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ABSTRACT

One method of spinning polymers or inorganic materials into
fibers is based upon formation of the material into a viscous
liquid jet. In many instances, a vertical jet is produced by
forcing the molten material through a small nozzle. The jet is
simultaneously cooled by convection and radiation and the jet
radius is attenuated under mechanical tension.

The present study has been limited to the axi-symmetric
flow of a hot jet of Newtonian fluid, the viscosity of the fluid
changing rapidly with changes in temperature.

A one-dimensional analysis has-been developed which pre-
dicts the shape, temperature distribution and tension in the jet
as a function of fluid and environmental properties, flow rate,
initial jet temperature, initial jet radius, initial jet slope,
and final jet radius. Experimental verification of the shape and
tension predictions has been made; temperature measurements have
not been made because the size of the jets is extremely small.

The one-dimensional analysis has been found to be invalid
within three to four nozzle diameters of the nozzle exit; below
this point the theory and experimental results has been found
to be in agreement. The radius predicted for any given position
along the jet agrees with the measured radius within 15 per cent
for cases where the initial jet radius has been attenuated by a
factor of 100. The tension in the jet, measured where the jet
has solidified agrees with the predicted tension within 20 per
cent.
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.

The theory predicts the limiting conditions under which a jet
may be formed and indicates that laminar forced convection heat
transfer occurring in the region where the jet is being attenuated
and turbulent shear stress occurring below this region have a
dominating influence on the jet.

Thesis Supervisor: Kenneth R. Wadleigh

Title: Professor of Mechanical Engineering
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CHAPTER I

INTRODUCTION

One method of spinning polymers or inorganic materials into
fibers is based upon formation of the material into a viscous liquid
jet. In many instances, a vertical jet is produced by forcing the
mol~en material through a small nozzle. The jet is simultaneously
cooied and the radius is attenuated under mechanical tension. The
solidified jet is wound on & rotating pulling wheel, which main-
tains the tension in the fiber.

The object of this investigation is to develop an analysis,
verified by experiments, which will predict the stead& state shape,
temperature distribution, axial tension in the jet and the stability
of jet as a function of the fluid properties and the process
variables, e.g., the pulling speed and the ambient conditions.

‘The present investigation is limited to the study of a single
material, glass, which was processed under the following conditions
for this research program: the glass was kept in an electrically
heated reservoir at a temperature of 2200°F or above; it was forced
through a single nozzle at the bottom of the reservoir by the
application of a very low positive pressure on the reservoir, the

pressure at the nozzle entrance being at most thirty inches of
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water above atmospheric pressure; the ;ozzle was cylindrical in shape
with a constant inner diameter of 0.067 inches; the diameter Reynolds
number based upon conditions at the nozzle exit was less than one.

The hot fluid leaving the nozzle formed an axi-symmetric jet
which was attenuated while simultaneously being cooled by radiation
and forced convection. The jet was attenuated to radii as small as
2.5 x 10-4 inches with a final velocity as high as 170 ft/second.

The viscosity of the attenuating jet was a strong function of

the fluid temperature, e.g., when the temperature dropped from

2400°F to 2300°F, the viscosity doubled.
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CHAPTER 2

BACKGROUND

2.1 General

Although voluminous works appear on the subject of jets flowing
at high Reynolds numbers and on the subject of submerged jets, see
for example referenc~s (1) and (2 )1, the author was unable to find
any published works dealing with the flow of a low Reynolds number
free Newtonian jet of variable viscosity. Studies of a related
subject, the spinning of polymers, which have appeared in textile
journals (3), (4), are not applicable to the case at hand because
polymers are not Newtonian fluids and the solutions pfesented in
the literature are based upon unrealistic assumptions, e.g.,
assuming the viscosity is constant.

In the present work, the simplified case of a fluid jet with
a constant viscosity was studied both experimentally and analytically
as a first step to the solution of the actual case. Obviously, for
the real case where the jet is cooled and attenuated, the assumption

of & constant viscosity is far from correct. However, it was felt

Numbers in parentheses refer to References given on page 121.
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that the techniques developed to solv; the constant viscosity case
might be extended to the variable viscosity case. Attention was
focused on obtaining the solution for the velocity distribution and
shape of the constant viscosity jet immediately below the nozzle
exit, referred to in Fig. 2.1 as the uppér jet region. After writ-
ing the governing equation of motion for the upper jet with its
associated boundary conditions, an unsuccessful attempt was made to
solve the equations both in closed form and by approximate tech-
niques.

Concurrently, constant viscosity jets were studied experi-
mentally. The results only lead to an approximate empirical method
for representing the shape of the upper jet.

Because of the difficulties in obtaining a solution for the
upper jet region, it was later decided to ignore that region and
to focus attention on a solution applicable to the region below
the ﬁpper jet--the central jet region, where the governing
equations can be simplified. Although the study of the constant
viscosity upper jet did not bear fruitful results, a detailed dis-
cussion of the early work will demonstrate why the simpler
solution for the central jet does not rigorously apply to the upper
jet and why it was necessary to revert back to the simplified

equations.
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2.2 The Constant Viscosity Tw Two-Dimenslonal Jet Region

In the upper jet region, consideration will be limited to cases
where the Reynolds number is less than one. Therefore, in the gov-
erning dynamical equations, the Navier-Stokes equations, the in-
ertial terms can be neglected in favor of the viscous terms.
Cenerally, this condition can be described as creeping flow.

Assuming steady, axi-symmetric flow the equations can be

written in cylindrical co-ordinates in terms of the stream function

as:

E2(E20) = 0" (2.1)
where ) )

Ez-.:.?-%-:—+:—? (2.2)

The associated boundary conditions for the free surface are non-
linear and complex. In contrast to the simple no-slip conditions
at a solid wall, the free surface boundary conditions must be

written in terms of the forces acting on the boundary. At the

For a complete list of symbols, please refer to page iv.
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boundary between the fluid and its environment, the normal and shear
forces in both mediums must be equal. The free surface boundary
conditions, written in terms of the velocity components, are in the

normal direction

dro 2 av_ dro avr v, bvz dro 2
P 1+(:i;_) +2“'a'r + dz (az + )= Az (dz ) (2.4)

ar

dr 2| |
- __ 0O cos® 1
E+(dz ) ]I?ATM-'- Yop( r_ Rl)_J

In the tangential direction

aVr avz d::o 2 dro avr avz
Mlsz Yo |IP @D [FPra Gt (2.5)

dr 2 Y
- |:1 +(dTo) :IIE“- SZ_T' cose:l

where dr /dz = v /v .
o r z

For the cases to be studied, the contact angle between the liquid
and the outside surface of the nozzle is small; thus, the initial
slope of the jet boundary is large, i.e., the order of magnitude
of droldz at the nozzle exit is one. Therefore, in the upper jet
the radial component of the jet velocity near the jet surface is
of the same order of magnitude as the axial component of the jet
velocity. In addition, since the velocity on the surface of the

free jet is not constrained to be zero, there is insufficient in-
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formation to permit an estimation of the order of magnitude of the
viscous terms in either the boundary conditions or the Navier-
Stokes equations to be made. Consequently, for the upper jet, no
simplifying assumptions to the creeping flow equations can be made,
rather the equations must be solved in their general form.

The solution of the problem must also specify the location of
the toundaries. All of the proposed methods of solution envision-
ed numerical techniques involving very lengthy digital computer
solutions (see Appendix C ).

For the actual case of a variable viscosity fluid additional
complications arise because the Navier-Stokes equations are non-
linear. In addition, the fluid dynamic and heat tranéfer
equations must be solved simultaneously since the viscosity is a
stcong function of the fluid temperature, and the heat transfer
from the jet depends upon the shape of the jet. In view of these
compiications, the attempt to find the exact solution for the
upper jet was abandoned. Instead, an attempt was made to find
an approximate technique which would qualitatively predict the
upper jet shape and temperature distribution.

In conjunction with the search for an analytical solution for
the constant viscosity upper jet region, a limited number of con-

stant viscosity jet experiments were conducted (see Appendix D
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for a complete description of the exper iments) . The exper iments
qualitatively indicated that once a steady axi-symmetric jet was
established, the shape was smooth, i.e., the radius approached an
axi-symmetric value without any discontinuities in the rate of
change of the jet slope. Therefore, it was assumed that the shape
of tue upper jet could be approximated by a series of the form

C C C
- 1 —3
%o Co + (z+z°) + _(;:Eg)-z-'- (z+z°)3 (2.6)

where the constants are determined by the initial radius and slope
and the radius and slope at the end of the upper jet region. The
use of such a technique ignores the equations of motion of the
fluid. It will be shown later that a simpler and physically more
plausible approach gives results for the upper jet region which
are as good as the curve fitting technique.

In the region below the upper jet where the slope of the jet
bouhdary {s less than minus one-tenth, simplifying ore-dimensional
assumptions can be made which allow a solution to be obtained for
the variable viscosity case.

The succeeding chapters will describe the one-dimensional
solution. An overall analysis of the upper jet from the nozzle
exit to the beginning of the one-dimensional solution will be
used to obtain the initial conditions for the one-dimensional

solution.
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CHAPTER 3

DERIVATION OF THE GOVERNING EQUATION OF THE
JET_IN THE ONE-DIMENSIONAL REGION

3.1 General Considerations

In the preceding chapter, it was pointed out that an analytical
solution of the two-dimensional variable viscosity case would be
very lengthy and complex. Referring to Fig. 2.1, in the region de-
fined as the upper jet reéion, extending a length equal to three or
four initial jet radii from the nozzle exit, simplifications of the
governing two-dimensional dynamical relations can not be justified.
Below the upper jet where the slope of the jet boundary is small,
defined as the central jet region in Fig. 2.1, the governing
relations for the case of the variable viscosity jet can be sim-
plified by assuming the velocity, pressure and temperature are
uniform over any cross section, i.e., the distribution of velocity,
pressure and temperature is one-dimensional. The one-dimensional
equations will be solved to yield the jet shape, the velocity,
temperature and tension distribution in the jet.

In the present chapter, the one-dimensional equations for the
variable viscosity jet will be derived. In the next chapter a

solution of the one-dimensional equations will be given when it is
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further assumed that the environmental'boundary layer on the jet sur-
face is laminar.

In Chapter 5 it will be proved that when the slope of the jet
boundary is less than or equal to one-tenth, the radial gradient of
velocity is negligible compared to the akial velocity gradient and
the calculated axial temperature gradient is in error by not more
than 10 per cent when the temperature gradient in the radial
direction is assumed to be zero.

Before the one-dimensional equations are presented, the
assumptions used in writing the equations will be listed and an
estimation of the variaticn of the tension in the upper jet will
be made. |

The tension is defined as the net normal force 6n a given
cross section of the jet which tends to resist attenuation of the
jet. The tension is composed of -surface tension forces and viscous
forces. Obviously, if a jet exists in an enviromment at a con-
stant pressure, the level of the environmental pressure can not

directly affect the attenuation process.

3.2 The Assumptions Used in the One-Dimensional Equations
" As mentioned previously, the assumption that the fluid velocity

and temperature are one dimensional will be shown in Chapter 5 to be
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valid for the ceuntral jet region. It also will be assumed that the
pressure distribution is one dimensional.

