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Abstract 

Genetic mapping of the drivers of complex human phenotypes and disease through the 
genome-wide association study (GWAS) has identified thousands of causal genetic loci in 
the human population. However, genetic mapping approaches can often only reveal a 
particular causal locus, not the molecular mechanism through which it acts. Biological 
interpretation of these genetic results is thus a bottleneck for turning results from GWAS 
into meaningful biological insights for human biology. 
 
Genetic mapping of complex human traits has revealed that most common variants 
influencing human phenotypes have weak effect sizes and reside outside protein-coding 
regions, complicating biological interpretation of their function. In this thesis we use 
computational and experimental approaches to study the non-coding genome. In 
particular, we focus on using epigenomic signatures to characterize non-coding 
transcriptional regulatory elements and predict regulatory segments of DNA disrupted by 
genetic variants. In Chapter 2, we describe how genome-wide maps of epigenomic 
modifications can be used to characterize and discover new GWAS loci. In Chapter 3, we 
outline an experimental method for the high-throughput assessment of putative 
transcriptional regulatory elements.  
 
In summary, our research highlights the value of interpreting human genetics 
information through an epigenomic lens, and provides a glimpse into the possible 
biological insights that manifest from the intersection of these two areas of research.  
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Thesis Supervisor: Laurie A. Boyer 
Title: Associate Professor of Biology 
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Motivation 

Much of human disease is influenced by heritable variation in DNA that is transmitted 

between generations, suggesting that an understanding of human genetics will aid in the 

study of human biology and disease. Moreover, the knowledge that genetic mutations 

disrupting specific genes can modify disease risk hints that the perturbed biological 

pathways can be promising therapeutic targets1. Unbiased genetic mapping of disease 

variation has now implicated thousands of DNA regions in common human disease, 

painting a complex picture where common disease is influenced by hundreds or 

thousands of distinct loci that largely fall within non-coding DNA. Non-coding DNA 

makes up 98% of the genome and is largely not under evolutionary conservation, making 

it difficult to distinguish critical regulatory DNA sequences from their non-functional 

surroundings. The work presented in this thesis describes computational and 

experimental approaches to understand how genetic variants in non-coding DNA can 

affect molecular processes and ultimately cellular and organismal phenotypes associated 

with human traits and disease.  

 

Background 

Genetic architecture of human disease and the implications for therapeutics 

development 

Tracing the inheritance of human genetic variation within families and populations has 

led to the discovery of thousands of regions of the human genome associated with a 

plethora of rare diseases2. In the cases of rare Mendelian diseases, the majority of 

pathogenic mutations are localized to protein-coding regions and these mutations are 

often individually capable of conferring a strong deleterious phenotype. These family-

based “linkage” analyses use genetic markers, such as single nucleotide polymorphisms 

(SNPs), short insertions and deletions (indels) or larger structural variants, as a proxy to 

infer the inheritance of different segments of DNA from parents to children3 (Fig. 1). The 

linkage, or statistical correlation between inheritance of a specific genetic marker and the 

phenotypic manifestation of a disease, has been used highly effectively to map mutations 
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contributing to Mendelian diseases, however this group of statistical approaches is not 

applicable to complex traits and diseases that do not have clear family clustering and 

inheritance patterns and are believed to be influenced by the collective effects of hundreds 

or thousands of genetic loci. Population genetics offers a solution to this problem through 

the design of a genetic association study, where instead of tracking allele transmissions 

within pedigrees through time, the frequencies of densely spaced polymorphic alleles 

spanning the entire human genome are compared within cohorts drawn from the human 

population2 (Fig. 1). Unlike a family-based linkage study, the genome-wide association 

study (GWAS) uses cohorts of unrelated individuals to avoid artifacts from genetic 

relatedness and thus does not explicitly model a family structure. With increasingly large 

cohort sizes now in the hundreds of thousands of individuals, the genome-wide 

association study has identified thousands of genetic loci targeting a multitude of 

biological pathways associated with complex human traits4.  

 
Figure 1: Overview of two approaches for genetic mapping of human disease. Adapted from 
Lander and Schork (1994)3. Left, Study design for genetic linkage analysis. A model is constructed 
to identify genetic variants inherited within pedigrees that follow a similar transmission pattern as 
the disease phenotype (shaded individuals). Right, Study design for a case-control genetic 
association study. For complex traits with hundreds or thousands of contributing genetic loci, 
allele frequencies are compared between sample groups with no consideration of family structure 
that would be too difficult to model under a linkage analysis. 
 

Due to the presence of discrete recombination hotspots in the genome, individual alleles 

are often inherited with other nearby alleles, a phenomenon that is termed linkage 

disequilibrium (LD, Fig. 2). Thus, the genotype of any particular SNPs is often statistically 

correlated with those nearby. This correlation is measured using two metrics – r2, the 

correlation between two genetic markers across individuals, and D’, a metric inversely 

related to the number of recombination events that occurred between two markers in a 
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population5. The strength of both metrics drop by distance from the SNP it is calculated 

from, however it is not uncommon for any particular SNP to be in strong linkage 

disequilibrium (r2>0.8) with dozens of nearby variants. This effect of linkage 

disequilibrium has two practical consequences on disease mapping. First, the correlation 

structure imposes a substantial reduction in the number of unique “haplotype blocks”, 

groups of SNPs strongly correlated to each other in genotypes across individuals, that are 

present in the human genome6 (Fig. 2). Thus, disease mapping can be accomplished by 

genotyping only a subset of all human genetic variants, and the remaining unobserved 

genotypes could be computationally inferred by comparison to a pre-existing reference 

panel of individuals. This has the effect of reducing experimental burden for performing 

an association study across large cohorts of individuals. Second, the haplotype 

architecture makes it difficult to identify the specific SNP(s) that are causally acting to 

influence a specific human disease or trait. The SNP in a particular locus with the lowest 

p-value for association may not be the causal variant contributing to an association signal, 

and on average it is statistically unlikely to be the case7.  
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Figure 2: Haplotype structure of the human genome. Adapted from Altshuler et al. (2008). 
Genetic variants, such as SNPs, are densely spaced over an entire genome interval, and the 
possible allelic combinations that exist across individuals in a population are limited by the 
positioning of discrete recombination hotspots. Thus, SNP alleles are often correlated with each 
other across individuals (red=stronger correlation, white=weaker correlation).   
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The success of GWAS has led to a greater understanding of the architecture of complex 

human traits, but also the realization that in contrast to Mendelian disease, arriving at a 

mechanistic understanding of how complex disease loci influence phenotype will be 

substantially more difficult. This is for four main reasons: first, as described above there 

are many candidate causal variant(s) at each locus. Second, unlike in Mendelian disease, 

the vast majority of loci associated with complex traits reside outside protein-coding 

regions, complicating the identification of a causal gene, if any, and increasing the 

number of possible molecular mechanisms through which the locus can act. Third, the 

collection of current GWAS hits collectively often explain only a small proportion of the 

total heritability for any disease8,9. With few exceptions, GWAS loci have very modest 

effect sizes. In contrast to Mendelian disease, where there is often a singular large-effect 

perturbation of a pathway, for any complex trait there appear to be orders of magnitude 

more loci that each act to subtly perturb many different pathways2. Fourth, the observed 

distribution of modest effect sizes, which may have been caused by evolutionary pressure 

acting against strongly deleterious variants, combined with a large multiple hypothesis-

testing burden necessitates that GWAS be performed with very large cohorts to achieve 

sufficient statistical power to implicate any individual locus8 (Fig. 3). These four problems 

compel the development of computational and experimental tools to “fine map” 

individual GWAS loci to identify the causal variants and identify therapeutically 

important genes and pathways involved in complex human disease. 
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Figure 3: Sample sizes required in genome-wide association studies to detect loci with varying 
effect size. Adapted from Altshuler et al. (2008)2. Columns correspond to varying degrees of 
statistical power to reach genome-wide significance (p<5x10-8). Curves correspond to different 
frequencies (f) of disease-causing allele in the cohort.   
 
Genetic mapping of Mendelian diseases often implicate genes encoding proteins with a 

direct functional role in a critical cellular process, such as the CFTR gene for cystic 

fibrosis that acts as a channel for chloride ions in the lung, or the phenylalanine 

hydroxylase enzyme that when lost leads to an inability to metabolize phenylalaine and 

the development of phenylketonuria.  However, genetic mapping of Mendelian diseases 

occasionally implicates mutations in regulators of gene expression, such as transcription 

factors or chromatin remodelers, as the culprits for a particular disease, indicating that 

pathogenic mutations are not confined to only proteins with a direct biochemical role in a 

disease phenotype but can also target upstream transcriptional regulators of such 

proteins10,11. Remarkably, there is also recent evidence indicating that mutations in the 

binding sites of transcription factors on DNA can similarly be causal for human disease12. 

As non-coding DNA represents 98% of the human genome and harbors many such 

transcriptional regulatory elements, we hypothesized that mutations and genetic variation 

within these non-coding regions that influence gene expression, termed transcriptional 
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enhancers, could contribute to the pathogenesis of complex diseases as well. In particular, 

as the majority of variants associated with complex traits identified through GWAS do 

not appear to affect protein-coding sequence, we believe that a detailed investigation of 

genomic variation in enhancers is critical for understanding the etiology of complex 

human traits. 

 

Regulation of gene transcription 

Advances in genome research have provided an unprecedented opportunity to investigate 

the function of transcriptional enhancers – noncoding DNA regulatory regions that 

control transcription. The recognition that transcriptional enhancer elements contribute 

to gene activation was first illustrated in the early 1980’s based on experiments using 

SV40 viral enhancers to drive transcription in vitro13.  These distal enhancers have 

subsequently been shown to function at variable distances from the genes they regulate 

(up to 1Mb away), and can function in an orientation-independent manner to promote 

expression of reporter genes both in vitro and in vivo14-16.  Enhancer trapping experiments 

in Drosophila provided critical evidence that these non-coding cis-regulatory regions 

mediate the precise spatial and temporal control of gene expression during metazoan 

development17. However, pinpointing the location of distal enhancers in the genome has 

historically been difficult because these elements reside at variable distances from the 

genes they regulate and lack conspicuous sequence features similar to those leveraged to 

annotate the genome for protein-coding genes. In the past decade, high-throughput 

analyses of the binding of transcription factors (TFs) and chromatin regulators as well as 

histone modification patterns and DNase I accessible sites have led to the identification of 

hundreds of thousands of enhancers across a large number of different cell types and 

tissues in flies, mice, and humans18-24. As transcription factors bind to enhancer elements 

and recruit co-activators and chromatin regulators to facilitate transcription, the 

experimentally-derived binding sites of these TFs and chromatin remodelers has become 

a widely used proxy for enhancer identification.  

 



19 

Epigenetic landscapes predict enhancer activity 

Large-scale studies using chromatin immunoprecipitation followed by high-throughput 

sequencing (ChIP-seq) have recently identified hundreds of thousands of distal enhancer 

elements in the human genome at various tissues and at different development stages. 

Their discovery has revealed new insights into the mechanistic details of how tissue-

specific gene expression patterns are established and maintained during development. 

Emerging evidence indicates that tissue-specific transcription factors and chromatin 

regulators coordinate the activation of distal enhancers to ensure robust control of gene 

expression programs in a cell type-specific manner. The recent ability to identify 

enhancers on a global scale has provided investigators with new opportunities to dissect 

how cis-regulatory elements control gene expression programs in normal and disease 

states.  

 

Genome-wide profiling of post-translational histone modifications has similarly become 

a powerful method for identifying tissue specific regulatory elements (Figure 4). In 

particular, mono-methylation of histone H3 lysine 4 (H3K4me1) and acetylation of 

histone H3 lysine 27 (H3K27ac) can identify active enhancer regions in the genome19,23,24. 

H3K4me1 marks various classes of enhancer elements as well as promoters depending on 

the co-occurrence of H3K4me1 with other histone modifications. Specifically, the 

combination of H3K4me1 and H3K27ac marks the class of “active enhancers”, designated 

as these elements strongly correlate with transcriptional activation of target genes19,23,24. In 

contrast, the presence of H3K4me1 alone has been used to predict enhancer elements and 

is generally indicative of a “weak enhancer” that shows weaker but still statistically 

significant correlation with transcriptional activation of nearby genes.  The set of 

enhancers identified by histone modification patterns is highly unique in each cell type 

and active enhancers often neighbor genes with cell type specific functions. Collectively, 

combinations of histone modifications can distinguish enhancer states and can be used to 

predict non-coding regions of the genome important in transcriptional regulation. 
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Additional histone modifications have been implicated in the regulation of enhancer 

regions and may allow for further delineation of different subclasses of enhancer regions. 

For example, the repressive mark H3K27me3 and the active marks H3K4me3 and 

H3K4me2, appear to be enriched at subsets of these cis-regulatory elements. H3K27me3 

in combination with activating modifications has been shown to mark “poised” enhancer 

regions in embryonic stem cells and implicates Polycomb activity in regulating enhancer 

states prior to transcriptional activation and also in deactivation of enhancer elements, 

similar to its role at gene promoters19,23,25. Conversely, enrichment of several other marks 

including H3K9ac and H3K18ac is associated with active enhancer regions23,25. In 

Drosophila, H3K79me3, a mark of active transcription, has also been implicated at active 

enhancers occupied by RNAPII26.  Thus, future investigations aimed at determining how 

combinations of histone modifications distinguish regulatory regions and impact 

transcription of target genes may reveal additional insights into enhancer biology. 
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Figure 4: Overview of different histone modifications present at different classes of DNA 
elements. Adapted from Schones and Zhao (2008)27.  
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Combinations of epigenomic marks, including histone modifications, can be integrated 

in a formal machine learning framework to identify chromatin “states”. One approach 

taken by Ernst and Kellis (2010) uses an unsupervised machine learning approach, the 

multivariate Hidden Markov Model (HMM), to discover over-represented combinations 

of epigenomic marks in the genome23,28 (Fig. 5). Specifically, the multivariate HMM 

models multiple “observed” input data tracks, such as the genome-wide presence of 

various histone modifications, as being generated by unobserved “hidden” states that 

each individually represent a class of genomic element, such as an active enhancer or 

heterochromatic region. This model, termed ChromHMM, has been applied to dozens of 

marks, however a core set of 5 and 7 histone modifications are now commonly used to 

annotate the genome into 15 or 18 informative chromatin states, respectively, 

encompassing both active and repressive regulatory regions (Fig. 5). This approach was 

recently expanded to profile histone modifications across 127 different human tissues and 

cell lines under the Epigenomics Roadmap project and predict both 15 and 18-state 

ChromHMM models in these regions (Fig. 6, 7).  

 

 
Figure 5: Systematic unbiased annotation of the human genome using epigenomic marks. 
Adapted from Ernst et al. (2011). ChromHMM uses an unbiased machine learning algorithm to 
scan the genome and identify recurring combinations of histone modifications. These 
combinations of histone modifications correspond to distinct “chromatin states” that are 
enriched for a variety of genomic elements, including promoters, enhancers and repressed 
regions28.  
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Figure 6: Overview of human tissues and cell lines used profiled by the Roadmap Epigenomics 
Consortium. Adapted from the Roadmap Epigenomics Consortium (2015)20. 
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Figure 7: ChromHMM-predicted chromatin states across epigenomics of 127 human tissues 
and cell lines. Adapted from the Roadmap Epigenomics Consortium (2015)20. Coloring of 
chromatin states correspond to coloring used in Figure 5. Some regions of the genome (e.g. 
promoters and transcribed regions) maintain the same chromatin state across cell types, while 
others are highly variable and tissue-specific.  
 

