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Abstract 

There is limited methodological guidance for estimating system dynamics models using datasets 

common to social sciences that include few data points over time for many units under analysis. 

Here, we introduce indirect inference, a simulation-based estimation method that can be applied 

to common datasets and is applicable to SD models that often include intractable likelihood 

functions. In this method, the model parameters are found by ensuring that simulated data from 

the model and available empirical data produce similar auxiliary statistics. The method requires 

few assumptions about the structure of the model and error generating processes and thus can be 

used in a variety of applications. We demonstrate the method in estimating an SD model of 

depression and rumination using a panel dataset. The overall results suggest that indirect 

inference can extend the application of SD models to new topics and leverage common panel 

datasets to provide unique insights.  
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Background 

Most system dynamics (SD) models use a single case study and apply traditional 

estimation methods (e.g., mean squared error, mean absolute percentage error) to time series data 

of that case to specify unknown parameter values. However, more flexible methods of estimation 

are needed in both theoretical and practical applications to leverage data structures beyond 

single-case time series. With the increasing availability of data on various research subjects—

from individual level to company- and country-level phenomena—formal model calibration has 

become a requisite step in producing credible model-based analyses that are trusted by various 

academic audiences. However, three major challenges exist in estimating SD models. First, SD 

models are often complex and nonlinear and the likelihood functions are intractable; thus, many 

conventional statistical methods do not directly apply. Second, due to the structure of many 

datasets, even the heuristic calibration methods commonly used in SD practice that minimize the 

differences between empirical time series and simulated counterparts may not apply. For 

example, many “panel” datasets include data at only a few points in time, but in many units 

under analysis (e.g., individuals, organizations, or countries), complicating the matching of the 

simulations to data using traditional methods that require many data points over time for each 

unit. For the same reason, other methods such as Kalman filtering (Kalman, 1960) or extended 

Kalman filtering (Smith, Schmidt, McGee, Aeronautics, & Administration, 1962), which adjust 

state variables based on measured system behaviors, or partial model calibration (Homer, 2012; 

Hosseinichimeh, Rahmandad, & Wittenborn, 2015) cannot be used effectively when very few 

data points are available over time. Third, in many applications, randomness, which is exogenous 

to a model’s boundaries, has a significant role in the behavior of the system; therefore, noise 
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should be considered explicitly in the estimation of the model. These complications call for the 

introduction of more rigorous, simulation-based estimation methods to the SD literature.  

 Simulation-based estimation methods have been introduced with the increasing 

computational power of computers and have made it possible to run many numerical simulations 

of large datasets in short periods of time. The basic idea behind these methods is to match 

properties of the simulated data to those of the empirical data. These methods include the method 

of simulated moments (Duffie & Singleton, 1993; Jalali, Rahmandad, & Ghoddusi, 2015; 

Mcfadden, 1989; Pakes & Pollard, 1989), the efficient method of moments (Durlauf & Blume, 

2008), and indirect inference (Gourieroux, Monfort, & Renault, 1993; Gouriéroux, Phillips, & 

Yu, 2010; Smith, 1993), among others. These methods are mostly useful for models with 

intractable likelihood function such as nonlinear dynamic models and models with missing, 

incomplete, or noisy data.  

In this article, we provide an introduction to indirect inference, one of the most flexible 

methods available in this space, and explain how it can be applied in SD modeling. This method 

has been applied in various fields for estimating different types of models including nonlinear 

ecological dynamic systems (Wood, 2010), dynamic panel models with intractable likelihood 

function (Gouriéroux et al., 2010), continuous time models (Monfort, 1996), and stochastic 

volatility models (Monfardini, 1998), among others. However, to our knowledge, no study has 

implemented indirect inference for calibrating SD models distinguished by a focus on 

endogenous feedback relationships among variables. We first present an SD model of major 

depressive disorder (MDD) and discuss the challenges in estimating the unknown parameters of 

the model. We then introduce the indirect inference method and explain the steps needed to 

estimate unknown parameters of a model. We apply this method to our SD model of MDD to 
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demonstrate the estimation procedures with an empirical dataset. Finally, we discuss the 

conditions under which SD studies can benefit from indirect inference.  

 

An applied example. Here we present a simple SD model of major depressive disorder (MDD), 

a disabling condition that causes feelings of sadness and loss of interest. Different mechanisms 

including genetic, cognitive, environmental, and biological factors contribute to the disorder. To 

keep the applied example simple, we focus only on the impact of rumination (a cognitive factor) 

and stressful life events (an environmental factor). Rumination is defined as repetitive thinking 

about the causes and consequences of a stressor without focusing on coping strategies or 

engaging in problem solving (Nolen-Hoeksema, Stice, Wade, & Bohon, 2007). As shown in 

Figure 1, the model has two reinforcing loops (R1 and R2). Loop R1 captures the idea that when 

an individual with a ruminative response style experiences a stressful event, she spends time 

thinking about that stressor, keeping the stressor active, and thus increasing the chance of even 

more rumination (Ruscio et al., 2015). In other words, engaging in rumination increases the 

duration of recalling a stressor (i.e., memory time) and thus increases the accumulation of 

stressor memory, causing an even higher level of rumination (loop R1). Current rumination is 

formulated as a stock adjusting with a time constant towards indicated rumination, which is a 

linear function of stressor memory (Michl, McLaughlin, Shepherd, & Nolen-Hoeksema, 2013), 

current depressive symptoms (Nolen-Hoeksema et al., 2007), and gender (Nolen-Hoeksema, 

Larson, & Grayson, 1999). 

Loop R2 demonstrates that more rumination elevates depressive symptoms and higher 

depressive symptoms lead to more rumination (Nolen-Hoeksema et al., 2007). The stock of 

depressive symptoms is the smooth of indicated depressive symptoms, which is a function of 
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rumination. Moreover, random events outside the model boundaries affect rumination and 

depressive symptoms. Randomness recognizes that indicated depressive symptoms and indicated 

rumination are not deterministic and vary by factors outside the model boundary based on a 

probability distribution; however, there is some autocorrelation in how those chance events 

unfold. Therefore, normally distributed pink noises are added to the indicated rumination and 

indicated depressive symptoms, 𝑅𝑢𝑚𝑁𝑜𝑖𝑠𝑒~𝑁(0, 𝜎𝑟
2) and 𝐷𝑒𝑝𝑁𝑜𝑖𝑠𝑒~𝑁(0, 𝜎𝑑

2) with correlation 

time 𝜌, respectively. We assume the same correlation time for rumination and depression 

because they are both generated by stressful events and other exogenous shocks that are similar 

in nature. All equations are presented in the online Appendix. The model has 12 unknown 

parameters (p=12), listed in Table 1, that need to be estimated.  
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Figure 1. The depression-rumination conceptual model. Boxes depict stock (or state) variables 

and arrows with valves represent flows into/out of those stocks. Single-line arrows indicate 

causal relationships hypothesized among variables (the strength of which is estimated below). A 

stock variable is the accumulation of the difference between its inflows and outflows and, 

mathematically, is represented as an integral. 

