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rate process important in application of diverse materials such as paints, fertilizer sprays and

delivery of airborne drugs. Dilute polymeric solutions which have identical values of high

shear-rate viscosity (HSV) often exhibit di↵erent values of Sauter Mean Diameter (SMD)

in their spray size distributions as a result of di↵ering extensional rheological properties.

We explore the atomization of a series of model Poly(ethylene oxide) (PEO) solutions

dissolved in water/glycerol mixtures. Each solution is sprayed with an air-assisted spray

gun under similar conditions and imaged with a commercial spray measurement system.

The values of HSV for PEO solutions are close to the solvent viscosity and matched to those

of typical ink or paint samples. The surface tensions of the fluids are also tuned to be very

similar, however both the SMD and the droplet size distribution change considerably. For

the highest molecular weight PEO systems, interconnected beads-on-string structures are

observed at di↵erent positions of the spray fan. Capillary Break-up Extensional Rheometry

(CaBER) can be used to measure the extensional properties of the more viscous solutions,

but the well-known limitations of this approach include inertially-induced asymmetries,

gravitational sagging and the very short filament lifetimes of low viscosity samples all of

which constrain the range of relaxation times that can be probed. Consequently we also

explore the use of Rayleigh Ohnesorge Jet Elongational Rheometry (ROJER) to probe the

extensional response of these viscoelastic solutions at realistic timescales and deformation

rates. A cylindrical liquid jet is excited by a piezo-actuator at a known frequency as it

exits a micromachined nozzle, and stroboscopic imaging provides high temporal and spatial

resolution in the break-up process. Analyzing the evolution in the jet diameter before

break-up enables meaningful measurement of relaxation times down to values as small as

60 µs, and these values can be directly correlated with the di↵erences in the final spray size

distributions and the mean diameters. We outline a simple model for the fluid dynamics

of the thinning filaments close to breakup that accurately describes the variation of the

average droplet diameter as a function of the elongational relaxation time measured for

each fluid.

1 Introduction

Jet atomization and the physics of liquid breakup has been a source of scientific curiosity and

industrial applications for many years and over the past century there have been many develop-

ments in understanding the fluid mechanics involved in jetting and atomization of the Newto-
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nian liquids [1]. However most liquids of commercial relevance have a complex microstructure

and do not completely follow Newtonian behavior; polymer melts, fuels, paints, and our own

saliva are just a few examples. There are many applications in which these non-Newtonian

solutions experience jet breakup or atomization such as paint spraying, inkjet printing, cos-

metics preparation, spray drying of foods, and disease transfer through sneezing; however by

comparison to the depth of knowledge about the atomization of Newtonian liquids [2, 3] little

is known about the complexities encountered in the atomization of viscoelastic liquids [4].

Accurately measuring the extensional response of low viscosity fluids and understanding the

importance of extensional stresses in complex flow fields is a research challenge that Ken Wal-

ters and colleagues focused on intensely for several decades. In a wide-ranging plenary paper

for the 11th ICR in Brussels (1992) [5], Walters pointed out when discussing the challenges

inherent to measuring the extensional properties of mobile liquids that “the task is therefore

to generate a flow which is dominated by extension and to address the problem of how best to

interpret the data in terms of material functions that are rheologically meaningful”. He went on

to note that (after he first expanded on this philosophy at an earlier 1984 European Congress)

“...to say that it did not meet with unbridled enthusiasm would be an under-statement!” How-

ever, inspired by this conviction, and undeterred by such reservations we investigate air-blast

atomization of complex fluids by seeking to understand and quantify the break up dynamics of

a non-Newtonian jet.

Previous studies have shown that addition of viscoelasticity can lead to significant changes in

both jet break up and atomization processes [6–9]. These modifications occur mainly when the

fluid element reaches the large strains and rapid nonlinear deformation rates that are gener-

ated in the final breakup and pinch o↵ stages (Figure 1). Chao et al.[7] showed that addition

of polymers to jet fuels can lead to anti-misting properties which can be extremely beneficial

to aviation safety. In some other applications such as spray or roll coating [10] these “anti-

misting” properties which result from the added viscoelasticity may inhibit the sprayability of

a liquid and be undesirable. Thus, understanding and quantifying these e↵ects is an important

scientific goal; better knowledge of these phenomena is su�ciently important that it has been

suggested that the future of industries such as rapid manufacturing of biological materials via

drop-on-demand printing or jet engine propulsion are dependent on new developments and
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deeper understanding of jetting phenomena in complex fluids [11–14].

Attempts to understand the e↵ects of viscoelasticity on atomization [4,15] have faced challenges

in measuring the behavior of the non-Newtonian liquid in the strong nonlinear deformation and

high strain rates that characterize the spray. Viscoelastic liquids are known to show nonlinear

behavior in large deformations and demonstrate higher resistance against elongational defor-

mations [16]. Spray visualizations show that the added viscoelasticity does not lead to any

significant change in the early stages of breakup dynamics, when the liquid is still close to the

nozzle. Here the deformations are still small and disturbances are in the linear stage (compare

Figures 1(a) and 1(c)). However significant di↵erences start to emerge when viscoelastic lig-

aments are stretched and elongated into the air stream far from the nozzle (compare Figures

1(b) and 1(d)). This has motivated many researchers to focus on the extensional rheological

properties of the fluid, in order to better understand the e↵ects of viscoelasticity on the liquid’s

performance in atomization [7, 17, 18]. These findings have shown qualitatively that the addi-

tional resistance against elongational deformations for viscoelastic solutions will lead to poor

atomization. Precise measurements of elongational properties such as the fluid relaxation time

or the magnitude of the elongational viscosity are essential for a quantitative study of these

e↵ects, but elongational rheology for dilute solutions is a well-known challenge [19–24]. While

true extensional rheometers such as the Filament Stretching Extensional Rheometer (FISER)

work well for very elastic melts, gels and viscous polymer solutions [25] there are only a few

extensional rheometers that can be used for dilute polymer solutions and low viscosity com-

plex fluids. James and Walters [20] provide a critical appraisal of many proposed techniques

including the opposed jet rheometer and converging flow devices [26]; they argue that many of

these instruments may be best thought of as rheological indexers rather than true rheometers.

Although diverse industrial applications have benefited from these di↵erent rheological index-

ers, the need for an extensional rheometer for very dilute solutions persists. One well-known

example is the Capillary Breakup Extensional Rheometer (CaBER) [27] which can work well

for many dilute and semi-dilute polymeric solutions [24]. However Rodd et al.[21] have shown

that even this capillary thinning technique has some limits in measurements and fails to gen-

erate a well-defined extensional flow-field if the relaxation time and viscosity of the liquid are

both lower than certain limits. Extending the lower range of capabilities of filament thinning
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devices through the use of novel strategies and designs is an active area of current research

[28–31].

To understand the dominant e↵ects of complex fluid rheology on atomization, researchers have

tried to understand the key fluid mechanical features of sprays and study the dynamical re-

sponse of well-characterized fluids in the spray. Recent research on air-assisted atomization

has shown that, for a Newtonian fluid at least, this process can be described as a well charac-

terized sequence of instabilities that help to finally disintegrate the liquid into small fragments

(Figure 2). Marmottant and Villermaux [3] have shown that in air-assisted atomization the

liquid jet passes through three distinct instabilities. Initially the low momentum core liquid jet

experiences a relatively high shear rate at its surface induced by the surrounding annular flow

of air (which has a much higher velocity and kinetic energy). This will lead to the generation

of waves on the surface of the liquid jet due to the well-known Kelvin-Helmholtz instability

(Figure 2) [32]. As the wave crests grow, the acceleration of the less dense medium, i.e. air, into

the more dense medium results in a second instability, known as Rayleigh-Taylor instability,

that elongates ligaments of fluid into the air stream. Finally the stretched ligaments thin down

in the neck region that still connects them to the core liquid jet as a result of Rayleigh-Plateau

instability and they ultimately detach from the jet after stretching to a certain length. Beyond

this point the detached ligament can fragment into a cascade of small droplets which form the

final spray mist.

For measurements of elongational properties in very low viscosity “mobile liquids”, Christanti

and Walker [18,33] used a novel method, originally suggested by Schümmer and Tebel [34] that

focused on undertanding the fluid mechanics of the jet breakup process itself. By studying the

jet breakup of dilute polymeric solutions they showed that there is a correlation between the

measured relaxation times and the average droplet diameters measured in air-assisted atom-

ization. Studies of sprays of viscoelastic solutions by Christanti and Walker [18], building on

earlier work by Ferguson et al. [35], have shown qualitatively that there is an initial increase

in average droplet diameters denoted by < d > with increasing relaxation times followed by a

saturation at higher values of the fluid relaxation time.

Despite the growing interest in fragmentation and atomization of very dilute polymeric so-

lutions, there is still a lack of quantitative knowledge about the e↵ects of viscoelasticity on
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atomization in this limit. In this paper we outline a method for addressing the challenges in

extensional rheology for very dilute solutions by studying a selection of dilute Poly(ethylene

oxide) (PEO) solutions at moderate molecular weights and concentrations well below coil over-

lap conditions. We show that careful analysis of jet breakup for these liquids can help us make

precise measurements of their elongational properties. The material property extracted from

this forced jet rheometer is then compared with linear stability predictions for the hydrody-

namics of this flow field and scalings from polymer physics for the relaxation times. These

model solutions are also tested in a commercial air-assisted atomization gun, used in the paint

coating industry, and the changes in the measured mean droplet size from the spray tests are

related to the measured fluid relaxation times by a simple physical argument describing the

fluid dynamics of the thinning and elongating ligaments that develop close to individual pinch

o↵ events in the spray.

2 Test Fluid Rheology

In order to systematically study the e↵ects of viscoelasticity on the atomization, four di↵erent

dilute polymer solutions were selected as test liquids. All of these solutions are made by

dissolving small amounts of Poly(ethylene oxide) or (PEO) with M
w

= 3 ⇥ 105g/mol and

1 ⇥ 106g/mol respectively (purchased from Sigma Aldrich) in a water-glycerol (60-40 wt.%)

solvent (⌘
s

= 3.2mPa.s) and the resulting viscometric properties are summarized in Table 1.

