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This paper proposes an analytical model to approximate the transient aggregate joint queue-length distribu-

tion of tandem finite (space) capacity Markovian networks. The methodology combines ideas from transient

aggregation-disaggregation techniques as well as transient network decomposition methods. The complexity

of the proposed method is linear in the number of queues and is independent of the space capacities of the

individual queues. This makes it a suitable approach for the analysis of large-scale networks. The transient

joint distributions are validated versus simulation estimates. The model is then used to describe urban traffic

dynamics and to address a dynamic traffic signal control problem. The signal plan analysis shows the added

value of using joint distributional information, and more generally spatial-temporal between-link dependency

information, to enhance urban traffic operations.
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1. Introduction

With congestion prevailing in urban areas and limited possibilities for road infrastruc-

ture expansion, there is a need to rethink how we operate our transportation systems.

Transportation strategies are typically formulated such as to improve first-order perfor-

mance metrics, e.g., expected travel times. They have the potential to further enhance

performance by accounting for higher-order distributional information such as to improve,

for instance, network reliability and network robustness. Various transportation agencies

have recently identified improved network reliability and/or network robustness as criti-

cal goals (Texas Transportation Institute 2012, Transport for London 2010, Department
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of Transportation 2008). Performance measures that account for network reliability/ro-

bustness involve the approximation of higher-order distributional information of the main

network, or path, performance measures. There are two main challenges that arise when

attempting to analytically approximate the full joint network, or path, distribution.

First, an analytical probabilistic approximation of the spatial-temporal dependencies

between links (i.e., roads) is needed. Congested urban networks embed complex traffic

dynamics, hence providing an analytical approximation of the between-link interactions

is intricate. Hence, the vast majority of the probabilistic network models are simulation-

based (for a recent review, see Barceló 2010). In the general field of transportation (air,

urban, maritime, etc.), few analytical probabilistic and time-dependent traffic models have

been developed (Flötteröd and Osorio 2013, Osorio and Flötteröd 2013, Osorio et al. 2011,

Gupta 2011, Heidemann 2001, Peterson et al. 1995b,a, Odoni and Roth 1983). Recent

work has proposed link models (Osorio and Flötteröd 2013, Osorio et al. 2011) based on

transient Markovian queueing network theory, which are consistent with the mainstream

deterministic traffic flow theory models, such as the Kinematic Wave Model (KWM)

(Lighthill and Witham 1955, Richards 1956). Such models provide a detailed description of

the within-link traffic dynamics. Nonetheless, their use for the joint and tractable analysis

of large-scale networks has yet to be explored.

Second, the dimension of the joint queue-length distribution is exponential in the num-

ber of links. Let the state of link i, denoted Ni, be defined as the number of vehicles on

the link. Then the network state space is given by:×
i∈L

{0,1, . . . , ℓi}, where L denotes the

set of links and ℓi is the space capacity of link i. Hence, the dimension of the state space

is
∏

i∈L(ℓi + 1). Given the dimensionality of the joint distribution, providing a tractable

approximation suitable for the analysis of large-scale networks is a major challenge.

This paper focuses on this dimensionality challenge. It proposes an analytical, tractable

and scalable technique that approximates the joint time-dependent queue-length distribu-

tion of a finite (space) capacity tandem (also called series or linear) topology Markovian

network. The complexity of the proposed method is linear, instead of exponential, in the

number of links and is independent of the space capacities of the individual queues. This

makes it a suitable approach for the analysis of large-scale tandem networks.

Hereafter, the term capacity refers to space capacity. In the field of queueing network

theory, the vast majority of research has focused on stationary analysis, whereas transient

techniques have received less attention. Seminal works in transient analysis of a single

finite capacity queue include Morse (1958), Cohen (1982). For recent reviews of transient

analysis, see Kaczynski et al. (2012), Griffiths et al. (2008). For Markovian finite capacity
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queueing networks (FCQNs), the transient joint queue-length distribution can be obtained

by solving a system of linear first-order ordinary differential equations (ODEs) (described

in Section 2.1). Closed-form expressions are limited to a single M/M/1/ℓ or a single

M/M/2/ℓ queue (Morse 1958, Sharma and Gupta 1982, Sharma and Shobha 1988). Exact

numerical techniques are the most common approach when analyzing transient networks

(for reviews, see Stewart 1994, 2009). Nonetheless, the dimension of the joint distribution

remains a major challenge.

To address the issue of dimensionality, the most common approach is to decompose the

network into subnetworks and approximate the subnetwork distributions. These methods

are known as decomposition techniques. A review of stationary decomposition techniques

is given in Osorio and Bierlaire (2009). Stationary decomposition methods have mostly

decomposed the network into single queues, as in Osorio and Bierlaire (2009). Stationary

methods that decompose the network into overlapping subnetworks of three queues, as

is done in this paper, include Brandwajn and Jow (1988), Schmidt and Jackman (2000).

Unlike the method proposed in this paper, the latter two methods consider a stationary

analysis.

Most transient decomposition techniques assume infinite capacity queues (e.g., McCalla

and Whitt 2002, Whitt 1999, Peterson et al. 1995a, Odoni and Roth 1983). This is due

to the complexity of providing an analytical description of the temporal between-queue

dependencies in FCQNs, and even more so in congested FCQNs. Transient decomposition

techniques for an FCQN include work in the field of manufacturing, where detailed service

processes are used to describe complex machine characteristics, see Li (2005) for general

topology networks and Zhang et al. (2013) for tandem topology networks. A technique for

general topology Markovian networks is proposed in Flötteröd and Osorio (2013).

A second family of techniques to address the issue of dimensionality are aggregation-

disaggregation techniques. The latter describe the state of the network aggregately

(i.e., reduced state space), while ensuring consistency with disaggregate (i.e., high-

dimensional) distributions (e.g., Schweitzer 1991). Exact transient and stationary

aggregation-disaggregation techniques have been proposed (Schweitzer 1984). Nonetheless,

such approaches are not sufficiently tractable for large-scale networks. An approximate

tractable stationary aggregation-disaggregation method appropriate for the analysis of

urban networks is proposed in Osorio and Wang (2013).

This paper considers the transient analysis of networks and combines both tech-

niques mentioned above: transient decomposition techniques and transient aggregation-

disaggregation techniques. The decomposition technique decomposes the network into
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overlapping 3-queue subnetworks. For each subnetwork, the state of each queue is

described aggregately, and an analytical approximation of the between-queue dynamics is

proposed. The combination of these two families of ideas leads to a highly tractable and

scalable description of network dynamics. It is this combination that leads to a model

complexity that is both linear in the number of links (which is often the case of decom-

position methods) and independent of the link space capacities (which is often the case

of aggregation-disaggregation methods). Additionally, this paper focuses on the transient

analysis of networks, unlike the stationary analysis proposed in Osorio and Wang (2013)

or Osorio and Bierlaire (2009).

The recently proposed queueing-theoretic Markovian vehicular traffic models that are

consistent with deterministic traffic flow theory (Osorio and Flötteröd 2013, Osorio et al.

2011) show the great potential of queueing theory to complement and extend traditional

deterministic traffic flow theory. Consistency with the KWM proves the adequacy of using

transient Markovian queueing theory to model uninterrupted vehicular traffic, for all levels

of congestion. As differentiable and probabilistic models, they can be used as stand-alone

models to address a variety of optimization problems. The model proposed in this paper is

not formulated such as to be consistent with traditional deterministic traffic flow theory.

As part of ongoing work, the aggregation-disaggregation ideas presented in this paper

are being combined with detailed traffic-theoretic dynamic link models such as to derive

network models that are both consistent with traditional deterministic traffic theories and

suitable for the analysis of large-scale networks.

For interrupted traffic (e.g., at signal controlled intersections, at traffic sign controlled

intersections), stationary or transient Markovian queueing network models that are highly

accurate have not been proposed. Nonetheless, they have been successfully used to design

computationally efficient simulation-based optimization (SO) algorithms for interrupted

urban traffic (Osorio and Bierlaire 2013, Osorio and Chong 2013, Osorio and Nanduri

2013). In these SO algorithms, information from high-resolution, yet computationally inef-

ficient, models of interrupted traffic (e.g., stochastic microscopic traffic simulators) is com-

bined with information from low-resolution, yet efficient, analytical Markovian queueing

network models. This combination leads to SO algorithms with an appealing resolution-

efficiency trade-off.

The model proposed in this paper is formulated such as to be consistent with queueing

network theory, rather than traffic flow theory. It is analytical, differentiable and com-

putationally efficient. Hence, it can be combined with higher-resolution traffic-theoretic
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models of interrupted traffic to address a variety of optimization problems, both analyti-

cal and simulation-based. In this paper, the proposed queueing model is used to address

an analytical traffic signal control problem (Section 4). The model identifies signal plans

with good performance, this shows its potential to be combined with higher-resolution

models of interrupted traffic to address complex time-dependent optimization problems.

Additionally, the results of Section 4 show that the signal plans derived by the proposed

transient model outperform the signal plans derived by the stationary model used in past

work for simulation-based signal control (Osorio and Bierlaire 2013, Osorio and Chong

2013, Osorio and Nanduri 2013). This indicates the potential of the proposed model to

enhance the performance of existing SO frameworks.

Modeling and optimizing the spatial and temporal propagation of urban congestion is a

great challenge. In particular, models that can describe between-queue dependencies, and

more specifically the occurrence and effects of spillbacks are of interest. Major congested

cities, such as New York city (Osorio et al. 2014), are rethinking the way they operate

their traffic lights such as to mitigate spillbacks. The proposed approach contributes by

providing a probabilistic description of between-queue dependencies.

