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ABSTRACT

Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to

address key questions about the size and significance ofTMT trends, agreementwithmodel-derivedTMTvalues, and

whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends

over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution

TMTtrends receive fromstratospheric cooling.Here, it is shown that theaverage ratioofmodeledandobservedTMT

trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the

impact of lower-stratospheric cooling onTMT is accounted for, andwhen themost recent versions of satellite datasets

are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to

approximately 1.7.Next, the validity of the statement that satellite data showno significant troposphericwarmingover

the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite

TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-

standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the

tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper tropo-

sphere is now in close agreement in the average of 37 climate models and in one updated satellite record.

1. Introduction

Reliable thermometer measurements of large-scale

changes in Earth’s surface temperature are available

for over a century. These measurements document

warming of roughly 0.858C since 1880, with the three

warmest decades in the most recent portion of the re-

cord (IPCC 2013). In global average terms, 2015 was

the warmest year in surface temperature datasets

(Tollefson 2016). Satellite-based estimates of trends in

tropospheric temperature cover a shorter period of

time (from late 1978 to the present) but also provide

independent confirmation of planetary-scale warming

(Zou et al. 2006; Christy et al. 2007; Mears et al. 2011;

Po-Chedley et al. 2015; Mears and Wentz 2016).

Although observational and model temperature data

provide compelling evidence for the existence of a ‘‘dis-

cernible human influence’’ on global climate (Santer et al.

1995; Karl et al. 2006; Hegerl et al. 2007; Bindoff et al.

2013), studies of temperature change continue to yield

interesting and important scientific puzzles. Examples of

such puzzles include apparent differences between

surface and tropospheric warming rates in observational

records (Yulaeva and Wallace 1994; Hurrell and

Trenberth 1998; National Research Council 2000; Gaffen

et al. 2000; Santer et al. 2000; Hegerl and Wallace 2002;

Karl et al. 2006) and differences between modeled and

observed warming trends (National Research Council

2000; Gaffen et al. 2000; Hegerl and Wallace 2002; Karl
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et al. 2006; Easterling and Wehner 2009; Fu et al. 2011;

Santer et al. 2011; Po-Chedley and Fu 2012b). The causes

of such differences remain the subject of both scientific

interest (IPCC 2013; Fyfe et al. 2016; Lewandowsky et al.

2016) and political attention (U.S. Senate 2015).

The present study focuses on differences between

satellite- and model-based estimates of tropospheric

temperature change. We assess the validity of two

highly publicized claims: that modeled tropospheric

warming is a factor of 3–4 larger than in satellite and

radiosonde observations (Christy 2015) and that sat-

ellite tropospheric temperature data show no statis-

tically significant warming over the last 18 years (U.S.

Senate 2015). We also address long-standing concerns

regarding differences in the vertical structure of tro-

pospheric warming in models and satellite data. Such

differences are particularly pronounced in the tropics

(Santer et al. 2000; Gaffen et al. 2000; Hegerl and

Wallace 2002; Fu and Johanson 2005; Johanson and

Fu 2006; Karl et al. 2006; Fu et al. 2011; Po-Chedley

and Fu 2012b). We rely exclusively on satellite mea-

surements of atmospheric temperature; we do not

compare model results with radiosonde-based atmo-

spheric temperature measurements, as has been done

in a number of previous studies (Gaffen et al. 2000;

Hegerl and Wallace 2002; Thorne et al. 2007, 2011;

Santer et al. 2008; Lott et al. 2013).

2. Satellite and model temperature data

Since late 1978, satellite-based microwave tem-

perature sounders have measured the microwave

emissions from oxygen molecules. These emissions

are proportional to the temperature of broad layers

of the atmosphere (Mears et al. 2011). The two claims

mentioned above (Christy 2015; U.S. Senate 2015)

focused on trends in the temperature of the mid-to-

upper troposphere (TMT), which extends to ap-

proximately 18 km above Earth’s surface (Karl et al.

2006). Here, we analyze TMT data from four differ-

ent research groups: Remote Sensing Systems (RSS;

Mears and Wentz 2016), the Center for Satellite

Applications and Research (STAR; Zou et al. 2006),

the University of Alabama at Huntsville (UAH;

Christy et al. 2007), and the University of Wash-

ington (UW; Po-Chedley et al. 2015). We also con-

sider satellite estimates of the temperature of the

lower stratosphere (TLS) and the temperature of the

lower troposphere (TLT), which span approximate

altitude ranges from 14 to 29 km and from the surface

to 8 km (respectively).

Previous scientific assessments (National Research

Council 2000;Karl et al. 2006; IPCC2013) have highlighted

the large structural uncertainties in satellite estimates of

tropospheric temperature change. Themajor uncertainties

arise because the satellite TMT record is based on mea-

surements made by more than 10 different satellites; over

their lifetimes, most of these satellites experience orbital

decay (Wentz and Schabel 1998) and orbital drift (Mears

and Wentz 2005). These orbital changes affect the mea-

surements of microwave emissions, primarily because of

gradual shifts in the time of day at whichmeasurements are

made. Adjustments for such shifts in measurement time

are large and involve many subjective decisions (Mears

and Wentz 2005, 2016; Mears et al. 2011; Karl et al. 2006;

Zou et al. 2006, 2009; Zou and Wang 2011; Christy et al.

2007; Po-Chedley et al. 2015). Further adjustments to the

raw data are necessary for drifts in the onboard calibration

of the microwave measurements (Mears et al. 2003; Po-

Chedley and Fu 2012a; Zou et al. 2009; Zou and Wang

2011) and for the transition between earlier and more so-

phisticated versions of themicrowave sounders (Mears and

Wentz 2016).

Multiple dataset versions are available for the tem-

perature records produced by RSS, UAH, and STAR

(see the supplemental material). Newer dataset versions

incorporate adjustments for problems identified after

public release of earlier datasets and are likely to rep-

resent improved estimates of atmospheric temperature

change. Use of multiple dataset versions highlights the

evolutionary nature of satellite temperature datasets—an

evolution paced by advances in identifying and cor-

recting the complex nonclimatic factors affecting these

measurements.1 This corrective process is ongoing.

Satellite TMT measurements receive a contribution

from the stratosphere (Spencer and Christy 1992; Fu

et al. 2004; Fu and Johanson 2004, 2005; Johanson and

Fu 2006). Large, anthropogenically driven cooling of

the lower stratosphere (Solomon 1999; Karl et al. 2006;

Ramaswamy et al. 2006; IPCC 2013; Santer et al.

2013b) can contribute significantly to TMT trends (Fu

et al. 2004; Fu and Johanson 2005; Fu et al. 2011; Po-

Chedley and Fu 2012b; Po-Chedley et al. 2015). A

regression-based method has been used to correct

TMT data for this contribution (Fu et al. 2004; Fu and

Johanson 2005). The efficacy of this approach was

validated with both observed and model atmospheric

temperature data (Fu and Johanson 2004; Gillett et al.

2004; Kiehl et al. 2005).We employ the same regression

approach here to derive corrected tropospheric

1 For RSS, UAH, and STAR, the newer TMT versions used here

only became available in 2016; currently available model-versus-

data comparisons relied exclusively on older dataset versions (Fu

et al. 2011; Po-Chedley and Fu 2012b; Santer et al. 2013a,b).
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temperatures (TMTcr) from satellite and model TMT

datasets (see appendix A).