The values of surface tension for all the viscoelastic solutions are close to the solvent value

(� ' 60 ± 3 mN/m ). Using the expressions given in the [21, 36] the overlap concentrations

(c⇤) are respectively 0.28 wt.% and 0.14 wt.% for 300K and 1000K solutions. Values of the

extensibility parameter for these PEO solutions are calculated based on the constants reported

in [37] for flexible PEO chains (L ⇠ M1�⌫

w

in which ⌫ = 0.56 for a reasonably good solvent

such as PEO in water/glycerol). Because of the dissolved polymer, the shear viscosity of the

solutions show a slight increase at low rates (⌘0 = 3.3mPa.s) and asymptotically approach the

solvent value at high shear rates (⌘
1

= 3.2mPa.s at �̇ ' 105 s�1). The small increase in the

zero shear viscosity is due to the very low concentration of the PEO in the solvent for this

solution (⌘0 ' ⌘
s

(1 + c/c⇤) and for the M
w

= 300K solution, c/c⇤ = 0.036). Although the
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addition of small amounts of PEO to a Newtonian solvent will keep the shear viscosity almost

unchanged, the extensional viscosity can increase substantially beyond a critical deformation

rate [38]. This increase in the extensional viscosity arises from the coil-stretch transition of

the dissolved macromolecules in a strong extensional flow [16]. One important measure for

quantifying the onset of strain hardening is the elongational relaxation timescale (⌧
E

) of the

fluid which varies with the molecular weight and concentration of dissolved polymer. The

measured relaxation times for all the viscoelastic solutions determined through jet breakup

studies are tabulated in Table 1. The details of these measurements will be discussed in more

detail in sections 4 and 5.

3 Experimental Setup

The spray experiments were carried out using an air-assisted atomization nozzle (Figure 2(a)).

The liquid jet is released at moderate speeds (1  V
liquid

 10ms�1) through a cylindrical nozzle

and this core flow is surrounded by a high speed annular flow of air (V
air

⇠ 80 � 120 ms�1).

The destabilized liquid jet will then form a so-called “spray fan”; two auxiliary low speed jets

of air are blown from the sides to keep the vertical axis of the spray fan as stable as possible.

Visualization of the droplets after breakup are carried out using a LaVision imaging setup.

A 1.5mm ⇥ 1.5mm field of view is illuminated using laser back-lighting and digital images

of the droplets were taken as they pass through the frame (Figure 4(b)). Image-processing

and size distribution measurements of the droplets in the captured images were carried out by

the LaVision image analysis package. Five di↵erent positions in the spray plane were selected

as the sampling sites for all of the tested liquids and more than one thousand droplets were

counted in each sampling. All the tests were performed for a fixed flow/geometry and similar

environmental conditions in terms of temperature and humidity.

The viscometric properties of the fluids were measured using a stress-controlled rheometer

(ARG2 with a 4mm cone geometry with 2 � degree cone angle; TA Instruments), at low shear

rates (10s�1  �̇  1000s�1), and using a micro-fluidic rheometer (m-VROC from Rheosense)

at higher shear rates (1000s�1  �̇  200, 000s�1). Extensional rheological properties are

measured using capillary thinning rheometry and a free jet rheometer adopted from ideas first
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discussed by Schümmer and Tebel [39]. Details of the CaBER technique have already been

discussed in great detail in the literature [21,24,31]. To extend measurements to lower viscosity

systems we use a jet breakup visualization apparatus shown schematically in Figure 4(a). A

high pressure syringe pump (PHD ULTRA-4400 from Harvard Apparatus) pushes the test fluid

through a 150µm diameter ceramic nozzle. Periodic perturbations are imposed on the fluid

before entering the nozzle via an annular peizoelectric actuator. The imposed perturbations

introduce very small sinusoidal modulations to the fluid jet with amplitudes less than 1% of

the jet diameter over a user-selectable range of frequencies (0.1Hz  f  1 ⇥ 105Hz). If the

wavenumber k = 2⇡/� (where � is the wavelength) of the imposed perturbations lies in the

unstable region of the Rayleigh-Plateau instability then the amplitude of these modulations will

start to grow exponentially with time as the waves are convected downstream with the jet. Due

to the periodic nature of the perturbation, the jet modulation is periodic and wave-like with

crests and troughs appearing at a frequency identical to the drive frequency of the piezoelectic

actuator. This enables us to use stroboscopic imaging to avoid the common challenges of

imaging these rapid time-varying phenomena. High speed imaging of jet breakup requires

capturing movies at high frame rates and high magnification, consequently the images often

have low resolutions or poor illumination due to physical limitations of cameras at these high

frame rates. The strobe imaging setup used in this study is adopted from an inkjet visualization

device made by JetXpert. The strobed LED light can generate very short and bright light pulses

(with less than 1µs exposure duration) over a wide range of frequencies (0.1�1⇥105Hz). This

allows us to tune the strobe frequency and set it very close to the drive frequency (f
strobe

=

f
piezo

� �f). Thus the captured movie slows down the real motion by a large factor (e.g. for

f
piezo

= 6000Hz and a frequency shift of �f = 0.1Hz the resulting motion is slowed down by

a factor of �f/f
piezo

⇠ 1/60, 000; see Appendix A for additional details). Using this approach

we avoid the necessity of capturing movies at very high frame rates and with su�cient memory

we can capture sharp and high resolution time-resolved images (1024 ⇥ 778 pixels) of the jet

breakup process (see the movie in Supporting Information).

The apparent jet velocity in the captured movies (denoted by V
app

) is calculated from the

expression:

V
app

[m/s] = MF.V
dig

.FR (1)
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where MF is the magnification factor of the optics in µm per pixel, V
dig

is the digital velocity

of the jet (in pixels traveled per frame), and FR is the frame rate of the captured movie (in

frames per second). Although the relationship in Eq. (1) can be used to find the apparent

velocity of a wave crest or droplet from the digital velocity, as a result of the strobe e↵ect the

apparent velocity is not the real velocity at which the fluid is convected. The real jet velocity

can be directly calculated from the flow rate of the pump:

V
j

= Q/⇡R2
0 (2)

where Q is the volumetric flow rate and R0 is the radius of the nozzle. The real velocity and

the apparent velocity are connected to each other by the strobe principle [40] (see Appendix A

for derivation):

V
app

=
�f

f
piezo

V
j

(3)

where, as mentioned before, f
piezo

is the drive frequency and f
piezo

��f is the strobe frequency.

Similarly to calculate the real elapsed time over which the fluid particle has been moving away

from the nozzle we only need to know the axial distance traveled (Z) and from that the time

of flight can be calculated:

t = Z/V
j

(4)

where Z is the axial position and is equal to Z0 +�Z in which Z0 is the location of the top line

of the image frame and �Z is the relative distance measured from this reference point. This

can be measured by precise position tracking of the stepper motor which moves the nozzle that

is mounted on a one axis translation stage (see Figure 4(a)). Although Eqs. (1) and (3) show

how the real and apparent velocities are connected, it is more convenient (and also less prone

to error propagation) to calculate the time of flight for a fluid element exiting the nozzle by

simply using Eqs. (2) and (4). Given a specified flow rate (controlled by the syringe pump)

the real velocity of the jet can be measured and the actual elapsed time of flight is calculated

by Eq. (4).

For the instability of interest, i.e. Rayleigh-Plateau instability, the perturbations will be con-

vected downstream with the jet velocity and our assumptions for using Eq. (4) are correct.
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This is a result of the fact that instability is convective in nature and theoretical analysis shows

that (over the range of tested Weber numbers) there are no absolute instabilities, in which

perturbations increase in amplitude at all positions in the jet (see [41] for additional details).

Thus the imposed perturbation at a given frequency f
piezo

will make waves with wavelength

� = V
j

/f
piezo

which are convected away from the nozzle with the jet velocity V
j

. This means

that the dimensionless wavenumber of the imposed disturbance is equal to:

kR0 = 2⇡f
piezo

R0/V
j

(5)

in order to see these waves grow rather than decay with time it is crucial to keep the range of

the disturbance in the instability margin which lies between 0  kR0  1 [32].

Once the movies have been recorded the captured images are analyzed using image processing

codes written in MATLAB and the evolution of the liquid filament diameter with time can be

calculated using an edge detection algorithm.

4 Capillary Breakup Extensional Rheometry (CaBER)

From the early days of extensional rheometry [42] accurate measurement of elongational prop-

erties for a wide range of materials/liquids has been reported as an experimental challenge

[19, 22, 23] due to the fact that there are few possible geometries/conditions in which uniaxial

extensional flows dominate and shear e↵ects are negligible. Although some known established

devices such as FISER (Filament Stretching Extensional Rheometer[43]) or SER (Sentmanat

Extensional Rheometer[44, 45]) have shown very promising results for su�ciently viscoelas-

tic polymer melts and solutions, there are still many additional challenges for measuring the

extensional rheology of very dilute solutions.

Bazilevsky et al. [46] showed that understanding the viscoelastic fluid dynamics of poly-

meric liquids undergoing capillary breakup can lead to accurate measurements of transient

extensional rheology of these dilute solutions at relatively low relaxation times (specifically

extensional relaxation times in the range 0.01  ⌧
E

 1s). This principle is used in the CaBER

instrument and has been studied extensively by many researchers [28,47–49]. When two coaxial

cylindrical plates are rapidly separated from each other, a liquid filament will be formed be-
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tween the lower and upper liquid reservoirs. The smaller radius of the fluid filament compared

to the radius of the two quasi-static reservoirs causes a higher capillary pressure (�P ⇠ �/R(t))

in the connecting ligament. This extra pressure drives an axial flow from the middle of the

filament outward to both ends which progressively drains the filament volume into the reser-

voirs. The driving e↵ect of capillary stresses inside the filament is resisted by either inertia

(inertia-capillary regime) or viscous (visco-capillary regime) stresses in a Newtonian liquid. In

polymeric solutions the capillary pressure can also be resisted by elastic stresses resulting in an

elasto-capillary balance. For di↵erent fluid systems and filament dimensions all three e↵ects

of inertia, viscous, and elastic stresses may be in balance with the capillary pressure for some

part of the thinning and breakup process [24, 47]. For low viscosity fluids in the initial stage

of thinning the flow in the filament will be dominated by inertia; and the local diameter will

thin down with a timescale set by an inertia-capillary balance (also known as the Rayleigh

timescale):

⌧
R

⌘
q

⇢R3
0/� (6)

in which R0 is the initial radius of the thinning filament. By a simple scaling argument from

the balance of capillary pressure with the inertia terms in the equation of motion the time

evolution of the filament radius can be derived to be of the form [3,24] :

R(t) = 0.64

✓
�

⇢

◆1/3

(1.95⌧
R

� t)2/3 (7)

The predictions from Eq. (7) can be compared with measurements of the thinning filament

radius in CaBER at early inertia-capillary stages (see the solid line in Figure 6).

A number of papers (see for example: [46, 47, 50]) have shown that as the filament thins

down with time the kinematics of the local flow in the long thin filament evolves into a

uniaxial extensional flow [v
r

= (�1/2)✏̇r, v
✓

= 0, v
z

= ✏̇z] in which the strain rate is given by

✏̇ = (�2/R(t))dR/dt. The decrease in the diameter results in the strain rate increasing and the

corresponding viscous (⌃
vis

= ⌘✏̇) or elastic (⌃
elastic

= ⌘+
E

✏̇) stresses in the filament become in-

creasingly important. The viscous forces become significant when the ratio of the visco-capillary

time-scale (t
vis

⇠ ⌘R(t)/�) compared to the inertia-capillary time scale (t
R

⇠
p

⇢R(t)3/�) be-

comes of order unity, i.e. when the local Ohnesorge number becomes close to one (see also
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[24]):

Oh ⌘ ⌘
�p

⇢�R(t) ⇠ O(1) (8)

Viscoelastic e↵ects can also become significant when the polymer relaxation timescale (⌧
E

) and

the inertio-capillary timescale of the fluid become comparable, i.e. when the local Deborah

number is of order unity:

De ⌘ ⌧
E

�p
⇢R(t)3/� ⇠ O(1) (9)

Nonlinear growth in the elastic stresses (i.e. strain-hardening) becomes important when the

local Weissenberg number Wi = ⌧
E

✏̇ in the filament exceeds Wi � 0.5.

