
1 

 

Magnetothermal Multiplexing for Biomedical 

Applications 
 

 

by 

 

Michael G. Christiansen 

 

B.S. Physics, Arizona State University, 2012 

 

 

Submitted to the Department of Materials Science and Engineering 

in Partial Fulfillment of the Requirements for the Degree of  

 

Doctor of Philosophy 

 

at the 

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 

June 2017 

 

 

© 2017 Massachusetts Institute of Technology. All rights reserved 

 

 

 

 

Signature of Author………………………………………………………………………………… 

Department of Materials Science and Engineering 

May 25, 2017 

 

 

 

Certified by………………………………………………………………………………………… 

Polina Anikeeva 

Professor of Materials Science and Engineering 

Thesis Advisor 

 

 

 

Certified by………………………………………………………………………………………… 

Donald R. Sadoway 

Chairman, Department Committee on Graduate Students 

  



2 

 

Magnetothermal Multiplexing for Biomedical Applications 
 

by 

 

Michael G. Christiansen 

 

Submitted tot eh Department of Materials Science and Engineering 

on May 25, 2017 in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Materials Science and Engineering 

 

ABSTRACT 

 

Research on biomedical applications of magnetic nanoparticles (MNPs) has increasingly 

sought to demonstrate noninvasive actuation of cellular processes and material responses using 

heat dissipated in the presence of an alternating magnetic field (AMF). By modeling the 

dependence of hysteresis losses on AMF amplitude and constraining AMF conditions to be 

physiologically suitable, it can be shown that MNPs exhibit uniquely optimal driving conditions 

that depend on controllable material properties such as magnetic anisotropy, magnetization, and 

particle volume. “Magnetothermal multiplexing,” which relies on selecting materials with 

substantially distinct optimal AMF conditions, enables the selective heating of different kinds of 

collocated MNPs by applying different AMF parameters. This effect has the potential to extend 

the functionality of a variety of emerging techniques with mechanisms that rely on bulk or 

nanoscale heating of MNPs. Experimental investigations on methods for actuating deep brain 

stimulation, drug release, and shape memory polymer response are summarized, with discussion 

of the feasibility and utility of applying magnetothermal multiplexing to similar systems. The 

possibility of selective heating is motivated by a discussion of various models for heat 

dissipation by MNPs in AMFs, and then corroborated with experimental calorimetry 

measurements. A heuristic method for identifying materials and AMF conditions suitable for 

multiplexing is demonstrated on a set of iron oxide nanoparticles doped with various 

concentrations of cobalt. Design principles for producing AMFs with high amplitude and ranging 

in frequency from 15kHz to 2.5MHz are explained in detail, accompanied by a discussion of the 

outlook for scalability to clinically relevant dimensions. The thesis concludes with a discussion 

of the state of the field and the broader lessons that can be drawn from the work it describes.  

 

Thesis Supervisor: Polina Anikeeva 

Title: Professor of Materials Science and Engineering 
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1 Introduction 

1.1 Nanomaterials as Minimally Invasive Actuators for Biomedical Applications 

The concept of reaching into the body noninvasively to influence biological processes is an 

appealing idea driving both the development of novel medical technologies and research 

methods alike. The native biological machinery of neurons, including the channel proteins that 

cause depolarization to propagate, enables them to amplify the effects of relatively weak stimuli, 

making them well suited as a preliminary focus for such methods. Noninvasive neuromodulation 

would offer therapeutic benefits; a variety of diseases may be treated or managed with targeted 

stimulation in structures deep inside the brain.
1, 2

 The current state-of-the-art in medical practice 

for targeted neural stimulation requires implantation of devices with electrodes that pass through 

healthy tissue to reach their intended targets.
3
 Such an approach is expensive and invasive, and 

can lead to a variety of complications.
4
 Simultaneously, there is growing demand among 

neuroscientists for techniques that can precisely stimulate the brains of animal models in 

experiments that further understanding of the nervous system. For instance, the method of 

optogenetics, in which transgenic expression of light-sensitive channel proteins enables 

neuromodulation with light, has found widespread use.
5
 The investigation of alternative 

neuromodulation methods analogous to optogenetics is worthwhile if they can facilitate the 

testing of new hypotheses by neuroscientists or perhaps one day lower the barrier to medical 

intervention. 

The need for noninvasive and minimally invasive stimulation techniques is sufficiently 

widely recognized that the topic is currently being approached from multiple routes and 

disciplines. From the perspective of the materials scientist, it is most intuitive to view attempts at 

noninvasive neuronal stimulation as forms of targeted delivery of energy into the body, and to 
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categorize them accordingly.
6, 7

 These include electromagnetic radiation,
8
 mechanical vibration 

(ultrasound),
9
 electric fields,

10
 and magnetic fields (static,

11
 alternating,

12
 and pulsed

13
). Many of 

these methods avoid the introduction of foreign substances into the body, attempting to produce 

an effect upon tissue by applying forces or fields in a manner that elicits the intended response.
9, 

14
 Others consider the possibility of viral transfection to artificially sensitize cells to some 

external stimulus.
11, 15

 Still others develop highly miniaturized and wirelessly powered 

biocompatible devices. The approach of greatest relevance to the topics discussed in this thesis is 

the introduction of inorganic nanomaterials suited for biocompatibility, which then play a 

mechanistic role in stimulation. Such an approach is inherently spatially selective, and often 

converts a noninvasive stimulus into a form that acts directly upon biological systems. Examples 

include the translation of magnetic fields to localized electric fields via magnetoelectric 

composites
16-18

 or alternating magnetic fields (AMFs) into localized heating by single domain 

magnetic nanoparticles (MNPs).
12, 19, 20

 

This thesis seeks to contribute to the development of emerging applications that make use of 

the heat dissipated by MNPs in AMFs to noninvasively trigger either neuromodulation or other 

therapeutic actions. In particular, it conceptually motivates a method that allows for selective 

heating of different types of MNPs. That such a possibility exists does not appear to have been 

widely appreciated prior to this work, and the technique could be used to extend the functionality 

of the wide variety of emerging applications based on heating MNPs. 

1.2 Historical Overview of Magnetic Materials in Biomedical Applications 

The idea of using magnetic materials for biomedical applications goes back at least a half 

century.
21

 One of the longest studied concepts is cancer hyperthermia, in which the selective 

heating of magnetic material introduced into a tumor raises its temperature with the goal of 



9 

 

selectively inducing necrosis or apoptosis.
22, 23

 Originally this included macroscopic metallic 

targets that could be heated with eddy currents as well as fine powders of magnetic material.
24

 

Presently, the focus has shifted almost entirely toward the use of MNPs.
22

 This is due at least 

partly to biocompatibility considerations, since MNPs are of a scale that allows them to be 

phagocytosed and can be comprised of materials such as iron oxide that the body is well 

equipped to break down.
25

 Cancer hyperthermia has been the subject of thousands of papers, 

recently including clinical trials with glioblastoma and prostate cancer patients.
26, 27

 Some 

researchers have pointed out fundamental hurdles that may impede practical implementation of 

hyperthermia, ranging from physical limits on the minimum size for treatable tumors to issues 

with scaling up AMF sources.
28

  

Mechanical manipulation of MNPs with applied magnetic fields is another longstanding 

trend in research.
23

 Starting in the late 1970s, MNPs incorporated into drug carrier systems were 

investigated with the intention of attracting them to tumors through forces exerted by magnetic 

field gradients.
29

 Preferential accumulation of anticancer drugs at the site of tumors is desirable 

because it reduces off-target effects resulting from systemic injection. Magnetic beads 

incorporating MNPs have also been used with magnetic tweezer techniques for precise 

manipulations of cells and biomolecules.
30

 Although such approaches seem appealingly simple, 

there are significant limitations on manipulating very small MNPs with forces generated by 

magnetic field gradients. For sufficiently small magnetic objects, the relative influence of 

viscous forces is high and guiding MNPs becomes infeasible as they decrease in size, especially 

for applications that require a readily scalable field gradient.
31

 Mechanical guidance or actuation 

methods based on torques rather than forces offer intriguing and comparatively feasible 

alternatives.
32
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Recent efforts toward targeted noninvasive stimulation using MNPs can be interpreted as an 

extension of this previous work on heat dissipation and mechanical manipulation, often enabled 

by new genetic tools. The earliest published occurrence of the speculation that the action of 

magnetic fields on MNPs could open ion channels can perhaps be found in a paper focused on 

small quantities of magnetite and maghemite nanoparticles discovered in the human brain.
33

 

Later, it was suggested that torques and forces on magnetic nanomaterials could be used 

deliberately for therapeutic stimulation, particularly for tissue engineering.
34

 The idea of using 

heat dissipated by MNPs to trigger a response from the temperature sensitive channel protein and 

capsaicin receptor TRPV1 (transient receptor potential cation channel subfamily V member 1
35

) 

for noninvasive stimulation was first published in 2011 by a team led by Pralle.
12

 This work 

provided evidence for nanoscale heating and demonstrated a stimulatory effect in vitro in human 

embryonic kidney cells and hippocampal rat neurons, and in vivo in the nematode C. elegans. 