The analysis will be restricted to the axi-symmetric steady flow
of a Newtonian fluid which has a constant specific heat, density,
sﬁrface tension, and absorption coefficient versus wavelength. The
viscosity is not constant, rather it will be shown that the
variation of viscosity with temperature has an important influence
on the jet flow.

In estimating the tension distribution in the upper jet, it is
necessary to ~alculate the tension in the jet at its initial point,
at the nozzle exit. A rigorous calculation of the tension in the
upper jet depends upon a knowledge of the twn-dimensional velocity
and viscosity distributions at the nozzle exit. 1In order to find
the two-dimensional distributions, the equation of motion and the
e€aergy equation must be solved for the region encompassing the
nozzie exit and the upper jet. Since the two-dimensional solution
is not available, the tension will be calculated in the upper jet
assuming the velocity and viscosity distribution are one-dimensional.

The one-dimensional equations will be developed so that the
jet shape, the velocity and temperature distribution and the tension

in the jet can be found if the following quantities are specified:
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(a) The physical properties of tﬁe fluid, e.g., the
density, surface tension, and the viscosity
versus temperature

(b) The physical properties of the environment, e.g.,
the density and the thermal conductivity,

(c) The flow rate

(d) The final jet radius

(e) The conditions at the nozzle exit:

| the temperature

the initial jet radius
the initial slope of the jet surface

(f) The characteristics of the boundary layer which
forms on the jet surface (given in Chapter 4).

The conditions at the nozzle exit, which are needed to cal-
culate the tension can not be predicted at present for a given
nozzie geometry, flow rate and reservoir temperature. The initial
jet radius and the initial slope are dependent upon the contact
angle phenomena between the fluid and the nozzle. In many cases,
the fluid wets the nozzle and spreads out along the outside surface
of the nozzle. Therefore, the contact angle and initial jet radius
can only be found experimentally. To predict the initial jet tem-

perature, a heat transfer analysis of the nozzle and the upper jet
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is necessary. At present, it will be assumed that the initial fluid
temperature equals the temperature of the outside nozzle surface,
which can be measured. In cases where the initial conditions have
not been measured, values measured in previous experiments performed

at similar conditions will be used.

3.3 A General Outline of the Analysis Used for the One-Dimensional

Region

In order to obtain a solution of the governing equations for the
region where the one-dimensional assumptions apply, a consideration
of many diverse topics must be made. As an aid to the reader, an
outline of the analysis will be given below. The assumptions
necessary for each step in the analysis will be included in the out-
line. Quantities will be classified as known if they are included
in the list given on page 13 or if they can be obtained from the
results of a previous step. All other quantities wili be classified
as unknown.

The equations of momentum and energy are written in differential
form in Section 3.4 for the case of axi-symmetric, steady flow. It
is assumed that the velocity, temperature and pressure are constant
for any cross section. All fluid properties except the viscosity

are assumed to be constant. In Chapter 5, the assumptions of one-
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dimensional and temperature distribution will be proved to be valid
when the slope of the jet surface is less than one tenth. The upper
boundary of the one-dimensional region will be defined as the point
where the slope is minus one-tenth, defined as position 'E'. The
position where the jet radius becomes constant, defined as the
final radius, will be taken as the lower boundary of the one-dimen-
sional region. The one-dimensional equai ions and their associated
boundary conditions are written in terms of the flow rate and fluid
properties, known quantities, and in terms of the film coefficient
of heat transfer and the shear stress at the jet surface, and the
value of the jet radius and the temperature at position 'E', the
latter four quantities are unknown.

In order to find one expression relating the unknown values
of rp and TE to known quantities, a relationship between the
tension at the nozzle exit and the tension at position E is found
in Section 3.5. It is assumed that the initial tension can be
calculated from the expressions derived when the velocity and
temperaﬁure are one-dimensional. To calculate the iritial tension,
the flow rate, the initial jet radius, slope and temperature, all
known quantities, are used. The results of the upper jet
analysis show that the tension is a constant in the upper jet.

Therefore, the initial tension can be set equal to the tension
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at the end of the upper jet, point E; the tension at point E written
in terms of rp and uE.

In Chapter 4, the surface shear stress and film heat transfer
coefficient are predicted based upon the assumptions that the en-
virommental boundary layer on the jet surface is laminar and is
analogous to the boundary layer on a solid right circular cylinder
moving in the axial direction. A detailed discussion of the laminar
boundary layer solution will be presented in Chapter 6. In
succeeding sections of Chapter 4, two solutions for the one-dimen-
sional equations will be presented, the general solution for the

complete, non-linear equations and the closed form solution of the

simplified, linear equations.

3.4 The Central Jet Region

In the present section, the momentum and energy equations for
the jet will be derived for the case where the velocity, tem-
perature and pressure are assumed to be constant across any given
cross saction. It will be shown in Chapter 5 that the one-dimen-
sional assumption for velocity and témperature are valid when the
slope of the jet is less than minus one-tenth. Therefore, the
reglion of the jet where the one-dimensional equations will be
applied, called the central jet region, will be defined to extend

from the point where the slope is minus one-tenth down to the point
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where the radius becomes constant. The solution of the equs
indicates that the final radius is approached asymptoticallj
therefore, the end of the central jet region will be altern:
defined for numerical solutions as the point at which the je¢

radius is within one half of one per cent of the final fiber:

radius and the slope of the jet surface is less than 10'4.

Turning to the momentum equation first, assuming all £
properties except the viscosity are constant, the momentum

equation in differential form is, referring to Fig. 3.1

%;(W‘vz)dz = %;((F) - Jpda)dz + pgn rozdz

viscous

d
+ dz(2nr°YTcose)dz - T, 2nr _cosé

+ Paty ano sine dz

Considering the term in (3.1) containing the viscous normal

and the fluid pressure,

2
prr

- I pdA = (F)viscous- o

(F)

viscous

For cylindrical co-ordinates,

2 av

(F) - prr T= (2 7;"- - p)mro2

viscous
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(F) J pda

viszous

4

— Y 2n —— ¥ I
T2 rocose T2 ro

dz
1,2ﬂr6 \ l ﬂgﬂrzdz
z o L

- Y Y _2Mr. cos®
T o

d
—((Y M
+ i ( T2 r COSO)dZ

F - I pdA

viscous

d "
+ dz(Fviscous- J pdA)dz

AN ELEMENT OF DIFFERENTIAL LENGTH
IN THE CENTRAL JET REGION

Fig. 3.1
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The continuity equation for steady one-dimensional flow is

w
v, > (3.4)
pT L
o
a_v..z--. zw dro--i‘:gfi (35)
32 p"ro3 dz r, dz

The pressure can be found from the boundary condition in the normal
direction, Eq. (2.4), simplified for the case of small (drO/dz)

ov

- _r cosé
p=2u dr + pATM + IYT r, (3.6)

and from the continuity equation in differential form, at the jet

boundary
(:Z:, - - 3:! - XE.- +.EZE(E£2)- Zé.gfg - ZE.E:Q (3.7
r ‘'r oz r, T, r, dz” r_ dz r, dz
using
AN (3.8)
v, T, dz

Substituting Eq. (3.8) into the equation for the pressure 3.6,

- —2 _O cosé
P r, dz Pyt YVp r, (3.9)
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Equation (3.3) can now be written as "

2 Ok vz dr cos©
Foiscous” P50 = ~ r, dz  PamM T( r, ) (3.10)
The momentum equation can now be written as

2 dr
d ,pQ,._d _54 o 2
dz( 2) dz( r dz Yfﬂrocose)+ pgﬂro

nr o
(3.11)
d
+ 3 (ZﬂIOYTCOSQ) - T, 2ﬂrocose

Combining the term containing the surface tension,

dr
__92. / 6“’Q (o) 2
dz nr )= dz r, dz + nrOYTcose)+ pgﬂro

(3.12)

- T 2nr cosé
o o

The term (-6uQ/ro droldz + nroYTcose) is the net force acting
normal to.the cross section and is therefore the expression for
the tension when the velocity is assumed to be oqe-dimensional.
The boundary conditions for Eq. (3.12) are,
at z=o0 defined as the point where

dr/dz = - 1/10



¥o 7 TrInaL

E E
ed unknowns along with the shear stress on the jet surface, 7.
-1

At the present stage of the analysis r_ and y_, must be consider-

Since Idroldz| £10 " or ©<6° for the central jet, small angle

approximations will be used

2
dr
-299__ o du )
dz r = dz T —E% (dz ) - r 2 (3.13)
nro o dz
2 dr:o dr d2r
+ ogﬂr + YTncose = YT o dz ( 2 )

- T 2nr
L] o]

The equations will now be written in non-dimensional form using

the definitions

r=r/r (r = 1 when dro/dz = - 1/10) (3.14)

E
z = z/r:E

o= u/uE
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The momentum equation becomes:

2 4 3
2—- — pgTr —3 nr
dr[1+('1' E)r dr],( E _ __E

2
T

tllﬂ

6u_Q T dz 6u BuEQ

2 (3.15)
L4 |ldr Yg" E pQ d In
Hog g s o) = - o
dz r dz E r u dz
The boundary conditions associated with Eq. (3.15} are:
at z = o (3.16)
=1
r=1

dr/dz = - 1/10

at z» >

~reraL - frovar/TE

The last term in Eq. (3.15) contains the rate of change of the
viscosity of the fluid. Since the viscosity is related to the tem-
perature for the fluid under consideration, by an expression of the

form, (Fig. 3.2)
In u = a, - a, T (3.17)

the last term serves to couple the equation of motion to the tem-
perature distribution in the jet. To find the temperature, the

energy equation must be solved.
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u =Viscosity (Poise)

| | | |
L 0%
_
103
=
= T = Temperature (°F)
18i)0 1900 20?0 21(I)0 22(1)0
|

2300

2

1n ® = 28.7415 - 0.9827x10 “ T

2400

R

1

VISCOSITY VS. TEMPERATURE FOR GLASS

Fig. 3.2

-




The Energy Equation

Assuming a steady flow, the energy equation in the central

jet region can be written for an element of differential length as

2 dr

d d
dz(w cp'r) dz = k i (ﬂro dz) dz - h 2nrdz (T-TATM) (3.18)

= (DpaprarroN
The radiation heat transfer is composed of both surface radiation
and radiation from the fluid volume to the environment. For wave-

lengths where the fluid is opaque, surface radiation occurs. A

body is opaque when the absorption coefficient times the distance

it must travel,in this case the jet radius,” is much larger than

one:
when Yxro>> 1 (3.19)
» = XopaquE
(D opaque” 27092 {=x €1 ¥er M oPaQuE
| OPAQUE

For wavelengths where the absorption coefficient-radius product is

small, volume radiation occurs

vxro<< 1 3 X ™ Mg ANSPARENT - (3.20)

dx

’ 2 Y
= 1T 4
q ro dz 'r XWBX T

Ap
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When the product of absorption coefficient and radius is of the order
of ocne, volume radiation still occurs but expression (3.20) cannot be
used. All of the radiation emitted in the volume is not transmitted
to the outside of the jet, some of it is absorbed in other parts of
the jet before it reaches the boundary. Fortunately, from published
absorption coefficient data on the material in question, glass,
references (5) and (6 ) indicate that a very small percentage of
the total radiant energy falls within this case. Therefore, it will
be assumed that all of the radiant energy transmitted to the
surrounding area from the jet can be deécribed by either equation
(3.19) or (3.20), and the absorption coefficient versus wavelength

will be assumed to vary as shown in Fig. 3.3.