Bazilevsky et al. [46] showed that for constitutive equations such as the Oldroyd-B model

(in which the polymer chains are infinitely extensible) the elasto-capillary region results in an

exponential decay of the filament diameter with time of the form:

D/D0 = (GD0/4�)1/3exp(�t/3⌧
E

) (10)

where D0 is the diameter of the filament, � is the surface tension of liquid-air interface, G is

the elastic modulus of the polymer in the solution (G = nkT for a dilute solution) and ⌧
E

is

the relaxation time in the Oldroyd-B model for the liquid. Both experiments and theoretical

analyses have shown that because the thinning process is self-similar in the elasto-capillary

regime the Weissenberg number remains constant with a value equal to Wi = 2/3 [47,50].

The exponential decay of the filament diameter in CaBER given by Eq. (10) has been re-

ported by many in the literature for a variety of polymeric liquids used in di↵erent applications

[17,49,51–53]. However the exponential decay is predicated on infinite extensibility of the poly-

mer chain and as a consequence the thinning filament will never breakup which is, of course,

unphysical. Entov and Hinch [50] showed that for constitutive equations which incorporate fi-

nite extensibility (such as the FENE-P model for dilute polymer solutions) the elasto-capillary

balance and exponential decay in the diameter holds on intermediate timescales but at later

times, very close to pinch o↵, the polymer chains can reach their maximum elongation and the

extensional viscosity reaches a plateau. The filament then begins to thin down linearly in a

visco-capillary manner once more but with a form given by D ⇠ (�/⌘
E,1

)(t
b

� t) where t
b

is

12
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the final breakup time.

Figure 5 shows an example of a successful CaBER test performed for a 5000K PEO solution at

a concentration c = 1.5wt.%. The montage of images show an axially uniform filament (formed

between two hemispherical end-caps) which is thinning with time and the measured diameters

are fitted best by an exponential expression for a wide range of times (200ms  t  800ms in

Figure 5). Regression of Eq. (10) enables a precise measurement for the relaxation time for

this solution (⌧
E

' 103ms). However there are also initial and final regions visible in which

the exponential decay does not fit the data anymore. In the initial stage (yellow part of Figure

5, which endures for a few capillary time scales ⇠ 6⌧
R

) the polymer chains have not felt the

strong stretching flow yet and the balance is between capillarity and a mixture of inertia and

viscous forces combined. On the other hand, at long times the polymer chains reach their

maximum extensibility so that they can not extend any more and the polymer contribution to

the elongational viscosity will saturate. The data in the orange-shaded region of Figure 1 show

that the filament diameter deviates from exponential thinning due to finite extensibility and

the diameter sharply falls to zero in a linear manner. Also in the final image of the montage

in Figure 5 it is possible to observe the so-called “beads-on-a-string structure” [54] at the final

stages in which the polymers in the connecting filaments between the beads reach their finite

extensibility limit and enter a terminal thinning regime [49].

Ideally every thinning viscoelastic filament would reach an elasto-capillary balance close to

pinch o↵ and the CaBER instrument should be able to measure low relaxation times even

for very dilute solutions. However there are a number of technical issues which inhibit such

measurements [21, 30]. Firstly, it is possible that the relaxation time is so small that the local

Deborah number will approach unity only at very low filament diameters that are below the

resolution of the laser micrometer in the CaBER. However Rodd et al. [21] showed that the

constraint on measurements for CaBER are, in practice, much more severe than the above-

mentioned limit. Using a dimensionless map, they showed that measurements become very

hard if the values of both initial Deborah and Ohnesorge numbers (based on the initial radius

of the sample plates(R0)) fall below unity. For a 6mm diameter plate and an aqueous solution,

measurements will be hard if both the relaxation time and the shear viscosity are below 1ms and

60mPa.s respectively. This restriction is due to the fact that as the end-plates are separated

13
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axially from the initial gap to the final gap there will be shape oscillations in the hemispheri-

cal end caps which persist for multiples of the capillary time and these oscillations introduce

periodic fluctuations to the laser micrometer readings. If the filament breaks up before these

oscillations damp away then the entire life of the thinning filament is corrupted by these end

e↵ects. The filament breakup time scales with the larger of the polymer relaxation time (⌧
E

) or

the initial viscous timescale (t
vis

= ⌘R0/�) depending on the magnitude of the elasto-capillary

number Ec ⌘ ⌧
E

�/⌘R0. If both of these timescales are shorter than the capillary time-scale of

the filament (i.e. Oh0 ⌘ t
vis

/⌧
R

= ⌘/
p

⇢R0�  1 and also De0 ⌘ ⌧
E

/⌧
R

= ⌧
E

/
p

⇢R3
0/�  1)

then the filament will break up before the oscillations damp away and the CaBER instrument

will fail to report meaningful readings.

Recent work [30, 49] has shown that by modifying the initial rise of the plates to a so-called

“slow retraction method (SRM)” the perturbative e↵ects of these inertia-capillary oscillations

can be minimized and more accurate measurements are possible for dilute solutions with this

new modified approach. However the appearance of the beads-on-a-string structures in CaBER

can not be avoided even using the SRM method and Campo-Deaño et al. [30] have proposed

following the entire dynamics by high-speed imaging instead of relying on a centrally located

laser micrometer read-out alone. An example of a beads-on-a-string structure appearing in a

CaBER test with a low viscosity polymer solution is shown in Figure 6. As can be seen from

the image montage and from the measured diameter D(t) the initial stage is mainly dominated

by an inertia-capillary balance (the solid line fitted to the initial data is the fit from inertia-

capillary balance, Eq. (7)) while the rest of the data in the filament thinning region is polluted

by the progressive appearance of di↵erent generations of beads which appear as the result of

an iterated elastic instability [55].

5 Rayleigh-Ohnesorge Jetting Extensional Rheometry (ROJER)

While the new SRM approach described by [30] can enable CaBER measurements for relaxation

times down to 240µs, and recent work by Vadillo et al. [31] has described an approach that

extends measurements to less than 80µs, there is still a need for alternative instrumentation

14
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that enables facile measurements of low relaxation times for the wide variety of weakly vis-

coelastic liquids used in many industries such as paint coating, atomization, food and consumer

products, inkjet deposition and microfluidic diagnostics used with biopolymeric fluids.

One potential method for probing the elongational properties of a non-Newtonian fluid is to

follow the dynamics exhibited during the capillary breakup of a liquid jet. From the pioneering

works of Savart [56], Plateau [57] and Rayleigh [58] on the breakup of Newtonian jets there has

been a great interest among many researchers in understanding all aspects of this phenomenon

[1,59]. Although the nonlinear capillary phenomenon driving jet breakup has motivated many

to develop imaging techniques to capture the phenomena [60–62] it has also prompted a few

researchers to use the process as a tensiometer for evaluating the surface properties of di↵erent

liquids [63, 64]. Little work focused on non-Newtonian e↵ects until Middleman and cowork-

ers [65–67] studied the e↵ects of viscoelasticity on jet breakup. Their linear stability analysis

showed that viscoelastic e↵ects enhance the instability in the linear (small strain) region. This

appears to be a counterintuitive result; however, later nonlinear studies [68] showed that while

viscoelasticity enhances the initial disturbance growth, in the nonlinear stage the elongation of

the polymer chains resist the capillary thinning process and thus the jet will breakup at longer

lengths/times compared to Newtonian liquids of comparable shear viscosities. This enhanced

resistance of the viscoelastic jet to breakup in the nonlinear region was studied experimen-

tally by Schümmer and Tebel [39, 69] by perturbing the jet at set frequencies and capturing

the resulting filament thinning behavior with high-speed photographic imaging. Their results

showed that it is possible to use measurements of the filament diameter evolution with time in

the thinning necks between beads to make estimates of the relaxation time of the fluid using

Eq. (10). Later studies by di↵erent authors [33,70–73] have further developed the idea of using

a thinning viscoelastic jet as an elongational rheometer.

Figure 7 shows the measured data from a jetting experiment performed with a very dilute low

molecular weight PEO solution (300K PEO c/c⇤ = 0.036). Snapshots of the jet are captured

in both the linear and nonlinear regions at di↵erent times (Figure 7(a)). The imposed pertur-

bations at the nozzle lead to the appearance of waves which are advected to the downstream

with a velocity equal to the jet velocity (V
j

). As the jet travels further away from the nozzle

and the amplitude of the wave grows with time, one can select a Lagrangian point (e.g. a point
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P at the bottom of a trough) traveling with the jet speed (Z
P

= V
j

t) and record its diameter

evolution D
p

(t) with time (Figure 7(b)). As we show in Figure 7(b) this capillary thinning of a

fixed Lagrangian element can be described in both the linear and non-linear regions. The initial

linear variation is a consequence of the growing Rayleigh-Plateau instability and is described

by the predictions from linear stability analysis (dashed line in Figure 7(b)):

D
P

/D0 = 1 � � exp(↵t) (11)

in which � is the ratio of the imposed initial perturbation to the jet diameter (� ⌘ d
perturbation

/D0)

and ↵ is the growth rate of the instability derived from the dispersion relation for the Rayleigh-

Plateau instability for viscoelastic jets (the details of the linear stability analysis [74] are re-

viewed in Appendix B).

As the instability grows and the filament diameter decreases further, the local trough evolves

into a cylindrical filament with an almost uniform diameter. The values of jet diameter in this

nonlinear region no longer agree with linear stability predictions (the dashed line in Figure

7(b)) and the data suggests higher resistance and a slower decay with time compared to the

predictions from linear stability analysis. It is also evident that the diameter of the neck de-

creases in an exponential manner (the solid line fitted to the data is D
P

/D0 ⇠ exp(�t/3⌧
E

)).

Regression of the data to this expression gives a relaxation time ⌧
E

= 60µs. At the same time

one can examine the extensional kinematics in the filament and track the values of strain rate

with time as shown in Figure 7(c). The strain rate of the Lagrangian element P as it is con-

vected along the jet is given by ✏̇
P

⌘ (�2/D
P

(t))dD
P

/dt. The value starts to grow with time in

the linear region as the material element in the wave trough contracts until the point at which

the nonlinear region of deformations (t � 0.6ms) starts. In the nonlinear region the value of

strain rate experienced by the Lagrangian element reaches a plateau at ✏̇
P

= 1.1⇥104s�1 which

corresponds to a constant critical Weissenberg number, Wi ⌘ ⌧
E

✏̇ = 2/3. These results are in

good agreement with both previous experiments and solutions/simulations in the literature for

the nonlinear behavior of viscoelastic filaments during the jet breakup [33,68,70,75,76].

