopted them (Baltimore Sun, 2013 ) making exchanges based on 
non-simultaneous, potentially long chains a standard practice.  

 

The power of long chains. Mystery explained.  

We now explain what makes long chains based kidney exchanges so potent, how it came to be 
realized, and how this has changed the practice of kidney exchange. In our results section we will 
detail the resulting substantial increase in the number of transplants, including the number of 
transplants to the hardest-to-match patients. 

The key reason for why long chains actually increase the number of transplants is the high 
percentage of very highly sensitized patients in kidney exchange pools. Patient sensitivity is 
measured by the so-called Panel Reactive Antibody (PRA) which is the likelihood that the 
patient will be tissue type incompatible with a random donor. For example, if a patient has a 
PRA of 99%, then 99% of the blood-type compatible potential donors for that patient will not be 
tissue compatible. By simulating a pool using a statistical process based on empirical medical 
characteristics, less than 10% of the general population patients are expected to have expected to 
have at PRA level of at least 80. This is in fact the case in the general pool of ESRD patients. 
However, in general kidney exchange pools, and in particular in the APD pool, more than 40% 
of the patients have a PRA more of at least 80!  In addition, more than 65% of the APD patients 
with PRA level of 80-100 actually have PRA greater than 95. Figure 3 plots the percentage of 
patients registered to the APD pool with a PRA of at least 95 (in addition, the percentages of 
patients with PRA>95 newly registered to the pool in 2010, 2011 and 2012 were 33, 33 and 30).    
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Figure 3: Percentage of patients in the APD pool with given Panel Reactive Antibody (PRA). 

This means that the directed graph depicting the compatibilities between members of a kidney 
exchange pool is very sparse. There are several reasons why kidney exchange pools have such 
high PRAs – as contrasted to general patient population. As kidney exchange has grown, 
hospitals became strategic players. Hospitals (or directors of transplant centers) have bigger 
strategy sets than do individual surgeons or patients, since hospitals see multiple patient-donor 
pairs. Now that many major transplant centers have acquired experience with kidney exchange, 
hospitals often match their easy-to-match pairs internally (see Ashlagi et al. (2013)), and only 
refer their difficult-to-match pairs to the kidney exchange networks.  This causes kidney 
exchange pools to contain a very large percentage of highly sensitized patients. The second 
reason is that most highly sensitized patients and hard-to-match pairs naturally accumulate over 
time in the pool (up to a “steady-state”). Pools consisting of primarily highly sensitized patients 
coupled with the shortage of non-directed donors lead to the need for exchanges based on long 
chains, because the resulting compatibility graphs become sparse, and as a result exchanges 
based only on short cycles and short chains are substantially suboptimal. Mathematically, the 
benefit of long chains in such pools can be illustrated by some classical facts from the theory of 
random graphs. In the so-called sparse Erdos-Renyi random graphs, the number of short cycles 
involving highly sensitized patients is very small. At the same time there exists with significant 
probability a long chain covering a substantial number of nodes in the graph. Ashlagi et al. 
(2013) analyze a random graph with a mixture of dense (corresponding to low PRA patients) and 
sparse (high PRA patients) parts. We show that in such graphs allowing for long chains amounts 
to first order of magnitude increase in the number of patients participating in the exchanges. 

To illustrate further the typical properties of pools of patients encountered in practice, consider a 
snapshot of APD data depicted in Figure 4.   This figure describes the compatibility graph 
induced by the subset of patient-donor pairs such that all patients and all donors have blood type 
A. In particular, there are no blood-type incompatibilities among these pairs. At the moment 
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represented by this compatibility graph, there were 38 such pairs that have some compatibilities 
among themselves (there were also 18 such pairs that weren’t compatible with any other of these 
pairs), each represented by a node of the graph. An arrow points from one node to another if the 
kidney from the donor in the first pair is compatible with the patient in the second pair. 30 of the 
38 pairs contain patients with high PRAs and are depicted as white nodes. We see that these 
nodes have few incoming edges. The nodes containing the 8 low PRA patients have substantially 
more incoming edges, and are shaded in the figure. The dashed edges are parts of cycles. Note 
that there is no cycle that contains only high PRA patients, and only one cycle included one high 
PRA patient. 

 

 

Figure 4: A compatibility graph of patient-donor pairs each with blood type A, from APD data. Most patients are 
highly sensitized, and cannot participate in cyclic exchanges, but can be reached via chains. 

 

That is, because many patients are highly sensitized, they have few in-edges in the resulting 
compatibility graph, and are consequently included in very few short cycles. As mentioned 
above, Ashlagi et al. (2013b) have further explained analytically the importance of long chains. 