The energy equation (3.18), can now be written as

2
dT _ dr 4T 2 dT
w cp dz 21""ok dz dz + "ro k dzi

- h 2mr (T-Tym) = 2TE, '»rexwmd*opAQUE (3.21)

2
- 4n r d)
bnr © dz [ v, wp, 9A,
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2
107 | | T l
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. Coefficient
- (e h)
10 |L_ —
L= ]
-
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10'1 | | ] |
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Absorption Coefficient
Versus
Wavelength
Distribution Assumed For Glass

Fig. 3.3
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For the central jet region, the second derivative of temperature is
negligible in the energy equation. Rearranging Eq. (3.21) and non-

dimensionalizing the equation using the same definitions used in the

energy equation plus

T = 'r/'rE | (3.22)

The energy equation becomes :

2
e 2rkr - 2rr
Sf-5e o)
z P z P

rep (3.23)

vhere P, is the percentage of the total radiant energy in the wave-
lengths where the material is opaque, ¢ is the average surface
emissivity over the opaque wavelengths. Py is the percentage of
radiant energy over the wavelengths where Y x r, is much less than

one.

The initial condition associated with (3.23) is:

at z = o

_ (3.24)
T=1
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The energy equation as formulated contains the assumption
that the specific heat and the thermal conductivity of the fluid
are constants. Assuming the fluid properties including
absorption coefficient versus wavelength are known, the energy
equation contains three unknowns, the radius at the beginning of
the central jet region, rE, the temperature at the same point, TE’

and ar expression for the forced convection film coefficient of.

heat transfer, h.

3.5 The Upper Jet
By considering the order of magnitude of the forces in the

upper jet, one relation between the unknown values at position 'E'
and the known values at the nozzle exit can be found.

The details of the two-dimensional velocity and temperature
distribution in the upper jet are unknown because the governing
equations have not been solved for this region. It has been
assumed that the temperature, radius and slope at the nozzle exit,
designated state O in ¥ig. 2.1, are known. The lower end of the
upper jet region designated state E, is defined as the point at
which the slope of the jet boundary equals minus one-tenth, the
point where the one-dimensional approximations are valid. The
length, L. from state O to state E is unknown although an esti-

mate of its magnitude will be made from physical observations.
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Assuning the jet is axi-symmetrie and steady, one can write
the momentum equation in the axial -lirection for a control volume
enclosing the entire upper jet, from state O to state E, Fig. 3.4.
The pressure of the environment, agssumed constant, will not
appear in the momentum equation.

The momentum equation in the axial direction'for the upper
jet is

(Tensiono (Tension) + pg(Volume)- [ To cos® dA (3.25)
surface area

- J‘AE v, dw - j‘Ao v, dw

The order of magnitude of the gravity force, the shear force
on the jet surface and the inertial force will be compared to the
order of magnitude of the initial tension. As pointed out pre-
viously, the exact expression for the initial tension can only be
found by a solution of the general two-dimensional equations for
the nozzle and the upper jet. Since this has yet to be done, it
will bé assumed that the initial tension can be calculated by the
one-dimensional expression developed in the last section,

- GuOQ dr

(
Ro dz

o
)d+ mR Y cose° (3.26)

(Tension)o - o' T
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Fig. 3.4
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.
The slope of the jet surface is always negative so that the two terms

comprising the tension will always be additive. To simplify the order
of magnitude considerations which follow, only the term containing the
surface tension in (3.26) will be used to estimate the order of mag-
nitude of the tension, this simplificafion will not affect the con-
clusions.

The ratio of the forces on the upper jet to the initial tension

are:
R 2 R L
Gravity Force _ pg(Volume) PEMR, L _ PER, (3.27)
(Tension) ¥ nR cose ”’Y nR.cose ¥,_cosé )
o T T o
2 2 '
Inertia Force _ o Q - n Q (3.28)
(Tension) 2 2 2 v ‘
o an yTwR cose m rE Ro Tcos 90

Using those approximate values which make the ratios as large as

possible for the fluid used in the experiment (glass):

Y., = 320 dynes/cm
w = 1/60 gm/sec
p = 2.5 gm/cm3

(RO)MAX= 0.10 cm

(R )MINF .05 cm
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rE)MIN = 0.02 cm .

L=2R

(

(coseo)MIN 0.8

one finds:

Gravity

<
(Surface Tension)MAx

0.2

(3.29)
-2

( Momentum Flux

P
Surface Tension)MAx = 10

In some cases, the viscous normal force is larger than the surface
tension force making the ratios even smaller. To estimate the
shear force on the jet surface a solution of the environmental
boundary layer on the jet surface is necessary. The boundary
layer solution given in Chapters 6 and 7 for laminar and turbulent
boundary layers respectively indicates that, at most, the ratio of
the shear force to the initial tension is 0.05. Therefore, for
the upper jet the influence of gravity, shear stress and momentum
change is small and the tension at the start of the central jet
region equals the tension at the nozzle exit.

6u Q dr
Ro (dz

(Tension)o- ﬂRoY coseo-

0\8

T Yo (Tensi.on)E (3.30)
6u1_Q

= nr_Y, cos® -—E-(-g-’:-

)
ET E 71 dz'E
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With this additional information, they central jet region can now be
solved without a detailed solution of the upper jet region if the

shear stress and film heat transfer coefficient can be predicted.
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\J

CHAPTER 4

THE SOLUTION OF THE ONE-DIMENSIONAL EQUATIONS

In order to solve the one-dimensional equations derived in the
last chapter, a prediction of the film heat transfer coefficient and
the shear stress on the jet surface is necessary. In the present
chapter, the film coefficient and the shear stress is predicted us-
ing the assumptions that the boundary layer on the jet surface is
analogous to that on a solid right circular cylinder and the
boundary layer is laminar.

Two cases will be presented: first, the general non-linear
one-dimensional equations with a laminar boundary iayer requiring
a numerical solution for each specific set of conditions; second,

a simplification of the general equations yielding a closed form
solution for the jet shape and the temperature distribution.
The general non-linear equations contain the assumptions made in

Sections 3.4 and 3.5.

4.1 The Laminar Boundary Layer
The results of this study show that the shear stress and the

£ilm heat transfer coefficient, especially the latter, are the

controlling parameters of the central jet. Because of their
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importance, a separate chapter is entirely devoted to a discussion of
the prediction of the air drag and film coefficient.

Anticipating the results of the following chapters, for a
laminar boundary layer on a cylinder moving in the axial direction,
the relationship between the non-dimensionalized air drag on the
cylinder and the Reynolds number and length to radius ratio can be

predicted.

The local air drag is non-dimensionalized as 'ernro/uATMUm

which will be defined as CL (no relationship to the lift coefficient)

and it is a function of VATMZ/U'“ro2 the length Reynolds number

divided by the radius Reynolds number squared, also equal to z/ro
divided by the radius Reynolds number. Further, for the central

jet region, CL is a very weak function cf z/ro /(Re)r , in fact,
o

CL is approximately a constant. The air drag may be written as

U u C

o Qu
r = 2 ATM . _ AR 'L .13

o erro L O 2ro3

(Assuming a one-dimensional jet velocity)

C,=F ERe)z/(Re)rg] = F [(z/r)(l/(Re)ro)]
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lying Reynolds Analogy for laminar ‘flow one finds for the local

(4.2)

(4.3)

Substituting relations (4.1) and (4.3) into the momentum and

dz

1 L
- ( ) —=
6mug” T

2 =+ (

+ -
r dz

dz

itial conditions

at z = 0
r=1

dr/dz = - 1/10

dr [1 &, T E

Elinl

a% T E2 T dr 3
=2 [”'( 6uQ)— "—']’("éﬁ"q_)f‘

brgy equation, one finds for the momentum equation

(4.4)

p Q 1

+ (

o’

_dilny
3ﬂrEuE ;2; dz

ac z-»

oL/ "

TFINAL
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and for the energy equation

rkr - k '
dr 4., —E ar | (-%I—MEE—L)(T Tymd (4.5)
dz P dz P
3 2 '
T."2 nr_ o© 4
- 4 - 4| -
- (—E—;—CL) [(T'i' 59) - TATM]r € P,
3 5 E
T “nr_"40 - 4 ,
- (-E__E___ 459, _ = 4
ra—— [(T+ TE) TATM]I ¥y 9Py
Initial conditions
at z = 0
T=1

A:ute - 1s known from the estimation of the order of magnitude of the

forces acting on the upper jet, Section 3.5,

6uEQ dr
1 = = Y -
(Tens:.on)o (Tensi.on)E mro TcoseE T, (dz E (4.6)
and from the properties of the fluid
In y = a; - a, T L 4.7)

Since Eés. (4.4) and (4.5) are non-linear, the equations can be
written as difference equations which can be solved numerically.

The unknowns in the above equations are Ty and Mg since TE can

be found from - using Eq. (4.7). The initial tension is cal-

culated using the one-dimensional relationship, Eq. (3.26).
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The solution of the equations refjuires an iterative process
once the flow rate, fluid properties, environmental properties,

R, (drO/dz)o, To and ronaL 2T known.

1. A value of ro is chosen.

2. Mg is calculated from Eq.: (4.6).

3. The momentum and energy equations are
solved simultaneously.

4, The predicted radius approaches an
asymptotic value with increasing z,
if the asymptotic value is within
0.5% of ;fINAL’ the solution is com-
pleted, if it is not, a new value of '
ro is chosen and the analysis is re-
peated starting at Step 2.

Since Eqs. (4.4) and (4.5)-are non-linear, the equations
were written as difference equations and solved numerically on
a digital computer. The details of the computer program are
given in Appendix F.

In order to gain a better insight into the effect a
specific variable such as the specific heat of the fluid has

on the solution, the governing equations will be simplified

allowing a solution to be obtained in closed form.
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Aside from the assumptions used In deriving the general one-
dimensional equation, it will be further assumed that: (i) the
tension is a constant, in the one-dimensional region, (ii) the
surface tension is negligible compared to the viscous normal force,
(iii) heat transfer by radiation and conduction is negligible com-
pared to heat transfer by convection, and (iv) the temperature of
the enviromment at which the film coefficient, h, is evaluated at

is a constant.