While the agreement of the measured data with the established linear theory of jets is promis-

ing, the more important aspect is the ability of ROJER to serve as an elongational rheometer
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that can probe very small relaxation times (down to approximately 60µs). There are several

advantages in using ROJER for these very dilute solutions compared to a more conventional

method such as CaBER; firstly by decreasing the relevant length scale in the instrument from

6mm (the plate diameter in CaBER) to the initial nozzle diameter (2R0 = 150µm in RO-

JER) the inertio-capillary time-scale is reduced by a factor of almost 250. This means that,

in principle, ROJER measurements of material relaxation times are possible for any polymeric

solution if the relaxation time is of order of few capillary timescales, which will be O(10µs)

or higher for the current nozzle size (⌧
R

⇠
p

⇢R3
0/� ⇠ 10µs for R0 = 75µm). This simple

geometric modification enables measurements over a wider range of relaxation times and vis-

cosities, for which conventional capillary thinning experiments are unable to properly operate

(see [21] for an operation map of CaBER). One may argue that this would have also been

possible by decreasing the plate size and consequently the capillary timescale in CaBER but

it is important to recognize that in a CaBER device there is an initial stage during which

the initial gap opens to the final gap separation, and this distance should be of order of the

plate size (D0) if we expect the capillary column to become unstable and undergo capillary

breakup. If this transition does not happen fast enough compared to the speed of capillary

thinning then the filament will breakup during the initial separation of the plates and CaBER

measurements fail. Thus by simple scaling analysis one will find a lower limit for the speed of

the plates in CaBER:
p

�/⇢D0  V
CaBER

. The required minimum speed for the plate actua-

tor in CaBER becomes very large as the plate radius shrinks and with the current technology

on CaBER instruments the rise velocity can not exceed 0.1ms�1 without positional overshoot

issues. This instrumentational limit on the rise speed, dictates a minimum filament diameter

below which the filament may breakup during the rise and before the start of measurements

(D
min

⇠ �/⇢V 2
CaBER

which will be around 6mm for the a liquid like water and a velocity

V
CaBER

⇠ 0.1ms�1). Furthermore, decreases in the characteristic radioal length scale of the

test sample (from CaBER to ROJER) reduces inertial e↵ects in the fluid and helps us to probe

viscoelasticity on much smaller material timescales. Additional benefits in ROJER analysis for

very dilute solutions are discussed in the subsequent two sections.
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6 Linear Stability Analysis of Viscoelastic Jets and Satellite

Drop Formation

The principles of jet extensional rheometry for measuring fluid relaxation times seem fairly

straightforward; however there have been many reports in the literature [33, 77, 78] that also

describe satellite formation in both Newtonian and viscoelastic jets. The appearance of large

satellite droplets must be minimized in ROJER applications as they modify the desired ex-

tensional thinning kinematics. Numerical studies by Ardekani et al. [76] explored nonlinear

jet thinning and approach to breakup using the Giesekus constitutive equation to describe the

complex fluid rheology. They showed that there is a narrow band of wavenumbers for which

periodic forcing of the jet will not lead to formation of satellite droplets and this is the optimal

range for elongational rheometry. To investigate the appearance of satellite droplets in a rep-

resentative viscoelastic liquid (a dilute solution of PEO 300K,c/c⇤ = 0.03), a range of di↵erent

perturbation frequencies (leading to seven di↵erent wavenumbers k
i

= 2⇡f
i

/V
j

) were picked

and the jet breakup was visualized for all di↵erent wavenumbers. As expected from theoretical

predictions for the inviscid case [32,58,79], the results show that the perturbations are linearly

unstable and grow with time if the dimensionless wavenumber (kR0 ⌘ 2⇡fR0/V
j

) lies between

zero and one (i.e. 0  kR0  1). The jet is stable for shorter waves (higher frequency). By

fitting a function of the form prescribed by Eq. (11) to the initial data for each wavenumber

we can determine the corresponding value of the growth rate (↵) and the initial perturbation

amplitude (�) at that wavenumber. The experimental values for the growth rate are plotted

at di↵erent wavenumbers (blue squares) in Figure 8. The dashed line is a plot of the predic-

tions from the linear theory for the stability of a viscous jet [32], at corresponding values of

Ohnesorge number for our tests, and the solid line is a plot of the dispersion curve described

by Brenn et al. [74] for the linear stability of a viscoelastic jet at identical conditions to the

experiments performed (i.e. equal values of the Deborah, Weber and Ohnesorge numbers). It

is worth mentioning that the solid line also includes the e↵ects of the inertia of the external

air phase on the jet instability and thus requires specification of the value of the Weber num-

ber. As predicted by linear theory for viscoelastic jets [66,68,74] the polymer solution is more

unstable compared to a viscous Newtonian jet having the same values of the shear viscosity.
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The measured values of growth rate in the linear region match very well with the theoretical

predictions for the viscoelastic jet.

The fact that the initial stage of the instability is well described by the linear theory can be

further appreciated by investigating the final stages of jet breakup when the deformation be-

comes strongly nonlinear. Since the perturbation of the peizoelectric actuator can be tuned

over a wide range of frequencies then at any given velocity for the jet (V
j

) we can perturb the

jet over a wide range of wavenumbers (k = 2⇡f
piezo

/V
j

). This allows us to ensure that the

jet is perturbed in the vicinity of its most unstable wavelengths and a monochromatic distur-

bance will thus grow rapidly with time such that the nonlinear region can be repeatedly imaged

with strobe illumination in a periodic manner. Experiments and computations [76] both show

that viscoelastic jets tend to generate satellite droplets if the wavenumber is less than the

most unstable one (i.e. kR0  (kR0)max

). The size of these satellite droplets decrease as the

wavenumber becomes close to (kR0)max

until they finally vanish if the wavenumber exceeds the

critical value (the montage of images in Figure 8 illustrate this trend). These observations and

computations assist in optimal operation of the jet rheometer and we avoid formation of satel-

lites by perturbing the jet in the narrow band of wavenumbers between the most unstable one

and the margin of stability ((kR0)max

 kR0  1). This is essential for precise measurements

of rheological material parameters such as fluid relaxation times.

7 Measurements of Relaxation Time

Once the jet is perturbed at the desired frequency we can track the evolution in the filament

profile that is contained in a moving Lagrangian box (the red box in Figure 9(a)) that translates

downstream with the jet velocity (V
j

) so that Z(i) = Z(i)
0 + V

j

t(i) is the locus of each pixel in

the box. The thin translating ligament in the box, which is connected to the two adjacent wave

peaks, will have a history identical to a stationary filament in CaBER that connects the two

hemispherical end caps to each other. This is illustrated in Figure 9(b) by taking the filament

profiles containd in the descending red box shown in Figure 9(a) and arranging them in a time

sequence array (time in this figure is equal to the time of flight for the moving Lagrangian

box and is simply calculated by t ⌘ z/V
j

). The blue squares in Figure 9(c) show the decay
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of the filament in both the linear and the non-linear region. The dashed lines again show the

predictions for the exponentially growing perturbation from linear theory:

D
min

/D0 = 1 � � exp [↵(De, Oh, We, kR0)] (12)

in which the growth rate at the tested conditions (De, Oh, We, kR0) is directly calculated from

the theoretical dispersion relationship coming from the linear stability analysis of Brenn et al.

[74] (see appendix B) and the values of � lie in the range 0.001  �  0.01.

On the other hand the solid line fitted to the data in Figure 9(c) is an exponential fit of the

form in Eq. (10). Fitting this model to the data gives us a value of 60µs for the relaxation time

(⌧
E

). The dynamics of the thinning filament in ROJER are thus identical to the elastocapillary

balance established in CaBER and this rheological test can be viewed as a “flying CaBER”

which translates downstream with the speed of the jet. The important distinguishing feature

of ROJER is the fact that by avoiding the inertia-related issues inherent in CaBER tests we

can now measure extremely low relaxation times.

From this analysis it is evident that the externally imposed velocity of the jet serves only as a

flow parameter that sets the translation speed of the reference frame. If the ROJER instrument

is to be thought of as an extensional rheometer then the analysis must be Galilean-invariant

and the measured relaxation times should not depend on the jet velocity. To check this, a series

of tests were performed at three di↵erent velocities (and consequently di↵erent Weber numbers)

for the same test fluid (PEO-300K-0.01 wt.%). The results are summarized in Figure 9(c) and

one can see that for each test the decay of the filament in the non-linear region matches well

with the expected exponential decay and the measured relaxation time for each test is equal

to 60 ± 3µs.

This invariance is expected to be valid over a wide range of Weber numbers. If the imposed jet

velocity is in the vicinity of the dripping to jetting transition (i.e. We
j

 O(1)) then the force

balance in the thinning filament will be di↵erent and the analysis used here must be modified

to a new balance which involves the weight of the drop; this has been discussed in detail by

Clasen et al. [80]. Conversely, at very high velocities, the aerodynamic forces of the external

air column excite the jet to become unstable in di↵erent wind-induced modes compared to the
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well-known Rayleigh-Plateau mode [81]. This transition happens at gas-phase Weber numbers

(We
gas

⌘ ⇢
gas

V 2
j

/� ⇡ 0.4) which in our experiments with water (for which ⇢
w

/⇢
a

= 1000)

correspond to liquid-phase Weber numbers higher than We
j

= 400.

Measurements of relaxation times were also performed for all of the other PEO-based solutions

and the resulting values are tabulated in Table 1. Figure 10 shows both a montage of images

(Figure 10(a)) and filament diameter data (Figure 10(b)) for two solutions of PEO of di↵erent

molecular weights (300K and 1000K) but at similar levels of dilution (c/c⇤ = 0.36 for 300K PEO

and c/c⇤ = 0.37 for 1000K PEO). The evolutions in the neck diameters in the nonlinear region

each show an exponential decay that can be fitted by Eq. (10) (solid lines in Figure 10(b)).