 

Table 1. Unknown Parameters in the Model  
Unknown Parameters (θ) Unit 

Rumination constant (θ1) RumScore 

Effect of depressive symptoms on rumination (θ2) RumScore/DepScore 

Gender coefficient (θ3) RumScore 

Effect of stressors on rumination (θ4) RumScore/Disruption 

Rumination coefficient (θ5) Dmnl* 

Depression constant (θ6) DepScore 

Effect of rumination on depressive symptoms (θ7) DepScore/RumScore 

Depression Coefficient (θ8) Dmnl 

Effect of rumination on memory time (θ9) 1/RumScore 

Standard deviation of rumination noise (θ10) Dmnl 

Standard deviation of depression noise (θ11) Dmnl 

Correlation time (θ12) Month 

  *Dimensionless 
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The available dataset for estimating the SD model parameters reports all three variables 

of interest (i.e., depressive symptoms, rumination and stressful life events) for 661 adolescents 

from two middle schools in Connecticut (Michl et al., 2013). The main challenge is that these 

variables are reported in few points in time. The tendency to ruminate was assessed at three 

points in time (T1, T2, and T3) while the questionnaires related to depressive symptoms (The 

Children’s Depression Inventory) and stressful life events (The Life Events Scale for Children) 

were completed only at T1 and T3. The time between the first and second assessments and the 

second and third assessments are four and three months, respectively. Table 2 summarizes the 

means and standard deviations of variables each time data were collected.  

Table 2. The Means and Standard Deviations of Variables 

Variable Time 1, T1 Time 2, T2 Time 3, T3 

Depressive symptoms 9.48 (6.28) - 9.78 (7.64) 

Rumination 11.59 (7.52) 10.85 (7.62) 9.95 (7.95) 

Stressful life events 4.96 (3.32) - 4.20 (3.70) 

Standard deviations are in parentheses.  

Conventional estimation methods in SD compare data over time for each individual 

against the simulation model of that individual to estimate an individual-level model. For 

example, Croson and colleagues use data over 48 weeks for individual decisions in the beer 

game to estimate each person’s four-decision rule parameters across many settings (Croson, 

Donohue, Katok, & Sterman, 2014). Yet, in this example we only have seven data points for 

each individual, thus separately estimating a dozen parameters for each participant is infeasible. 

The richness of the current dataset is in the large number of available participants. If we assume 

the core model parameters represent basic biological processes that are similar across individuals 

(a common assumption in typical statistical models), we should be able to leverage the large 

sample size to estimate the dozen unknown model parameters. Yet conventional time-series 
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estimation methods in the SD literature do not provide a recipe for such a scenario. To resolve 

such estimation challenges, we next introduce indirect inference. 

Indirect Inference Method 

General properties and historical background. The main idea behind the indirect 

inference method is to match properties of empirical and simulated data in order to estimate the 

unknown parameters of the model of interest. This method was developed to overcome the 

challenges of estimating complex model parameters for which the likelihood function is 

intractable. In the indirect inference method, the simulated data is generated by simulating the 

model of interest; then, an “auxiliary model” that typically consists of simple regression (s) is 

selected and parameters of the auxiliary model are estimated by using both the empirical and the 

simulated data. The difference between these two sets of parameters of the auxiliary model is 

minimized to estimate the parameters of the model of interest.  

The indirect inference method has several advantages. First, there are few limitations to 

the types of models to which it can be applied. The only requirement is that the model of interest 

can be simulated for different values of its parameters. Second, although this method is a 

simulation-based technique, it can be relatively inexpensive to compute when the auxiliary 

model uses a maximum likelihood estimator, and thus the auxiliary model parameters have small 

variance and could be matched reliably with few simulations (Gouriéroux et al., 2010). Third, the 

indirect inference method inherits the beneficial properties of the estimation method used for the 

auxiliary model (Gouriéroux et al., 2010). For instance, if the maximum likelihood method is 

used to find the parameters of the auxiliary model, the estimated parameters resulting from 

indirect inference would also have small variance. Fourth, it can be used for both estimating and 

validating a model. The validation step allows the modeler to decide if the model’s outputs are 
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indistinguishable from empirical data or if notable differences exist after estimation that could 

inform further model refinement. In this article, we discuss one such validation test. We also 

investigate the method’s validity using a separate approach in which indirect inference is applied 

to a synthetic dataset generated by simulation of the calibrated model, and we evaluate the 

method’s ability to recover correct parameters from a structurally precise model.  

The method of simulated moments (MSM; Mcfadden (1989)) is one of the first rigorous 

simulation-based estimation methods. It is the workhorse of modern econometrics and motivates 

the idea of indirect inference. In this method, model parameters are estimated by minimizing the 

difference between selected moments (e.g., mean and variance) of empirical data and 

corresponding moments of model-generated simulated data. Only a few studies exist that have 

implemented MSM to calibrate SD models. Rahmandad and Sabounchi (2011) calibrated a 

dynamic model of obesity at both individual and population levels by using MSM, and Jalali, 

Rahmandad, and Ghoddusi (2013) discussed the application of MSM to SD models. The indirect 

inference method, proposed independently by Gourieroux et al. (1993) and Smith (1993), is very 

similar to MSM in matching some functions of empirical data against the same function 

calculated on simulated data. However, it is more general because rather than only the statistical 

moments, a wider set of functions of the empirical and simulated data can be matched to estimate 

the unknown parameters. These functions are created using auxiliary models. Although the 

auxiliary model is typically a separate estimation, it does not need to capture the true 

data-generating process. The auxiliary model serves only as a lens through which we view the 

empirical data and calculate functions we then match to their simulated counterparts. The 

parameters of the model are set in a way that both empirical and simulated data produce very 

similar images as they pass through this lens. 
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Other methods exist that follow a similar logic. Structural equation modeling (SEM) is 

based on matching the observed covariance matrix and model-generated covariance matrix 

(Anderson & Gerbing, 1988). In actor-based network models, the statistical properties (e.g., 

degree distribution, centrality, and clustering) of empirical networks are compared with those of 

the simulated networks to estimate the model parameters (Snijders, 2001). Overall, indirect 

inference and its derivatives are among the most flexible econometric methods for estimating 

complex models using various data structures. Given its moderate computational costs, the 

method could be applied easily to models of modest size when a handful of model parameters 

require estimation. However, estimating a large number of parameters (e.g., hundreds) could be 

much more challenging because the underlying optimization problem is non-convex. Currently, 

there are no studies in the literature that apply the indirect inference method to SD models. In the 

next section, we introduce the method formally and present a step-by-step guide for applying it.  