4.3 The Solution of the Simplified Equations

Considering the energy equation first, in all of the cases
studied conduction heat transfer is negligible compared to
forced convection in the central jet region. If one further
assumes that radiation heat transfer is negligible, an
assumption which is borne out by the results in the central jet

region, the energy equation (4.5) becomes

i--fgi‘%_TM[-T--; ] (4.8)
-~ wece ATM
dz P

or
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Fortuitously, the simplified energy equation is independent of
the momentum equation since neither T nor its derivatives appear in

Eq. (4.8). If one assumes CL does not vary with z, a valid

assumption for the central jet region and that KATM is a constant,
a questionable assumption since KATM actually varies with the jet

temperature, Eq. (4.8) can be solved yielding:

-Bz

e

= <+ -
T T (TE TATM

ATM
(4.9)

B = kATM CL/W cp

which satisfies the inition condition

at z =20

T = TE

The jet temperature's asymptotic approach toward the ambient air
temperature as predicted by (4.9), seems correct by intuition.

The viscosity temperature relation for the fluid can be

represented by

Inpy = a; - a, T (4.10)

which combined with (4.9) yields

d lnu _ _ dT -Bz

dz - a2 dz )e

ATM (4.11)

= azB(TE- T
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Defining a new constant

A=a, (T, = T,n) (4.12)

Equation (4.11) becomes

-Bz '
d In i _
P ABe (4.13)
integrating
- Bz - Bz
-(he ) p - (e )
L= c e = pEe e (4.14)

which satisfies the condition

at z =0

M =
“E

If one assumes that the tension is constant in the central jet
region and that the viscous normal force is the dominant tension

term the momentum equation simply states that the viscous normal

force must not change with distance:

‘g; (- 6 11 Q

dz r, dz

9 =0 (4.15)

This is most easily seen by referring to Eq. (3.12).
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—

Integrating Eq. (4.15) once,

iimead,

_64vQ dro

r dz
o

- (Tension)E = constant (4.16)

Since the upper jet analysis has indicated that the tension is con-

stant in the upper jet, (4.16) can be written as,

dr r
6 -6 d1l ; \
. iog -2 - M Q __32;4,21 = (Tension)_ (4.17)
(Tension)
. 1n (ro) = - ) = &-dz (4.18)

The last equation shows the importance of the viscosity gradient
on the resultant jet shape. The viscosity can be found from
Eq. (4.14) yielding,

(Tension)o (Ae )
— [ e dz (4.19)
6 uEQ e

ln(ro) = =

In order to integrate the right hand side of Eq. (4.19), the
following definition will be introduced

-Bz
y=Ae (4.20)

-Bz
‘. dy =-ABe (4.21)

%1 = - B dz (4.22)
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and

y -
E—;“l - -pet® B2 q (4.23)

Therefore, integrating from z = 0 to any other value of z, (4.19)

can be written as

r (Tension) y
In(=>) =+ 2 v = g (4.24)
r A
E 6BH_Q e () :
E z=0

Using the exponential integral (see references (7) and (8))

defined as
x eu
% = —
E *(x) ” = du (4.25)

Equation (4.24) can be written as

(Tension) [ ( _Bz ( ] "
= + E,*(A e )-E,*(8) .26)
ro rE e 6BuEQ eA i i _

rE can be found from the relation

6 “Eg dro
(Tension)E = = T (dz )E = (Tension)o (4.27)
dro
where (a;— g™ 1/10
0.6 uEQ

E - (Tension)o (4.28)
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Therefore, .
0.6 “EQ s (Tensi.on)o
e 6B|.1E Q e’

r

-Bz
Eif(A e )-Ei*(A)] (4.29)

o (Tension)o

AT™M

B = kATM CL/w cp

A= aZ(TE - T, ..)

To find the unknown value of Mp in Eq. (4.29) the condition at the

end of the central jet region is used

at Zz2 oo

T ==Tprar (4.30)

0.6 uEQ

[(Tension)
TFINAL Q(Tension)o e

o)
5B & Ei*(A)]

For large values of A, the usual case for the present conditions

E *(A) et/ (4.31)
and replacing A and B by their.definitions
Tension)
0.6 1 Q -1° Sp ( o
E [ - (4.32)
TrraL™ (Tensiom | © 6 ay(Tp-Tymy M gamvCL

Raising the value of TE’ lowering Hp causes the final jet
radius to decrease for the same value of the flow rate, initial

tension, etc. The éffect of changing the fluid properties can
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also be easily seen. The results of the approximate solution will
be discussed in greater detail in Chapter 10.

It must be kept in mind that some of the simplifying assumptions
are not strictly correct. The thermal conductivity of air is not a
constant as assumed, it decreases with decreased jet temperature.
Also, near the beginning of the central jet the yiscous normal force
is not a constant and for some cases radiation may not be negligible.
However, it is the assumption of a constant air conductivity, used
in the calculation of the film coefficient of heat transfer which
introduces the largest error in the solution.

A more accurate solution may be obtained by subdividing the
central jet region into zones of arbitrary length Or zones which
cover a given temperature change. The temperature distribution
and shape of each zone are solved for separately. The solutions
are linked by equating the temperature, radius and slope at the
divisions between zones. For each zone the value of air con-
ductivity for that zone's particular temperature range is used.

It is obvious that as the :number of zones increases, both the
accuracy and the time for a given solution increase.

Rather than following the above mentioned approach, the

detailed numerical solution of the general equations was made.
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CHAPTER 5

THE TEMPERATURE AND VELOCITY GRADIENTS IN THE JET
WHEN THE SLOPE OF THE BOUNDARY IS SMALL

It will be demonstrated that when the slope of the jet boundary
is small, the radial gradients of velocity and temperature may be

neglected in favor of the axial gradients.

5.1 The Velocity Distribution

The velocity distribution will be considered first. A com-
parison of the radial gradient of the axial velocity, sz/>r , to

the axial gradient, avz/az , will be made.

When the dro/dz is less than minus one-tenth,'the free surface
boundary condition in the tangential direction, given in Appendix B
assuming a constant surface tension, is

AV v

wGo + =% =1, (5.1)

From symmetry, the radial velocity and avz/ar are zero at the
center line. Assuming that the velocity distributions do not
have any discontinuities, v, and avz/Br should have their maximum

values at the jet boundary. At the boundary,

vr/vz = dro/dz (5.2)



dv Ay dr dr « AV dr \V/
r _ z

. ( z
Y Az dz

o Oy ~ _Z (O, _Z
U, R G R (5.3)

From the laminar boundary layer theory, evaluating C. for the upper

I

jet ,
U u C M U
«"ATM'L _ ATM =
[o] T | (5.4)

T =
o 2nr
o

where the symbol [0] means ''the order of magnitude of'".

Combining (5.3) and (5.4) with Eq. (5.1) and solving for avz/ﬁr ,

—Z = 2 (O 24 [o] Qlﬁﬂi—ﬁh (5.5)
o

Using the continuity equation the average axial velocity is

- _ 2 '
v, Q/.r0 (5.6)
AV dr 2v dr
z__. 2Q _o___z_ o
Az 3 dz r (dz (5.7
LN

o)
—Z o . _Z (. 9._ . 2 ATM _Q
dr Az (dz ) R + [O] [ o 10 r 3 } (5.8)

o
Assuming that the order of magnitude of the gradient of the
average axial velocity and the local axial velocity at any point is

the same, Eq. (5.8) can be divided by aCZ/az to yield
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av_/Ar h
2 ATM
YL o] & [OJ[ ] - o] [——-—-dr 5.9
/
Bv ',ﬁz ( ¥ -—--.9
z ldz " dz

At the highest jet temperatures, about 2400°F or 1200°F film tem-
perature, where the air viscosity is a maximum and the jet vis-

cosity is a minimum, the ratio of the environmental viscosity to
the jet fluid viscosity is 10-6. From experimental results it is
found that the ratio of the jet radiusuaRlis always at least one

order of magnitude smaller than dro/dz.

i’.?_/_i_ - [0][ J [o][ J +[o] [dr(l)oc;z J (5.10)

\v /[2z

Proceeding down the jet, the rdtic of air to the fluid viscosity
decreases rapidly due to the drop in the temperature of the jet.
Therefore, in the region of interest, since avz/ar is negligible

compared to a?z/az

v, RV, = F(2) . (5.11)

5.2 The Temperature Distribution

In the region where the volume radiation from the jet to the
exterior can be neglected, the boundary conditions at the jet

surface 1is
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AT _ .

k a0 (4/8) (5.12)
and

AT _ AT dr | T dz

an Ar dn + Az dq (5.13)
When dro/dz 1s less than '--10-1

‘ AT AT '

Q/.'a = k ;-l:l. = k-a"; (5.14)

For most of the jet length the principle form of heat transfer is

due to laminar forced convection

) k __C .
q/a = |0 [h(T- T )] =10 [ATML _
[ ] ATM [ ] e, (T TATM)J (5.15)
' 1] k
q/a =0 ATM o
[ ] [(—F;;)(T lATM)] (5.16)

Combining (5.14) and (5.16)

k
AT _ _ATM -
k or nr (T TATM

) (5.17)

The temperature difference from the jet centerline to outside sur-

face can be estimated as

' K
T,- T, = AT = [0] [(ro :-}J- [o] [(——{‘-{-—Tﬂ) (T- TATM)] (5.18)

O
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Using the maximum value of the air thermal conductivity

-,f:é—"f——= [o] [Eﬁ—m} [o] [10'1] (5.19)

ATM

Equation (5.19) states, at worst, the Yalue of T~TATM used for con-
vection heat transfer is in error by 10 per cent. At 2000°F the
value of 'I‘4 used in the radiation calculation haé a maximum error
of 36 per cent. When radiative heat transfer exceeds forced con-
vection heat transfer, Eq. (5.16) must be modified to include the
addition é/A causing an even larger difference between the center
line temperature and the surface temperature. Fortunately,
numerical calculations show that forced convection is the dominant
form of heat transfer in the cent;al jet region. The results also
indicate the error in using the one dimensional temperature profile
in the upper jet where radiation is large.

It has not been proved that in the central jet region the
radial temperature gradient is negligible compared to the axial
gradient; rather it has been shown that the assumption of a
constant temperature at any cross-section causes, at most, a 10
per cent error in the calculated heat transfer from the jet to the

environment. Since in the simplified case the axial gradient of

the temperature is related to the heat transfer by
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AT _
Wl 3y (q/a) 2nr0 (5.20)

A 10 per cent error in the heat transfer caused by neglecting the
radial gradient of the temperature produces a 10 per cent error in

the calculated axial temperature gradient.
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CHAPTER 6

THE SHEAR STRESS AND FILM COEFFICIENT OF HEAT TRANSFER
FOR A LAMINAR BOUNDARY LAYER

As shown in the solution for the gne-dimensional equations, a
prediccion of the forced convection heat transfer is of principle
importance. When the radius has reached a final value which remains

constant down to the pulling wheel, the momentum equation becomes

d(Tension) _
iz T 2Trro (6.1)

Obviously, a theory which correctly predicts the air drag is
necessary to determine the tension increase in the éonstant radius
region. This chapter will cover the prediction of the laminar
boundary layer and the next chapter will cover the turbulent
boundary layer. All of the results will be for the case of a
solid right-circular cylinder moving at constant speed in the
axial direction only. For the laminar boundary layer, the
results for the shear stress will be converted to film coefficient
results using Reynolds analogy.