As can be seen from the montage of images and the corresponding diameter measurements the

lower molecular weight fluid jet (green squares) thins more rapidly, as compared to the higher

molecular weight (red triangles). This is reflected in the values of the relaxation times for these

two solutions. For the 1000K PEO solution (red triangles) we obtain a value of ⌧
E

= 2.8⇥10�3s

for the relaxation time, whereas the 300K solution (green squares) at a similar value of c/c⇤

shows a much lower relaxation time with ⌧
E

= 3.6 ⇥ 10�4s. The longest relaxation time in

dilute polymeric solutions can be estimated from the molecular weight of the polymer using

Rouse-Zimm theory [82]:

⌧
Zimm

⇠ [⌘]⌘
s

M
w

RT
(13)

in which [⌘] is the intrinsic viscosity which is connected to the molecular weight through the

Mark-Houwink expression:

[⌘] = 0.072M3⌫�1
w

(14)

where the solvent quality parameter is ⌫ = 0.55 for PEO solutions in glycerol water mixture

[21]. Combining Eqs. (13) and (14) it is apparent that the longest relaxation time for dilute

solutions should scale with molecular weight as:

⌧
E

⇠ M3⌫
w

(15)

This scaling is valid for very dilute solutions (c/c⇤ << 1) but Tirtaatmadja et al. [83] have

shown that even at higher (constant) values of c/c⇤ the dependency on molecular weight remains
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similar to Eq. (15). Based on these scaling arguments we expect that for solutions tested in

Figure 10(b) the ratio of relaxation times should be: ⌧1000K/⌧300K = (1000/300)3⇥0.55 = 7.30.

The experimental measurements show a ratio of ⌧1000K/⌧300K = 2800/360 = 7.77, and are thus

in good agreement within the expected accuracy of the reported values of solvent quality and

polymer molecular weight.

8 Measuring Extensional Properties of Dilute Solutions

To illustrate the capabilities of ROJER, we next focus on studying the e↵ects of the extensional

viscosity on the atomization of di↵erent dilute polymer solutions, as illustrated in Figure 11.

Measurements of the steady shear viscosity do not show any significant di↵erence between

the tested solutions but ROJER visualization of the filament thinning dynamics with time do

show a significant change even for very dilute solutions. This di↵erence can be detected by

comparing the evolution in filament diameter for a fixed material element in the viscoelastic

liquid (red filled circles in Figure 11(c)) with the corresponding Newtonian solvent (blue open

circles in Figure 11(c)). This di↵erence in thinning can be quantified, as discussed in detail

in previous sections, by fitting the exponential decay in the viscoelastic case (black solid line

in Figure 11(c)) and the linear visco-capillary thinning observed in the solvent (dashed line in

Figure 11(c)). From the fits one can evaluate the values of strain rate and the tensile stress

di↵erence in the thinning material element from the following expressions [47]:

✏̇
P

=
�2

D
P

(t)

dD
P

(t)

dt
(16a)

�⌃(t) = ⌃
zz

� ⌃
rr

= 2�/D
P

(t), (16b)

Using the relationships in Eqs. (16a) and (16b) explicit relationships can be found for the

time-varying apparent elongational viscosity in the thinning jet:

⌘+
E

⌘ ⌃
zz

� ⌃
rr

✏̇
P

=
��

dD
P

(t)/dt
(17)

From this expression it is apparent that by measuring the evolution in the filament diameter

with time for a fixed material point P we can calculate both the strain rate and the instanta-
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neous elongational viscosity at that specific strain rate. Using the ROJER data from Figure

11(c) the corresponding values of elongational viscosity are calculated and plotted versus strain

rate for the PEO-300K-0.01 wt.% fluid. Figure 11(d) shows a comparison between the shear

(triangles) and elongational (circles) viscosity for the viscoelastic solution (red filled symbols)

and the Newtonian solvent (blue open symbols). The shear viscosity shows negligible increase

with addition of dissolved polymer and no dependence on shear rate; by contrast there is a

considerable increase in the extensional viscosity of the PEO solution. The Newtonian solvent

shows a constant value of elongational viscosity equal to 3⌘
s

which is is in agreement with the

expected Trouton ratio for Newtonian liquids [42]. The PEO solution shows very similar values

of the elongational viscosity to the solvent at low strain rates, but then starts to increase when

the strain rate approaches a critical value, which is close to the relaxation rate of the polymer

chains in the elongational flow (⌧�1
E

). The Weissenberg number of the flow at this point corre-

sponds to the coil to stretch transition for the dissolved polymer chains, Wi = ⌧
E

✏̇ ' 0.5 [84].

The experimental results for the PEO solution also show good agreement with the FENE-P

(finite extensibility nonlinear elastic dumbbell) model proposed by Peterlin [84, 85] in both

shear (dashed line in Figure 11(d)) and extension (solid line in Figure 11(d)). The parameters

used in evaluating the predictions of the FENE-P model are the measured values of zero shear

viscosity (⌘0), the solvent viscosity (⌘
s

) and the relaxation time (⌧
E

) along with the extensi-

bility parameter (L ' 27) which is computed from the known molecular parameters for the

PEO chains [37]. The FENE-P model predicts negligible change in the shear viscosity for the

dilute solution but a considerable increase in the extensional viscosity for Wi � 0.5. Due to

the nonlinear nature of the FENE springs the extension of the individual polymer chains are

constrained by the extensibility parameter (L). Once fully extended the chains act like an

anisotropic suspension of rigid rods and the extensional viscosity in the bulk reaches a plateau

value at high strain rates (lim
⌧E ✏̇�1 ⌘

E

! 3⌘
s

+ 2 (⌘0 � ⌘
s

) L2).

The enhanced resistance of the viscoelastic solution to stretching in elongational flows plays

a key role in controlling the dynamics of the filaments close to the breakup point from the

rapidly deforming liquid core during the atomization process (see Figure 1(b and d)). This

additional resistance leads to the appearance of elongated filaments connecting the large beads

to each other. A signature of this e↵ect can be seen by looking at snapshots of the atomized
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droplets in any ligament-mediated atomization process such as those shown in Figure 11(a).

Images of the atomized viscoelastic liquid sample always show greater numbers of both large

and small droplets compared to the Newtonian solutions (compare Figures 11(a) and 11(b));

i.e. the droplet size distribution is changed due to the extensional rheology of the test fluid. To

explore the e↵ects of viscoelasticity we next calculate the first moment of this size distribution

to understand how the average droplet size < d > depends on the intrinsic Deborah number of

the test fluid.

9 E↵ect of Extensional Properties on Atomization

As noted in the introduction, the increase in the average droplet size observed during atomiza-

tion of viscoelastic liquids is a key feature that has been observed by many previous authors in

the literature [4,15,18,72,86–88] but most previous attempts to connect this increase with the

fluid relaxation timescale have not been very successful [4, 18, 72, 87]. This has been primarily

due to the fact that the proposed models can not capture one other key feature, which is the

saturation of the e↵ect at large values of the relaxation time. Previous analyses have argued

that the droplet average size should be proportional to the wavelength of the final instability

process during the atomization event, and a combination of linear stability analyses for the

di↵erent instability modes in the air spray should predict the measured values for the mean

droplet diameter < d >[2,89]. Although this scaling may work for inviscid jets, recent work by

Marmottant and Villermaux [3] for viscous Newtonian fluids shows that the e↵ects of viscosity

on the lifetime of the ligaments that form in the final stages of detachment from the core liquid

jet play a dominant role in setting the average droplet size in the spray. In their tests, Marmot-

tant and Villermaux showed that by increasing the Newtonian viscosity of the atomized fluid,

the thinning neck that connects elongating ligaments to the core liquid jet will have more time

to breakup. This viscous retardation of the capillary thinning and breakup process enables the

filament to uniformly elongate into the surrounding air phase due to the external shear stresses

exerted by the air stream. This additional extension reduces the thickness of the ligament

(which controls the average droplet size following breakup). More viscous liquids thus form

longer and thinner filaments, which also agrees with our common experience of long and thin
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syrup filaments that arise when we pour such liquids from relatively high heights. During this

thinning process the volume of the filament remains constant (and equal to the initial volume)

i.e. V (t) = V0 ⇠ d3
l

. What Marmottant and Villermaux [3] show can be summarized in the

following scaling for the average droplet sizes based on the breakup time of the neck of the

filament:

< d > /d
l

' t
a

/t
b

(18)

in which d
l

is the initial characteristic size of the ligament before the elongation process, t
b

is the

breakup time of the neck of the filament and t
a

⌘ (d
l

/u
air

) (⇢
liquid

/⇢
air

)1/2 is a characteristic

timescale for the acceleration arising from the air dragging the ligament away from the core

liquid jet. Eq. (18) shows that the average diameter and the neck breakup time are inversely

proportional since the viscous fluid ligament will continue to uniformly stretch while the neck

is thinning with time.

In order to understand this mechanism better, especially for viscoelastic solutions, we consider

the experiment shown in Figure 12, which is designed to emulate sudden extensional e↵ects in

the spray. Viscoelastic liquid samples with fixed initial volume (V0) were placed between the

two plates of the CaBER and the two plates were separated from each other at relatively high

strain rates to mimic the fast extensional action of the airstream during the ligament stretching

and subsequent atomization phenomena. A similar configuration has been used by Villermaux

and his coworkers in mimicking fragmentation processes for Newtonian fluids [3, 90].

To analyze the e↵ects of viscoelasticity on the average droplet sizes, a simple scaling model

which is similar to the one used by Marmottant and Villermaux [3], is introduced in Appendix

C. The new model, using the observations from the step stretch experiment, gives a scaling for

the average droplet size observed in air-assisted atomization of viscoelastic liquids:

< d >
V E

< d >
N

=
(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

� ln (1 + cDe
Rl/3Oh

Rl)
(19)

Details of the analysis are discussed in appendix C. The single unknown constant c in this

analysis is expected to be of order unity.

Marmottant and Villermaux [3] have shown that for a Newtonian liquid measured average

diameter and the initial ligament scale d
l

are related by: < d > /d
l

= We�1/2
dl

=
�
�/⇢u2

air

d
l

�1/2
.
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Using this expression and the measured value of average droplet size ,< d >
N

, for a Newtonian

liquid at a typical air speed of u
air

' 100ms�1 we can evaluate the ligament size as d
l

=

2R
l

' 170µm. Because elastic e↵ects are unimportant at early stages we assume this value

is unchanged for the weakly elastic polymer solutions. We can plot the evolution in this

scaling model prediction (Eq. (19)) for di↵erent relaxation times (⌧
E

) measured using ROJER

and compare the model with the experimentally measured sizes from atomization tests. The

solid line in Figure 12 (b) shows the theoretical predictions from this simple model (with the

constant c = 4.1) compared with the measured average sizes for the tested viscoelastic solutions

normalized by the corresponding value for the Newtonian solvent under identical conditions

< d >
N

= 16µm. The model captures very well both the initial increase of sizes at low intrinsic

Deborah numbers (based on the length scale of the elongated ligament De
Rl = ⌧

E

/
q

⇢R3
l

/�)

and also the saturation observed at higher De
Rl . The same plot with a linear ordinate axis

and a logarithmic abscissa is shown as the inset image in Figure 12 (b) and it is clear that the

average drop size changes approximately linearly with ln(De). For the cases considered here

⌧
R

=
q

⇢R3
l

/� = 101µs, ⌧
vis

= 4µs and Oh
Rl = 0.04. Even for a maximum fluid relaxation

time of 6000µs, the logarithmic term is smaller than the initial terms
⇣
(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

⌘

in the denominator, and thus the expression in Eq. (19) can be Taylor-expanded as:

< d >
V E

< d >
N

' 1 +
ln (1 + cDe

Rl/3Oh
Rl)

(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

(20)

which in the limit of cDe
Rl/3Oh

Rl � 1 is equivalent to a linear dependency of the mean drop

size < d > on ln(De
l

) (1.9  cDe
Rl/3Oh

Rl  92.6 in our tests) which is in good agreement

with our experimental observations.

