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We report the electromagnetic properties of a waveguide loaded by complementary 
electric split ring resonators (CeSRRs) and the application of the waveguide in vacuum 
electronics. The S-parameters of the CeSRRs in free space are calculated using the HFSS 
code and are used to retrieve the effective permittivity and permeability in an effective 
medium theory. The dispersion relation of a waveguide loaded with the CeSRRs is 
calculated by two approaches: by direct calculation with HFSS and by calculation with 
the effective medium theory; the results are in good agreement. An improved agreement 
is obtained using a fitting procedure for the permittivity tensor in the effective medium 
theory. The gain of a backward wave mode of the CeSRR-loaded waveguide interacting 
with an electron beam is calculated by two methods: by using the HFSS model and 
traveling wave tube theory; and by using a dispersion relation derived in the effective 
medium model. Results of the two methods are in very good agreement. The proposed 
all-metal structure may be useful in miniaturized vacuum electron devices.   
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1. Introduction 

Since a left-handed medium was first realized in 2000 [1], researchers worldwide 

have been interested in its exotic electromagnetic properties such as negative refractive 

index [2, 3], backward Cerenkov radiation [2, 4] and the realization of different types of 

metamaterials (MTMs) and their potential applications.  

Rectilinear electron beams interacting with slow waves in periodic structures are 

used in traveling wave tubes (TWTs) or backward wave oscillators (BWOs). An 

interaction circuit of a TWT or BWO can be designed as a helix, coupled-cavity structure, 

folded waveguide or ladder structure depending on the frequency range [5-7]. MTMs and 

photonic crystals built of metallic parts can be considered as modified coupled-cavity or 

ladder structures and are promising for application in TWTs or BWOs. The 

wave-electron beam interaction in MTMs has been theoretically studied in [8-15]. Here 

we focus on the MTM-loaded waveguide and its application as an interaction circuit for a 

vacuum electron device.  

Waves in the MTM-loaded waveguide can be described using different models. The 

MTM-loaded rectangular waveguide was theoretically studied as early as 2001 [16]. 

Subsequently, Marques et al. reported a split ring resonator (SRR)-loaded waveguide and 

verified its transmission characteristics in experiment when the waveguide operates 

below the cutoff frequency of the TE mode [17]. It has been shown that the cutoff 

waveguide provides negative permittivity and the SRRs offer negative permeability, 

which, therefore, explains wave propagation in the SRR-loaded waveguide. Esteban et al. 

showed that a rod-loaded waveguide supports an electromagnetic wave propagating at 

frequencies which are below the cutoff frequency of the TM mode in the empty 

waveguide [18]. This is an example of wave propagation in a waveguide that provides 

negative permeability because the TM mode is below cutoff and the waveguide is loaded 

with a negative permittivity medium. It was shown in [19] that wave propagation in a 

MTM-loaded below-cutoff waveguide can be explained by the anisotropy of the SRR 

medium. The theory of a below-cutoff waveguide loaded by anisotropic MTMs was also 

presented in [20, 21].  

In this paper we study a closed metallic waveguide of square cross-section loaded by 

metallic complementary SRRs (CSRRs). This waveguide may have an application as an 

interaction circuit for a vacuum electron device in which a rectilinear electron beam 

excites a TM-dominated mode with the longitudinal electric field in the direction of the 

electron velocity [13]. The CSRR is needed because it provides electric response for the 

longitudinal electric field [13]. In contrast to [13], in this paper we consider a different 

type of CSRR - planar complementary electric split ring resonators (CeSRRs) introduced 

in [22] and we present a simple model for a waveguide loaded by CeSRRs. 

Using this example of a MTM-loaded waveguide we show that it is possible to 

determine the effective permittivity and permeability of the MTM, then fill the 

waveguide with this effective medium and predict the waveguide mode’s dispersion 
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properties by using the constitutive parameters of the effective medium. The effective 

constitutive parameters allow us to analyze the wave-beam interaction in the 

MTM-loaded waveguide. 