Subsequent efforts have also claimed stimulation caused by the heating of MNPs in AMFs 

combined with transgenic expression of heat sensitive channel proteins.
19, 20, 36

 A growing trend 

has been toward a fully “magnetogenetic” approach that makes use of genetically encoded 

ferritin, sometimes incorporated into to TRPV1 or TRPV4, and such claims have rapidly 

proliferated in recent years, employing both AMFs and magnetostatic fields for stimulus.
11, 15, 19, 

37, 38
 A cogent critique of the plausibility of the mechanisms asserted in these studies has pointed 

out serious conceptual oversights.
39

 For these various mechanisms, the energy of interaction 

between ferritin and applied magnetic fields are typically as much as eight orders of magnitude 

lower than ambient thermal energy, rendering the proposed mechanisms implausible. In at least 

one case, methodical independent efforts have failed to reproduce the originally reported 
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results.
40

 In light of this, much of this intriguing work should be viewed with healthy skepticism. 

Even if the effects prove to be real, their origin seems to be poorly understood.  

1.3 Physiological Limits for Applying Alternating Magnetic Fields 

Suitability of AMFs for noninvasive actuation assumes that AMFs cause acceptably low 

levels of off-target effects. In principle, various forms of magnetic interaction with the body are 

possible. Although the overall character of human tissue is known to be weakly diamagnetic, due 

largely to its high water content, its constituent materials vary in their magnetic properties. For 

instance, the hemoglobin in blood is paramagnetic,
41

 the cores of ferritin are antiferromagnetic 

ferrihydrite or ferric oxyhydroxide,
42

 and there is even evidence suggesting the presence of small 

quantities of endogenous ferrimagnetic magnetite and maghemite nanocrystals in the human 

brain.
33, 43

 These ferrite nanocrystals occur in an exceedingly small mass fraction on the order of 

parts per billion,
33

 so the dominant concerns of applying AMFs to healthy tissue do not arise 

from magnetic properties, but rather weak, ionically-based electrical conductivity.  

Time changing magnetic flux in a conductive object can cause eddy currents to arise due to 

Faradic induction. In tissue, these currents are too weak to produce magnetic fields that 

significantly counteract the applied AMFs in deep tissue, but the associated heat dissipation 

cannot be ignored. Off-target heating averaged over time depends on numerous factors including 

duty cycle, geometry of the exposed region, and field profile. However, for problems of various 

dimensionalities, dissipated power can be expressed as a function of 𝐻0𝑓, where 𝐻0 is the AMF 

amplitude and 𝑓 is its frequency. For this reason, a commonly adopted constraint in cancer 

hyperthermia research is a fixed maximum permissible field amplitude-frequency product, 𝐻0𝑓. 

A frequently cited value for this constraint, 𝐻0𝑓 ≤  5 × 109 Am−1s−1,
44

 typically restricts 
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maximum useful operating frequencies to the low MHz range for heating MNPs in biomedical 

applications.  

Several useful criticisms can be made of the simple 𝐻0𝑓 product limit. One is that the 

conductivity of tissue varies with bodily location and frequency. Specifically, conductivity tends 

to increase with frequency, particularly in the MHz range.
45

 At low frequencies, the possibility 

for indiscriminate neural stimulation exists, limiting amplitudes to lower values than the 𝐻0𝑓 

product limit might suggest.
22

  

1.4 The Basic Concept of Magnetothermal Multiplexing 

The previous sections in this chapter have together offered a context for viewing the 

heating of MNPs in an AMF as a possible form of minimally invasive, targeted delivery of 

energy, suitable for actuating a variety of emerging biomedical technologies. In this sense, the 

AMF can be viewed as delivering a simple signal (“on” or “off”) with spatial and temporal 

specificity. This thesis is focused on developing the concept of magnetothermal multiplexing,
*
 

which could extend this functionality by offering a means for selectively heating different types 

of MNPs by applying distinct AMF conditions. In the case of applications based on bulk heating, 

this allows for different regions of a target to be heated selectively, while in the case of 

applications based on nanoscale heating, it permits selective actuation of MNP populations even 

when they are collocated. Subsequent chapters that discuss applications developed during this 

thesis work will emphasize how these methods might be meaningfully extended by robust 

magnetothermal multiplexing.  

                                                 
*
 “Multiplexing” in typical usage refers to the ability of a communication line to carry multiple signals 

simultaneously. The term is somewhat differently applied to this technique for selective heating, since a 

superposition of the selective AMFs would not necessarily heat both particle types.  
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To illustrate the utility of such a technique, consider the abstract representation shown in 

Figure 1.1. For the moment, the details and mechanisms of MNP heating and its action on the 

cell may be neglected. It is easy to imagine, given the number of cell types and variety of 

structures in the human body, that it could be advantageous to selectively stimulate different 

cells that are in close proximity. Particularly in the brain, where targeted structures are situated 

deep below the surface, offering multiple stimulatory handles is an appealing possibility.  

Such a vision of selective neural stimulation with MNPs provided the impetus for the work 

on this topic discussed in this thesis, though it may prove useful for other applications that would 

benefit from noncontact selective heating. For instance, a different technique using selectively 

heated macroscopic induction targets has been shown to adjust the resonant frequency of 

dynamic vibration absorbers,
46

 and something similar might be accomplished with multiplexed 

ferrofluids. This simply serves to underscore the fact that magnetothermal multiplexing is a 

materials concept with sufficient generality that developing and studying it in the kinds of 

systems discussed here could also make it available for other types of applications.  
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Figure 1.1 The basic concept of magnetothermal multiplexing is depicted abstractly. By 

changing the frequency and amplitude of an AMF, different types of MNPs are selectively 

heated, providing a means to elicit independent responses from two different types of cells.  

 

1.5 Figures of Merit and Scoring Functions 

It is often useful to establish “figures of merit” to assess the effectiveness of an 

engineered design in meeting some technological aim. Not only can this facilitate an objective, 

quantitative comparison of different approaches, but, perhaps more importantly, it clearly 

articulates desired performance in a way that can guide design. In order to gain a clearer 

understanding of the attributes of an effective magnetothermal multiplexing system, it is useful 

to consider how such a quantity might be defined. 

A logical starting point is the prevailing figure of merit used in literature to describe the 

efficiency of MNP heat dissipation in the presence of an AMF, specific loss power (SLP), an 
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intensive quantity stated in watts of dissipated power per gram of metal ion content.
†
 (For a 

description of the methods used in the work conducted for this thesis to measure SLP, please see 

Sections 4.4 and 4.5). SLP is most useful for applications that rely on bulk heating, such as 

cancer hyperthermia,
44

 ferrofluid stimulation,
20

 or actuation of shape memory polymer 

composites.
47

 In these cases, a higher SLP either allows for more rapid heating, higher steady 

state temperature, or a reduction of the concentration needed to produce similar effects, all of 

which are potentially desirable outcomes.  

One criticism that can be made of SLP centers on the fact that it does not account for 

AMF conditions, a shortcoming that is especially problematic when comparing SLPs reported in 

literature, which rarely use the same AMF conditions. Indeed, some of the highest reported SLPs 

make use of AMF conditions with 𝐻0𝑓 products significantly larger than similar literature.
48

 

From a physical perspective, AMFs store energy, some fraction of which is dissipated as heat by 

MNPs. One example of a more generalized comparison that has been suggested is to divide SLP 

by 𝐻0
2𝑓, yielding a quantity dubbed “intrinsic loss power.”

49
 The rationale offered for this 

choice is based on the functional dependence suggested by linear response theory (discussed in 

Section 2.3) at low field amplitudes. The resulting units of nH m2 kg−1, do not offer a 

particularly intuitive representation of loss power.
49

 A similar, but more straightforward 

approach that does not appeal to results of any particular model might be to consider a unitless 

ratio of two energy densities:
50

 1) the population and time-averaged dissipated energy density in 

the MNPs per cycle of the AMF and 2) the time-averaged energy density of the 

magnetoquasistatic field 〈𝑢𝐵〉 in the absence of MNPs.  