10 Conclusions

We have shown that a periodically forced viscoelastic jet combined with a strobe-based digital

video imaging system can form the basis of an extensional rheometer that is suitable for studying

weakly viscoelastic fluids. Operation of this jetting rheometer requires an understanding of the

interplay of viscous, inertial and elastic forces in the jet and we therefore refer to this as a

Rayleigh-Ohnesorge Jet Extensional Rheometer (ROJER).
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The shear and extensional rheology of several dilute PEO solutions were studied using the

ROJER. Flow visualization studies of the performance of these fluids in air-assisted atomization

were also performed. The shear rheology of these dilute polymeric solutions did not suggest any

significant di↵erence in their atomization performance whereas both the flow visualization and

drop diameter measurements from our spray tests showed an increase in the mean drop size.

The extensional rheology for these solutions was measured using both CaBER and ROJER and

we showed that due to the inertia-capillary timescale there is a lower limit for measurements of

relaxation times in a CaBER device. This limit can be circumvented by studying the dynamics

of capillary breakup using the ROJER device because of the much smaller length and time

scales involved. Measurements obtained from ROJER in terms of both linear stability and

nonlinear elasto-capillary thinning analysis of the jet were verified using known theoretical

and numerical predictions and it was shown that quantitative agreement can be obtained with

existing stability theory. The values of relaxation times extracted from this analysis were

used to quantify the performance of the test fluids in the air-assisted atomization process.

Using our observations, a new and relatively simple model was developed for understanding

the viscoelastic dynamics of the ligament thinning process close to their final detachment from

the core liquid jet. Using the measured relaxation times within the framework of the suggested

model a physical prediction for the average droplet size < d >
V E

during atomization of a

weakly viscoelastic fluid was obtained and the experimental results with four di↵erent PEO

solutions were found to agree well with the model predictions.

This study helps us understand the subtle e↵ect of extensional rheology on the breakup and

the atomization of weakly viscoelastic liquids which are widely used in many biological and

industrial applications. For Newtonian liquids, two di↵erent scalings for ligament sizes are

suggested based on linear stability analysis [89, 91]. The di↵erence between the two scalings

arises from the Rayleigh Taylor stability analysis, in which the direction of air acceleration

relative to the liquid/air interface can change at di↵erent air/liquid flow rate ratios. The

competing e↵ect of viscosity and surface tension on the average droplet size in an air atomizer

can be understood by a simplified version of the original scaling from Aliseda et al. [89]:

d
l

D0
' 1.2

✓
�

⇢u2
air

D0

◆1/2 h
1 + We1/6Oh2/3

i
(21)
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where d
l

is the size of ligament being accelerated away from the jet and the Weber and Ohne-

sorge numbers in Eq. (21) are calculated based on the diameter of the nozzle D0.

Marmottant and Villermaux [3] have shown that due to the viscous slowing of the filament break

up, viscous Newtonian filaments stretch more than inviscid ligaments do in the air stream. Us-

ing a similar approach to the analysis carried out in Appendix C one can suggest a scaling for

the average droplet size for the atomization of viscous Newtonian liquids:

< d >
N

d
l

=
(
p

8c/6)Oh�1
Rl

(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

=
(
p

8c/6)

(
p

8c/6) + Oh3
Rl

(22)

where now the value of the Ohnesorge number is based on the characteristic length scale in the

ligament. We also have shown how the final average droplet size and the ligament thickness d
l

is modified in the presence of weak fluid elasticity through a result of the form shown in Eq.

(19). This expression is found to agree well with our experimental measurements for a number

of PEO solutions.

The simplest way to include all of the competing e↵ects of viscosity, surface tension and elas-

ticity on overall mean droplet sizes is by combining Eqs. (21), (22) and (19) which results in

an expression of the form:

< d >
V E

D0
' 1.2

✓
�

⇢u2
air

D0

◆1/2 h
1 + We1/6Oh2/3

i " (
p

8c/6)Oh�1
Rl

(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

� ln (1 + cDe
Rl/3Oh

Rl)

#

(23)

This suggested scaling is the first attempt to address in a complete way the di↵erent e↵ects

of fluid viscosity and elongational relaxation time on the average droplet size produced in air

atomization for weakly viscoelastic solutions. The model incorporates all of the essential fluid

properties and geometry dimensions. Quantitative predictions from this model agree well with

experimental results for the four tested PEO solutions. A similar combination of classical linear

stability theory, scaling arguments and benchmark experiments were used by Middleman and

coworkers [65,66] to systematically understand the e↵ects of surface tension, viscosity and weak

elasticity on the breakup length of viscoelastic jets. Jet rheometry of mobile liquids using the

ROJER instrumentation thus provides a pathway to realize the concept originally outlined

by Walters some 30 years ago of “...a flow dominated by extension that can be analyzed in
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a quantitative fashion to extract material functions that are rheologically meaningful”. The

rheologically meaningful functions here are the extensional relaxation time ⌧
E

(c, M
w

) and the

instantaneous apparent Trouton ratio ⌘+
E

(✏̇, t) /⌘0. We have demonstrated that quantitative

measurements of relaxation times as small as 60µs can help us understand the key role of

nonlinear viscoelasticity in modifying the mean droplet size in an air-assisted atomization

process. It will be of interest to see if these rheological properties can also help understand

other features of this important industrial process such as changes in the shape and breadth of

the droplet size distribution in the final spray fan.
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Appendix

A Deriving the Strobe Factor

If a motion is periodic with a characteristic frequency f then with a suitable choice of initial

time to specify the phase the position of the object x(t) can be described by:

x(t) = A0 sin(2⇡ft) (24)

where A0 is the amplitude of oscillation. The velocity of the object at a given time t0 can be

derived by di↵erentiating x(t) with respect to time:

V
r

(t0) = 2⇡fA0 cos(2⇡ft0) (25)

Now when the observer is monitoring the motion with a prescribed frequency close to f (e.g. the

frequency of a strobe light pulsed at a frequency close to f) the apparent velocity calculated from

observation of the point of two consecutive instants in time to the observer will be di↵erent from

the real velocity. Lets say that the observer is tracking the object displacement with a frequency

f
obs

= f��f then the apparent motion from time t0 to t0+�t in which �t = 1/f
obs

= 1/(f��f)

will be:

x(t0 + �t) � x(t0) = A0 [sin (2⇡f(t0 + �t)) � sin(2⇡ft0)] (26)

which can be expanded to:

A0 [sin(2⇡ft0) cos(2⇡f�t) + cos(2⇡ft0) sin(2⇡f�t) � sin(2⇡ft0)] (27)

In the limit of �f/f << 1 it can be shown by Taylor expansion of the trigonometric terms in

Eq. (27) that to first order in �f/f :

sin (2⇡f�t) ' 2⇡(�f/f)

cos (2⇡f�t) ' 1
(28)
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thus the relative apparent motion for th observer can be estimated as:

x(t0 + �t) � x(t0) ' 2⇡A0(�f/f) cos(2⇡ft0) (29)

from which the apparent velocity can be calculated by:

V
app

(t0) =
x(t0 + �t) � x(t0)

�t
⇠ 2⇡�fA0 cos(2⇡ft0) (30)

Comparing the result for apparent velocity from Eq. (30) with the real velocity from Eq. (25)

shows that the apparent motions seems slower than the real one by a factor equal to �f/f .

B Details of the Linear Stability Analysis

Brenn et al. [74] derived the dispersion curve for an axisymmetric viscoelastic jet using coro-

tational Oldroyd eight constant model as the constitutive equation [16]. We retain only the

terms that give the Oldroyd-B model. After linearizing the governing equations for conser-

vation of mass and momentum in cylindrical coordinates and applying the right kinematic

and dynamic boundary conditions at the liquid/air interface, Brenn et al. [74] show that the

following dispersion relation can be derived for the linear stability of the jet:

⌦2
r

kR0

2


I0(kR0)

I1(kR0)
+

⇢
g

⇢
l

K0(kR0)

K1(kR0)

�
+ ⌦

r

(kR0)
2Oh

1 + (�2/�1)De⌦
r

1 + 1De⌦
r

⇥


2kR0
I0(kR0)

I1(kR0)

✓
1 + (kR0)

2Oh

⌦
r

1 + (�2/�1)De⌦
r

1 + De⌦
r

◆
� 1 � 2lR0

I0(lR0)

I1(lR0)
(kR0)

2Oh

⌦
r

1 + (�2/�1)De⌦
r

1 + De⌦
r

�

=
(kR0)2

2

�
1 � (kR0)

2
�

+ C
⇢
g

⇢
l

k3

R3
0

We
K0(kR0)

K1(kR0)

(31)

in which ⌦
r

= ↵
r

⌧
R

is the dimensionless growth rate (scales with the capillary timescale

⌧
R

⌘
p

⇢
l

R3
0/�), kR0 is the dimensionless wavenumber, ⇢

g

and ⇢
l

are respectively the gas and

liquid density, Oh = ⌘0/
p

⇢
l

�R0 is the Ohnesorge number, De = �1/
p

⇢
l

R3
0/� is the Deborah

number, I
n

and K
n

are the modified Bessel functions, �2 is the retardation time �2 = ⌘
s

�1/⌘0

and �1 is the relaxation time in the Oldroyd-B model. The constant C is an empirical correction

factor to incorporate the aerodynamic forces on the jet and has a constant value of C = 0.175
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according to [74]. Here l is a modified wavenumber defined as:

l2 ⌘ k2 +
⇢(↵ + ikV

j

)

⌘(↵)
(32)

where ↵ = ↵
r

+ i↵
i

is the (complex) growth rate and:

⌘(↵) = ⌘0
1 + �2(↵ + ikV

j

)

1 + �1(↵ + ikV
j

)
(33)

The dispersion relation shown in Eq. (31) incorporates the e↵ects of the air/gas flow in the

vicinity of the jet and the results converge to the stability analysis carried out by Goldin et al.

[75] in the limit of zero air/gas e↵ect, i.e. when ⇢
g

goes to 0.

Eq. (32) is a nonlinear dispersion relation and at fixed values of De, Oh, We and for a given

value of k the root which is ⌦
r

= ↵
r

⌧
R

can be found using a simple numerical solver in Matlab.

Results at di↵erent values of kR0 are plotted and compared with measurements in Figure 8

(black solid line).