Regulating enhancer activity by modulating DNA accessibility 

Access to DNA plays a critical role in the ability of the transcriptional machinery to 

recognize sequence features at promoter regions and at the numerous distal regulatory 

elements required for precise control of gene expression. Studies using DNaseI or the Tn5 

transposon, both enzymes that preferentially cleave DNA in regions of open chromatin, 

combined with high-throughput sequencing have proved successful in identifying 

regulatory regions on a genome-wide level29-31. These DNaseI hypersensitive sites (DHSs) 

or ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput 

sequencing) peaks discretely mark TF binding throughout the genome and can identify a 

broad set of regulatory elements, including enhancers, silencers, boundary elements and 
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promoters in a relatively unbiased manner31. Thus, mapping open chromatin can capture 

the shifting regulatory landscape that occurs during developmental transitions. 

 

Exploiting this principle, punctate regions of open chromatin have now been profiled in a 

wide array of human tissues and cell types.  Among the cell types tested by the Roadmap 

Epigenomics Consortium, DHS signatures could be used to identify the developmental 

identity of the cell20. The importance of DNA accessibility in regulatory regions 

throughout the genome in a cell type specific manner suggests that certain factors must 

locate, define, and initiate the process of opening chromatin in these regions.  A class of 

transcription factors, termed “pioneer factors”, possess the ability to bind regions of silent 

chromatin and initiate the cascade of events leading to recruitment of chromatin 

remodelers and downstream transcription factors32. Emerging evidence suggests that 

pioneer factors bind regulatory regions early in development to facilitate rapid 

transcriptional responses. The binding of pioneer factors at enhancer elements provides a 

molecular explanation for the persistence of a subset of DHSs across regulatory regions as 

cells differentiate. Although the exact mechanism by which pioneer factors alter overall 

chromatin structure to prime DNA for future regulatory events is not fully understood, 

these factors clearly play important roles in establishing the early connection between 

lineage specific transcription factors and the enhancer network. 

 

Association mapping to identify disease loci 

Emerging evidence suggests that the perturbation of enhancer activity by disease-

associated single nucleotide polymorphisms (SNPs) is a common phenomenon33-36. For 

example, a recent genome-wide study identified enhancers in seven cell types and 

demonstrated that trait-associated SNPs were specifically enriched in enhancers from 

biologically relevant cell types28. Similar observations were reported by comparing the 

localization of disease SNPs to DHSs37. These two studies suggest that SNPs can 

contribute to phenotypes by affecting enhancer activity. 
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Disruption of enhancer activity may occur through a mechanism where the SNP either 

adds or removes a TF binding site and alters the activity of enhancer and expression of a 

nearby gene. Indeed, recent targeted studies demonstrated that individual disease-

associated loci identified through genome wide association studies (GWAS) could affect 

TF binding. For example, the minor allele at rs12740374, a GWAS SNP within a non-

coding region on chromosome 1p13 that affects plasma LDL cholesterol levels and 

myocardial infarction risk, resulted in the creation of a novel C/EBP binding site that 

increased expression of a nearby gene, SORT1, that is involved in controlling VLDL 

secretion from the liver33. Another recent study found that the rs1421085 at the FTO 

locus in obesity disrupted an ARID5B binding site that controls IRX3 and IRX5 

expression, altering the balance between adipocyte thermogenesis and lipid storage38 (Fig. 

8). Collectively, these studies strongly support the idea that non-coding regulatory region 

such as enhancers are disrupted by complex trait variants. 

 
Figure 8: Overview of FTO/IRX3/IRX5 locus molecular mechanism in obesity. Adapted from 
Claussnitzer et al. (2015)38. A non-coding SNP, rs1421085, in the FTO-obesity locus alters 
ARID5B binding at an enhancer that regulates IRX3/5 expression and the balance between 
adipocyte thermogenesis and lipid storage.  
 

The identification of specific causal variants at individual GWAS loci remains another 

outstanding problem in the human genetics field. While initial studies focused primarily 

on the SNPs with the most significant p-value at each locus, these “lead” SNPs are often 

in linkage disequilibrium with dozens of other SNPs and variants2. Therefore, at most 
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GWAS loci, it is statistically unlikely that the lead SNP is responsible for the discovered 

association signal. Epigenetics may play a critical role in resolving this issue by providing 

annotations for the regions surrounding SNPs, which help prioritize candidate causal 

SNPs for experimental validation. Demonstrating that putative causal SNPs can cause 

molecular or cellular phenotypes will be an important next step. Recent advances in 

genome engineering, including CRISPR-Cas9-based systems, have the potential to make 

this step a possibility39,40. Thus, strategies using epigenomics to interpret association 

signals from human genetics can be used to uncover mechanistic insights into the 

molecular pathways underlying complex human traits and the role of enhancers in this 

process. 
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Abstract 

 

Genetic variants identified by genome-wide association studies explain only a modest 

proportion of heritability, suggesting that meaningful associations lie “hidden” below 

current thresholds. Here, we integrate information from association studies with 

epigenomic maps to demonstrate that enhancers significantly overlap known loci 

associated with the cardiac QT interval and QRS duration. We apply functional criteria to 

identify loci associated with QT interval that do not meet genome-wide significance and 

are missed by existing studies. We demonstrate that these “sub-threshold” signals 

represent novel loci, and that epigenomic maps are effective at discriminating true 

biological signals from noise. We experimentally validate the molecular, gene-regulatory, 

cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most 

sub-threshold loci have regulatory consequences and that genetic perturbation of nearby 

genes causes cardiac phenotypes in mouse. Our work provides a general approach for 

improving the detection of novel loci associated with complex human traits. 
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Introduction 

Genome-wide association studies (GWAS) hold the promise of identifying genetic loci 

that drive complex disease, however realizing this goal has been challenging due to the 

modest effect sizes of most common variants that require extremely large cohorts to 

detect with significance. The recent demonstration that disease-associated single 

nucleotide polymorphisms (SNPs) reside preferentially in enhancer elements provides a 

unique opportunity to leverage epigenomic maps of regulatory elements for 

understanding the function of known GWAS loci and for prioritizing new loci missed in 

current studies1-4. Despite increasingly large GWAS cohort sizes, the current catalog of 

genome-wide significant loci still explains only a modest proportion of the heritability for 

any given trait, with an excess of low p-value loci still below the genome-wide significance 

threshold5. These observations suggest that many more signals with “sub-threshold” 

significance remain to be identified, however, the recognition of biologically relevant sub-

threshold loci is hindered by a higher false positive rate6-8. Thus, new computational 

approaches that integrate genetic data with genome-wide epigenomic profiles are needed 

to use existing cohorts to discover new loci and genes that influence complex traits and 

diseases.  

Here, we use epigenomic maps of 127 tissues from the Roadmap Epigenomics Project as a 

guide to systematically identify biologically relevant sub-threshold variants9. As proof of 

concept, we focused on two cardiac traits with clinical significance: electrocardiographic 

QT interval reflecting myocardial repolarization and QRS duration reflecting cardiac 

conduction. These two traits have a clear tissue of origin and published GWASs have 

reported over a hundred QT/QRS loci, making these traits ideal for testing variants with 

sub-threshold significance6-8. In particular, variation within QT interval length plays an 

important role in human disease, where extreme QT prolongation is associated with 

sudden cardiac death and can occur as an unintended side effect of many non-cardiac 

medications10,11. We combine genome-wide maps of cardiac enhancer activity with the 

results from a large study of QT interval duration to identify dozens of novel QT loci with 

sub-threshold statistical significance. We provide multiple lines of evidence to show that 
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these sub-threshold loci can alter enhancer activity, and we implicate specific genes 

through which these loci act to influence QT interval length. Importantly, we 

demonstrate that epigenetic signals can distinguish true biological signals from noise, 

thus bypassing the higher false positive rate that has previously hindered study of sub-

threshold loci. We expect our work will uncover new genes involved in cardiac 

electrophysiology, aid in the identification of patients at risk for sudden cardiac death, 

and enable development of new treatments for susceptible individuals. More broadly, our 

work demonstrates the power of integrating epigenomics with existing GWAS to discover 

sub-threshold genetic loci and novel genes associated with complex human disease.  

 

Results 

QT/QRS-associated variants are enriched in cardiac enhancers  

We compiled a list of 112 QT/QRS loci from the NHGRI GWAS database (accessed July 

2013) and identified SNPs in strong linkage disequilibrium (r2>0.8) using genotype data 

from the 1000 Genomes Project (Phase 1, CEU population)12. We also collected GWAS 

loci from a later meta-analysis of QT interval studies, published in June 2014 by Arking et 

al., which we held out from the aforementioned 112 QT/QRS loci as a validation dataset 

for subsequent analyses5. While Mendelian disease mutations often alter the function of 

proteins and are thus found in protein-coding regions of the genome, the majority of 

common variants (those where the frequency of the minor allele in the population is 

greater than 5%) linked to common human traits and diseases are reported to lie within 

non-coding regions of the genome. In line with this, we find that only 22 of 112 loci 

(20%) associated with QT interval length and QRS duration harbor SNPs that overlap 

exons. Thus, we hypothesized that many common genetic loci associated with QT/QRS 

and other traits act on the regulation of gene transcription, rather than on protein 

function. To test if this is the case, we first computationally examined whether QT/QRS 

variants are present in predicted transcriptional enhancer elements more often than 

expected. As specific histone modifications such as H3K27ac and H3K4me1 are [enriched 

at enhancer elements], we used the combination of histone modifications maps to 
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predicted cardiac enhancers genome-wide. We used chromatin maps across 127 tissues 

generated by the Roadmap Epigenomics Project including adult left ventricle (LV), adult 

right ventricle (RV), fetal heart (FH) and adult right atrium (RA), first focusing on 

enhancers defined by five histone modifications – H3K4me1, H3K4me3, H3K9ac, 

H3K36me3, and H3K27me3, chosen to maximize the number of distinct human tissues 

with available enhancer predictions9. QT/QRS variants have greatest overlap with 

predicted enhancers (as defined by high levels of H3K4me1 and low H3K4me3 using 

ChromHMM) from the four cardiac tissues compared to the other 123 non-cardiac 

tissues (red circles, Fig. 1b, Supplementary File 1)1. To assess the statistical significance of 

this overlap, we sampled a background distribution of “control” loci in the genome that 

have genetic characteristics similar to the 112 QT/QRS loci but do not show statistical 

association with cardiac electrophysiology. We matched control loci for genetic 

properties including minor allele frequency, number of SNPs in LD, distance to nearest 

gene, number of nearby genes, and presence on an Affymetrix 660W genotyping array 

(Fig. 1a, Methods). Of the 127 tissues, we observed that enhancers from the four cardiac 

tissues were most enriched for QT/QRS loci compared to the sampled background of 

control loci.  In particular, enhancers from the LV showed the strongest enrichment of 

any tissue (z-score=7.67, empirical p<1x10-5, 105 permutations), demonstrating that an 

unbiased analysis can resolve the causal tissue with high precision, as QT interval and 

QRS duration are primarily reflective of myocardial repolarization in the ventricles.  



40 

 
Figure 1. GWAS repolarization loci preferentially overlap cardiac enhancers. a, Enrichment of 
human left ventricle enhancers in 112 QT/QRS loci. The number of loci that contain a SNP 
overlapping an enhancer are computed for the 112 QT/QRS loci, and compared against 100,000 
permutations of randomly sampled control loci matched for LD block size (number of SNPs), 
MAF, distance to nearest gene, number of nearby genes, and presence on genotyping array. b, 
Top, Enrichment of enhancers from 127 human tissues in QT/QRS loci. Bottom, Enrichment of 
enhancers from non-cardiac tissues for QT/QRS loci is substantially weaker following removal of 
enhancers active in any of the four cardiac tissues. c, Top, QT/QRS SNPs are more likely to 
disrupt motifs corresponding to expressed TFs compared to 100,000 sets of matched control loci. 
Bottom, Weaker enrichment was observed between repolarization and matched control loci when 
the sequence of the TF motif was randomly shuffled and re-mapped to the genome (10,000 
permutations). 
 
Enhancers are the most predictive class of elements for QT/QRS-associated SNPs  

Because the left ventricle showed the strongest enrichment for QT/QRS loci, we focused 

on this tissue to determine the relative enrichment of diverse classes of annotations and to 
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identify the annotations that are most strongly associated with disease SNPs. We analyzed 

the enrichment of both coding annotations using GENCODE and non-coding 

annotations using individual chromatin marks and chromatin states defined by 

ChromHMM as well as DNase I hypersensitivity (DHS) maps available in heart 

tissue1,13,14. We observed that intergenic enhancers are the most strongly enriched 

annotated genomic region (z-score > 7.5) in QT/QRS loci, followed by gene transcription 

regions (z-score between 3 and 6) (Fig. 2 and 3). This enrichment increased significantly 

(z-score from 7.67 to 9.31 for left ventricle) when restricting the analysis to “strong” 

enhancers (H3K4me1 enhancers that are also marked by H3K27ac). Our results indicate 

that predicted enhancers are highly informative for annotating trait-associated variants 

compared to other classes of genomic regions.  
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Figure 2: 112 QT/QRS loci overlap enhancers more significantly than other genomic regions 
in adult left ventricle. Comparison of H3K4me1-enhancers defined by a 15-state model of 
ChromHMM against other ChromHMM states including protein-coding and non-coding genes 
and their promoters as well as DNase I hypersensitive (DHS) peaks that broadly mark regulatory 
regions. The left panel shows the enrichment of features in the 112 GWAS loci compared to 
randomly sampled control loci; the right panel shows the total number of the 112 GWAS loci 
overlapped by each feature.  
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Figure 1 – figure supplement 1. 112 QT/QRS loci overlap enhancers more significantly than 

other genomic regions in adult left ventricle. Comparison of H3K4me1-enhancers defined by a 

15-state model of ChromHMM against other ChromHMM states including protein-coding and 

non-coding genes and their promoters as well as DNase I hypersensitive (DHS) peaks that 

broadly mark regulatory regions. The left panel shows the enrichment of features in the 112 5 

GWAS loci compared to randomly sampled control loci; the right panel shows the total number 

of the 112 GWAS loci overlapped by each feature.  
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Figure 3: QT/QRS loci overlap enhancers more significantly than other genomic regions in 
non-LV cardiac tissue. Comparison of enhancers defined by H3K4me1 against other 
ChromHMM states in fetal heart, adult right ventricle and adult right atrium. The left panel 
shows the enrichment of features in the 112 GWAS loci compared to randomly sampled control 
loci; the right panel shows the total number of the 112 GWAS loci overlapped by each feature. 
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We next asked whether LV enhancers that overlap QT/QRS loci have features that 

distinguish them from putative LV enhancers identified by ChromHMM that do not 

overlap QT/QRS loci (Fig. 4). First, we considered the density of H3K27ac marks, as the 

co-enrichment of H3K4me1 and H3K27ac correlates with strong enhancer activity15,16. 

We found that the 65 enhancers overlapping 45 QT/QRS loci have a 3.1-fold higher 

H3K27ac density compared to non-GWAS LV enhancers (p=1.54x10-4). In fact, 

incorporating H3K27ac into ChromHMM enhancer predictions resulted in substantially 

greater enrichment of QT/QRS loci (z-score = 10.10 vs. 8.29 for left ventricle); 44 of the 

45 QT/QRS loci overlap an H3K27ac-defined “strong” enhancer.  QT/QRS LV enhancers 

are also more likely to be marked by either H3K4me1 or H3K27ac in at least one of the 

other three heart tissues (fetal, right atrium, right ventricle) compared to non-GWAS LV 

enhancers (p-values between 0.008 and 0.07, Fig. 4) and less likely to be active in non-

cardiac tissues (p=9x10-3, Fig. 4).  