 

Description of the method. Consider a general dynamic model with stock (state) variables z, the 

dynamics of which are described as 
d𝐳

𝑑𝑡
= 𝑓(𝜽𝐷, 𝒛, 𝒖, 𝜺1) and a set of exogenous variables, u, and 

observable variables, x, which are a function of z:   

𝒙 = 𝑔(𝜽𝑂, 𝒛, 𝒖, 𝜺2),                                                                                                                       (1) 

Here, function f describes the dynamics of the system and function g defines the 

measurement process. It is assumed that the structure of both of these functions is known. A 

vector of random errors with a known distribution1 (𝜺 = ⋃(𝜺1, 𝜺2)) adds uncertainty to the 

dynamics and measurements. Finally, a set of parameters quantifying both the dynamics of the 

                                                            
1 The distribution of the ԑ does not need to be known. ԑ can be a function of a random process with a known 

distribution and an unknown parameter of the model of interest (θ) (Gourieroux et al., 1993). Moreover, if there is 

uncertainty in the initial conditions of stock variables, that uncertainty could be incorporated into the ԑ. 
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system (f) and the observation function (g), 𝜽 = (𝜽𝐷, 𝜽𝑂),
2 is unknown and the goal of the 

estimation process is to find these parameters. Note that the model and measurement functions 

may apply to a single case or multiple units of the phenomenon of interest. For example, a panel 

dataset includes measures on dynamics of several parallel units (e.g., people, firms, or countries) 

over time. Figure 2 summarizes the steps needed to estimate the model parameters, 𝜽, by using 

the indirect inference method. 

The intuition behind indirect inference is simple: if we calculate a set of empirical 

statistics from the data (S), a good model of the data-generating process should be able to closely 

simulate these empirical statistics. Therefore, we search for a set of θ parameters, which, when 

used to simulate the SD model, lead to simulated statistics that closely correspond to empirical 

statistics we have calculated using the empirical data. Consider a very simple example in which 

individuals’ weight change over time is modeled in a SD model with a single stock of W and the 

equations: dW/dt=E*(θ1+ θ2*W) and E~Normal(0, θ3). Assume weight measurements at two 

points in time, W1 and W2, are available for 100 individuals, and we want to estimate the 

population-level θ parameters using this data. Note that we are assuming θ parameters are the 

same for all individuals, and individual differences are only coming from differences in initial 

weight and the randomness in the normally distributed E variable. Indirect inference instructs us 

to generate some empirical statistics, S, using this data, which should then be matched by 

simulations of the model. For example, S could include the average weight at time two, the 

variance of weight at time two, and the regression coefficients predicting W2 as a linear function 

of W1 and a constant (the regression has two coefficients), for a total of four statistics. We then, 

simulate the body weight change of the 100 individuals, each starting from their actual W1 and 

                                                            
2 Note that θD and θO could each include multiple parameters describing a detailed SD model and various functions 

relating the stock variables to observable variables in an empirical setting. 
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growing based on the system’s dynamics using a set of values of θ. We calculate the four 

elements of S for each simulated population, and change the θ until the four simulated statistics 

closely match the empirical ones, at which point we have found good estimates for the true θ 

values. The formal steps to accomplish this idea follow. 

First, suitable statistics of empirical data, x, are generated S=(S1, S2…, Sk). These 

statistics could include coefficients of an auxiliary model (e.g., a regression that estimates some 

elements of x based on other elements or lagged values) or they could be any statistics of a 

dataset such as mean and standard deviation (Wood, 2010). Second, the corresponding simulated 

statistics S(θ)=S1(θ), S2(θ),…, Sk(θ) are calculated/estimated. To gain better accuracy, for a given 

value of 𝜽, the model of interest (SD model) is simulated H times by using H different streams of 

noise over time, ԑt (=ԑ1
ℎ,…, ԑ𝑇

ℎ), h=1,…H.  As a result, H replications of empirical x are 

generated and S(θ)=(S1(θ), S2(θ),…, Sk(θ)) is estimated for each replication of x. Third, the 

average of these estimators is found 𝑆𝑘(𝜃) =
1

𝐻
∑ 𝑆𝑘(𝜃)

ℎ𝐻

ℎ=1
) and 𝜃 is estimated by minimizing 

the difference between empirical-auxiliary statistics (S1, S2…, Sk) and the average of 

corresponding simulated statistics 𝑺̅(𝜃) = (𝑆1̅(𝜃), 𝑆2̅(𝜃),…, 𝑆𝑘̅̅ ̅(𝜃)) (Gourieroux et al., 1993). 

The number of statistics, k, should be equal to or larger than the number of unknown parameters. 

A thorough explanation of each step is provided in the following sections. 
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Figure 2. The required steps for estimating parameters of a dynamic model 

 

1. Define and estimate a set of empirical-auxiliary statistics. The first step is to select a 

set of statistics, which, when matched in simulation, allow us to find the model 

parameters. There is substantial flexibility in terms of defining these statistics. Common 

statistics include mean, standard deviation, autocorrelation, and correlation matrixes of 

observed variables. Although these statistics are typically calculated across different units 

of analysis for cross-sectional and panel data (e.g., the mean weight in a group of 

subjects), they could also be calculated over time for a single case. Besides simple 

statistics, more complex auxiliary models could be defined that relate some of the 

observed variables to the other ones or to the lagged values of the same variable. The 

coefficients of these models (i.e., regression coefficients) could be then appropriate 

statistics to include in the statistics vector. We will refer to these statistics estimated from 

the empirical data, empirical-auxiliary statistics (S1, S2…, Sk). Note that auxiliary models 
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do not need to be accurate (i.e., the density function may not accurately describe the 

conditional distribution of x for the element of x being estimated (Durlauf & Blume, 