NEAD chains have become the regular practice at the APD, which now uses an optimization 
algorithm in which the length of chains is not constrained (more on this below).  This is now also 
the practice at the National Kidney Registry (NKR), the highest volume kidney exchange 
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program today.  Later in the paper we’ll show the impact outside the APD by reviewing data 
from the NKR, and from the pilot federal program, run by the United Network for Organ 
Sharing—UNOS. 

Benefits 

Results at the APD  

Before describing the impact, we discuss how the typical matching process works at the APD. 
There are currently more than 80 transplant centers registered with the APD.3 Every weekday 
after new incompatible pairs are entered into the APD pool or a potential match is abandoned 
(for example when a pair does not accept a match offer), the APD conducts a “match-run” to find 
a maximum weighted number of matches allowing both cyclic and long non-simultaneous chain 
exchanges. The solution is based on the virtual compatibilities between patients and donors in 
the pool using their medical information. The APD pool contains approximately 200 patient-
donor pairs at any given time. Finding a solution typically takes not more than 3 minutes (see 
Algorithms section for more details). The solution is determined according to virtual 
compatibilities using the medical information of patients and donors (actual blood tests should 
still be done before the transplant actually takes place). After an optimal solution is found by the 
software, crossmatch tests on the blood samples of the patients and donors are conducted in a 
central lab to detect whether each recipient in the solution is tissue type compatible with her 
intended donor. Then, the transplant center of each patient that is part of the solution is informed 
about their match (the details about their matched donor) in order to finally accept the donor. 
Centers/patients can refuse to accept offers. An exchange (chain or cycle) proceeds to the 
transplantation stage if no failure occurred during these stages. 

Very significant benefits accrue directly to the transplanted recipients, who are freed from being 
tied to dialysis for many hours each week, regain their health and ability to work, and have their 
lives extended. However, there are also savings to the medical system and to the third party 
payers. Most ESRD patients receive dialysis treatments, which costs Medicare $87,272 per year 
(USRDS, 2013), and costs private insurers much more. Transplanting a single kidney failure 
patient, at a cost of $32,922 (averaged over five years), rather than having them remain on 
dialysis, saves Medicare $271,750 over five years. Note the average survival on dialysis is about 
5 years. 

Since 2007 the APD has conducted over 220 transplants through kidney exchange and more than 
168 of these have been done through chains. So we can give some indication of the purely 
financial impact of these transplants. If each transplant saves $275,000 over five years, the 200+ 
transplants of the APD have produced savings in excess of  $46 Million dollars for the US 
healthcare system. In a more conservative analysis of the savings from a single living donor 
kidney transplant (which takes into account that transplant patients live longer than dialysis 
                                                           
3 Centers do not commit to enroll all their pairs or whether to accept matches. 
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patients and therefore incur medical costs over a longer period), Matas et al. estimated the 
savings at $94,579 (US dollars, 2002), and 3.5 quality-adjusted life years (QALYs) were gained. 
Adding the value of QALYs, a living unrelated donor transplant saved $269,319, assuming 
society values additional QALYs from transplantation at the rate paid per QALY while on 
dialysis. Using this analysis from 2004, 168+ living donor transplants has saved $16 Million and 
produced a value to society of $45Million. 

Wolfe (NEJM, 1999) did an analysis that showed that the average patient who received a 
deceased donor kidney transplant lived 10 years longer than had the patient stayed on dialysis. 
So these 168+ patients have received at least 1600 extra life years through APD transplants.  
Those are conservative numbers, since the average living donor kidney lasts twice as long as the 
average deceased donor kidney.  

Impact at the other transplant networks in US. 

Overall in the United States there have been over 2,600 paired donation kidney transplants 
performed since the year 2000 when the first two KPD transplants were performed at Rhode 
Island Hospital (more than 2250 of them have been done since 2008). Demonstrating the impact 
of NEAD chains, in 2006, when exchanges were all still constrained to be simultaneous, there 
were 74 paired donation kidney transplants performed in the US and 68 non-directed living 
kidney donations. In 2012, more than 200 of the 528 paired donation transplants performed in 
the US resulted from NEAD chains. 