 

Left ventricular QT/QRS enhancers are significantly more hypomethylated than 

predicted LV enhancers not overlapping QT/QRS loci (hypomethylation p=1.07x10-6, 

hypermethylation p=0.60, Fig. 4). Similar to H3K27ac, CpG hypomethylation correlates 

with increased enhancer activity, possibly through modulation of TF binding site 

accessibility17,18. Consistent with this idea, 22 of the 45 GWAS loci contain an enhancer 

SNP that alters a predicted motif for a cardiac-expressed TF (empirical p=0.002, 105 

permutations) (Fig. 1c).  Moreover, QT/QRS GWAS enhancers are enriched for DHS and 

Cap Analysis Gene Expression (CAGE) signals in human fetal heart, both of which are 

marks of greater enhancer activity (Fig. 4) 14,19. Finally, QT/QRS left ventricular enhancers 

show significant evolutionary conservation across the primate lineage compared to non-

GWAS LV enhancers (p=6.82x10-5 compared to 105 size-matched sets of LV enhancers), 

suggesting that perturbation of these enhancers is under stronger negative selection. 

Taken together, QT/QRS loci preferentially overlap conserved enhancers that show 

cardiac-restricted activity, suggesting that common variants associated with these loci 

play roles in regulating cardiac functions that drive human phenotypes.  
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Figure 4: Enhancers overlapping QT/QRS loci differ in functional characteristics from all 
enhancers. Several functional characteristics were compared between enhancers overlapping 
QT/QRS loci (red) and non-GWAS left ventricle enhancers (blue). Fold change represents fold 
change between median values for the two groups, and p-values were calculated using the Mann-
Whitney U test. See Methods for comparison methodology between GWAS QT/QRS enhancers 
and non-GWAS enhancers for each functional or epigenomic feature. For primate conservation, 
LV enhancers (blue) were size-matched (+/-1kb) to GWAS enhancers to control for skewed 
enrichments driven by larger GWAS enhancer size. 
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enhancers identified from these tissues can act as an independent measure of validation 

to ensure that the loci did not reach genome-wide significance due to either technical 

artifacts from genotyping array usage, or biological cofounders such as population 

stratification20. For diseases where the tissue-of-origin is less clear, calculating enhancer 

enrichments by tissue can serve as an initial unbiased computational screen for putative 

biologically relevant tissues for downstream experimental follow-up.  

 

To demonstrate the applicability of computing enhancer enrichments for a variety of 

complex traits, we first performed similar enrichment analyses for a GWAS of myocardial 

mass21. This GWAS was performed on 73,518 individuals and identified 52 loci associated 

with any of four electrophysiological traits associated with the QRS complex, a measure of 

ventricular depolarization. Using epigenomic information from the human adult left 

ventricle, we first calculated enrichments of overlap between these GWAS loci and six 

histone modifications that include both activating (e.g. H3K27ac, H3K4me1/3) and 

repressive modifications (e.g. H3K27me3, H3K9me3). We observed a substantial 

difference in enrichment of these six modifications: H3K27ac, the activating histone 

modification enriched at enhancers and promoters showed greatest enrichment for QRS-

associated GWAS loci, while the two inactivating marks, H3K9me3 and H3K27me3, 

showed no enrichment for these GWAS loci, consistent with a role of these loci in 

promoting activation of gene expression. We also calculated the enrichment of overlap 

for the 53 voltage-associated GWAS loci and H3K4me1/H3K27ac-predicted enhancers 

identified in four cardiac developmental time points from an in vitro mouse 

cardiomyocyte differentiation system. We observe a weak enrichment for enhancers from 

embryonic stem cell (ESC), mesoderm (MES) and cardiac progenitor (CP) cells, but a 

substantially stronger enrichment for enhancers identified at the cardiomyocyte (CM) 

stage, consistent with a role for the QRS-associated GWAS loci in altering cardiomyocyte 

depolarization. 

 

Similar to the enrichment plots presented in Figure 1 for QT/QRS GWAS loci, we also 

computed enhancer enrichments for genome-wide significant loci identified from a 
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variety of other complex human traits and diseases including LDL cholesterol levels, type 

1 diabetes, platelet count and ulcerative colitis22-25. For these four complex traits, we 

observed that GWAS loci were enriched in specific tissues and cell types that match the 

known pathology of each trait or disease. For example, LDL cholesterol-associated GWAS 

loci are enriched in predicted active enhancers from adult liver tissue, while GWAS loci 

associated with platelet count are enriched in enhancers predicted from hematopoetic 

stem cells, the progenitor cell type that ultimately gives rise to platelets. 

 

 
 

Figure 5: Enrichment of SNPs associated with myocardial mass in activating enhancers from 
human left ventricle and mouse cardiomyocytes. Left, Enrichment of GWAS SNPs associated 
with QRS complex and myocardial mass in ChIP-seq peaks of histone modifications from the 
adult human left ventricle. Right, Enrichment of GWAS loci associated with the QRS complex and 
myocardial mass in active enhancers from four in vitro developmental timepoints in the mouse 
cardiomyocyte differentiation system. ESC – embryonic stem cells, MES – mesoderm cells, CP – 
cardiac progenitor cells, CM – cardiomyocytes. 
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Figure 6: Unbiased enhancer enrichment analysis distinguishes known causal tissue and cell 
types of origin for a variety of complex human traits and diseases. Enrichment and plots are 
generated as described in Figure 1 for QT/QRS interval GWAS loci, with size of circles 
corresponding to number of GWAS loci that overlap enhancers from each tissue.  
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testing (p<5x10-8) and the limited statistical power of existing studies to discover variants 

with modest effect sizes7,26. We hypothesized that knowledge of the genomic properties 

associated with existing GWAS loci can guide the search for additional genetic signals 

that cannot be detected without increasing GWAS cohort sizes, and that these loci with 

weaker “sub-threshold” p-values (i.e. 0.05>p>5x10-8) might reveal novel genes and 

biological pathways that contribute to complex disease. To test this idea, we used SNP 

summary statistics from the Arking et al. (2014) QT interval GWAS study we had earlier 

held out as a validation dataset5. These summary statistics include the 112 QT/QRS loci 

identified by prior GWASs (red dots, bottom, Fig. 7), as well as loci that reach genome-

wide significance in the larger meta-analysis cohort but were not discovered in any 

previous GWAS (and therefore were not included in the 112 QT/QRS loci used for 

enrichment analyses above, gold dots, bottom, Fig. 7). We observed that active LV 

enhancers are strongly enriched for loci harboring SNPs with p-values between 1x10-4 

and 5x10-8 (Fig. 7a, black line). Furthermore, the combination of functional features 

identified for above-threshold QT/QRS enhancers (Fig. 4) substantially improves sub-

threshold locus enrichment across a wide range of p-value thresholds (Fig. 7a, colored 

lines, Fig. 8). 
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Fig. 7. Cardiac enhancers harbor additional sub-threshold QT loci. a, Top, Enhancer 
characteristics learned on above-threshold QT/QRS loci from Fig. 2 are predictive for additional 
sub-threshold loci (colored lines). Each point on a curve represents the fold difference in 
proportion of SNPs with p-value below the cutoff in the enhancer set versus the whole genome. 
Bottom, Manhattan plot of p-values for all SNPs from Arking et al. (2014) QT interval GWAS. 
112 QT/QRS loci and all SNPs within 1Mb are highlighted in red. Genome-wide significant loci 
newly discovered by Arking et al. and not in the 112 QT/QRS loci are highlighted in yellow. b, 
Top, Enrichment signals for sub-threshold SNPs in left ventricle enhancers persists following 
removal of the 112 GWAS loci and nearby SNPs (+/- 1Mb). Bottom, Manhattan plot of p-values 
for all SNPs from Arking et al. (2014) QT interval GWAS following removal of 112 QT/QRS loci 
and all SNPs within 1Mb. Genome-wide significant loci newly discovered by Arking et al. and not 
in the 112 QT/QRS loci are highlighted in yellow.  
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Figure 8: High density of fetal heart DNase I hypersensitivity reads in LV enhancers is 
robustly informative for identifying enriched sets of sub-threshold loci. Top: Enrichment of 
DHS reads in GWAS enhancers. Middle: Example comparison of sub-threshold locus enrichment 
in active LV enhancers vs. active LV enhancers with high DHS read density. Bottom: Y-axis of 
graphs corresponds to fold enrichment of sub-threshold loci in enhancers taken at three p-value 
cutoffs (10-4, 10-5 and 10-6). X-axis represents enrichments plotted for different subsets of 
enhancers chosen by varying DHS read density cutoffs. 
 

Whether the enrichment of SNPs in the sub-threshold significance range represents 

linkage disequilibrium with existing above-threshold GWAS SNPs or novel biologically 

relevant loci remains an unresolved question3. In fact, an enrichment analysis using only 

SNPs nearby above-threshold GWAS loci produced a strong enrichment signature in the 

sub-threshold significance range (Fig. 9). To distinguish between the two possibilities, we 
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Figure 3 – figure supplement 1. High density of fetal heart DNase I hypersensitivity reads in 

LV enhancers is robustly informative for identifying enriched sets of sub-threshold loci. Top: 
Enrichment of DHS reads in GWAS enhancers. Middle: Example comparison of sub-threshold 

locus enrichment in active LV enhancers vs. active LV enhancers with high DHS read density. 

Bottom: Y-axis of graphs corresponds to fold enrichment of sub-threshold loci in enhancers 5 

taken at three p-value cutoffs (10
-4

, 10
-5

 and 10
-6

). X-axis represents enrichments plotted for 

different subsets of enhancers chosen by varying DHS read density cutoffs.  
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took a conservative approach and removed all SNPs within 1Mb of the initial 112 

QT/QRS loci. Remarkably, the enrichment for LV enhancers persists and increases in the 

sub-threshold range (i.e. p=1x10-4 to 5x10-8, Fig. 7b), likely due to removal of nominally 

significant SNPs that are in LD with above-threshold QT/QRS loci and do not represent 

true association signals. In total, we identified 2075 SNPs with p<1x10-4 that are 

independent of the 112 published QT/QRS loci, of which 208 SNPs overlap LV 

enhancers.   

 

 
Figure 9: Enrichment in the sub-threshold significance range can be observed using only SNPs 
nearby known above-threshold loci. The foreground consisted of only SNPs within +/- 1Mb of 
the 112 QT/QRS loci, and was compared against a background of all SNPs in the genome. 
Enrichment analyses were performed as described for Figure 7.  
 

Epigenomic prioritization identifies sub-threshold loci with molecular functions 

Because the enrichment of sub-threshold SNPs in cardiac enhancers suggests that 

epigenetic prioritization can be used as a starting point for more in-depth investigations 

of sub-threshold signals from GWAS, we sought to directly test the molecular hypothesis 

that these sub-threshold loci impact the transcriptional regulation of cardiac genes (Fig. 

10a). We grouped all 2075 sub-threshold SNPs using linkage disequilibrium data 

(minimum r2=0.2) to identify 287 independent sub-threshold loci in the genome 
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(Methods). We prioritized loci where a sub-threshold SNP overlapped an active LV 

enhancer and either (i) also overlapped a fetal heart DNase I hypersensitivity peak or (ii) 

was an expression quantitative trait locus (eQTL) for a nearby gene. In total, we cloned 

allele-specific enhancer fragments from 22 cardiac enhancers that overlap SNPs from 18 

independent sub-threshold loci, and performed quantitative luciferase assays in human 

iPSC-derived cardiomyocytes to determine whether the sub-threshold SNP genotypes 

influence enhancer activity (Methods). We observed that 13 of 18 sub-threshold loci 

(72.2%) contain an enhancer that drives luciferase activity in an allele-specific manner 

(Fig. 10b,d, Fig. 12, Fig. S1). Moreover, we estimate that between 51.1%-89.8% (95% 

Bayesian confidence interval) of prioritized sub-threshold loci show allele-specific activity 

on transcription, suggesting that the majority of sub-threshold loci identified by 

epigenomic prioritization do in fact have an impact on transcriptional enhancer activity.  



54 

 
Figure 10: Sub-threshold loci prioritized by epigenomics alter enhancer activity. a, Model 
detailing how sub-threshold SNPs overlapping enhancers can affect QT interval. Green text: 
methods used to test mechanistic step in model. b, Summary of luciferase enhancer reporter 
experiments, cloning steps and luciferase enhancer reporter construct. c, Example luciferase assay 
on two haplotypes of containing the rs1044503 SNP shows allele-specific enhancer activity in 
human cardiomyocytes, n=24 per haplotype. Error bars represent standard error of the mean. d, 
Number of sub-threshold loci tested that exhibit significant allelic activity (p<0.05 between two 
haplotypes). 
 

We also performed chromosome conformation capture combined with high-throughput 

sequencing (4C-seq) to experimentally test whether predicted enhancers in sub-threshold 

loci can form contacts with promoters, and to identify potential target genes of sub-

threshold enhancers. We used 4C-seq to test ten predicted enhancers from eight sub-

threshold loci in human iPSC-derived cardiomyocytes27. Eight enhancers in six loci 
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formed enhancer-promoter interactions in the proximal 500kb region (Fig. 11c, Fig. 12, 

Fig. S2). This analysis provides evidence that the novel QT loci enhancers have regulatory 

activity and that the sub-threshold SNPs identified in our analyses can alter the activity of 

cardiac enhancers.  

 

 
Figure 11: Predicted enhancers in sub-threshold loci form 3D interactions with nearby genes. 
a, Model detailing how sub-threshold SNPs overlapping enhancers can affect QT interval. Green 
text: methods used to test mechanistic step in model. b, Summary of luciferase enhancer reporter 
experiments, cloning steps and luciferase enhancer reporter construct. c, Example luciferase assay 
on two haplotypes of containing the rs1044503 SNP shows allele-specific enhancer activity in 
human cardiomyocytes, n=24 per haplotype. Error bars represent standard error of the mean. d, 
Number of sub-threshold loci tested that exhibit significant allelic activity (p<0.05 between two 
haplotypes). 
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Figure 12: Experimental evidence that sub-threshold SNPs alter enhancer activity and that 
sub-threshold enhancers interact with gene promoters. Fold below GWS column represents 
degree to which sub-threshold locus is below genome-wide significance (5x10-8); Luciferase 
reporter column colored green if significant allelic difference in activity (p<0.05, Fig. S1); 
Enhancer-promoter interactions column colored green if there is a detectable enhancer-promoter 
interaction by 4C-seq (Fig. S2). 
 

Epigenomic prioritization discriminates sub-threshold loci with stronger association 

statistics 

We next tested whether epigenomic prioritization can distinguish statistically relevant 

sub-threshold loci by comparing the association statistics of sub-threshold loci that do or 
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do not overlap cardiac enhancers. From the 287 independent sub-threshold loci in the 

genome, we selected two subsets to compare: 60 loci that contain sub-threshold SNPs 

directly overlapping predicted active LV enhancers, and as a negative control, 129 sub-

threshold loci that do not any SNPs (r2>0.2) overlapping a cardiac enhancer.  

Evidence from genome-wide association studies 

We reasoned that if sub-threshold loci that overlap active cardiac enhancers represent 

true biological signals, they should have stronger GWAS association signals than the 

negative control set. We present three lines of evidence supporting this hypothesis below 

(Fig. 13a):  

a) The 60 enhancer-overlapping sub-threshold loci have significantly stronger p-

values than the 129 negative control loci, despite the application of the same 

p=1x10-4 threshold for both sets (p=1.95x10-5, left, Fig. 13a).  

b) 9 of the 60 enhancer-overlapping sub-threshold loci are among the loci that 

reach genome-wide significance in the larger held out meta-analysis cohort 

(and not included in the 112 QT/QRS loci used for enrichment analyses in Fig. 

1), compared to only 3 of the 129 sub-threshold loci that do not overlap 

enhancers (6.45-fold enrichment, p=1.92x10-3
, middle, Fig. 13a).  

c) The 60 enhancer-overlapping sub-threshold loci are more likely to reach 

nominal significance (p<0.05) in a related GWAS study of QRS duration (see 

Methods for individuals shared between both studies)28. In the QRS duration 

GWAS, p-values are available for 56 of 60 enhancer-overlapping sub-

threshold QT loci and 110 of 129 negative control sub-threshold loci. 31 of 56 

(55.4%) enhancer-overlapping sub-threshold loci are nominally significant in 

the QRS GWAS, a rate 2.9-fold higher than the 129 negative control loci (21 of 

110 loci, p=3.28x10-6, right, Fig. 13a), suggesting that epigenetic prioritization 

is more likely to identify sub-threshold SNPs that replicate in subsequent 

GWASs.  
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Taken together, these analyses demonstrate that genome-wide maps of predicted 

enhancers can facilitate the detection of true sub-threshold loci.  

