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Abstract

Transportation agencies often resort to the use of traffic simulation models to evaluate the
impacts of changes in network design or network operations. They often have multiple
traffic simulation tools that cover the network area where changes are to be made. These
multiple simulators may differ in their modeling assumptions (e.g., macroscopic versus
microscopic), in their reliability (e.g., quality of their calibration) as well as in their mod-
eling scale (e.g., city-scale versus regional-scale). The choice of which simulation model
to rely on, let alone of how to combine their use, is intricate. A larger-scale model may,
for instance, capture more accurately the local-global interactions; yet may do so at a
greater computational cost. This paper proposes an optimization framework that enables
multiple simulation models to be jointly and efficiently used to address continuous urban
transportation optimization problems.

We propose a simulation-based optimization algorithm that embeds information from
both a high-accuracy low-efficiency simulator and a low-accuracy high-efficiency simulator.
At every iteration, the algorithm decides which simulator to evaluate. This decision is
based on an analytical approximation of the accuracy loss due to running the lower-
accuracy model. We formulate an analytical expression that is based on a differentiable
and computationally efficient to evaluate traffic assignment model.

We evaluate the performance of the algorithm with a traffic signal control problem
on both a small network and a city network. We show that the proposed algorithm
identifies signal plans with excellent performance, and can do so at a significantly lower
computational cost than when systematically running the high-accuracy simulator.

The proposed methodology contributes to enable large-scale high-resolution traffic sim-
ulation models to be used efficiently for simulation-based optimization. More broadly, it
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enables the use of multiple simulation models that may differ, for instance, in their scale,
their resolution or their computational costs, to be used jointly for optimization.

1 Introduction

Consider a subnetwork within a larger network (e.g., an arterial within a city, a city
within a region) where local changes to the supply of the subnetwork are being considered.
Transportation agencies often resort to the use of traffic simulators in order to determine
the changes to be carried out (e.g., changes in the network design or in the network
operations), and to evaluate the impacts of these changes both locally (i.e., within the
subnetwork) as well as globally (i.e. at the larger-scale).

Transportation agencies often have multiple simulators that cover the subnetwork of
interest. These multiple simulators may differ in their modeling resolution (e.g., macro-
scopic, microscopic), in their reliability (e.g., quality of their calibration) as well as in their
modeling scale (e.g., city-scale, regional-scale).

Most often, transportation experts will consider the advantages and disadvantages of
each model, and will ultimately choose one model to rely on in order to determine and
study the impact of the subnetwork changes. The choice of a model is not an easy task. A
larger-scale model may, for instance, capture more accurately the local-global interactions;
yet may do so at a greater computational cost. This paper proposes an optimization
framework that enables multiple simulation models to be jointly and efficiently used to
address continuous urban transportation optimization problems.

Recent reviews of traffic simulation models include Barceló (2010), Ratrout and Rah-
man (2009). The main families of models are known as macroscopic, mesoscopic and
microscopic. Microscopic simulation models provide a high-resolution representation of
both network supply (e.g., dynamic and traffic-responsive traffic management strategies),
and network demand (e.g., vehicle technologies and performance, traveler behavior such
as routing, car-following, lane-changing). They are the most detailed, yet also the most
computationally inefficient, models. Their computational inefficiency limits their use to
address large-scale transportation optimization problems. On the other hand, macroscopic
models provide a low-resolution representation of supply and demand (e.g., with aggre-
gate flow-based network models). Macroscopic models are computationally more efficient
than their microscopic counterparts and hence are often used for the analysis of large-scale
problems.

In order to achieve a suitable trade-off between modeling detail and computational
efficiency, the transportation community has mostly resorted to the formulation of meso-
scopic models, which achieve a suitable detail-efficiency trade-off by formulating a single
model that combines ideas from both macroscopic and microscopic models. For a review
of mesoscopic models, see, for instance, Hoogendoorn and Bovy (2001). Nonetheless, the
choice of which microscopic modeling assumptions to relax may be problem dependent.
Hence, the difficulty of developing a general-purpose mesoscopic model that achieves a
good detail-efficiency trade-off.

A second approach has been to develop frameworks that combine the use of multiple
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traffic simulation models. These approaches can themselves be classified into two cate-
gories. The first category models different areas of the network with different levels of
resolution (e.g., high-fidelity and low-fidelity models). Work in this field includes: Sewall
et al. (2011), Burghout (2004), Horowitz (2004), Bourrel and Lesort (2003). A detailed
review is given by Burghout (2004). Much of the past work in this category focuses on
the issue of model consistency at the multi-resolution boundaries, and in particular, on
the topic of aggregation and disaggregation of vehicle flows and densities.

The second category, which is the focus of this paper, allows for areas of the network to
be simultaneously modeled with multiple simulators. Typically, a large region is modeled
with a low-resolution (e.g., macroscopic) model, and a smaller subnetwork within the
larger region is separately modeled with a higher resolution (e.g., microscopic/mesoscopic)
model. This means that the smaller subnetwork is modeled with both the low and the
high-resolution models. The boundary conditions of the smaller scale model (e.g., origin-
destination matrix) are typically estimated based on large-scale low-resolution outputs.

Table 1 summarizes some of the work in this second category. The last line of the
table considers the approach presented in this paper. The first column of the table states
the corresponding work, columns 2 to 4 state which types of models are jointly used
(microscopic, mesoscopic or macroscopic), column 5 indicates whether there is feedback
between the multiple models. The last column indicates whether the multiple models are
used to address an optimization problem.

Montero et al. (1998) propose a graphical user interface to build both macroscopic
(EMME/2) and microscopic (AIMSUN) network models in a consistent way. The mod-
els are jointly used to inform road network designs in the Barcelona metropolitan area.
Bunch et al. (1999) jointly use a macroscopic (EMME/2) model of the Seattle metropoli-
tan region with a microscopic (INTEGRATION) model of a specific corridor within the
region. Oh et al. (2000) consider the use of a microscopic model for the analysis of a
large-scale network. They consider that microscopic route choice for large-scale networks
is a computationally demanding task (due mainly to the detailed network representation),
while mesoscopic models can calculate route choice in a more efficient manner. Hence,
they consider a single network modeled at both a microscopic (Paramics) and a meso-
scopic (DYNASMART) resolution. The microscopic model provides accurate aggregate
link costs to the mesoscopic model, these are used as inputs for the mesoscopic route
choice calculations, which are then fed back to the microscopic model. Although the
authors do not present a quantitative comparison of the computation time between the in-
built microscopic route choice and their proposed micro-meso route choice, they conclude
that for large networks, their proposal of using a mesoscopic model to make route choice
decisions would be advantageous. Rousseau et al. (2008) consider the integrated use of
a macroscopic regional Atlanta model (CUBE), a macroscopic downtown Atlanta model
(Visum) and a microscopic downtown core area of Atlanta (Vissim). The main differences
between the modeling approaches (modeling assumptions, data challenges, computational
challenges) are stated. Challenges in enabling full model feedback (both macroscopic to
microscopic and microscopic to macroscopic) are mentioned. Their case study focuses on
the development of the microscopic model from both field data and macroscopic model
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Model Optimi-
Micro. Meso. Macro. feedback zation

Montero et al. (1998) AIMSUN EMME/2
Bunch et al. (1999) INTEGRATION EMME/2 X

Oh et al. (2000) Paramics DYNASMART X

Rousseau et al. (2008) Vissim CUBE, Visum
Osorio and Selvam (2014) AIMSUN†

X

†Two AIMSUN models are used: one large-scale and one medium-scale model.

