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SEMISIMPLE HOPF ACTIONS ON WEYL ALGEBRAS

JUAN CUADRA, PAVEL ETINGOF, AND CHELSEA WALTON

Abstract. We study actions of semisimple Hopf algebras H on Weyl

algebras A over an algebraically closed field of characteristic zero. We

show that the action of H on A must factor through a group action; in

other words, if H acts inner faithfully on A, then H is cocommutative.

The techniques used include reduction modulo a prime number and the

study of semisimple cosemisimple Hopf actions on division algebras.

1. Introduction

Let k be an algebraically closed field of characteristic zero and H a

semisimple Hopf algebra over k. In [EW1, Theorem 1.3], two of the au-

thors showed that any action of H on a commutative domain over k factors

through a group action. The goal of this paper is to extend this result to

Weyl algebras. Our main result states:

Theorem (Theorem 4.1). Any semisimple Hopf action on the Weyl algebra

An(k) factors through a group action.

An equivalent formulation would be the following: if H acts inner faith-

fully on An(k), then H is cocommutative. By definition, inner faithfulness

means that the action of H does not factor through a quotient Hopf algebra

of smaller dimension.

Note that when the action of H preserves the standard filtration of An(k),

Theorem 4.1 can be deduced from [EW1, Proposition 5.4], since the as-

sociated graded algebra gr(An(k)) is a commutative domain. Our main

achievement in this paper is to eliminate this assumption.

We also obtain the result above for H finite dimensional, not necessar-

ily semisimple, provided that the action of H gives rise to a Hopf-Galois

extension, see Theorem 4.2.

The proof of Theorem 4.1 relies on reduction modulo a prime number,

which allows us to reduce to the case where the algebra satisfies a polynomial

identity (or is PI, for short). In this case, its quotient field is a division

algebra with an action of H (Lemma 3.1). We then use the following result,

interesting by itself:

2010 Mathematics Subject Classification. 12E15, 13A35, 16T05, 16W70.

Key words and phrases. division algebra, Hopf algebra action, reduction modulo p,

Weyl algebra.

1

http://arxiv.org/abs/1409.1644v2


2 JUAN CUADRA, PAVEL ETINGOF, AND CHELSEA WALTON

Proposition (Proposition 3.3(ii)). Let H be a semisimple cosemisimple

Hopf algebra of dimension d over an algebraically closed field F (of any

characteristic). Let D be a division algebra over F of degree m. If d! is

coprime to m, then any action of H on D factors through a group action.

Using these methods, we will establish more general results on semisimple

and nonsemisimple Hopf actions on quantized algebras in future work. In

particular, these methods will apply to module algebras B so that:

(†) Bp, the reduction of B modulo a prime number p, is PI and the

PI-degree of Bp is a power of p, for p≫ 0.

Such algebras include universal enveloping algebras of finite dimensional Lie

algebras and algebras of differential operators of smooth irreducible affine

varieties. This prompts the following question, which is of independent

interest in Ring Theory.

Question. Let B be a Z+-filtered algebra over k with gr(B) a finitely gen-

erated commutative domain. Does (†) hold for any large prime p?

The paper is organized as follows. We recall preliminary results on re-

ducing Hopf actions to positive characteristic in Section 2. In Section 3, we

prove results on semisimple cosemisimple Hopf actions on division algebras;

in particular, we establish Proposition 3.3. We prove Theorems 4.1 and 4.2

in Section 4.

Notation. Throughout this paper k is an algebraically closed field of

characteristic zero, and H is a Hopf algebra over k of finite dimension d.

For n ∈ N and a commutative ring R recall that the n-th Weyl algebra

An(R) is the R-algebra generated by xi, yi (i = 1, . . . , n) subject to the

relations [xi, xj ] = [yi, yj ] = 0 and [yi, xj] = δij .

2. Reducing Hopf actions modulo a prime

In this section, we will show that given an action of H on A := An(k) we

can reduce it to positive characteristic (Proposition 2.4). This is done in a

standard way, as one does for any kind of “finite” linear algebraic structure.

To explain this we first need the notion of a Hopf order over a subring R of

k. See [L] or [CM] for details.

Given a finite dimensional k-vector space V , an R-order of V is a finitely

generated and projective R-submodule VR of V such that the natural map

VR⊗R k → V is an isomorphism. We can now define an order of any algebraic

structure existing on V as an order of V closed under the structure maps.