 

Evidence from organismal phenotypes 

Our identification of a high-confidence set of sub-threshold loci based on epigenomic 

signals provides a unique opportunity to discover new genes that contribute to cardiac 

electrophysiological traits. As enhancers can regulate genes up to 1Mb away, it is difficult 

to identify targets using a simple nearest gene approach29. To circumvent this limitation, 

we developed a computational enhancer-gene linking method that prioritizes gene targets 

based on correlated activity patterns between enhancer-gene pairs across 59 human 

tissues (Methods). Using this approach, we identified 106 candidate genes predicted to be 

regulated by the 60 enhancer-overlapping sub-threshold loci. Notably, 11 of the 15 

observed 4C-seq interactions were predicted by our computational approach, compared 

to 3 of 15 by the commonly applied approach of assigning the enhancer target to the 

nearest gene. 

We used the output of the enhancer-gene linking method to test whether these candidate 

genes have roles in QT interval. To this end, we studied mouse phenotypes for directed 

knockouts and genetic perturbations of the 106 predicted gene targets of sub-threshold 

enhancers. We identified 49 of the 106 genes where mouse mutant models were available 

with documented phenotypes30. Genetic perturbation in 11 of the 49 genes resulted in 

altered cardiac conduction or cardiac contractility: both processes that are also influenced 

by genes nearby above-threshold QT interval loci and genes implicated in the Mendelian 

Long QT syndrome. This represents a 4.11- fold enrichment compared to genes linked to 

all active LV enhancers (181 of 3311, p=6.84x10-5, black bar, Fig. 13b). In contrast, 

phenotypes arising from genetic perturbation of LV-expressed genes nearby the 129 

negative control sub-threshold loci outside enhancers are 7.30-fold less likely to result in 

altered cardiac conduction or contractility compared to our 60 prioritized sub-threshold 

loci (p=1.92x10-3, perturbation of 2 of 65 genes nearby the negative control subset have 

relevant cardiac phenotypes, grey bar, Fig. 13b).  
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The study of biologically relevant sub-threshold loci has been hampered by a high false 

positive rate that makes the detailed investigation of any sub-threshold locus 

experimentally more difficult and less attractive than above-threshold loci. The data 

presented here provide multiple independent lines of evidence that epigenomic signatures 

can be used to prioritize sub-threshold GWAS loci with a significantly greater likelihood 

of being biologically relevant. 
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Figure 13: Epigenomic prioritization distinguishes biologically relevant sub-threshold loci  
a, Left, Sub-threshold loci overlapping enhancers have significantly stronger association signals 
than loci outside enhancers in the QT interval GWAS. Middle, Loci overlapping enhancers have 
significantly more likely to be newly genome-wide significant in the held-out QT interval GWAS, 
than loci outside enhancers. Right, Sub-threshold loci overlapping enhancers are significantly 
more likely to be nominally significant (p<0.05) in QRS GWAS than sub-threshold loci not 
overlapping enhancers. b, Genetic perturbation of genes with predicted links to 60 enhancer-
overlapping sub-threshold loci are significantly more likely to result cardiac conduction or 
contractility phenotypes than genes linked to all LV enhancers and genes nearby non-enhancer 
overlapping sub-threshold loci. 
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Enrichment of sub-threshold loci for non-cardiac human diseases in enhancer 

elements 

We also assessed the broad applicability of using enhancer annotations to prioritize 

biologically promising sub-threshold variants. We therefore expanded our sub-threshold 

locus analyses to also two complex human diseases for which summary-level p-value 

information was available from a large cohort GWAS study: LDL cholesterol and 

Alzheimer’s disease. Both LDL cholesterol and Alzheimer’s disease show an enrichment 

pattern for sub-threshold SNPs in enhancer elements similar in that observed for QT 

interval sub-threshold SNPs (Fig. 14). Notably, this enrichment pattern persists after 

removal of genome-wide significant loci previously identified by the published LDL 

cholesterol and Alzheimer’s disease studies. This indicates that sub-threshold loci 

associated with a wide range of complex human traits can be prioritized using 

epigenomic signatures, and that the results presented above for QT interval are not 

restricted to genetic architecture of cardiac electrophysiological traits.  
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Figure 14: Enhancers harbor additional sub-threshold loci associated with Alzheimer’s disease 
and LDL cholesterol. Top, Enhancer characteristics learned for QT/QRS loci (e.g. H3K27ac, CpG 
hypomethylation) are also effective for enrichment of LDL cholesterol-associated sub-threshold 
loci in human adult liver enhancers25. Bottom, Enrichment of Alzheimer’s disease-associated sub-
threshold SNPs in enhancers from peripheral blood monocytes. Tissue type was chosen using 
results by Gjoneska et al. (2015) computing enrichment of genome-wide significant Alzheimer’s 
disease loci across enhancers from Roadmap Epigenomics tissues31.  
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Sub-threshold locus at rs1743292/rs1772203 functionally disrupts enhancer activity  

Only a very small number of above-threshold GWAS loci, including SORT1 for LDL 

cholesterol, the FTO/IRX3 locus for obesity, and the SCN5A/SCN10A locus for QRS 

duration, have been investigated in detail32-37. These studies all identified SNPs within 

non-coding regulatory elements that disrupt expression of a nearby gene that plays a 

critical role in controlling a human phenotype. In contrast, no sub-threshold locus has 

been experimentally studied or validated to date. We selected one locus on chromosome 6 

where our results from Figures 10-13 suggest that sub-threshold SNPs disrupt enhancer 

activity and therefore expression of a gene involved in cardiac electrophysiology. We set 

out to investigate whether this locus can serve as an example for future investigations of 

other sub-threshold loci.  

The sub-threshold locus on chromosome 6 contains 8 SNPs with reported p-values less 

than 1x10-4 and another 2 SNPs in LD that do not have calculated p-values. We focused 

on the 3 SNPs in this locus that overlap active LV enhancers: rs1743292 (p=6.48x10-5) and 

rs112332323 (p-value not available) that both overlap a 3.6kb predicted enhancer, and 

rs1772203 (p=5.87x10-5) that overlaps a 2.8kb predicted enhancer (Fig. 15a,b). We cloned 

fragments corresponding to both enhancers upstream of a minimal promoter driving the 

luciferase gene, and compared luciferase activity between constructs carrying either the 

major or minor haplotypes at each site (rs1743292 enhancer: Fig. 15c, rs1772203 

enhancer: Fig. 15e, SNPs differing between cloned constructs listed at bottom of Fig. 15b). 

We observed that the activity of both enhancers is dependent on the sub-threshold 

haplotype: at the rs1743292 enhancer, the major haplotype has 45% greater activity 

(p=2.99x10-12), while the minor haplotype is 28% more active in the rs1772203 enhancer 

(p=1.79x10-5). 
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Figure 15: The rs1743292/rs1772203 sub-threshold locus disrupts activity of cardiac 
enhancers that interact with BVES, a gene important for cardiac electrophysiology 
a, Overview of rs1743292/rs1772203 sub-threshold locus. Gold rectangles represent predicted 
active LV enhancers, blue and green lines represent enhancer promoter interactions from the 
rs1743292 and rs1772203 enhancers, respectively (see panel g). b, Detailed view of cardiac 
enhancers overlapping rs1743292 (left) and rs1772203 (right). c, rs1743292 haplotypes differing at 
6 SNPs (listed at bottom of panel b) affect activity of cardiac enhancer in human iPSC-derived 
cardiomyocytes, n=24 per haplotype. Error bars represent standard error of the mean. d, Left, 
rs1743292 alters level of DNase I hypersensitivity in a heterozygous human fetal heart sample. 
Right, Allelic imbalance of DHS reads at rs1743292 observed for 5 of 5 human individuals. e, 
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rs1772203 allele affects activity of cardiac enhancer in human iPSC-derived cardiomyocytes, n=16 
per allele. Error bars represent standard error of the mean. f, rs1743292 SNP overlaps a predicted 
nuclear factor I (NF-I) motif. g, 4C-seq analysis of the rs1743292 (blue) and rs1772203 (green) 
enhancers identifies enhancer-promoter interactions with nearby BVES, BVES-AS1 and POPDC3 
genes, and additional enhancer-enhancer interactions within introns in PREP. h, Genetic 
perturbation of Bves, but not Popdc3 or Prep leads to cardiac electrophysiological defects in 
mouse models. 

In the fetal human heart, rs1743292 overlaps a strong DNase I hypersensitivity peak 

marking a local region of open chromatin signifying potential transcription factor 

binding (DHS track, Fig. 15b)38. Thus, to provide evidence that the rs1743292 locus alters 

enhancer activity in humans, we re-aligned the DHS sequencing reads from heterozygous 

human individuals in an allele-specific manner to assess the difference in the number of 

reads that map to either allele3. In fetal heart tissue from one individual sequenced to high 

depth, rs1743292 shows a significant allelic imbalance for DHS reads with 97 reads 

mapping to the major C allele and 300 reads mapping to the minor T allele (left, Fig. 15d, 

p=3.1x10-25, binomial test). This trend is consistent in all five additional human 

individuals heterozygous at rs1743292 sequenced at lower depth (right, Fig. 15d), 

suggesting that rs1743292 can affect enhancer activity potentially through altering 

chromatin accessibility or transcription factor binding. Moreover, using motif analysis, 

we observed that rs1743292 alters a predicted binding site for the cardiac-expressed 

nuclear factor NF-I family (Fig. 15f), which contains a family member (NF-1a) that itself 

has been associated by GWAS with cardiac electrophysiology39.  

We used 4C-seq to identify genes that could be regulated by the rs1743292 or rs1772203 

enhancers. We observed that both enhancers form interactions with promoters of the 

upstream popeye-domain containing (POPDC) family members BVES/POPDC1 and 

POPDC3, and with predicted enhancers situated within introns of the downstream PREP 

gene (Fig. 15a,g). This suggests that both enhancers may contribute to regulating the gene 

expression of BVES and POPDC3, of note because the POPDC protein family of 

transmembrane proteins has recently reported roles in cardiac pacemaking40,41.  

We sought to investigate the roles of the three candidate target genes (BVES, POPDC3, 

PREP) of the rs1743292/rs1772203 locus in regulating myocardial repolarization. 

Consistent with the genetic association between this locus and QT interval length, we 
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found that mice homozygous for loss-of-function copies of BVES exhibit cardiac 

conduction and pacemaker defects (Fig. 15h)30,40. In contrast, POPDC3 and PREP mouse 

loss-of-function models have no reported cardiac abnormalities, and instead show altered 

body fat, suggesting that this genetic locus alters QT interval length through the BVES 

gene30.  

 

Strengthening our evidence implicating BVES in QT interval, we observed that across 59 

human tissues, BVES is most highly expressed in human left ventricle, whereas POPDC3 

has much lower expression in cardiac tissue than skeletal muscle, and PREP is 

constitutively expressed across a wide range of tissues (Fig. 16). We also used antisense 

morpholino oligonucleotides to knockdown transcripts from the BVES, POPDC3 and 

PREP orthologs in zebrafish, observing that bves knockdown leads to a reproducible 

shortening of the zebrafish ventricular action potential duration (APD), the cellular 

correlate of the QT interval, (p=0.002 and 0.09 for two independent morpholino 

sequences), whereas there is no reproducible difference in ventricular APD following loss 

of popdc3 or prep transcripts (Fig. 17). Collectively, these data from multiple organisms 

provide evidence that SNPs within the rs1743292/rs1772203 locus alter QT interval 

duration through disruption of BVES expression.  
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Figure 16: Expression patterns of BVES, POPDC3 and PREP across 59 human tissues. Red 
bars correspond to chambers of the adult human heart (LV = left ventricle, RV = right ventricle, 
RA = right atrium), orange corresponds to skeletal muscle (SM = skeletal psoas muscle). Sample 
labels (E##) correspond to labels assigned by the Roadmap Epigenomics Consortium and 
available on the Roadmap Epigenomics website9. 
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Figure 6 – figure supplement 1. Expression patterns of BVES, POPDC3 and PREP across 59 

human tissues. Red bars correspond to chambers of the adult human heart (LV = left ventricle, 

RV = right ventricle, RA = right atrium), orange corresponds to skeletal muscle (SM = skeletal 

psoas muscle). Sample labels (E##) correspond to labels assigned by the Roadmap 

Epigenomics Consortium and available on the Roadmap Epigenomics website 5 

<http://egg2.wustl.edu/roadmap/web_portal/meta.html>(9). 
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Figure 17: Knockdown of bves in zebrafish leads to ventricular repolarization defects. Effect of 
gene knockdown using two independent morpholino sequences (red, blue) on ventricular action 
potential duration compared against control scrambled morpholino (black). Top: Sample optical 
voltage mapping traces from one matched morpholino and control knockdown pair. Bottom: 
Differences in APD80 between control and antisense morpholino oligonucleotide-mediated 
knockdown zebrafish. * corresponds to p<0.05 from unpaired two-tailed Student’s t-test, n=19 for 
control scrambled morpholinos, n=20 for each morpholino targeting BVES, POPDC3, or PREP 
transcripts, error bars represent standard error of the mean.  
 

These results provide evidence that cardiac enhancers can be used to identify novel sub-

threshold loci and genes associated with cardiac traits. As demonstrated with the 

luciferase enhancer reporter assays, and specifically the rs1743292/rs1772203 locus, sub-

threshold loci harbor SNPs that affect enhancer activity and regulate genes involved in 

QT interval. In the current QT interval GWAS, rs1743292 had an effective sample size of 

68,900 individuals with 12.76% power to detect the locus at genome-wide significance. To 

detect rs1743292 at genome-wide significance with 80% power would require a GWAS 

cohort of 146,700 individuals. Thus, our study demonstrates that genome-wide enhancer 

maps are a powerful tool for identifying sub-threshold loci with bona fide roles in human 

cardiovascular physiology that would have remained otherwise unrecognized from 

existing GWAS cohorts. 
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Discussion 

 
A major limitation in the human genetics field is the inability to ascribe function to the 

vast majority of non-coding SNPs associated with complex human traits. Using enhancer 

annotations from hundreds of cell types and tissues, we find ~50% of QT/QRS GWAS 

loci overlap enhancers, and that these enhancers share common characteristics, including 

H3K27ac marks, CpG hypomethylation, and greater evolutionary conservation. The high 

density of common variation we observed in non-coding enhancers may be due to weaker 

evolutionary selection against the subtle phenotypes that arise from disruption of 

transcriptional regulatory units compared to the more severe disruption of protein-

coding sequences commonly observed in rare Mendelian diseases.  

Studies of genetic heritability have indicated that many additional loci lie below the 

genome-wide significance threshold26. Our study contributes fundamental insights to 

overcoming the difficult problem of discovering the biologically relevant sub-threshold 

genetic signals that are orders of magnitude weaker than discovered by traditional 

GWAS. Three prior studies have observed the general enrichment of either sub-threshold 

SNPs or SNPs that explain a disproportionately high amount of heritability in cell type-

specific regulatory elements3,42,43. However, our study is unique in demonstrating the 

advantage of combining different epigenomic features to produce greater enrichments of 

sub-threshold loci. Critically, no previous study to our knowledge has implicated any 

specific sub-threshold locus in any complex human trait, while we establish that 13 of the 

18 sub-threshold loci tested in this study are capable of altering enhancer activity. We also 

leverage GWAS summary statistics and genetic perturbations in mouse to demonstrate 

that epigenetic marks can discriminate true positive sub-threshold signals from noise, a 

key problem that, until now, has prevented the study of these loci. Finally, we perform an 

in-depth molecular dissection of the rs1743292/rs1772203 sub-threshold locus and 

implicate the popeye-domain containing family of transmembrane proteins in regulating 

myocardial repolarization. The study of above-threshold GWAS loci is generating more 

biological insights on new causal genes contributing to human disease, however there 
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remains a wealth of untapped signals in the sub-threshold region. The work presented 

represents a first step towards deciphering this signal and opens the door for the 

discovery of greater numbers of disease loci, genes, and pathways. 