Model atmospheric temperatures were available from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2012). We analyzed simulations of

externally forced climate change performed with 37

different CMIP5 models. The simulations have esti-

mated historical changes in natural and anthropogenic

external forcing from the mid-1800s to 2005. From 2006

to the end of the twenty-first century, changes in an-

thropogenic greenhouse gases and aerosols are pre-

scribed according to the representative concentration

pathway 8.5 (RCP8.5), which has radiative forcing of

roughly 8.5Wm22 by 2100. We also used preindustrial

control runs (with no changes in external influences on

climate) from 36models to obtain information on natural

internal climate variability. To facilitate the direct com-

parison of satellite data with model output, ‘‘synthetic’’

satellite temperatures were calculated from all model

simulations (Santer et al. 2013b). Themodel atmospheric

temperature data analyzed here are fully described in the

supplemental material and in Tables 1–4 of the supple-

mental material, together with information on the forc-

ings used in the simulations of historical climate change.2

To avoid truncating comparisons between modeled

and observed atmospheric temperature trends in De-

cember 2005, we spliced together synthetic satellite

temperatures from the historical simulations and the

RCP8.5 runs.3 Splicing allows us to compare actual and

synthetic temperature changes over the full 37-yr length

of the satellite record. We use the label ‘‘ALL18.5’’ to

identify these spliced simulations.

3. Atmospheric temperature time series

We consider first the time series of changes in simu-

lated and observed atmospheric temperature over the

satellite era (Fig. 1). Our focus is on temperatures av-

eraged over a near-global domain and over the tropics.

In the lower stratosphere (Figs. 1a,b), the ALL18.5

simulations and the satellite data are both characterized

by overall cooling in response to human-caused de-

creases in stratospheric ozone and increases in carbon

dioxide (Solomon 1999; Karl et al. 2006; Ramaswamy

et al. 2006). This long-term stratospheric cooling trend is

punctuated by short-term (1–2 yr) lower-stratospheric

warming arising from the eruptions of El Chichón in

1982 and Mount Pinatubo in 1991 (Robock 2000;

Ramaswamy et al. 2006; Santer et al. 2013b). The size of

this short-term warming is very similar in the satellite

data and the multimodel average of the ALL18.5 sim-

ulations, but this apparent agreement arises from com-

pensating errors (see the supplemental material).

Since 1979, mid- to upper-tropospheric temperature

has increased in both the observations and theALL18.5

integrations, with larger warming in the simulations

(Figs. 1c–f). Another prominent feature of the TMT and

TMTcr time series is cooling caused by the eruptions of

El Chichón and Mount Pinatubo (Robock 2000; Santer

et al. 2001; Wigley et al. 2005; Thompson et al. 2009;

Santer et al. 2013b, 2014). Volcanic cooling of the tro-

posphere is noticeably less noisy in the multimodel av-

erage than in the observations for well-understood

reasons (see the supplemental material).

Correction of TMT for lower-stratospheric cooling is

expected to increase overall trends in mid-to-upper-

tropospheric temperature (Fu et al. 2004, 2011; Fu and

Johanson 2005; Po-Chedley and Fu 2012b). Simple visual

comparison of the TMT and TMTcr temperature time se-

ries for near-global averages (cf. Figs. 1c and 1e) and for

tropical averages (cf. Figs. 1d and 1f) does not reveal how

this correction affects the level of consistency between

model and observed tropospheric warming trends. In the

following, we provide a quantitative assessment of the im-

pact of TMT correction on model–data trend consistency.

4. Trend ratios

A key aspect of our analysis framework is that we

consider the sensitivity of linear temperature trends

(and of model–data trend ratios) to different choices of

the start date and the trend length L (Santer et al. 2011).

Rather than focusing on one limited subset of the tem-

perature time series in Fig. 1, such as the last 18 years of

TMT records (U.S. Senate 2015), our strategy here is to

examine all possible 18-yr temperature trends during the

satellite era (see appendix B). Since temperature trends

on 18-yr time scales have no special diagnostic value, we

vary L in increments of 1 year, from a minimum of

10 years to a maximum of 37 years (the full length of the

satellite records). This allows us to compare the average

values of modeled and observed temperature trends

on a range of different time scales, while accounting for

the effect of monthly and interannual variability on

linear trend estimates. Our strategy reduces the chance

of making incorrect statistical inferences based on

analysis of a single arbitrarily selected trend.

Figures 2a and 2b show the averages of the sampling

distributions of L-year trends for near-global TMT and

2Detailed information on the implementation of external forc-

ings in the full ensemble of CMIP5 models is available in a limited

number of cases only (e.g., for stratospheric ozone forcing; see

Eyring et al. 2013).
3 The RCP8.5 simulations were typically initiated from condi-

tions of the climate system at the end of the historical run.
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TMTcr data. The distribution average trends bo(k, l) and

bf (l) are for the observations and the forced ALL18.5

simulations, respectively, where the indices k and l span

the number of observational datasets and the number of

values of L (see appendix B).4 We consider first TMT

results that have not been corrected for lower-

stratospheric cooling (Fig. 2a). At all time scales con-

sidered, simulated TMT trends are larger than satellite

TMT trends. Only the values of bo(k, l) for RSS version

4.0 and STAR versions 3.0 and 4.0 are consistently

within the 5th–95th percentile range of model estimates

of externally forced TMT trends.5

Correcting for lower-stratospheric cooling (Fig. 2b)

increases the size of mid-to-upper-tropospheric warming

FIG. 1. Time series of monthly mean anomalies in atmospheric temperature over January 1979–December 2016

(simulations) and January 1979–June 2016 (observations). Results are spatially averaged over (left) a near-global

domain, and (right) over the tropics. Temperature estimates for (a),(b) the lower stratosphere and (c),(d) the mid-

to-upper troposphere were obtained from satellite-based microwave sounders. Correcting TMT for stratospheric

cooling yields TMTcr, which is more representative of true changes in (e),(f) mid-to-upper-tropospheric temper-

ature. Model synthetic TLS and TMT data were computed using vertical weighting functions that approximate the

satellite-based vertical sampling of the lower stratosphere and mid-to-upper troposphere. Synthetic satellite

temperatures are from 49 simulations of externally forced climate change performed with 37 different CMIP5

models. All anomalies are relative to climatological monthly means calculated over January 1979–December 2015.

4 Here, the single overbar in bo(k, l) indicates the average of a

distribution of L-year trends. The double overbar in bf (l)

signifies a distribution average as well as an average over models

and ALL18.5 realizations.

5 In a companion paper, we evaluate the statistical significance of

differences between tropospheric temperature trends in individual

satellite datasets and in the multimodel average of the ALL18.5

simulations (B. Santer et al. 2016, unpublished manuscript). We

show that the statistical significance of these trend differences is

highly sensitive to the analysis time scale L and to the trend start

date. Over the first 15 years of the twenty-first century, differences

between modeled and observed tropospheric warming rates are

highly significant and are unlikely to be explained by internal vari-

ability alone. In contrast, model-versus-observed trend differences

in the last two decades of the twentieth century are generally con-

sistent with internal variability.
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trends (Fu et al. 2004, 2011; Fu and Johanson 2004,

2005; Johanson and Fu 2006; Karl et al. 2006; Po-

Chedley and Fu 2012b). TMT correction also system-

atically reduces R(k, l), the ratio between modeled

and observed L-year temperature trends (Figs. 2c,d).