The linear isomorphism VR ⊗R k → V will become an isomorphism for that

structure. In particular, we have:

Definition 2.1. A Hopf R-order of a Hopf algebra H is an order HR of H

such that 1H ∈ HR, HRHR ⊆ HR, ∆(HR) ⊆ HR ⊗R HR, ε(HR) ⊆ R and

S(HR) ⊆ HR.
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Lemma 2.2. Let H be a finite dimensional Hopf algebra over k. Assume

that A is endowed with an action · : H ⊗k A → A. Then, there is a finitely

generated subring R of k and a Hopf R-order HR of H such that · restricts

to an action ·R : HR ⊗R AR → AR, where AR := An(R).

Proof. Let {hi}
d
i=1 be a basis of H. We have

hi · xj = Pij(x1, . . . , xn, y1, . . . , yn) and hi · yj = Qij(x1, . . . , xn, y1, . . . , yn),

where Pij , Qij are certain noncommutative polynomials over k. Let R be

any finitely generated subring of k containing both the structure constants

of H in {hi} and the coefficients of Pij and Qij. Let HR =
⊕d

i=1Rhi. Then,

R and HR are as required. �

To pass to positive characteristic, we need the following lemma from Com-

mutative Algebra, which is standard but we provide a proof for the reader’s

convenience.

Lemma 2.3. Let R be a finitely generated subring of k. Then:

(i) For a sufficiently large prime number p, the set SpecR(Fp) is non-

empty. That is, there exists a homomorphism ψ : R→ Fp.

(ii) For any prime number ℓ, the homomorphism

Ψℓ :=
∏

p≥ℓ

∏

ψ∈SpecR(Fp)

ψ : R −→
∏

p≥ℓ

∏

ψ∈SpecR(Fp)

Fp

is injective.

Proof. (i) This is a special case of Chevalley’s constructibility theorem for

schemes, applied to the natural morphism π : SpecR → SpecZ, see, e.g.,

[EGA, 1.8.4]. To prove it, note that by the Nullstellensatz, there is a ho-

momorphism φ : R → Q. Since R is finitely generated, Imφ is contained

in some number field L ⊂ Q; and moreover, in OL[1/r] ⊂ L, where OL is

the ring of integers of L, and r ∈ N. Set S = OL[1/r]. For any prime p

not dividing r, we have pOL = (pS) ∩ OL, and therefore S/pS = OL/pOL,

which is a finite dimensional commutative Fp-algebra.

(ii) Let x ∈ R be such that Ψℓ(x) = 0. Consider the element φ(x) for a

homomorphism φ : R → OL[1/r] as above. We have φ(rmx) ∈ OL for some

m ∈ N. For all sufficiently large p, the algebra OL/pOL is a direct sum of

finite fields of characteristic p. Since Ψℓ(x) = 0, the projection of φ(rmx)

to S/pS = OL/pOL is zero. This implies that φ(x) = 0 because OL is a

finitely generated abelian group. As this is satisfied for all choices of φ, the

Nullstellensatz implies that x = 0, as claimed. �

Now using Lemma 2.2 and Lemma 2.3, we can define the reduction of H

modulo p by the formula

Hψ,p := HR ⊗R Fp,

where the action of R on Fp is via a homomorphism ψ ∈ SpecR(Fp). When

no confusion is possible, we will simply write Hp instead of Hψ,p.
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Proposition 2.4. For a sufficiently large prime p:

(i) The algebra Ap := An(Fp) admits an action of the Hopf algebra Hp.

(ii) The action of Hp on Ap is inner faithful when the action of H on A

is inner faithful.

Proof. (i) The action ·p : Hp ⊗Ap → Ap is obtained by tensoring the action

·R : HR ⊗AR → AR with Fp over R using ψ : R→ Fp.