In Section 2, we retrieve the effective constitutive parameters for a CeSRR MTM in 

free space using the existing method of MTM constitutive parameter retrieval [23-28]. In 

Section 3, we use the effective medium theory to study the dispersion characteristics of a 

cutoff metallic waveguide loaded by the CeSRRs. Then we compare the effective 

medium model with an HFSS simulation of an actual CeSRR loaded waveguide. In 

Section 4, we discuss the applications of the MTM-loaded waveguide in vacuum electron 

devices. 

2. Complementary electric split ring resonators in free space 

We first consider a MTM in free space, which consists of planar CeSRRs. It 

produces a “negative” electric response and not a “negative” magnetic response [22]. In 

this paper, we use a planar CeSRR, a schematic of which is shown in Fig. 1. The 

dimensions shown in Fig. 1 refer to a specific design to operate near 3 GHz. The CeSRR 

has some attractive advantages over the eSRR such as: greater symmetry that eliminates 

the magnetoelectric response which occurs in conventional SRRs; an all-metal 

construction to avoid dielectrics in vacuum; an enhanced transmission due to the 

resonance; and easy fabrication and assembly. If the dimension of the unit cell is much 

less than the wavelength λ, then the CeSRR MTM can be considered as an effective 

medium. Accordingly, we can retrieve the effective MTM constitutive parameters.  

 

FIG. 1. The CeSRR unit cell used in this study. For operation near 3 GHz, the structural parameters (in 

mm) are a=14.5, b=13.5, d=1, j=1.5, h1=4.25, h2 =4, g=1, and thickness t=1 (not shown here). 

As a specific example, we choose the dimensions of the unit cell as shown in Fig. 1. 

The periodic array of CeSRRs with the period a is perforated on a plate. Identical plates 

are set at distance a parallel to each other. We assume a plane wave propagating in the y- 

direction and with polarization in the z- direction, as shown in Fig. 1. The plane wave is 

normally incident on the CeSRR MTM surface. Here we do not consider the ohmic loss 

of the metal. Thus, the relative permittivity and permeability are only real. 
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We set up the HFSS model (a cubic geometry of size aaa  ) and use the 

driven-modal solver to obtain the S parameters. The amplitude and phase of the S 

parameters are shown in Fig. 2 (a) and (b), respectively. The resonant enhanced 

transmission at ~3 GHz results from circulating currents in the CeSRR and a pure electric 

response for the Ez polarization. The counter-circulating currents eliminate any 

magnetoelectric response [22].  
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  (a)                             (b) 

FIG. 2. The amplitude (a) and the phase (b) of the scattering parameters vs. frequency. 

We use the S parameter-based retrieval method [25] to retrieve the effective 

permittivity εzz and permeability μxx. The results are presented in Fig. 3(a). As noted in 

Ref. [22], the CeSRR permittivity is the sum of an effective Drude-like response (with an 

effective plasma frequency fp =2.82 GHz for the structure of Fig. 1), arising from the 

interconnected metallic regions, and, at higher frequency, a Lorentz-like oscillator (with 

resonant frequency ~3.35 GHz for the structure of Fig. 1). As for the permeability, in fact, 

there is no magnetic response, as stated in [22, 28]. 

 By changing the polarization of the incident wave from Ez to Ex (Fig. 1), we 

determine the S parameters and then retrieve the permittivity εxx and permeability zz , as 

illustrated in Fig. 3(b).  
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(a)                               (b) 

FIG. 3. Retrieved permittivities and permeabilities of the CeSRRs as functions of frequency for z (a) 

and x (b) polarizations, respectively.  
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3. Complementary electric split ring resonator-loaded cutoff waveguide 

A CeSRR-loaded cutoff waveguide is formed as follows. The CeSRR unit cell is 

periodically arranged along the z-axis to form a plate (the period is a), which is 

positioned in the middle of a square waveguide of cross-section aa  , as shown in Fig. 