The reason for this reduction is that in all satellite

datasets examined here, the observed lower-stratospheric

cooling is larger than in the average of the ALL18.5

simulations6 (Figs. 3a,c).

This discrepancy between satellite and model TLS

trends arises frommultiple factors: the underestimation of

observed stratospheric ozone loss in many of the CMIP5

ALL18.5 runs (Solomon et al. 2012; Hassler et al. 2013;

Eyring et al. 2013; Young et al. 2014), model–data dif-

ferences in stratospheric water vapor changes (Solomon

et al. 2010; Gilford et al. 2016), and different phasing of

stratospheric internal variability in the real world and the

model simulations (Gilford et al. 2016). The systematic

model–data differences in lower-stratospheric cooling in

Fig. 3 hamper reliable estimation of the relative sizes of

simulated and observed tropospheric warming. If tropo-

spheric trend comparisons are the primary scientific focus,

then the use of uncorrected TMT data (as inChristy 2015)

leads to erroneous conclusions.

As a simple measure of overall consistency between

model and satellite trends, we compute R(k), where the

overbar indicates amodel–data trend ratio that is averaged

over all values of the trend length L. Using trends in near-

global averages of uncorrected TMT data, we obtainR(k)

FIG. 2. Comparison of average simulated and observed trends in near-global tropospheric temperature as

a function of the trend length L. Results are for (a),(c) uncorrected TMT and (b),(d) TMTcr. The average of all

maximally overlapping L-year trends in a given observed time series (calculated separately for each satellite

dataset and eachL-year time scale of interest) is shown in (a) and (b), together with themultimodel average trend

results from the spliced historical and RCP8.5 runs. Values of the trend ratio R(k, l) in (c) and (d) provide

information on the relative sizes of temperature trends in the externally forced simulations and the satellite

observations (see appendix B; k and l are indices over satellite datasets and values of the time scale L). The gray

line in (c) and (d) shows the model–observed trend ratio of 3 reported for near-global TMT comparisons

(Christy 2015).

6 Lower-stratospheric cooling in radiosonde data is also larger

than in themultimodel average of the externally forced simulations

(Seidel et al. 2016). As expected, the observational datasets with

the largest cooling of the lower stratosphere (UAH versions 5.6

and 6.0) show the largest decrease in trend ratios after TMT is

corrected (see Table 5 in the supplemental material).
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values of 2.58 and 1.61 for RSS versions 3.3 and 4.0, 1.73

and 1.54 for STAR versions 3.0 and 4.0, and 3.67 and 3.10

for the earlier and most recent versions of the UAH

temperature data (Fig. 2c and Table 5 of the supplemental

material). Correcting TMT for stratospheric cooling re-

duces these R(k) values to 2.09, 1.46, 1.55, 1.42, 2.38, and

2.25, respectively, and brings simulated and satellite-

inferred tropospheric warming trends into closer agree-

ment (Fig. 2d). The impact of observational uncertainties

on R(k) is also reduced.

A recent study by Christy (2015) reported that global

warming of the mid-to-upper troposphere is a factor of

3 larger in models than in observations; that is, R(k)’ 3

for TMT trends over the full satellite era. This finding is

only supported by model–data comparisons relying on

uncorrected UAH TMT data. It is not supported by

comparisons involving uncorrected STAR or RSS TMT

data (Fig. 2c). After correcting TMT for stratospheric

cooling, the claim that R(k)’ 3 does not hold for any

model–data trend comparisons. If the observational

average of R(k) [denoted here by R , where the double

overbar denotes averaging of R(k, l) over both the

number of observational datasets and the number of

trend lengths considered] is calculated with all six

versions of the near-global TMTcr time series, then

R 5 1. 86. The average trend ratio is even lower if only

the three most recent TMTcr versions are used in this

calculation (R 5 1. 71; see Fig. 2d and Table 5 of the

supplemental material). Values of R are relatively in-

sensitive to different reasonable processing choices,

such as the exclusion of ALL18.5 simulations lacking

explicit treatment of the radiative effects of strato-

spheric volcanic aerosols (see section 1.2.2 of the sup-

plemental material).

We obtain qualitatively similar results for TMT data

averaged over the tropics (Fig. 4). As in the case of near-

global averages, correcting tropical TMT for strato-

spheric cooling (Figs. 3b,d) systematically reduces R(k)

(Figs. 4c,d and Table 5 in the supplemental material).

The statement that model tropical TMT trends over the

satellite era are a factor of 4 larger than in observations

(Christy 2015) holds only for the uncorrected UAH

TMT data (Fig. 4c). All model–data trend comparisons

with corrected tropical-average TMT datasets yield

R(k) values less than 4: 2.39 and 1.72 for RSS versions

3.3 and 4.0, 1.84 and 1.52 for STAR versions 3.0 and 4.0,

3.73 and 3.24 for the earlier and most recent UAH

dataset versions, and approximately 1.96 for UW

FIG. 3. (a),(b) Average trends and (c),(d) trend ratios in the TLS. All results were calculated using simulated and

observed monthly mean TLS time series spatially averaged (a),(c) over a near-global domain and (b),(d) over the

tropics. The analysis is for temperature trends on time scales ranging from 10 to 37 yr. Refer to Fig. 2 and appendix

B for analysis details.
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(Fig. 4d). Averaging these ratios yields R 5 2. 29 if all

observational datasets are used and R 5 2. 11 if only

the most recent dataset versions are employed.

Although accounting for stratospheric cooling effects

on TMT brings modeled and observed tropospheric

warming trends into better agreement, values of R(k) in

Figs. 2d and 4d are still sufficiently large to be of scien-

tific concern. These concerns are not new. Differences in

the size of simulated and observed warming trends—

both in the troposphere and at Earth’s surface—have

been the subject of scientific attention since the late

1990s (National Research Council 2000; Hegerl and

Wallace 2002; Hegerl et al. 2007; Karl et al. 2006; Fu

et al. 2004, 2011; Santer et al. 2011, 2013b, 2014;

Solomon et al. 2011; Po-Chedley and Fu 2012b; IPCC

2013; Fyfe et al. 2013a, 2016).

The message from this large body of research is that

temperature trend differences have multiple explana-

tions. These explanations are not mutually exclusive.

They include model errors in the response to external

forcing (Trenberth and Fasullo 2010), systematic model

errors in the forcings themselves (Solomon et al. 2010,

2011, 2012; Kopp and Lean 2011; Shindell et al. 2013;

Hassler et al. 2013; Eyring et al. 2013; Young et al. 2014;

Santer et al. 2014; Smith et al. 2016), residual errors in

satellite temperature records (Wentz and Schabel 1998;

Mears and Wentz 2005, 2016; Mears et al. 2003, 2011;

Zou et al. 2006, 2009; Zou and Wang 2011; Po-Chedley

and Fu 2012a; Po-Chedley et al. 2015) and in surface

temperature data (Morice et al. 2012; Cowtan and Way

2014; Karl et al. 2015), and differences in the phasing of

internal climate variability in the ‘‘many worlds’’ of the

simulations and the single world of the observations

(Fyfe et al. 2013a, 2016; Kosaka and Xie 2013; Meehl

et al. 2014; England et al. 2014; Risbey et al. 2014;

Steinman et al. 2015; Trenberth 2015; Gilford et al.

2016). It is incorrect to assert that a large model error in

the climate sensitivity to greenhouse gases is the only or

most plausible explanation for differences in simulated

and observed warming rates (Christy 2015).