According to UNOS, the number of transplants from kidney exchange in the US has reached 
2658 (we believe this number is a lower bound, as many centers conduct internal exchanges that 
may not be reported, and the 2013 numbers are still subject to change as centers are still 
reporting their 4th quarter numbers). The progress by year is given in table 1: 

 

Table 1: Transplants through kidney exchange since 2000. 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

2 4 6 19 34 27 74 111 228 281 430 446 528 506 

  

Two other important kidney exchange programs 

The National Kidney Registry (NKR) and the UNOS KPD pilot program are both running multi-
hospital exchange programs in the US. The NKR, a private organization, was founded around by 
Dr. Garet Hil in 2007 around the  idea of recruiting non-directed donors and running NEAD 
chains. It is currently the highest volume clearinghouse in the US and has facilitated more than 
900 transplants since it launched. The United Network for Organ Sharing (UNOS) is the federal 
contractor responsible for administering the waiting lists for deceased donor organs. (It therefore 
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has working relations with every U.S. transplant center, and is a natural candidate to organize a 
federally sponsored kidney exchange that would unite all American transplant centers.) It 
launched a pilot Kidney Paired Donation (KPD) program in October 2010 that has yet to become 
a major producer of kidney exchange transplants, but has been making recent progress since 
moving to allow chains. Through 2013 it conducted 79 transplants (52 of them in 2013). Since 
launching, more than 1600 pairs have enrolled in the NKR and more than 1000 pairs have 
enrolled in UNOS (the arrival rate was very low in the first years). The pools of both programs 
seem to have stabilized around 220-250 pairs (UNOS reached this level around the beginning of 
2013).4 

Chains play a significant role in both programs.  About 88% of the transplants facilitated by 
NKR have been achieved through chains (176 chains overall). More than 28% of the 
transplanted patients had PRA>80 and more than 15% had PRA>95 (in the past 2 years, this 
percentage increased to 20%).  As of this writing (1/30/14) NKR had conducted 179 chains that 
accomplished 823 transplants, and 44 cyclic exchanges that accomplished 103 transplants. More 
than a quarter of these transplants were accounted for by the 16 chains involving more than 10 or 
more transplants, while the 96 chains involving three or fewer transplants only accounted for 
about 10% of these transplants. That is the long chains are rare (fewer than 10% of the chains), 
but they account for a disproportionate share of the transplants. 

The lengths of all chains conducted by the NKR are given in Figure 4. Note the long tail: most 
chains are short, but the longest 3% of chains account for more than 10% of all transplants (and 
more than13% of all transplanted patients with PRA>= 97 have been transplanted through those 
chains. In addition, 73% of the transplanted patients with PRA>=97 transplanted through chains 
or cycles that have length at least 4, while only 67% of all transplanted patients have been 
transplanted through chains and cycles of length at least 4). 

Figure 4: The number of chains and their lengths achieved in the in NKR. 

The experience of the UNOS KPD pilot program is somewhat different. At first, UNOS searched 
only for 2-way exchanges, but in 2011 the UNOS algorithm was adapted to find chains 
unrestricted by length. Their very high failure rate after identifying matches (due to match offer 

                                                           
4 Ashlagi, Rees and Roth are presently advisors to UNOS and members of the UNOS KPD Workgroup. Ashlagi and 
Roth and Rees have all  advised NKR, and Ashlagi and Roth collaborated with NKR to develop and validate their 
current optimization algorithm (see NKR, 2014) 
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refusals and crossmatch failures) but prior to transplants led them to limit chain segments to 4 
since October 2012 (such chains are also often conducted non-simultaneously). About 15% of 
the transplants UNOS has facilitated have been achieved through 2-way cycles, 40% through 3-
way cycles and 45% through chains.  That is, even with the restriction on chain length, most 
UNOS transplants have come from chains and 3-way cycles. 

The UNOS Kidney exchange program and the NKR have different experiences that lead to 
slightly different policies, though in both programs NEAD chains are playing a major role in 
successful transplants. The National Kidney Registry is very successful in attracting non-directed 
donors. This success is largely due to providing incentives to transplant centers to share the non-
directed donors that approach them (guaranteeing them to end a chain with a patient within their 
center).  Not all chains need to be long when there are so many altruistic donors. Most of the 
chains  the very short chains conducted by NKR (ending with a patient on the waiting list) are 
done because they include  patient that  is very highly sensitized, or because the quality of the 
match is very high or because the non-directed donor is an AB donor, in which case is very 
unlikely to match an AB patient within a pair. 

The importance of matching the most highly sensitized patients through long chains cannot be 
overemphasized, since many of these patients have little or no prospect of receiving a deceased 
donor kidney. OPTN data for the whole United States shows that the median waiting time for 
patients with (peak) PRA >80 was 13.5 years for candidates listed in 1999-2000, and the median 
time for such patients who began waiting in 2003-04 cannot yet be computed because fewer than 
half of them have been transplanted. As we’ve seen, NEAD chains serve a disproportionate share 
of the most very highly sensitized patients, with PRA > 95. 

Finally, we note that the number of non-directed donors has significantly increased since the 
advent of NEAD chains—in part because of the added draw of being able to help more than one 
patient as a result of one’s altruism. 