4.  

 

FIG. 4. The square metallic waveguide loaded with the CeSRR plate in the middle. Here a= 14.5 mm. 

The square waveguide was simulated using the HFSS code. Figure 5(a) shows the 

longitudinal field Ez distribution in several axial slices of one period of the waveguide. 

The CeSRR is in the middle of the cell at y=a/2. The transverse distribution of the 

magnitude of Ez(y) is plotted in Fig. 5(b) for the frequency of 3.07 GHz. The field is 

evanescent near the CeSRR plate and is zero at the wall. The walls (at y=0 and y=a) do 

not significantly affect the field distribution because the field amplitude and its derivative 

are small near the walls. In fact, the HFSS simulation of the dispersion characteristics 

indicates that the dispersion does not change when the E-wall boundary condition is 

changed to the H-wall boundary condition.   

 

(a) 
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(b) 

FIG. 5. The HFSS simulation of the square metallic waveguide loaded with the CeSRR plate in the 

middle at y=7.25 mm: (a) Ez field amplitude distribution in one cell at the slices parallel to the CeSRR 

at y=2.25, 4.5, 10, and 12.25 mm; (b) Ez field amplitude as a function of y; Ez is averaged over x. 

In Section 2, the permittivity tensor of the medium consisting of a periodic set of 

CeSRR plates was determined. The MTM can be considered homogenized after the 

effective medium parameters are determined. A planar waveguide can be formed when 

the MTM is placed in between the metallic walls perpendicular to the CeSRR plates, i.e., 

at x=0 and x=a. Therefore, one period of the MTM is placed in the x-direction. In the 

y-direction, the CeSRR plates are set periodically with the period a. The modes of this 

planar waveguide can be determined using the permittivity tensor and the metal wall 

boundary conditions. 

3.1 Dispersion equation of a planar MTM-loaded waveguide 

Now we formulate the wave equation for the modes of the planar waveguide filled 

with a homogeneous effective medium. We derive the dispersion equation for the TM 

mode assuming that the field does not depend on y, because the MTM is homogeneous. 

The permittivity tensor is determined for the waves propagating perpendicular to the 

CeSRR plates. Therefore, it can be used to determine the waveguide modes close to 

cutoff. The effective permittivity is anisotropic and the permeability is isotropic, which 

leads to the following forms:  

0 0

0 0

0 1 0 , ,

0 0

xx

zz



   



 
 

 
 
 
 

                             (1) 

where ε0 and μ0 are the permittivity and permeability in vacuum, respectively. 

Assuming an e
iωt 

time dependence (ω is the angular frequency) and a source free 

CeSRR-loaded cutoff waveguide region, Maxwell’s equations can be written as 
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E i H   ,                            (2a) 

H i E   .                            (2b) 

Meanwhile, we assume that the wave propagates along the z-axis with an e
-iβz

 

dependence on z, where β is the phase constant. In addition, we suppose that the mode 

has a TM polarization. Inserting Eq. (1) into Eq. (2), making use of the separation of 

variables procedure, we derive the scalar wave equation for the Ez component as follows: 

22 2

2 2 2 2 2
1 0,

/

z
zz z

xx

E
E

c x c

 


  

  
   

  
                   (3) 

where c is the speed of light in free space. The boundary conditions can be applied 

directly to Ez: 

( , ) 0,zE x z   at 0,x a .                           (4) 

The resulting dispersion equation of the CeSRR-loaded cutoff waveguide can be 

expressed as: 

 
2 2 2

2

/
.

zz xx

a

c

  

 
                                (5) 

where εzz and εxx are dependent on ω.  

3.2 Dispersion simulation 

For the CeSRR-loaded sub-wavelength waveguide of Fig. 4, we have simulated the 

exact dispersion curve using the HFSS eigenmode solver and the result is the curve 

labeled “Simulation” in Fig. 6. We may also obtain the dispersion relation using the 

effective medium model, as described in Sec. 3.1 and Eq. (5). The resulting dispersion 

relation is shown in Fig. 6 as the “Theory” curve. Both approaches are in good qualitative 

agreement; both predict that the existing wave is a backward wave which results from the 

negative εxx and positive εzz, not a forward wave.  