We also compare satellite and model trends for TLT

(Fig. 5). Unlike TMT, TLT is far less contaminated by

lower-stratospheric cooling (Spencer and Christy 1992;

Fu et al. 2011) and is thus relatively unaffected by

FIG. 4. As in Fig. 2, but for TMT and TMTcr data spatially averaged over a tropical domain. The gray line in (c) and

(d) shows the model–observed trend ratio of 4 reported by Christy (2015) for tropical TMT comparisons.
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differences between modeled and observed lower-

stratospheric temperature trends. For near-global TLT

data, values of the average model–data trend ratio R(k)

range from 1.80 to 2.31 (Fig. 5c). This is well below the

ratio of 3 claimed for near-global TMT trends (Christy

2015). Similarly, tropical TLT data (Fig. 5d) yield R(k)

values ranging from 2.35 to 3.21, which are consistently

below the ratio of 4 reported by Christy (2015) for

tropical TMT trends. As in the case of TMT, differences

between simulated and observed TLT trends are due to

multiple factors (see above).

5. Significance of tropospheric warming trends

Next, we examine the statement that ‘‘according to

the satellite data, there has been no significant global

warming for the past 18 years’’ (U.S. Senate 2015). Our

concern is with two specific issues arising from this

statement: whether a single, arbitrarily selected 18-yr

period is statistically representative of all possible 18-yr

periods in the full satellite record, and whether the claim

of no significant warming over the last 18 years is valid.

Consider first the representativeness of a single tem-

perature trend calculated over the last 18 years. One of

the dominant modes of internal climate variability is El

Niño–Southern Oscillation. El Niño is the warm phase

of this mode of variability. Large El Niño events are

characterized by warming of the eastern equatorial Pa-

cific Ocean, followed by global-scale warming of the

troposphere after a lag of roughly 4–6 months (Santer

et al. 2001; Wigley et al. 2005; Thompson et al. 2009).

One of the largest El Niño events of the twentieth cen-

tury occurred during the winter–spring season of 1997/

98, with peak global-mean tropospheric warming in

April 1998 and a gradual decay to more normal condi-

tions by the fall of 1998 (Fig. 6). For a selected trend

length of 18 years (216 months) and a trend start date of

January 1998, the trend end date is in December 2015. A

time horizon of the last 18 years, therefore, yields an

anomalously warm trend start point because of the un-

usually large 1997/98 El Niño.
To explore the trend dependence on the trend length

L and the trend start and end dates, we show maximally

overlapping near-global TMTcr trends for seven differ-

ent values ofL (15–21 yr). Values of bo(i, k, l) (the linear

trend for the ith overlapping L-year segment of the kth

observed TMTcr time series, and for the lth value of L)

are plotted in Fig. 7, left. For each overlapping trend,

satellite dataset, and trend length L, we use CMIP5

control runs to calculate the probability pc(i, k, l)
0 that

FIG. 5. As in Fig. 2, but for average trends and trend ratios in TLT. See appendix B for further details. Note that

theNOAA/STARandUWresearch groups do not produce a TLTdataset. RSS provides two versions of their TMT

dataset (versions 3.3 and v4.0), but for TLT only one dataset is currently available (version 3.3).
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the observed warming trend could have been caused by

internal climate variability alone (see appendix B).

Values of pc(i,k, l)
0 are given in Fig. 7, right.

As expected, shorter trends are more affected by in-

terannual variability and thus yield a wider range of trend

values (Santer et al. 2011). Even for the short, 15-yr trends

in Fig. 7a, however, it is difficult to obtain periods with

tropospheric cooling. The occurrence of cooling periods is

related to the length ofL relative to the phasing of specific

events. There are two groups of negative 15-yr TMTcr

trends: the first group of trends has end points close to the

maximum cooling caused by the Mount Pinatubo erup-

tion; the second group of trends has start points close to the

warming ‘‘spike’’ associated with the 1997/98 El Niño. As

L increases beyond 15yr, the influence from Mount Pi-

natubo on trend end points diminishes, and the first group

of negative trends disappears. In the second group, nega-

tive trends persist out to trend lengths of 17yr, but are

highly unusual for L5 18yr, and occur in only two of the

six satellite dataset versions7 (Fig. 7g).

For L $ 19 yr, all near-global TMTcr trends are posi-

tive in every satellite dataset. At these longer time

scales, the impact of seasonal and interannual temper-

ature anomalies is damped, and gradual tropospheric

warming is more reliably sampled. For values of L 5
21 yr, almost all observed warming trends are signifi-

cantly larger (at the 10% level or better) than 21-yr

warming trends inferred from model estimates of in-

ternal variability (Fig. 7n).

Figure 7 illustrates that it is no longer valid to claim that

satellite TMT data show ‘‘no significant global warming

for the past 18 years’’ (U.S. Senate 2015). In five of the six

versions of the satellite TMTcr time series, the most re-

cent 216-month warming trends attain significance at the

10% level or better.8 Trend significance is partly due to

the fact that these recent periods sample warming asso-

ciated with the 2015/16 El Niño event, which contributed

to the record-breaking annual global-mean surface tem-

perature in 2015 (Pidcock 2016; Tollefson 2016). Signifi-

cance also arises because the start point of the most

recent 216-month trend is less influenced by the anoma-

lous warmth of the 1997/98 El Niño and is beginning to

sample the cooler conditions caused by the La Niña in

1999/2000 (see Fig. 6).

Other claims of ‘‘no significant warming over the last

X years’’ are also sensitive to the choice of starting point

and analysis time scale. For example, statements made

in 2013 (2014) that satellite data show no significant

global warming over the last 16 (17) years would be

incorrect if made today. In four (six) satellite TMTcr

datasets, the most recent 16 (17)-yr warming trends are

now significantly larger (at the 10% level or better) than

the estimated warming from natural internal climate

variability (Figs. 7d,f). Furthermore, a possible 2017 claim

FIG. 6. Recent 18-yr (216-month) trends in TMTcr. Results are for RSS version 4.0. Trends

were calculated from the time series of monthly mean anomalies of near-global TMTcr data.

The most recent 18-yr trend ends in June 2016.

7 Both are older dataset versions (RSS version 3.3 and STAR

version 3.0).

8 Significance is attained for 216-month trends ending in the

following months: June 2016 (RSS version 3.3), January 2016

through June 2016 inclusive (RSS version 4.0), March 2016 through

June 2016 inclusive (STAR version 4.0 and UAH version 5.6), and

May 2016 and June 2016 (UAH version 6.0). None of the most

recent near-global TMTcr trends show significant warming in the

older version (version 3.0) of the STAR dataset.
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of no significant warming over the last 19 years would not

be supported by three of the six satellite datasets (Fig. 7j).