Our study focused on QT interval and QRS duration due to their clear tissue of origin 

and a wealth of existing GWAS data, however we believe our approach could generalize 

to any well-powered GWAS on any trait. To this end, we chose two recently published, 

well-powered GWASs that relate to human diseases affecting large segments of the 

population: LDL cholesterol levels and Alzheimer’s disease. For both traits, we observed 

the enrichment of SNPs well into the sub-threshold significance range, that the 

enrichment signature persists following removal of all above-threshold loci, and that 

functional features that improve enrichment of QT-associated sub-threshold loci are also 

effective when applied to sub-threshold loci associated with LDL cholesterol and 

Alzheimer’s disease (Fig 14). These results suggest that epigenomics can be applied more 

broadly to identify new loci with sub-threshold statistical significance from GWAS of 

many complex human diseases. One important future extension of this work would be to 

build a formal machine learning classifier that can be first trained on above-threshold 

GWAS loci before being applied to quantitatively rank sub-threshold loci by predicted 

biological relevance.  

Finally, investigating the differences between above-threshold and sub-threshold loci to 

elucidate the factors that drive loci to different degrees of association with a trait will be 

an important area of future investigation. Many reported genome-wide significant loci 

have been discovered by GWAS despite low power, likely due to the existence of many 

other variants of similar effect that go undetected, termed the “winner’s curse”, and thus 

this difference could be driven in part by random chance. However, we also hypothesize 

that sub-threshold loci with weaker effect sizes may act in different pathways from loci 

with stronger effect sizes, and that sub-threshold variants could have weaker effects on 

gene expression.   
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In summary, our results provide a critical roadmap for the systematic analysis and re-

analysis of genome-wide association studies to prioritize novel biologically relevant loci 

with weak association signals. As demonstrated with the rs1743292/rs1772203 locus, 

these loci would otherwise require substantially greater cohort sizes to reach statistical 

significance. Thus, we expect that this approach can be exploited to broadly improve the 

understanding of the biological pathways that contribute to complex human traits and 

disease. 
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Methods 

 

Identifying GWAS loci associated with cardiac traits 

We compiled a list of all SNPs associated with electrocardiographic QT interval 

(reflecting myocardial repolarization) or QRS duration (reflecting cardiac conduction) 

from the NHGRI GWAS catalog of published GWAS (accessed on July 09, 2013), and 

removed loci identified from studies with small sample sizes (<5000 individuals). As the 

GWAS catalog reports SNPs with p<1x10-6, we performed a sensitivity analysis using only 

loci with p<5x10-8 to demonstrate that two different cut-offs does not meaningfully affect 

enrichment results for left ventricle. We used genotype data from the 1000 Genomes 

project to identify all SNPs in LD (r2>0.8, CEU population) with the lead SNPs. For cases 

where two lead SNPs were in LD with each other (i.e. different studies reported different 

SNPs from the same haplotype block), we merged the resulting loci. To avoid over-

counting, if the sets of LD SNPs from two independent lead SNPs overlapped, we 

randomly assigned each of the shared LD SNPs to only one of the two lead SNPs.  

 

RNA-seq data and enhancer annotations 

Epigenome Roadmap datasets. Processed RNA-seq data for 59 human tissues and 

enhancer annotations (for 127 H3K4me1-defined and 88 “strong” H3K4me1/H3K27ac-

defined enhancer sets) were downloaded from the Roadmap Epigenomics Project9. Initial 

analyses across all 127 tissues were performed on cardiac enhancers defined by 

ChromHMM by the Roadmap Epigenomics Project using five chromatin modifications 

including H3K4me1 but not H3K27ac (15-state model). “Strong” cardiac enhancers, 

available for a subset of 88 tissues, were defined by ChromHMM by the Roadmap 

Epigenomics Project using six chromatin modifications including both H3K4me1 and 

H3K27ac (18-state model).  

 

Human differentiated cardiomyocyte RNA-seq dataset. hESCs were differentiated to 

cardiomyocytes as previously described 44 and were obtained from David Elliott at 

Monash University. RNA was extracted using TRIzol reagent according to the 
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manufacturer's instructions. 10μg RNA was used for library construction according to 

Illumina RNA-seq library kit with minor modifications. Briefly, mRNA was isolated 

using Dynabeads mRNA Purification Kit (Invitrogen, Catalog #61006) followed by 

fragmentation and ethanol precipitation. First and second strand synthesis were 

performed followed by end repair, A-tailing, paired end adaptor ligation and size 

selection on a Beckman Coulter SPRI TE nucleic acid extractor. 200-400 bp dsDNA was 

enriched by 15 cycles of PCR with Phusion High-Fidelity DNA Polymerase (NEB, 

Catalog #M0530) followed by gel purification of 250 bp fragments from the amplified 

material. Amplified libraries were sequenced on an Illumina GAIIx sequencer. Reads 

were mapped against the hg19 version of the human genome using RSEM v. 1.2.3 and 

bowtie v. 0.12.7  using flags "rsem-calculate-expression --phred64-quals -p 4 --output-

genome-bam --calc-ci --paired-end --bowtie-chunkmbs 1024, without in-silico polyA 

addition to the transcripts. 

 

Enrichment of genomic features in QT/QRS loci 

We used genomic features annotated by combinations of histone modifications (e.g. 

enhancers and promoters using ChromHMM by the Roadmap Epigenomics Project) or 

by GENCODE (e.g. protein-coding exons). Previous studies have compared the number 

of GWAS SNPs overlapping a feature against the number expected for a randomly chosen 

region of similar size3,45. However, this approach does not control for biases associated 

with the location of GWAS SNPs. We controlled for these biases by following the Variant 

Set Enrichment approach where we generate a background distribution for genomic 

feature enrichment in loci around sets of 112 randomly sampled control lead SNPs2. We 

chose control lead SNPs from a genome-wide genotyping array (Affymetrix 660W) 

matched for size of the LD block (+/- 5 SNPs), minor allele frequency of the lead SNP (+/- 

0.1), distance to the nearest gene (+/- 25kb if outside gene), and number of nearby genes 

within a +/- 500kb interval (+/- 3 genes). We also considered differences in local GC 

content (+/-25nt) but did not observe a strong difference between GWAS and control 

lead SNPs (p=0.06). To calculate enrichment of genomic regions in GWAS loci, we 

compared the number of GWAS loci that overlapped an enhancer to 100,000 sets of 
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equally sized randomly sampled control lead SNPs. The 112 GWAS SNPs compiled from 

the NHGRI GWAS catalog includes 57 loci with p-values between 1x10-6 and 5x10-8 that 

have a higher false positive rate. In a sensitivity analysis, we examined the subset of 55 loci 

that met the more stringent 5x10-8 statistical threshold and found that sets of cardiac 

enhancers (specifically fetal heart and adult left ventricle) were also most highly enriched 

in these loci compared to the 123 non-cardiac tissues. 

 

Comparing differences between QT/QRS-associated LV enhancers and all LV 

enhancers 

H3K27ac, DNase I Hypersensitivity and CAGE-seq read enrichment: To score the presence 

of epigenomic marks in enhancers, we averaged the wig signal tracks over every enhancer 

with the UCSC bigWigAverageOverBed tool. Fold difference in signals between QT/QRS 

enhancers and all LV enhancers were calculated by comparing the median signal values of 

the two groups. P-values were calculated using the Mann-Whitney U test. Activity in 

other cardiac and non-cardiac tissues: Overlap with enhancers in other tissues was 

calculated using the intersectBed function in the BEDTools suite46. CpG hypomethylation 

and hypermethylation: Whole-genome bisulfite sequencing data for 37 human tissues, 

including the left ventricle, was obtained from the Roadmap Epigenomics Project9. We 

identified LV-specific hypo and hypermethylated CpGs as those that differed in percent 

methylation with the mean of 34 non-cardiac tissues by both (i) 2 standard deviations and 

(ii) at least a difference in absolute percent methylation of 15 percent. Evolutionary 

Conservation: We calculated evolutionary conservation of enhancers using the 

methodology outlined by Nord et al. (2013)47. Briefly, we first identified the 100bp region 

of each enhancer with greatest average evolutionary conservation across primates 

(primate subset of 46-way phyloP conservation track obtained from UCSC). To quantify 

differences in evolutionary conservation of GWAS enhancers against all LV enhancers, 

we randomly selected 1000 size-matched sets of LV enhancers (size within +/-1kb of 

corresponding QT/QRS enhancer), as the 100bp segment of greatest conservation in 

longer enhancers is statistically more likely to have greater conservation than a shorter 

segment. 
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Comparing differences in TF motif disruption 

We obtained TF motif instances in the human genome (hg19) for 651 human motifs from 

the ENCODE project48, and filtered these to only consider 287 motifs that correspond to 

TFs expressed in the left ventricle (>1 RPKM by RNA-seq). We quantified the number of 

QT/QRS loci containing a SNP that disrupted an enhancer motif corresponding to an 

expressed TF in the left ventricle, and compared this against randomly sampled sets of 

control loci matched for MAF, LD block size, distance to the nearest gene and presence 

on the Affymetrix 660W genotyping array.  

 

Enrichment of QT SNPs below genome-wide significance in enhancers  

Enrichment analysis. We used a sliding -log(p-value) threshold from 0 to 10 with steps of 

0.1. At each cut-off, we computed the proportion of SNPs in enhancers with p-values 

more significant than the cut-off (foreground) against the proportion of SNPs in the 

whole genome. Grouping SNPs in LD. For each pair of SNPs, if the two SNPs are in LD 

(r2>0.2, CEU population from 1000 Genomes project) we remove the SNP with the 

weaker p-value.  

 

Enrichment of LDL cholesterol and Alzheimer’s disease-associated sub-threshold loci 

in enhancers 

Summary GWAS data for LDL cholesterol was obtained from Willer et al. (2013)25, and 

summary GWAS data for Alzheimer’s disease (AD) was obtained from Lambert et al. 

(2013)49. Enrichment analyses were performed as described above for QT interval. For 

enrichment of Alzheimer’s disease-associated SNPs, the region encompassing the HLA 

locus was excluded (chr6:24,182,924-34,537,546 in hg19), as this region contained 

approximately 25% of all low p-value SNPs (p<1x10-5) in the genome therefore and could 

skew enrichment results.  

 

The liver tissue was chosen for LDL cholesterol enrichment based on biological relevance. 

Tissue choice for AD SNPs was made using genome-wide enrichment analyses performed 
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by Gjoneska et al. 201531. For this analysis, we chose the second-most enriched tissue 

from Gjoneska et al. (peripheral blood monocytes, with most significant p-value) instead 

of the most enriched tissue (peripheral blood mononuclear cells, PBMCs, with second-

most significant p-value) because the enrichment of AD SNPs in PBMC enhancers was 

substantially weaker than peripheral blood monocytes following removal of SNPs within 

the HLA locus. For AD GWAS, removal of SNPs within +/- 1Mb of above-threshold loci 

was performed using 13 above-threshold loci with p<5x10-8 (Stage 1 analysis) listed in 

Table 2 of Lambert et al. For LDL cholesterol analyses, we first attempted to remove all 

SNPs within +/- 1Mb of above-threshold loci reported in Supplemental Files 2 & 3 of 

Willer et al., however many SNPs with p<5x10-8 remained. Therefore, we performed LD 

pruning (r2>0.2 from CEU population) on summary-level p-value data from Willer et al. 

to define above-threshold loci and then removed 68 unique genomic intervals from the 

analysis. Enhancer functional characteristics applied to the enhancer sets were chosen 

based on the availability of additional data for the chosen tissue. DNase I hypersensitivity 

data not available for human liver, and genome-wide CpG methylation data was not 

available for peripheral blood monocytes.  

 

Comparison of QT sub-threshold loci in QRS GWAS data 

To assess whether QT sub-threshold loci overlapping enhancers are more likely to 

represent true biological signals, we queried the p-values of these loci in a related GWAS 

of QRS duration. In total, the QT GWAS we used to identify the sub-threshold loci 

consisted of 76,061 individuals, while the QRS GWAS queried consisted of 60,255 

individuals. We compared the total sizes of each cohort used in the two studies and 

calculated that a minimum total of 46,452 individuals must be different between the two 

studies. Specifically, there are at least 31,129 individuals present in QT GWAS that are 

not present in the QRS GWAS, and at least 15,323 individuals present in the QRS GWAS 

that are not present in the QT GWAS.  
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We used summary-level p-value data from the QRS GWAS testing four clinically applied 

QRS traits: Sokolow-Lyon, Cornell, 12-lead-voltage duration products, and QRS 

duration.  

For each SNP, the assigned p-value represented the minimum p-value across these four 

traits. For each sub-threshold locus, we identified all SNPs in strong LD (r2>0.8, CEU 

population from 1000 Genomes project), and assigned the p-value as the minimum of all 

p-values for LD SNPs in the QRS GWAS data.  

 

Identifying candidate genes near sub-threshold loci using activity correlation across 

human tissues 

From the Roadmap Epigenomics Project, we were able to obtain matching “strong” 

enhancer annotations and RNA-seq data for 59 of the 127 tissues, including LV. For each 

LV enhancer, we considered all genes with expression ≥1 RPKM in LV and in vitro 

differentiated human cardiomyocytes and distance within +/-500kb as potential targets. 

We then split the RNA-seq data for the 59 tissues into two groups, depending on whether 

the enhancer is present or absent in each tissue, and applied a one-sided Mann Whitney 

U test to ask whether each potential target gene showed significantly greater expression in 

tissues where the enhancer was active. Genes differentially expressed between tissues with 

active and inactive enhancers (p<0.05) were considered computationally-determined 

potential target genes. For determining targets of sub-threshold enhancers, we first 

filtered our set of sub-threshold enhancers to remove those unlikely to be associated with 

QT interval. To do this, we excluded sub-threshold SNPs if the -log(p-value) was lower 

than 80% of the -log(p-value) of the most statistically significant SNP in LD (r2>0.2), as 

these are unlikely to be causal.  

 

Cardiac phenotypes for genes with mutations in mouse 

For sub-threshold loci overlapping enhancers, and the set of all active LV enhancers, we 

identified nearby genes using the enhancer-gene linking method described above. This 

methodology was not applicable to the 129 sub-threshold loci that do not overlap 

enhancers, and therefore we identified the two nearest genes within 1Mb using GREAT 
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v2.0.2 and selected only genes with expression in adult human left ventricle data (>1 

RPKM). Mouse orthologs of human genes were identified using the Ensembl Genes 79 

database through BioMart, and all queries of the MGI mouse phenotypes database were 

made between April 26, 2015 and May 6, 2015. We used three search terms relevant to 

QT interval: “ventricle muscle contractility”, “cardiac contractility” and “conduction” 

(excluding non-cardiac conduction terms). 

 

Quantifying allelic imbalance at SNPs 

We used DNase I hypersensitivity and digital genomic footprinting data from the 

ENCODE48 and Roadmap Epigenomics Projects8 because samples were sequenced to a 

greater depth than the chromatin modification ChIP-seq data, and there were data 

available from more individuals. To quantify allelic imbalance, we mapped DHS/DGF 

reads to a version of the human genome (hg19) downloaded from the UCSC genome 

browser with all SNPs (dbSNP141) masked by ambiguous nucleotides (N’s) using 

Bowtie2 (v2.2.0, flags: -N 1, --sensitive, --end-to-end, --no-unal). As genotypes were not 

available, we considered a sample heterozygous at a particular SNP if reads from the 

hg19-defined reference and alternate alleles each mapped to 3 or more unique positions. 