2008)). It is an approximate model, which, unlike the model of interest, can be easily 

estimated with limited computational costs (e.g., using a simple linear regression).  If the 

data-generating process (the model of interest—i.e., the SD model) is identical to the real 

world data-generating process, we would then expect the replication of simulated 

auxiliary statistics to be close to the empirical ones. As a result, rather than trying to 

remove the biases in the auxiliary models (which may not be feasible because of limited 

data; for example, where we do not have continuous data but only irregular samples with 

measurement error), we find the data generating model that gives the same results as 

those biased models using similar operations, which ensures that the model of 

data-generating process is fairly accurate. Note that in indirect inference, the coefficients 

of auxiliary models are not the final output but rather a means to estimate the true model 

of the data-generating process. If they are inaccurate/biased, both the empirical- and 

simulated- auxiliary statistics would be biased for the same reasons and therefore should 

match when the model of data-generating process matches the true process. In other 

words, the true model of the data-generating process can be accurately estimated by 

matching biased empirical and simulated auxiliary statistics. Consider a tangible 

example: you are given a warped picture of a scene and asked to find the actual scene 

from a lineup of undistorted images. The picture you have is distorted because it was 

taken with a warped lens that changed the shape and coloring of the actual image. Think 

of the characteristics of this warped picture as empirical-auxiliary statistics. Think of the 

search for the true scene as finding the parameters of the SD model that best matches the 



15 
 

true data-generating process.  Indirect inference uses the SAME warped lens to look at 

each candidate’s true image, and picks the one that, once transformed with this warped 

lens, produces the closest fit to the initial (warped) picture. In this analogy, each 

candidate picture is generated when the SD model creates simulated data, and the warped 

lens is applied when simulated auxiliary statistics are calculated for that data. The best 

SD model is found when the simulated auxiliary statistics match the empirical ones. 

While many different auxiliary models could be beneficial, the estimation would 

be more efficient if the auxiliary models were defined as precisely as possible— i.e., the 

auxiliary model is a good approximation of some aspects of f and g functions that are 

reflected in the estimated relationship (Guvenen & Smith, 2014). A more precise model 

reduces the variance of estimated regression coefficients (elements of S1, S2…, Sk) and 

thus enables a reliable estimation with a smaller number of simulations, H. In general, 

good empirical-auxiliary statistics have information about the model parameters in 

question, and bound those parameters from multiple angles, so that the empirical 

evidence embedded in the statistics puts strong constraints on the value of unknown 

parameters. 

A couple of examples help to illustrate the idea of auxiliary models. Consider a 

nonlinear model: 𝑦𝑖 = 𝑒𝑥𝑝(𝑥́𝑖𝛾) + 𝑢𝑖, 𝑢𝑖~𝒩[0, 𝜎2]. The auxiliary model could be  𝑦𝑖 =

𝑥𝑖𝛽́ + 𝜀𝑖, 𝜀𝑖~𝒩[0, 𝜎𝜀
2] (Cameron & Trivedi, 2005). Another example is a two-level 

logistic model, 𝑥𝑖𝑘 = 𝑙𝑜𝑔𝑖𝑡−1(𝑝𝑖𝑘) + 𝑒𝑖𝑘, in which 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝜃0 + 𝜃1𝑧𝑖𝑘 + 𝑢𝑘 and 

𝑥𝑖𝑘 is the 𝑖𝑡ℎ observation in the 𝑘𝑡ℎ group. This model has an intractable likelihood 

function and conventional estimation methods cannot estimate it. An auxiliary model for 



16 
 

implementing indirect inference could be 𝑥𝑖𝑘
∗ = 𝛽0 + 𝛽1𝑧𝑖𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘

∗ , (Mealli & 

Rampichini, 1999). 

A good empirical-auxiliary statistic has four key characteristics. First, it should be 

relatively stable, that is, its value should not be very sensitive to the process and 

measurement noise streams (𝜺). The empirical value of a noise-sensitive statistic is not 

reliable and, as such, does not have much information to guide the identification of model 

parameters. Second, good statistics are sensitive to change in at least one of the 

parameters in 𝜽. In the extreme, if a statistic does not vary with changes in any of the 

model parameters, there is no way to backtrack the value of any parameter based on the 

information in that statistic. Both of these conditions could be partially tested using 

simulations. One could simulate a model in the range of considered parameters and 

measure the sensitivity of the simulated statistics with respect to model parameters (
𝜕𝑆𝑘

𝜕𝜃
 ) 

and their sensitivity to different noise streams. Third, empirical statistics should be 

inexpensive to calculate; otherwise, the multiple iterations needed to solve the 

optimization problem may become infeasible. Therefore, simple linear regressions are 

preferred over regression models that require non-convex optimizations. Fourth, the 

number of statistics should be equal or more than the number of the parameters that need 

to be estimated. In other words, 𝑘 ≥ 𝑝 where p and k are the number of elements in the 

vector θ and the statistics vector (S1, S2…, Sk), respectively. If 𝑘 < 𝑝, unknown 

coefficients cannot be estimated and more statistics should be added to the vector of 

statistics to make k equal or greater than p. After choosing the appropriate statistics, 

including the auxiliary model(s), the empirical-auxiliary statistics (S1, S2…, Sk) are 

estimated or calculated using the empirical data x.  
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2. Generate the simulated data using the SD model. First, H independent drawings of ԑt 

(ԑ1
ℎ,…, ԑ𝑇

ℎ) are generated. These streams of random numbers are generated only once and 

kept constant for the rest of the process. Then for a given θ, the SD model is simulated H 

times (H replications using the independent drawings above). This process creates the 

simulated data that contains H paths (x1
ℎ, … , x𝑇

ℎ) where h=1,…,H. The number of 

observations in each path should be equal to the number of observations in the empirical 

data. It should also be noted that the same ԑt (= ԑ1
ℎ,…, ԑ𝑇

ℎ) are used for each value of θ 

simulated during optimization (i.e., we use the same noise seed values for each iteration 

of the optimization). 

3. Estimate the simulated-auxiliary statistics using the auxiliary model and simulated 

data. For each of the H paths, the simulated statistics are estimated in the same fashion 

used in the calculation of the empirical-auxiliary statistics. The only difference is that 

instead of using empirical data, simulated data are used to estimate those statistics, which 

we call simulated-auxiliary statistics. The key point is to generate the same statistics 

using the empirical and simulated data (they are both < 𝑘 × 1 > vectors). After finding 

the simulated statistics for each path, the average of these H simulated-auxiliary 

parameters is found as:  

𝑆𝑘̅̅ ̅(𝜃) =
1

𝐻
∑ 𝑆𝑘(𝜃)

ℎ𝐻

ℎ=1
,                                                                                                  (2) 

Typical values of H could range between a handful and hundreds, depending on 

the variance of the simulated auxiliary statistics. If that variance is high, a larger H is 

recommended to reduce error resulting from the simulation of statistics. However, note 

that computational costs scale linearly with H and the incremental value of increasing H 
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is limited because for the empirical statistics we only have a single path available; thus, 

the total sampling error approximately scales with (1+1/H). 