Algorithms, optimization and implementation 

 

The APD (as well as other kidney exchange programs) organizes transplants by regularly 
searching the compatibility graph generated by the current pool of patients and donors for the 
maximum weighted number of transplants that can be achieved through cycles and chains. It is 
convenient to think of the pool as a compatibility network described by a directed graph 𝐺(𝑉,𝐸). 
In this graph each pair and each non-directed donor (NDD) is a node 𝑣 ∈ 𝑉. There is an edge 
between two nodes 𝑣1 and 𝑣2 if the donor of node 𝑣1 is compatible with the patient of node 𝑣2. 
Edges are associated with weights to capture some priority (importance, urgency) for conducting 
the corresponding matches.  
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The optimization problem considered prior to the introduction of non-simultaneous chains had 
the following form:5 

 

Maximize weighted number of matched pairs 

          s.t. each pair is matched at most once via a cycle or chain 

          cycle length  at most  3 

          chain length  at most  3 

 

Existing pools typically contain about 200 pairs and up to 10 NDDs, some of which are bridge 
donors and some are altruistic donors. A bridge donor is part of an incompatible pair who is 
waiting to continue an existing chain (and donate a kidney) after his intended recipient already 
received a kidney. An altruistic donor initiates a new chain. 

 

At first6, kidney exchange programs considered algorithms searched for an optimal solution 
allowing up to 3--way cycles and up to 3-way chains as described in the formulation above. The 
problem is solved using integer programming technique by introducing a decision variable for 
every cycle with length at most three and every chain with length at most three. This formulation 
works very well for the pools experienced in practice.  

 

Abraham et al. (2007) and earlier Michael Cheung and Michel Goemans (personal 
communication) have shown that solving the optimization problem above is an NP hard problem. 
In practice however computational issues haven’t been a serious issue when both chains and 
cycles are bounded by a short length. Abraham et al. (2007) developed an algorithm based on 
column generation to solve such problems for very large pools. Their algorithm was briefly used 
in the APD and an extended version of it is now also used by UNOS allowing finding chains 
with segments of length less than 4, now that UNOS policy has been changed to allow them.   

Allowing for longer chains (larger k) makes the formulation above hard  to solve not only 
theoretically, but also in practice, as the potential number chains grows very fast as the allowed 
chain length grows (in an historical  pool of 150 pairs, the number of chains of length 6 
beginning with an O donor may easily typically reaches  over 5 million).   
                                                           
5 The OSOTC program did not optimize. The APD used optimization and unrestricted length of chains and cycles 
from the outset. Now we restrict the length of cycles to 4, but still allow chains to be of unrestricted length. 
6 The OSOTC program, and the initial NEPKE program, allowed only 2-way exchanges and not chains. 
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We describe next two algorithms we developed in order to solve the optimization problem when 
long chains are permitted. These algorithms scale very well on the existing pools and find 
optimal solutions in a short time in all encountered instances.   

 

The Recursive algorithm 

In this algorithm we solve an optimization problem using constraint generation without assigning 
a variable for every chain, but instead introducing flow conservation constraints. In the graph 
𝐺(𝑉,𝐸) we use a binary decision variable 𝑦𝑒 that determines whether edge 𝑒 (from a donor to a 
compatible recipient) will be chosen or not. Let in(v) be the set of edges that point to node v and 
let  out(v) be the set of outgoing edges from node v. For each edge e, let 𝑤𝑒 be the weight 
associated with edge e. We further add an edge from every node corresponding to an 
incompatible pair to every node corresponding to NDD. This is done so that every chain 
originating from an NDD can be extended to a cycle beginning and ending with an NDD. Our 
algorithm then uses the following formulation:   

Recursive: Maximize  ∑𝑤𝑒𝑦𝑒 

 s.t.   ∑ 𝑦𝑒 ≤ ∑ 𝑦𝑒𝑒∈𝑖𝑛(𝑣)𝑒∈𝑜𝑢𝑡(𝑣)  

         ∑ 𝑦𝑒 ≤ 1𝑒∈𝑖𝑛(𝑣)       

𝑦𝑒 ∈ {0,1} 

This in fact an integer programming formulation which finds the largest disjoint cycle cover of a 
graph. As such this formulation ignores for now bounds on the length of the cycles and chains. 
Now in order to incorporate a bound on the length of the cycles (to be say at most 3) and at the 
same time allowing chains originating from NDD to be arbitrarily long, we run the algorithm 
recursively by eliminating long cycles one at a time. Specifically, our recursive algorithm works 
as follows: it first solves the formulation above. It then inspects the optimal solution. If the 
optimal solution outputs a cycle C of size more than 3 which does not include a NDD (and thus 
this is not a feasible cycle), we add a constraint to resolve the recursive formulation with an 
additional constraint that violates this cycle. This constraint has the following simple form:  

�𝑦𝑒 ≤ |𝐶| − 1,     
𝑒∈𝐶

 

where C is the identified cycle. The integer programming problem is then solved again with this 
additional constraint. The procedure is repeated until a solution is identified without cycles with 
length 4 or more.  This algorithm works well in many instances (see the next section), however 
for many other instances the running time became substantial (exceeding 20 minutes). In order to 
solve the remaining instances we proposed an alternative integer programming formulation 
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based on the Prize-Collecting Travelling Salesman Problem (PC-TSP). This formulation and the 
running times corresponding to both formulations are described below. 