                                                 
†
 The term specific absorption rate (SAR) is sometimes used for the same quantity, however in some contexts, the 

concept of SAR is also applied more generally to heat dissipation in tissue e.g. from absorption of radiofrequency 

radiation. To avoid confusion, specific loss power (SLP) is used throughout this thesis.  
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𝑆𝐿𝑃 𝜌𝑚

𝑓
(

1

〈𝑢𝐵〉
) =

4 𝑆𝐿𝑃 𝜇0 𝜌𝑚

𝐻0
2𝑓

 1.1 

Here, 𝜌𝑚 is the mass density of the material comprising the MNPs and 𝜇0 is the permeability of 

free space. This results in the same functional dependence on 𝐻0 and 𝑓 as intrinsic loss power, 

but unsurprisingly the comparison yields a tiny unitless fraction, even for very high reported 

heating rates. Neither intrinsic loss power, nor any similarly generalized quantity has been 

widely adopted. Clinical viability depends less on strict efficiency of energy transfer than it does 

on minimizing dosing and ensuring a safe level of off-target effects. The interaction of the body 

with the AMF, which results in off-target heat dissipation at high frequencies and possibly neural 

stimulation at low frequencies, is a nuanced issue depending on both intrinsic and extrinsic 

factors, and it is therefore inadvisable to attempt to incorporate it directly into a general figure of 

merit.  

In applications that rely on nanoscale heating, such drug release from liposomes, an 

estimate of individual particle loss power (IPLP) may be more relevant than SLP.
51

 This is an 

extensive property rather than an intensive one that can be estimated for monodisperse MNPs by 

multiplying the SLP by the approximate volume of an individual MNP, typically resulting in 

quantities on the order of fW. As will be discussed in Chapter 2, IPLP has a convenient 

theoretical interpretation as well: it is the area of a hysteresis loop for a population-averaged 

MNP, multiplied by the frequency of the AMF. 

Since magnetothermal multiplexing is, in principle, applicable to situations whether bulk 

or nanoscale heating is most relevant, comparisons of magnetothermal multiplexing performance 

must be compatible with either SLP or IPLP, depending on the particular application. The sketch 

provided in Figure 1.2 conceptually illustrates effective magnetothermal multiplexing at two 

AMF conditions, contrasting it with a representation of ineffective magnetothermal multiplexing. 
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Let 𝐿𝑃𝑥,1 be the loss power of MNP type X at AMF condition 1, and so forth. The key desirable 

features can be broken down into quantitatively describable aims: efficiency, selectivity, and 

parity. Systematic comparison between multiplexing sets in enabled by defining scoring 

functions that vary between 0 and 1 to assess the extent to which these aims are met, where 1 

corresponds to the ideal case. 

 

Figure 1.2 A sketch contrasting (a) idealized magnetothermal multiplexing performance with (b) 

highly unsatisfactory magnetothermal multiplexing performance. This graphic is intended to 

facilitate understanding of the definitions of the proposed scoring functions for magnetothermal 

multiplexing. 

 

1. Efficiency 

Efficient heat dissipation by MNPs is generally desirable for magnetothermal applications, 

and this requirement should not be relaxed for effective multiplexing. Usually heating 

efficiency of a single set would be stated simply in terms of a loss power like SLP or IPLP. 

However, limiting the scope of the comparison to a set of empirically tested options, 

efficiency can be reframed in terms of the extent to which the materials are being utilized 

relative to maximum available loss powers allowed by constraints on acceptable AMF 
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conditions.
44

 (See Figure 1.3(a).) Ideally, both materials would exhibit comparable heating 

near this maximum value at their preferred AMF conditions. Defining a efficiency function 

for multiplexing with two types of MNPs that varies from 0 to 1, and does not depend on 

knowing which type of MNPs is meant to be favored at each condition, 

 efficiency =  
𝐿𝑃𝑥,1 + 𝐿𝑃𝑦,2

2𝐿𝑃𝑚𝑎𝑥
 1.2 

 

2. Selectivity 

In an effective multiplexing system, one AMF condition should selectively heat one type of 

MNPs as compared to its heat dissipation at the other AMF conditions. To quantify 

adherence to this principle, a simple function is desirable, ranging from 0 to 1, that is 

maximized when, e.g., 𝐿𝑃𝑥,1 ≫ 𝐿𝑃𝑥,2. It is also desirable for the function to be symmetric 

with respect to exchanging its two arguments. An example of such a function is as follows:
‡
 

 
selectivity = 1 −

𝐿𝑃𝑥,1𝐿𝑃𝑥,2

(
𝐿𝑃𝑥,1 + 𝐿𝑃𝑥,2

2 )
2 

1.3 

 

This should be evaluated for both types of MNPs at a given set of AMF conditions, retaining 

the minimum of the two in order to most accurately reflect limitations in performance. Figure 

1.3(b) illustrates the dependence of this function on 𝐿𝑃𝑥,1 and 𝐿𝑃𝑥,2. Selectivity might have 

instead been defined in terms of 𝐿𝑃𝑥,1 and 𝐿𝑃𝑦,1, but the possibility of adjusting 

concentration in bulk heating situations effectively allows these loss powers to be scaled by a 

constant. The form of Equation 1.3 is invariant under this transformation, but it is necessary 

                                                 
‡
The inspiration for this simple function is geometric. The second term represents a ratio between the area of a 

rectangle with side lengths 𝐿𝑃𝑥,1 and 𝐿𝑃𝑦,1 and a square constructed from the same perimeter. Thus this term 

approaches a maximum of 1 when 𝐿𝑃𝑥,1 = 𝐿𝑃𝑦,1 and tends to 0 in the limit of great dissimilarity.  
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to add the further requirement that MNP types x and y exhibit different preferred AMF 

conditions. This can be expressed mathematically as follows 

 
𝐿𝑃𝑥,1 − 𝐿𝑃𝑥,2

𝐿𝑃𝑦,2 − 𝐿𝑃𝑦,1
> 0 1.4 

 

Setting the selectivity to 0 in cases when this condition is not met ensures that the sets being 

compared are indeed selectively heated at different AMF conditions.  

 

3. Parity (Nanoscale Heating Applications Only) 

An additional characteristic desired in magnetothermal multiplexing is comparable heating 

rates by the different types of MNPs at their favored conditions. In bulk heating applications, 

this can be brought about by choosing appropriate concentrations, but in nanoscale heating, it 

relies on intrinsic properties. Without this characteristic, systems exhibiting high selectivity 

as defined in Equation 1.3 could actuate responses at substantially different rates or with 

different efficacy. A simple function similar to the one defined for selectivity can be used to 

ensure that IPLPs are comparable: 

 partiy =

[
 
 
 

𝐼𝑃𝐿𝑃𝑥,1𝐼𝑃𝐿𝑃𝑦,2

(
𝐼𝑃𝐿𝑃𝑥,1 + 𝐼𝑃𝐿𝑃𝑦,2

2 )
2

]
 
 
 
8

 1.5 

 

Figure 1.3(c) illustrates the dependence of this function on 𝐼𝑃𝐿𝑃𝑥,1 and 𝐼𝑃𝐿𝑃𝑦,2. The basic 

expression in Equation 1.5 has been raised to a power of 8 in order to manipulate the shape 

of the function. It should be noted that because each of the functions in Equations 1.2, 1.3, 
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and 1.5 have been defined so that they range between 0 and 1, adjusting the power to which 

they are raised is a way of adjusting their shape.  

 

In the interest of clarity, the above discussion has been restricted to multiplexing with two 

types of MNPs. Appendix A addresses how these principles may be straightforwardly extended 

to situations in which three or more multiplexing materials are desired. In practice, it may be 

useful to construct a weighted average of these three figures of merit to describe overall 

performance. The needs of particular applications should influence the weights. See Sections 5.4 

and 6.5 for examples of these principles applied to select materials for multiplexing.  

 

Figure 1.3 (a) The scoring function for efficiency takes an average of loss powers at favored 

conditions and normalizes it to the maximum achievable loss power for the types of MNPs under 

consideration, subject to the AMF constraints, as suggested in Equation 1.2. (b) A contour plot 

shows the scoring function for selectivity expressed in Equation 1.3. Selectivity is maximized 

when the loss powers of an MNP type differ significantly at two AMF conditions. (c) Parity is 

the tendency for the favored modes to exhibit comparable individual particle loss powers at their 

favored conditions, and is relevant to applications based on nanoscale heating. A contour plot of 

Equation 1.5 is shown. 