4. Minimize the difference between the empirical-auxiliary statistics and the 

simulated-auxiliary statistics. The unknown parameters (θ) are estimated by 

minimizing the weighted differences between the empirical-auxiliary statistics (S1, S2…, 

Sk) and the average of the simulated-auxiliary statistics (𝑆1̅(𝜃), 𝑆2̅(𝜃),…, 𝑆𝑘̅̅ ̅(𝜃)). In other 

words, the parameters of the model of interest are estimated as:  

𝜽 = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑺 −
1

𝐻
∑ 𝑺(𝜃)ℎ

𝐻

ℎ=1
)
′
𝑊(𝑺 −

1

𝐻
∑ 𝑺(𝜃)ℎ

𝐻

ℎ=1
),                                        (3) 

Weighting matrix (W) can be any positive definite matrix in theory, but good 

choices of W are critical for obtaining reliable parameter estimates. Therefore, the 

calibration of the indirect inference is usually performed in a two-step procedure with 

two different values of W. In the first step, W can be chosen to be a diagonal matrix in 

which the diagonal element i of the matrix is the inverse of square of the ith empirical 

statistic (1/Si
2) and the non-diagonal elements are zero (let us call this matrix W1). W1 

ensures that some statistics do not dominate the optimization if their magnitude is much 

larger than the others. However, W1 is not theoretically optimal in the sense that it does 

not provide the lowest standard deviation for the estimated parameters. After performing 

optimization using the initial W1 and obtaining estimates of the model parameters (𝜽1̂), 

we switch to another W, the inverse of the variance-covariance matrix of the simulated 

statistics (using 𝜽1̂ to estimate this matrix) and repeat the estimation process. It is 

important to note that in calculating the variance-covariance matrix, a large number of 
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simulations (e.g., thousands) 3 using distinct noise streams will be needed. However, this 

step is done only once and not repeated during optimizations, so computational costs are 

not a concern. The intuition behind using the inverse of the variance-covariance matrix is 

that those statistics with a large variance (i.e., they are sensitive to the choice of random 

noise) should get lower weights. Although stopping after the second estimation gives 

reliable results in many applications, W can be re-calculated (based on 𝜽  achieved in the 

second step) to estimate a new set of parameters. This process can be iterated through 

until the estimated parameters converge across successive iterations. 

The initial assumed values for θ could impact the speed of convergence in the 

optimization process or trap the optimization in a local optimum. If the coefficients of the 

auxiliary model and the unknown parameters in the main model are similar in their 

meaning, the initial values for model parameters could be chosen to equal the 

corresponding empirical-auxiliary statistics. If they are not similar, qualitative 

information on the appropriate range of such parameters or rough initial estimates using a 

relevant estimation method could help initialize the model from a more promising point 

in the parameter space. Even with good initial points, however, the optimization may 

become stuck in a local optimum, so the optimization algorithm should include multiple 

start points to increase the chances of finding the global optimum.  

5. Model assessment test. When k > p, the model is said to be over-identified. Since in this 

method we minimize the distance between empirical-auxiliary statistics and their 

simulated counter-parts, over-identification does not change the estimation approach. In 

                                                            
3 Note that number of simulations in step 2 and 4 are different. In step 2, fewer simulation paths are needed, while 

for estimating the weight matrix consistently a much larger number of simulations should be used because estimates 

of the covariance matrix require large numbers of simulations.  
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fact, over-identification is helpful for further restricting the estimated parameters and 

offering tighter confidence intervals. It can also help further evaluate the model’s overall 

goodness of fit, such that the optimal value of the objective function can be used to test 

how well the model has been specified. The following statistic (𝜉𝑇) is distributed 

asymptotically as a chi-square with 𝑘 − 𝑝 degrees of freedom. The null hypothesis is that 

the model of interest (our SD model) is not different from the true data-generating 

process. If the test statistic is larger than the threshold for chi-square distribution with the 

desired precision, we then reject the null hypothesis, inferring that the model’s structure 

could be improved further. 

𝜉𝑇 =
𝐻

1+𝐻
𝑀𝑖𝑛 (𝑺 −

1

𝐻
∑ 𝑺(𝜃)ℎ

𝐻

ℎ=1
)
′
𝑊(𝑺 −

1

𝐻
∑ 𝑺(𝜃)ℎ

𝐻

ℎ=1
),                                       (4) 

The estimation would be more efficient if the auxiliary model were defined as precisely 

as possible—i.e., the auxiliary model is a good approximation of some aspects of f and g 

functions which are reflected in the estimated relationship (Guvenen & Smith, 2014). A 

more precise model reduces the variance of estimated regression coefficients (elements of 

S1, S2…, Sk) and thus enables a reliable estimation with a smaller number of simulations, 

H.  

 

Calibration of the Applied Example 

Here we demonstrate the application of indirect inference for estimating the SD model of 

depression depicted in Figure 1 using the panel dataset described in Table 1.  

Steps to estimate the parameters of the depression-rumination model 

1. Define and estimate a set of empirical-auxiliary statistics. There is no simple rule to 

identify the best auxiliary model, and the modeler’s judgment and insight guides this 
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selection. However, estimation benefits generally from auxiliary models whose 

coefficients are informative about the parameters we want to estimate—e.g., those 

capturing similar types of information and relationships. Thus, our auxiliary models 

include three regressions that are similar to the formulas to be estimated in the main 

model for indicated rumination, indicated depressive symptoms, and stressor memory in 

the SD model (see Table 3). The first regression (presented in the first row, third column 

of Table 3) relates to rumination and includes coefficients informative about the indicated 

rumination formulation (first row, second column of Table 3, which quantifies the impact 

of gender, stressful life events, and depression on rumination). Note that the SD model 

formulations are simulated in continuous time, whereas the auxiliary models use 

empirical data collected at discrete points in time (and are subscripted accordingly). In 

the SD model, we hypothesized that indicated depressive symptoms were a function of 

rumination (second row, second column of Table 3). As a result, we included rumination 

in the second regression (second row, third column of Table 3). The previous values of 

rumination and depressive symptoms were included in the first and second regressions, 

respectively, because the predictive power of the auxiliary models improved by adding 

them. In addition, incorporating previous values accounts for the inertia observed in those 

variables and encodes information about some of the time constants in our SD model. 

The third regression is an approximation of the change in stressor memory per month 

(third row, third column of Table 3). The change in stressor memory was divided by 

seven months (the time between the two measurements) to get the stressor memory 

change per month.  
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Note that one could come up with other auxiliary models and statistics, such as auto-

correlations and correlations across empirical variables over time. By getting the 

auxiliary statistics from the above regression models, we tap into that more complex 

correlation information, while controlling for multiple factors. This allows us to use more 

informative signals than raw correlations and reduce the noise in the auxiliary statistics.  