The PC-TSP based algorithm  

Recall that in the Travelling Salesman Problem (TSP) one is given a graph and the goal is to find 
a route that visits each node exactly once at minimum cost. In the PC-TSP, the goal is to find a 
route in the directed graph that visits each node at most once while paying some penalty for each 
node that is not visited.  Qualitatively the PC-TSP is similar to the optimization problem we are 
facing, in that one wants to find long paths in a graph without the need to visit every node. Our 
solution is presented in the Appendix and is very similar to the solution to PC-TSP. As in the 
PC-TSP case, the formulation has an exponential number of constraints that have a “cut” 
interpretation. The solution relaxes those constraints but more aggressively attempts to find 
violating constraints, using a technique called “cutting planes” (see more details in the 
Appendix). 

Table 2 describes the running time of both algorithms on what we call ‘’difficult’’ instances, 
namely instances involving at least  500 constraints of type (*) in the recursive algorithm and 
analogue “cut” constraints in the PC-TSP algorithm. These instances were generated while 
running each algorithm on real data from the APD and NKR programs.   
 

Instance info Running time (secs) 
NDDs Pairs Edges Recursive PC-TSP 

3 202 4706 0.18 0.255 
10 156 1109 4.425 1.069 
6 263 8939 16.186 11.055 
5 284 10126 28.063 16.03 
6 324 13175 143.432  
6 328 13711 150.877 27.67 
6 312 13045 1200* 1200* 

 
10 152 1125 10.388 0.245 
3 269 2642 13.896 0.056 
10 257 2461 16.206 0.113 
7 255 2390 16.7 0.108 
6 215 6145 44.101 2.237 
10 255 2550 103.112 0.136 
1 310 4463 177.582 0.151 
11 257 2502 201.154 0.154 
6 261 8915 340.312 3.829 
10 256 2411 347.791 0.119 
6 330 13399 522.619 6.507 
10 256 2347 683.949 0.121 
7 291 3771 1200∗ 0.163 
8 275 3158 1200∗ 0.306 
4 289 3499 1200∗ 0.376 
3 199 2581 1200∗ 1.943 
7 198 4882 1200∗ 8.255 
2 389 8346 1200∗ 16.076 
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Table 2: Performance of the Recursive and PC-TSP algorithms for “difficult” real instances (instances that 
generated at least 500 violating constraints). Instances for which the optimal solution was not found within 20 
minutes are indicated by ‘*’. In instances above the midline, both algorithms have running time within the same 
order of magnitude, and for instances below the midline, the PC-TSP based algorithm was at least order of 
magnitude faster. 

Anderson, Ashlagi, Gamarnik and Roth (Anderson et al. 2014) have developed software based 
on running both of the algorithms above concurrently and outputting the optimal solution 
produced by whichever algorithm manages to find it. This software is currently being launched 
at APD. Other exchange programs presently use our software include the Northwestern Medical 
Center, the Methodist Hospital in San Antonio and the Georgetown Medical Center. This 
software is also used to suggest kidney exchanges from merging the NKR, APD and the San 
Antonio pools. This essentially means that this software identifies matches in the largest 
combined pool in the US -- more than 600 pairs. 

 

 

Conclusions 

Kidney exchange has become a standard part of transplantation in the United States, and the 
innovative ideas of many researchers and practitioners have played an important role in this 
success. One distinct innovation that has had a very profound effect in increasing the number of 
transplants has been the introduction by the APD of long non-simultaneous chains. After non-
simultaneous chains were introduced more than 75 percent of the more than 2600 transplants 
have been conducted through NEAD chains).The APD was the first to implement such chains, 
and the first to optimize matches that incorporated them, and the APD team has collaborated in 
assisting other centers and kidney exchange programs to adopt this methodology. Hence, over 
time other clearinghouses have adopted NEAD chains as well (notably, the NKR, which is 
presently the highest volume clearinghouse for kidney exchange, has facilitated more than 85% 
of its transplants through non-simultaneous chains). Early opponents of long non-simultaneous 
chains have adopted them, and there is no longer controversy about their effectiveness. 
Furthermore, early ethical concerns for choosing to give a non-directed donor’s kidney to 
someone other than the top patient on the deceased donor waiting list have since then been 
trumped by the profound increase in the number of transplants due to NEAD chains.  