In the solutions thatt follow, the properties of the air will
be evaluated at the film temperature, the average of the jet

and the ambient temperature.
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Seban and Bond (9 ) and Kelly (10) analytically studied the
case of a laminar boundary layer on an unheated cylinder of finite
length aligned parallel to the direction of the flow. A solution
for a non-dir-ensionalized shear stress, displacement thickness,

etc., were found as universal functions of v‘TMz/U'wro2 , equal to

A

(Re)z/(Re)r 2 or (z/r)/(Re)r . The shear stress is non-dimenalized
o o
ATM equal to the drag coefficient x (Re)r X 2m. The
o
solution, a series type, is only valid for relatively small values

2
of vATMz/Umr0 .

Glauert and Lighthill (11) later used the Pohlhausen method

as T 2rr /U u
o O

to expand the solution to large values of VATMZ/U?ro' They showed
that their solution agreed with Seban and Bond's for low values of

\)ATMZ/Umro2 , in the limit it approaches Blasius flat plate
solution as vATMz/U'wro2 approaches zero, i.e., when the boundary

layer thickness is very small compared to the cylinder radius.

For large values of v Z/Umr: Glauert and Lighthill show that the

ATM
Pohhausen solution approaches a more exact asymmptotic series

solution they have derived.

The velocity distribution used with the Pohlhausen solution

is
Ucn
u=— In (1 + y/ro) y

IN

(6.2)
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u=1U y > 6 (6.3)
where

z/U_r 2)
o

no= o (

VATM
It is interesting to note that the shear stress at any location
along the wire falls off as the reciprocal of the distance from
., %

the axis.

No experimental measurement of the drag of a cylinder in
axial flow in the laminar region could be found. Measurements
of the film coefficient of heat transfer were found in works by

Jakob (12) and NACA (13). Using Reynolds analogy for laminar

flow where the Prandtl Number is approximately one,’

A = - oT. = -

/A = kATM (By y=0 - h(TW TATM) (6.4)

h o= - kA'I'M (BT/By)O (6.5)
T =T )
w ATM

D= 24

qco “ATM (”y)y=0 (6.6)

T =-T

2L - . w___ATM

GPo = ™ S (6.7)

3..1;1. = Ua’ 6 8

% This shear stress behavior is the assumption used by Sparrow

et al. (14) in analyzing the turbulent boundary layer on a cylinder
and certainly seems correct at least for the ''laminar sublayer' in
view of Glauert and Lighthill's results.



-55-

Schlicting (15) states that in the cases of gases with a Prandtl

number unity 6T and 6 as well as Co and C, are nearly equal

1
ot . Yw T Tam 2 (6.9)
Ay ~ Ucn ay’ o : ‘
k k T
b= G T Tt | (610
- Y = HATM
defining
T 21'1'1?0 [
C, = ———==TF |(Re) /(Re) 2
L Um”ATM Z r0
Then
k C :
- _atm L
h g e (6.11)

The converted heat transfer data are shown on Fig. 6.1 compared to
Glauert and Lighthill's theory and the agreement is remarkably
good.

Since Glauert and Lighthill's theory closely agrees with the
experimental film coefficient data converted to shear stress using
Reynolds analogy, the reverse procedure, using the shear stress
theory and Reynolds analogy to predict film coefficients, should

also yield valid results.
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The case under study, a continudus cylinder without a definite
"leading edge' moving through still air is not exactly analogous to
the case Glauert and Lighthill have studied.

Referring to Fig. 6.2, situation b would be the direct analogy
to Glauert and Lighthill's situation. For the case of an infinite
wire drawn from a nozzle or hole in a wall, situation c is the only

steady state possibility. The boundary layer has zero thickness dt

the hole since the condition along the surrounding wall requires
the velocity to be zero (ro slip). The boundary layer must grow in
the z direction since a stationary control volume drawn around the
cylinder experiences a shear force from the cylinder in the
positive z direction causing an acceleration of the fluid flowing
through the control volume. Notice, for this case the fluid
entering the control volume from above contributes no net momentum
flux in the z direction.

Sakiadis (16) has studied the laminar boundary layer
illustrated by Fig. 6.2C. - He used an approach identical to
Glauert and Lighthill only changing the assumed velocity profile
to meet the new boundary conditions. The velocity profile

gakiadis used for the Pohlhausen technique was:
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THE STEADY STATE BOUNDARY LAYER ON A CYLINDER

A and B: Cylinders With Definite Leading Edges
C: A Continuous Cylinder (Steady State Condition)



within 5 per cent in the range of v
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u=u, [1 - 1/a In (1 + y/ro)] . | y=< 6 (6.12)
u=0 y > 8 (6.13)

jaxiadis's results agreed with Glauert and Lighthill's results
A'I‘Mz/ Umrj congidered.

In the case presently studied, the jet ir not cylindrical
rather the jet radius decreases with increasing akial digtance.
instead of solving this more complicated boundary layer problem,
it i3 assumed that at any axial position the shear strass is
ejual to the shear stress on a right circular cylinder with a

radius equal to the local jet radius under consideration and

length equal to the distance to the nozzle exit.
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CHAPTER 7

THE PREDICTION OF THE DRAG ON THE JET
DUE TO A TURBULENT BOUNDARY LAYER

In the preceding chapter, a theory for the laminar boundary
layer was presented. In this chapter, the turbulent boundary layer
will be studied. The results of this study will prove very im-
portant in the discussion of the experimentally measured tensicn in
the jet.

Several authors have attempted to theoretically predict the
skin friction on a cylinder subject to a turbulent boundary layer
flow in the axial direction (17), (18), (19). The most recent
and the most accurate is the work of Sparrow, Eckert and
Minowycz (14). The other propeosed theories when applied to the
case at hand, predict turbulent friction factors which are less
than the predicted laminar friction facters.

Sparrow, et al., made use of the expressions for eddy
diffusivity for momentum derived by Deissler. The expressions
were derived for the turbulent boundary layer on a flat plate,
but Sparrow assumes that they may be used for the turbulent
boundary layer on a cylinder. Using the definitions:

. 1/2
u = u/(r_/0) (7.1)
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1/2

y = y(r./p) : (7.2)

y is the radial distance from the cylinder wall. The expressions

for the eddy diffusiv’ty and shear stress are near the wall

em/V = (.109)% u'yT (7.3)
T=(u+o em) du/dy ' (7.4)

and away from the wall, defined by the conditicn u + = 12.9

2 + +. 3
_(0.36)° (du /dy) -
e /v = (7.5)
m (d2u+/dy+2\2
r = p € du/dy , (7.6)

The latter expressions originated from Von Karman's similarity
hypothesis.

For the flat plate, Deissler'assumed that the shear stress
was a constant, for the cylinder Sparrow assumes the shear stress

is inversely proportional to the distance from the cylinder

r (7.7)

Expression (7.5) agrees with Glauert and Lighthill's results
for the variation of the laminar shear stress near the cylinder and
when the cylinder radius is very large, Eq. (7.7) reduces to the

case of the flat plate.
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Expressions (7.4) and (7.6) were then integrated to yield the
radial velocity distribution and the wall shear stress. Sparrow
presents the results for the friction factors for the values of

6

radius Reynolds numbers from 103 to 10° and length Reynolds numbers

from 5 x 104 to 5 x 108.

For the present case, the radius Reynclds numbers are of the
order of one to ten. Therefore, the author used Sparrow's thecry
to predict friction factors for the lower values of radius
Reynolds numbers.

As the radius Reynolds number decreases, the ratio of the
boundary layer thickness to the cylinder radius increases and
the boundary layer tends to deviate further from the flat plate
boundary layer. The validity of Sparrow's theory becomes
questionable as the case under consideration deviates further
from the case of the flat plate.

Data taken by Selwood (20) who measured the drag on a
continuous nylon filament drawn -through air was found. The data
presented in dimensional form, was non-dimensionalized by the
author assuming the experiments were run at standard conditions
(60°F and 14.7 psia). The-extended theory of Sparrow and the
experimental data are shown on Fig. 7.1. The agreement is very

good even though the theory is for a cylinder of finite 1ength,
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with a definite leading edge, and the data is for the case of a cen-

tinuous filament, the filament being unwound from one wheel and

wound on another.
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CHAPTER 8

A DESCRIPTION OF THE EXPERIMENTAL EQUIPMENT USED
FOR THE VARIABLE VISCOSITY EXPERIMENTS

In order to check the results of the analysis, experiments were
conducted using glass as the variable viscosity medium. The shape
and tension distribution of the jet were measured for given values

of the flow rate, the reservoir temperature, and the final fiber
radius.

A description of the experimental equipment, test procedures,
and data reduction procedure is presented below. A discussion of
why measurements could not be made of such quantities as the
velocity and temperature distributions will alse bé included.

Figure 8.1 shows a schematic of the test setup used for the casc
of the variable viscosity fluid, glass. The molten glass flowed frcm
a resistance heated platinum reservoir through an axisymmetric
nozzle. The cold, solidified jet was wound on a rotating steel
drum. The drum and driving motor were mounted on a sliding base
so that the jet could be wound at different positions on the drum.
The reservoir was pressurized with air, the air pressure measured
by a water manometer. The temperature of the reservoir was held
constant using a Foxboro controller reading a platinum-platinum-

rhodium thermocouple imbedded in the wall of the reservoir.
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The temperature was checked with an didentical thermocouple which was
recorded using a Leeds and Northrup millivolt potentiometer. A
Latronics Coloratio two color pyrometer was used to find the tem-
perature of the nozzle tip. The speed of the steel drum was measured
by both a strobatac and a mechanical tachometer.

The jet was photographed through a Gaertner tele-microscope
which had a working distance, the distance from the front lens to
the object viewed, of 5 inches of more. Magnifications used in the
tests ranged from 5.4X to 33X. The large working distance was needed
to keep the microscope sufficiently far away from the hot platinum so
that the microscope would not overheat. As additional protection
from unheating, a flat vycore window was mounted in front of the
microscope and the microscope was surrounded by a water cooling
coil. The tele-microscope was placed on a vertical traversing stand,
the distance traversed was measured by a dial indicator. On the
opposite side of the jet a strobotac was positioned without its
reflector, to give approximately a point source of light. The
strobotac was electrically connected to the camera so that de-
pressing the shutter release also activated the strobotac light.
The strobotac light was necessary since vibrations of the pulling
wheel were transmitted to the fiber causing the jet to oscillate.

The oscillations were very noticeable in the region where the jet
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had reached its final radius. The amplitude of the motion would often
be an order of magnitude larger than the local jet radius, the fre-
quency varied with changes in the pulling wheel speed.

The tension was measured using a ''tensometer', (see Fig. 8.3)
developed by Ownes-Corning Fiberglas, which could be traversed to
known vertical positions. The solidified jet was threaded on a
graphite pin mounted on the end of a pivot arm. The torque on the
pivot arm was transmitted to a hair spring mounted on the same shaft
as the arm. The pointer, on an independent axis, was connected to
the other end of the hair spring. When the pointer was rotated, the
hair spring was extended until the pivot arm returned to its original
position. The amount the pointer must be rotated in order to bring
the pivot arm to its null:position is therefore proportional to the
torque or force on the pivot arm. The other two pins guide the
solidified jet so that it leaves the tensometer radially from the
pivot point causing no additional moments on the pivot arm.