Using this methodology, we observed the median difference in reads mapping to the 

reference versus alternate alleles to be 0. In total, reads mapped to the reference allele 

more often than alternate at 6537 of 13826 heterozygous SNPs, and vice versa at 5884 of 

13826 heterozygous SNPs, with equal numbers of reads mapping to both alleles at the 

remaining 1405 SNPs. To quantify statistical significance of allelic imbalance at SNPs, we 

followed Maurano et al. (2012) and considered only SNPs with more than 21 reads. We 

performed a binomial test under the null hypothesis where reads map to both alleles at 

equal frequency, followed by Benjamini-Hochberg multiple testing correction across all 

heterozygous enhancer-overlapping SNPs.  

 

4C-Seq Methods 

Human iPSC-derived cardiomyocytes (iCMs) (Cellular Dynamics, Catalog #: CMC-100-

010-001) were thawed according to manufacturer’s instructions and diluted to a final 
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plating density of 0.2x106 cells per mL with plating medium (Cellular Dynamics, 

Catalog#: CMM-100-110-001). After 7 days in culture, iCMs were homogenized using a 

douncer, cross-linked and further processed as 4C template using DpnII as the first 

restriction enzyme and Csp6I as the second enzyme following the procedure outlined in 

van de Werken et al. (2012)50. The median spacing between GATC fragments (recognized 

by DpnII) in the hg19 human genome is 264 nt. Sequencing of the 4C-Seq library was 

performed on an Illumina HiSeq 2000, and sequencing reads were aligned to a reduced 

genome consisting of sequences that flank DpnII restriction sites. Primer sequences used 

for sequencing the 4C-seq library are listed in Supplementary File 3. The human genome 

(hg19) was used as reference genome for mapping 4C sequence captures. Non-unique 

sequences that flank a restriction site were removed from the analysis.  

 

To map 4C-seq reads to the genome, we first binned reads according to the reading 

primers used in each lane. We allow a single mismatch in the reading primer that 

overlaps the primary restriction cut site (DpnII). The binned sequences were mapped to 

an in silico library of potential fragment ends generated based on the restriction enzymes 

used for the 4C template preparation. We did not allow any mismatch in the fragment-

end, and for analysis we focused on the unique fragends only (excluding repetitive 

fragment ends). As biases from sequencing yield or restriction cutting may be introduced 

by 4C-seq, we computed 4C-seq coverage in a genomic region by averaging mapped reads 

in running windows of 21 4C-seq fragment-ends. For peak-calling in a single 4C 

experiment, we perform explicit background modeling of the up- and downstream 

genomic regions independently. We assume that in a completely unstructured chromatin 

fiber the contact probability monotonically decreases as a function of the distance to the 

viewpoint. We model this by performing monotonic regression of the 4C signal as a 

function of the distance to the viewpoint. For this we use the R package isotone, which 

implements the monotonic regression51. We then compare the observed 4C signal to the 

predicted value from the background model and call the extremes that reach a 

significance threshold as peaks. For a given threshold q and a distribution F of residuals 
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from the background model, every observation greater than Q3(F)+q*IQR(F), where Q3 

is the third quartile of F and IRF(F) the inter-quartile range, is considered significant.  

 

Generating enhancer reporter constructs 

Sub-threshold loci were considered candidates for testing by the luciferase reporter assay 

if the sub-threshold SNP overlapping the active LV enhancer either (i) overlaps a fetal 

heart DNase I hypersensitivity site, or (ii) is an eQTL in the left ventricle (i.e. the SNP 

genotype is associated with differential expression of a nearby gene). We generated allele-

specific enhancer constructs using two strategies outlined below: (i) PCR from genotyped 

heterozygous individuals, or (ii) direct synthesis of enhancer fragments. (i) Enhancer 

cloning from heterozygous individuals: We designed primer sequences to clone the entire 

predicted enhancer sequence defined by ChromHMM, and appended a 5’CACC 

sequence to forward primers to permit directional TOPO cloning. We designed primer 

sequences to clone fragments of up to 3kb. For enhancers annotated as larger than 3kb, 

we either selected a 3kb fragment centered at the region of greatest histone modification 

density (H3K4me1, H3K27ac), or generated multiple fragments spanning the enhancer. 

Primer sequences and samples for human genomic DNA (Coriell Cell Repositories) are 

listed in Supplementary File 3. We PCR amplified enhancers from human genomic DNA 

using Q5 High-Fidelity DNA Polymerase (NEB, Catalog # M0491S) and purified 

fragments corresponding to the correct length using a QIAquick Gel Extraction Kit 

(Qiagen, Catalog # 28706). (ii) Direct synthesis of enhancer fragments: Enhancer 

fragments up to 1kb in size were chosen so that the fragment covers both the sub-

threshold SNP as well as peak within the DNase I hypersensitivity signal, and a 5’CACC 

sequence was appended to permit directional TOPO cloning. Fragments were synthesized 

using the gBlocks Gene Fragments service from Integrated DNA Technologies (sequences 

are listed in Supplemental File 3). Enhancer fragments from both methods were cloned 

into Gateway-compatible entry vectors using a pENTR/D-TOPO Cloning Kit (Life 

Technologies, Catalog # K2400) and transformed into TOP10 E. coli bacteria following 

manufacturers guidelines. We used Sanger sequencing to verify that purified entry 

vectors carried enhancers with the correct insertion orientation and no mutations beyond 
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the expected polymorphisms. Entry vectors were then Gateway-cloned using LR Clonase 

II Plus (Life Technologies, Catalog # 12538-120) into a Gateway-converted pGL4.23 

destination vector (Promega, Catalog # E8411) for luciferase assays in human cell lines 52. 

We used Sanger sequencing to confirm a second time the correct enhancer orientation 

and sequence inside the destination vectors. 

 

Human cardiomyocyte luciferase assays 

Human iCMs (Cellular Dynamics, Catalog #: CMc-100-010-001) were thawed according 

to manufacturer’s instructions and diluted to a final plating density of 0.2x106 cells per 

mL with plating medium (Cellular Dynamics, Catalog#: CMM-100-110-001). 96-well 

tissue culture treated plates were coated with 0.1mL of 0.1%(w/v) gelatin per well and 

incubated at 37°C for at least two hours. The gelatin solution was aspirated off and wells 

rinsed with 100uL of PBS, aspirated, and let sit in the tissue culture hood.  Using a 

multichannel pipette, 100ul of cells were seeded per well to obtain a target density of 

20x103 iCMs. The plates were kept on a flat bench at room temperature for 10-15 minutes 

to allow for cells to settle down uniformly, followed by incubation at a tissue culture 

incubator set at 37°C and 7% CO2.  48 hours post-seeding, the iCM plating medium was 

replaced with 100uL of Maintenance Medium (Cellular Dynamics, Catalog #:CMM-100-

120-001). The Maintenance Medium was replaced every other day. 

 

3-4 days post-plating, iCMs began beating spontaneously and 7 days post-plating, they 

formed electrically connected syncytial layers that beat simultaneously. At this stage, the 

cells were transfected with the appropriate Luciferase reporter constructs and controls for 

downstream analyses. Media was replaced an hour before transfections. For each well, 

95ng of enhancer firefly Luciferase reporter (cloned into pGL4.23, Promega) and 5ng of 

Renilla Luciferase transfection control vector (pGL4.73, Promega) was mixed with 10ul of 

OPTIMEM (Life Technologies, Catalog #:51985-034). 0.2ul of Viafect transfection 

reagent was added to the DNA/OPTIMEM mixture. After mixing, the transfection 

cocktail was incubated at room temperature for 5 min and 10ul dispensed into the well 

with iCMs and plates transferred to 37oC. Media was changed 24 hours after transfection. 
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8 independent wells of iCMs were transfected per construct to account for variability in 

plating and transfection efficiencies. A mammalian expression vector, pEF-GFP 

(Addgene, Plasmid 11154), was used to visually monitor transfection efficiency. At least 

65-70% of the population of iCMs expressed GFP 24 hours post-transfection.   

 

Luciferase activity was measured 24hr after transfections using the Dual-Luciferase 

Reporter Assay System (Promega, Catalog#:E1980). After aspirating media, cells were 

rinsed with PBS once, and lysed with 20uL of 1X Passive lysis buffer in the Luciferase 

assay kit. 15 minutes after gentle shaking on an orbital shaker and complete lysis, the 

plate was stored at -80°C until further processing. Samples were prepared and 

luminescence measured according to Manufacturer’s Assay protocol for 96-well plates 

using the Varioskan Flash Multimode Reader (Thermo Scientific).  

 

Data Analysis. For all transfection wells, luminescence values of a blank non-transfection 

control were subtracted from all measured activity values. Firefly luciferase activity was 

then normalized to Renilla luciferase activity to control for transfection efficiency in each 

well. As luciferase reporter assay reagents decrease in activity during regular storage, the 

reference and alternate alleles of each reporter construct were spotted on the same 96-well 

plates to control for plate-to-plate variability in reagent activity. For each enhancer, we 

merged readings from multiple days by normalizing the activity of reporters to the 

reference allele. Each reporter construct was transfected into wells of at least two separate 

96-well plates and readings for all wells were merged. Wells where Renilla luciferase 

activity (transfection control) was substantially lower (>90%) than neighboring wells were 

excluded from analyses. Statistical significance was determined by unpaired Student’s t-

test assuming equal variance. Minimum sample size of n=8 per enhancer construct was 

chosen to achieve 95% power for effect size (Cohen’s d) of 2 (0.2 difference in activity 

between haplotypes with standard deviation of 0.1 normalized luciferase activity units) at 

p=0.05.  
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Zebrafish antisense morpholino oligonucleotide-mediated knockdown and optical 

voltage mapping 

Zebrafish (TuAB strain) were cared for according to standard techniques. All animal 

experiments were approved by the Partners Subcommittee on Research Animal Care 

(SRAC) and were conducted in compliance with the regulations published in the US 

National Institute of Health Guide for the Care and Use of Laboratory Animals. At the 

single cell stage, fertilized oocytes were injected with standardized concentrations and 

volumes of antisense morpholino oligonucleotides 

(5’CAATAGATGGCGCTGTGTACCTGTC3’ and 

5’AGAGCAGCCTGAAAGACAATAAAGA3’ for bves, 

5’GGTTAATCCACTCACCTGCCTGAAA3’ and 

5’CCGTCACTCGTATCCTGTTTTAGTG3’ for popdc3, XXX and YYY for prep, 

5’GTTCAATTGTTTCTCACCTGCCAGA3’ and 

5’CTAATCCTGTGAAAGCAGAAGATCC3’ for popdc2) dissolved in Danieau’s solution 

(58 mM NaCl, 0.7mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES pH 7.6). 

Controls were injected with an equivalent dose of non-targeting morpholino of equal 

length but differing nucleotide composition 

(5’ATCCTCTTGAGGCGAACAAAGAGTC3’). RNA was harvested at 72 hours using 

Trizol (Life Technologies) according to the manufacturer’s instructions, cDNA 

synthesized by iScript reverse transcriptase (Bio-Rad) and semi-quantitative PCR was 

used to assess relative percentage of gene knockdown. All studies of morpholino efficacy 

are a result of samples obtained from three independent injections. For evaluation of 

ventricular action potential duration, embryo hearts were microdissected at 72 hours of 

development and stained with di-8-ANEPPS (Invitrogen). Cardiac contraction was 

arrested with 15uM blebbistatin (Sigma-Aldrich). Hearts were then field paced at 2Hz 

and imaged at 1000 frames per second as previously described40. Analysis of action 

potential durations was performed using an in-house developed MatLab program. The 

action potential duration at 80% repolarization was utilized for all analyses. A minimum 

n of 9 embryos was required for all ventricular action potential studies, based on power 
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calculations for effect size (Cohen’s d) of 1.5 at p=0.05. No animals were excluded from 

analyses unless ventricular depolarization could not be induced at 120 paces per minute. 

No randomization of samples or blinding of investigators was utilized during these 

protocols. Statistical comparisons were performed using one-way ANOVA with Fisher’s 

Least Significant Difference testing with all comparisons being to clutchmate controls. All 

distributions were normal, and variances between control and experimental groups were 

not statistically significant. 
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Figure S1: Sub-threshold SNP alleles affect enhancer activity. For each sub-threshold locus, 
enhancers carrying one of two haplotypes were cloned upstream of a minimal promoter and 
firefly luciferase reporter gene. Blue: enhancer carrying reference allele; red: enhancer carrying 
alternate allele. Error bars represent standard error of the mean.   
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Figure S2: 4C-seq interactions with 10 enhancers in 8 sub-threshold loci. Height of blue bars 
represents interaction strength with 4C viewpoint. Red curves indicate enhancer-promoter 
interactions called within an annotated GENCODE promoter (up to 2.5kb upstream of TSS) at a 
threshold of 5.0. 
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Figure 4 – figure supplement 3. 4C-seq interactions with 10 enhancers in 8 sub-threshold loci. 
Height of blue bars represents interaction strength with 4C viewpoint. Red curves indicate 
enhancer-promoter interactions called within an annotated GENCODE promoter (up to 2.5kb 
upstream of TSS) at a threshold of 5.0. 
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Abstract 

Genome-wide profiling of epigenomic marks has allowed for the rapid prediction of tens 

of thousands of transcriptional regulatory elements, most notably distal enhancers that 

would otherwise have remained hidden within non-coding DNA. Many epigenomically-

predicted enhancers, however, fail to promote transcription in an experimental context. 

Moreover, these predicted enhancers are on average 1kb in length, making it difficult to 

identify specific segments of DNA within each enhancer that are critical for driving 

transcriptional activity and would lead to deleterious consequences when disrupted by 

genetic variants. Here, we describe a high-throughput experimental assay, ATAC-

STARR, that quantifies the transcriptional regulatory activity of millions of DNA 

fragments. DNA fragments used in ATAC-STARR are preferentially extracted from 

regions of open chromatin, including promoters and distal enhancer elements, and 

fragments tested can be up to 1kb in length, five times longer than sequences used in 

other high-throughput reporter assays. In a pilot study, we used ATAC-STARR to test 

fragments with sizes between 25-500nt and we identified 537 significantly up-regulated 

fragments in 382 unique loci in the GM12878 lymphoblastoid cell line at FDR<0.05. 

Active regulatory fragments are more likely to be larger in size, enriched for activating 

histone modifications including H3K27ac and for motifs and binding of immune 

transcription factors. Our results suggest that ATAC-STARR can be a general strategy for 

experimentally assaying the DNA regulatory landscape of different cell types.  
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Introduction 

Transcriptional enhancer elements were originally characterized in the 1980’s as non-

coding DNA elements with the ability to promote gene expression at a distance from a 

gene promoter1,2. Transcriptional enhancers are regions of the genome that bind 

transcription factors and act to either promote or repress the transcription of nearby 

genes. Unlike protein coding genes, which can be identified with high sensitivity from 

both open reading frame scanning using the codon table and evolutionary conservation, 

enhancers do not have any highly predictive sequence patterns and are not highly 

conserved under existing metrics of evolutionary conservation. The combination of 

histone modifications, such as the presence of activating H3K4me1 and H3K27ac and 

absence of repressive H3K27me3, are typically used to predict the positions of enhancers 

through scanning of the genome with unsupervised machine learning models3-5. 

However, many putative enhancers predicted only from their epigenomic contexts do not 

experimentally drive reporter gene transcription, and prediction of enhancers using 

commonly profiled histone modifications may miss enhancers that co-localize with a 

different set of histone modifications6,7. Both of these concerns necessitate the 

development of high-throughput assays to experimentally test the activity of enhancers 

genome-wide.  