It is perhaps the very highly sensitized patients who benefit the most from the use of long chains, 
because such chains are often the only way these patients can receive a transplant. But the nature 
of exchange is that it benefits all parties, and so the benefits flow not only to all participants in 
kidney exchange, but also to patients without a donor who are waiting for a deceased donor 
kidney. Some of those patients benefit directly when they receive the last donor kidney from a 
long chain. But even patients who will eventually receive a deceased donor kidney benefit from 
kidney exchange since every living donor transplant accomplished through kidney exchange 
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potentially relieves the recipient from having to wait (longer) for a deceased donor kidney, since 
it delivers living donor kidneys to patients who are on the waiting list for deceased donor 
kidneys, and so shortens the wait for those who have no other option.  

Non-simultaneous chains allow a patient to receive a kidney before waiting for her incompatible 
donor to find a match. While 2-way cycles may be simple to implement, they often will involve 
two relatively easy-to-match pairs, leaving less opportunity for the harder-to-match ones (since it 
is even harder to match ‘’hard to match’’ pairs to each other than it is to match them to ‘’easy to 
match’’ pairs). Studying how long chains should be implemented in practice will be even more 
important in the future as the kidney exchange market grows. Increases   in the number of NDDs 
as well the increases in the number of incompatible pairs will impact the algorithmic challenges 
of implementing long chains. All successful clearinghouses use optimization and the new 
algorithms help to find optimal solutions including chains efficiently.   

There remain important design issues that need to be understood and implemented in order for 
kidney exchange to continue to grow. One important issue is to provide more incentives for 
transplant centers to fully participate, i.e. to offer kidney exchange to their easy-to-match pairs as 
well as those that are difficult to match. Ashlagi and Roth (working paper) explore how 
“frequent flyer” programs could be developed to provide appropriate incentives for centers to 
enroll their easy-to-match pairs.  Such programs that incentivize centers to enter their NDDs are 
already taking place in the NKR and the APD (a chain terminates with a patient that is associated 
with a center that entered an NDD). Already today most chains end with patients on the waiting 
list for deceased donors. 

In closing, we would also like to note that when Operations Research began to emerge as a 
distinct discipline in the years following World War II, it was quite closely linked to Economics, 
but those links grew more tenuous over time. The development of kidney exchange and the field 
of market design more generally illustrates how close those links can still be. Market design 
draws on both optimization and game theory, to deal with both the operational aspects that 
constrain exchange and with the incentive constraints that may also have to be satisfied.  In the 
case of kidney exchange, the operational constraints involve assembling the resources to 
coordinate and conduct complicated surgical procedures across many hospitals. The incentive 
constraints involve assembling the medical information that is held by patients, surgeons, and 
hospitals by making it safe for them to reveal this information (such as the number and 
characteristics of their willing donors). They also involve the incentives facing hospitals when it 
comes to enrolling not only their hard to match patients and donors, but easy to match pairs as 
well.  Solving these problems is an evolving task that will need to continue to keep pace with 
evolving logistical capabilities and other concerns. But in the meantime, kidney exchange has 
made possible several thousand life-saving and life-enhancing surgeries, yielding millions of 
dollars in savings and many thousands of additional healthy years of life. 

 



21 
 

References 

 
NY times, 2012, http://www.Nytimes.Com/2012/02/19/health/lives-forever-linked-through-kidney-

transplant-chain-124.Html. 
 
Abdulkadiroğlu, Atila and Tayfun Sönmez, 1999, "House Allocation with Existing Tenants," Journal of 

Economic Theory, 88,2, 233-260 
Abraham, David J., Avrim Blum, and Tuomas Sandholm, 2007, Clearing algorithms for barter exchange 

markets: Enabling nationwide kidney exchanges. 
Anderson, R., I. Ashlagi, D. Gamarnik, and A. E. Roth, 2014, Using the traveling salesman problem to 

optimize kidney paired donation. 

Ashlagi, I., D. Gamarnik, M. A. Rees, and A. E. Roth, 2013, The need for (long) chains in kidney exchange. 
Ashlagi, I., D. S. Gilchrist, A. E. Roth, and M. A. Rees, 2011, Nead chains in transplantation, Am J 

Transplant 11, 2780-2781. 
Ashlagi, I., D. S. Gilchrist, A. E. Roth, and M. A. Rees, 2011, Nonsimultaneous chains and dominos in 

kidney- paired donation-revisited, Am J Transplant 11, 984-94. 
Ashlagi, I., P. Jaillet and V. Manshadi, 2013b, Kidney exchange in dynamic sparse heterogeneous pools. 
 