If one draws a control volume about the tensometer, it may be
seen that the force measured is the jet tension less the momentum

flux of the jet and the air drag on the first pin.

8.1 Experimental Procedure

For each experiment, the flow rate, reservoir temperature,

and winding speed were measured. Photographs were taken of the
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jet starting at the nozzle exit and twaversing thea cam>ra down to the
region where the jet radius became coustant. Because the jet vibrat-
ed it was difficult to keep the jet in focus at the high magnification
used for the small radli. At least three photegraphs were taken at
each camera position. For each magnification a photograph was taken
of a stage micrometer (ruled to 0.0l mm) to serve as a reference. The
tension was measured at seven or more different pcsitions.

The flow rate was found by weighing the amount of fluid which
had flowed during a given time interval. Since the fluid supply
could not be continually replenished during a test, the flow rate
was measured period. ally during an experiment to be sure it did not
vary more than 3 per cent.

The depth of fluid in the reservoir could not be measured while
running the experiment; therefore, the total amount of glass which
had been drawn was weighed and an equal amount of glass was put into
the reservoir.

The final jet radius was calculated from the continuity
relation, knowing the flow rate, drawing speed and the density of
the fluid. The calculated radius agreed with the radius measured
from the photographs within 5.2 per cent for all test runs except

one, where the error was 9.6 per cent.
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8.2 Quantities Which Could Not Be Measured

As previously mentioned, the temperature of the nozzle tip was
measured using a two color pyrometer. This tip teniperature was
assumed to be approximately the same as the temperature of the fluid
leaving the nozzle. The temperature of the fluid could not be
measured with the pyrometer since the radiation from the fluid was
partially volume radiation and partially surface radiation and the
percentage of the surface radiation to the total radiation energy
varied with varying temperature. Because of the small dimensions
of the jet and the existence of volume radiation, it was felt that
a thermocouple suspended in the flow would materially alter the
temperature distribution in the fluid. The thermocéuple would not
measure the local fluid temperature due to the radiant exchange
between the thermocouple and the long range surroundings.

No technique could be devised to measure the velocity dis-
tribution of the fluid either in the nozzle or in the jet. Again,
this is due to the very small diameter of the jet (the nozzle I.D.
for this test was .067"). Any velocity measuring device inserted
in the flow would be of sufficient size to alter the flow pattern
by obstructing the flow and also altering the temp:rature dis-
tribution as described above. Since the dynamical equations are

linked to the temperature distribution by the strong viscosity-
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temper ature dependence, any change in the temperature distribution
would cause a change in the velocity distribution.

The velocity distribution might be found by optically follow-
ing the path of air bubbles or impurities in the flow. However,
the image distortion at the fluid-air interfgce would extremely

complicate this technique.

8.3 Properties of the Fluid

Very few properties of the jet fluid, glass, have been accurately
measured at high temperatures. The specific heat and thermal con-
ductivity are among the properties poorly known at high temperatures.
No adequate technique has been developed to measure absorption
coefficients at high wavelengths especially at high temperatures.

At high wavelengths, the absorption coefficient is high, causing
"normal sized'" glass samples to appear opaque at.these wavelengths,
e.g., since the intensity of transmitted radiation decays as

e VX a 1/8 inch thick sample would appear opaque to radiation if
Y were 102 (cm-l) or 105 (cm-l).

Figure 3.3 shows the absorption coefficient versus wavelength
distribution assumed for the glass. This was found from

references on plate glass which probably has different optical

properties than the glass used in the present experiments.
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The viscosity is known and the viscosity-temperature relationship
is shown on Fig. 8.4. There is a large change of viscosity with vary-
ing temperatures.

Since the accurate measurement of any of the above-mentioned
properties would constitute a major effort in itself, no attempt was
made by the author. Whenever a property value w¢ needed in the
calculations, the best value which could be found in the literature
or by private communication was used. However, the reader should

bear in mind that the accuracy of such values is questionable.

6.4 Data Reduction

The shape of the jet was found by mounting the negatives on
glass slides and projecting the slides on an optical comparator.
Examples of the pictures are shown on Figs. 8.5 and 8.6. The
measurement was made by traversing a micrometer slide which held
the negative. Positive prints and enlargements of the negative
were not used in the measurement for fear of distorting the images
when enlarged or printed.-

The photographs of the stage micrometer scale were measured
to determine the exact magnification factor used.

Three or four measurements of the diameter were made for each
picture at a given axial position. For the smaller jet radii, two

different pictures taken at the same camera location were measured.
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By calibrating the tensometer beforehand, the values read from
the tensometer could be converted into units of force. The cali-
bration did not change throughout the experiment. The resulting
values were added to the momentum flux of the fiber. No accurate
way to determine the air drag on the tensometer pin could be found.
By using the boundary layer solutions to estimate the thickness of
the boundary layer, a very crude approximation of the air drag was
found. It was found that the magnitude of the air drag was, at
most, equal to the momentum flux. This work was not pursued
further, because one is principally concerned in using the slope
of the tension versus distance curve to predict the drag
coefficient. Assuming that the boundary layer doeslnot change
appreciably in the region of interest, the shear stress will be
the same for all vertical positions. Therefore, the slope of the
tension versus distance curve will not be effected if the
correction for drag is not included.

The assumption that the shear stress does not vary with
axial distance is a good one since the boundary layer theory
applicable to this region is almost independent of the distance
Reynolds number. The solution only depends upon the radius
Reynolds number and in the region where the tension was mesured,

the fiber radius is a constant.
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The slope and position of the straight line to represent the
tension data was calculated by the principle of least squares.
Assuming that the ''true'' tension versus distance function is a
straight line, the error in the calculated slope was estimated.

Appendix A presents all of the experimental data for glass

in tabular form.
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CHAPTER 9

A COMPARISON OF THE EXPERIMENTAL AND
THE THEORETICAL RESULTS

The experimentally measured tension in the jet and the measured
jet shape will be presented below. The data will be compared with
the results of the theoretical analysis described in Chapters 3 and

4.

9.1 The Jet Shape

Figures 9.1, 9.2 and 9.3 show the measured jet shape along with
the corresponding theoretical curves for three different. test con-
ditions. The theoretical curves are taken from the results of the
numerical solutions of the complete one-dimensional equations, Egs.
(4.31) and (4.33). Since the specific heat is not accurately known,
two theoretical curves are shown on each figure. The two curves
were calculated using values for the specific heat of 0.25
BTU/1b°F and 0.30 BTU/1b°F respectively. The two values represent
the approximate limits within which the value of the specific heat
is known.

The one dimensional solution has been shown to be valid only
when the boundary of the jet has a slope of less than one-tenth,

defined as the central jet region.
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Therefore, the theoretical curves Were started at the data point
where the slope is minus one-tenth. The theoretical curves were also
extended to larger radii to see how much the upper jet deviated from
the one-dimensional approximations. The data and theoretical curves
were matched at the point where the slope' was one-tenth rather than
at the initial jet radius because in the .atter method agreement be-
tween the data and the theory in the central jet region would be
penalized by errors in the upper jet region.

The agreement between the data and the theory in the central
jet region is very good. 1In the upper jet region the agreement is
surprisingly good. See Figs. G-1 through G-3 in Appendix G
for similar curves for other test conditions.

Figures 9.4 and 9.5 show the influence of various parameters
on the theoretical model; the test condition is the same as in
Fig. 9.3.

In Fig. 9.4 the theoretical curves are plotted assuming the
initial temperature is 2280°F and 2200°F instead of 2240°F as
measured. Although the initial tension for the two cases is
264 dynes and 381 dynes respectively, it can be seen that the
change in the level of the tension or the initial temperature
does not alter the shape in the central jet region. The third

curve was calculated assuming that the absorption coefficient
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was constant and equal to 2 (cm-l) instéad of the variation shown in
Fig. 3.3. For this case the product ¥ x r is less than one and the
radiation is all of the volume type. The figure shows that this

does not affect the central jet shape materially but it does affect

A AR D e @ A v b T e e d T e e 1t e

the upper jet shape.

In Fig. 9.5 the curves were calculated for two cases, assuming
the laminar film coefficient of heat transfer is 0.85 and one and
| one half times the value predicted by Glauert and Lighthill's

theory. It can be concluded that laminar forced convection has a

et R S N A A A T P 20 L s 4 e VR e

dominating influence on the jet. If the value of specific heat used
in this case, 0.25 BTU/1b°F is correct, the results also indicate

that Glauert and Lighthill's results are correct and that the

S T ——p— T Y
P

boundary layer on the central jet is laminar for these particular

test conditions.

The following figures, 9.6 and 9.7, show the compiled results

of the test runs along with the corre:ponding theoretical curves.

- ——g VTN T

In Fig. 9.6 the experimental results of first changing the final
fiber radius by a factor of two and secondly changirg the flow
rate by a factor of two are shown. Examining the results of
changing the final radius while keeping all other variables con-
stant, one sees that there i1s no noticeable change in the sliape

of the upper jet. Comparing two cases where the final jetu«
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A
radius is the same and only the flow rate is changed, e.g., tests

M1 and M4, it is seen that the shape is much '"fuller'" for the
higher flow rate which is to be expected. The higher flow rate
requires a larger surface area for heat transfer to achieve the
same temperature decrease in the region where radiation heat
transfer is important.

Figure 9.7 illustrates the effect of experimentally changing
the initial temperature by 80°F. Although the tests at the high
temperatures have a ''fuller'" jet shape the difference between the
jet shapes is small. Note that the solid and dotted curves in
Fig. 9.8 are not theoretical curves, they were drawn only to aid
the reader follow the data points for a particular test condition.
Also, the axial distance scale has been increased so that only

the upper part of the central jet region is shown.

9.2 The Temperature Distribution in the Jet

As mentioned previously, the temperature of the jet was not
experimentally measured. Since the solution of the temperature
distribution is an integral part of the solution of the jet shape
for the one-dimensional case, the validity of the calculated tem-
peratures is confirmed by the excellent jet shape results. The
theoretically calculated temperature versus distance distributions

for the jet will be presented.