Table 1: Works that have jointly used multiple traffic models with overlap in the
underlying networks.

data.
This paper considers a subnetwork that is modeled with multiple models. It uses

two high-resolution microscopic traffic models. That is, both the larger region and the
smaller subnetwork are modeled with the same high resolution (both models are micro-
scopic models). The larger region model is computationally costly to evaluate, whereas the
subnetwork model is more efficient but less accurate because it considers fixed subnetwork
boundary conditions. Hence, this paper proposes a framework that combines the use of
high-accuracy low-efficiency models with low-accuracy high-efficiency models in order to
address transportation optimization problems in an accurate and computationally efficient
way. This combination leads to an algorithm that can identify points (e.g., network de-
signs, traffic management strategies) with good performance at a reduced computational
cost.

As indicated in Table 1, past work in this area has been limited to the joint use of
multiple models for what-if analysis (i.e., scenario-based analysis), rather than for op-
timization. To the best of our knowledge, this paper is the first to embed the multiple
simulation models within an optimization framework to address a variety of transportation
problems.

In the broader field of optimization, the areas of surrogate-based optimization, also
called multi-fidelity optimization or structural optimization, formulate multi-model opti-
mization frameworks. For a review, see Robinson (2007). Foundational multi-model work
with a focus on trust region algorithms (such as the one used in this paper) is presented by
Carter (1986). The multiple models have different levels of fidelity or resolution, and also
different levels of computational efficiency. The idea is to limit the use of the higher-fidelity
inefficient model within the iterative optimization algorithm, and rather use frequently the
lower-fidelity more efficient model. Past work in this area has considered either the use
of several analytical models with varying computational costs, or the use of several deter-
ministic simulation-based models with various computational costs. This paper embeds
multiple stochastic simulation-based models within an optimization framework.

Additionally, the proposed methodology contributes to enable large-scale high-resolution
stochastic simulation models to be used efficiently for simulation-based optimization (SO).
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Transportation agencies and researchers are increasingly resorting to the use of microscopic
simulators. Nonetheless, the computational cost of these models, along with their stochas-
ticity and the, typically large number of simulation evaluations required by traditional
optimization methods, makes their direct use for optimization computationally inefficient.
In past work, the efficiency of SO algorithms that embed microscopic models has been
achieved by combining information from the large-scale high-resolution inefficient simula-
tor with information from analytical and highly efficient traffic models (Osorio and Chong,
2014, Osorio and Nanduri, 2014, Osorio and Bierlaire, 2013, Chen et al., 2013). The SO
approach proposed in this paper achieves efficiency by combining information from the
high-resolution large-scale, and hence inefficient, simulator with information from a high-
resolution small-scale, and hence more efficient, simulator.

The proposed algorithm allows for the use of multiple simulation models that may
differ, for instance, in their scale, their resolution or their computational costs, to be used
jointly for optimization. This allows transportation experts to jointly use their available
models in a systematic way. Most often, transportation agencies have access to large-scale
(e.g., regional) low-resolution (macroscopic) models and small-scale (e.g., a few intersec-
tions) high-resolution (microscopic) models. The proposed algorithm can be used to com-
bine information from both types of models. In this paper, the algorithm is illustrated by
using two high-resolution (microscopic) models: one is large-scale (city-wide) and the other
is medium-scale (city center). This choice is motivated by ongoing work in collaboration
with the New York City Department of Transportation, where large-scale high-resolution
models are being used for traffic optimization (Osorio et al., 2015). For such work, there
is a need for algorithms that need not evaluate the large-scale model at every iteration.

The proposed methodology is a simulation-based optimization algorithm that embeds
information from multiple models. At every iteration, the algorithm decides which model
to evaluate. This decision is based on an analytical approximation of the accuracy loss. In
Section 2 the methodology is formulated. It is then used to address a traffic signal control
problem for both a simple network and a city network (Section 3). The main conclusions
are presented in Section 4. Appendix A presents implementation details.

2 Methodology

This section is structured as follows. Section 2.1 presents the general problem statement.
A general formulation of the proposed multi-model framework is given in Section 2.2.
The analytical traffic model used in the framework is formulated in Section 2.3. We then
consider a specific optimization problem, namely a traffic signal control problem, which is
formulated in Section 2.4. A detailed description of how the general framework is applied
to this specific signal control problem is given in Section 2.5. The SO algorithm used is
presented in Section 2.6.
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2.1 General problem statement

The methodology is defined for a general continuous simulation-based transportation op-
timization problem. It is formulated and illustrated for a specific problem in this paper:
a traffic signal control problem. Hence, in the optimization algorithm a point corresponds
to a given signal plan. This paper, embeds, within an SO framework, multiple micro-
scopic stochastic traffic simulation models. The computational inefficiency of microscopic
models is due to multiple factors. First, as mentioned in Section 1, they simulate indi-
vidual travelers. For instance, in the case study of Section 3.2 the expected number of
trips is over 12,300. They provide a high-resolution representation of traveler behavior:
they can model pre-trip travel choices (e.g., mode, departure time, route) as well as en-
route travel decisions (e.g., re-route, car-following, lane-changing). They also describe in
detail both the interactions between vehicles, and the interactions between vehicles and
the network supply. Second, the evaluation of the performance of a point (e.g., a traffic
management strategy) with a stochastic microscopic simulator involves running multiple
simulation replications, where each replication is computationally costly to run. Third,
transportation agencies are interested in the evaluation of the performance of a transporta-
tion strategy under equilibrium assignment conditions. Evaluating an equilibrium for a
given strategy, involves sequentially running the simulator multiple times and at each time
running several replications, such as to derive consistent travel costs and path choices (i.e.,
such as to achieve an equilibrium). Hence, there is currently a need to design optimization
methodologies that enable an efficient use of these inefficient models.

We assume that we have access to two simulation models that cover the subnetwork of
interest and both have the same modeling resolution and assumptions (e.g., same traveler
behavior models). Let R denote the larger scale simulation model (R stands for regional),
and C denote the smaller scale simulation model (C stands for city). We assume that the
subnetwork of interest, where network changes are to be carried out, is the entire network
of C. The R model covers a larger area, which includes the subnetwork of interest. This
is a scenario which is often encountered in practice: R is an available large-scale model,
and C is a smaller model extracted from R, and calibrated based on R outputs and, when
available, on empirical data. Compared to model C, the model R is assumed to lead to
more accurate estimates of both local and global performance; yet is significantly more
computationally expensive to evaluate.

Let us describe why model C may lead to less accurate performance estimates than
those of R. For instance, the origin-destination (OD) matrix of C may be calibrated based
on modelR flow outputs, which are derived for a given (e.g., the prevailing) supply/demand
scenario. Hence, some (and typically most) OD pairs of C do not represent actual origins
or destinations of trips, but rather locations where trips entered/exited the subnetwork
C. Following a change in the supply in the subnetwork, drivers may revise their route
choices. This can impact whether they actually enter the subnetwork, and if they still
enter the subnetwork this can impact the location where they enter the subnetwork. This
leads to a different OD matrix for C. If the C model is run with a fixed OD matrix
for all supply scenarios, then the accuracy of the performance estimates will depend on
the distance between the actual OD matrix (which would account for re-routing) and the
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fixed OD matrix. In summary, there are points (i.e., supply scenarios) where model C
can yield accurate estimates and points where the estimates are inaccurate. A fixed (i.e.,
supply-invariant) OD matrix is what we refer to as fixed boundary conditions for C.