Section 2 presents the proposed methodology. The method is validated versus a general-

purpose discrete-event queueing network simulator (Section 3). It is then used to address

an urban traffic signal control problem (Section 4), this illustrates its potential to address

various transportation optimization problems. Conclusions are presented in Section 5.

2. Methodology

This section is structured as follows. It presents the general transient aggregation-

disaggregation framework (Section 2.1). This framework is formulated for an aggregate

description of a single queue (Section 2.2), and generalized for a tandem network of queues

(Section 2.3). The main challenge in the analytical analysis of a network of finite capacity

queues is the analytical description of between-queue dependencies. This challenge is illus-

trated with a simple example in Section 2.4. The proposed analytical descriptions of the

between-queue dependencies are given in Sections 2.5-2.7. An algorithm that summarizes

the proposed method is presented in Section 2.8.

2.1. Transient aggregation-disaggregation framework

This paper builds upon the exact aggregation-disaggregation technique for transient

Markov chains given in Schweitzer (1984). This section presents the main idea underlying

the Schweitzer (1984) framework. Consider a continuous-time Markov chain with a finite

and large state space. The Markov chain is assumed aperiodic and communicative. Let Ω
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denote the state space with card(Ω) =M . The rate at which a transition from state i to

j, i 6= j, (i, j) ∈ Ω2, can take place is given by qij. The transition rate matrix, Q, is then

defined by:

Qij =

{

qij, if i 6= j,
−
∑

k∈Ω\i qik if i= j.
(1)

Let N denote the network state (e.g., joint network queue-length) and let pN(t) be the

row vector that represents the transient joint state distribution at time instant t. Then,

pN(t) satisfies the (forward) Kolmogorov system of equations (see, for instance, Durrett

1999, Chapter 4.2):
dpN(t)

dt
= pN(t)Q. (2)

Assuming valid boundary conditions, there are numerous exact numerical techniques to

solve the above system of linear first-order ODEs. For reviews on such numerical methods,

see Stewart (1994, 2009). The main challenge in solving (2) remains the dimension of the

state space. For instance, for a finite capacity queueing network with m queues each with

space capacity ℓ, where N represents the joint queue-length state, the state space is of

dimension M = (ℓ+ 1)m, which is exponential in the number of queues and depends on

the space capacities of the individual queues.

In order to address the dimensionality issue, Schweitzer (1984) proposes to partition

the M states into M̄ aggregate disjoint states, such that M̄ ≪M . Let Ω̄ denote the set of

aggregate states. Let Ωa denote the set of disaggregate states within aggregate state a. Let

A denote the random variable representing the aggregate network state. The probability

of being in aggregate state a at time t is denoted pA=a(t) and defined as:

pA=a(t) =
∑

i∈Ωa

pN=i(t). (3)

Schweitzer (1984) shows that the aggregate distribution satisfies a system of the form:

dpA=a(t)

dt
= pA=a(t)Q̄(t), (4)

where Q̄(t) represents the transition rate matrix of the aggregate system. Element (a, b)

of Q̄(t) is denoted by q̄ab(t) and is refered to as an aggregate transition rate. Schweitzer

derives the following exact closed-form expression for Q̄(t) as a function of disaggregate

transition rates and disaggregate state probabilities (Schweitzer 1984, Equation (10.4)):

q̄ab(t) =







∑

j∈Ωa

∑

i∈Ωb
pN=j(t)qji

∑

j∈Ωa
pN=j(t)

if (b, a)∈ Ω̄2, b 6= a,

−
∑

c∈Ω̄\a q̄ac if a= b.

(5)
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2.2. Aggregate state representation

This section defines the aggregate state representation. It then considers the aggregation-

disaggregation framework presented in Section 2.1, and applies it to a single finite capacity

M/M/-type queue. The exact expression derived is used in subsequent sections to formu-

late the methodology for a network of queues.

Consider a single M/M/1/ℓ queue. The (disaggregate) state of the queue is described

by the number of jobs (e.g., vehicles), N , in the queueing system. The (disaggregate) state

space is given by Ω= {0,1, .., ℓ}, where ℓ ∈ Z
+ is the space capacity. Let λ≥ 0 and µ > 0

denote, respectively, the arrival and service rates.

We aggregate the ℓ+1 (disaggregate) states into the following three (aggregate) states:

the queue is empty, the queue is full, the queue is neither empty nor full. The aggregate

states are described by the random variable A: (i) empty queue: A= 0, Ω0 = {N = 0};
(ii) non-empty and non-full queue: A = 1, Ω1 = {N ∈ [1, ℓ − 1]}; and (iii) full queue:

A= 2, Ω2 = {N = ℓ}.
The choice of these three states is based on between-queue dynamics in urban networks,

where there are vehicle transmissions from link j to its downstream link k as long as: (i)

a vehicle is ready to be sent from the upstream link j (i.e., non-empty upstream link:

Aj > 0) and (ii) there is space in the downstream link k to receive a vehicle (i.e., non-full

downstream link: Ak < 2). With only 3 states we can describe the boundary conditions

that each queue provides to its upstream and downstream queues. This yields a model

complexity that is independent of the space capacity of each queue, making this approach

highly tractable for large-scale networks. Additionally, the use of such a low-dimensional

aggregate description of the within-link state will facilitate the combination of this model

with other more detailed link traffic models that describe the within-link dynamics in

more detail yet lack tractability (e.g., Osorio and Flötteröd 2013).

The aggregate transition rate matrix of an M/M/1/ℓ queue is given by:

Q̄(t) =





−λ λ 0
µ̄(t) −(µ̄(t)+ λ̄(t)) λ̄(t)
0 µ −µ



 , (6)

where λ̄(t) (resp. µ̄(t)) is used to denote q̄12(t) (resp. q̄10(t)) and represents the rate at

which transitions take place from the aggregate state A= 1 to the full queue state A= 2

(resp. empty queue state A= 0).

The (disaggregate) transition rate matrix of an M/M/1/ℓ queue is given by:

qij =







λ if j = i+1 and i∈ J0, ℓ− 1K
µ if j = i− 1 and i∈ J1, ℓK
−
∑

j∈Ω\i qij if i= j.
(7)
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Inserting (7) into (5), and noting that Ω0 = {0} and Ω2 = {ℓ}, we obtain the following

exact expressions for the aggregate transition rates:














λ̄(t) = λ
pN=ℓ−1(t)

pA=1(t)
(8a)

µ̄(t) = µ
pN=1(t)

pA=1(t)
. (8b)

System (8) is equivalent to:

{

λ̄(t) = λpN=ℓ−1|A=1(t) (9a)

µ̄(t) = µpN=1|A=1(t). (9b)

System (9) indicates that an accurate approximation of λ̄(t) and of µ̄(t) can be derived

based on an accurate approximation of the probabilities pN=ℓ−1|A=1(t) and pN=1|A=1(t).

We refer to these probabilities as disaggregation probabilities since they represent the

probabilities of being in a disaggregate state of a given aggregate state. The System (9)

will serve as a building block for the proposed methodology.

2.3. Transient aggregate description of a tandem network

We consider a discrete-time context and introduce the following notation.

δ time step length;
k time interval index for interval [kδ, (k+1)δ];
Ni disaggregate state of queue i;
Ai aggregate state of queue i;
Āi aggregate joint state of subnetwork i: Āi = (Ai,Ai+1,Ai+2);
pkXi

(t) distribution of Xi at continuous time t within time interval k, t∈ [0, δ];
Q̄k

i aggregate transition rate matrix of subnetwork i during time interval k.

Consider a tandem topology network with I queues. Each queue has finite space capac-

ity ℓi ∈ Z
+, independent exponentially distributed service times with parameter µi, and

external arrivals (i.e., arrivals that come from outside of the network) that follow a Poisson

process with rate parameter γi.

We decompose the network into I − 2 overlapping subnetworks with 3 adjacent queues

each, as depicted in Figure 1. A 3-queue subnetwork is the smallest subnetwork in which

the traffic dynamics of each queue account for the states of both its upstream and its

downstream queues. Subnetwork i consists of three queues indexed i, i + 1 and i + 2.

The proposed methodology analyses all subnetworks simultaneously, and yields for each

subnetwork i an analytical approximation of its transient joint aggregate distribution.

For subnetwork i, the joint aggregate state probabilities at continuous-time t of time

interval k are denoted pk
Āi=s

(t), where an aggregate state s is defined as the triplet: s=

(ji, ji+1, ji+2)∈ {0,1,2}3. Each queue of a subnetwork has three aggregate states, hence the
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· · · · · ·

Subnetwork

i− 2

Subnetwork

i− 1

Subnetwork

i

Queue i− 2 Queue i− 1 Queue i Queue i+1 Queue i+2

Figure 1 Overlapping subnetworks of three tandem queues.

dimension of the state space of the subnetwork is aggregated into 33 = 27 distinct states.

For a network with I queues, the proposed approach yields I−2 subnetwork distributions,

each with a state space of dimension 27. Hence, the complexity of the proposed model is

linear, instead of exponential, in the number of queues and is independent of the space

capacities of the individual queues. This makes it a suitable approach for the analysis of

large-scale tandem networks.

For each subnetwork i, we assume that the temporal evolution of its joint aggregate

distribution satisfies a System of Equations of the form (4). Additionally, for a given

time interval k of duration δ, we approximate the aggregate transition rate matrix of

subnetwork i, Q̄i(t), by a time invariant matrix Q̄k
i . Equation (4) then becomes a linear

ODE:
dpk

Āi
(t)

dt
= pkĀi

(t)Q̄k
i , ∀t∈ [0, δ], (10)

which has a solution of the form (see, for instance, Reibman (1991)):

pkĀi
(t) = pkĀi

(0)etQ̄
k
i ,∀t∈ [0, δ]. (11)

The initial conditions that ensure the temporal continuity of the aggregate distribution

across time intervals are given by:

pkĀi
(0) = pk−1

Āi
(δ). (12)

The approximation of the aggregate time-dependent transition rate matrix Q̄i(t), is

formulated as a function fQ̄ of four parameters, three of which are time-dependent:

Q̄k
i = fQ̄(γ̄

k
i , µ̄

k
i , α

k
i , βi), (13)

where γ̄k
i represents the rates of arrival from outside the subnetwork, µ̄k

i denote subnet-

work service rates, αk
i are disaggregation probabilities and βi are blocking probabilities.