1.6 Structure of the Thesis 

The content and structure of this document have been created with the intent that it might 

serve as a useful starting point for anyone wishing to continue this research. To that end, an 
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effort has been made to keep the main text reasonably concise and direct, and appendices have 

been used extensively. By adopting this structure, it is hoped that the main text will remain 

readable, while greater depth and more detailed explanations of relevant topics are still made 

available to the curious reader.  

 The present chapter has provided broader context for the work presented in this thesis and 

a conceptual introduction for magnetothermal multiplexing. Chapter 2 reviews and discusses 

approaches for modeling heat dissipation by MNPs in the presence of an AMF, focusing on their 

differing predictions for the feasibility of magnetothermal multiplexing. Chapter 3 explains 

design principles and techniques for setups that generate AMFs. Such apparatuses are essential 

for experimental evaluation of magnetothermal multiplexing and for the experiments conducted 

in the body of work described in this thesis. The underappreciated difficulty of enlarging such 

setups to clinically relevant scales is emphasized. Chapter 4 describes characterization 

techniques, with an emphasis on a heuristic, empirically-based approach for identifying materials 

suitable for magnetothermal multiplexing. 

 Chapters 5 and 6 summarize collaborative studies that explored possible biomedical 

applications of MNPs heated by AMFs. These have been divided according to the relevant length 

scale of heating involved in their mechanism of action, with Chapter 5 addressing those based on 

bulk heating effects and Chapter 6 addressing those based on nanoscale heating effects. Rather 

than recapitulating details adequately described in published work on these topics, their main 

points are succinctly stated and results are discussed. Both of these chapters consider how 

multiplexing might be used to extend such techniques. Chapter 7 concludes by offering a 

perspective on the lessons that should be drawn from the body of work presented in this thesis.  
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2 Chapter 2. Modeling Magnetic Nanoparticle Heating 

2.1 Hysteresis as Thermodynamic Framework for Modeling Nanoparticle Heating 

This chapter examines several models that describe the heating of MNPs in AMFs, with 

various initial assumptions and differing levels of complexity. Superficially, these methods can 

seem so distinct from each other that it is elucidating to emphasize the thermodynamic context 

connecting them. Essentially, these are all models for predicting hysteresis and from it deducing 

dissipated energy. This approach is clearly not unique to magnetic systems; viscoelastic response 

and dielectric loss are direct analogues.  

 

Figure 2.1 (a) Representation of a (linear) state function in which energy is stored reversibly. (b) 

History dependent state function, leading to energy dissipation represented by the area of the 

loop. 

In cases of simple state functions of conjugate variables such as stress and strain, electric 

field and polarization, or magnetic field and magnetization, a cyclically applied force describes a 

path that simply retraces itself (Figure 2.1(a)). Energy is reversibly stored in the cycle, 

represented by the area under the curve. Such behavior idealizes real systems, which inevitably 

dissipate some energy, even if they may store energy very efficiently. The result is that the 

material state depends not only on the instantaneous value of an applied force, but also on the 
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history of the system. For cyclic driving forces in steady state, the path forms a closed loop with 

an area proportional to the energy dissipated per cycle of the field (Figure 2.1(b)). A more 

rigorous thermodynamic justification of this interpretation can be found in Appendix C. 

Conceptualizing dissipation with hysteresis is useful because it allows the problem to be 

framed in terms of the kinetic processes that influence the dynamical response of magnetization 

under the influence of an AMF. This provides a route for making predictions relevant to the 

design of such materials that does not require working out the detailed microscopic mechanism 

by which heat is dissipated. The situation is analogous to making use of phenomenological 

models of friction without having to delve into the details of interfacial science that lead to its 

effects. Another useful consequence is the availability of graphical interpretations of hysteresis 

loops resulting from different models that facilitate intuitive comparison.  

2.2 Magnetic Nanoparticles: Basic Physical Picture 

The dynamical behavior of fine or nanoscale magnetic nanoparticles (MNPs) is a topic of 

long standing scientific and technical interest, ranging from interpreting evidence of 

paleomagnetism
52

 to designing patterned media for memory storage in hard drives.
53

 Decades of 

theoretical and empirical studies have developed a picture of the behavior of these MNPs at the 

nanoscale that differs in intriguing ways from bulk materials, a picture that is a necessary starting 

point for understanding models of MNP heating. 

Exchange or superexchange interactions drive magnetic ordering, and these quantum 

effects operate in much the same way regardless of whether a crystal is composed of 10
5
 atoms 

or occurs in bulk. However, many bulk materials exhibit magnetic order microscopically, yet 

have no net magnetic moment in the absence of an applied magnetic field. This is because they 

are able to form local domains that reduce magnetostatic energy. 
54

 In MNPs below an 
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approximate size that depends on their magnetic properties, the exchange energy penalty arising 

from the formation of a domain wall would far exceed the reduction in stray field energy. This 

has the important consequence that such MNPs exhibit a single domain and can often be 

regarded as uniformly magnetized, though even at small sizes, surface effects can lead to spin 

canting
55

 and larger sizes they can begin to exhibit intermediate “pseudo-single domain” 

behavior.
56

 For iron oxide MNPs, the onset of the latter has been estimated to be 80nm, 

significantly larger than the MNPs studied in this work.
57

  

Even when a MNP can often be considered uniformly magnetized, the orientation of its 

moment fluctuates, often quite rapidly, as has been shown directly in microscopic magnetometry 

experiments that observe stochastic reversal.
58

 Despite fluctuating, the moment of an MNP will 

tend, on average, to be directed along certain preferred directions. These are called “easy axes” 

and they are separated by energy barriers. Magnetic anisotropy, the energy landscape that leads 

to this preference, can originate from spin-orbital interactions at the atomic level,
59

 the shape of 

the MNP,
60

 surface effects,
61

 or potentially strain fields in magnetostrictive materials (Appendix 

B). Stochastic fluctuation of the moment relative to the physical structure of the MNP is termed 

Neél relaxation after the French geophysicist who first proposed it.
62

 The characteristic timescale 

of stochastic coherent reversal over the anisotropy energy barrier 𝜏𝑁 can be approximated by 

assuming a constant attempt rate 𝜐0 and assuming that the moments overcome the barrier 

proportionally to a Boltzmann distribution of the energies of the moments.  

 𝜏𝑁 =
1

𝜐0
exp

𝐾𝑒𝑓𝑓𝑉𝑚

𝑘𝐵𝑇
 2.1 

 

𝐾𝑒𝑓𝑓 is the effective anisotropy energy, 𝑉𝑚 is the magnetized volume, 𝑘𝐵 is the Boltzmann 

constant, and 𝑇 is the absolute temperature. Other expressions have been suggested for 𝜏𝑁 that 

incorporate dependence of the attempt rate on the applied field.
63

 However, the exponential term 
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dominates all of these expressions, the typical attempt rate assumed is really an order of 

magnitude estimate, and 𝐾𝑒𝑓𝑓 is typically difficult to predict for real MNPs (Appendix B). These 

considerations limit the practical benefit of adopting a more complex form for the attempt rate.  

MNPs suspended in a fluid are also expected to physically rotate (“Brownian relaxation”), 

providing an additional source of fluctuation of the direction of the magnetic moment even in 

cases where the anisotropy barrier is large compared to the ambient thermal energy.
64

 In the 

absence of an applied magnetic field, this occurs at a timescale 𝜏𝐵 estimated by the 

hydrodynamic volume 𝑉𝐻 as well as the viscosity 𝜂 of the medium.
63

  

 

 𝜏𝐵 =
3𝜂𝑉𝐻

𝑘𝐵𝑇
 2.2 

 

One of these stochastic processes typically occurs much faster than the other and is thus expected 

to dominate behavior. Since they occur in parallel, the overall characteristic timescale 𝜏 can be 

expressed as follows: 

 

 𝜏 =
1

1
𝜏𝑁

⁄ + 1
𝜏𝐵

⁄
 2.3 

 

Interparticle interactions can play a significant role in the behavior of MNPs in some cases. For 

MNPs with a high saturation magnetization and high local concentration, the interaction effects 

can be so pronounced that they lead to forms of magnetic ordering observable by electron 

holography.
65

 Even in dilute dispersions of materials with a lower saturation magnetization, 

structures such as rings or chains can be formed to reduce energy.
66

 Most attempts to model the 

heating of MNPs neglect this interaction—a choice that is well motivated only for dilute and 

well dispersed suspensions. This applies to many of the specific applications explored in this 
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thesis, as evidenced by low overall concentrations and dynamic light scattering data that does not 

indicate the presence of aggregates.  