(ii) Let us first show that H acts faithfully on A⊗s for some s. LetKs ⊂ H

be the kernel of the action of H on A⊗s. Observe that Ks ⊃ Ks+1 because

A⊗s = A⊗s ⊗ 1 ⊂ A⊗s+1. Let K =
⋂
sKs. There is an integer s0 such

that K = Ks for all s ≥ s0. Given h ∈ K, consider the action of ∆(h)

on A⊗s ⊗ A⊗t for s, t ≥ s0. Since A⊗s ⊗ A⊗t is a faithful module over

H/K ⊗H/K, we find that ∆(h) ∈ K ⊗H +H ⊗K. Thus, K is a bialgebra

ideal of H, hence a Hopf ideal by [R, Proposition 7.6.1]. Since H acts on A

inner faithfully, this implies that K = 0, as claimed.

Now we reduce the faithful action of H on A⊗s above modulo p as follows.

Using that H is finite dimensional, there exist v1, . . . , vq ∈ A⊗s
R and R-linear

maps fij : A⊗s
R → R, i = 1, . . . , d, j = 1, . . . , q, such that the matrix with

entries bil :=
∑

j flj(hi · vj) has a nonzero determinant b := det(bil) ∈ R.

Then b is invertible modulo p when p is sufficiently large (namely, does not

divide the norm of b). So, the matrix (bil) is nondegenerate modulo p, which

implies that Hp acts faithfully on A⊗s
p .

Finally, note that any Hopf ideal of Hp annihilating Ap would also anni-

hilate A⊗s
p . So, Hp acts inner faithfully on Ap. �

We will also need the following lemma:

Lemma 2.5. If H is semisimple (hence cosemisimple), then for a suffi-

ciently large p, the Hopf algebra Hp over Fp is semisimple and cosemisimple.

Proof. Since H is a semisimple algebra over an algebraically closed field, it

is separable. So, the multiplication map µ : H ⊗H → H admits a splitting

map of H-bimodules ϑ : H → H⊗H. Reducing ϑ modulo p for p sufficiently

large, we see that the same fact holds for Hp. Therefore, Hp is separable,

and hence semisimple. The same argument may be applied to H∗ to prove

that Hp is cosemisimple. �

3. Semisimple cosemisimple Hopf actions on division algebras

In this section, we establish our result on actions of semisimple cosemisim-

ple Hopf algebras on division algebras (Proposition 3.3(ii) below). Here, we

work over an algebraically closed field F of arbitrary characteristic.

Lemma 3.1. Let H be a Hopf algebra over F . If a PI domain B over

F admits an inner faithful action of H, then so does its quotient division

algebra QB.
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Proof. Since B is a PI domain, after localization we obtain a classical quo-

tient ring QB , which is a division algebra; see [C, Corollary 7.5.2] and [GW,

Theorem 6.8]. Now apply [SV, Theorem 2.2] to obtain the result. �

Let D be a division algebra over F that carries an action of H. Denote by

DH the subalgebra ofH-invariants inD. Moreover, for a division subalgebra

C of D, let [D : C]l and [D : C]r denote the left and right dimensions of D

over C, respectively.

Lemma 3.2. [BCF, Corollary 2.3] One has

[D : DH ]l ≤ d and [D : DH ]r ≤ d. �

Proposition 3.3. Let H be a Hopf algebra of dimension d over an alge-

braically closed field F . Let D be a division algebra over F of degree m. If

gcd(d!,m) = 1, then:

(i) The center Z of D is H-stable, and D = ZDH.

(ii) If H is semisimple and cosemisimple, any action of H on D factors

through an action of a cocommutative Hopf algebra.

Proof. (i) Consider the subalgebra ZDH of D. Set e = [D : DH ]l. By

Lemma 3.2, e ≤ d. On the other hand, we have:

e = [D : DH ]l = [D : ZDH ]l [ZD
H : DH ]l,

m2 = [D : Z] = [D : ZDH ]l [ZD
H : Z].

Then [D : ZDH ]l is a common divisor of e and m2. Since gcd(d!,m) = 1,

it must be [D : ZDH ]l = 1. Hence D = ZDH . From this, it follows that

the centralizer CD(D
H) of DH in D equals Z. Now note that CD(D

H) is

H-stable, since one can easily check that (h · z)a = a(h · z) for h ∈ H,

z ∈ CD(D
H), and a ∈ DH .