The full expression for Q̄k
i (i.e., the definition of the function fQ̄) is given in Table 5 of

Appendix A. The structure of the matrix Q̄k
i is the same as that of the time-independent

transition rate matrix used in Osorio and Wang (2013, Table 6). The definitions and
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approximations of αk
i , βi, γ̄

k
i and µ̄k

i are described, respectively, in Sections 2.5, 2.6, 2.7 and

2.7. Section 2.4 illustrates through an example the complex traffic phenomena that may

arise in finite capacity networks. This serves to highlight the challenge of approximating

these subnetwork parameters.

2.4. Describing the propagation of congestion through blocking

When considering a network of multiple finite capacity queues, intricate traffic dynamics

may arise due to the emersion of blocking (referred to as spillback in urban traffic).

Blocking arises when a job (e.g., a vehicle) completes service yet finds no available space in

its downstream queue to proceed. Hence, the job is said to be blocked by its downstream

queue. A blocked job is also blocking the use of the underlying server (e.g., road-space) by

other upstream jobs. There are various types of blocking mechanisms (cf. Balsamo et al.

2001), here we consider blocking-after-service, which is also known as production blocking

or manufacturing blocking. In this case, once a job is blocked it continues to occupy the

underlying server until it can proceed downstream (i.e., until it is unblocked). This form

of blocking mimics well the spillback dynamics that arise in urban traffic.

Blocking leads to intricate between-queue dependencies. For instance, a service comple-

tion at a blocking queue (i.e. a queue that is blocking jobs at upstream queues) triggers

instantaneous state changes at upstream blocked queues. Additionally, for a general topol-

ogy network if queue i is blocked by downstream queue j, then queue j is full and may

be blocking jobs at other upstream queues other than queue i. Hence, the rate of job

departures from queue i (known as the unblocking rate) depends not only on the state

and service rate of queue j, but also on the occurrence of blocking at all upstream queues

of queue j.

The following example, taken from Osorio and Wang (2013, Section 2.3.2), illustrates

the notion of blocking and the complex between-queue dependencies that it leads to.

Consider for subnetwork i a joint aggregate state s= (1,2,2) where queue i (i.e., the most

upstream queue) is in state 1, and queues i+1 and i+2 are in state 2, i.e., they are full.

Assume there is a service completion at queue i+2. This service completion can trigger

a transition to one of the following states:

• if queue i+2 is not blocking queue i+1, then the new state is (1,2,1);

• if queue i+2 is blocking queue i+1 and is not blocking queue i, then the new state

is (1,1,2);

• if queue i+ 2 is blocking queue i+ 1 and is blocking queue i, then the new state

is either (1,2,2) (this occurs with probability pNi>1|Ai=1) or (0,2,2) (this occurs with

probability pNi=1|Ai=1). These probabilities are known as disaggregation probabilities.
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This example illustrates the need to approximate: (i) disaggregation probabilities, and

(ii) blocking probabilities for states where blocking can occur. Analytical approximations

for these two elements are proposed, respectively, in Sections 2.5 and 2.6. One of the main

challenges when analyzing finite capacity networks is to accurately approximate blocking

and unblocking events. This is an even greater challenge in our context, since the proposed

paper considers an aggregate (i.e., non-detailed) representation of queue states.

2.5. Disaggregation probabilities

For a 3-queue network, an exact expression for the aggregate and disaggregate transi-

tion rates can be derived as was done for a single queue in Section 2.1 (which lead to

System (9)). The aggregate transition rate matrix is then described as a function of dis-

aggregation probabilities (cf. System (9)), where each queue j in subnetwork i has two

disaggregation probabilities that are of interest: pNj=n|Aj=1(t), n∈ {1, ℓj − 1}.
We propose to approximate these disaggregation probabilities by accounting for the

joint subnetwork state. In other words, we approximate pNj=n|Aj=1(t) by using information

from pNj=n|Aj=1,Āi=s(t). That is, we derive state-dependent disaggregation probabilities.

Let us describe this in more detail.

For subnetwork i, we consider a total of 6 scenarios (or sets of states) described below.

These scenarios consider each queue of the subnetwork and distinguish between states

where the queue can be blocked and if so by which queue.

For queue i (which is the most upstream queue in subnetwork i), we consider three

types of disaggregation probabilities:

(1) if its directly downstream queue i+1 is not full, then queue i cannot be blocked. This

leads to the following disaggregation probabilities: pNi=n|Ai=1,Ai+1 6=2(t), n∈ {1, ℓi − 1}.
(2) if queue i+1 is full but queue i+2 is not full, then queue i can only be blocked by

queue i+1: pNi=n|Ai=1,Ai+1=2,Ai+2 6=2(t), n∈ {1, ℓi − 1}.
(3) if both queues i+1 and i+2 are full, then queue i can be blocked by either queue:

pNi=n|Ai=1,Ai+1=2,Ai+2=2(t), n∈ {1, ℓi − 1}.
Similarly for queue i+1:

(4) if its downstream queue i + 2 is not full, then queue i + 1 cannot be blocked:

pNi+1=n|Ai+1=1,Ai+2 6=2(t), n∈ {1, ℓi+1 − 1}.
(5) if its downstream queue i+2 is full, then queue i+1 can be blocked by queue i+2:

pNi+1=n|Ai+1=1,Ai+2=2(t), n∈ {1, ℓi+1 − 1}.
For the most downstream queue of subnetwork i, queue i+2, we consider a single case:

(6) queue i+2 cannot be blocked: pNi+2=n|Ai+2=1(t), n∈ {1, ℓi+2 − 1}.
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The above description presents the 6 scenarios that we consider. For each scenario, we

propose an approximation for the corresponding disaggregation probabilities.

Notice from the above description of 6 scenarios that for subnetwork i the most detailed

description of blocking is given for queue i. This is because its blocking scenarios account

for joint states with two of its downstream queues (queues i + 1 and i + 2), whereas

for queue i+ 1 the state of only one downstream queue is accounted for, and for queue

i+ 2 no information from its downstream queues is accounted for. Thus, we propose an

approach where the disaggregation probabilities of a given queue i are derived by analyzing

subnetwork i (i.e., the subnetwork where queue i is the most upstream queue). In other

words, for subnetwork i the disaggregation probabilities corresponding to queue i (i.e.,

scenarios 1, 2 and 3) are obtained from the analysis of subnetwork i. This is described in

Section 2.5.1. For subnetwork i, the disaggregation probabilities of queues i+1 and i+2

are obtained from the analysis of subnetworks i+1 and i+2, as described in Section 2.5.2.

2.5.1. Scenarios 1-3 For subnetwork i, the disaggregation probabilities of queue i

correspond to scenarios j ∈ {1,2,3}. Let us describe how these disaggregation probabilities

are approximated. They each have the form pNi=n|Ej
(t), n∈ {1, ℓi−1}, where Ej denotes

the conditioning event of scenario j. Considering a discrete time context, we approximate

each of these probabilities by a constant value during time interval k, denoted αk
i,j,n and

approximated by:

αk
i,j,n = pk−1

Ni=n|Ej
(δ), j ∈ {1,2,3}, n∈ {1, ℓi − 1}. (14)

Recall from Section 2.3 that our method approximates the aggregate subnetwork dis-

tributions pĀi
. Hence at the beginning of time interval k the aggregate joint distribution

pk−1
Āi|Ej

and the aggregate marginal distributions pk−1
Ai|Ej

are known, but the disaggregate

distribution that appears in the right-hand side of (14), pk−1
Ni|Ej

, is unknown.

In order to approximate this unknown distribution, we assume it has the same functional

form as that of the disaggregate queue-length distribution of a single isolated M/M/1/ℓ

queue. The functional form of the disaggregate distribution for a single queue is derived in

Morse (1958, pages 65-67). Its expression for a given queue with space capacity ℓ, arrival
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rate λ, service rate µ and initial distribution pN(0), is given by: ∀n= 0,1, ..., ℓ,∀t∈ [0, δ]






















































































pN=n(t) =
ℓ

∑

m=0

pN=m(0)d
m
n (t, λ,µ, ℓ) (15a)

dmn (t, λ,µ, ℓ) = sn +
2ρ(n−m)/2

ℓ+1

ℓ
∑

j=1

µ

xj

[

sin

(

jmπ

ℓ+1

)

−√
ρ sin

(

j(m+1)π

ℓ+1

)]

. . .