The family of transportation problems that we consider are continuous and generally
constrained problems. The objective function is estimated via a stochastic simulator,
whereas the constraints are available in closed-form and are differentiable. Such a problem
can be formulated as follows.

min
x

f(x, θ; p̃) = E[F (x, θ; p̃)] (1)

subject to h(x, θ; p̃) = 0 (2)

x ∈ R
n. (3)

In this formulation, x represents the decision vector (e.g., signal plans), F is the random
variable that describes subnetwork performance (e.g., trip travel time). The objective
function is the expected value of F . The objective function is an unknown function. We
can only obtain estimates of it via stochastic simulation. The simulation model is also a
function of exogenous parameters (e.g., network topology, calibrated behavioral models)
which are represented by p̃, and of subnetwork boundary conditions θ. The constraints
represented by the function h are differentiable and are available in closed-form. For
instance, in the signal control problem considered in this paper they represent green time
constraints for every intersection (e.g., bounds, linear constraints).

In this paper, we consider an objective function that only accounts for the subnetwork
performance, i.e., the aim is to improve local traffic conditions. The aim of this paper is to
derive a transportation strategy (e.g., a signal control plan, a network design alternative;
hereafter called a point) that provides subnetwork improvement when evaluated with R.
We assume we have a fixed computational (or simulation) budget (e.g., limited number of
simulation runs, or limited simulation run-time). The objective is to identify a point with
improved performance within this budget.

Three types of techniques can be used to address Problem (1)-(3):

• T1: use only R,

• T2: use only C,

• T3: use a combination of R and C.

The first technique, T1, will definitely lead to a point with improved performance, yet
is inefficient since R takes longer to execute. Technique T2 is the most efficient, yet may
not lead to a point with improved performance when evaluated with R. This is because
the boundary conditions of C are fixed, i.e., they do not vary across points. Technique
T3 is that proposed in this paper. We propose an SO technique that achieves a good
trade-off between obtaining accurate subnetwork performance estimates and doing so at
a low computational cost.

At every iteration of an SO algorithm, a trial point is considered and its performance
is estimated via simulation. We propose an SO algorithm that, at every iteration, can
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choose between evaluating the point with the model R or with the model C. If, for a given
point, model C can yield an accurate performance estimate, then it should be chosen since
the estimate can be obtained at a low computational cost. Otherwise, if model C leads to
an inaccurate estimate, then model R should be chosen.

The main challenge is to determine, for a given point, whether model C can yield
an accurate performance estimate. In order to address this challenge, we propose an
analytical approximation of the estimation error of C. This analytical approximation is
used for every trial point in order to decide which simulation model to run. This analytical
approximation can be embedded and used within any iterative SO algorithm.

2.2 General framework

We assume we have access to a calibrated large-scale modelR. We calibrate the subnetwork
model C based on the outputs of R (e.g., calibration of behavioral parameters, of origin-
destination matrix). If empirical traffic data is available, it can also be used to calibrate
C. This is done once, before starting the optimization algorithm. A one-shot calibration
of C before running the optimization algorithm implies that the boundary conditions of
C are fixed.

At each iteration of the SO algorithm, the main decision to be made is which simulator
to call (R or C). Given the varying accuracy of C, we propose an approach that approxi-
mates the accuracy loss of C. In other words, we analytically approximate the changes in
the boundary conditions of C, as well as their effect on the objective function. We do this
with an analytical traffic model that covers the full R network.

At iteration k of the SO algorithm, let xk denote the trial point (e.g., signal plan)
that is to be simulated. Let θ0 denote the fixed (i.e., exogenous) subnetwork boundary
conditions. These are obtained through the one-shot calibration mentioned above. Recall
that they are assumed fixed throughout the entire optimization process, i.e., they do not
depend on xk. Let θk denote the true (unknown) point-specific value of the subnetwork
boundary conditions. Then, the absolute error made by running model C with fixed
boundary conditions is:

e(xk) = |f(xk, θk; p̃)− f(xk, θ0; p̃)|, (4)

where f is given in Equation (1).
Let ê(xk) denote an analytical approximation of e(xk). At every iteration of the SO

algorithm, the choice of the simulation model is given by:

{

if ê(xk) < η, then run model C;
otherwise, run model R.

(5)

In other words, if the absolute error, as approximated analytically, is below a threshold,
then we expect C to provide a sufficiently accurate performance estimate; and since it can
do so at lower computational cost, then it is the chosen approach. Otherwise, we run the
more computationally expensive, yet more accurate, R model.
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The analytical approximation, ê(xk), is defined by:

ê(xk;αk) = α0,kẽ(xk) + α1,k +
o

∑

i=1

αi+1,kxk(i) +
o

∑

i=1

αi+o+1,kxk(i)
2, (6)

where xk(i) denotes the ith element of the decision vector xk, o denotes the dimension of
xk, αk is a vector of parameters, αi,k denotes the ith element of αk, and the function ẽ(xk)
denotes an analytical approximation of e(xk) as derived from an analytical traffic model.
In other words the analytical error approximation, ê(xk;αk), is a linear combination of
an approximation derived by a traffic model, ẽ(xk), and a quadratic correction term. The
function ẽ(xk) is defined below by Equation (7). A description of how the parameters αk

are estimated is given in Section 2.6.2.
We consider an analytical traffic model that covers the region of R. We use it to

(analytically) approximate θk. Let θ̂k denote the analytical approximation of θk. Let
g(xk, θ̂k; p̃) denote the approximation of the objective function (f(xk, θ; p̃) of Equation (1))
provided by the analytical traffic model for point xk, approximated subnetwork boundary
conditions θ̂k and exogenous network parameters p̃. The analytical approximation of e(xk)
is given by:

ẽ(xk) = |g(xk, θ̂k; p̃)− g(xk, θ0; p̃)| (7)

The first term on the right-hand side of Equation (7) (the term g(xk, θ̂k; p̃)) approximates
the objective function, f , assuming endogenous subnetwork boundary conditions. The
second term approximates the objective function assuming fixed subnetwork boundary
conditions. In other words, the first term approximates the estimate of f obtained by
running model R, whereas the second term approximates the estimate obtained by running
model C. The difference of these terms approximates the error made by model C in the
estimation of the objective function.

2.3 Analytical traffic model

In this section, we formulate the analytical traffic model used to approximate the error
ẽ(x) of Equation (7). The formulation builds upon the traffic model of Osorio (2010, Chap.
4). First, we present the initial model of Osorio (2010), then we present its extension.

In Osorio (2010), a road network is modeled as a finite (space) capacity queueing net-
work. Each lane is modeled as one (or a set) of queues. Each queue is considered an
M/M/1/ℓ queue, where ℓ is the space capacity of the queue. This finite space capac-
ity represents an upper bound on the queue-length, and is used to capture the spatial
propagation of congestion (e.g., vehicular spillbacks).
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For a given queue i, the following notation is used.

γi external arrival rate;
λi total arrival rate;
µi service rate;
µ̃i unblocking rate;
µ̂i effective service rate;
ρi traffic intensity;

P f
i probability of being blocked after service at queue i;

ℓi space capacity;
Ni number of vehicles in queue i;
P (Ni = ℓi) probability of queue i being full (i.e., spillback probability);
pij turning probability from queue i to queue j;
Di set of downstream queues of queue i.