2.3 Linear Response Theory 

A magnetic material is said to be linear and isotropic when magnetization 𝑀⃑⃑  and applied 

magnetic field 𝐻⃑⃑  can be related by a constant, the magnetic susceptibility 𝜒.  

 

 𝑀⃑⃑ = 𝜒𝐻⃑⃑  2.4 

 

This framework can be extended to include sinusoidally varying applied magnetic fields when 

the response of the magnetization is also sinusoidal, with an amplitude that scales linearly with 

applied field amplitude and a phase that possibly lags behind. Mathematically, this can be 

described simply by allowing the susceptibility to assume complex values.  

 

 𝑀 = 𝜒̃𝐻0𝑒
𝑖𝜔𝑡 = |𝜒̃|𝐻0𝑒

𝑖(𝜔𝑡+𝜙) 2.5 

 

Where 𝜔 = 2𝜋𝑓, 𝑡 is time, |𝜒̃| = √𝜒̃∗𝜒̃, and 𝜙 = arctan [
Im(𝜒̃)

𝑅𝑒(𝜒̃)
]. Complex susceptibility can be 

viewed equivalently as a way of describing elliptical hysteresis loops. The in phase (real) 

component of the magnetization stores energy, whereas the out of phase (imaginary) component 

dissipates energy. Appendix D offers a more detailed explanation of this point. A model that 

seeks to determine 𝜒̃ as a function of frequency and material properties should, in principle, offer 

insight into the physical behavior of the system and influence design or selection MNPs that heat 

well in the presence of an AMF.  

 Multiple models of this kind have been proposed, and perhaps it is most appropriate to 

collectively refer to them as “linear response theories,” but the term is now used most frequently 
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in reference to a particular approach articulated by Rosensweig in 2002.
63

 This work drew upon 

existing models for susceptibility, but the way in which it presents a simple analytical expression 

for dissipated heat has led to its eager and ubiquitous adoption by the field of cancer 

hyperthermia.
22

 Conceptually, this work is derived from the efforts of Debye and others in the 

early twentieth century to explain frequency dependent dielectric properties of molecular 

substances with electric dipole moments.
67

 Although physics determining timescales of the 

relaxation processes differs, the underlying rationale and the functional dependence of 𝜒 on 

frequency are identical. In linear response theory with MNPs, the key dynamical equation can be 

stated as follows 

 

 
𝜕𝑀

𝜕𝑡
=

1

𝜏
(𝑀𝑒𝑞 − 𝑀) 2.6 

 

Noting that when 𝑀 = 𝑀𝑒𝑞, 
𝜕𝑀

𝜕𝑡
= 0, and that when 𝑀 > 𝑀𝑒𝑞, 

𝜕𝑀

𝜕𝑡
< 0, this equation can be 

readily understood to describe reversion to equilibrium magnetization 𝑀𝑒𝑞 at a rate set by 𝜏 that 

is characteristic of stochastic reversal. By assuming a sinusoidal driving field, and substituting a 

solution of the form in Equation 2.5, an expression for the complex susceptibility that solves 

Equation 2.6 can be found algebraically.  

 

 
𝜕(𝜒̃𝐻0𝑒

𝑖𝜔𝑡)

𝜕𝑡
=

1

𝜏
(𝜒𝑒𝑞𝐻0𝑒

𝑖𝜔𝑡 − 𝜒̃𝐻0𝑒
𝑖𝜔𝑡) 2.7 

 

 𝑖𝜔𝜒̃ =
1

𝜏
(𝜒𝑒𝑞 − 𝜒̃) 2.8 

 

Solving for 𝜒̃,  

 𝜒̃ =
𝜒𝑒𝑞

1 + 𝑖𝜔𝜏
 2.9 
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To straightforwardly interpret this result, 𝜒̃ can be written in terms of its real and imaginary 

components. 

 Re(𝜒̃) = 𝜒𝑒𝑞 [
1

1 + (𝜔𝜏)2
] 2.10 

 

 Im(𝜒̃) = 𝜒𝑒𝑞 [
𝜔𝜏

1 + (𝜔𝜏)2
] 2.11 

 

 

Figure 2.2 (a) Real and imaginary parts of susceptibility are shown in a physically generalized 

way for linear response theory by normalizing them to static (i.e. equilibrium) susceptibility 𝝌𝒆𝒒 

and adopting the unitless frequency coordinate 𝝎𝝉 that normalizes the frequency to the rate of 

stochastic reversal. Note that is plot identically describes both Debye theory and the most 

frequently cited version of linear response theory for MNP suspensions, the only difference 

being whether 𝝌 is taken to describe electric or magnetic susceptibility, respectively. (b) The 

family of elliptical hysteresis loops represented in (a) is shown. 

Noting that the imaginary part of 𝜒̃ (loss term) is maximized at the crossover point 

between Re(𝜒̃) and Im(𝜒̃), and setting Equations 2.10 and 2.11 equal to each other, it can be 

found that this condition is met when  

 

 𝜔𝜏 = 1 2.12 

 

This is a statement that captures the essential physical message of linear response theory. It 

predicts that, regardless of applied field amplitude, maximal heating will occur at a frequency 

corresponding to the timescale of stochastic reversal. In the “superparamagnetic regime,” where 
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𝜔𝜏 ≪ 1, the magnetization is able to keep pace with equilibrium and dissipation is negligible. In 

the “ferromagnetic regime,”
§
 where 𝜔𝜏 ≫ 1, magnetization is unable to appreciably respond to 

the field and dissipation is negligible. When this is combined with the fact that 𝜏 varies strongly 

with MNP diameter, especially when Neél relaxation dominates, the result is a sharp maximum 

at a particular MNP diameter. This has frequently been interpreted as an impetus to “tune” MNP 

size or effective anisotropy to maximize heating effects.  

Unfortunately, while the logic of linear response theory is valid and instructive, its basic 

premises are arguably flawed in most of the cases to which it is applied. To see this clearly, it is 

useful to contrast the physical situation to Debye relaxation, an almost identical model with 

justifiable premises. In the case of dielectric response of polar molecules, the energy barriers to 

reversal can be an order of magnitude larger than 𝑘𝐵𝑇, whereas the energy of the dipole moment 

of a single molecule in an electric field of reasonable magnitude is far smaller than 𝑘𝐵𝑇.
67

 In 

such a case, it is reasonable to approximate the rate of stochastic reversal as being unaltered by 

the applied electric field. On the other hand, MNPs are comprised of ~10
5
 atoms with magnetic 

ordering, with the result that the energy of its magnetic moment in an applied field can exceed 

𝑘𝐵𝑇 at readily accessible conditions. (Indeed, this is the basis of the term 

“superparamagnetism.”) Because the energy scale of the moment in the field can be comparable 

to the energy scale of the anisotropy barriers, 𝜏 ought to depend strongly on 𝐻, but this is 

conspicuously neglected in linear response theory. None other than Neél himself considered the 

effects of small fields on altering the forward and backward rates of reversal in the work cited as 

the origin of Neél relaxation,
62

 and this was for the geomagnetic field, which is thousands of 

                                                 
§
 This term is somewhat unfortunate because it likewise applies to ferrimagnetic materials and 

could give the false impression that the exchange forces producing magnetic ordering are not 

also at work in the superparamagnetic regime. Some researchers have described this regime 

alternatively as one in which “quasistable hysteresis” occurs.  
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times smaller than applied field amplitudes typical for hysteretic heating.
**

 Although behavior 

can be expected to converge to linear response theory in the limit of anisotropy energy scales 

much larger than energy scales of interaction with the applied field, it is not sufficient to merely 

attempt to adjust the expression for 𝜏 and substitute into the old formulas. If 𝜏 depends on 𝐻, and 

indeed it can range several orders of magnitude during a cycle of the AMF, sinusoidal functions 

will no longer solve Equation 2.6. Clearly, alternative models are required.  

2.4 Dynamic Hysteresis 

The model referred to as “dynamic hysteresis” in this thesis reflects an attempt to retain as 

many of the simple premises on which linear response theory is based, while accounting for the 

influence of the applied field amplitude on rates of coherent reversal.
68

 For the azimuthally 

symmetric case of easy-aligned MNPs with uniaxial anisotropy under the influence of an applied 

magnetic field, the combined energy landscape is shown in Figure 2.3. In order to compare the 

relative magnitude of these two contributions to each other and to the influence of thermal 

fluctuations, it is natural to define the unitless parameters 𝜎 for anisotropy and 𝜉 for Zeeman 

energy.  