[

sin

(

jnπ

ℓ+1

)

−√
ρ sin

(

j(n+1)π

ℓ+1

)]

e−xjt (15b)

sn =
1− ρ

1− ρℓ+1
ρn (15c)

xj = λ+µ− 2
√

λµ cos

(

jπ

ℓ+1

)

(15d)

ρ= λ/µ. (15e)

We denote the above system of equations as a function fD:

pN=n(t) = fD(n, t, λ,µ, ℓ, pN(0)). (16)

The distribution pk−1
Ni|Ej

(t) (i.e., {pk−1
Ni=n|Ej

(t), n ∈ {0,1, . . . , ℓi}}) is approximated by

assuming it satisfies (15), i.e.,:

pk−1
Ni=n|Ej

(t) = fD(n, t, λ
k−1
i,j , µk−1

i,j , pk−2
Ni|Ej

(δ)). (17)

In (17) the parameters λk−1
i,j and µk−1

i,j are unknown. They are approximated by noticing

that there is a one-to-one mapping between the disaggregate state Ni = 0 (resp. Ni = ℓi)

and the aggregate state Ai = 0 (resp. Ai = 2). Ensuring consistency among the disaggregate

and the aggregate probabilities of these states leads to the following equations:






pk−1
Ai=0|Ej

(δ) = pk−1
Ni=0|Ej

(δ) (18a)

pk−1
Ai=2|Ej

(δ) = pk−1
Ni=ℓi|Ej

(δ). (18b)

Thus, we can obtain the parameters λk−1
i,j and µk−1

i,j by solving the following system of

equations:






pk−1
Ai=0|Ej

(δ) = fD(0, δ, λ
k−1
i,j , µk−1

i,j , pk−2
Ni|Ej

(δ)) (19a)

pk−1
Ai=2|Ej

(δ) = fD(ℓi, δ, λ
k−1
i,j , µk−1

i,j , pk−2
Ni|Ej

(δ)). (19b)

Let us detail this. Recall that fD represents the System of Equations (15). In the System of

Equations (19) the fixed input parameters are: 0, ℓ, δ, and pk−2
Ni|Ej

; there are 2 endogenous

variables (i.e., the unknowns in the system of equations): λk−1
i,j , µk−1

i,j . In other words, (19)

represents a two-dimensional system of nonlinear equations.

Given the rates λk−1
i,j and µk−1

i,j , the distribution pk−1
Ni|Ej

(t) is fully defined, and is used

to evaluate the disaggregation probabilities: pk−1
Ni=n|Ej

(t), n∈ {1, ℓi − 1}, i.e., αk
i,j,n, j ∈

{1,2,3}, n∈ {1, ℓi − 1}.
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2.5.2. Scenarios 4-6 Section 2.5.1 describes the method to obtain for all subnet-

works i the probabilities αk
i,j,n, j ∈ {1,2,3}. This sections describes the approximation

of the remaining disaggregation probabilities, i.e., αk
i,j,n, j ∈ {4,5,6}. Our proposed net-

work decomposition consists of overlapping subnetworks. Hence, a queue may belong to

multiple subnetworks. For instance, queue i belongs to subnetworks i − 2, i − 1 and i.

The remaining disaggregation probabilities (i.e., αk
i,j,n, j ∈ {4,5,6}) are derived such as

to ensure consistency among the disaggregation probabilities of a given queue i across

subnetworks. The following equations ensure consistency:






























αk
i,4,n = αk

i+1,1,n, n∈ {1, ℓi+1 − 1} (20a)

αk
i,5,n = pk−1

Ai+3 6=2(δ)α
k
i+1,2,n + pk−1

Ai+3=2(δ)α
k
i+1,3,n, n∈ {1, ℓi+1 − 1} (20b)

αk
i,6,n = pk−1

Ai+3 6=2(δ)α
k
i+2,1,n + pk−1

Ai+3=2(δ)
[

pk−1
Ai+4 6=2(δ)α

k
i+2,2,n + pk−1

Ai+4=2(δ)α
k
i+2,3,n

]

, . . .

n∈ {1, ℓi+2 − 1}. (20c)

The left-hand side of Equation (20a) considers scenario 4 of subnetwork i. That scenario

considers queue i+1 and assumes that its directly downstream queue (i+2) is not full.

This is equivalent to considering scenario 1 of subnetwork i+ 1, which is the left-hand

side of Equation (20a). Similary, Equation (20b) is derived. Equation (20c) is obtained by

defining αk
i,6,n just as αk

i,5,n in (20b):

αk
i,6,n = pk−1

Ai+3 6=2(δ)α
k
i+1,4,n + pk−1

Ai+3=2(δ)α
k
i+1,5,n, (21)

and then inserting the expressions of αk
i+1,4,n (resp. αk

i+1,5,n) as given by (20a) (resp. (20b)).

In System (20), the marginal probabilities of a given queue i, pAi
(δ), are derived from the

analysis of network i− 2.

2.6. Blocking probabilities

Considering the set of states where jobs can be blocked, we approximate the corresponding

blocking probabilities with state-dependent, simple and exogenous expressions. These are

given in Table 1. These expressions are taken from Osorio and Wang (2013, Section 2.3.2).

This table considers the queues of subnetwork i that are blocked (column 1), the queue

that is at the source of (i.e., causes) the blocking (column 2), the feasible joint states where

such blocking can occur (column 3), and the corresponding probability with which this

blocking occurs (column 4). Multiple states for the initial joint states are listed in braces.

For instance, the first row considers the case where queue i can be blocked by queue i+1

and cannot be blocked by queue i+ 2. This can occur as long as queue i is non-empty

(Ai ∈ {1,2}), queue i+1 is full (Ai+1 = 2), and queue i+2 is not full (Ai+2 ∈ {0,1}). The
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Blocked Source
queues queue Initial joint states Āi Blocking probability
i i+1 ({1,2},2,{0,1}) βi,1 =

µi

µi+µi+1

i, i+1 i+2 ({1,2},2,2) βi,2 =
µi

µi+µi+1+µi+2

µi+1

µi+1+µi+2
+

µi+1

µi+µi+1+µi+2

µi

µi+µi+2

i+1 i+2 ({0,1,2},1,2), (0,2,2) βi,3 =
µi+1

µi+1+µi+2

i+1 i+2 ({1,2},2,2) βi,4 =
µi+1

µi+µi+1+µi+2

µi+2

µi+µi+2

Table 1 Blocking probabilities of subnetwork i.

approximation of all blocking probabilities (column 4) are given by simple expressions that

involve only the exogenous parameters µi, i = 1, . . . , I. The approximation is based on

the property referred to as “competing exponentials” or “competing Poisson processes”.

Consider n independent exponentially distributed random variables {Xr}r=1:n with rate

parameter µr, then

P (Xr <Xi ∀i 6= r) =
µr

∑n

j=1 µj

. (22)

For a derivation, see Larson and Odoni (1981, Chap. 2.12.4, Eq. (2.62)). Hence, if we

consider n independent services, the probability that the first service completion is of type

r is given by Equation (22). This property is used to approximate the blocking probabilities

in column 4 of Table 1. For instance, the first row of the table considers states where

queue i can be blocked by queue i+1 and not by queue i+2. This can occur if queue i

is non-empty, queue i+1 is full, queue i+2 is not full, and queue i finishes service before

queue i+1. The probability that queue i finishes service before queue i+1 is µi

µi+µi+1
.

2.7. Subnetwork arrival and service rates

Subnetwork i is a part of a larger network, hence the arrival rate to its most upstream

queue (queue i) depends on the states and rates of queues further upstream of the subnet-

work (e.g., queue i−1). The total external arrival rate (i.e., from outside the subnetwork)

to the queues of subnetwork i (during time interval k) is denoted γ̄k
i and is given by:

γ̄k
i = [γ̂k

i , γi+1, γi+2], (23)

where γ̄k
i is a three-dimensional vector and each term in the brackets is a scalar. The rates

γi+1 and γi+2 are exogenous parameters. The rate γ̂k
i is approximated by:

γ̂k
i

(

1− pk−1
Ai=2(δ)

)

= γi + γ̂k
i−1

(

1− pk−1
Ai−1=2(δ)

)

. (24)

The above expression is a flow conservation equation that relates the arrival rate to queue

i, γ̂k
i , to its external arrival rate (from outside the network), γi, and to the arrival rate of

its upstream queue, γ̂i−1. The probabilities arise because we consider finite space capacity
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models (ℓ <+∞). For such models, flow can enter the queue as long as it is not full, hence

the flow that enters is the product of the total arrival rate, γ̂i, with the probability of

the queue not being full, 1− pk−1
Ai=2. Equation (24) is a time-dependent extension of the

time-independent subnetwork arrival rate proposed in Osorio and Wang (2013, Eq. (18)).

Similarly, since subnetwork i is a part of a larger network, the service rate of its most

downstream queue (queue i+2) depends on the states and rates of queues further down-

stream of the subnetwork (e.g., queue i+ 3). When analyzing subnetwork i the service

rate vector of its queues is denoted µ̄i and is given by:

µ̄k
i = [µi, µi+1, µ̂

k
i+2], (25)

where µ̄k
i is a three-dimensional vector and each term in the brackets is a scalar. The rates

µi and µi+1 are exogenous parameters. The rate µ̂k
i is approximated by:

1

µ̂k
i

=
1

µi

+

[

pk−1
Ai+1=2(δ)

µi

µi +µi+1

]





γ̂k
i+1

(

1− pk−1
Ai+1=2(δ)

)

γ̂k
i

(

1− pk−1
Ai=2(δ)

)

1

µ̂k
i+1



 . (26)

This expression relates the effective service rate of queue i, µ̂k
i , to its exogenous service

rate, µi, plus a term that approximates the expected blocking time. The expression in the

first pair of brackets represents the probability that a job (e.g., a vehicle) in queue i gets

blocked. This is approximated by the product of: (i) the probability that the downstream

queue is full pAi+1=2, and (ii) the probability that the service at queue i is completed before

the service of the downstream queue i+1. The expression in the second pair of brackets

represents the expected blocked time of a job at queue i given that it gets blocked. The

left fraction represents the inverse of the proportion of arrivals to the downstream queue

that arise from queue i (this may not be equal to 1 since external arrivals from outside the

network are allowed). The right fraction represents the expected time between unblocking

events, which is given by the inverse of the effective service rate of the downstream queue

µ̂i+1. Equation (26) is a time-dependent extension of the time-independent expression

proposed in Osorio and Wang (2013, Eq. (27)-(30)).

