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Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-
drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition
Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal
density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main
compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak
velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton
spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes
routinely >∼ 10%. With significant expected growth by stagnation, it is likely that these asymmetries
would degrade the final implosion performance. X-ray self-emission images at stagnation appear
more symmetric than expected, suggesting the hot-spot shape does not reflect the stagnated shell
shape, as seen in recent computational studies [R.H.H. Scott et al., Phys. Rev. Let.. 110, 075001
(2013)].

The central challenge of Inertial Confinement Fusion
(ICF) is to compress and heat fusion fuel to the ex-
treme conditions required for ignition and burn [1, 2]. At
the National Ignition Facility (NIF) [3], the approach to
achieving this is by symmetric, ablatively-driven spher-
ical compression, where the goal is a convergence ratio
CR ≡ Rinitial/Rfinal ∼ 35. Ignition experiments must
control the cold-fuel symmetry to better than several per-
cent at stagnation[2, 4, 5]. In indirect-drive implosions
conducted at the NIF, radiation drive non-uniformities
can cause detrimental low-mode (<∼ 8) asymmetries[6, 7],
the focus of this work.

Several techniques are used to study asymmetry at
the NIF; in this Letter we present the first charged-
particle measurements of areal-density (ρR) asymme-
tries at shock-bang time in ignition-scale implosions.
These measurements are novel in quantifying ρR asym-
metries that are present when the implosion is in-flight,
at CR ∼ 3 − 5, complementing prior methods at differ-
ent CR. It is directly comparable to recently-developed
in-flight radiography of the imploding shell[8], which
can be used simultaneously with the charged-particle di-
agnostics. Other techniques for diagnosing symmetry
include ‘Re-Emit’ experiments that measure x-ray re-

emission from a high-Z capsule to diagnose early-time
(CR ∼ 1) hohlraum drive asymmetries[9, 10] and shock-
timing experiments that use multiple views to diagnose
early-time shock symmetry[11, 12]. In addition, x-ray
self-emission produced by the implosion at stagnation is
imaged to diagnose the final hot-spot symmetry in lower-
convergence (CR ∼ 15 − 20) surrogate implosions [13].
Finally, in cryogenic implosions, the final stagnated hot-
spot and cold-fuel shapes are diagnosed by x-ray[14] and
neutron[15] techniques.

Charged-particle measurements of ρR asymmetries
have previously been used at the OMEGA laser
facility[16] for spherically symmetric direct-drive im-
plosions [17] and direct-drive implosions with induced
asymmetries[18]. Extending this technique to NIF has
been discussed[19]. The reaction

D + 3He→ 4He (3.6 MeV) + p (14.7 MeV) (1)

is used. The high-energy proton escapes implosions with
ρR <∼ 300 mg/cm2. This limit is set by the charged-
particle stopping power in plasmas [20]. During an im-
plosion, a strong shock wave runs ahead of the imploding
shell and rebounds at the origin several hundred ps be-
fore the main compression phase[21], creating densities
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FIG. 1. WRF proton spectrometer setup for measurements of
the D3He-p spectrum in different directions at the NIF. Po-
lar and equatorial WRFs have the same distance (50cm) and
displacement from the DIM axis (±13.6◦). Typical capsule
dimensions shown at right.

and temperatures high enough for a brief period of fu-
sion burn (shock bang)[22, 23] that produces protons via
Eq. 1.

For the implosions[13, 24] studied at the NIF,
surrogate[25] CH capsules filled with D2 and 3He gas con-
verge to R ∼ 200− 300µm by the shock bang time (com-
pared to an initial inner radius of ∼ 900µm), at which
point the total areal density has reached ρR ∼ 60 − 120
mg/cm2. During the main compression burn, ρR � 300
mg/cm2, so the D3He-p are ranged out.
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FIG. 3. Observable ρR asymmetry (pole − equator) versus
mode perturbation amplitude ∆ for m = 0 modes with ` =
1, 2, 3, 4 with the shell average R̄ = 265µm (average ρR = 82
mg/cm2) corresponding to N101218. For a given perturbation
∆, a ` = 2 mode (blue curve) causes the largest observable
asymmetry.

The protons are measured with compact Wedge Range
Filter (WRF) spectrometers[26–28]. Multiple spectrom-
eters are fielded in the (0,0) polar Diagnostic Instru-
ment Manipulator[29] (DIM) and in an equatorial DIM,
(90,78), as shown in Fig. 1. WRFs in the polar DIM view
the implosion through the laser entrance hole (LEH). The
equatorial WRFs measure protons through the hohlraum
wall which causes additional downshift; the results are
corrected for this energy loss in the wall using cold-matter
stopping powers[30] and known material thicknesses [31].
One or two spectrometers can be fielded at a displace-
ment of ±13.6◦ from the axis for both DIMs.