For a given road network represented as a queueing network, the marginal queue-
length distributions of each queue are obtained by simultaneously solving for all queues
the following system of equations.
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λi = γi +

∑

j pjiλj(1− P (Nj = ℓj))

(1− P (Ni = ℓi))
(8a)

1

µ̂i

=
1

µi

+ P f
i

1

µ̃i

(8b)

1

µ̃i

=
∑

j∈Di

λj(1− P (Nj = ℓj))

λi(1− P (Ni = ℓi))µ̂j

(8c)

P (Ni = ℓi) =
1− ρi

1− ρℓi+1
i

ρℓii (8d)

P f
i =

∑

j

pijP (Nj = ℓj) (8e)

ρi =
λi

µ̂i

. (8f)

We briefly describe the interpretation of these equations. Equation (8a) describes
the conservation of flow between upstream and downstream queues. For queue i, its
total arrival rate, λi, is related to its external arrival rate, γi and to the arrivals arising
from upstream queues (second-term in the right-hand side of the equation). The turning
probabilities pij are known as routing probabilities in queueing theory. The expected time
a vehicle occupies a server is given by 1/µ̂i (Equation (8b)). This time is composed of two
phases. First, the vehicle undergoes an initial service for an expected time of 1/µi. The
queue has an underlying service rate, µi, that is determined by its underlying supply (e.g.,
flow capacity of the downstream intersection). After receiving service, a vehicle that is at
queue i and is ready to proceed to queue j may do so if queue j is not full. If queue j is
full (i.e., if there is a spillback at queue j), then the vehicle is forced to remain at queue i.
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This is known in queueing theory as blocking. This occurs with probability P f
i and this

second service is referred to as blocking time, the expected blocking time is given by 1/µ̃i.
The rate µ̂i is known as the effective service rate because it accounts for the potential
occurrence of blocking (i.e., spillback), and hence it is used to approximate the time that
a vehicle “effectively” undergoes service.

Equation (8c) describes the expected blocking time, which is a function of the effective
service rate of downstream queue j, µ̂j . Equation (8d) describes the probability that queue
i is full, it is referred to as the blocking probability in queueing theory. In vehicular traffic
this represents the spillback probability. The expression of Equation (8d) is obtained by
assuming that queue i is an M/M/1/ℓ queue (e.g., Bocharov et al., 2004). Equation (8e)
describes the probability that a vehicle at queue i gets blocked (i.e., that it cannot proceed
downstream of queue i due to downstream spillbacks). Equation (8f) defines the traffic
intensity, which is a ratio of expected demand to expected supply.

The main limitation of the model of Osorio (2010) for the purpose of this work is that
it assumes exogenous turning probabilities, pij (i.e., traffic assignment is fixed, it does not
vary with traffic conditions). In this paper, the purpose of the analytical model is to ap-
proximate how subnetwork boundary conditions may change due to changes in supply, and
in particular to approximate how the subnetwork OD matrix changes. Hence, accounting
for endogenous assignment is important. We extend the above formulation (System of
Equations (8)) by considering endogenous traffic assignment (i.e., the turning probabili-
ties, pij , are endogenous). The analytical formulation of the assignment is formulated as
follows.

ds demand for OD pair s;
ct expected travel cost of path t;
yt expected flow on path t;
lst probability that a vehicle travelling the OD pair s takes path t;
E[Ti] expected travel time of queue i;
E[Ni] expected number of vehicles in queue i;
lveh average vehicle length;
vfreeflow free flow speed;
κ route choice model parameter;
S set of OD pairs;
T set of paths;
Q set of queues;
Ps set of paths of OD pair s;
Gij set of paths that consecutively go through queues i and j;
Hi set of paths that go through queue i.
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pij =

∑

t∈Gij
yt

∑

t∈Hi
yt

∀i ∈ Q, ∀j ∈ Q (9a)

yt =
∑

s∈S

dslst ∀t ∈ T (9b)

lst =
e−κct

∑

j∈Ps

e−κcj
∀s ∈ S, ∀t ∈ Ps (9c)

ct =
∑

i∈Q

rtiE[Ti] ∀t ∈ T (9d)

E[Ti] =
E[Ni]

λi(1− P (Ni = ℓi))
+

lveh(ℓi − E[Ni])

vfreeflow
∀i ∈ Q (9e)

E[Ni] =
ρi

1− ρi
− (ℓi + 1)ρℓi+1

i

1− ρℓ1+1
i

∀i ∈ Q (9f)

γi =
∑

t∈T

a∗tirtiyt ∀i ∈ Q (9g)

The mapping of paths to queues is defined through the following exogenous parameters,
which consider a given path t, and queues i and j.

rti =
ati

∑

j∈Q atjzij
∀t ∈ T , ∀i ∈ Q. (10)

zij =







1 if i = j;
1 if (i 6= j) and queues i and j are parallel queues;
0 otherwise.

(11)

ati =

{

1 if queue i is part of path t,
0 otherwise.

(12)

a∗ti =

{

1 if queue i is part of the first link (road) of path t,
0 otherwise.

(13)

Equation (9a) defines the probability of turning from queue i to queue j as the ratio
of the total flow along paths that have queues i and j as consecutive queues and of the
total flow that goes through queue i. Equation (9b) defines the flow along a path t, it
is a function of the total demand of a given OD-pair s, denoted ds, and the probability
of choosing path t for OD-pair s, denoted lst. Note that the OD-pair demand ds of the
full R network is exogenous, and obtained from the OD matrix of the R model. The
path choice probability is given by the multinomial logit expression (Equation (9c)). The
deterministic component of the utility function for a given route t is defined as a function
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of a single (exogenous) parameter κ and a route cost ct. More details regarding the route
choice model of both this analytical traffic model and of the traffic simulators are given
in Appendix A. The route cost ct is defined by Equation (9d) as the expected travel time
for route t. The route travel time is a function of queue travel time E[Ti], which is given
by Equation (9e). In Equation (9e), the first term on the right-hand side represents the
(expected) delay at queue i, it is obtained by applying Little’s law (Little, 2011, 1961)
to a finite (space) capacity queue. The second term is an approximation of the travel
time to reach the physical queue of vehicles: the numerator approximates the available
road-space length not occupied by a stationary vehicular queue, the denominator is the
roads free-flow speed. Equation (9f) represents the expected number of vehicles in queue
i, E[Ni]. The derivation of this closed-form expression is given in Appendix A of Osorio
and Chong (2014). Equation (9g) gives the expression for the external arrival rate of
queue i, γi. In the model of Osorio (2010), this rate is exogenous. In this paper, since we
account for endogenous assignment, the external arrival rates of a given queue depend on
the (endogenous) path choice probabilities, and hence are themselves endogenous.

The Equations (12)-(10) describe the mapping of links to sets of queues. A link with
multiple lanes is mapped as a set of parallel (i.e., side-by-side) queues. For paths that
flow through multi-lane links, the exogenous parameter rti is used to distribute the path
flow uniformly across the multiple lanes of the road. More specifically, for a given multi-
lane road and a given path, the path flow is distributed across the lanes where the traffic
movement of the path is allowed. The parameter rti can be interpreted as the proportion
of flow on path t that goes through queue i.

In summary, the System of Equations (8)-(9) describes the analytical traffic model with
endogenous assignment. The model takes as input: a mapping of the network topology as a
queueing network (this determines ℓi,Di, a, a

∗, z, r,Q), an OD-matrix for the R model with
fixed total demand per OD-pair (this determines S and ds), a set of path alternatives that
connect each OD-pair (this determines Ps, T ,Gij and Hi), fixed lane flow capacities (this
determines µi), the other exogenous parameters are κ, lveh, vfreeflow. All other variables
that appear in the System of Equations (8)-(9) are endogenous. Given the exogenous
(or input) parameters, the System of Equations (8)-(9) is solved. The main outputs of
the model are performance measures of traffic congestion, such as spillback probabilities
P (Ni = ℓi), expected queue travel times E[Ti], expected number of vehicles in a queue
E[Ni]. For more details on how this system of equations is solved, we refer the reader to
Selvam (2014, Section 2.3.3 and Appendix B).