 

 𝜎 ≡
𝐾𝑒𝑓𝑓𝑉𝑚

𝑘𝐵𝑇
 2.13 

 

 𝜉 ≡
μ0𝐻𝑀𝑠𝑉𝑚

𝑘𝐵𝑇
 2.14 

 

This allows for the combined energy to be expressed in the following form: 

 
𝐸(𝜃, 𝑡)

𝑘𝐵𝑇
= 𝜎 sin2 𝜃 − 𝜉sin (𝜔𝑡) cos 𝜃 2.15 

                                                 
**

 This paper is written in French. I am indebted to my colleague Eléonore Tham for her help in 

translating a few key parts and our subsequent discussion.  
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Notably, when |𝜉| = 2𝜎, the effective barrier to reversal vanishes, as explained in Appendix E. 

This suggests a natural normalization of applied field to the critical value at which the barrier 

vanishes, the “anisotropy field” 𝐻𝑘. Note that this is not the same as “coercive field” 𝐻𝑐, which 

is simply the field at which 𝑀 = 0 in a hysteresis loop.  

 𝐻𝑘 ≡
2𝐾𝑒𝑓𝑓

𝜇0𝑀𝑠
→

𝜉

2𝜎
=

𝐻

𝐻𝑘
 2.16 

 

Figure 2.3 The energy landscape resulting from the summation of easy aligned uniaxial 

anisotropy and the Zeeman energy of the MNP moment in the applied magnetic field is shown, 

for three field magnitudes. These are normalized with respect to the anisotropy field 𝑯𝒌, at 

which the barrier to reversal vanishes. A sketch is included for clarity. Note that azimuthal 

symmetry permits this representation, because the energy depends only on the polar angle 𝜽. 

A consequence of focusing on the easy aligned uniaxial case is that the energy minima do 

not change orientation under the application of a magnetic field. Let 𝑃𝐴 represent the proportion 

of moments confined to the minimum at 𝜃 = 0, and 𝑃𝐵 represent the proportion of moments 

confined to the minimum at 𝜃 = 𝜋. Though the formulation of escape rates depends on a 

statistical distribution of orientations, for the purpose of approximating the net magnetization of 

an ensemble of such MNPs, these moments can be considered restricted to the minima.  

 

 𝑀 ≈ 𝑃𝐴 cos 0 + 𝑃𝐵 cos 𝜋 = 𝑃𝐴 − 𝑃𝐵 2.17 
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A modification of this treatment to partially account for thermal spreading can be found in 

Appendix E. Equation 2.6 implicitly assumes symmetry in the instantaneous forward and 

backward rates of moments over the anisotropy barrier, an assumption in accordance with the 

idea that the barrier remains essentially unperturbed. Taking the energy of interaction with the 

field into account, this symmetry is lost, and a system of equations is required to describe 

forward and backward rates.  

 

 
𝑑

𝑑𝑡
[
𝑃𝐴

𝑃𝐵
] = [

−𝜈𝐴 𝜈𝐵

𝜈𝐴 −𝜈𝐵
] [

𝑃𝐴

𝑃𝐵
] 2.18 

 

Consistent with the reasoning that motivated Equation 2.6, the instantaneous rates of escape over 

the barrier can be expressed in terms of an assumed attempt rate weighted by the proportion of 

moments expected by a Boltzmann distribution to surmount the energy barrier. 𝜈𝐴, the 

instantaneous escape rate from 𝜃 = 0, can be expressed in terms of the energy barrier 𝑈𝐴. 

 

 𝜈𝐴 = 𝜈0𝑒
−𝑈𝐴
𝑘𝐵𝑇  2.19 

 

Analytical expressions for 
𝑈𝐴

𝑘𝐵𝑇
 and 

𝑈𝐵

𝑘𝐵𝑇
 as functions of 𝜎 and 𝜉 can found by analyzing Equation 

2.15, as described in Appendix E. Recognizing that 𝜉 varies sinusoidally in time, Equation 2.19 

can be substituted back into Equation 2.18. The resulting system of differential equations is 

numerically solvable, and the solutions, 𝑃𝐴(𝑡) and 𝑃𝐵(𝑡) can be substituted into Equation 2.17 to 

find 𝑀(𝑡). As demonstrated by Figure 2.4, the forms of 𝑀(𝑡) and 
𝜕𝑀

𝜕𝑡
 are clearly not sinusoidal.  
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Figure 2.4 The predictions of linear response theory and dynamic hysteresis are contrasted for a 

case in which they exhibit major discrepancies. An MNP with 𝝈 = 15 is driven by an AMF with 

𝑯𝟎 = 𝟎. 𝟓𝑯𝒌 and 𝒇 = 𝟓𝟎𝟎𝐤𝐇𝐳. Linear response theory predicts sinusoidal (a) 𝑴(𝒕) and (b) 
𝒅𝑴

𝒅𝒕
, 

both with small amplitude. The corresponding hysteresis loop in (f) that is described 

parametrically by 𝑴(𝒕) and 𝑯(𝒕) is a tiny ellipse with 𝑯𝒄  𝑯𝟎. Dynamic hysteresis predicts 

non-sinusoidal (d) 𝑴(𝒕) and (e) 
𝒅𝑴

𝒅𝒕
, with a corresponding hysteresis loop that is square-like with 

𝑯𝒄 < 𝑯𝟎. 

Plotting hysteresis loops reveals a departure from the elliptical loops predicted by linear 

response theory, particularly at high field amplitudes (Figure 2.5). In the superparamagnetic 

regime, the result is curves that resemble the expected equilibrium magnetization curves of easy 

aligned MNPs with uniaxial anisotropy (Figure 2.5(c)). In the “ferromagnetic” regime, elliptical 

loops indicating limited response to low applied field amplitudes grow into large square-like 

loops as field amplitude is increased (Figure 2.5(e)). For the purpose of anticipating trends in 

MNP heating, the latter trend is especially important and contradicts the physical directive 

offered by linear response theory to tune the timescale of stochastic reversal to match the 

frequency of the AMF. In dynamic hysteresis, the MNPs that heat most effectively are in the 
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ferromagnetic regime and should be driven at amplitudes near the coercive field of the square 

like loops at the highest allowable frequency. This runs contrary to the perceived need for highly 

monodisperse, size-tuned MNPs because, within these models, 𝐻𝑘 does not depend on volume 

(Equation 2.16). Combined with a systematic constraint such as the 𝐻0𝑓 product limit, it is also 

highly suggestive of multiplexing. MNPs that can be designed with significantly different 

coercive fields should have distinct optimal driving conditions.  

 

Figure 2.5 (a) Contour plot of hysteresis loop area as a function of σ and 𝝃 for uniaxial 

anisotropy at 500kHz, superimposed with paths representing AMF amplitudes of different 

magnitude relative to 𝑯𝒌. (b) Hysteresis loop area as a function of σ plotted along the paths in 

(a). The dashed line represents 8, the theoretical maximum predicted by Stoner-Wohlfarth 

theory at 𝑻 = 𝟎𝐊. (c)-(e) Simulated hysteresis loops for points in 𝝈-𝝃 space for representative 𝝈 

values from the superparamgentic regime (c), ferromagnetic regime (e), and the 𝝈𝒄𝒓𝒊𝒕 dividing 

them (d), which varies with frequency. Adapted from Christiansen et al.
51

 

A further interpretation of the hysteresis loops in Figure 2.5 is that, while the growth to 

square-like hysteresis loops predicts higher heating rates in the ferromagnetic regime, it also 
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ultimately serves to bound the coercive field. One of the indirect effects of ignoring Zeeman 

energy in linear response theory is that the predicted power dissipation grows without bound as 

𝐻0 increases. In dynamic hysteresis, 𝐻𝑐 is bounded to always be less than 𝐻𝑘, and is often 

considerably less. The commonly cited version of linear response theory only corrects 

susceptibility to ensure that the magnetization does not exceed the saturation magnetization 

(Appendix D), causing SLP to grow quadratically with 𝐻0 for low amplitudes and linearly for 

high amplitudes.
63

 These trends have straightforward geometric interpretations when the 

bounding on the axes of hysteresis loops is considered. 