2.8. Algorithm

Algorithm 1 summarizes the proposed approach. The algorithm involves solving three

systems of equations at steps 6a, 6e and 6g respectively. The system of step 6e is a system

which is linear in the unknowns γ̂k. The system of step 6g is linear in the unknowns 1/µ̂k.

Step 6a solves a set of two-dimensional nonlinear system of equations. These are solved

with the Matlab routine fsolve and its “trust region reflective” algorithm (Coleman and

Li 1996, 1994). The termination tolerance on the function value is set to 10−6.
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Algorithm 1 Tandem network algorithm

Carry out each of the following steps for all subnetworks i before proceeding to the

next step.

1. set the exogenous parameters µ,γ, ℓ.

2. evaluate the exogenous blocking probabilities βi according to Table 1.

3. set k= 1.

4. set initial aggregate joint distributions pk
Āi
(0) (or equivalently pk−1

Āi
(δ)).

5. set initial conditional disaggregate distributions: pk−1
Ni|Ej

(δ). Go to step 6(c).

6. repeat the following for time intervals k= 1,2, . . .

(a) compute λk−1
i,j and µk−1

i,j , j ∈ {1,2,3} by solving the System of Equations (19).

(b) compute the disaggregate distributions pk−1
Ni|Ej

, j ∈ {1,2,3} according to (17)

and (15).

(c) compute the disaggregation probabilities αk
i,j,n, j ∈ {1,2,3}, n ∈ {1, ℓi − 1}

according to (14).

(d) evaluate αk
i,j,n, j ∈ {4,5,6}, n∈ {1, ℓi − 1} according to (20).

(e) solve the linear system of equations (24) to obtain γ̂k.

(f) compute γ̄k
i according to (23).

(g) solve the system of equations (26) to obtain µ̂k.

(h) compute µ̄k
i according to (25).

(i) evaluate the aggregate transition rate matrix Q̄k
i according to (13), where the

function fQ̄ is given by Table 5 of Appendix A.

(j) evaluate the aggregate joint distribution at the end of the time interval pk
Āi
(δ)

according to (11).

(k) set initial conditions for the next time interval: pk+1
Āi

(0) = pk
Āi
(δ).

3. Validation

We validate the transient aggregate joint distributions versus distributions estimated with

a discrete event simulator of a Markovian FCQN (Meier 2007). For more extensive vali-

dation experiments and details, we refer the reader to Yamani (2013, Chap. 3).

The simulated estimates are obtained from 10,000 simulation replications. Let ps(t)

denote the transient probability of being in a given joint aggregate state s at time t.

A 95% confidence interval for ps(t) is given by: p̂s(t) ± 1.96
√

p̂s(t)(1−p̂s(t))

10,000−1
, where p̂s(t)

is the simulated estimate of ps(t) (see, for instance, Section 7.3.3 of Rice (1994)). We

collect simulated estimates with a time step of t = 1. The analytical model is run with

time step δ = 0.1. For all validation scenarios, we consider an initially empty network.
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In most of these scenarios stationarity is reached by time t= 50. Stationarity is assumed

to be reached if the Euclidean distance between the simulated distributions across two

consecutive intervals is below 10−7.

We consider a tandem topology network with 3 queues. External arrivals arise only to

the first (i.e., most upstream) queue, with γ1 = 1.8. We consider a set of 27 scenarios

tabulated in Table 7 of Appendix C. All scenarios consider highly congested traffic condi-

tions. Across the scenarios we vary the minimal service rate µi, leading to a maximal ratio

γ1/µi that takes values {0.9,0.95,1.05}. We also vary the location of the queue with the

highest traffic intensity (we call this the bottleneck queue): it can be either the first queue

(most upstream), the last queue (most downstream), or all 3 queues. For a given scenario,

all 3 queues have common space capacity, ℓi. Across the scenarios, the space capacity ℓi

can take values {2,5,10}. We consider all combinations of: the 3 possible locations of the

bottleneck, the the 3 values of the bottleneck traffic intensity, and the 3 space capacity

values. This leads to a total of 33 = 27 scenarios.

Figure 2 calculates for each of the 27 scenarios a single error metric, which is the

average absolute error. The average is taken over all aggregate state probabilities of all

queues at all time steps (t= 1,2, ...,50). Each average is an average over a total of 1350

state probabilities. The total 1350=33 ∗ 50 corresponds to the 27 joint aggregate state

probabilities of the 3-queue network, evaluated for each of the 50 time instances.

In Figure 2 the circles (resp. cross and squares) denote the scenarios where the queue’s

have a space capacity ℓ= 2 (resp. ℓ= 5 and ℓ= 10). Figure 2 groups the 27 scenarios of

Table 7 into 9 sets (indexed 1 to 9 along the x-axis of the figure). For a given scenario

set (i.e., a given x-value in the figure), the only difference in the 3 scenarios is their space

capacity value, all other scenario parameters are common.

The first three sets of scenarios (indexed 1, 2 and 3 in the figure) correspond to the

cases where all queues have common traffic intensities. The index increases as the traffic

intensity increases; i.e., index 1 (resp. 2 and 3) correspond to a traffic intensity of 0.9

(resp. 0.95 and 1.05) for all queues. The second three set of scenarios (indexed 4, 5 and

6) correspond to the cases where the bottleneck queue (i.e., the queue with the highest

traffic intensity) is the most upstream queue. Again, the index increases as the traffic

intensity of the bottleneck queue increases; i.e., index 4 (resp. 5 and 6) correspond to

a traffic intensity of the bottleneck queue of 0.9 (resp. 0.95 and 1.05). The final three

sets of scenarios (indexed 7, 8 and 9) correspond to the cases where the bottleneck queue

is the most downstream queue. Again, the index increases as the traffic intensity of the
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Figure 2 Average absolute error for each of the 27 scenarios, which are grouped such as to observe

the effect of varying the space capacity ℓ.

bottleneck queue increases; i.e., index 7 (resp. 8 and 9) correspond to a traffic intensity of

the bottleneck queue of 0.9 (resp. 0.95 and 1.05).

For 7 out of the 9 sets of scenarios (i.e., all sets expect 7 and 8) the average absolute

error increases with the space capacity. This can be seen in the figure as follows: for a

given scenario set: the lowest average corresponds to the circle (ℓ = 2), followed by the

cross (ℓ= 5), and then followed by the square (ℓ= 10). This figure shows that the sets of

scenarios with the smallest errors are sets 4 and 6, which both correspond to cases where

the bottleneck location is upstream. This is further illustrated in figures below.

Figure 3 also considers for each scenario the average absolute error, it groups the sce-

narios according to common values of the highest traffic intensity. For a given scenario set

(i.e., a given x-value in the figure), the only difference in the 3 scenarios is the value of the

bottleneck traffic intensity value, all other scenario parameters are common. The circles

(resp. cross and squares) denote the scenarios where the bottleneck queue has a traffic

intensity of 0.9 (resp. 0.95 and 1.05). For 7 of the 9 sets of scenarios, the error does not

vary much with the traffic intensity. This holds for all sets expect sets 6 and 9. Note that

sets 6 and 9 both consider scenarios where the queues have the largest space capacities

(ℓ= 10). The larger the space capacity, the more challenging it is to accurately approxi-

mate the disaggregation probabilities (since there are more disaggregate states within the

aggregate state).
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Figure 3 Average absolute error for each of the 27 scenarios, which are grouped such as to observe

the effect of varying the traffic intensity of the bottleneck queue.

Figure 4 considers for each scenario the average absolute error, it groups the scenarios

according to common location of the bottleneck queue (i.e., queue with the highest traffic

intensity). For a given scenario set (i.e., a given x-value in the figure), the only difference

in the 3 scenarios is the location of the bottleneck queue, all other scenario parameters

are common. The circles denote the scenarios where all 3 queues have common traffic

intensity, and hence they are all considered bottlenecks. The crosses (resp. squares) denote

the scenarios where the bottleneck queue is the most upstream (resp. most downstream)

queue.

Figure 4 shows that for 8 out of the 9 sets of scenarios (i.e., all but set 6), the smallest

errors are obtained when the bottleneck queue is the most upstream queue only. This

can be explained as follows. When the bottleneck is located upstream of the network,

blocking (e.g., spillback) effects are not likely to occur further downstream, and hence

the between-queue dependencies are not as complex as if the bottleneck were located

further downstream. Since the bottleneck effects are very difficult to describe and approx-

imate analytically, upstream bottlenecks are the scenarios with the highest accuracy in

the predictions.

For 7 out of the 9 sets of scenarios (i.e., all but sets 3 and 6), the largest errors are

obtained when the bottleneck is located at the most downstream queue only. As described
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Figure 4 Average absolute error for each of the 27 scenarios, which are grouped such as to observe

the effect of varying the location of the bottleneck queue.

Queue i 1 2 3 4 5 6 7 8
γi 4 0 1 1 0 2 0 1
ℓi 25 10 25 10 25 10 25 10

Table 2 Eight-queue network scenario.

above, this leads to significant spillback effects, and hence intricate between-queue depen-

dencies that are difficult to approximate analytically.

Figure 5 displays the errors for all scenarios, all state probabilities at all times. This

considers a total of 36450 probabilities, with an average absolute error of 0.0095. Across all

scenarios the average runtime for the analytical method is 13.7 seconds, with a standard

deviation of 0.74 seconds. All scenarios were run on a 1.7GHz Intel Core i5 processor and

4GB RAM.

We now consider an eight-queue tandem network with the scenario defined in Table 2.

All queues have common service rate µ = 10. This leads to a network with increasing

congestion as the queue index increases. The traffic intensities of the queues increase from

0.4 to 0.9.