The analytical model uses a multinomial logit path choice model (Equation (9c)). If
desired, this path choice model may be replaced by any other analytical and differentiable
path choice model with a closed-form expression available. For the case studies of this
paper (Sections 3.1 and 3.2) the analytical model uses the multinomial logit path choice
model (Equation (9c)). The simulation models may use other path choice models, they
use a C-logit model in the case study of Section 3.2 and they use a multinomial logit model
in the case study of Section 3.1.

This traffic model is used to approximate the expression in Equation (7), which rep-
resents the accuracy loss due to approximating the objective function assuming fixed sub-
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network boundary conditions. In other words, the function g of Equation (7) is obtained
by evaluating the analytical traffic model (Equations (8)-(9)) and using it to approximate
the (simulation-based) objective function f (of Equation (1)). In Section 2.4, we detail
how this is done with a specific example of a signal control problem.

2.4 Signal control problem

In order to provide a detailed presentation of how the analytical error approximation is
derived from the analytical traffic model (Equation (7)), we consider a specific optimiza-
tion problem. We consider a fixed-time traffic signal control problem. To formulate the
problem, we introduce the following notation.

bi available cycle ratio of intersection i;
xL vector of minimum green splits for each phase;
I set of intersection indices;
PH(i) set of phase indices of intersection i;
Tsub subnetwork travel time.

min
x

f(x; p̃) = E[Tsub(x; p̃)] (14)

subject to
∑

j∈PH(i)

x(j) = bi, ∀i ∈ I (15)

x ≥ xL. (16)

The objective function of this problem is the expected travel time in the subnetwork, Tsub

represents the subnetwork travel time, and x is the decision vector of green splits (i.e.,
ratio of green times to cycle times) for all endogenous signal phases. The parameter bi is
an exogenous parameter that represents the proportion of cycle time that can be allocated.
This proportion excludes any fixed times (e.g., all-red times). Equation (15) ensures that
for each intersection all available green time is allocated across all phases. In this equation
x(j) is the jth element of x, it represents the green split of signal phase j. Lower bounds
for the green splits are ensured through (16).

The traffic model defined in Section 2.3 (Equations (8)-(9)) considers exogenous net-
work supply and in particular exogenous flow capacities for each lane, and hence exogenous
service rates µi for each queue. When considering a signal control problem, a change in
the total green time of a signalized lane leads to a change in its flow capacity. Hence, the
following equation is added to the traffic model such as to account for endogenous flow
capacities for the lanes (or queues) with endogenous green splits.

µi =
∑

j∈PL(i)

x(j)s̃, ∀i ∈ L, (17)

where L denotes the set of queues with endogenous green splits, PL(i) denotes the set of
signal phase indices of queue i, and s̃ is the saturation flow rate, which is an exogenous
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parameter. For queues that represent lanes that are either not controlled by traffic lights,
or are controlled by lights with exogenous green splits, then µi remains exogenous.

2.5 Analytical approximation of the accuracy loss

We use the analytical traffic model presented in Section 2.3 to approximate the objective
function error as defined in Equation (7). We first describe how the term g(xk, θ0; p̃) of
Equation (7) is derived. This term represents the analytical approximation of the objective
function (Equation (14)) for signal plan xk and assuming the boundary conditions of the
subnetwork are unchanged. This means that the subnetwork OD-demand is equal to its
initial value (this initial value is obtained through the one-shot calibration of C). In the
analytical traffic model this means that the subnetwork external arrival rates γi take their
initial values. We denote these initial values as γi,0. We consider the analytical model
of the subnetwork (network C) with exogenous external arrival rates γi,0, we solve the
System of Equations (8), (9a)-(9f), (17).

In other words, we use the analytical model of the subnetwork, we consider an exoge-
nous OD matrix, and allow for endogenous assignment. Then, the analytical approxima-
tion of the objective function (Equation (14)) is given by:

g(xk, θ0; p̃) =

∑

i∈A

E[Ni]

∑

i∈A

γi,0(1− P (Ni = ℓi))
(18)

where A represents the set of queues in the subnetwork, and E[Ni] is given by Equa-
tion (9f). Equation (18) is derived by applying Little’s law (Little, 2011, 1961) to the
subnetwork.

We now describe how the term g(xk, θ̂k; p̃) of Equation (7) is derived. This term
represents the analytical approximation of the objective function (Equation (14)) for signal
plan xk accounting for endogenous subnetwork boundary conditions (e.g., the subnetwork
OD-matrix is endogenous). We consider the analytical model of the full network (network
R). We solve the System of Equations (8)-(9),(17). Then, the analytical approximation
of the objective function (Equation (14)) is given by:

g(xk, θ̂k; p̃) =

∑

i∈A

E[Ni]

∑

i∈A

γi(1− P (Ni = ℓi))
. (19)

In this equation the subnetwork demand (represented by γi) is endogenous, and is given
by Equation (9g). Equation (19) differs from Equation (18) in the use of endogenous
subnetwork demand (γi) as opposed to exogenous subnetwork demand (γi,0).

In summary, we use two analytical models: one of the subnetwork with fixed sub-
network boundary conditions, and one of the full network with endogenous subnetwork
boundary conditions. With each model we approximate the objective function, and then
subtract the respective approximations to derive an analytical approximation of the accu-
racy loss, which is represented by ẽ(xk) in Equation (7).
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2.6 Multi-model SO algorithm

This approach can be embedded within any SO algorithm. In this paper, we choose the
algorithm of Osorio and Bierlaire (2013), which is a metamodel SO algorithm. In this
paper, we extend the algorithm of Osorio and Bierlaire (2013) in order to allow for the
use of multiple simulation models. We present the proposed algorithm below. We then
comment on how it differs from that of Osorio and Bierlaire (2013). For algorithmic details,
we refer the reader to Osorio and Bierlaire (2013).

In this section, we denote f(x, θ; p̃) as f(x). The following notation of Osorio and
Bierlaire (2013) is defined for a given iteration k of the algorithm.

mk(x; νk) metamodel;
xk current iterate;
∆k trust region radius;
νk vector of parameters of mk;
nk total number of simulation runs carried out up until and including iteration k;
uk number of successive trial points rejected.

The constants η1, γ̄, γinc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 < γ̄ < 1 <
γinc, 0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N

∗. Set the total number of simulation runs permitted,
nmax, this determines the computational budget. Set the number of simulation replications
per point r̄.

The following additional notation is introduced in order to extend the algorithm to a
multi-model context.

êk(x;αk) error model at iteration k (defined by Equation (6));
qk indicator of the simulation model choice at iteration k: qk = 0 if model R is chosen,

qk = 1 if model C is chosen;

f̂qk(x) estimate of the objective function using the simulation model qk;
η accuracy threshold (defined by Equation (5));
n∗ number of points sampled to initially fit the error model.

2.6.1 Algorithm

1. Error model initialization.

If multiple simulation models are to be used then: sample n∗ feasible points with
each simulation model, and fit an initial error model ê0 (defined by Equation (6)).
Points are sampled randomly uniformly from the feasible region. Set n0 = 2r̄n∗.
If only one simulation model is to be used, then set n0 = 0.