 In order to gain a more generalized understanding of a model, it is sometimes helpful to 

develop an abstract representation on to which many material systems can be mapped. Such a 

representation for the results of dynamic hysteresis can be termed a “𝜎-𝜉 space.” Figure 2.5 

shows a 𝜎-𝜉 space for 500 kHz and easy aligned MNPs with uniaxial anisotropy, a contour plot 

with its ordinate representing 𝜎 and its abscissa representing 𝜉0. The values represented in the 

plot are areas of 𝑀/𝑀𝑠 vs 𝜉 hysteresis loops, which can be interpreted as individual particle loss 

energy per cycle normalized to 𝑘𝐵𝑇 (Appendix E). Lines extending from the origin can be 

interpreted as paths of constant 𝐻0/𝐻𝑘 along increasing 𝜎 values.  

2.5 Stochastic Landau-Lifshitz-Gilbert Equation  

A detail that was omitted from the basic physical picture of MNPs presented in Section 

2.2, is that in addition to thermal fluctuation, their magnetic moments are thought to precess at 

high frequencies.
69, 70

 One approach for modeling the AMF amplitude dependent dynamic 

response of MNPs is to consider a form of the Landau-Lifshitz-Gilbert (LLG) equation that 

incorporates the influence of thermal noise in its dynamical description of the precession of the 

magnetization vector 𝑀⃑⃑  of an individual MNP.
60, 71
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𝑑𝑀⃑⃑ 

𝑑𝑡
= −𝛾1𝑀⃑⃑ × (𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ) −

𝜅𝛾1

𝑀𝑠
𝑀⃑⃑ × [𝑀⃑⃑ × (𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ)] 2.20 

 

Where 

 𝛾1 ≡
𝛾

1 + 𝜅2
 2.21 

 

 

𝐻⃑⃑ 𝑒𝑓𝑓 is the effective field, 𝐻⃑⃑ 𝑡ℎ is the thermal field, 𝜅 is a unitless damping constant, 𝛾 is the 

gyromagnetic ratio and can be expressed in terms of fundamental quantities as shown in 

Appendix F. Vector cross products are a common feature of dynamical equations for physical 

systems involving rotation, and the most intuitive way to understand Equation 2.20 is to 

separately consider the role of each term on the right-hand side. The first term drives simple 

precessional motion and the second term is responsible for damping. Including damping is 

essential because it allows the moment to be brought into alignment with the field and it also 

serves as a phenomenological mechanism of energy dissipation. By acting only through torques 

that are constructed by cross products to remain orthogonal to 𝑀⃑⃑ , this equation conserves the 

magnitude of 𝑀⃑⃑ . This coincides with the basic physical picture described in Section 2.2 of a 

single domain MNP undergoing coherent fluctuation and reversal. 

𝐻⃑⃑ 𝑒𝑓𝑓, the effective magnetic field, lumps together the influence of the externally applied 

field and magnetic anisotropy, which is usually assumed to be uniaxial. Though not made 

apparent by Equation 2.20, the influence of anisotropy dominates 𝐻⃑⃑ 𝑒𝑓𝑓 when 𝐻0 is less than 𝐻𝑘, 

as should be expected for consistency between the models. (Appendix F offers additional 

details.) Acting to randomly jostle 𝐻⃑⃑ 𝑒𝑓𝑓 in a physically well-motivated way, the thermal field 

𝐻⃑⃑ 𝑡ℎ varies stochastically and is defined according to its statistical properties. Treated as an initial 

value problem and propagating numerically, the net effect of these contributions is noisy 
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hysteresis loops for individual MNPs (Figure 2.6(c)) which can be averaged over a large 

population to produce hysteresis loops similar in shape to the ones predicted by dynamic 

hysteresis models (Figure 2.6(d)).  

 

 

Figure 2.6 (a) Damped precession (𝜿 = 𝟎. 𝟏) of the unit magnetization vector 𝜶⃑⃑  of an MNP is 

shown as its moment is brought into alignment with an applied field in the 𝒛 direction. This path 

was used to check the code for the numerical propagation using Equation 2.20 and does not 

include anisotropy or thermal noise. (b) An example of stochastic variation of the thermal field in 

the i
th

 direction is shown, normalized to a quantity defined in Appendix F. (c) An example of a 

hysteresis loop produced under the influence of this stochastic fluctuation is shown, along with 

an average of 50 such loops in (d).  

 Recent work by Usov has shown that this model can be extended to include interparticle 

interaction by simulating large pseudorandom clusters of MNPs, including a term for their 

dipole-dipole interactions in 𝐻⃑⃑ 𝑒𝑓𝑓, and solving numerically.
72

 By varying the packing fraction of 

MNPs and 𝐾𝑒𝑓𝑓, this work suggests the existence of a strong interacting regime, in which 
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interparticle interactions dominate, a weak interacting regime in which they can be safely 

neglected, and an intermediate region between the two extremes. This can be understood 

intuitively in terms of Equation 2.20 by considering which contributions will dominate 𝐻⃑⃑ 𝑒𝑓𝑓. 

Based on this logic, it has been argued that the unitless quantity 𝐾𝑒𝑓𝑓 𝑀𝑠
2⁄  is important for 

assessing the significance of interactions between MNPs. If this quantity is large, MNPs may 

effectively behave as weakly interacting, even at high concentrations.  

2.6 Kinetic Monte Carlo Methods 

An alternative model for studying the effects of interparticle interactions on hysteresis in 

clusters of MNPs employs kinetic Monte Carlo simulations.
73

 Unlike the Stochastic LLG 

equation, this method does not describe precession or make use of a similarly explicit dynamical 

equation. A kinetic Monte Carlo approach consists of randomly seeding a space with non-

overlapping MNPs, and then evolving the system stepwise in time pseudorandomly applying a 

weight function motivated by statistical mechanics that depends on the energy of the system. In 

this way, the energy scale of interaction is balanced by the entropic effects of thermal 

fluctuation. The energetic contributions considered in these models include interaction with the 

applied magnetic field, magnetic anisotropy, and dipole-dipole interactions between MNPs.  

Unsurprisingly, square-like hysteresis loops are predicted in some conditions,
74

 as with 

other theories that take into account both anisotropy and the energies of the MNP moments in the 

field. The influence of dipole-dipole interactions on these hysteresis loops can be 

counterintuitive. For instance, one kinetic Monte Carlo simulation, simulating the contents of a 

liposome, suggests that MNPs at the edge of an interacting cluster may heat differently than 

MNPs at the interior.
74

 It might seem reasonable to suppose for some geometric distributions that 

the introduction of moderate dipole-dipole interactions could have an effect similar to increasing 
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the effective magnetic anisotropy. This can be shown straightforwardly in the case of two 

interacting MNPs (Appendix B), and there are some cases simulated by Monte Carlo methods 

where increased MNP concentration does this seem to produce similar behavior to increasing 

𝐾𝑒𝑓𝑓. However, in the limit of strong interactions, where concepts of long range order between 

MNPs begin to be relevant, the situation is sufficiently complex that conclusions should not be 

hastily drawn. Kinetic Monte Carlo methods offer a powerful tool for systematically 

investigating such systems. 

2.7 Discussion of Relative Merits and Limitations of the Models 

Despite its widespread use, special care must be taken to employ linear response theory 

only within its domain of validity. Experimental evidence for significant departures from linear 

response theory can be readily observed from trends in specific loss power as a function of 

applied AMF amplitude (Figure 2.7),
51

 as well as direct observation of non-elliptical hysteresis 

loops through methods such as AC magnetometry.
75, 76

 Nevertheless, linear response theory 

provides a valuable starting point for making sense of the behavior anticipated by improved 

models.  

The similarity in the square-like shapes of the hysteresis loops predicted by stochastic 

LLG, dynamic hysteresis, and kinetic Monte Carlo treatments at high applied field amplitudes 

should not be interpreted as arbitrary or accidental. Key parallels between these models are 

discernable in the features that describe a barrier to reversal being reduced through the influence 

of an applied AMF and overcome through thermal fluctuation. In this sense, these models can 

perhaps be interpreted as dynamical elaborations of the classic Stoner Wohlfarth problem
77

 at 

nonzero temperatures. Depending on the particular physical circumstances under investigation, 

some models may be more appropriate than others. Dynamic hysteresis is limited to low MNP 
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concentrations and frequencies where precession can be safely neglected. Kinetic Monte Carlo 

methods are similarly appropriate in cases where precession can be neglected, but interactions 

between MNPs are a prime concern. Most general, yet still deeply phenomenological, is the use 

of the LLG equation with a stochastic thermal term, which is valid in principle up to frequencies 

where a description of precession is necessary.  