Table 3. The Formula Used in the SD Model of Depression and Corresponding Auxiliary Models 

Used in the Indirect Inference Method 

 

To estimate the auxiliary-empirical statistics, we ran the three regressions (third 

column of Table 3) using the ordinary least squares (OLS) technique (all statistics related 

to regressions are shown in the Appendix). In addition, we included the mean of 

depressive symptoms at T3 and rumination at T2 and T3 as statistics. The resulting 

empirical statistics (S1, S2…, S14) are listed in Table 4. Because the number of statistics 

(k=14) is greater than the number of unknown parameters (p=12), we have enough 

degrees of freedom to also test the model’s specification quality after estimation. 

 

 

Concept Formula used in the SD model Corresponding auxiliary models 

Rumination 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑟𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑡 = (𝜃1 + 𝜃2 ×
𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠𝑡 + 𝜃3 ×
𝑔𝑒𝑛𝑑𝑒𝑟 + 𝜃4 × 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑚𝑒𝑚𝑜𝑟𝑦𝑡)/
(1 − 𝜃5)  

𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛3 = 𝑏1 +
 𝑏2 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠3 +
𝑏3 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑏4 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟𝑀𝑒𝑚𝑜𝑟𝑦3 +
𝑏5 𝑟𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛2 + 𝑏6 𝑟𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛1 +
𝜀1                                                                  

Depressive 

symptoms 
𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠𝑡 =
(𝜃6 + 𝜃7 × 𝑟𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑡)/(1 − 𝜃8)  

𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠3 = 𝑎1 +
 𝑎2 𝑅𝑢𝑚3 +
𝑎3 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠1 + 𝜀2                                                              

Stressor 

memory 

𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑚𝑒𝑚𝑜𝑟𝑦𝑡 −
𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑚𝑒𝑚𝑜𝑟𝑦𝑡0 =
∫[𝑁𝑒𝑤 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟𝑠(𝑠) − 𝑙𝑒𝑡 𝑖𝑡 𝑔𝑜(𝑠)]𝑑𝑠
𝑡

                    

(𝑆𝑡𝑟𝑒𝑠𝑠𝑜𝑟𝑀𝑒𝑚𝑜𝑟𝑦3 −
𝑆𝑡𝑟𝑒𝑠𝑠𝑜𝑟𝑀𝑒𝑚𝑜𝑟𝑦1)/7 = 𝑐1 −

𝑐2
𝑆𝑡𝑟𝑒𝑠𝑠𝑜𝑟𝑀𝑒𝑚𝑜𝑟𝑦1

𝑅𝑢𝑚1
+ 𝜀3                                                                
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Table 4: The Value of Empirical-Auxiliary Statistics 
Regression Statistic Empirical-auxiliary Statistic 

First row-third column 

of Table 3 

b1 -0.4663 

b2 0.2313 

b3 1.2021 

b4 0.1316 

b5 0.4548 

b6 0.1749 

Second row-third 

column of Table 3 

a1 2.0012 

a2 0.2526 

a3 0.5559 

Third row-third 

column of Table 3 

c1 -0.0201 

c2 -0.1222 

Mean 

Mean of depressive symptoms at T3 9.7852 

Mean of rumination at T2 10.8487 

Mean of rumination at T3 9.9546 

 

2. Generate the simulated data using the SD model. For generating a simulated data path, 

we first set the value of stocks to the corresponding empirical values (e.g., depressive 

symptoms symptoms0 = depressive symptoms at T1). We then generate H = 200 paths by 

adding random noise to the indicated rumination and indicated depression for each 

individual (the resulting noise matrix has 200 columns and 661 rows, with two noise 

values for each cell corresponding to the depressive symptoms and rumination noise). We 

repeat this procedure at every time step as we simulate each of the individuals over seven 

months.  

3. Estimate the simulated-auxiliary statistics using the auxiliary model and simulated 

data. After generating the simulated data, for a given θ, the simulated-auxiliary statistics 

are estimated in a similar fashion to the empirical-auxiliary statistics for each path. In this 

case, we run three regressions presented in the third column of Table 3, and include the 

other statistics to create a vector of simulated auxiliary statistics 

(𝑆1(𝜃)
ℎ, 𝑆2(𝜃)

ℎ, … , 𝑆14(𝜃)
ℎ) for each path. The average of these H simulated-auxiliary 

statistics is then found as 
1

𝐻
∑ 𝑆𝑘(𝜃)

ℎ𝐻

ℎ=1
. 
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4. Minimize the difference between the empirical-auxiliary statistics and the 

simulated-auxiliary statistics. A good estimate for the initial value of parameters can be 

found by running regressions on equations of indicated rumination and indicated 

depressive symptoms. The initial value for standard deviations of RumNoise and 

DepNoise are the residuals of these two regressions. The initial values of other 

parameters, effect of rumination on time constant (θ9), and correlation time (θ12), are 

arbitrarily selected. The initial values are summarized in the first column of Table 5. The 

unknown parameters (θ) are estimated by using fmincon solver in MATLAB combined 

with its global search algorithm which attempts smartly chosen start-points in the 

parameter space to increase the likelihood of finding the global optima. The same set of 

noise matrices are used in each iteration of the optimization to ensure comparability. The 

weight matrix (W) is estimated by using a large number of simulations (for this case we 

used 2,000 simulations). The estimated parameters are shown in Table 5. All materials 

for estimating the parameters of the model are provided in the online Appendix. 

 

Results 

Table 5 shows the estimated parameters of the SD model, including the estimated 

parameters found in the first round of optimization, and the estimated parameters found after 10 

rounds of optimizations. In the first round of optimization the weighting matrix is W1, defined 

above. In the next rounds of optimizations, the weighting matrix is the inverse of the variance-

covariance matrix of the statistics based on parameters estimated in the previous round of 

optimization. We ran 2,000 simulations to estimate the weight matrices. The parameters fully 

converged after seven rounds of optimization. 
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Table 5: The Estimated Parameters in the First and Tenth Rounds of Optimization 

Unknown Parameters 
Initial 

Value (θ0) 

First Round of 

Optimization 

10th  Round of 

Optimization 

Rumination constant (θ1) 0.3320 -0.5064 -1.2504 [-3.1920,0.6911] 

Effect of depressive symptoms on rumination (θ2) 0.2490 0.1187 0.4236 [-0.1661,1.0132] 

Gender coefficient (θ3) 1.3540 0.7883 2.5152 [0.5518,4.4787] 

Effect of stressors on rumination (θ4) 0.1240 0.0824 0.2518 [0.0227,0.4809] 

Rumination coefficient (θ5) 0.5470 0.6202 0.1639 [-0.8064,1.1342] 

Depression constant (θ6) 2.0010 0.3207 0.3730 [0.2968,0.4491] 

Effect of rumination on depressive symptoms (θ7) 0.2520 0.0530 0.0699 [0.0638,0.0759] 

Depression coefficient (θ8) 0.5560 0.9102 0.8894 [0.8822,0.8967] 

Effect of rumination on memory time (θ9) 1.0000 2.1865 1.4741 [1.3735,1.5747] 

Standard deviation of rumination noise (θ10) 5.8000 2.8678 7.8735 [-0.1391,15.8861] 

Standard deviation of depression noise (θ11) 6.0500 0.0016 0.0002 [-0.0307,0.0311] 

Correlation time (θ12) 1.0000 0.4266 1.6008 [0.0456,3.1559] 

95% confidence interval is presented in parentheses. 