While Fig. 7 shows estimates of the significance of

tropospheric warming for individual L-year observed

trends, it is also useful to consider the mean significance

levels. For the kth satellite dataset and lth trend length

L, we simply average the individual pc(i,k, l)
0 values

over i, the index of maximally overlapping L-year trends

FIG. 7. Satellite trends in near-global averages of (left) TMTcr and (right) associated p values. (top)–(bottom)

Results are for trend lengths of L 5 15–21 yr. Trends are from a ‘‘sliding window’’ analysis, where the L-year

window advances by one month at a time. The final month of each satellite TMTcr time series is June 2016. Results

are plotted on the trend end date. The p values are for tests of the null hypothesis that an individual observedL-year

warming trend could have been generated by internal variability alone (see appendix B). The rejection region for

this hypothesis (at a stipulated 10% significance level) is shaded in gray. The y-axis range was extended to20.06 to

facilitate visual display of p values at or close to zero.
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in the observations (see appendix B). This yields the

average probability pc(k, l)
0 that the warming trends in a

particular satellite dataset (and for a selected L-year

time scale) could be due to internal variability alone

(Santer et al. 2011). Values of pc(k, l)
0 identify the time

scale at which we might expect an observed warming

trend to surpass (and remain above) the level of model-

estimated internal variability. We refer to this subse-

quently as the detection time scale. It is assessed here

at a stipulated significance level of 10%.

In the uncorrected near-global TMT data, this time

scale is 19 and 16 yr for RSS versions 3.3 and 4.0, 18 and

16yr for STAR versions 3.0 and 4.0, and 22 and 20yr for

UAH versions 5.6 and 6.0 (Fig. 8a). Correcting TMT for

stratospheric cooling generally yields shorter detection

time scales for the tropospheric warming trends esti-

mated from these satellite datasets (18, 15, 17, 15, 18, and

18yr, respectively; Fig. 8b). It also reduces the range of

observational uncertainty in the detection time scale.

In tropical-mean TMT data, internal climate noise is

larger than for near-global averages of TMT (not shown).

Detection time scales for uncorrected tropical TMT data

are therefore longer than for uncorrected near-global

TMT, ranging from 18yr for STAR version 4.0 to 37yr

for UAH version 5.6 (Fig. 8c). As in the case of the near-

global results, correcting tropical TMT for stratospheric

cooling leads to systematically shorter (and more similar)

detection time scales,which range from17 to 24yr (Fig. 8d).

The credibility of these detection time scales [and of the

pc(i,k, l)
0 values in Fig. 7] is critically dependent on the

reliability of model-based estimates of the natural vari-

ability of tropospheric temperature, particularly on mul-

tidecadal time scales. In previous work, we found no

evidence that current climate models systematically un-

derestimate the amplitude of observed tropospheric tem-

perature variability on 5–20-yr time scales (Santer et al.

2011, 2013b). In fact, our results suggest that CMIP5

models overestimate observed temperature variability on

these time scales (Santer et al. 2013b), which implies that

our statistical significance estimates are conservative. If the

results from such variability comparisons are confirmed,

the true pc(i, k, l)
0 values may be lower than in Fig. 7, and

the true detection time scalesmay be shorter than in Fig. 8.

6. Amplification of tropical warming with
increasing altitude

Finally, it is of interest to examine how well current cli-

mate models perform in capturing observed relationships

between trends in TLT and TMT (Fu et al. 2004, 2011;

Fu and Johanson 2004, 2005; Po-Chedley and Fu 2012b).

In the tropics, moist thermodynamic processes amplify

surface warming, yielding peak warming at roughly

200hPa (Yulaeva andWallace 1994; Hegerl andWallace

2002; Stone and Carlson 1979; Santer et al. 2005). We

expect, therefore, that after correcting TMT for lower-

stratospheric cooling, the warming of the tropical mid-to-

upper troposphere should exceed the warming in the

tropical lower troposphere. Such tropical amplification

occurs for any surface warming; it is not a unique signa-

ture of greenhouse gas (GHG)-induced warming, as has

been incorrectly claimed (Christy 2015).

The ratio between tropicalTMTcr andTLT trendsRMT/LT

has been used to assess model performance in capturing

observed amplification behavior (Fu and Johanson 2005;

Fu et al. 2011; Po-Chedley and Fu 2012b). From theory

(Stone and Carlson 1979) and basic physical principles

(Santer et al. 2005; Held and Soden 2006), we expect that

models and satellite observations should have values of

RMT/LT . 1. Using corrected TMT data, two previous

studies confirmed this expectation (Fu et al. 2011; Po-

Chedley and Fu 2012b). However, this earlier work also

found thatRMT/LT was significantly smaller in satellite data

than in three different multimodel ensembles. The two

investigations were unable to determine whether discrep-

ancies betweenmodeled and satellite-basedRMT/LT values

were due to systematic errors in model amplification be-

havior, residual errors in the satellite TMTcr andTLTdata,

or a combination of these factors.

Here, we calculate RMT/LT, the time scale–average

TMTcr/TLT trend ratio. Since STAR and UW do not

produce TLT datasets, and version 4.0 of the RSS TLT

dataset is not yet available, only three satellite datasets

analyzed here can be used to compute internally consis-

tent9 values of RMT/LT. As in Fu et al. (2011) and Po-

Chedley and Fu (2012b), the use of corrected TMT data

increasesRMT/LT in these three satellite datasets (cf. Figs. 9a

and 9b). But in contrast to the results from the two earlier

studies,RSSversion3.3nowyieldsRMT/LT 5 1. 149,which is

within 2%of theCMIP5 value ofRMT/LT 5 1. 172. ForRSS,

therefore, we no longer find evidence of a serious mismatch

between simulated and observed amplification behavior in

the tropical troposphere. Since Po-Chedley and Fu (2012b)

also relied on CMIP5 simulations and on version 3.3 of the

corrected RSS tropospheric temperature data, the fact that

we obtained closer agreement between RSS and model

averageRMT/LT values appears to be primarily related to the

availability of a longer observational record.

In contrast, UAH-basedRMT/LT values of 1.013 and 1.030

(for UAH versions 5.6 and 6.0, respectively) are now even

9 Internally consistent denotes use of the same dataset versions

of TLS, TMT, and TLT for calculating ratios between tropical

TMTcr and TLT trends. Internally consistent amplification ratios

can be calculated with temperature data from RSS version 3.3 and

UAH versions 5.6 and 6.0.
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lower than the UAH results in Fu et al. (2011) and Po-

Chedley andFu (2012b) andare 13%–14%smaller than the

CMIP5RMT/LT value. On the longest time scales (35–37yr),

version 6.0 of the UAH TMTcr and TLT datasets yields

tropical TMTcr/TLT trend ratios ,1 (Fig. 9b). Such be-

havior is difficult to reconcile with basic physical principles

(Stone and Carlson 1979), with model simulations (Po-

Chedley and Fu 2012b;Held and Soden 2006; Thorne et al.

2007; Flannaghan et al. 2014), or with satellite estimates

of tropical amplification on monthly to interannual time

scales (Yulaeva and Wallace 1994; Hegerl and Wallace

2002; Santer et al. 2005; Karl et al. 2006). Taken to-

gether, these results suggest that residual errors in the

UAH TMTcr and TLT datasets10 are the most likely

explanation for UAH RMT/LT values close to unity, as well

as for UAH TMTcr trends that are smaller than surface

temperature trends over tropical oceans (Po-Chedley

et al. 2015).