-09-

96 "I1d

SEAND TYOLLMMOTEL TIV W0d dodT/Ad 62°0 = “dootzz = °L SESVO TIV wod
IIQVN ¥REI4 TVNLJ QNV EIVN MO INGENELIIA 40 LOZLIX HRL
SIINST TYINDUUEDM ANV TVOLLINOTEL
EONVZSIQ SNSWEA SNICVN IIr

(s3uour) 31xy 5TzZON wozg adcwmsig

0°'e 2T a1 T 21 QT 2°0 90 #1:Q 20
I | I { | 1 { l I | i I I T I T 1 I l | 1 1 i 1 | |
'l"'lll'll'l‘l"'ll'll-'lllllll"' rrrr —_— -
= o III/ =
Y ~< ovmbﬁnnav
S~ - ot xglT=a |
L o ~ - —S-
~ e
~ SH 3S3L
e e o — — — - _ /AR\
o N\ -
L nwr/ ~
n ~e // ot momhﬁmu.ﬂ“
- SNe S\ L

23s fm(sqr) ¢OTYLlE=a e

9W 383

998 fu(sqT) _OT * m.w«wmpmym

7 wHasay |

Amononuv snypsy
L 1

¢.0t




10

10~

-90-

I

— Radius (Inches)

\ Test No. w((lbs)m/sec) T (°F) r,... (in)
AN @ M4 1.85 x 10-5 2240 0.5 x 10-3 _
QQ\ © 5 1.78 k 107> 2240 0.24 x 1072
RN o M8 1.83 x 107> 2160 0.4995x 107>

\8\\\ o M7 1.82 x 107> 2160 0.2495x 107>

- 0.1

0.2 -
I l

Axial Listance From the Nozzle Exit (Inches)

JET RADIUS VERSUS DISTANCE
EXPERIMENTAL RESULTS ONLY
THE EFFECT OF CHANGING THE INITIAL TEMPERATURE
AND CHANGING THE FINAL RADIUS ON THE SHAPE OF THE UPPER JET
WHILE THE FLOW RATE IS APPROXIMATELY CONSTANT

Fig. 9.7



-91-

Figure 9.8 shows the temperature dlstribution for the same con-
ditions shown on Fig. 9.5. The temperature curves were positioned

so that the temperature equaled T _ at the position below the nozzle

E
exit where the slope equaled minus one tenth. The curves were ex-
tended into the upper jet region to the point where the calculated
radius equaled the initial jet radius. Notice that the principle
difference between the temperature curves for a specific heat of
0.25 BTU/1b°F and 0.30 BTU/1b°F is the slope of the curves. The
temperature gradient in the jet determines the viscosity gradient
which in turn effects the jet shape.

Figure 9.9 shows the effect of assuming different values of
the initial jet temperature. The temperature level ishdifferent
but the temperature gradient at any given distance below the
nozzle exit has approximately the same value. The shape in the
one-dimensional region is unaffected by a change in the initial
jet temperature. Consequently, the fact that the experimentally
measured shape agrees with the predicted shape can not be used to
confirm that the measured value of the initial jet temperature
is correct.

Notice also on Fig. 9.9 that for all three cases the tem-
perature calculated at the initial jet radius, at the upper end

of the temperature curves, is less than the assumed initial jet
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temperature. This confirms the fact that the one-dimensional tem-
perature and velocity assumptions in the upper jet are not correct.
In Fig. 9.10 are shown the temperature distributions corre-
sponding to the cases shown on Fig. 9.5 plus the case where the
absorption coefficient is assumed to be a constant. For the case
where the absorption coefficient of the glass is assumed a constant
small value, the curve is only changed in the upper jet region.
Finally, Fig. 9.11 shows the calculated temperature dis-
tributions when the final fiber radius is varied and when the flow
rate is varied, the latter having a large effect on the temperature
gradient. For cases where only the final fiber radius is altered,
the temperature is approximately the same at any axiél distance.
The temperature distributien is only shown for the central jet
region since there is a transition to a turbulent boundary layer

below this region, as explained in the next section.

9.3 Tension in the Jet

In the region where the jet has achieved its final radius,
the tems ion versus distance was measured. Figures 9.13, 9.14 and
9.15 show the results of the measurements. The positicn of the
straight line through the data points was found by the method of

least squares. Also shown is the theoretical curve of tension




-95-

1 T T T 1T T T 1 T 1
2240}~  Temperature (°F) Test M6 7]
N \ w = 3.7x10 7 (lbs)m/sec _
\ T = 2240°F
- \ o -4 —
22001 = | i
\ \ rFINAL 2.51 x 10 inches _j
— \Q . Assuming bp = 0.25 BTU/1b°F
\ \ = —
2160 NS h=M) | aminar Theory
\ =
— \/""— b 1'S(h)Laminar Theory T
2120 \ -
[ —
2080 |- .
— h = 0.85(h) - B
Laminar
2040 - Theory | B
= Constant = _
2000 - -
1960 |— -
1920 ]
) 0.2 0.4 0.6 1.2
[ D N R N ]

Axial Distance Below the Nozzle Exit (¥nches)

TEMPERATURE (THEORETICAL) VERSUS
DISTANCE
ASSUMING VALUES OF THE FILM HEAT-TRANSFER COEFFICIENT, h,
OTHER THAN THOSE PREDICTED BY GLAUERT AND LIGHTHILL'S THEORY
IN ADDITION, THE EFFECT OF ASSUMING A CONSTANT VALUE
FOR THE ABSORPTION COEFFICIENT OF THE GLASS

Fig. 9.10




-96-

2240 Temperature (°F) For All Cases: —
\ T = 2240°F

o
¢y = 0.25 BTU/1b°F

2200} _
2160 _
B M1, L = 5x10 ~4 in, B
\! = 3.65x10™°(1bs)m/sec
21201 \ £ e -
\ -4
u \ \ = 2.51x10 4 in, -

\
=
(o))
[a]
]
I

2
Il

3.7x107° (1bs)m/sec

.{.‘)Br\;- \\
‘ \

2040t \
M4, r= 5x10 1n P \

— w=1.85x10" (Ibs)m/sec \\

2000| - \\ _
~ M5, rL = 2, lu)xlO'4 1n \\ -]
1960k w=1. 78x10 (1bs)m/sec \\\ ]
\\
| \ N
\
1920} \\ ~
0 0.2 0.4 0.6 0.8 1.0 1.2
| | | 1 | 1 | ] | | | | |

Axial Distance From the Nozzle Exit (Inches)

TEMPERATURE (THEORETICAL) VERSUS DISTANCE
THE EFFECT OF VARYING THE FLOW RATE AND FINAL FIBER RADIUS

Fig. 9.11




-97-

versus distance. The extreme left hand'portion of the theoretical
tension curve which is almost horizontal corresponds to the upper
jet. The rapid rise is due to the increase in tension needed to
accelerate the jet as it is attenuated. The final straight portion
of the curve represents tension increase due to shear stress on the
jet surface.

Also shown on Figs. 9.12 through 9.14 is the amount the initial
jet temperature would have to be changed so that predicted and
measured tension would coincide at the end of the central jet
region, where the radius has just reached its final value. The
small amount the initial temperature must be changed in all of
the cases except M7 and M8 within the experimental error, + 20°F,
indicate that the one-dimensional expression used for the initial
tension Eq. (3.6) is valid.

On the other hand, it could be assumed that an error in the
measurement of the initial jet slope or angle caused the dis-
agreement between the predicted and measured tension. The initial
angle enters the formula for the predicted initial tension in the
term YTTTR0 cose0 . It is found that the error in measuring 90,
the initial angle, would have had to be unreasonably large in
most cases to make the theoretical and experimental tension

agree, e.g., for test M5, eo would have had to be 55° instead of
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the measured 32.3°, for test M7 even if 60 was 90°, the predicted
tension would still be 15 dynes higher than the measured value at
the beginning of the constant radius region.

The experimental data were put in non-dimensional form tb
yield the drag coefficient versus Reynolds number. The data along
with the error limits are plotted on Fig. 9.15 which also shows the
theories and data presented previously on Fig. 7.1. The data
agrees well with Sparrow, et al.'s turbulent theory. The points
at the lowest radius Reynolds number deviate from it, although
they have such large limits of error tha! it is impossible to reach
any conclusions concerning the low Reynolds number points. The
error 5 probably due to the fact that the jet vibratéd causing
an unsteady boundary layer. It is also interesting ito note that
at the smaller jet radii, the Knudsen number approaches 10-2, in-
dicating that the flow is at the onset of the slip flow regime.

The data points indicate that the boundary layer is turbulent
in the region where the final fiber radius has been reached. The
theoretical curves in Figs. 9.12 through 9.14 were piotted using
Sparrow's turbulent theory for the constant radius region.

It must be emphasized that the author has used a single
criterion to determine that the boundary layer is laminar in the

central jet region and that it is turbulent when the jet has
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reached a constant s¢ radius. The criterion is to determine which
form of the boundary layer, laminar or turbulent, causes the ex-
perimental and analytical results to agree. No information as to
the length or radius Reynolds number at which transition occurs is
available. It may well be that for test conditions differing from
those used in this work, the boundary layer might stay laminar for
a large portion of the constant radius region or at the other
extreme, the boundary layer might be turbulent in the central jet

region.
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CHAPTER 10

THE EFFECT OF THE OPERATING VARIABLES ON JET FORMATION

The last chapter has presented the theoretical results for the
shape, tension, and temperature distribution in the jet for the
conditions encountered in the experiment. The analysis will now be
extended to predict the behavior of the jet under different operating
conditions.

Specifically, the effect of changing the environment of the
jet will be investigated. - A criterion is also presented which pre-
dicts the necessary changes in the values of the governing parameters
in order to achieve very large or very small values of the final jet

radius.

10.1 The Environment

Figure 10.1 compares the simplified theory described in
Chapter 4 along with the exacc numerical theory for the same ex-
perimental case as shown in Figs. 9.3, 9.4 and 9.5. The sim-
plified theory gives an adequate prediction of the central jet
shape; it was not extended to the upper jet since the theory

neglects radiation heat transfer and would obviously be in error.
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When the enviromment is assumed tc be helium instead of air
the shape and temperature distribution are drastically altered as
Figs. 10.1 and 10.2 illustrate. The change is primarily due to a
change in the thermal conductivity of the environment since the
film coefficient of heat transfer has been shown to be directly
proportional to the thermal conductivity. The reason the initial
temperature was raised for the case of the helium environment will
be discussed in a later section.

It is important to know the effect of the environment on the
tension increase in the jet. If the tension becomes too large,
the solidified portion of the jet will fail by yielding. In the
region of the jet where the radius reached its final value, the
tension may be approximated by neglecting the tension increase

necessary to accelerate the jet

d Tension

Tension == (Tens:lon)o = ( e )AIR DRAG z (10.1)

In order to find the effect of the enviromment on the
tension increase it will be assumed that the boundary layer on
the jet is turbulent. Sparrow, et al.'s turbulent theory, Fig.
9.16, in the region of present interest can be approximately

represented by
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_ 0.7
C, = 0.4 (Rero) (10.2)
or
1.3
0.2(u) 0.3 0.7
To 5.7 Camd (o (10.3)
(ro)
and the tension increase per unit length is
(10.4)
ATension _ _ 1.3 0.3 0.3 0.7
——-—-————Az ‘rm2ﬂro 0.41T(Um) (ro) (QATM) (“ATM)
ATension _ 0.284 (Q)1°3 0.3 0.7
v 3 O MWam (10.3)

Az 2
(x,)
Therefore, for a given flow rate and final jet radius the tension

increase is proportional to the density and viscosity

ATension 0.7

Az )

.3
(Up (10.6)

)0

= (C
(,onstant)(pATM

If one assumed the environment was helium rather than air and
evaluated the density and viscosity at the same film temperature,
212°F, the tension increase with length for the helium environment
is only 58 per cent as large as for the air enviromment. This is
due to the small helium density. For an environment where the
alr pressure has been reduéed to one half an atmosphere, the tension
increase with length is 82 per cent as large as an enviromment of

air at one atmosphere.
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The optimum environment would be' one in which the gas density
and viscosity were low. A low viscosity gas would also have a low
thermal conductivity. The following section will indicate why this
is an advantageous property if, at one extreme, a jet with a very

small final radius is desired.