Ashlagi, I., and A. E.  Roth, 2013, Free riding and participation in large scale, multi-hospital kidney 

exchange, Theoretical Economics. 
Baltimore Sun, 2013 "At Hopkins, kidney transplants occur in chain reactions," Dec 31, 

http://www.baltimoresun.com/health/bs-hs-kidney-donations-20131230,0,4078214.story 

Dickerson, J.P., A.D. Procaccia, and T. Sandholm, 2012, Optimizing kidney exchange with transplant 
chains: Theory and reality, Proceedings of the 11th International Conference on Autonomous 
Agents and Multiagent Systems. 

Edmonds J., 1965, Paths, trees, and flowers, Canad. J. Math. 17, 449–467. 
Gallai T., 1964, Maximale Systeme unabhängiger kanten, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9  
401–413. 
Gentry, S. E., R. A. Montgomery, B. J. Swihart, and D. L. Segev, 2009, The roles of dominos and 

nonsimultaneous chains in kidney paired donation, Am J Transplant 9, 1330-6. 
Gentry, S. E., and D. L. Segev, 2011, The honeymoon phase and studies of nonsimultaneous chains in 

kidney-paired donation, Am J Transplant 11, 2778-9; author reply 2780-1. 
Goemans, Michel X. "Combining approximation algorithms for the prize-collecting TSP." arXiv preprint 

arXiv:0910.0553 (2009). 
Matas, A.J. and M. Schnitzler, 2003, Payment for Living Donor (Vendor) Kidneys: A Cost-Effectiveness 

Analysis, Am J Transplant; 4: 216–221  
NY Times, 2012, "60 Lives, 30 Kidneys, All Linked," February 18, 

http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-
chain-124.html?_r=2&hp=&pagewanted=all& 

http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.Html
http://www.nytimes.com/2012/02/19/health/lives-forever-linked-through-kidney-transplant-chain-124.Html
http://web.mit.edu/iashlagi/www/papers/KE-AJM.pdf
http://www.baltimoresun.com/health/bs-hs-kidney-donations-20131230,0,4078214.story


22 
 

Park, K., J. I. Moon, S. I. Kim, and Y. S. Kim, 1999, Exchange-donor program in kidney transplantation, 
Transplant Proc 31, 356-7. 

NKR (2014), "Future directions in kidney exchange," National Kidney Registry (announcement), 
http://www.kidneyregistry.org/pages/p284/2014_NKR_Symposium_Brochure.php  

Rapaport, F. T., 1986, The case for a living emotionally related international kidney donor exchange 
registry, Transplant Proc 18, 5-9. 

Rees, M. A., J. E. Kopke, R. P. Pelletier, D. L. Segev, M. E. Rutter, A. J. Fabrega, J. Rogers, O. G. Pankewycz, 
J. Hiller, A. E. Roth, T. Sandholm, M. U. Ünver, and R. A. Montgomery, 2009, A nonsimultaneous, 
extended, altruistic-donor chain, N Engl J Med 360, 1096-101. 

Roth, A.E. (1982), "Incentive compatibility in a market with indivisibilities," Economics Letters, 9, 127-
132 

Roth, A. E. , T. Sönmez, and U. M.  Ünver, 2004, Kidney exchange, Quarterly Journal of Economics 119, 
457-488. 

Roth, Alvin E., Tayfun Sönmez and M. Utku Ünver, 2005a, “Pairwise Kidney Exchange,” Journal of 
Economic Theory, 125, 2, December, 151-188 

Roth, Alvin E., Tayfun Sönmez, and M. Utku Ünver, 2005b, “A Kidney Exchange Clearinghouse in New 
England,” American Economic Review, Papers and Proceedings, 95,2, May, 376-380. 

Roth, A. E., T. Sönmez, and M. U. Ünver, 2007, Effcient kidney exchange: Coincidence of wants in 

markets with compatibility-based preferences, American Economic Review 97, 828--851. 
Roth, A. E., T. Sönmez, M. U. Ünver, F. L. Delmonico, and S. L. Saidman, 2006, Utilizing list exchange and 

nondirected donation through 'chain' paired kidney donations, Am J Transplant 6, 2694-705. 
Saidman, S. L., A. E. Roth, T. Sönmez, M. U. Ünver, and F. L. Delmonico, 2006, Increasing the opportunity 

of live kidney donation by matching for two- and three-way exchanges, Transplantation 81, 773-
82. 