The proposed analytical approach decomposes an eight-queue network into six overlap-

ping subnetworks. Each plot of Figure 6 considers the probabilities obtained by both the

analytical model (blue circles), and the simulation model (red crosses with their corre-

sponding 95% confidence intervals). The probabilities of all joint states of all subnetworks
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Figure 5 Histogram of the errors for all 27 scenarios, for all state probabilities at all times.

are displayed. Each plot considers a different time, going from time t= 10 in the upper

plot, to t = 20,30,40 and 50 in the lower plots. This figure shows that across time and

across all subnetworks the analytical approach yields accurate approximations.

Figure 7 displays the errors for all state probabilities at all times. This considers a

total of 8100 probabilities, with an average absolute error of 0.0105. The runtime for the

analytical method is 10.1 minutes.

We now consider a tandem network with 25 queues. The queues with even indices have

ℓi = 10, those with odd indices have ℓi = 25. For all queues µ = 10. The only non-zero

external arrival rates are: γ1 = 2, γ11 = 2, γ17 = 3 and γ21 = 2. This leads to a network with

increasing traffic intensity as the queue index increases, the traffic intensities vary from

0.2 to 0.9.

The analytical method decomposes the 25-queue network into 23 subnetworks. Figure 8

displays five plots, each plot considers a given time: t = {10,20,30,40,50}. Each plot

displays the analytical (blue circles) and the simulated estimate (red crosses with their

corresponding 95% confidence intervals) of the aggregate state probability, for all feasible

aggregate states. Overall the proposed method provides a good approximation to the

aggregate state probabilities. The corresponding histogram that considers the errors of all

states at all times is displayed in Figure 9. This figure considers a total of 31050 state

probabilities. The average absolute error is 0.0079. The runtime for the analytical method

is 23.4 minutes.
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Figure 6: State probabilities for all states of all subnetworks in the 8-queue network.
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Figure 7 Histogram of the errors for all state probabilities at all times for the 8-queue network.

4. Urban traffic signal control

This section considers an urban traffic signal control problem, and studies the added value

of accounting for both transient and joint distributional information. We compare the

performance of the signal plans proposed by: (i) our proposed transient joint method, (ii)

the stationary joint method of Osorio and Wang (2013), and (iii) a stationary marginal

model, which approximates the (disaggregate) marginal queue-length distributions. The

latter model is formulated in Osorio and Bierlaire (2009) and Chapter 4 of Osorio (2010),

its formulation for an urban network is given in Appendix B of this paper. Methods (i)

and (ii) both consider subnetworks with 3 queues, method (i) considers a time-dependent

description of between-queue dependencies, whereas method (ii) considers a stationary

analysis. Hence, their comparison gives insights on the added value of accounting for the

dynamics of between-queue dependencies. The comparison of methods (i) and (iii) gives

insights on the added value of providing both a dynamic and a higher-order description of

between-queue dependency. The performance of the signal plans proposed by the different

models are evaluated by a microscopic stochastic urban traffic simulation model imple-

mented in Aimsun version 6.1 (TSS 2011). Additional details regarding the simulation

model can be found in Yamani (2013).

4.1. Road network

The road network (cf. Figure 10) consists of 20 single-lane roads and 4 intersections, each

with 2 endogenous signal phases. Drivers travel along a single direction (i.e., they do
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Figure 8: State probabilities for all states of all subnetworks in the 25-queue network.
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Figure 9 Histogram of the errors for all state probabilities at all times for the 25-queue network.

Figure 10 Road network.

not turn within the network). External arrivals and departures to the network occur at

the boundaries of the network (represented by the circles in Figure 10). The queueing

representation along with corresponding link/queue indices is displayed in Figure 11. In

this figure the queues are represented with rectangles.

We consider a medium demand and a high demand scenario (cf. Table 3). In the table,

the indices in the first row correspond to link/queue indices as defined in Figure 11. We

assume an initially empty network, and consider a time interval of 75 minutes.
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Figure 11 Queueing network.

Demand scenario 19→ 1 2→ 20 3→ 4 7→ 9 10→ 8 14→ 13 17→ 18
Medium 700 700 100 600 600 100 100
High 900 900 100 600 600 200 200
Table 3 Demand in vehicles per hour for the two demand scenarios.

4.2. Queueing network

Let us describe how the road network is modeled as queueing network. The below approach

has been successfully used in past work that uses queueing-theoretic models of road trans-

portation Osorio and Bierlaire (2013).

All roads of the considered network are single-lane roads, each lane is modeled as one

queue. The space capacity of a queue is given by:

ℓi = ⌊(li + d2)/(d1 + d2)⌋, (27)

where li is the length of lane i in meters, d1 is the average vehicle length (set to 4 meters),

and d2 is the minimal inter-vehicle distance (set to 1 meter). The fraction is rounded down

to the nearest integer. This expression for the space capacity follows similar ideas than

those in Heidemann (1996) and Van Woensel and Vandaele (2007), where each road is

divided into segments of length 1/kjam, where kjam is the jam density of the lane. Hence,

1/kjam represents the minimal distance that an average vehicle occupies.

The routing probability from queue i to queue j, denoted pij , is derived from turning

probabilities. Based on Figure 11 for any pair of adjacent queues (i, j) connected by a

straight arrow from i to j: pij equals 1, otherwise pij equals 0.

The external arrival rates of each queue, γi, are given by the origin-destination matrix

of Table 3, and stated for each queue in Table 4. Queues not included in Table 4 have an

external arrival rate of zero.



Osorio and Yamani: Analytical analysis of transient tandem Markovian finite capacity queueing networks
28 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

γ19 γ2 γ3 γ7 γ10 γ14 γ17
Medium demand 700 700 100 600 600 100 100
High demand 900 900 100 600 600 200 200

Table 4 External arrival rates for each queue for the two demand scenarios.

The service rate of a queue is defined as the downstream flow capacity of the underlying

lane. For non-signalized lanes, the service rate is equal to the saturation rate, s (set to

1800 vehicles per hour). For signalized lanes, the service rate is given by:

µi = gis (28)

where gi represents the total green split of queue i (i.e., ratio of total green time to

intersection cycle time).

The subnetworks of the joint models (transient and stationary) are as follows. The

cross streets (north-bound and south-bound) are modeled individually (i.e., they con-

stitute singleton subnetworks). The links of the west-bound and east-bound arterial are

modeled jointly, i.e., the paths are decomposed into 3-queue subnetworks. In other words,

the subnetworks of the network are: (2,6,12), (6,12,16), (12,16,20), (11,5,1), (15,11,5),

(19,15,11), (3), (4), (7), (8), (9), (10), (13), (14), (17), (18), where the numbers within

parenthesis are queue indices.

4.3. Problem formulation

We consider a traffic signal control problem. For a review of traffic signal control terminol-

ogy and formulations, we refer the reader to Appendix A of Osorio (2010) or to Lin (2011).

The signal control problem that we consider is known as a fixed-time (also called time

of day or pre-timed) control strategy. For a given intersection and a given time interval

(e.g., evening peak period), a fixed-time signal plan is a cyclic (i.e., periodic) plan that

is repeated throughout the time interval. The duration of the cycle is the time required

to complete one sequence of signals. The sequence may contain all-red periods, where all

streams have red indications, as well as stages with fixed durations (e.g., for safety rea-

sons). The sum of the all-red periods and the fixed periods is called the fixed cycle time.

Note that there has been interesting recent research for other families of traffic-responsive

signal control problems (Varaiya 2013, Gregoire et al. 2014, Gayah et al. 2014, He et al.

2014).

In this paper, the decision variables are the endogenous green splits (i.e., normalized

green times) of each intersection. All other traditional control variables (e.g., cycle times,

offsets, stage structure) are assumed fixed. The signal plans of all intersections are deter-

mined simultaneously.
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To formulate this problem we introduce the following notation:

[t0, t1] time interval of interest;
δ time step;
ci cycle time of intersection i;
di fixed cycle time of intersection i;
el ratio of fixed green time to cycle time of signalized lane l;
s saturation flow rate [veh/h];
x(j) green split of phase j;
xL vector of minimal green splits;
y endogenous queueing model variables;
u exogenous queueing model parameters;
I set of intersection indices;
L set of indices of the signalized lanes;
PI(i) set of phase indices of intersection i;
PL(l) set of phase indices of lane l.

The problem is formulated as follows:

min
x

g(x, y;u, t0, t1) (29)

subject to

∑

j∈PI (i)

x(j) =
ci − di
ci

, ∀i∈ I (30)

µl −
∑

j∈PL(l)

x(j)s= els, ∀l ∈L (31)

h(y;u, t0, t1) = 0 (32)

y≥ 0 (33)

x≥ xL. (34)

The decision vector x is the vector of green splits for each phase. Constraints (30) relate,

for each intersection i, its available cycle time to its endogenous phases. Constraints (31)

relate the service rate (i.e., link flow capacity) of a signalized link to the saturation flow

s (set to 1800 vehicles per hour) and to its total green time. Equation (32) represents

the traffic model, which depends on a vector of endogenous queueing variables y (e.g.,

disaggregation probabilities) and a set of exogenous parameters u (e.g., external arrival

rates, space capacities). In the case of the proposed transient model, u includes the time

step δ and initial probability distributions. The endogenous queueing variables are subject

to positivity constraints (33). Green splits have lower bounds (Equation (34)), which are

set to 4 seconds following the transportation norms VSS (1992). The objective function

g(x, y;u, t0, t1) represents the expected trip travel time during [t0, t1].
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For the proposed transient model, the objective function is given by:

g(x, y;u, t0, t1) =
1

K

K
∑

k=1

gk(x, y;u, t0, t1), (35)

where K is the total number of discrete time intervals, and gk represents the expected

travel time during time interval k. The latter is obtained by applying Little’s law at the

end of the time interval (Little 2011, 1961):

gk(x, y;u, t0, t1) =

∑I

i=1E[Nk
i ]

∑I

i=1 γip
k
Ai 6=2(δ)

, (36)

where the summations consider all I queues in the network, and E[Nk
i ] represents the

expected number of vehicles in queue i at the end of time interval k:

E[Nk
i ] =

ℓi
∑

n=0

npkNi=n(δ). (37)

The disaggregate distribution for queue i at time interval k is obtained by solving the

below system of equations to obtain λk
i and µk

i , which then fully define the disaggregate

distribution according to the System of Equations (15).