10.2 Criterion for Producing Jets of a Given Final Radius

It has been shown that the simplified solution for the shape
of the central jet region although not strictly correct, does give
results which predict the radius versus distance relationship
within 25 per cent for the jet. The results of the simplified
solution will be used to predict the effect of various fluid
properties, envirommental properties, etc., on the ability to
produce a given final radius.

From the simplified solution for the shape of the jet, see

p c_ (Tension)
0.6u.Q ) [6 ?T - G
2% E

T, o) M
"FINAL  (Tension) ATM "E ATM L

Eq. (4.32)

(10.7)

Position E is the point where the one-dimensional solution
commences, the slope of the jet is minus one-tenth at position E,
and a, is a physical property of the fluid which relates the
viscosity to the temperature
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In , = a; - a, T (10.8)

As explained in Chapter 4, when the flow rate, initial jet radius,
slope, and temperature, and the physical properties of the jet fluid
and the environment are held constant, ;he final jet radius changes
as the viscosity, and temperature, at position E change. 1In
practice, the final jet radius can be varied by simply changing the
speed of the pulling wheel while the flow rate is held constant.
However, when the final radius is changed, Eq. (10.7) must be
satisfied; if it .1s not satisfied, steady flow is not possible.

Equation (10.7) indicates that as Mg decreases the final jet
radius decreases. The effect of increasing TE with decreasing g
can be disregarded in Eq. (10.7) since the latter quantity changes
much more rapidly than the former as seen from Eq. (10.38).
Obviously, there is a lower limit to the minimum value of the
final jet radius which corresponds to the smallest possible value
The smallest

of u_, i.e., the largest possible value of T

E E’
possible value of Mg occure when the temperature decrease in the
hpper jet, To - TE’ is a minimum. The temperature decrease in
the upper jet can not be predicted at present since a solution of

the governing equations in the upper jet has not been made.

Certainly, in the limit, the value of TE can not be higher than
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the initial temperature, To. Therefore, as To is increased, a
smaller final jet radius is possible.

It also may be concluded from Eq. (10.7) that a fluid of
higher specific hea%t or an environment with a lower thermal con-
ductivity will also allow the steady state jet to achieve a
smaller final radius.

For example, consider the case where the environment is helium
rather than air, Figs. 10.1 and 10.2. For a helium environment,
the thermal conductivity is three times that of an air environment
while CL calculated from the laminar boundary layer theory
remains approximately a constant. In order to achieve the same
final jet radius at the same flow rate using helium in place of
air, the calculated temperature at position E increased from
2140°F for air to 2350°F for helium. Since the initial tem-
perature for the experiment with air was 2240°F, if helium is
substituted for air the initial jet temperature must be raised
by more than one hundred degrees.

Alternatively, a jet with a large final radius may be
desired. 1In this case, the viscosity at point E must have a
large value, TE must be as small as possible. The largest
possible final radius is now limited by the largest temperature

difference which can occur in the upper jet. Lowering the initial
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jet temperature will allow an increase'in the size of the final jet

radius.

The effect of the initial temperature on the smallest or
largest final radius attainable presupposes that the initial tension
does not change when the initial temperature has changed. The
initial tension written as

6MOQ dr

0
+
R, (dz )o YTﬂRocoseo (10.9)

(Tensi.on)Q = -

does not change with temperature changes when the surface tension
is the dominant term, assuming eo and Ro stay constant. If the
viscous force is the dominate term in the tension

6qu dro

R (TG )o : (10.10)

(Tension)o=5 -

then Eq. (10.7) must be written as
R (dr /dz) - |°P CpQ(uo/“E)(dro/dz)o
o 0o o
FIAL | 10G /uy C 2, (Tg-Tamp amCr ¥

(10.11)

ATM L o

In this case, it is the viscosity ratio, a function of the tem-
perature ratio over the upper jet which is controlling, rather
than the temperature level.

The results of the fcregoing analysis can be alternatively
explained by rewriting the basic equations. The simplified analysis

assumed that
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dr
_iﬁl (> ) = (Tension) = Constant (10.12)

Integrating the above expréssion
In(r) = --%5 I jlszf%ymib dz (10.13)

it can be seen that the lower the value of the vigcosity is over a
given length, the greater the radius can be attenuated. The value
of the viscosity may be kept small over a given length by slow
changes of jet temperature with distance or by a high initial tem-
perature.

The limiting case occurs when the viscosity is held constant,
produced, for example, by enclosing a portion of the jet within
heated walls; the tension being supplied mechanically to the cooled
jet below the heated walls. In this case, the solution for the jet

radius, assuming a constant tension, is

[ (Tens i.on) 2 :l
£/ (€) yug = e (10.14)

Notice that the solution does not asymptotically approach a final

radius, rather the radius continues to decrease. If the iength of
the heated section is not kept short, the radius will continue to
attenuate beyond the desired final radius causing the jet velocity
to increase until the jet breaks up due to instabilities, which

occur when the viscosity of the jet is low.
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There is one constant viscosity sase which is stable and it
occurs when no mechanical tension is applied, rather the jet is
attenuated by gravity. In this case, the tension decreases with
distance so tiat a final radius is asymptotically approached.

The final radius in this case occurs when the gravity force on the

jet is balanced by the air drag.

10.3 Upper Jet Instability

By the above analysis, one method to achieve large radius
reductions in the jet is to increase the initial jet temperature.
It has been found experimentally that an instability occurs in
the upper jet region at high initial jet temperatures. The in-
stability is a pulsing of the jet, a swelling and decreasing of
the jet size. First, small fluctuations of the jet which start
and then are damped out occur. As the temperature is increased,
the fluctuations become unstable causing the jet to break. The
fluctuations also increase at a constant temperature when the
flow rate is increased.

One possible explanation of the fluctuations is that a dis-
turbing force, possible an air current normal to the jet, cools
the upper jet. When the jet cools, the fluid in the nozzle also
cools since the fluid in the nozzle exchanges radiant energy with

the jet. A small cooling of the nozzle fluid can cause a marked
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increase in its viscosity, e.g., at 2400°F a 20° temperature drop

causes the viscosity to rise by 15 per cent. The increase of
viscosity of the fluid in the nozzle causes the flow rate to fall.
For lower flow rates the upper jet decreases in size. This can be
seen from Eq. (10.13) if the flow is coﬁsidered one-dimensional;
lower flow rates cause higher rates of attenuation in the jet if
the ratio of the initial tension to viscosity is considered
constant.

The smaller upper jet size provides less area for surface
radiation, an important heat transfer mechanism in this region.
In addition, a small temperature decrease can strongly affect
the emmissive power proportional to the temperature to the forth
power. Assuming the disturbing force is now absent, the reduced
heat transfer from the upper jet is not high enough to maintain
equilibrium at the new, lower temperature so that the jet heats
up, heating the fluid in the nozzle, increasing the flow rate,
etc. The initial disturbance might be a single impulse or of a
periodic nature. Depending upon the interaction between the
cooling of the upper jet and the cooling of the fluid in the
nozzle, the amount the shape of the upper jet changes with flow
rate, etc., the disturbance will be damped out or will cause an

instability of increasing amplitude. The above mentioned effects
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can only be estimated after a steady dtate analysis of the fluid

dynamics and heat transfer in the upper jet and in the nozzle has

been made.
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A

CHAPTER 11

CONCLUSIONS

A one-dimensional analysis has been developed which accurately
predicts the shape, temperature distribution, and tension in the
viscous Newtonian jet as a function of fluid and environmental
properties, flow rate, initial jet temperature, initial jet radius
and slope and the final jet radius. The one-dimensional analysis
has been found to be invalid within two or three nozzle diameters
of the nozzle exit where the slope of the jet boundary is greater
than one-tenth.

The heat transfer from the jet is by radiation énd forced
convection near the nozzle exit and by forced convection in the
one-dimensional region. The Nusselt number for the boundary
layer, which has been found to be laminar in the region where the
jet radius is being attenuated, can be accurately calculated from
a shear stress analysis by Glauert and Lighthill (11) combined
with Reynolds analogy.

It has been found that the tension is constant in the region
near the nozzle exit, increases to accelerate the attenuating jet
and in the region where the jet has reached its final radius the

tension increases due to the air shear stress on the jet. The
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air shear stress can be predicted by an extension of a turbulent
boundary layer analysis of Sparrow, et al. (1l4).

The atténuation of the jet is controlled by the flow rate,
initial tension, an& the viscosity gradient in the jet which, in
turn. is dependent upon the gradient of the jet temperature in
the axial direction. For a large attenuation of the jet radius,
a small flow rate or a high initial jet temperature is required.
The increase of the jet temperature has been found to be limited
by an instability which occurs in the upper jet at high tem-

peratures. This instability can not be adequately predicted at

present.
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A

CHAPTER 12

RECOMMENDATTIONS

As pointed out in Chapter 10, in order to predict the onset of
upper jet stability a solution of the steady state temperature and
velocity distribution for flow in the nozzle and in the upper jet is
necessary. As the first step, the assumption of a two-dimensional
temperature distribution and a one-dimensional velocity distribution
in the upper jet region might yield accurate results.

In order to solve for the temperature distribution in the
upper jet the absorption coefficient versus wavelength of the glass
must be known. At present the absorption coéfficieﬁt has only been
accurately measured for low wavelengths where the absorption
coefficient is less than 10-(cm-1). An accurate measurement of the
specific heat versus temperature is also necessary.

Once the absorption coefficient has been found for high wave-
lengths a measurement of the temperature at the surface of the
jet could be made. If a filter could be found which ﬁould only
transmit infared radiation at wavelengths for which the jet is
opaque, where the product of the absorption coefficient and the
jet radius is much greater than one, the filter could be placed

in front of a total radiation pyrometer. The modified pyrometer
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would only be sensitive to radiation from the glass surface. At high

glass temperatures, a significant fraction of the total radiation

v T

; from the jet surface would still be received by the pyrometer to give

an accurate measurement of the temperature, e.g., at 2000°F, 15 per
cent of the total radiation energy is found between the wavelengths
four microns to six microns.

An investigation of the transition region between laminar and
turbulent boundary layers on a cylinder moving axially would be in
order. The value of the drag coefficient for turbulent flow at low
radius Reynolds numbers is presently in doubt and should be found
experimentally.

The drag tests could be conducted by using a wire or fiber
moving in still air. The use of unheated wires would exclude any
thermal interactions with the dynamic boundary layer.

The wire could be unwound from one spool and wound on another
or it could be formed into a continuous loop guided by pulleys to

run along a long, straight test section.
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APPENDIX A

TABULATED RESULTS AND ERROR ANALYSIS

The results of the variable viscosity glass tests are tabulated
below. The experimental apparatus as described in Chapfer <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>