USRDS. U.S. Renal Data Systems 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-
Stage Renal Disease in the United States.  (National Institutes of Health, National Institute of Diabetes 
and Digestive and Kidney Diseases, Bethesda, MD, 2013 
 
 

 

Appendix 

The PC-TSP based algorithm 

We first present the algorithm for unbounded chain length and then describe the modifications in 
order to solve for any bounded chain length. To write down the formulation we need some 
notations. For each cycle 𝐶 of length at most 𝑘, we introduce a variable 𝑧𝐶  that indicates if we 
are using the cycle 𝐶. We use flow variables 𝑦𝑒 for each edge 𝑒 as in the recursive algorithm to 
indicate if we use the edge 𝑒.  We define decision variables  𝑓𝑣𝑖 and 𝑓𝑣𝑜 to be the flow in and flow 
out of node v respectively.  𝑁 and 𝑃 are defined to be the  set of NDDs and pairs in the graph 
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respectively.  Define 𝐶𝑘(𝑣) to be all the cycles of length at most 𝑘 that include node 𝑣. We can 
now write the formulation: 

  

max�𝑤𝑒𝑦𝑒 + 𝑤𝐶𝑧𝐶
𝑒

 

𝑠. 𝑡.   ∑ 𝑦𝑒 = 𝑓𝑣𝑖𝑒∈𝑖𝑛(𝑣) ,    𝑣 ∈ 𝑉       (i) 

 ∑ 𝑦𝑒 = 𝑓𝑣𝑜 ,𝑒∈𝑜𝑢𝑡(𝑣)     𝑣 ∈ 𝑉             (ii) 

𝑓𝑣𝑜 +  ∑ 𝑧𝐶 ≤ 𝑓𝑣𝑖 + ∑ 𝑧𝐶 ≤ 1,   𝑣 ∈ 𝑃𝐶∈𝐶𝑘(𝑣)       𝐶∈𝐶_𝑘(𝑣) (iii) 

𝑓𝑣𝑜 ≤ 1,     𝑣 ∈ 𝑁             (iv) 

∑ 𝑦𝑒 ≥ 𝑓𝑣𝑖,𝑒∈𝑜𝑢𝑡(𝑆)     𝑆 ⊆  𝑃, 𝑣 ∈ 𝑆           (v) 
𝑦𝑒 ∈ {0,1}, 𝑒 ∈ 𝐸,   𝑧𝐶 ∈ {0,1},𝐶 ∈ 𝐶𝑘(𝑣)                

 

Constraints (iii) say two things: first that  the amount of flow out of pair 𝑣 is at most the amount 
of flow that goes into pair 𝑣, and second that the sum of the amount of flow that goes into pair 𝑣 
and  the number  of cycles that pair v is assigned to  at most 1. Constraints (iv) say that the 
amount of flow leaving every NDD is at most 1. 

Constraints (v) is very similar to the cutset inequalities for the TSP as adapted to the PC-TSP 
(see e.g. Goemans 2009). Essentially they work as follows. Suppose a chain is reaching some 
node 𝑣, and as a result 𝑓𝑣𝑖 equals 1. Now suppose that we “cut” the graph into two pieces such 
that the half containing v (which we denote as 𝑆) does not contain any of the NDD nodes from 
𝑁. Since every chain begins at some NDD (and thus not in 𝑆), in order for the chain to reach 
𝑣 ∈ 𝑆 , it must use an edge that begins not in 𝑆 and ends in 𝑆. Thus the constraint requires that 
whenever there is flow into 𝑣, for every way that v can be cut off from the NDDs, there is at least 
this much flow over the cut.   

 

As in the recursive algorithm, there are exponentially many constraints of type (v), and therefore 
we can use the same recursive heuristic as in the recursive algorithm. Instead, while we relax the 
constraints (v), we use the separation problem to identify violating constraints to add them 
sooner to the formulation. The separation problem for (v) can be solved by solving 𝑂(𝑃) 
network flow problems (Anderson et al. (2014)). 
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When chains are required to be bounded by length, we slightly modify the formulation as 
follows. For each non-directed donor n and each edge e we introduce auxiliary variables 𝑦𝑒𝑛  and 
𝑓𝑣
𝑖,𝑛,𝑓𝑣

𝑜,𝑛 indicating flow that must begin at node n. We then add a few categories of constraints.  
First, we enforce that for each edge 𝑒, the flow on 𝑦𝑒 must come from exactly one of the 𝑦𝑒𝑛.  
Second, we define the same relationship between 𝑓𝑣

𝑖,𝑛, 𝑓𝑣
𝑜,𝑛, and 𝑦𝑒𝑛 as in constraints (i) and (ii) 

from the PC-TSP formulation. Third, we require that for each NDD 𝑛 and each vertex 𝑣, we 
have 𝑓𝑣

𝑜,𝑛 ≤ 𝑓𝑣
𝑖,𝑛 ≤ 1.  Finally, we add the maximum chain length constraint, saying that for each 

NDD 𝑛, we use a total number of edges 𝑦𝑒𝑛 that is at most the maximum chain length. 

 

  