{

pkAi=0(δ) = fD(0, δ, λ
k
i , µ

k
i , p

k−1
Ni

(δ)) (38a)

pkAi=2(δ) = fD(ℓi, δ, λ
k
i , µ

k
i , p

k−1
Ni

(δ)). (38b)

For each queue i, its aggregate distribution pkAi
is derived from the analysis of subnetwork

i.

4.4. Implementation notes

For the proposed model we set the time step δ= 0.1. The signal control problem is solved

using the active-set algorithm of the fmincon solver of Matlab (Mathworks, Inc. 2011) with

constraint and objective function tolerance of 10−6 and 10−3, respectively. The stationary

joint model as well as our proposed transient joint model both use the plan considered

optimal by the stationary marginal model (Osorio 2010, Chap. 4) as their initial signal

plan. More details on how the algorithms are initialized are included in Osorio and Wang

(2013, Section 4.3). The runtime to solve the optimization problem using the transient

joint method is 28 hours.

4.5. Results

The performance of a given signal plan is evaluated by embedding the signal plan within a

microscopic stochastic traffic simulator of the network depicted in Figure 10 and running

50 simulation replications. For each replication, we obtain a realization of the objective
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Figure 12 The left (resp. right) plot displays the cdf’s of the average trip travel time considering the

medium (resp. high) demand scenario.

function: the average trip travel time (ATTT). For each signal plan, we use the 50 sim-

ulated observations of the ATTT to construct a cumulative distribution function (cdf).

Figure 12 displays several cdf curves. The x-axis displays the ATTT. For a given x, the

y-axis displays the proportion of simulation replications (out of the 50 replications) that

have ATTT values smaller than x. Hence, the more the cdf curves are shifted to the left,

the higher the proportion of small ATTT values.

The left (resp. right) plot of Figure 12 displays the results considering the medium (resp.

high) demand scenario. Each plot contains three cdf curves. The solid curve corresponds to

the signal plan derived by our proposed transient joint model. The dashed (resp. dotted)

curve corresponds to the plan of the stationary joint (resp. stationary marginal) model.

For both demand scenarios, the proposed approach significantly outperforms the other

two approaches. It outperforms the stationary joint approach, which shows the added

value of accounting for transient information. Both joint approaches (transient joint and

stationary joint) outperform the marginal approach, showing the added value of providing

a higher-order (i.e., beyond first-order) description of the between-queue dependency.

We test the hypothesis that the expected trip travel time derived from the joint transient

model is equal to that derived by the joint stationary model by conducting a paired t-

test. Denoting the sample mean of the paired differences as Ŷ , the standard error as ŝ,

and the number of observations as O, a paired t-statistic is given by Hogg and Tanis
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(2006, p. 486):
√
OŶ /ŝ. For both the medium and the high demand scenario, the mean

of the paired differences (i.e., difference between the average trip travel time given by

the joint stationary model and that given by the joint transient model) is approximately

0.077 minutes. The standard deviation of the paired differences is approximately 0.024

(resp. 0.029) minutes for the medium (resp. high) demand scenario. Thus, for the 50

observations, the test statistic is 22.32 (resp. 19.06) for the medium (resp. high) demand

scenario. The null hypothesis is rejected for both demand scenarios, as the critical value,

t0.01(49) = 2.405, is less than the value of the test statistic. The improvement in average

trip travel time is statistically significant.

5. Conclusions

This paper proposes an analytical, tractable and scalable technique that approximates

the transient aggregate joint queue-length distribution of a finite (space) capacity tandem

Markovian network. The complexity of the proposed method is linear, rather than expo-

nential, in the number of queues and is independent of the queue space capacities, making

it a suitable approach for the analysis of large-scale networks.

The analytical approximations of the aggregate joint distributions are validated versus

estimates obtained via discrete-event simulation of a queueing network. The validation

scenarios consider various congested networks. The analytical approximations are very

accurate. The model is then used to address an urban traffic signal control problem.

The proposed model yields signal plans that significantly outperform those derived by a

stationary joint model, as well as those derived by a stationary marginal model. This shows

the added value of using a higher-order description of the spatial-temporal between-link

dependencies to devise traffic management strategies for congested urban networks.

Extensions of this work include its formulation for a general topology network. Addi-

tionally, it can be used to improve the computational efficiency of dynamic simulation-

based optimization algorithms following the frameworks in Osorio and Bierlaire (2013)

and Osorio and Chong (2013).

Appendix A: Transition rate matrix for subnetwork i

Table 5 details the function fQ̄ of Equation (13), i.e., it details the full transition rate matrix of

subnetwork i, which is composed of queues indexed by i, i+ 1, and i+ 2. This table enumerates

all non-zero and non-diagonal elements of the transition rate matrix. The table considers an initial

joint aggregate state s= (ji, ji+1, ji+2). Each row considers a possible transition. The first column

describes the new state, the second column gives the conditions on the initial state s under which

such a transition can take place. The third column gives the transition rate.
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The transitions are grouped into six sets according to the event that triggered the transition. The

first three sets consider transitions that arise following external arrivals (i.e., arrivals from outside

the subnetwork) to queues i, i+1 and i+2, respectively. An external arrival to a given queue can

cause the queue to transition from aggregate state 0 (resp. 1) to aggregate state 1 (resp. 2). Upon

an external arrival to, for instance, queue i, the transition from aggregate state 0 to 1 occurs with

probability 1 and the transition from aggregate state 1 to 2 occurs if queue i is in the disaggregate

state ℓi − 1. The probability of queue i being in state ℓi − 1 given that is in aggregate state 1 is a

disaggregation probability. Recall, that the proposed method uses state-dependent disaggregation

probabilities. Hence, depending on the states of queues i+1 and i+2 the disaggregation probability

is given by αk
i,1,ℓi−1, α

k
i,2,ℓi−1 or αk

i,3,ℓi−1.

The fourth set considers a service completion at queue i. Such an event can cause queue i to

transition from aggregate state 1 (resp. 2) to 0 (resp. 1). Upon service completion, the transition

from state 2 to 1 occurs with probability 1 and the transition from 1 to 0 occurs if queue i is in the

disaggregate state 1. The latter is captured by the state-dependent disaggregation probability αk
i,1,1.

Additionally, a service completion at queue i can cause queue i+ 1 to transition from aggregate

state 0 (resp. 1) to 1 (resp. 2), which occurs with probability 1 (resp. αk
i,4,ℓi+1−1 or αk

i,5,ℓi+1−1).

The fifth set considers a service completion at queue i+1. The rates are obtained through similar

reasoning as for service completion at queue i. Additionally, if a job at queue i is being blocked by

queue i+1, then a service completion at queue i+1 may trigger a change in the state of queue i.

This is described via the blocking probability βi,1. More specifically, if queue i is blocked by queue

i+1, then a service completion at queue i+1 will:

1. send the job that has completed service at queue i+1 to queue i+2, which may lead queue

i+2 to transition from aggregate state 0 (resp. 1) to 1 (resp. 2);

2. unblock a job at queue i, which may lead queue i to transition from aggregate state 1 (resp.

2) to 0 (resp. 1);

3. have no impact on the state of queue i+1 (since an arrival and a departure occur simultane-

ously).

The final set considers a service completion at queue i+2. The rates are obtained through similar

reasoning as for service completions at queue i+1. Since queue i+2 may block both queue i+1

and queue i, then a service completion at queue i+ 2 may trigger changes in the states of both

queues i and i+1. This unblocking is described via the blocking probabilities βi,2, βi,3 and βi,4.

Table 5: Transition rate matrix for subnetwork i during time inter-
val k. Enumeration of all possible transitions assuming an initial
joint aggregate state s= (ji, ji+1, ji+2) and a new state t.