2. Initialization.

Set values for the above mentioned constants. Set k = 0, u0 = 0. Determine x0 and
∆0 (∆0 ∈ (0,∆max]).

Compute f̂0 at x0, fit an initial metamodel m0 (i.e., compute ν0), set n0 = n0 + r̄.
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3. Step calculation.

Compute a step sk that reduces the metamodel mk and such that xk + sk (the trial
point) is in the trust region (i.e. approximately solve the trust region subproblem).

4. Simulation model selection.

This step selects the simulation model that is to be used to estimate the performance
of the trial point. Calculate êk(xk + sk). Following Equation (5): if êk(xk + sk) < η,
then qk = 1 (i.e., model C is selected), otherwise qk = 0 (i.e., model R is selected).

5. Acceptance of the trial point.

Compute f̂qk(xk + sk), i.e., evaluate the point xk + sk using the selected simulation
model. Compute:

ρk =
f̂qk(xk)− f̂qk(xk + sk)

mk(xk)−mk(xk + sk)
.

If the current iterate, xk, has not yet been evaluated by model qk, then compute
f̂qk(xk), set nk = nk + r̄ and update êk.

- If ρk ≥ η1 and (f̂qk(xk)− f̂qk(xk + sk)) > 0, then accept the trial point: xk+1 =
xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.

Include the new trial point observation in the set of sampled points (nk = nk + r̄),
fit the new metamodel mk+1.

6. Model improvement.

Compute τk+1 =
‖νk+1−νk‖

‖νk‖
. If τk+1 < τ̄ , then improve the metamodel by simulating

with model R the performance of a new point x, which is sampled randomly uni-
formly from the feasible region. Include this new observation in the set of sampled
points (nk = nk + r̄). Update mk+1.

7. Trust region radius update.

∆k+1 =







min{γinc.∆k,∆max} if ρk > η1
max{γ̄.∆k, d̄} if ρk ≤ η1 and uk ≥ ū
∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

Set nk+1 = nk, uk+1 = uk, k = k + 1.

If nk < nmax, then go to the “Step calculation” step. Otherwise, stop.
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2.6.2 Main differences with the basic SO algorithm

We now describe how the above algorithm differs from that of Osorio and Bierlaire (2013).

• New algorithmic steps. The main difference is the inclusion of two new steps:
the error model initialization step and the simulation model selection step.

• Metamodel formulation and fit. We use a quadratic polynomial as the meta-
model, whereas Osorio and Bierlaire (2013) use a more complex metamodel formu-
lation. The metamodel we use is defined, for a given iteration k, as:

mk(x, νk) = ν1,k +
o

∑

i=1

νi+1,kx(i) +
o

∑

i=1

νi+o+1,kx(i)
2, (20)

where x is the decision vector of dimension o, x(i) is the ith element of x, νk is the
vector of metamodel parameters and νi,k is the ith element of νk.

The parameters of the metamodel, νk, are fit by solving the following least squares
problem:

min
νk

∑

x∈SR
k

{wk(x)(f̂
R(x)−mk(x, νk))}2+

1

10

∑

x∈SC
k

{wk(x)(f̂
C(x)−mk(x, νk))}2+

2o+1
∑

j=1

(w0.νj,k)
2

(21)

where SR
k (resp. SC

k ) is the set of points evaluated with model R (resp. C) up

until iteration k, f̂R(x) (resp. f̂C(x)) is the estimate of the performance of point
x simulated by model R (resp. C), w0 is a constant weight, and wk(x) is a weight
function defined by Equation (22) below. The first (resp. second) term of (21)
corresponds to the weighted distance between the simulation estimates obtained
from model R (resp. model C) and the corresponding metamodel predictions. Since
we assume estimates obtained from R to be more accurate than those obtained from
C, the second term is weighted by a factor of 1/10. The third term ensures that the
least squares matrix is of full rank, even when no simulation observations have been
obtained. This ensures that Problem (21) has a unique solution. This least-squares
problem is solved using the Matlab routine lsqlin.

The same weight function as in Osorio and Bierlaire (2013) is used. It is defined by:

wk(x) =
1

1 + ||xk − x||2
, (22)

where xk is the current iterate at iteration k.

• Error model fit. The new algorithmic steps require fitting an error model. We now
detail how the parameters of the error model, ê(xk;αk) (Equation (6)) are estimated.
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At a given iteration k of the SO algorithm, the parameters αk are fit by solving the
following least squares problem.

min
αk

∑

x∈Uk

(y(x)− ê(x;αk))
2 +

2o+1
∑

i=0

(w̃0.αi,k)
2, (23)

where Uk is the set of all points that have been evaluated by both model R and model
C up until iteration k, w̃0 is a constant weight value, y(x) are simulation-based error
estimates defined by:

y(x) = |f̂R(x)− f̂C(x)|, (24)

where f̂R(x) and f̂C(x) denote the performance estimates obtained by running mod-
els R and C, respectively.

The first term of (23) represents the distance between the simulated error estimates
and the analytical model error approximations. The second term is used to ensure
that the least squares matrix is of full rank, and hence the Problem (23) has a unique
solution. This least squares problem is solved with the Matlab routine lsqlin.

3 Case studies

This section uses the proposed methodology to address a signal control problem for a small
toy network (Section 3.1) and for the city of Lausanne (Switzerland) network (Section 3.2).

The performance of the algorithms are carried out under tight computational budgets.
In other words, few simulation runs are allowed (i.e., few points are evaluated, and for
a given point few simulation replications are run). This is motivated by our interest
in algorithms that perform well under tight computational budgets, which is how they
are typically used in practice. For both case studies of this paper, the values of the
computational budget (i.e. the total number of simulation runs) and of the number of
simulation replications per point are chosen such as to be consistent with past SO work
(Osorio and Chong, 2014, Osorio and Nanduri, 2014, Osorio and Bierlaire, 2013, Chen
et al., 2013).

3.1 Toy network

We illustrate the performance of the proposed methodology with a small toy network,
which is depicted in Figure 1. Figure 1(a) represents the full network R, which considers
two OD pairs: A → B and C → D. Each OD pair of network R has two path alternatives,
one of which goes through a signalized intersection (denoted by the square in the center
of the figure). The subnetwork C is displayed in Figure 1(b). It considers trips that start
after the diverge intersections along the paths of network R. Hence, it considers 2 OD
pairs, each with one path. A change in the signal plan of the intersection may affect the
path choice probabilities. This change will be reflected when running simulator R but will
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(a) (b)

Figure 1: Network topologies: for the R network (left) and the C network (right).

not be reflected when running simulator C. The simulation model uses a multinomial logit
path choice model, where the path cost increases with path travel time. For more details,
see Appendix A.

Recall that the objective function is the expected subnetwork travel time, i.e., the travel
time in the links of subnetwork C. The intersection has two endogenous signal phases: one
for east bound and west bound traffic and the second for north bound and south bound
traffic. This leads to a one-dimensional signal control problem (i.e., the decision vector is
of dimension one).

We compare the performance of the three techniques described in Section 2.1 (denoted
T1, T2 and T3). For a given technique, we allow for a maximum of 20 simulation runs.
That is, technique T1 (resp. T2) allows for 20 runs of simulator R (resp. C), while
technique T3 allows for a total of 20 runs, which consist of a combination of runs from R
and from C.

For all 3 techniques, the SO algorithm defined in Section 2.6 is used. For techniques
T1 and T2, the algorithm systematically chooses at every iteration the same simulation
model, whereas for T3 either of the two models can be chosen.