Some of the parameters in Table 5 have tight confidence intervals—e.g., suggesting the 

strong impact of gender and stressors on rumination, rumination and past depression on 

depressive symptoms, and rumination on memory time. These are indeed the more relevant 

theoretical findings we may be seeking in this model. On the other hand, parameters specifying 

the pink noise characteristics are less reliable. It is possible that our data are not able to fully 

constrain the model parameters, or better model structures could be devised that fit this data 

more closely and with less variance in parameters. Moreover, the use of the analytical method 

used to calculate the confidence intervals, which relies on the normality of estimated parameters, 

may be imprecise. Indirect inference estimators are asymptotically normally distributed when 

auxiliary-empirical statistics are normally distributed. When that assumption is not reliable the 

use of boot-strapping methods (Dogan, 2007), while computationally more expensive, is more 

robust in finding the confidence intervals.  

Figure 3 compares the results of the first round of optimization and the final optimization. 

The circles represent the simulated-auxiliary statistics and the bars depict the 95% confidence 

interval of empirical-auxiliary statistics (in which such confidence intervals are available from 

auxiliary model estimations). The estimated parameters from the first round of optimization 
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generate a few simulated-auxiliary statistics that are far away from the 95% confidence interval 

of the empirical-auxiliary statistics (Figure 3-A). After 10 rounds of optimization, almost all of 

the simulated-auxiliary statistics are within the 95% confidence intervals of the empirical-

auxiliary statistics (Figure 3-B). Table 6 presents the values of the simulated and empirical 

auxiliary statistics shown in Figure 3. 

Figure 3. Empirical-auxiliary statistics and simulated-auxiliary statistics generated using the 

estimated parameters from the first (A) and the tenth rounds of optimization (B) 
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Table 6. The Values of Empirical-Auxiliary Statistics and Simulated-Auxiliary Statistics Generated Using the Estimated Parameters 

from the First and Higher Rounds of Optimization 

Regression Statistics 
Empirical-Auxiliary 

Statistics 

Simulated-Auxiliary 

Statistics 

(First round of 

optimization) 

Simulated-

Auxiliary Statistics 

(Tenth  round of 

optimization) 

Equation (5) 

b1 -0.4663 [-1.4883, 0.5557]* -0.48496 -0.09359 

b2 0.2313 [0.1680, 0.2947] 0.196941 0.511783 

b3 1.2021 [0.3046, 2.0996] 1.128222 1.609224 

b4 0.1316 [0.0064, 0.2569] 0.134688 0.221293 

b5 0.4548 [0.3819, 0.5276] 0.38188 0.225195 

b6 0.1749 [0.1028, 0.2470] -0.01602 -0.07331 

Equation (6) 

a1 2.0012 [1.0910, 2.9113] 2.004988 2.234688 

a2 0.2526 [0.1894, 0.3157] 0.263558 0.234232 

a3 0.5559 [0.4760, 0.6358] 0.538416 0.5394 

Equation (7) 
c1 -0.0201 [-0.06850, 0.0282] -0.02015 -0.06472 

c2 -0.1222 [-0.1588, -0.0857] -0.04511 -0.00205 

Mean 

Mean of depressive symptoms at T3 9.7852 [9.2013, 10.3690] 9.169462 9.722089 

Mean of rumination at T2 10.8487 [10.2665, 11.4309] 8.563383 10.31732 

Mean of rumination at T3 9.9546 [9.3475, 10.5617] 7.8181 10.13648 

*95% confidence interval are presented in brackets. 
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Model specification and refinement 

As explained in the fifth step of the method, when k > p, a test can be used to assess how 

well a model has been specified. Using equation 4, the test statistic 𝜉𝑇 was found to be 220. The 

99% cut-off value for a chi-square distribution with 2 degrees of freedom (14-12=2) was 9.2. 

Although almost all simulated-auxiliary statistics are within the confidence interval of the 

empirical-auxiliary statistics, our 𝜉𝑇 is still higher than the cut-off value (𝜉𝑇 = 220 > 𝜒2
2 = 9.2), 

hence, the model can be further refined.4 

Internal validity of this method can be tested using simulations. This is a good general 

practice when using complex models and estimation methods for which proofs of consistency 

and efficiency do not fully apply because of the divergence between theoretical requirements for 

those proofs and practical features of the problem at hand. Specifically, once a model is 

estimated, it can be used to generate a synthetic dataset, which is then used to re-estimate the 

model to find out if the new parameter estimates correspond closely to the empirical estimates. 

We thus check whether the parameters estimated by applying the indirect inference to a synthetic 

dataset—generated by simulating the calibrated model with coefficients reported in Table 5—are 

similar to true values (used for creating the synthetic data). The main idea behind this test is that 

in this case the data-generating process is perfectly modeled and true parameter values are 

known, thus any errors in parameter estimates can be attributed to the estimation method. The 

parameters in the third column of Table 5 are used to simulate the model and generate a synthetic 

                                                            
4 In applications of indirect inference, it is common that the chi-square test rejects the hypothesis that the model is 

indistinguishable from the true data-generating process. This is a very high bar to set for any simulation model: to 

generate data in a way that the resulting auxiliary statistics are indistinguishable from the true data-generating 

process. Various unobserved external influences often exist on the system’s dynamics that make it hard, if not 

impossible, to satisfy such criteria. Moreover, the chi-square test is potentially over-sensitive because it penalizes 

non-normal error terms with a normality assumption. Because normal distribution has thin tails, the statistic 

penalizes large errors very significantly, compared to what might be more appropriate for common fat-tailed 

distributions for the error. Thus it is more appropriate, and more often used, as a continuous metric to assess the 

quality of fit rather than a binary rejection/acceptance test. 
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dataset. All steps explained in the description of the model are then applied to the synthetic data 

to find the indirect inference estimates. As shown in Table 7, the true parameters that are used to 

generate the synthetic data (first column) are within the 95% confidence interval of the estimated 

parameters using the synthetic data (second column); however, the estimated confidence 

intervals are rather wide suggesting the potential benefit of incorporating additional auxiliary 

statistics into the estimation process. In this synthetic estimation exercise the overall goodness of 

fit statistic, 𝜉𝑇, is 7.48, which is lower than the cut-off value (9.2), and thus the test does not 

reject the overall fit of the model to synthetic data, which is reassuring. Moreover, repeating this 

synthetic estimation a few hundred times would provide the boot-strapped confidence intervals 

for the model parameters which are typically more reliable than the asymptotic estimates 

reported in Table 7. 