In these surrogate NIF implosions, differences in
the mean shock proton energy between the polar and
hohlraum-corrected equatorial spectra are routinely ob-
served. As an example, Fig. 2 shows spectra measured
on the pole and equator for shot N101218, which had a
large asymmetry induced by a known capsule offset. On
this shot the polar WRF measured a lower shock proton
energy, thus the polar ρR is higher: 105 mg/cm2 versus
75 on the equator, for a difference ∆ρR of 30 mg/cm2.

Low-mode asymmetries can be modeled by spherical
harmonic perturbations of the imploding shell’s center-
of-mass radius as

Rcm(θ, φ) = R̄
[
1 + ∆× αeimφPm` (cos θ)

]
, (2)

where θ and φ are the polar and azimuthal angles, re-
spectively, R̄ is the unperturbed shell radius, ∆ is the
fractional asymmetry amplitude, α is the normalization
factor[32] , and Pm` is an associated Legendre polyno-
mial. This shape analysis using the radius enables direct
comparison to x-ray metrics, which are typically given
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FIG. 4. Mode amplitude ∆ (see Eq. 2) for all NIF shots with polar and equatorial WRF data since 2010. Shot numbers are
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as fractional Legendre amplitudes (i.e. ∆). As we do
not know a priori whether polar or azimuthal modes (or
both) are responsible for observed differences between the
two lines of sight (see Fig. 1), both are included here for
generality.

Using a simple 1-D model, ρR and Rcm are
simultaneously inferred from the proton energy
measurement[33][34]. Multiple proton measurements
of Rcm at various θ, φ are then fit with the functional
form for Rcm(θ, φ) (Eq. 2)[35]. Since the asymmetries
are manifested as a relative difference between the mea-
surements, only ‘random’ or statistical uncertainties are
retained in this analysis. The polar-equatorial geometry
would suggest the assumption of a ` = 2,m = 0 mode
asymmetry. However, with limited WRF lines of sight
we cannot differentiate between various modes. For
instance, in Fig. 3 the difference in ρR between the
polar and equatorial WRFs for assumed polar (m = 0)
modes with ` = 1, 2, 3, 4 are plotted. Modes 2 and 4 are
known to be prevalent in these NIF implosions[8], and
the potential for deleterious mode 1 asymmetries has
also been recognized[36, 37].

For a given ∆, the observable difference in ρR is max-
imized if the mode is a P2 (i.e. ` = 2,m = 0). Fig. 3
shows that this technique is half as sensitive to modes
` = 1, 3, 4 with the current detector geometry (Fig. 1).
While we cannot differentiate between a ` = 2 mode and
a ` = 1 mode with twice the perturbation amplitude, due
to the limited diagnostic lines of sight (see Fig. 1)[38],
for a difference in ρR between pole and equator this work
assumes a ` = 2 mode, which minimizes the inferred ∆.

The asymmetry amplitude ∆ is plotted for all shots in
this work in Fig. 4, with 1σ error bars.

The ρR asymmetries do not have systematic direction,
i.e. approximately the same number of shots have a
higher polar ρR (negative ∆) as the number of shots with
higher equator ρR (positive ∆). Only 20 − 30% of the
shots are consistent within error bars with a symmetric
(∆ = 0) implosion.

We can compare this work to compression x-ray self-

−0.4 −0.2 0.0 0.2 0.4

WRF P2 / P0 (≡ ∆)

−0.4

−0.2

0.0

0.2

0.4

X
-r

ay
P
2

/P
0

FIG. 5. Mode ` = 2 amplitude from these measurements
(abscissa) versus stagnation x-ray core emission shape. A
linear fit (dashed red line) to the data has slope 1.35 ± 0.18
and intercept 0.21 ± 0.03. The data have a weighted Pearson
correlation coefficient p = 0.69.
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emission imaging[13, 39] at CR ∼ 20. Restricting the
dataset plotted in Fig. 4 to experiments with very good
stagnation azimuthal symmetry as measured by polar-
view x-ray imaging (m2/m0 < 5% and m4/m0 < 10%) to
reduce effects of m modes, the ρR P2 data are compared
directly to the stagnation x-ray symmetry measurement
in Fig. 5. As the x-ray metric is generally referred to in
literature as P2/P0, we follow that convention here; for
the WRF measurement this is equivalent to ∆ in Fig. 4.

In the data we see a correlation between the ` = 2 mode
amplitude inferred from the shock ρR and the stagnation
x-ray emission shape. A linear fit to the data provides a
slope of 1.35± 0.18.
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FIG. 6. Azimuthal mode amplitude inferred for experiments
with in-flight x-ray imaging: this work (abscissa) versus stag-
nation x-ray core shape. A linear fit (dashed red line) to the
data has slope 0.78±0.24 and intercept 0.06±0.02. The data
have a weighted Pearson correlation coefficient p = 0.77.