7. Summary

We have provided a detailed, updated comparison of

atmospheric temperature trends in satellite observa-

tions and model simulations. Our study explores

the sensitivity of these comparisons to current un-

certainties in a number of different factors: climate

model simulations of internal variability and the re-

sponse to external forcing; the satellite datasets chosen;

the selected time scale, start, and end dates of tem-

perature trends; and the correction of TMT data for

stratospheric cooling. We also examined three is-

sues that have been the focus of scientific attention

(National Research Council 2000; Karl et al. 2006;

FIG. 8. Determination of the trend length L (yr) at which observed trends in TMT are significantly larger than

trends arising from natural internal variability. Results are for temperature data spatially averaged (a),(b) over

a near-global domain (82.58N–82.58S) and (c),(d) over the tropics (208N–208S). Tropospheric temperature data are

(left) uncorrected and (right) corrected for stratospheric cooling effects. Rather than assessing the statistical sig-

nificance of individual observed L-year trends, the results displayed here are (separately for each satellite dataset)

the average p values for all maximally overlapping L-year trends. For example, the results shown in (a) (for time

scales of 15–21 yr) are simply averages over the index i of the results in Fig. 7, right. Gray shading denotes the

rejection region (at a stipulated 10% significance level) for the null hypothesis that the average observed L-year

trend could have been generated by internal variability alone. See appendix B for further details.

10 If UAH data were excluded from the calculation of satellite-

and time-scale-average trend ratios, R would be 1.63 for near-

global averages of TMTcr and 1.90 for tropical averages of TMTcr.
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IPCC 2013) and political inquiry (U.S. Senate 2015): 1)

the relative sizes of tropospheric warming trends in

model simulations and satellite data; 2) the statistical

significance of recent tropospheric warming trends; and

3) whether current climate models are capable of

capturing the observed amplification of warming in the

tropical atmosphere.

With regard to the first issue, we have shown that R

(the ratio between simulated and observed TMT

trends)11 is sensitive to current uncertainties in satellite

TMT data and to systematic model–data differences in

the size of lower-stratospheric cooling trends. When

the impact of lower-stratospheric cooling on TMT is

accounted for, and the most recent versions of satellite

datasets are used, the previously claimed ratio of 3

between simulated and observed near-global TMT

trends (Christy 2015) is reduced to approximately 1.7.

In the tropics, correcting for stratospheric cooling and

using recent satellite data reduces the reported trend

ratio from 4 (Christy 2015) to approximately 2.1. Po-

tential explanations for the remaining model–data

differences in warming rates include the combined ef-

fects of model response errors (Trenberth and Fasullo

2010), model forcing errors (Solomon et al. 2010, 2011,

2012; Kopp and Lean 2011; Shindell et al. 2013; Hassler

et al. 2013; Eyring et al. 2013; Young et al. 2014; Santer

et al. 2014; Smith et al. 2016), errors in satellite tem-

perature data (Wentz and Schabel 1998; Mears and

Wentz 2005, 2016; Mears et al. 2003, 2011; Zou et al.

2006, 2009; Zou and Wang 2011; Po-Chedley and Fu

2012a; Po-Chedley et al. 2015), and different phasing of

internal climate variability in simulations and the ob-

servations (Fyfe et al. 2013a, 2016; Kosaka and Xie

2013; Meehl et al. 2011, 2014; England et al. 2014;

Risbey et al. 2014; Steinman et al. 2015; Trenberth

2015; Gilford et al. 2016).

The second issue relates to the claim that satellite data

show ‘‘no significant global warming for the past

18 years’’ (U.S. Senate 2015). The last 18 years are

strongly influenced by the anomalous warmth at the

beginning of the period and are not representative of

the full 37-yr TMT dataset. In all satellite datasets an-

alyzed here, most 18-yr periods show significant tro-

pospheric warming. But even in the context of the last

18 years, the ‘‘no significant warming’’ claim is invalid:

five out of six satellite TMT datasets that have been

corrected for stratospheric cooling now yield sig-

nificant global-scale warming for the most recent

216-month trends.

The third issue—model–data differences in the verti-

cal structure of atmospheric temperature change in the

deep tropics—is a long-standing scientific concern

(National Research Council 2000; Gaffen et al. 2000;

FIG. 9. Values of RMT/LT are calculated for satellite datasets and model externally forced simulations and for

(a) TMT and (b) TMTcr. The ratios are simply the uncorrected and corrected tropical TMT trends in Figs. 4a and 4b

divided by the tropical TLT trends in Fig. 5b (which do not require correction for lower-stratospheric cooling). The

value of RMT/LT is given as a function of the trend length L. As in the case of results shown in Figs. 2, 3, 4, and 5,

trends were calculated using all maximally overlapping L-year trends rather than a single L-year trend only. The

dotted black line indicates an RMT/LT value of 1. Values above the line denote amplification of lower-tropospheric

temperature trends in the mid-to-upper troposphere.

11 Here, R represents an average over 1) different analysis time

scales and trend start dates; 2) different CMIP5 models and dif-

ferent initial condition realizations of the ALL18.5 simulation;

and 3) different satellite datasets.
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Hegerl and Wallace 2002; Santer et al. 2000, 2005; Fu

and Johanson 2005; Karl et al. 2006; Held and Soden

2006; Johanson and Fu 2006; Thorne et al. 2007, 2011; Fu

et al. 2011; Po-Chedley and Fu 2012b; Flannaghan et al.

2014). Because of moist thermodynamic processes,

warming of the tropical ocean surface is amplified aloft,

with peak warming in the upper troposphere (Yulaeva

and Wallace 1994; Hegerl and Wallace 2002; Santer et al.

2005; Held and Soden 2006). Previous work with shorter

temperature records investigated warming of TMTcr rel-

ative to the lower troposphere and identified statistically

significant differences between simulated and observed

amplification behavior in the tropics (Fu et al. 2011; Po-

Chedley and Fu 2012b). Such statistically significant dif-

ferences no longer exist in one updated satellite dataset.

Based on the information presented here, prospects

appear to be favorable for reconciling remaining differ-

ences in simulated and observed tropospheric temperature

trends. Errors in model estimates of key anthropogenic

and natural influences are now better understood

(Solomon et al. 2010, 2011, 2012; Kopp and Lean 2011;

Vernier et al. 2011; Neely et al. 2013; Shindell et al. 2013;

Hassler et al. 2013; Eyring et al. 2013; Young et al. 2014).

This improved understanding has led to simulations of

historical climatewith improved representation of forcings

(Solomon et al. 2011; Fyfe et al. 2013b; Haywood et al.

2014; Santer et al. 2014; Schmidt et al. 2014). There is also

better understanding of the role of different realizations

of internal variability in the real world and the ‘‘model

world’’ (Fyfe et al. 2013a, 2016; Kosaka and Xie 2013;

Meehl et al. 2011, 2014; England et al. 2014; Risbey et al.

2014; Huber and Knutti 2014; Marotzke and Forster 2015;

Steinman et al. 2015; Trenberth 2015; Gilford et al. 2016).

On the data side, encouraging progress has been made

in identifying nonclimatic artifacts in satellite tempera-

tures and in understanding why different research groups

have divergent trend estimates (Wentz and Schabel 1998;

Mears andWentz 2005, 2016; Mears et al. 2003, 2011; Zou

et al. 2006, 2009; Zou andWang 2011; Po-Chedley and Fu

2012b; Po-Chedley et al. 2015). There is real potential to

reconcile these ‘‘between group’’ trend differences by

applying physically based constraints. Examples of such

constraints include adherence to theoretically predicted

tropical amplification behavior (Stone and Carlson 1979;

Fu and Johanson 2005; Santer et al. 2005; Held and Soden

2006; Karl et al. 2006; Po-Chedley et al. 2015), consis-

tency of amplification ratios across a range of time scales

(Yulaeva and Wallace 1994; Hegerl and Wallace 2002;

Wentz and Schabel 2000; Santer et al. 2005), and the co-

variability between tropospheric temperature and in-

dependently monitored water vapor (Wentz and Schabel

2000; Mears et al. 2007; Mears and Wentz 2016). The

challenge in such complex science is to ensure that the best

scientific understanding is accurately represented to all

stakeholders.
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APPENDIX A

Method Used for Correcting TMT Data

Trends in TMT estimated from microwave sounders

receive a substantial contribution from the cooling of the

lower stratosphere (Fu et al. 2004; Fu and Johanson 2004,

2005; Johanson and Fu 2006). Fu et al. (2004) developed a

regression-based approach for removing the bulk of this

stratospheric cooling component of TMT.Here, we refer to

this ‘‘corrected’’ versionA1 of TMT as TMTcr. The Fu et al.