Arrival to queue i
New state t Initial conditions Rate
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(ji +1, ji+1, ji+2) ji = 0 γ̂k
i

(ji +1, ji+1, ji+2) ji = 1, ji+1 = {0,1} γ̂k
i α

k
i,1,ℓi−1

(ji +1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = {0,1} γ̂k
i α

k
i,2,ℓi−1

(ji +1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 2 γ̂k
i α

k
i,3,ℓi−1

External arrival to queue i+1
New state t Initial conditions Rate
(ji, ji+1 +1, ji+2) ji+1 = 0 γi+1

(ji, ji+1 +1, ji+2) ji+1 = 1, ji+2 = {0,1} γi+1α
k
i,4,ℓi+1−1

(ji, ji+1 +1, ji+2) ji+1 = 1, ji+2 = 2 γi+1α
k
i,5,ℓi+1−1

External arrival to queue i+2
New state t Initial conditions Rate
(ji, ji+1, ji+2 +1) ji+2 = 0 γi+2

(ji, ji+1, ji+2 +1) ji+2 = 1 γi+2α
k
i,6,ℓi+1−1

Service completion at queue i
New state t Initial conditions Rate
(ji, ji+1 +1, ji+2) ji = 1, ji+1 = 0 µi(1−αk

i,1,1)
(ji − 1, ji+1 +1, ji+2) ji = 1, ji+1 = 0 µiα

k
i,1,1

(ji, ji+1 +1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0,1} µi(1−αk
i,1,1)α

k
i,4,ℓi+1−1

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0,1} µiα
k
i,1,1(1−αk

i,4,ℓi+1−1)

(ji − 1, ji+1 +1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0,1} µiα
k
i,1,1α

k
i,4,ℓi+1−1

(ji, ji+1 +1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µi(1−αk
i,1,1)α

k
i,5,ℓi+1−1

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µiα
k
i,1,1(1−αk

i,5,ℓi+1−1)

(ji − 1, ji+1 +1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µiα
k
i,1,1α

k
i,5,ℓi+1−1

(ji − 1, ji+1 +1, ji+2) ji = 2, ji+1 = 0 µi

(ji − 1, ji+1 +1, ji+2) ji = 2, ji+1 = 1, ji+2 = {0,1} µiα
k
i,4,ℓi+1−1

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 1, ji+2 = {0,1} µi(1−αk
i,4,ℓi+1−1)

(ji − 1, ji+1 +1, ji+2) ji = 2, ji+1 = 1, ji+2 = 2 µiα
k
i,5,ℓi+1−1

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 1, ji+2 = 2 µi(1−αk
i,5,ℓi+1−1)

Service completion at queue i+1
New state t Initial conditions Rate
(ji, ji+1, ji+2 +1) ji+1 = 1, ji+2 = 0 µi+1(1−αk

i,4,1)
(ji, ji+1 − 1, ji+2 +1) ji+1 = 1, ji+2 = 0 µi+1α

k
i,4,1

(ji, ji+1, ji+2 +1) ji+1 = 1, ji+2 = 1 µi+1(1−αk
i,4,1)α

k
i,6,ℓi+2−1

(ji, ji+1 − 1, ji+2) ji+1 = 1, ji+2 = 1 µi+1α
k
i,4,1(1−αk

i,6,ℓi+2−1)

(ji, ji+1 − 1, ji+2 +1) ji+1 = 1, ji+2 = 1 µi+1α
k
i,4,1α

k
i,6,ℓi+2−1

(ji, ji+1 − 1, ji+2 +1) ji = 0, ji+1 = 2, ji+2 = 0 µi+1

(ji, ji+1 − 1, ji+2) ji = 0, ji+1 = 2, ji+2 = 1 µi+1(1−αk
i,6,ℓi+2−1)

(ji, ji+1 − 1, ji+2 +1) ji = 0, ji+1 = 2, ji+2 = 1 µi+1α
k
i,6,ℓi+2−1

(ji, ji+1 − 1, ji+2 +1) ji = {1,2}, ji+1 = 2, ji+2 = 0 µi+1(1−βi,1)
(ji, ji+1 − 1, ji+2) ji = {1,2}, ji+1 = 2, ji+2 = 1 µi+1(1−αk

i,6,ℓi+2−1)(1−βi,1)

(ji, ji+1 − 1, ji+2 +1) ji = {1,2}, ji+1 = 2, ji+2 = 1 µi+1α
k
i,6,ℓi+2−1(1−βi,1)

(ji, ji+1, ji+2 +1) ji = 1, ji+1 = 2, ji+2 = 0 µi+1(1−αk
i,2,1)βi,1

(ji − 1, ji+1, ji+2 +1) ji = 1, ji+1 = 2, ji+2 = 0 µi+1α
k
i,2,1βi,1

(ji, ji+1, ji+2 +1) ji = 1, ji+1 = 2, ji+2 = 1 µi+1(1−αk
i,2,1)α

k
i,6,ℓi+2−1βi,1

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 1 µi+1α
k
i,2,1(1−αk

i,6,ℓi+2−1)βi,1

(ji − 1, ji+1, ji+2 +1) ji = 1, ji+1 = 2, ji+2 = 1 µi+1α
k
i,2,1α

k
i,6,ℓi+2−1βi,1

(ji, ji+1 − 1, ji+2 +1) ji = 2, ji+1 = 2, ji+2 = 0 µi+1(1−βi,1)
(ji, ji+1 − 1, ji+2 +1) ji = 2, ji+1 = 2, ji+2 = 1 µi+1α

k
i,6,ℓi+2−1(1−βi,1)
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(ji, ji+1 − 1, ji+2) ji = 2, ji+1 = 2, ji+2 = 1 µi+1(1−αk
i,6,ℓi+2−1)(1−βi,1)

(ji − 1, ji+1, ji+2 +1) ji = 2, ji+1 = 2, ji+2 = 0 µi+1βi,1

(ji − 1, ji+1, ji+2 +1) ji = 2, ji+1 = 2, ji+2 = 1 µi+1α
k
i,6,ℓi+2−1βi,1

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 2, ji+2 = 1 µi+1(1−αk
i,6,ℓi+2−1)βi,1

Service completion at queue i+2
New state t Initial conditions Rate
(ji, ji+1, ji+2 − 1) ji+2 = 1 µ̂k

i+2α
k
i,6,1

(ji, ji+1, ji+2 − 1) ji+1 = 0, ji+2 = 2 µ̂k
i+2

(ji, ji+1, ji+2 − 1) ji+1 = {1,2}, ji+2 = 2 µ̂k
i+2(1−βi,3)

(ji, ji+1 − 1, ji+2) ji+1 = 1, ji+2 = 2 µ̂k
i+2α

k
i,5,1βi,3

(ji, ji+1 − 1, ji+2) ji = 0, ji+1 = 2, ji+2 = 2 µ̂k
i+2βi,3

(ji, ji+1 − 1, ji+2) ji = {1,2}, ji+1 = 2, ji+2 = 2 µ̂k
i+2βi,4

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 2 µ̂k
i+2α

k
i,3,1βi,2

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 2, ji+2 = 2 µ̂k
i+2βi,2

Appendix B: Marginal finite capacity queueing model

We briefly outline here the formulation of the queueing-theoretic urban network model of Chapter

4 of Osorio (2010). The method is a stationary decomposition technique that decomposes the

network into single queue subnetworks, as described in Osorio and Bierlaire (2009). The notation

used in this model for a given queue i is listed in Table 6. Its formulation consists of the System

of Equations (39). The model approximates the marginal stationary distribution of each queue. It

accounts only for first-order between-queue dependency information.

γi external arrival rate;
λi total arrival rate;
µi service rate of a server;
µ̃i unblocking rate;
µ̂i effective service rate;

P f
i probability of being blocked at queue i;

pij routing probability from queue i to queue j;
ℓi space capacity;
Ni number of vehicles in queue i;
P (Ni = ℓi) probability that queue i is full;
I+
i set of downstream queues to queue i.

Table 6 List of variables used in marginal finite capacity queueing model.
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λi = γi +

∑

j
pijλjP (Nj < ℓj)

P (Ni < ℓi)
(39a)

1

µ̃i

=
∑

j∈I
+

i

λjP (Nj < ℓj)

λiP (Ni < ℓi)µ̂j

(39b)

1

µ̂i

=
1

µi

+P f
i

1

µ̃i

(39c)

P f
i =

∑

j

pijP (Nj = ℓj) (39d)

P (Ni = ℓi) =
1− ρi

1− ρℓi+1
i

ρℓi (39e)

ρi =
λi

µ̂i

. (39f)

The exogenous parameters are γi, pij , ℓi, and µi. All other variables are endogenous. Equa-

tion (39a) is a flow conservation equation as applied to a loss (finite capacity) queueing model. It

corresponds to Equations (2)-(3) of Osorio and Bierlaire (2009). Equation (39b) defines the unblock-

ing rate of a queue that is blocked, it corresponds to Equation (7) of Osorio and Bierlaire (2009).

Equation (39c) defines the effective service rate, which accounts for both (exogneous) service, µi,

and blocking, µ̃i, it corresponds to Equation (8) of Osorio and Bierlaire (2009). Equation (39d)

approximates the probability of being blocked at queue i by averaging the probabilities of down-

stream queues being full (which are called blocking probabilities). It corresponds to Equation (4)

of Osorio and Bierlaire (2009). The blocking probability of queue i is given in Equation (39e) by

the closed-form expression of the stationary probability of being full of an M/M/1/ℓ queue (e.g.,

Bocharov et al. 2004). Equation (39f) defines the traffic intensity, ρi, of a finite capacity single

server queue.

Appendix C: Validation scenarios for the three queue network

See Table 7.
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Scenario [µ1, µ2, µ3] [ℓ1, ℓ2, ℓ3]
1 [1.9,1.9,1.9] [2,2,2]
2 [1.9,1.9,1.9] [5,5,5]
3 [1.9,1.9,1.9] [10,10,10]
4 [1.9,4,6] [2,2,2]
5 [1.9,4,6] [5,5,5]
6 [1.9,4,6] [10,10,10]
7 [6,4,1.9] [2,2,2]
8 [6,4,1.9] [5,5,5]
9 [6,4,1.9] [10,10,10]
10 [1.7,1.7,1.7] [2,2,2]
11 [1.7,1.7,1.7] [5,5,5]
12 [1.7,1.7,1.7] [10,10,10]
13 [1.7,4,6] [2,2,2]
14 [1.7,4,6] [5,5,5]
15 [1.7,4,6] [10,10,10]
16 [6,4,1.7] [2,2,2]
17 [6,4,1.7] [5,5,5]
18 [6,4,1.7] [10,10,10]
19 [2,2,2] [2,2,2]
20 [2,2,2] [5,5,5]
21 [2,2,2] [10,10,10]
22 [2,4,6] [2,2,2]
23 [2,4,6] [5,5,5]
24 [2,4,6] [10,10,10]
25 [6,4,2] [2,2,2]
26 [6,4,2] [5,5,5]
27 [6,4,2] [10,10,10]

Table 7 Validation scenarios for three queue network.
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