Note that any steps of the SO algorithm that are carried out in order to select a
simulation model, are not carried out for techniques T1 and T2. In particular, the initial
error model fit step is not carried out by T1 or T2. Hence, for T1 and T2 all 20 simulation
runs are devoted to evaluating the performance of trial points, whereas for T3 some of the
simulation runs are used to improve the fit of the error model. For instance, in this case
study 6 simulation runs are used to initially fit the error model (this corresponds to step 1
of the algorithm in Section 2.6.1). Hence, only 14 (i.e., 20-6) simulation runs are available
for T3 to use throughout the SO iterations. In other words, for a given computational
budget, methods T1 and T2 evaluate the performance of a larger number of trial points
than T3.

We consider three different initial signal plans. The initial signal plans are drawn
randomly and uniformly from the feasible region, which is defined by Equations (15)-(16).
Uniform sampling is carried out with the code of Stafford (2006).
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For each initial signal plan and each technique, we run the SO algorithm 3 times,
allowing each time for a maximum of 20 simulation runs. Once the maximum number
of simulation runs is reached (i.e., the computational budget is depleted), we obtain a
new signal plan as proposed by the algorithm. In order to evaluate the performance
of a proposed signal plan, we embed it within the R simulator and run 50 simulation
replications. For each replication, we obtain a realization of the objective function: the
expected subnetwork travel time. For each signal plan, we use the 50 realizations of the
average subnetwork travel time (ASTT) to construct a cumulative distribution function
(cdf).

The plots of Figure 2 display several cdf curves. For each plot, the x-axis represents the
ASTT. For a given x value the corresponding y value of the curve represents the proportion
of replications (out of the 50 replications) where the simulated ASTT was smaller than x.
Thus, the more the cdf curves are shifted to the left, the higher the proportion of simulated
observations with low ASTT values, i.e., the better the performance of the corresponding
signal plan.

Each plot of Figure 2 considers a different initial signal plan. Each plot contains 8 cdf
curves:

• The dotted curve corresponds to the initial signal plan.

• The 3 dashed curves correspond to the 3 signal plans proposed by only running the
C simulator. This is the least accurate yet also the least computationally-costly
technique.

• The 3 solid grey curves correspond to the 3 signal plans proposed by only running
the R simulator. This is the most accurate yet also the most computationally-costly
technique.

• The 3 solid black curves correspond to the 3 signal plans proposed by our technique.

When running only the simulator C, all 3 plots of Figure 2 indicate that signal plans
with poor performance are derived. For all initial points, all signal plans proposed by
running only the simulator C perform worse than the initial signal plan.

When running only the simulator R, all 3 plots of Figure 2 indicate that signal plans
with good performance are obtained. They all outperform the initial signal plan, and all
lead to a subnetwork travel time average of approximately 0.75 minutes.

When running a combination of simulators R and C, the signal plans systematically
yield performance similar to the signal plans propose by running only R. Additionally, for
the proposed technique the R model was called on average 74% of the time, while the C
model was called 26% of the time. The percentage of R calls for each of the 9 runs (i.e.,
3 SO runs for each of the 3 initial points) is displayed in Figure 3. These results indicate
that the proposed technique identifies signal plans with good performance and does so at
a lower computational cost.
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Figure 2: Cumulative distribution functions of the average subnetwork travel time, for
each signal plan proposed by each of the three techniques.
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Figure 3: Percentage of calls to R simulator for each of the 9 toy network experiments

3.2 Lausanne city network

We consider a city-scale problem, focusing on the Swiss city of Lausanne. A map of the
city is depicted in Figure 4. The corresponding network of the microscopic simulation
model is displayed in the left plot of Figure 5. The microscopic simulator was developed
and calibrated by Dumont and Bert (2006). The R network considers the full city, it is
depicted in the left plot of Figure 5. The C network (also referred to as the subnetwork)
considers an area within the city center, it is depicted in the right plot of Figure 5.

The R network consists of a total of 653 links (mapped as a network of 922 queues,
certain links are represented by multiple queues in the queueing model). It has 2075
OD pairs with non-zero demand, and an expected total demand of 12,328 trips. The
subnetwork C has 48 links (mapped as a network of 102 queues). The C network has
121 OD pairs with non-zero demand, and an expected total demand of 417 trips. The
simulation model uses a C-logit path choice model, while the analytical model assumes
a multinomial logit model (Equation (9c)). For more route choice model details, see
Appendix A.

We consider a signal control problem, where the objective function is the expected
travel time in the subnetwork. We control the signals of 9 intersections in the subnetwork,
this leads to a total of 51 endogenous signal phases, i.e., the decision vector is of dimension
51.

We proceed as for Section 3.1. We compare the performance of the 3 techniques T1,
T2 and T3. We consider three different initial points, drawn uniformly from the feasible
space. We allow for a maximum number of 200 simulation runs per experiment. That
is, every time we run the SO algorithm, we allow for a total of 200 simulation runs (i.e.,
we have a computational budget of 200). Once the computational budget is depleted,
we terminate the algorithm, and consider the current iterate as the proposed signal plan.
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Figure 4: Lausanne city road network map (adapted from Dumont and Bert (2006))

Figure 5: The full (city) network model (left), the subnetwork (city center) model (right)
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For each signal plan and each technique, we run the SO algorithm 3 times. In order to
evaluate the performance of a proposed signal plan, we encode it within the R model, we
run 50 simulation replications, and plot the cumulative distribution function of the average
subnetwork travel time.

As in Section 3.1, method T3 consumes part of the simulation budget in order to fit the
error model. More specifically, 50 simulation runs are used to initially fit the error model
(step 1 of the SO algorithm of Section 2.6.1). Hence, only 150 (i.e., 200-50) simulation
runs are available for T3 to use throughout the SO iterations. In other words, for a given
computational budget, methods T1 and T2 evaluate the performance of a larger number
of trial points than T3.

Each plot of Figure 6 considers an initial signal plan. Each plot displays 10 different
cdf curves. Figure 6(a) considers a first initial point. The 3 signal plans proposed by T2
(which only runs the C model) have worse performance than the initial signal plan, and
than all signal plans proposed by T1 and T3. The 3 signal plans proposed by T3 (both
R and C models are run) outperform the initial signal plan and have similar performance
to the 3 plans proposed by T1 (only the R model is run). For the second initial signal
plan (Figure 6(b)), the 3 signal plans of T2 perform slightly better than the initial signal
plan, and worse than all signal plans proposed by T1 or T2. The 3 signal plans proposed
by T1 have similar and the best performance. One of the three signal plans proposed by
T3 has similar performance to the signal plans of T1. The other two have significantly
better performance than the initial plan and than the plans proposed by T2, they are
outperformed by the plans proposed by T1.

For the third initial signal plan (Figure 6(c)), similar conclusions hold. The 3 signal
plans of T2 perform worse than all other plans, including the initial plan. Five plans have
similar and the best performance: these are the 3 plans proposed by T1 and 2 out of the 3
plans proposed by T3. All plans proposed by T3 have better performance than the initial
signal plan.

Just as in the case of the toy network, using only model C results in signal plans
with poor performance. In fact, for two of the three initial points, it leads to signal plans
that perform worse than the initial point (Figures 6(a) and 6(c)). On the other hand,
when only model R is used, or when both models R and C are used, signal plans with
significantly better performance than the initial plan are identified.