(2004) correction method has been validated with both

observed andmodel atmospheric temperature data (Fu and

Johanson 2004; Gillett et al. 2004; Kiehl et al. 2005).

A1 In other publications (Fu and Johanson 2005; Po-Chedley

et al. 2015), TMTcr is designated as the temperature of the tropical

troposphere (TTT) or as T24 (since it is generated using brightness

temperatures estimatedwith the emissionsmeasurements obtained

from channels 2 and 4 of microwave sounders).
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Correction was performed locally at each model and

observational grid point. Corrected gridpoint data were

then spatially averaged over tropical and near-global

domains. For calculating tropical averages of TMTcr, we

employed the same regression coefficients used by Fu

and Johanson (2005) in their Eq. (1b):

TMT
cr
5 a

24
TMT1 (12 a

24
)TLS, (A1)

where a24 5 1.1. Subsequent work by Johanson and Fu

(2006) obtained very similar estimatesA2 of a24 for cal-

culations involving tropical-average TLS and TMT data.

For a near-global domain, TMT trends receive a larger

contribution from high-latitude stratospheric cooling,A3

so a24 is larger (Fu et al. 2004; Johanson and Fu 2006). In

Fu et al. (2004) and Johanson and Fu (2006), a24 ’ 1.15

was applied directly to near-global averages of TMT and

TLS. Since we are performing corrections on local

(gridpoint) data, we used a24 5 1.1 between 308N and

308S and a24 5 1.2 poleward of 308 in both hemispheres.

This is approximately equivalent to using a24 5 1.15 for

globally averaged data. The main text discusses results

obtained with this correction method (referred to asMlat

in Table 5 of the supplemental material).

As a sensitivity test, we also performed corrections of

satellite and model TMT data with a24 5 1.1 at all lati-

tudes (i.e., with removal of less stratospheric cooling in

the extratropics). This has relatively small impact on values

of R(k), the time-scale average of the model-versus-

observed temperature trend ratios for the kth observa-

tional dataset (see Table 5 in the supplemental material).

These results suggest that the R(k) values shown in the

main text are robust to different plausible choices of a24.

Finally,wenote thatmodel andobservational temperature

data were processed in exactly the same way; that is, model-

versus-observed differences in TMTcr trends are not attrib-

utable to differences in the applied regression coefficients.

APPENDIX B

Statistical Analysis

a. Terminology

1) ACRONYMS

MMA Multimodel average.

MMSD Multimodel sampling distribution.

CTL CMIP5 control run with no year-to-year

changes in external forcings.

ALL18.5 CMIP5 historical simulation (with com-

bined natural and anthropogenic forc-

ings) spliced with RCP8.5 run.

2) SUBSCRIPTS

o Satellite observations.

c Output from model control runs.

f Output from model forced experiments.

3) INDICES

i Index over number of maximally overlapping trends

in observations.

j Index over number of models (for control run ana-

lyses) or over number of models and forced run

realizations (for ALL18.5 analyses).

k Index over number of observed satellite datasets.

l Index over number of selected values of the trend

length L (10, 11, . . . , 37).

4) SAMPLE SIZES

L Length of trend-fitting period (yr).

NL Number of values of L considered.

No(l) Number of overlapping trends in observed

dataset for lth value of trend length L.

Nc(l) Number of overlapping trends in control run

MMSD for lth value of trend length L.

Nf(l) Number of overlapping trends in ALL18.5

MMSD for lth value of trend length L.

Nc(j, l) Number of overlapping trends in jth model

control run for lth value of trend length L.

Nf(j, l) Number of overlapping trends in jth model

ALL18.5 run for lth value of trend lengthL.

Nobs Number of observational datasets (varies ac-

cording to atmospheric layer considered).

Nmodel Number of models (36 for control runs, 37 for

ALL18.5 runs).

5) SUMMATION VARIABLES

Kc(i, k, l) For ith overlapping L-year segment of

time series, kth observational dataset,

and lth value of the trend length L,

the number of overlapping L-year

trends in control run MMSD greater

than bo(i, k, l).

A2 See Table 1 in Johanson and Fu (2006).
A3 This is due to two effects: the tropopause is lower at mid-to-

high latitudes than in the tropics, and stratospheric cooling over the

satellite era is larger at high latitudes than in the tropics (Santer

et al. 2013b).
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Kc(i, j, k, l) For ith overlapping L-year segment of

time series, kth observational dataset,

and lth value of the trend length L, the

number of overlapping L-year trends

in jth model control run greater than

bo(i, k, l).

6) LINEAR TRENDS

bo(i, k, l) Least-squares linear trend for ith over-

lapping L-year segment of time series, kth

observational dataset, and lth value of the

trend length L.

bf (i, j, l) Least-squares linear trend for ith over-

lapping L-year segment of time series, jth

model ALL18.5 time series, and lth value

of the trend length L.

bo(k, l) Average (over index i) of bo(i, k, l).

bf (j, l) Average (over index i) of bf (i, j, l).

bf (l) Average (over combined realization and

model index j) of bf ( j, l).

7) STATISTICS FOR MODEL-VERSUS-OBSERVED

TREND COMPARISONS

pc(i, k, l) Unweighted p value for comparison

of bo(i, k, l) and control run MMSD.

pc(i, j,k, l) The p value for comparison of bo(i, k, l) and

jth model control run.

pc(i, k, l)
0 Weighted p value,model average of pc(i, j,k, l).

pc(k, l)
0 Weighted p value, average over index i of

pc(i,k, l)
0.

8) TREND RATIOS

R(k, l) Model–observed trend ratio, bf (l)/bo(k, l).

R(k) Average (over allNL values of the trend length

L) of R(k, l).

R Average (over allNo observational datasets) of

R(k).

b. Introduction

We compare trends in spatial averages of model and

satellite temperature data.B1 Although all trends are

calculated with monthly mean data, we simplify the

discussion by referring to L-year trends (rather than to

L-month trends).B2 Trend comparisons are on time

scales ranging from 10 to 37 yr, in increments of 1 yr.

As used here and subsequently, ‘‘maximally over-

lapping trends’’ indicates that an L-year sliding window

is being used for trend calculations, with the window

advancing in increments of one month until the end of

the current window reaches the final month of the time

series. For L 5 10 yr, for example, the first trend is over

January 1979–December 1988, the second trend is over

February 1979–January 1989, etc.

Statistical analyses are performed separately for each

of the four temperature variables of interest (TLS, TMT,

TMTcr, and TLT). We do not explicitly include the se-

lected layer-average temperature in our notation. We

employ another notational simplification for analysis of

the ALL18.5 simulations: we specify that j is a com-

bined index over models and over realizations of the

ALL18.5 run.B3 For the control runs, each model ana-

lyzed here has one realization of the preindustrial con-

trol run, so j is an index over models only.