 

High-throughput enhancer reporter assays, first developed in 2012, use in vitro 

oligonucleotide synthesis to generate and clone tens of thousands of distinct DNA 

sequences into a common enhancer reporter vector. To date, these assays such as the 

Massively Parallel Reporter Assay (MPRA) and Cis-Regulatory Element analysis by high-

throughput sequencing (CRE-seq) have been successfully used to test the activity of 

thousands putative transcriptional enhancer elements8-11. However, technical limitations 

of large-scale in vitro oligonucleotide synthesis restrict input DNA fragments to a 

maximum of 230nt in length. Moreover, only a limited number of DNA sequences (up to 

2x105) can be synthesized per array, and sequences are often redundantly synthesized to 

compensate for a nucleotide synthesis error rate of 1/200.  
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Here, we perform a genome-wide screen of transcriptional regulatory activity using 

enhancer constructs of comparable size scale to those individually tested in low-

throughput studies. To avoid the limitations of in vitro oligonucleotide synthesis, we 

developed a modified version of STARR-seq (Self-Transcribing Active Regulatory Region 

sequencing), termed ATAC-STARR, where hundreds of thousands of fragments of 

human genomic DNA generated by Tn5 transposition using ATAC-seq (Assay for 

Transposase-Accessible Chromatin with high throughput sequencing)12 and enriched at 

sites of open chromatin and higher transcriptional regulatory activity are cloned into an 

enhancer reporter construct. In a pilot experiment, we identify 537 up-regulated 

fragments in 382 genomic loci that have marks of activating regulatory regions, 

suggesting ATAC-STARR is capable of identifying regulatory DNA sequences in an 

unbiased manner. 
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Results 

 

Experimental design and cloning strategy 

ATAC-STARR combines the selective fragmentation of genomic DNA at regions of open 

chromatin from ATAC-seq with high-throughput cloning of fragments into an enhancer 

reporter vector. Fragments are cloned into the 3’UTR of a reporter gene and drive self-

transcription so that putative enhancer segments can be identified and quantified by 

high-throughput RNA sequencing to produce a quantitative readout of enhancer activity 

(Fig. 1). We first set out to use ATAC-STARR to investigate how fragment size affects 

activity of putative regulatory fragments by generating a library with fragment sizes that 

range from 25 to 500nt. We modified the existing ATAC-seq methodology so that after 

Tn5 transposition and a first round of PCR amplification, DNA fragments are run an 

agarose gel for size selection. As ATAC-seq libraries are commonly contaminated with 

mtDNA, we treated gel-extracted fragments with a CRISPR-Cas9 library of anti-mtDNA 

gRNAs to selectively cut fragments originating from the mitochondrial genome. We then 

performed a second round of PCR to selectively amplify non-digested fragments and to 

ensure that all remaining fragments are represented in the final library at high copy 

number. PCRs were performed using primers carrying random i7 barcode sequences to 

increase the number of potential technical replicates per unique enhancer fragment tested 

and to estimate variance of enhancer activity. Fragments were then cloned into a 

linearized STARR-seq backbone and transfected into GM12878 lymphoblastoid cells (Fig. 

1, Methods). Overall our library construction method can be completed in 2-3 days and 

requires 104-105 cells as input starting material.  
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Figure 1: Overview of ATAC-STARR library construction method. The Tn5 transposase is first 
used to preferentially fragment genomic DNA at regions of open chromatin. Fragments are then 
size-selected on an agarose gel and mtDNA contamination is removed by selective CRISPR-Cas9 
degradation. Fragment library is amplified by PCR and cloned into a enhancer reporter vector.  
 

We sequenced the ATAC-STARR plasmid library to assess the library complexity and 

similarity with existing assays for open chromatin. We observed that qualitatively 

genome-wide signal tracks generated from ATAC-STARR fragments are highly similar to 

those generated by ATAC-seq and DNase I hypersensitivity mapping, and on a genome-

wide basis the majority of open chromatin regions as assessed by DNase I hypersensitivity 

are captured as peaks in the ATAC-STARR library, suggesting that the complexity of a 
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traditional ATAC-seq and DNase I hypersensitivity experiment can be captured and 

cloned for use in ATAC-STARR (Fig. 2).  

 

 
Figure 2: DNA fragments cloned into ATAC-STARR library recapitulate DNase I 
hypersensitivity and ATAC-seq library complexity and patterns. a. Top portion adapted from 
Buenrostro et al. (2013)12. ATAC-STARR library captures peaks detected by ATAC-seq and 
DNase I HS assays. b. Majority of top DNase I hypersensitivity peaks in GM12878 cell line are 
captured by fragments in ATAC-STARR plasmid library. 
 

As ATAC-STARR fragments are cloned into the 3’UTR of a reporter gene, they drive self-

transcription and the proportion of fragments observed in the transcribed RNA to input 

DNA represents a quantitative readout of enhancer activity. We therefore compared the 

abundances of fragments between our input control (non-transfected plasmid) and 

reporter gene RNA to determine the overall ability of ATAC-STARR to detect enhancer 

activity. As expected, we observed that biological replicates of plasmid and RNA samples 

are more similar to themselves than each other. When we compared RNA reads to the 

input plasmid, we observed a large abundance of fragments that were over-represented in 

RNA compared to plasmid, suggesting that many fragments are capable of driving 

reporter gene expression (Fig. 3).  
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Figure 3: Correlation in ATAC-STARR fragment expression levels RNA and DNA. Left, 
Scatterplot of ATAC-STARR fragment abundance in two RNA biological replicates. Right, 
Scatterplot of ATAC-STARR fragment abundance between RNA and input plasmid DNA. 
Expression values are log2 transformed and only fragments with sufficient (>100 reads) 
representation are shown.  
 
 

Identification of fragments with regulatory potential and size-dependent effects on 

activity 

To identify fragments that drive reporter gene expression we compared the abundance of 

transcribed RNA reads to input plasmid reads using DESeq. At an FDR cut-off of 0.05, 

identified 537 fragments that were up-regulated in the collected RNA compared to input 

DNA. Among these up-regulated fragments, we observed a striking relationship between 

fragment length and regulatory activity, where longer fragments drove proportionally 

greater regulatory activity (Fig. 4). As ATAC-seq fragment length is related to the class of 

genomic element that generated the fragment (e.g. enhancers are enriched in fragments 

of length 50-150nt and 250-350nt and depleted between 150-250nt)12, we adjusted for 

proportion of reads mapping to predicted enhancers and promoters in the genome and 

observed that the fragment length to activity relationship persists. Notably, most existing 

high-throughput enhancer activity studies use in vitro synthesized fragments with 
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activity than those between 100 and 200nt, demonstrating the clear benefit of a STARR-

seq approach that does not rely on in vitro synthesis for testing enhancer activity genome-

wide (Fig. 4).  

 
Figure 4: Activity of ATAC-STARR fragments split by fragment length. Activity calculated as 
the proportion of fragments in a given size range called as up-regulated (FDR<0.05), relative to 
fragments of length 200nt.   
 

Transcriptionally active regions identified by ATAC-STARR are enriched for 

activating epigenomic marks 

We surveyed the ATAC-STARR fragments that drive enhancer activity to assess whether 

they share common genetic or epigenomic characteristics. We first considered overlap of 

ATAC-STARR fragments with individual chromatin states - recurring combinations of 

histone modifications overrepresented in different classes of genomic elements (e.g. 

promoters, enhancers). We first considered the entire set of ATAC-STARR fragments in 

the input library. Consistent with previous ATAC-seq studies, these fragments are 19.82 

and 5.98-fold more likely to be derived from promoters and active enhancers, 

respectively, compared to the entire genome (Fig. 5)12. We next considered the set of 537 
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promoter elements are capable of driving reporter gene expression in the ATAC-STARR 

system. Notably, up-regulated fragments were substantially more enriched for enhancer 

elements (4.16-fold enrichment vs. input), consistent with previous reports that the 

STARR-seq assay is capable of detecting transcriptional enhancers13 (Fig. 5). Finally, we 

noticed that fragments mapping to the “TSS Flanking Upstream” chromatin state were 

also enriched in up-regulated fragments, compared to the input library. The “TSS 

Flanking Upstream” chromatin state is characterized by presence of the activating 

promoter and enhancer histone modifications H3K4me1, H3K4me3, and H3K27ac, and 

shows enrichment between 400nt and 1kb upstream of annotated transcription start sites. 

However, the majority (61%) of these chromatin states are more than 5kb away from the 

nearest transcription start site, suggesting that some genomic regions with “TSS Flanking 

Upstream” annotations may also act as distal enhancers.  
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Figure 5: Up-regulated ATAC-STARR fragments are enriched in active regulatory regions. 
Proportion of different GM12878 chromatin states in the whole genome (left), input plasmid 
library (middle) and 537 up-regulated fragments (right). Genome annotations were obtained 
from the Roadmap Epigenomics Project using the 18-state model predicted with 7 histone 
modifications, and bar sizes correspond to percentage of nucleotide overlap 4. Numbers in the 
right column mark representative chromatin states that are enriched in up-regulated fragments 
(states #1, 3, 9 and 10) and depleted (state #18).  
 

We also explored the enrichment of individual histone modifications in the set of up-

regulated ATAC-STARR fragments (Fig. 6). From the ENCODE project, we identified 

nine histone modifications or variants with ChIP-seq data available in the GM12878 cell 

line14. Consistent with the observation that promoter-derived fragments are modestly 

enriched in the up-regulated fragment set, enhancer-derived fragments are highly 

enriched in the up-regulated set and repressive fragments are under-enriched (Fig. 5), we 
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the up-regulated fragments, while H3K27me3, which marks repressive chromatin states is 

depleted in up-regulated fragments compared to the input library (Fig. 6). 

 
Figure 6: Enrichment of histone modifications and histone variants in up-regulated ATAC-
STARR fragments vs. input library. Histone modification positions calculated using high-
confidence ChIP-seq peaks identified from two biological replicates by the ENCODE project14. 
 

We hypothesized that the set of 537 activating ATAC-STARR fragments drive 

transcriptional activity through the binding of specific transcription factors. We therefore 

calculated the overrepresentation of transcription factor motifs in up-regulated ATAC-

STARR fragments using 651 experimentally determined transcription factor motifs 

identified by the ENCODE project14,15. At FDR<0.05, we find that seven distinct motif 

families are enriched up-regulated ATAC-STARR fragments (Fig. 7). Notably, many of 

these motifs correspond to transcription factors expressed in the GM12878 cell line, 

including the IRF family of transcription factors, and to transcription factors that bind 

specifically in GM12878 compared to other human cell lines, including NFKB1 and 

RELA 
16,17. Taken together, the enrichment of active chromatin states, activating epigenetic 

modifications, and transcription factor motifs indicate that ATAC-STARR is capable of 

identifying bona-fide transcriptional regulatory elements in the genome. 
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Figure 7: Enrichment of transcription factor motifs in up-regulated ATAC-STARR fragments. 
Motifs were identified using an FDR<0.05 threshold among 651 motifs identified by the 
ENCODE project14,15. As motifs can share strong sequence similarity, we used hierarchical 
clustering to group motifs together based upon their co-occurance in ATAC-STARR fragments. 
Darker cells correspond to greater co-occurrence between two motifs in the ATAC-STARR input 
library. Motif logos right of the matrix correspond to representative logos for each of the seven 
clusters.  
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High-resolution mapping of regulatory activity using ATAC-STARR  

As the Tn5 transposase used to fragment DNA for the ATAC-STARR library preparation 

randomly inserts itself into the genome, we expect that for regions of the genome highly 

amenable to Tn5 digestion there will be many fragments generated with slight offsets in 

start and end site positions. We decided to leverage regulatory activity of these slightly 

offset DNA fragments to identify short sequences that are important for driving enhancer 

activity. As proof-of-principle, we focused on one region on chromosome 6 with a high 

density of overlapping ATAC-STARR fragments that show significant positive regulatory 

activity (Fig. 8). We observed a distinct peak in regulatory activity overlapping an 8-

nucleotide POU2F2 motif and region of evolutionary conservation. From mining data 

from the ENCODE project, we also observed binding of POU2F2 at this motif through 

ChIP-seq in GM12878 and GM12891 cells14.  

 

Given the combination of a regulatory activity peak, evolutionary conservation and 

experimentally-observed POU2F2 binding at this site, we hypothesized that transcription 

factor binding at this motif would be sufficient to drive regulatory activity. Indeed, when 

we expanded the regulatory activity signals at this site to consider every fragment 

individually, we observed that 30 of 31 fragments overlapping the complete POU2F2 

motif drove reporter gene transcription (Fig. 8). In contrast, fragments in the same 

general genomic region that did not overlap the POU2F2 motif did not show any robust 

ability for driving regulatory activity. Taken together, these results indicate that ATAC-

STARR is capable of identifying DNA elements in a genomic locus critical to 

transcriptional regulation.  
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Figure 8: High-resolution mapping of regulatory activity. A locus with high density of up-
regulated ATAC-STARR fragments was selected as a proof-of-concept to assess whether ATAC-
STARR is capable of identifying short segments of DNA that drive regulatory activity. RNA 
outputs #1 and #2 correspond to two biological replicates for ATAC-STARR library transfection, 
and Activity rep #1 and #2 are calculated by (RNA-DNA)/DNA. Green box in POU2F2 ChIP-seq 
peak corresponds to canonical 8nt POU2F2 motif.  
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Discussion 

Here, we present a high-throughput experimental assay, ATAC-STARR, to test the 

transcriptional regulatory activity for hundreds of thousands of DNA regions 

preferentially located in regions of open chromatin. We initially test ATAC-STARR in a 

pilot study using a library of sequences from the GM12878 lymphoblastoid cell line 

ranging from 25-500nt in length. We find that larger sequences in the 400-500nt range 

are substantially more likely to show activity in this experimental context, and that up-

regulated ATAC-STARR fragments are significantly more likely to contain motifs for 

immune transcription factors and to be marked by activating histone modifications at 

their endogenous locus. Finally, we use the dense tiling of ATAC-STARR fragments to 

perform a high-resolution mapping of regulatory activity upstream of a promoter 

element to identify an 8nt evolutionarily conserved POU2F2 motif critical to regulatory 

activity.  

 

While we performed our pilot study in the GM12878 cell line, the ATAC-STARR 

methodology can be readily applied to study the transcriptional regulatory architecture of 

any cell line. For cell lines with poor transfection efficiencies, a non-integrating lentiviral 

infection method can be used instead of transfection, as both approaches have shown 

highly similar results in other high-throughput reporter assays18. Moreover, while not 

explored in this study, ATAC-STARR can be used to identify genetic variants such as 

single nucleotide polymorphisms (SNPs) that alter regulatory element activity by 

mapping reads in an allele-specific manner19,20. This application of ATAC-STARR relies 

on the presence of different alleles for a given genetic variant being present in the input 

genomic DNA. The use of a previously genotyped cell line, such as GM12878, is 

preferable for such an application to more easily quantify allelic imbalance at genetic 

variants. As no human individual exists who is heterozygous at every common genetic 

variant, future studies can pool multiple cell lines together to generate an ATAC-STARR 

library heterozygous at more genetically important loci. This problem can be addressed if 

genomic DNA from a genetically heterogeneous pool of individuals is used. For example, 

to build an ATAC-STARR library heterozygous at many disease-associated SNPs for 
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autoimmune diseases, one can generate the library using pooled lymphoblastoid cells 

grown from individuals from distinct human populations first computationally chosen to 

maximize genetic diversity over the most relevant set of variants.  

 

ATAC-STARR has several major advantages compared to other high-throughput 

reporter assay technologies such as the massively parallel reporter assay. First, in vitro 

synthesis fragments are limited to 230nt in length, while ATAC-STARR test DNA 

fragments up to 1kb in length, a limitation imposed by the cluster generation step of 

Illumina high-throughput sequencing platforms. Second, ATAC-STARR libraries can be 

an order of magnitude more complex than MPRA libraries, which are limited to 200,000 

spots per synthesis run8-10. Finally, library construction in ATAC-STARR is an order of 

magnitude less expensive than MPRA, as ATAC-STARR bypasses a costly in vitro 

synthesis step.  