To further investigate this, we use recently-developed
in-flight x-ray radiography of the imploding shell, which
measures the shape at a similar time in the implosion
as the ρR measurements[8]. These shots correspond to
a subset of Fig. 4 denoted by diamond markers. The
radiography shows significant ` = 2 and ` = 4 modes.
The radiography requires large oppositely-placed patches
on the hohlraum wall, which induce a m = 2 asym-
metry roughly aligned with the equatorial WRF line of
sight. With limited lines of sight, this generates an un-
constrained problem for this technique. However, if we
use the radiography-measured amplitudes for ` = 2 and
` = 4 modes at CR ∼ 4 and superimpose an azimuthal
mode ∆ sin(θ) cos(mφ+φ0) with m = 2, φ0 aligned with
the WRF equatorial view, and ∆ a free parameter, the
in-flight azimuthal shape is then characterized.

The results of this analysis are shown in Fig. 6, com-
pared to the stagnation x-ray emission shape as in Fig.
5. Again positive correlation is observed with a slope of
approximately unity: in this case 0.78± 0.24.

In both data sets (Figs. 5 and 6), the slope be-
ing ∼ 1 indicates a lack of growth in apparent mode
amplitude between shock (CR ∼ 4) and compression
(CR ∼ 20) phases. To explore this further we con-
sider several models for asymmetry growth of a radial
` = 2 perturbation. The simplest is Bell-Plesset, a
model for for asymmetric incompressible flows in spheri-
cal compression[40], which predicts a simple convergence
scaling ∆ ∝ (CR − 1). For ICF, modified Bell-Plesset
theory for compressible flows[41] is more appropriate. Fi-
nally, we also consider typical 2-D radiation hydrody-
namics simulations of asymmetrically driven surrogate
implosions using HYDRA[42]. The expected growth fac-
tors between the shock and compression times using these
models are summarized in Table I.

TABLE I. Growth factors from shock to compression for sev-
eral models.

Model Growth

Bell-Plesset ∼ 5×
Compressible Bell-Plesset ∼ 3×

2-D HYDRA (picket&trough)a ∼ 14×
2-D HYDRA (peak)b ∼ 3×

a 10% flux asymmetry applied during the first picket and trough
b 10% flux asymmetry applied during the peak power

The growth factor corresponds directly to an expected
slope in Figs. 5 and 6, clearly inconsistent with the data
for all models. This is in contrast to previous experiments
showing that the Bell-Plesset model holds for direct-drive
OMEGA implosions[17, 18].

The most plausible explanation for this result is that
the stagnation x-ray emission shape asymmetries do not
represent (i.e. are smaller than) the ρR asymmetries
at that time. A lack of correspondence between stag-
nation x-ray and ρR asymmetries has been seen in re-
cent computational studies[11, 43–46], in indirect-drive
OMEGA experiments[47], and in the 2-D HYDRA simu-
lations used for Table I. This interpretation is consistent
with the results of DT-layered cryogenic implosions at
NIF, where neutron metrics[48–50] show very large ρR
asymmetries, of order 2 − 3× variation between lines of
sight at compression, while the x-ray core shape is much
closer to symmetric[51].

Another consideration is scenarios which cause ρR
asymmetries but not shape asymmetries, such as vari-
ations in shell remaining mass or density. These sce-
narios would still cause significant performance degra-
dation, and will be investigated using in-flight x-ray
radiography[8] to complement this technique. Finally,
the presence of ` = 1 modes could affect the shock ρR
but not be apparent in x-ray stagnation imaging; however
we note that the asymmetry magnitudes in this work are
consistent with in-flight x-ray radiography[8], suggesting
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that ` = 1 is not dominant. This could be verified with
dedicated shots inducing ` = 1 modes in these implo-
sions, similar to recent experiments with DT fuel[36, 37].

In conclusion, compact WRF proton spectrometers
fielded at the pole and equator show clear observations
of implosion ρR asymmetries at the shock-bang time in
D3He surrogate experiments at the NIF. This technique
is unique because it uses charged particles to probe ρR
asymmetries at the shock bang several hundred ps before
implosion stagnation, corresponding to a convergence ra-
tio of ∼ 3 − 5 and occurring just before peak implo-
sion velocity, thus isolating acceleration-phase asymme-
try growth. Assuming a ` = 2 (P2) mode, the data rou-
tinely show asymmetries of >∼ 10% at this time. These
asymmetries would degrade performance later in time
during stagnation, with growth factors >∼ 3× predicted
by several models. When comparing this work to x-ray
stagnation emission shape a lack of growth is observed in
apparent asymmetry mode amplitude, in contrast to the
expected >∼ 3× growth. This suggests the x-ray stagna-
tion emission shape does not accurately reflect the stag-
nation shell (ρR) shape. If the asymmetries observed in
this work grow as expected, the implosion performance
will be degraded. Importantly, with several techniques
now available for measuring the symmetry over the entire
implosion evolution from CR = 1 → 20, these observed
asymmetries can be studied and mitigated, as necessary
for ignition on the NIF.
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