(ii) It suffices to show that if the action of H on D is inner faithful, then

H is cocommutative. By (i), D = ZDH and Z is H-stable. Let I be a Hopf

ideal of H such that I · Z = 0. For any h ∈ I, z ∈ Z, a ∈ DH , we have

h · (za) = (h · z)a = 0. Hence, I · (ZDH) = I ·D = 0. Thus, I = 0. This

shows that H acts inner faithfully on a field. Applying [EW1, Theorems 4.1

and 5.1], we obtain that H is cocommutative. �

Remark 3.4. (1) Proposition 3.3(ii) is a strengthening of [EW1, Theorem

5.1], which says that the conclusion holds if m = 1.

(2) Proposition 3.3(ii) fails in the nonsemisimple case, as there are many

inner faithful actions of noncocommutative finite dimensional Hopf algebras

on commutative domains; see [EW2]. We conjecture (see [EW1, Conjec-

ture 5.3]) that the result will still hold in the case that H is cosemisimple,

but not necessarily semisimple.
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Notice also that when [D : DH ] divides d, we could replace d! with d in

Proposition 3.3. If the extension D/DH is Hopf-Galois, then [D : DH ] = d

and we can assume gcd(d,m) = 1. Indeed, we ask:

Question 3.5. If a semisimple cosemisimple Hopf algebra H over an alge-

braically closed field F acts inner faithfully on a division algebra D over F ,

then is D/DH Hopf-Galois?

The converse is always true for any H-module algebra B. To see this,

consider the coaction ρ : B → B ⊗H∗. Note that, by definition, the Galois

map can : B ⊗BH B → B ⊗H∗ given by b⊗ b′ 7→ (b ⊗ 1)ρ(b′) is surjective.

Hence, Im ρ cannot land in B ⊗ (H/K)∗ for a nonzero subspace K of H.

4. Semisimple Hopf actions on Weyl algebras

Recall that k denotes an algebraically closed field of characteristic zero.

We are finally in a position to prove our main result:

Theorem 4.1. Let A := An(k) be a Weyl algebra over k. Then, any

semisimple Hopf action on A factors through a group action.

Proof. We may assume that H acts on A inner faithfully. It is well known

that the Weyl algebra Ap in positive characteristic is a PI domain; namely,

it is an Azumaya algebra of degree pn over its center, which is a polynomial

algebra in xpi and ypi for i = 1, . . . , n. Let Dp be the full localization of Ap.

Then, Dp is a division algebra of degree pn.

Let Hp denote the reduction of H modulo p from Section 2. Then Hp

is a semisimple cosemisimple Hopf algebra over Fp by Lemma 2.5, which

acts inner faithfully on Dp for sufficiently large p due to Proposition 2.4 and

Lemma 3.1. Now take p > d. Then Proposition 3.3(ii) implies that Hp is

cocommutative. Note that this is true for any choice of the homomorphism

ψ from Lemma 2.3. But by Lemma 2.3(ii), the direct product of the possible

homomorphisms ψ is an injection of R into a direct product of fields. This

implies that HR is cocommutative. Thus, H is cocommutative, and hence

H is a group algebra, as desired. �

We extend the result above to the case when H is finite dimensional, not

necessarily semisimple, in the Hopf-Galois setting.

Theorem 4.2. Let A be a Weyl algebra over k, and let H be a finite di-

mensional Hopf algebra over k which acts on A. Assume that this action

gives rise to an H∗-Hopf-Galois extension AH ⊂ A. Then, the action of H

on A factors through a group action.

Proof. We keep the notation from the previous proof. Assume that p is

sufficiently large. Then by Proposition 3.3(i), the center Zp of Dp is Hp-

stable. So, the map βp : Dp⊗Dp → Dp⊗H
∗
p given by βp(a⊗b) = (a⊗1)ρ(b)

restricts to an algebra map β̄p : Zp ⊗ Zp → Zp ⊗H∗
p . Note that Im β̄p is a
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Zp-vector space under multiplication in the first tensor factor. Let v1, . . . , vr
be a basis of this space (r ≤ dimHp).

Let z, z′ ∈ Zp and c, c′ ∈ D
Hp
p . Then

βp(cz ⊗ c′z′) = (cc′ ⊗ 1)β̄p(z ⊗ z′).

By Proposition 3.3(i), one has ZpD
Hp
p = Dp. Hence, Imβp is spanned by

v1, . . . , vr as a left Dp-vector space (under multiplication in the first tensor

factor).