Most signal plans derived by T3 have similar performance to those derived by T1, and
they are identified at a significantly lower computational cost. Table 2 displays simulation
statistics for technique T3. Each row of the table corresponds to one of the above nine
experiments (3 algorithmic runs for each of the 3 initial points for a total of 9 experi-
ments). The last row displays the average across the above nine rows. Columns 2 and 3
display, respectively, the percentage of simulation runs where model R was chosen and the
corresponding percentage of total simulation runtime. Columns 4 and 5 display, respec-
tively, the total simulation runtime for model C and for model R. Column 6 displays the
total simulation runtime, it is the sum of columns 4 and 5. Column 3 can be calculated
as the ratio between columns 5 and 6. Note that the computation time of one simulation
replication of model R is of the order of 90 seconds, while it is of the order of 2.8 seconds
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Figure 6: Cumulative distribution functions of the average subnetwork travel time, for
each signal plan proposed by each of the three techniques for the Lausanne city network.
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Experiment Percentage of model R Simulation runtime [min] Simulation runtime
index runs runtime Model C Model R Total reduction [%]

1 48 97 5 144 149 50
2 43 96 5 128 133 56
3 43 96 5 128 133 56
4 42 96 5 126 131 56
5 23 91 7 69 76 75
6 53 97 4 158 162 46
7 43 96 5 128 133 56
8 42 96 5 125 130 57
9 40 95 6 119 124 59

Average 42 96 5.4 125 130 57

Table 2: Simulation statistics for technique T3.

for model C, i.e., it is significantly faster to evaluate model C. Column 7 displays the
percentage reduction in simulation runtime of technique T3 compared to technique T1.
Recall that technique T1 only evaluates model R, hence for any experiment all 200 simu-
lation runs are evaluated with model R, leading to a total of approximately 300 minutes
in total simulation runtime. Hence, column 7 can be calculated as 100 minus the ratio of
column 6 to 300.

This table indicates that on average technique T3 chooses model R 42% of the time.
This leads to 96% of the total simulation runtime being devoted to evaluating this 42%
of the runs. This emphasizes that model R is significantly costlier to evaluate than model
C. In comparison to technique T1, technique T3 achieves, on average, a 57% reduction
in total simulation runtime. Using both models R and C to design signal plans, leads
to plans with similar performance than the plans obtained by using only model R. This
similar performance is achieved in spite of model R being called on average only 42% of
the time, and with a reduction in simulation runtime of 57%. This 57% average runtime
reduction corresponds to an average of 170 minutes (i.e., 300 - 130) per experiment.

For the above experiments, one single simulation replication is run when evaluating a
given point (i.e., r̄ = 1). If two simulation replications are carried out (r̄ = 2), this would
lead to a simulation runtime reduction per experiment of the order of 6 hours. Similarly, if
5, 10 or 20 simulation replications are carried, this would lead, respectively, to a reduction
of the order of 14, 28 and 57 hours.

4 Conclusions

This paper presents a simulation-based optimization methodology that allows continuous
problems to be addressed with computationally inefficient simulators in a computationally
efficient manner. The main idea is to avoid running the inefficient model at every iteration
of the SO algorithm. This is achieved through the combined use of multiple stochas-
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tic traffic simulators. This combination allows to trade-off the high computational costs
of running accurate large-scale simulators with the lower costs of running less accurate
smaller-scale simulators.

In order to choose a simulation model, at every iteration of the algorithm, we formulate
an analytical differentiable traffic assignment model that is computationally efficient to
evaluate. This analytical model is used to approximate, for a given point, the accuracy
loss due to running the smaller-scale model. It allows us to identify points where the
smaller-scale model would yield an accurate performance estimate.

We illustrate the proposed technique with a signal control problem on both a small
toy network example and on a city-scale network. The proposed technique identifies signal
plans with good performance and does so at a significantly lower computational cost than
when systematically running the accurate larger-scale simulator.

This approach allows for large-scale SO problems to be efficiently addressed with ac-
curate yet inefficient simulators. These ideas can be used to enable the use of these
inefficient simulators for real-time traffic control. More broadly, they constitute a first
step towards the objective of combining different types of simulations models (e.g., macro-
scopic, mesoscopic and microscopic) to solve transportation optimization problems in a
holistic manner.

One extension of this framework is the formulation of an analytical expression for the
error provided by the lower-accuracy model. This would allow the algorithm to evaluate
the lower-accuracy model even when it is not expected to provide an accurate objective
function estimate. This would further improve the computational efficiency of the algo-
rithm.

The design of this multi-model SO algorithm is driven by an interest in algorithms
that perform well under tight computational budgets. An open question that is of great
importance to the simulation-based optimization community is how to allocate a given
computational budget. In other words, how to achieve a suitable trade-off between the
number of points to evaluate and the accuracy of the evaluation per point. This is known
as the exploration versus exploitation problem. The formulation of suitable exploration
versus exploitation approaches for challenging transportation problems is a topic of ongoing
work.
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A Implementation details

In the case studies of this paper (Section 3), the analytical traffic model considers a
multinomial logit route choice model (Equation (9c)). Let Pk denote the probability of
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choosing route k, and let S denote the route choice set. Then the multinomial logit choice
probability is given by:

Pk =
eκVk

∑

ℓ∈S

eκVℓ

, (25)

where Vk is known as the deterministic part of the utility function. In the analytical model
Vk is defined as the expected travel time of route k.

The simulation model of the toy network case study (Section 3.1) also considers a
multinomial logit, with the route utility Vk defined as a decreasing function of route travel
time. For more details regarding the definition and calculation of Vk for the simulation
model, we refer the reader to TSS-Transport Simulation Systems (2010, Section 12.4.1.2).
The simulation model of the Lausanne case study (Section 3.2) considers a C-logit route
choice model (Cascetta et al., 1996), which accounts for the effect of path overlapping. It
is defined as:

Pk =
eκ(Vk−CFk)

∑

ℓ∈S

eκ(Vℓ−CFℓ)
, (26)

where CFk is known as the commonality factor, and is proportional to the degree of overlap
between path k and other path alternatives. It is given by:

CFk = β.ln(
∑

ℓ∈S

Lℓk√
LℓLk

)β̃ , (27)

where Lℓk is the length of the links common to paths ℓ and k while Lℓ and Lk are the
lengths of paths ℓ and k respectively. The model parameters are β and β̃. For more details
regarding the calculation of the C-logit path choice probability by the simulation model,
see TSS-Transport Simulation Systems (2010, Section 12.4.2.2.6).

In the case studies of Section 3, the analytical traffic model considers for each OD pair
a maximum of 3 path alternatives. These alternatives are chosen as the 3 distance-based
shortest paths. While the simulation models account for a much larger path choice set, the
choice set of the analytical model is limited to 3 fixed paths. This contributes to ensure
that the analytical model remains both scalable and computationally tractable.

The values of all algorithmic parameters are given in Tables 3 and 4.

Network xL (sec) lveh (m) s (veh/hr) vfreeflow (km/hr) o (1/hr) η r ∆0 ∆max

Toy 4 4 2300 60 1 2 1 1000 1e10
Lausanne 4 4 1800 60 42 2 1 1000 1e10

Table 3: Numerical values of algorithmic parameters. Part 1
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Network η1 γ̄ γinc τ̄ d̄ ū w0 w̃0 nmax n∗ κ β β̃

Toy 1e-3 0.9 1.2 0.1 1e-2 10 0.1 0.001 20 3 60 NA NA
Lausanne 1e-3 0.9 1.2 0.1 1e-2 10 0.1 0.001 200 25 7 0.15 1

Table 4: Numerical values of algorithmic parameters. Part 2
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