Table 7. Estimated Parameters Using Empirical Data and Synthetic Data 

Unknown Parameters 

Parameters Used 

to Generate 

Synthetic Data 

Estimated Parameters 

Using Synthetic Data 

Rumination constant (θ1) -1.2504  -0.0915 [-3.83, 3.65]* 

Effect of depressive symptoms on rumination (θ2) 0.4236  0.3111 [-0.03, 0.66] 

Gender coefficient (θ3) 2.5152  2.8423 [-1.58, 7.27] 

Effect of stressors on rumination (θ4) 0.2518  0.2411 [-0.19, 0.67] 

Rumination coefficient (θ5) 0.1639  0.1722 [-1.19, 1.54] 

Depression constant (θ6) 0.3730  -0.4226 [-7.00, 6.15] 

Effect of rumination on depressive symptoms (θ7) 0.0699 0.0948 [0.05, 0.14] 

Depression coefficient (θ8) 0.8894 0.8923 [0.77, 1.01] 

Effect of rumination on memory time (θ9) 1.4741 1.4920 [1.39, 1.60] 

Standard deviation of rumination noise (θ10) 7.8735 7.1009 [0.90, 13.30] 

Standard deviation of depression noise (θ11) 0.0002 17.9914 [-77.01, 113.00] 

Correlation time (θ12) 1.6008 2.7767 [-1.22, 6.77] 

             *95% confidence interval are presented in brackets. 

Finally, building confidence in the estimation results calls for the inspection of individual 

parameter values and simulating the model extensively to ensure its behavior is robust and does not 

violate trends in data or physics of the problem. To demonstrate, we simulated the model using three 

different sets of parameters reported in Table 5 (i.e., initial parameters, parameters estimated in the first 

round of optimization, and parameters estimated in the tenth round of optimization). For each set of 
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parameters, we ran the model for 2,500 female adolescents by changing the rumination and depression 

noise seeds and setting initial depressive symptoms, rumination, and stressors at their mean. Results, 

reported in the online Appendix, show consistency among simulated trends and empirical ones, which is 

strongest for the 10th round of optimization.  

Furthermore, polarity and magnitude of the estimated parameters should be considered to ensure 

that they are intuitively sound. For example, the negative polarity of θ1—which was positive in the base 

case but estimated to be negative— calls for closer attention because rumination should not become 

negative. Further inspection suggests this negative constant is compensated for by the average impact of 

depression, gender, and stressor memory (which are all positive), so that calculated values for indicated 

rumination remain non-negative.  

 

Conclusion 

This article provides a step-by-step introduction to the indirect inference method for 

estimating unknown parameters of dynamic models. In this method, the unknown parameters of 

the model of interest are estimated by matching the properties of empirical data and simulated 

data. In many applications, there are few empirical data points available over time; as a result, it 

is not feasible to use conventional estimation methods such as the least squared error. In 

addition, unlike traditional methods, indirect inference does not require calculation of the 

likelihood function, which may well be intractable for complex models. The indirect inference 

method extends the method of simulated moments by removing the requirement that the 

matching statistics be a set of valid moments. They can be parameters of an auxiliary model, 

which is not an accurate description of the data-generating process, but it can be estimated easily 

by conventional estimation methods. This extension opens the door to utilizing a large range of 

auxiliary statistics that may be more informative than regular moments, capture dynamic features 
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of the data not included in regular moments, and include better signal to noise ratio. When the 

dynamic model is too complicated with intractable likelihood function, when very few empirical 

data points exist over time, or when the number of available valid moments are smaller than the 

number of parameters of the model, indirect inference might be one of the few feasible options to 

estimate the unknown parameters of an SD model. 

Introducing the indirect inference approach to the SD community has two distinct 

benefits. First, it can make the contribution of SD to other fields more salient. For example, 

previous models of major depressive disorder (MDD) have not explicitly incorporated the 

feedback mechanisms we discussed in our model (Wittenborn, Rahmandad, Rick, & 

Hosseinichimeh, 2016). Our modeling and estimation results suggest that these feedback 

mechanisms are indeed important and may be central to understanding MDD. While the previous 

literature has speculated about such feedback mechanisms, it did not quantify them properly. 

More generally, qualitative data often establish the existence of a feedback mechanism, and the 

really challenging task is estimating the strength of those mechanisms, which is central to both 

theory and practice. This estimation practice also contributes beyond SD by shedding light on the 

mechanisms through which stress and rumination contribute to depression. Although previous 

studies showed that rumination mediates the relations between stressful events and depression 

(Michl et al., 2013), the mechanism of rumination’s influence was not known; only one study 

hypothesized that rumination contributes to depression by keeping stressors alive without testing 

it (Ruscio et al., 2015). We examined the validity of the hypothesized pathway by capturing it in 

the first loop of Figure 1 and estimating the significance of related parameters. In addition, in 

another article (Hosseinichimeh et al., 2016), we estimate the time to forget a stressor separately 

for boys and girls, which is a useful measure for clinicians, and we simulate the model for 
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diverse patients under different conditions and investigate the progression of depressive 

symptoms for them.  

Second, this article also contributes to the SD discipline. In the absence of indirect 

inference, traditional calibration methods in SD literature would not allow for the use of common 

data structures available in this field (e.g., with 2–3 data points per person) to estimate a 

feedback-rich model. Many empirical datasets in psychology, medicine, organization studies, 

economics, and sociology share a similar structure. Thus, a gap has emerged between the focus 

of SD modeling (which often focuses on building feedback-rich models) and the focus of 

mainstream research in social and behavioral fields (which often attempts to estimate simple 

models). Our results show the potential synergies between SD and indirect inference that could 

be explored well beyond MDD research. 

Many advances in statistics have enabled researchers to estimate increasingly complex 

and realistic models with diverse types of data over the past three decades. We believe that for 

SD to contribute to mainstream disciplinary research across various fields of social and 

behavioral sciences, modelers must be able to draw on the best available methods in order to 

estimate feedback-rich, mechanism-based models using quantitative data. We hope that the 

introduction of indirect inference extends the toolbox of SD researchers and allows them to 

combine the benefits of a broad model boundary and feedback richness—which traditional SD 

brings to understanding various phenomena—with the quantitative rigor of modern 

econometrics.  
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