C Analysis of the E↵ects of Relaxation Time on Average Droplet

Size in a Viscoelastic Spray

As discussed in Section 9 in order to emulate the dynamics of ligaments close to pinch o↵ in

the atomization process (see Figure C.1(a) and C.1(b)) a sudden “step-stretch” test has been

devised using the CaBER platform in conjunction with high speed video image analysis. In this

test we impose a very rapid axial displacement of the upper plate in the CaBER device. Because

of fluid inertial e↵ects, the liquid sample cannot respond rapidly enough to form a uniform liquid

bridge. This may preclude analysis of the self-similar capillary thinning required in CaBER

analysis, but it closely emulates the rapid formation and acceleration of fluid ligament that

can be seen in the jet image shown in Figure C.1(a). This process has been considered in

detail by Marmottant and Villermaux [3] for Newtonian fluids, and we follow their analysis for

viscoelastic fluid ligaments. Specially we observe the formation of a primary or main ligament

L
ligament

(t) (or L
CaBER

(t) in our replicated experiment) that is connected by a thinning neck

region (of diameter 2rCaBER

n

(t)) to the primary drop (or hemispherical end-cap region in our
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replicated experiment). Figures C.1(c) and 12(a) in the main text show a montage of images for

a step stretch test with the 300K-PEO-0.01 wt.% solution. For an inviscid fluid, Marmottant

and Villermaux [3] show that the lifetime of this neck is independent of the stretch rate and

depends only on the inertio-capillary timescale of the initial ligament. In our notation (based

on radius rather than diameter) this lifetime is ⇠
p

8⌧
R

(see Figure 13 in [3]).

Repeating the test for di↵erent viscoelastic solutions shows that in all of the step-stretch tests

the additional viscoelasticity increases the lifetime of the neck region and the neck clearly forms

an elongated microfilament close to its pinch o↵ (see for example the image at t = 23.3ms

in the test). This means that the local flow in the neck must reach a critical strain rate

close to break up that corresponds to a critical Weissenberg number of Wi ⇠ O(1). The

interesting result from our video imaging observations is the fact that before reaching this

critical Weisenberg number the neck contributes little to the overall force balance and serves

principally to maintain the integrity of the primary ligament fixed at the bottom/top. In the

early images of Figure C.1(c) (i.e. for times t  23ms) it is clear that the primary ligament

continues to stretch (i.e. dL
CaBER

/dt > 0). However when the neck suddenly pinches down,

and the extensional flow in the neck reaches the critical Weissenberg number, the main ligament

is e↵ectively isolated from the deformation being imposed at the end plates. The main ligament

no longer elongates (i.e. dL
CaBER

/dt ! 0). A capillary wave now starts to propagate along

the isolated ligament and leads to an increasingly corrugated shape that eventually fragments

into droplets. This result, repeatable over many tests, is distinctly di↵erent than observations

for viscous Newtonian liquids, in which the main ligament and the thin connecting neck both

thin down continuously under a visco-capillary balance such that the extensional deformation

is a rather uniform process along the ligament axis. By contrast for viscoelastic solutions, when

the local flow inside the neck reaches an elasto-capillary balance then the resulting deformation

is located in the (very thin) neck, rather than in the primary ligament, and the main body of

the ligament will experience negligible subsequent deformation.
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  t = 16.6ms   t = 20.0ms   t = 23.3ms   t = 26.6ms

 2rn
CaBER(t)

 LCaBER(t)

Neck  
Region 

Main Ligament 

dl  
Lligament (t)

Vair

(a)$ (b)$

(c)$

Figure C. 1: (a) Spray visualization image for the viscoelastic polymer solution (PEO-300K-
0.01 wt.% in solvent) close to the nozzle. A ligament can be seen in the blue box which
is elongated by the air stream (b) Schematic of the suggested model by Marmottant and
Villermaux [3] for analyzing the dynamics of the ligament, (reproduced with permission). (c)
Montage of images from sudden step-extension test for the viscoelastic solution (PEO-300K-
0.01 wt.% in the solvent) in a CaBER instrument. As soon as the flow in the neck region reaches
the elasto-capillary balance (t � 20.0ms) subsequent deformation is localized in the neck while
the main ligament stops stretching (dL

CaBER

/dt ' 0) and a capillary wave propagates along
the filament.

To understand the e↵ect of this sudden cessation of the stretching in the main ligament on the

average diameters of droplets formed in the spray in a quantitative way we need to analyze

the local flow in the neck more accurately. We assume that close to pinch-o↵, fluid inertia

will be negligible compared to viscous e↵ects and we start our analysis before the flow in the

filament reaches the elasto-capillary region (i.e. we start from the onset of a visco-capillary

pinch). The flow in the thinning neck will be a simple force balance between the viscous and

capillary stresses:

� 3⌘
2

r(t)

dr(t)

dt
= c�

✓
1

r(t)
� 1

R
l

◆
(34)

in which r(t) is the local midpoint radius of the thinning neck and R
l

= d
l

/2 is the radius of the

initial volume of fluid ligament undergoing the stretch. In this process the local neck is not (at
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first) a long cylindrical filament in which we can simply assume that the two principal radii of

curvature are R1 = r(t) and R2 ! 1 but instead is a short neck connected to a hemispherical

reservoir (or droplet) with radius of R
l

at the base; we therefore take the radii of curvature as

R1 = r(t) and R2 = �R
l

respectively. The coe�cient of proportionality appearing in Eq. (19)

is expected to be of order of unity. In their original analysis Entov and Hinch [50] take c = 1

and in the limit of long thin filaments (r/R
l

<< 1) the self-similarity solution or viscocapillary

thinning derived by Papageorgiou gives c = 0.42 [92]. We retain c as a single fitting constant

in our subsequent analysis. Integrating Eq. (34) yields an evolution equation for the diameter

of the neck in the visco-capillary region:

r

R
l

= 1 � exp

✓
c

6⌧
vis

⇣
t � t(V C)

b

⌘◆
(35)

in which ⌧
vis

is the characteristic visco-capillary timescale ⌧
vis

= ⌘R
l

/� and the visco-capillary

breakup time is shown as t(V C)
b

. In order to find an estimated value for the breakup time t(V C)
b

,

we only need to have a physical estimate for the radius at the start of the visco-capillary region

r(t = 0)/R
l

. Eggers and Villermaux [1] have shown that the visco-capillary region starts when

the local Ohnesorge number (⌘/
p

⇢�r(t)) becomes of order unity and using this assumption the

value of r(t = 0)/R
l

can be estimated to be around ⌘2/⇢�R
l

, thus one can find a meaningful

estimate for the breakup time of the ligament in the visco-capillary regime:

t(V C)
b

= �6⌧
vis

c
ln

�
1 � Oh2

Rl

�
⇠

6⌧
vis

Oh2
Rl

c
(36)

in which Oh
Rl is the initial(small) value of the Ohnesorge number based on the initial size of

the fluid ligament:

Oh
Rl ⌘

⌘p
⇢�R

l

⌧ 1 (37)

As a side note, by Taylor series expansion of Eq. (35), we can investigate the predictions of

the suggested model in the limit of times close to the break up (t(V C)
b

� t) ! 0 or equivalently

from a geometrical viewpoint in the limit of small values of r(t)/R
l

:

r(t)

R
l

= 1 �
✓

1 +
c

6⌧
vis

⇣
t � t(V C)

b

⌘
+ ...

◆
' c

6⌧
vis

⇣
t(V C)
b

� t
⌘

(38)
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This expression shows that the proposed scaling model leads, in the limit of thin and slender

neck region (r(t)/R
l

<< 1), to the expected similarity solution for viscocapillary thinning of

Newtonian slender filaments [92–94].

The addition of viscoelasticity has a significant e↵ect on this process, as shown in the montage

of images presented in Figure 12(a). The main ligament in the viscoelastic filament stops

stretching after the neck locally attains an elasto-capillary balance and the bulk of the remaining

deformation is localized in the thin neck after that point. The criterion for onset of this process

can be estimated by comparing the strength of the flow in the filament neck (⇠ ✏̇
neck

) to the

relaxation time of the liquid; when Wi
neck

⌘ ⌧
e

✏̇
neck

⇠ O(1) the polymer chains are extended

faster than the rate at which they can relax. Elastic stresses will therefore dominate and

grow and arrest the pinch-o↵ process. The subsequent deformation happens primarily in the

neck while being arrested in the main ligament (which will now undergo capillary recoil and

formation of a satellite drop). To find an estimate for the starting time of the elasto-capillary

region in the neck we use the visco-capillary model obtained above (Eq. (35)) and follow the

evolving strain rate; the stretching in the main ligament stops when the value of the strain

rate in the connecting neck reaches a critical value close to the relaxation rate of the polymer

i.e. the time at which ✏̇
neck

⇠ 1/⌧
E

. If we denote this time by t(EC)
pinch

using Eq. (35) then we

can find an expression for the strain rate from which t(EC)
pinch

can be evaluated as a function of

relaxation time (⌧
E

) and other parameters in the model:

t(EC)
pinch

= t(V C)
b

� 6⌧
vis

c
ln

✓
1 +

c⌧
E

3⌧
vis

◆
(39)

The addition of viscoelasticity (i.e. nonzero values of ⌧
E

) thus reduces the critical time (t(EC)
pinch

)

at which the flow in the neck attains an elasto-capillary balance; consequently the span of time

for which the main ligament is stretching in the air will be reduced. If the lifetime of the

thinning filament for a viscous Newtonian fluid is estimated as
p

8⌧
R

+ t(V C)
b

where
p

8⌧
R

is the

initial time required for the flow in the neck to reach the visco-capillary balance (as shown by

Marmottant and Villermaux [3] this initial time is set purely by the inertio-capillary timescale

since in this initial stage inertial and capillary stresses are the dominant ones in balance) then

the new (reduced) lifetime become
p

8⌧
R

+ t(EC)
pinch

for viscoelastic solutions.
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Less stretching leads to shorter and thicker viscoelastic ligaments which will end up breaking

up into bigger (average size) droplets. This trend agrees with the qualitative observations

of average sizes in the atomization of viscoelastic liquids shown in Figure 12(b). For a more

quantitative comparison we combine Eqs. (18), (37) and (40) to obtain the following expression

for the e↵ect of fluid elasticity on the average drop sizes:

< d >
V E

< d >
N

=
(
p

8c/6)⌧
R

+ ⌧
vis.

Oh2
Rl

(
p

8c/6)⌧
R

+ ⌧
vis.

Oh2
Rl

� ⌧
vis

ln (1 + c⌧
E

/3⌧
vis

)
(40)

where < d >
V E

denotes the average droplet size in the viscoelastic spray and < d >
N

denotes

the corresponding value for a Newtonian spray.

Eq. (41) can be further simplified into a form that only incorporates the dimensionless Ohne-

sorge and Deborah numbers with c = 4.1 as a fitting parameter:

< d >
V E

< d >
N

=
(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

(
p

8c/6)Oh�1
Rl

+ Oh2
Rl

� ln (1 + cDe
Rl/3Oh

Rl)
(41)
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Table 1: Rheological properties of the viscoelastic test fluids. Two di↵erent concentrations of
Poly(ethylene oxide) (PEO) at two di↵erent molecular weights were dissolved in the Newtonian
solvent (Water+Glycerol 60-40 wt.%) which has a viscosity ⌘

s

= 3.2mPa.s. The dimensionless
parameters Oh and De are defined in the text (see Eqs. (8) and (9)) and are evaluated using
⇢ = 1103kg/m3 and R

l

= 85µm.