 

One major limitation of ATAC-STARR is the requirement for using genomic DNA, while 

technologies involving in vitro synthesis can readily introduce changes to DNA not 

observed in the human population to better fine-map regulatory sub-regions of 

enhancers. However, the input fragment library in ATAC-STARR can also be modified to 

introduce non-existing mutations through error-prone PCR or introduction of mutagens 

during fragment amplification. Finally, ATAC-STARR can be coupled with a fragment 

capture technology to selectively test a subset of enhancers or promoters at higher 

resolution while retaining the advantages of having larger fragment sizes.  

 

In summary, we present a pilot study for ATAC-STARR, a high-throughput method to 

assay the regulatory activity of tens of thousands of open chromatin regions located 

genome-wide. As ATAC-STARR can be readily applied to any human cell type, we 

envision this approach or similar technologies being used to quantify the transcriptional 

regulatory landscape of DNA sequences for a variety of human tissues.  
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Methods 

 

ATAC-STARR library construction  

We performed 16 ATAC-seq reactions on 50,000 GM12878 cells each using a modified 

protocol based upon Buenrostro et al.12. We performed cell collection, lysis, and Tn5 

digestion as described by Buenrostro et al., Tn5-fragmented DNA was cleaned up using a 

MinElute PCR purification kit (Qiagen #28004, four reactions per column eluted in 20uL 

EB buffer) and the resulting 80uL of eluate was split into 16 reactions of PCR. PCR was 

performed using custom primers (F: 5’-

TAGAGCATGCACCGGCAAGCAGAAGACGGCATACGAGATNNNNNNCGGTCTC

GTGGGCTCGGAGATGT-3’, R: 5’-

GGCCGAATTCGTCGATCGTCGGCAGCGTCAGATGTG-3’) and NEBNext Ultra II 

Q5 DNA polymerase master mix (NEB #M0544L). PCR reactions were pooled and 

cleaned up with a Qiagen MinElute PCR purification kit (two PCR reactions per column 

eluted in 20uL EB buffer) and run on a 1% agarose gel stained with SYBR Gold (Thermo 

Fisher #S11494). Size selection of ATAC-seq fragments was performed by gel excision 

using a razor blade and DNA from gel slabs was purified using a MinElute Gel Extraction 

kit (Qiagen #28604) and eluted in 12 uL of warm buffer EB. The resulting size-selected 

ATAC-seq fragment library was treated with an anti-mitochondrial DNA CRISPR/Cas9 

library following the protocol outlined in Montefiori et al. using 10X excess of Cas9 

protein, and inactivated with 1uL of Proteinase K for 30min at 37C. We cleaned up the 

reaction with a Qiagen MinElute PCR purification kit and split into 16 PCR reactions for 

a second round of PCR using the same conditions and primers as described above to 

increase copy number of lowly represented DNA fragments. PCR products were cleaned 

up using two rounds of AMPure bead selection (0.7X for large molecular weight library, 

0.8X for smaller library) to remove small fragments, eluted in 40uL of water and 

quantified using Qubit dsDNA HS Assay kit (Thermo Fisher #Q32854).  

 

The pSTARR-seq_human plasmid used for generating the plasmid library was a gift from 

Alexander Stark (Addgene plasmid #71509). The linear backbone used for the subsequent 
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cloning steps was generated by digesting 4ug of circular pSTARR-seq_human for 4-6 

hours with AgeI and SalI restriction enzymes (NEB #R3552S and R3138S), followed by 

gel excision and purification of a linear 3.5kb fragment corresponding to the human 

STARR-seq plasmid backbone. For each library, we performed 20 individual InFusion 

HD cloning reactions (Takara Bio #638911) using a 3.5:1 molar ratio of insert to vector 

backbone, following manufacturer’s instructions. Reactions were collected and cleaned 

up using the Qiagen MinElute Enzymatic Reaction cleanup kit and transformed into 

twenty 20uL aliquots of MegaX DH10B T1R electrocompetent bacteria using the 

[electroporation conditions]. Recovered bacteria were grown in 2L of pre-warmed luria 

broth and 100ug/mL of carbenicillin, and serial dilutions were plated to estimate the 

number of clones in the library. Plasmids were collected from bacteria after growing 

overnight at 37C using the Plasmid Plus MegaPrep kit following manufacturer’s 

instructions. Plasmid concentration was quantified using Nanodrop One (Thermo 

Scientific) and diluted to a 3ug/uL concentration for subsequent transfections. To ensure 

fragment library quality and diversity, a small aliquot of the fragment library was 

amplified by PCR using P5 and P7 primers and run on an Illumina MiSeq sequencer 

using the 50-cycle kit as per manufacturer’s instructions.  

 

Cell culture and transfections 

GM12878 cells were obtained from the Coriell biorepository and grown in RPMI 1640 

Medium with GlutaMAX Supplement (Thermo Fisher #61870127) with 15% fetal bovine 

serum (Sigma Aldrich #F2442) and 1% pen/strep at a density of between 2x105 and 1x106 

cells/mL with regular media changes every 2-3 days. Approximately 24 hours before 

transfection GM12878 cells were split to a density of 4x105 cells/mL to ensure the 

presence of actively dividing cells for increased transfection efficiency. For transfection, 

cells were collected for 5 min at 300g, washed once with pre-warmed PBS, and collected 

again for 5 min at 300g. PBS was aspirated and cell pellets were re-suspended in 

Resuspension Buffer R (Thermo Fisher #MPK10096) at a concentration of 7.5 million 

cells per 100uL. DNA was added to cells at a concentration of 5ug of plasmid per 1 

million cells. In total, we transfected between 140-150 million cells per biological replicate 
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using the 100uL tips from the Neon Transfection System using the following conditions: 

1200V with 3 pulses of 20ms. Transfected cells were immediately recovered in pre-

warmed GM12878 media without antibiotic.  

 

RNA isolation and cDNA generation 

Cells were collected 24 hours post-transfection, washed twice in chilled PBS (spun for 5 

min at 300g) and RNA was collected using the Qiagen RNEasy Maxi kit (Qiagen #75162) 

following manufacturer’s instructions and performing the optional on-column DNase 

treatment step (Qiagen #79254). Poly A+ RNA was extracted from total RNA using the 

Oligotex mRNA Midi kit (Qiagen #70042), and any remaining DNA was digested with a 

second DNase treatment step using Turbo DNase (Thermo Fisher #AM2238) following 

manufacturer’s instructions. Treated mRNA was cleaned up and concentrated using the 

Qiagen RNEasy MinElute Cleanup kit (Qiagen #74204). We generated cDNA from 

mRNA using Superscript III reverse transcriptase (Thermo Fisher #18080085) with a 

gene-specific RT primer located in the 3’UTR of the sgGFP reporter gene downstream 

from the inserted fragments (5’-CAAACTCATCAATGTATCTTATCATG-3’). Reverse 

transcription was performed following manufacturer’s recommendations except with 2ug 

of poly A+ mRNA and 1uL of 12.5uM primer per 20uL reaction, and extension was 

performed for 60 minutes at 50C. Reactions were cleaned up using a MinElute PCR 

purification kit (Qiagen #28106, two reactions per column) and eluted in 15uL of pre-

warmed buffer EB. 

 

Library construction and high-throughput sequencing 

We tested the number of cycles needed to amplify single-stranded cDNA by performing a 

10uL qPCR reaction with a 2uL aliquot of cDNA, library preparation primers (F: 5’-

AATGATACGGCGACCACCGAGATCTACAC[TAGATCGC]TCGTCGGCAGCGTC-

3’, R’: 5’-CAAGCAGAAGACGGCATACGAGAT-3’) and NEB Ultra II Q5 polymerase 

with 1X SYBR green. We also diluted plasmid DNA to a comparable concentration as 

ssDNA before amplification for final library preparation. We performed PCR in 50uL 

reactions using 10uL aliquots of cDNA so that the concentration of DNA and primer in 



115 

the larger PCR reaction was equivalent to the qPCR reaction. PCR cycle number was 

chosen to be the cycle before the cycle threshold was reached in qPCR (8 cycles). PCR 

reactions were cleaned up using Qiagen’s MinElute PCR Purification kit. Each library 

batch (five transfected biological replicates, five plasmid controls) were sequenced on two 

flowcells on a NextSeq 500 machine using the 75-cycle kit as per manufacturer’s 

instructions for 2x37 PE reads with 2x8nt barcodes.  

 

Read mapping, data processing and enrichment analyses 

Reads were split by barcode and aligned to the human genome (hg19) using bowtie2 

v2.2.9. Alignment files were filtered to (i) remove reads mapping to chrM, (ii) select reads 

passing the -q 30 filter in samtools, and (iii) remove reads aligning to the ENCODE hg19 

blacklist regions. Expression of each unique DNA fragment was calculated for both RNA 

and plasmid samples, and differentially expressed fragments were identified using 

DESeq2 at FDR<0.05. 

 

Enrichment of up-regulated ATAC-STARR fragments in different genomic regions was 

calculated using BEDTools2 v2.19.0. BED files of motif annotations, histone modification 

ChIP-seq were downloaded from the ENCODE project website14, and 18-state 

ChromHMM predictions for GM12878 were downloaded from the Roadmap 

Epigenomics Consortium website4.  
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Identification of therapeutic targets using GWAS 

Variants with weak effect sizes 

Understanding the genetic basis of human disease is critical for understanding human 

biology and is being embraced as increasingly imperative for the development of new 

therapeutics. The discovery that most variants associated with genetically complex 

human traits have weak effect sizes and are preferentially located in non-coding regions 

has made the study of distal regulatory elements critical for interpreting the genetics of 

complex disease. When taken alone, the weak observed effect sizes of genetic variants 

identified by GWAS make a poor case for using GWAS as a starting point for 

therapeutics development. However, there are increasing numbers of examples where the 

genes identified by GWAS of a complex trait converge with those causal for the 

Mendelian forms of the trait. For example, common variation nearby the cardiac ion 

channel genes KCNQ1, KCNH2, SCN5A, KCNE1, and KCNJ2 is associated with QT 

interval length by GWAS, and rare coding variants in these genes are causal for long QT 

syndrome1. Similarly, common and rare variation converge for Proprotein convertase 

subtilisin/kexin type 9 (PCSK9) in LDL cholesterol GWAS and familial hyper- and 

hypocholesterolemia, and therapeutic inhibition of PCSK9 is effective for lowering LDL 

levels in patients2-4. The convergence in genes implicated by GWAS and family-based 

studies suggest that the two approaches capture genetic variants on different ends of an 

allelic series, and that stronger perturbation of GWAS target genes with weak effect sizes 

can have biologically meaningful phenotypic consequences. Our investigation of the Bves 

sub-threshold locus in Chapter 2 supports this view - mouse genetic knockouts and 

zebrafish morpholino knockdowns of Bves give rise to an organismal electrophysiological 

phenotype while the sub-threshold SNP independently has a modest odds ratio 5.  

 

Causal gene identification from a pathogenic non-coding variant 

As discussed in Chapter 2, the systematic identification of gene targets for non-coding 

regulatory elements remains an unsolved problem. Physical mapping of chromatin 

interactions has revealed that transcriptional enhancers regulate gene targets up to 1 

megabase away, complicating the identification of regulatory interactions6. Many 
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techniques have been used to identify potential gene targets of enhancers. Computational 

solutions to this problem have been proposed, including the selection of targets by 

genomic proximity or the identification of enhancer-gene pairs that show correlated 

activity patterns across different human tissues7. However, these computational 

predictions have high false positive and false negative rates, complicating efforts to use 

the results as a starting point for extensive follow-ups on predicted gene targets. Genetic 

methods for assigning gene targets involve identifying expression Quantitative Trait Loci 

(eQTLs), where the expression of a gene consistently varies between with individuals 

differing in genotype at a nearby genetic variant8. While this approach in theory has the 

capability to identify all genes affected by a particular genetic locus, eQTL studies to date 

have been underpowered (~200-300 individuals) and lack resolution within a genetic 

locus composed of multiple variants in high linkage disequilibrium8. Many genetic loci 

implicated by GWAS currently do not have eQTL gene targets, and targets implicated by 

eQTLs are not necessarily the causal genes at a GWAS locus, limiting the effectiveness of 

eQTL studies for gene target identification.  

 

Experimental approaches may represent the clearest options for linking enhancers to 

nearby genes. Chromatin conformation capture technologies offer the ability to identify 

physical interactions between regions of the genome, and can be performed on a global 

level using Hi-C and ChIA-PET methods6,9,10. However, the presence of a physical 

interaction between a predicted enhancer and a promoter does not necessarily imply a 

causal regulatory relationship between these two elements. Moving forward, the most 

conclusive evidence of regulation may come from perturbations of predicted enhancer 

elements through genome editing, followed by measurement of changes in expression of 

nearby genes. While the eQTL approach for gene target discovery is confounded by the 

presence of multiple genetic variants in a haplotype block, genome editing using for 

example CRISPR/Cas9 allows for a precise modification of the sequence at a genomic 

region. Currently genome modification using CRISPR/Cas9 cannot be applied in a high-

throughput method to many non-coding regulatory regions while still tracking 
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expression of nearby genes, however single-cell experimental technologies may make this 

a possibility in the future.  

 

Expanding the collection of epigenomic maps 

Another important insight from the work presented in this thesis concerns the 

heterogeneity of enhancer elements active in a given tissue. Current studies integrating 

epigenomics and human genetics use either the entire set of ChromHMM-predicted 

enhancer elements from a cell type, or the set of all peaks for an individual histone 

modification to predict the influence of common genetic variation on transcriptional 

regulation11-13. Our results in Chapter 2, however, suggest that there may be 

heterogeneous subgroups of enhancer elements in a given tissue, and that accounting for 

this variability can improve enrichment and functional interpretation of GWAS loci. 

Moving forward, it will be important to generate more detailed enhancer annotations for 

each human tissue that stratify predicted enhancers by functional annotations. Moreover, 

mapping the activity of enhancer subgroups after exposure to different environmental 

stimuli can also reveal important functional mechanisms for disease variants. For 

example, recent studies have identified SNPs that influence gene expression only in 

certain environmental contexts14,15, suggesting that causal variants for GWAS may be 

missed by epigenomic variant interpretation approaches if the enhancer profile is 

generated from cells in the wrong environmental condition. To generate more 

comprehensive maps of enhancer elements, it may be valuable to perform epigenomic 

mapping of primary human tissues from phenotypically heterogeneous individuals at 

different stages disease progression.  

 

Single cell epigenomic profiling technologies offer a promising option for mapping 

disease-relevant cell types moving forward16. The pathogenesis of some diseases may be 

driven in part by cell types that exist at low frequencies within a tissue. Unique enhancer 

elements present in these cell types will often be missed by conventional whole-tissue 

epigenomic mapping approaches, as epigenetic signatures arising from more prevalent 

cells will conceal signals from these lowly represented enhancers. Clustering of single cell 
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epigenomic data can reveal these rare sub-populations, which can then be analyzed and 

studied separately without worry of the signal being drowned out by more prevalent cell 

types.  

 

High-throughput interrogation of transcriptional regulatory elements 

Finally, one major next step for genome-wide assays of transcriptional regulatory activity 

will be the perturbation of regulatory DNA in the native chromatin context of the human 

genome. Recent studies have performed high-density endogenous editing of specific loci 

in the genome, identifying variants associated with cell viability or transcription of an 

integrated reporter gene17,18. Moving forward, we expect similar approaches to be applied 

for identifying non-coding DNA critical in a variety of human diseases by using the 

CRISPR-Cas9 system to systematically edit every enhancer or motif for important 

transcription factors, and identify cells displaying pre-determined disease phenotypes. 

Assimilation of genome-wide nucleotide-resolution maps of regulatory element activity 

in a variety of environmental conditions with maps of genetic variation associated with 

human disease will form the basis of the future studies of human genetics and lay the 

groundwork for a comprehensive understanding of every disease association in the 

genome.  
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