Anomalies in theALL18.5 runs were defined relative

to climatological monthly means over the 444-month

period from January 1979 to December 2015. Control

run anomalies were defined relative to climatological

monthly means over the full length of each model’s

control integration (see Table 4 in the supplemental

material).

c. Calculation of p values

We seek to determine whether a selected satellite

temperature trend is unusually large relative to model-

based estimates of temperature trends arising from

natural internal climate variability. Internal variability

estimates are obtained from CMIP5 control runs. As in

our previous work (Santer et al. 2011), we assess the

significance of observed warming trends using both un-

weighted and weighted p values. Weighted p values are

distinguished by the use of prime notation and account

for intermodel differences in the length of the

control run.

Consider first the unweighted p value pc(i, k, l):

B1 For any given trend length L and for each selected analysis

period, it is assumed that the externally forced component in a

temperature time series is well represented by a linear trend.
B2 This avoids the less transparent use of 432-month trends,

444-month trends, etc.

B3 For example, the CCSM4 model has three different

realizations of the spliced ALL18.5 run (see Table 3 in the sup-

plemental material). In the L 5 10 yr case, and for maximally

overlapping trends calculated over January 1979–December 2015,

CCSM4 provides 325 3 3 samples of forced temperature trends

for a given atmospheric layer, and Nf(j, l) 5 975. All 975 trends

were used in computing the average of CCSM’s sampling distri-

bution of 120-month trends.
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p
c
(i,k, l)5K

c
(i,k, l)/N

c
(l) for i51, . . . ,N

o
(l);

k5 1, . . . ,N
obs

; l 5 1, . . . ,N
L
, (B1)

where i, k, and l are, respectively, indices over the

number of maximally overlapping observed trends, the

number of satellite datasets, and the number of selected

values of the trend lengthL. The summation variableKc

(i, k, l) is the number of trends in the MMSD of control

run trends that are larger than bo(i, k, l), the ith over-

lapping trend for the kth observed dataset and the lth

value of the trend length L. The sample sizes Nc(l) and

No(l) are, respectively, the total number of overlapping

trends in the MMSD of control run trends and the

total number of overlapping observed trends in the

444-month analysis period. Both Nc(l) and No(l) are a

function of the selected trend length L. For L 5 10 yr,

Nc(l) 5 168 758, and No(l) 5 325.

The time series of spatially averaged temperature

anomalies from individual models are not concatenated

prior to trend calculation (which could spuriously inflate

trends spanning the ‘‘splice point’’ between two differ-

ent model control runs). Instead, overlapping trends are

calculated separately for each individual model control

run, and each model’s temperature trends are then ac-

cumulated in a multimodel trend distribution.

In the weighted version, individual pc(i, j, k, l) values

are first calculated separately for each model control

run, then summed over all models, and finally averaged:

p
c
(i, k, l)05 �

Nmodel

j51

p
c
(i, j,k, l)/N

model
for

i 5 1, . . . ,N
o
(l); k5 1, . . . ,N

obs
;

l 5 1, . . . ,N
L
, (B2)

where j is the index over Nmodel, the number of CMIP5

models with preindustrial control runs from which syn-

thetic MSU temperatures could be calculated (here,

Nmodel 5 36). The individual pc(i, j, k, l) values for each

model are calculated as follows:

p
c
(i, j, k, l)5K

c
(i, j, k, l)/N

c
(j, l) for

i5 1, . . . ,N
o
(l); j5 1, . . . ,N

model
;

k5 1, . . . ,N
obs

; l5 1, . . . ,N
L
. (B3)

Here, Kc(i, j, k, l) is the number of L-year trends in the

preindustrial control run that are larger than bo(i, k, l)

(for the ith overlapping observed trend, the jth model

control run, the kth observational dataset, and the lth

value of the trend length L).

Values of pc(i, k, l) and pc(i, k, l)
0 are very similar,

indicating that intermodel differences in control run

length do not distort our estimates of whether ob-

served atmospheric temperature trends are large rel-

ative to trends arising from internally generated

variability. We only discuss weighted pc(i,k, l)
0 values

in the main text.

Figure 8 displays time scale–average p values. For

each of the selected L-year time scales of interest, we

simply average the No(l) individual values of pc(i, k, l)
0

over the index i:

p
c
(k, l)0 5 �

No(l)

i51

p
c
(i, k, l)0/N

o
(l) for

k5 1, . . . ,N
obs

; l5 1, . . . ,N
L
. (B4)

Our use of maximally overlapping trends has the ad-

vantage of reducing the impact of seasonal and in-

terannual noise on underlying atmospheric temperature

trends, both in the observations and in themodel control

runs. However, it has the disadvantage of decreasing the

statistical independence of trend samples. While non-

independence of samples is an important issue in formal

statistical significance testing, it is not a serious concern

here. This is because pc(i, k, l)
0 is not used as a basis for

formal statistical tests. Instead, it simply provides useful

information on whether observed atmospheric temper-

ature trends are unusually large relative to model-based

estimates of unforced trends. Furthermore, we process

observed temperature data and model output in iden-

tical ways, with the same overlap between successive

L-year trends.

The key point is that whether we employ overlapping

or nonoverlapping control run trends has very small

impact on estimates of pc(i,k, l)
0. This suggests that the

sample sizes of nonoverlapping trends in the CMIP5

control runs are adequate for obtaining reasonable es-

timates of p values.B4

d. Calculation of trend ratios

Our R(k, l) statistic measures the similarity between

temperature trends in externally forced simulations and

satellite data. For each observational dataset andL-year

time scale of interest, we form the ratio between the

model and time scale average of ALL18.5 trends, and

the time scale average of observed trends:

B4 In the case of the observations, however, the use of non-

overlapping segments of satellite records does not adequately

capture the large impact of interannual variability on relatively

short trends. For example, the 1979–2015 analysis period contains

only three nonoverlapping trends $10 yr and #12 yr, two non-

overlapping trends $13 yr and #18 yr, and only one non-

overlapping trend $19 yr and #37 yr. This is why we focus on

maximally overlapping observed trends.
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R(k, l)5 b
f
(l)/b

o
(k, l) for

k5 1, . . . ,N
obs

; l5 1, . . . ,N
L
. (B5)

The double overbar in bf (l) denotes two separate av-

eraging operations. The first averaging step is over the

index i (where i runs over the number of maximally

overlapping L-year trends in an individual ALL18.5

realization). This yields bf ( j, l), where j is the joint index

over ALL18.5 realizations and CMIP5 models. The

second averaging step is first over the number of re-

alizations (for CMIP5 models with more than one

ALL18.5 realization) and then over the number of

models with spliced ALL18.5 runs. The observed mean

L-year trend bo(k, l) is defined similarly but only involves

averaging over the index i. Both bf (l) and bo(k, l) are

calculated from temperature time series spanning the

same 444-month period (January 1979–December 2015).

Results for R(k, l) are shown in Figs. 2c,d, 3c,d, 4c,d,

and 5c,d. In the main text, we also discuss R(k). This is

simply the average (over all 28 time scales considered)B5

of the individual R(k, l) values. The observational av-

erage of R(k) is R . Table 5 of the supplemental material

provides values of R calculated with all observational

dataset versions and with newer satellite data only.
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