Now, since the action of H on A gives rise to a Hopf-Galois extension, the

action of Hp on Ap, and hence the action of Hp on Dp, gives rise to a Hopf-

Galois extension as well, i.e., Imβp = Dp ⊗ H∗
p . This yields r ≥ dimHp.

Thus, r = dimHp and Im β̄p = Zp⊗H∗
p . Therefore, H

∗
p is commutative and

Hp is cocommutative. So we conclude as in the proof of Theorem 4.1 that

H is cocommutative, hence a group algebra. �

Proposition 4.3. Theorems 4.1 and 4.2 remain true if A were replaced by

An(k[z1, . . . , zs]), a Weyl algebra over a polynomial algebra.

Proof. The proof is analogous to that of Theorem 4.1 and Theorem 4.2. �

Proposition 4.4. Proposition 4.3 remains true if the module algebra

A := An(k[z1, . . . , zs]) were replaced by the quotient division algebra QA

of A.

Proof. The proof is along the lines of those of Theorems 4.1 and 4.2. Let

us describe the necessary changes. As in the proof of Lemma 2.2, we can

write hi · xj = Pij , hi · yj = Qij , and hi · zℓ = Riℓ, where now Pij , Qij, Riℓ ∈

QA. There is a common denominator T ∈ A such that Pij = T−1P ′
ij,

Qij = T−1Q′
ij, and Riℓ = T−1R′

iℓ, with P
′
ij , Q

′
ij, R

′
iℓ ∈ A. For a sufficiently

large prime p, these formulas can be reduced modulo p. Set now Ap for the

Weyl algebra over the given polynomial algebra in characteristic p (reduction

of A modulo p) and Dp for its quotient division algebra. We can define an

algebra map ρ : Ap → Dp ⊗H∗
p such that ρ(T ) is invertible.

Let us show that ρ extends to a coaction of H∗
p on Dp, i.e., that ρ(a) is

invertible for any nonzero a ∈ Ap. To this end, let Qρ,Ap
⊂ Dp be the partial

localization of Ap obtained by inverting all elements a ∈ Ap such that ρ(a)

is invertible. Then, ρ extends to an algebra map ρ′ : Qρ,Ap
→ Dp ⊗ H∗

p .

Moreover, Pij , Qij, Riℓ ∈ Qρ,Ap
, and

(1) hr · Pij =
∑

m

cmriPmj , hr ·Qij =
∑

m

cmriQmj , hr ·Riℓ =
∑

m

cmriRmℓ,

where cmrj are the structure constants of the multiplication of Hp. Let B be

the subalgebra of Dp generated by Pij , Qij , and Riℓ. Write {h∗i }i for the

dual basis of {hi}i. Since

xj =
∑

i

h∗i (1)Pij , yj =
∑

i

h∗i (1)Qij , zℓ =
∑

i

h∗i (1)Riℓ,
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we have Ap ⊂ B. Also, B ⊂ Qρ,Ap
, and by (1), hr · B ⊂ B for all r. Thus,

the map ρ′ defines a coaction B → B ⊗H∗
p . By [SV, Theorem 2.2] (which

applies because B is contained in a division algebra), ρ′ extends to a coaction

ρ′′ : QB → QB ⊗H∗
p . But QB = Dp, as Ap ⊂ B ⊂ Dp, so we get a coaction

Dp → Dp ⊗H∗
p . (In particular, we see that Qρ,Ap

= Dp.)

Now we proceed as in the proofs of Theorems 4.1 and 4.2. In particular,

in Theorem 4.2, to establish the surjectivity of βp : Dp⊗Dp → Dp ⊗H∗
p for

large p we modify the argument as follows: pick ai ∈ QA ⊗ QA such that

β(ai) = 1⊗ h∗i (where β : QA⊗QA → QA ⊗H∗ is the map in characteristic

zero). There is a finite number of fractions involved when expressing ai as

a sum of elements of the form bj ⊗ b′j with bj, b
′
j ∈ QA. Arguing as before

with a common denominator, we can choose p so large that the formula

β(ai) = 1 ⊗ h∗i can be reduced modulo p. Then 1 ⊗ h∗i ∈ Imβp and βp is

surjective. �

Remark 4.5. Note that in the proof of Proposition 4.4, we do not reduce

QA modulo p (which is not a well-behaved construction), but rather reduce

modulo p the explicit formulas defining the action of H on the generators

of A.
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