From this comparison of the HFSS simulation and the effective medium model we 

conclude that it is possible to retrieve the MTM constitutive parameters and predict the 

dispersion of the MTM-loaded waveguide. The retrieved εxx and εzz can be used in the 

dispersion equation (Eq. (5)) to calculate the dispersion of the mode close to cutoff when 

the phase advance is much smaller than π and the periodicity in the z-direction does not 

affect the dispersion.  

3.3 Dispersion relation with fitted εzz and εxx  

  Good qualitative agreement is obtained between the dispersion relations of the 

effective medium model and the HFSS simulation. We can obtain better quantitative 

agreement by using fitted Drude models of the relative permittivities xx and zz in Eq. (5) 

using the form: 
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)/1( 22  pxxxxxx M  ; )/1( 22  pzzzzzz M  .              (6) 

Here Mxx and Mzz are constants. The plasma frequencies are pxx/2 = 4.2 GHz and 

pzz/2 = 2.835 GHz. The constants selected for a best fit to the HFSS dispersion are Mxx 

=1.5 and Mzz=32. The result of calculating the dispersion relation, Eq. (5), using the 

relative permittivities of Eq. (6) is shown in Fig. 6 as the curve labeled “Fitting” This 

curve is in very good agreement with the HFSS simulation results.  

Below a frequency of 3.0 GHz the guide wavelength (g = ) is not very much 

larger than the unit cell size, which means the effective medium theory begins to deviate 

from the exact result. This fact is evidenced by the disagreement between the HFSS 

simulated dispersion curve and the dispersion curve using the fitting εzz and εxx as the 

phase advance exceeds π/2 (Fig. 6).  

The backward mode is unidirectional; it can support a fast wave (left of the light line) 

and a slow wave (right of the light line) which is useful for vacuum electron devices. 
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FIG. 6.  Dispersion curves of Frequency vs. Phase Advance (a) calculated by Simulation 

(HFSS),Theory (Eq. 5) and Fitting (Eqs. (5) and (6)). The dispersion curves are for the backward wave 

mode in the CeSRR-loaded square waveguide. The light line is =cand the electron beam line is 

=V, where the frequency is  c is the velocity of light and V is the velocity of the electron 

beam.  

4. Application in a vacuum electron device 

The sub-wavelength MTM waveguide is suitable for a vacuum electron device. It 

can benefit vacuum electron devices where a small structure size is needed [13, 29].  

We have shown that the simple model described by Eq. (5) is in agreement with the 

HFSS simulation of the MTM waveguide. The MTM waveguide mode can be excited by 

the rectilinear electron beam. The wave-beam interaction occurs in the vicinity of the 

intersection of the wave dispersion curve and the beam dispersion line ω=βV, V is the 

velocity of the electron beam. In Fig. 6, the beam dispersion line is shown for the beam 

voltage of 100 kV. 
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4.1 Gain equation for effective medium theory 

Using the effective medium permittivity tensor components εzz and εxx we determine 

the gain of the Cerenkov instability of the electron beam in the MTM waveguide [13]. 

The new longitudinal permittivity εzzn including the electron beam is given by [30]: 

2

2

)( V

b
zzzzn







  ,                         (7) 

where the beam plasma frequency is determined by mne bb 0

22 /  ; bn is the electron 

density, e and m are the electron charge and mass respectively. The relativistic effects are 

not taken into account in this formulation. Eq. (5) thus can be rewritten as  

 

2

222)/(

c

a

xxzzn










 .                     (8) 

From Eqs. (6) and (8) we derive the wave-beam interaction dispersion equation: 