Mw c c/c⇤ ⌘0[mPa.s] ⌧
E

[µs] L De Oh

300K 0.01% 0.036 3.21 60 27 0.2 0.04

300K 0.1% 0.36 3.32 360 27 1.3 0.04

1000K 0.01% 0.07 3.22 996 50 3.6 0.04

1000K 0.05% 0.37 3.31 2800 50 10.0 0.04
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(a)$Newtonian$solvent$close$to$the$nozzle$

(b)$PEO$solu7on$close$to$the$$nozzle$

(c)$Newtonian$solvent$far$from$the$nozzle$

(d)$PEO$solu7on$far$from$the$nozzle$

0.3$mm$

0.3$mm$

Annular$air$flow$

Figure 1: (a) Spray visualization images for the Newtonian solvent close to the nozzle. (b)
Spray visualization images for the viscoelastic solution (PEO-300K-0.01 wt.% in the solvent)
close to the nozzle. (c) Spray visualization images for the Newtonian solvent far from the
nozzle. (d) Spray visualization images for the viscoelastic solution (PEO-300K-0.01 wt.% in
the solvent) 5mm away from the nozzle.
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 Ul  Ua

Kelvin-Helmholtz 
Instabilities 

 
ρliquid

 ρair Rayleigh-Taylor 
Instabilities 

Rayleigh-Plateau 
Instabilities (a)$ (b)$

Figure 2: (a) Schematic of the industrial spray nozzle used in the experiments with D
L

=
1.5mm, b

a

= 1.5mm. A low momentum liquid jet (red color) is surrounded by a coaxial high
momentum jet of air (blue color). The oblique air jets are low momentum and only help confine
the primary jet in a narrow plane. (b) Spray visualization of water; three di↵erent successive
instabilities make the liquid jet unstable and finally atomize it into a fine mist of droplets.
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Figure 3: Shear rheology for both the Newtonian solvent and the dilute polymer solution (PEO-
300K-0.01 wt.% in the solvent). The solid line shows the FENE-P prediction for steady shear
using model parameters in table 1. The low shear rate measurements were done using a 40
mm cone and plate geometry in a torsional rheometer (AR-G2) and the high shear rate data
are determined from pressure drop measurements in a micro-fluidic slit device (m-VROC).
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Strobe''
Light'

JetXpert®'
Camera'

'Z4'Adjustment'Stage'
(stepper'motor)'
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(b)'
Spray'plane'
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Frame'illuminated'
by'laser'light'' Laser'

Figure 4: (a) The ROJER (Rayleigh-Ohnesorge Jetting Extensional Rheometer) setup. The
liquid jet is perturbed by a piezo-electric actuator and then its motion is slowed down and
captured using the stroboscope imaging setup. (b) The LaVision spray visualization setup.
A 1.5mm ⇥ 1.5mm frame is illuminated using laser back-lighting and a Flowmaster camera
captures individual snapshots from the droplets in the spray fan.
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−1/ 3τ E

Smoothed Data 
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Figure 5: CaBER (Capillary Breakup Extensional Rheometry) for a semi-dilute Poly(ethylene
oxide) solution (molecular weight Mw = 5⇥106g/mol and 0.15 wt.% concentration,c/c⇤ = 1.5),
Oh = 0.005, De = 1.72. The blue dots are the oversampled data from the laser micrometer
while the green circles are the bin-averaged smoothed data. The visualized images of the actual
filament thinning with time are at the top. The filament goes through three significant regimes:
the initial region (shaded yellow) is still a↵ected by fluid inertia; as the liquid thread thins down
under the action of capillary pressure the elastic stresses become increasingly important and an
elasto-capillary region emerges. The solid black line indicates an exponential decay with time
described by Eq. (10) (the theoretical prediction for elasto-capillary regime). Finally when the
polymer chains in the filament approach their maximum extensibility the diameter approaches
zero in a linear manner (shaded orange region).
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Figure 6: CaBER (Capillary Breakup Extensional Rheometry) for a dilute poly ethylene oxide
solution (M

w

= 2 ⇥ 106g/mol and 0.01 wt.% concentration c/c⇤ = 0.1),Oh = 0.01, De = 0.1.
The blue squares show the data from the laser micrometer; the normalized filament diameter

is plotted versus time normalized by the capillary time-scale(⌧
R

⌘
q

⇢R3
(t=0)/� = 6ms). The

solid line is a fit from the expected predictions for inertia-capillary regime (Eq. (7) in the
text). The visualized images of the actual filament thinning with time are shown above. The
beads-on-a-string structure that appears in the final stages (picture on the right) makes the
measurements of relaxation time almost impossible as the midplane diameter rises and falls
with time.
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Figure 7: Rayleigh-Ohnesorge Jetting Extensional Rheometry (ROJER) analysis for the 300K-
PEO solution (c/c⇤ = 0.036); We

j

= 16.9, kR0 = 0.8, Oh = 0.075, De = 0.72;(a) Visualized
images of the jet going through Rayleigh-Plateau instability; both the linear stage of the in-
stability (left) and the nonlinear stage (right) were imaged using the strobe camera. (b) The
measured values for the filament diameter plotted against time (blue squares). The dashed
line is the fit from the linear instability analysis (D/D0 = 1 � � exp(↵(We, Oh, De)t) with
� = 0.01). The solid black line indicates exponential decay with time described by Eq. (10) as
the theoretical prediction for elasto-capillary regime. From fitting the exponential region, the
value of the relaxation time is found to be equal to ⌧

E

= 60µs. (c) Strain rate in the filament
neck (✏̇ ⌘ (�2/D(t)) dD(t)/dt) versus time. The calculated values show a plateau at a critical
stain rate equal to 2/3⌧

E

(solid black line).
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Figure 8: Values of dimensionless growth rate (↵⌧
R

) for the instability measured from ex-
periments at di↵erent dimensionless wave-numbers (kR0) for the viscoelastic jet (PEO 300K)
with Oh = 0.075, We = 16.9, De = 0.72, (blue squares) compared with the theoretical dis-
persion curve for the Rayleigh-Plateau instability: the dashed line shows the dispersion curve
for a Newtonian jet (Oh = 0.075, We = 16.9) and the solid line is for the viscoelastic jet
(Oh = 0.075, We = 16.9, De = 0.72). Theoretical results are evaluated from the linear insta-
bility analysis of Brenn et al.[74]. Also shown is a montage of images from the final stages
of breakup for two di↵erent wavenumbers: the left image for kR0 = 0.43 is below the most
unstable wavenumber (kR0 < (kR0)max

) and clearly shows the growth of higher wavenumber
modes leading to the appearance of a large satellite droplet which later merges into the leading
drop, the right image shows a wavenumber of kR0 = 0.80 that is larger than the most unstable
mode and for which the satellite droplets do not appear resulting in a smooth beads-on-a-string
structure.
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Figure 9: (a) Montage of images obtained at di↵erent times from the jet breakup experiment
(We

j

= 16.9, kR0 = 0.8, Oh = 0.075, De = 0.72) following a fixed Lagrangian fluid element
(i.e. the section of the jet shown in the red box) which moves with constant velocity (V

j

=
2.6ms�1).(b) Sitting in a moving frame translating with constant velocity (V

j

) the Lagrangian
element becomes stationary and the filament thins down as a results of capillarity in a way
that is reminiscent of the dynamics of the filament in CaBER. (c) The normalized diameter
versus time for PEO-300K-0.01 wt.%(Oh = 0.075, De = 0.7) at three di↵erent jet velocities:
red circles (V

j

= 3.9ms�1, We = 39.6, kR0 = 0.66), magenta triangles (V
j

= 4.7ms�1, We =
54.5, kR0 = 0.80), blue squares (V

j

= 2.6ms�1, We = 16.9, kR0 = 0.80). The dashed lines are
the corresponding fits from the linear instability analysis (D/D0 = 1� ✏ exp(↵(We, Oh, De)t))
and the solid lines each show an exponential decay (D/D0 ⇠ exp(�t/3⌧

E

)) with ⌧
E

= 60µs for
each line. The measured relaxation times from ROJER analysis are thus independent of jet
velocity.
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Figure 10: (a) Montage of images from ROJER test for two di↵erent molecular weight polymer
solutions (left images are for PEO-300K-0.1 wt.% and the right images are for PEO-1000K-
0.05 wt.% We

j

= 8.5, kR0 = 0.77, Oh = 0.075) at di↵erent times following a Lagrangian
fluid element (the section of jet in the green and red boxes respectively) which moves with
constant velocity (V

j

= 0.87ms�1).(b) The normalized diameter versus time for PEO-300K-
0.1 wt.% (green squares) and for PEO-1000K-0.05 wt.% (red triangles). The solid lines show
exponential decays fitted to Eq. (10) with ⌧

E

= 360µs for PEO-300K-0.1 wt.% and ⌧
E

= 2800µs
for PEO-1000K-0.05wt.%.
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Figure 11: (a) Visualization of viscoelastic droplets (PEO-300K-0.01 wt.%) undergoing frag-
mentation in opposed jet atomization (Re = 620, We = 300). (b) Visualization of Newtonian
solvent droplets (water and glycerol 60-40 wt.%,Re = 620, We = 300) during fragmentation in
opposed jet atomization. (c) The ROJER measurements of the thinning filament diameter as
a function of time for both the viscoelastic liquid (PEO-300K-0.01 wt.%-red filled circles) and
the corresponding Newtonian solvent (water and glycerol ,60-40 wt.%-blue open circles). Solid
line shows the exponential fit for the elasto-capillary regime (Eq. (10)) and the dashed line is
the linear fit for the visco-capillary regime for filament thinning (D(t) = 0.072 (�/⌘

s

) (t
b

� t)).
(d) Shear (triangle) and extensional rheology (circle) for both the Newtonian solvent (blue
open symbols) and the viscoelastic solution (PEO-300K-0.01 wt.% )(red filled symbols). The
solid and dashed lines show respectively the FENE-P predictions using model parameters in
Table 1 for the extensional and shear viscosities. The transient elongational viscosity data are
extracted from the jet thinning dynamics shown in Figure 11(c).
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Figure 12: (a) Montage of images from the sudden stretch experiment for PEO-300K-0.01
wt.%. (b) Blue squares are average sizes for the viscoelastic solutions normalized by the average
diameter for solvent drops as a function of the Deborah (De) number in the ligament (De ⌘
⌧
E

/
p

⇢d30/8� in which d0 is the characteristic ligament size and is estimated from the average
diameter, < d >). The solid black line shows the predictions from the model described in the
text (Eq. (19)).
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