22

2

2

2
22

0

2 ))((
zz

xxb

aVV 


  .                  (9) 

where β0 is the solution of Eq. (8) with ωb=0. Eq. (9) can be recognized as having the 

form of the dispersion relation of a traveling wave tube [31]. By neglecting interaction 

with the counter-propagating wave β=-β0 and assuming no detuning from synchronism 

between the wave and the beam (β0=ω/V) we determine the maximum of the imaginary 

part of the propagation constant: 

3/1

224

222

)
2

(
2

3
Im

zz

xxb

a

V

V 






  .                    (10) 

Eq. (10) can be re-written for the gain G as 

3/1

244

3
3

0

23Im2 











zz

xx

a

Vc

I

I

V
G









  ,   (11) 

where I0=4πε0mc
3
/e≈17 kA.  

4.2 Gain calculation using HFSS code 

     The gain in (Eq. (11)) was determined by using the effective medium representation 

of the CeSRRs to derive the dispersion relation. We may compare that result with a 

second, independent calculation of the gain using the HFSS code to calculate the 

wave-beam coupling impedance. The coupling impedance is then used in traveling wave 

tube theory to obtain the gain. The mean coupling impedance is represented as follows 

[31]: 



 

 9 

P

dsE
S

K s

z

c 2

2

2

1




                              (12) 

where P is the electromagnetic power propagating in the waveguide and Ez is the 

longitudinal electric field which is averaged over the electron beam cross-section (S=a×a). 

The Pierce parameter C is determined by 

3/1

4 









U

KI
C c                      (13) 

using the beam current I and the beam voltage U. The gain of the wave-beam instability 

is [31] 

C
V

G


3 .                    (14) 

 Fig. 7 shows a comparison of the gain calculation using the two approaches: the 

effective medium approach (Eq. (11)) versus a rigorous calculation using the exact fields 

calculated with the HFSS code. The gain is proportional to I
1/3

, therefore, the ratio G/I
1/3

 

is plotted as a function of the frequency. The voltage U of the synchronous beam is varied 

with the frequency. The gain results of the simple effective medium theory model using 

the fitting parameters (Sec. 3.3) are in very good agreement with those of the HFSS 

simulation (Fig. 6). Meanwhile, Fig. 7 also shows the frequency tuning of the gain of the 

backward wave as the beam line (ω=βV, see Fig. 6) varies with a change of voltage. 

    The Cerenkov instability of the electron beam in the MTM has specific features. The 

gain is higher as compared to a conventional Cerenkov electron device because the group 

velocity of the wave is lower. A backward-wave oscillator can be built based on this 

instability because the group velocity of the wave is negative. 
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FIG. 7. Comparison of wave-beam instability Gain as a function of frequency between the HFSS 

simulation using Eq. (14) and the effective medium theory based on the fitting permittivity using Eq. 

(11). The current I is in Amperes. 
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5. Conclusion 

We have characterized the CeSRR MTMs and proposed a CeSRR-loaded cutoff 

waveguide. The effective permittivity and permeability have been retrieved using the S 

parameter-based retrieval method for the CeSRR MTM in free space. Meanwhile, we 

have studied the wave propagation in a cutoff waveguide loaded by the CeSRRs using 

both theory and simulation. A backward wave mode has been found in the MTM loaded 

waveguide. The theoretical dispersion relation derived for the CeSRR MTM which is 

considered as an effective medium agrees qualitatively with the numerical simulation. 

Good agreement between the HFSS simulations and the effective medium model has 

been achieved by using the fitted permittivity tensor. 

The interaction of the MTM waveguide wave with an electron beam has been 

studied. The coupling with the beam was calculated using HFSS and compared to the 

gain predicted by the effective medium model, with very good agreement. The effective 

medium approach is found to be useful for calculation of the modes of the waveguides 

loaded by the MTM. The gain of the wave-beam interaction in the MTM loaded 

waveguide can be analyzed using the effective medium parameters. This novel MTM 

structure may allow for the miniaturization of vacuum electron devices.  
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