The internal and mutual consistency of these models is interesting, and further elaboration 

on their convergence upon one another would be intriguing from a theoretical perspective.
68, 69

 

However, in this work, these models are used with the explicit intent of informing engineering 

decisions, and their relative merits should be considered in that context. Dynamic hysteresis, 

despite its somewhat narrower yet still relevant domain of validity, is sufficiently simple that it 

can easily and quickly be implemented over a 𝜎-𝜉 space as discussed in Section 2.4. 

Fu8ndamentally, this is because dynamic hysteresis models already incorporate results from 

statistical mechanics. In contrast, kinetic Monte Carlo or stochastic LLG require averaging over 

repeated numerical simulation for each hysteresis loop.  
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Figure 2.7 (a) Experimental calorimetry data for SLP vs. diameter with increasing field 

amplitude is compared against the predictions of dynamic hysteresis and linear response theory 

simulations. (a)-(c) are for various field amplitudes at 100kHz, and (d)-(f) are for 500kHz.  

3kA/m,  5kA/m,  10kA/m,  15kA/m,  20kA/m,  25kA/m,  35kA/m,  45kA/m,  

55kA/m, and  65kA/m (all ±<3% in experiment). (a) and (b) show experimental calorimetry 

data, with vertical error bars representing the standard deviation of five trials. (b) and (e) 

represent the results of a dynamic hysteresis simulation taking into account measured magnetic 

diameter and assuming a Gaussian distribution of diameters with the same variance as the 

physical diameters. (c) and (f) represent the result of a linear response theory simulation with the 

same measured input parameters. (g) and (h) show specific loss energy versus AMF amplitude 

data for the MNP from (a)-(f) with the largest diameter, measured experimentally and modeled 

with a dynamic hysteresis simulation, respectively. Note the appearance of a plateau in both plots 

that is not predicted by linear response theory. The inset plots of (g) and (h) compare power law 

fits of initial SLE vs. H0 curves. Adapted from Christiansen et al.
51
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2.8 Predicted Feasibility of Magnetothermal Multiplexing with Different Models 

Considering loss powers subject to the constraint provided by physiological limitations on 

the AMF that can be safely applied to the body results in the prediction of a unique maximum, 

regardless of the particular model being used. This can be deduced from several observations: 

1. All of the models predict that, at any given frequency, loss energy per cycle should 

increase monotonically with field amplitude. A model predicting shrinking hysteresis 

loop area in response to increasing AMF amplitude would be nonphysical. 

2. For a given loss energy per cycle, loss power is proportional to frequency. Thus in the 

limit as frequency goes to zero, so too must loss power.  

3. Although this thesis makes use of a particularly simple statement of the physiological 

limit in the form of a 𝐻0𝑓 product, it may be more generally asserted that such a 

constraining function necessarily stipulates lower amplitudes at higher frequencies. 

Thus, in the limit of high frequencies, when combined with observation 1, allowable 

loss powers must decrease.  

Together these observations imply that by constraining AMF conditions to physiologically 

acceptable field amplitudes, loss powers tend to zero in the limit of both low frequencies and 

high frequencies. Somewhere in between these limits, a maximum or maxima must occur, and 

given the monotonic increase of specific loss energy with AMF amplitude and monotonic 

decrease of acceptable AMF amplitudes with frequency, there should exist a simple maximum. 

Both linear response theory and dynamic hysteresis predict the existence of such maxima (Figure 

2.8), but the reasoning that predicts them differs substantially between the two models, with 

direct consequences for the projected feasibility of magnetothermal multiplexing.  
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An essential characteristic of MNPs suitable for multiplexing is selectivity, as defined in 

Section 1.5. As will be discussed in Section 5.4, for bulk heating applications it is useful to 

consider a definition of selectivity that is concentration invariant. This greatly simplifies analysis 

of the functional dependence on 𝐻0 and 𝑓 to assess the possibility for selectivity with the two 

models, because it allows the SLP curves to be normalized. As is explained in Appendix G, for 

linear response theory, optimization subject to these constraints consists of selecting distributions 

of MNPs with 𝜎 values centered on the two frequencies. If even a small amount of polydispersity 

in 𝜎 is accounted for, far less than most real MNPs samples would exhibit,
78

 the outlook for 

selective heating is dim (Figure 2.8(a)). In contrast, dynamic hysteresis suggests that a 

multiplexing set should make use of MNPs in the ferromagnetic regime, but their 𝜎 values could 

be similar or even identical provided that their coercive fields are substantially different. Even 

permitting a wider distribution of 𝜎 values than the linear response case, the possibility of 

multiplexing predicted by dynamic hysteresis is substantially unaltered (Figure 2.8), largely due 

to the fact that its principle of optimization is based on 𝐻𝑐 rather than 𝜎 (Appendix G). Figure 

2.9 shows experimental calorimetry data corroborating the assertion that selective bulk heating is 

possible.  
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Figure 2.8 The differences between linear response theory and dynamic hysteresis in predicting 

the feasibility of selective bulk heating are shown. (a) Using the principles of optimization 

suggested by linear response theory, idealized monodisperse MNP sets are selected for preferred 

operation at 50kHz and 500kHz. Considering the influence of polydispersity by assuming 

Gaussian distribution functions in 𝝈 centered at these values with a standard deviation of 2 

dramatically reduces the feasibility of multiplexing. (b) MNP sets with identical distributions of 

𝝈, but distinct 𝑯𝒌 values are predicted by a dynamic hysteresis model to offer a comparatively 

feasibly option for selective heating. Introducing polydispersity by assuming Gaussian 

distribution functions with a standard deviation of 5 does not substantially alter the feasibility of 

selective heating. 
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Figure 2.9 A preliminary demonstration of multiplexed SLP values, unconstrained by the 𝑯𝟎𝒇 

product is shown. The samples consisted of superparamagnetic Mn0.04Fe2.96O4 MNPs with 

𝒅𝒎 = 𝟏𝟑. 𝟔𝐧𝐦 (  for AMF1 and  for AMF2) and a “ferromagnetic” Fe3O4 MNPs with 

𝒅𝒎 = 𝟐𝟐. 𝟗𝐧𝐦 (  for AMF1 and  for AMF2). The solid line is a linear response theory 

simulation for Fe3O4 MNPs of varying diameter driven by AMF1 including Brownian relaxation. 

The dashed lines correspond to DH simulations for the same SDMNPs driven by AMF1 (long 

dash) and AMF2 (short dash). TEMs of the samples are shown. Scale bars are 20nm. Adapted 

from Christiansen et al.
51

  

 The doubt that Figure 2.8 casts on the ability of linear response theory to predict the 

feasibility of selective bulk heating may be safely extended to nanoscale heating as well. The 

underlying issue, a need to sensitively tune 𝜎 combined with polydispersity, would have the 

same effect in this situation as well. However, the argument and evidence pertaining to selective 

bulk heating as predicted by dynamic hysteresis cannot necessarily be extended to nanoscale 

heating without further analysis because nanoscale heating does not benefit from the possibility 

of adjusting concentration. Fortunately, the reasoning is made straightforward by considering 

hysteresis loops in 𝑀/𝑀𝑠 versus 𝜉, which have an area proportional to individual particle loss 

energy per cycle (Appendix E). When 𝐻0 < 𝐻𝑐, the magnetization is unable to respond 

appreciably and negligible heat dissipation is expected. When 𝐻0 > 𝐻𝑐, loops have a roughly 

consistent area, regardless of the frequency. Figure 2.10(a)-(c) demonstrates that dynamic 

hysteresis models predict the feasibility of multiplexed IPLPs with substantially distinct 𝐻𝑘. 
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Figure 2.10(d)-(f) uses hysteresis loop representations to show the underlying logic. By scaling 

the 𝜉 axis by the frequency, the visual area of the loops is proportional to loss power rather than 

loss energy per cycle. In short, this representation shows that magnetothermal multiplexing with 

IPLPs can be interpreted as a straightforward scaling relationship imposed by the 𝐻0𝑓 constraint 

in hysteresis loops with different 𝐻𝑐 values. 

 

Figure 2.10 (a) Simulated IPLP for SDMNPs driven by an AMF at 1MHz and amplitude 

𝑯𝟎  =  𝑯𝒌,𝟏  =  𝟎. 𝟏𝑯𝒌,𝟐  =  𝟎. 𝟎𝟏𝑯𝒌,𝟑. Dash-dot-dash, dashed, and solid lines correspond to 

low (𝑯𝒌,𝟏), medium (𝑯𝒌,𝟐), and high (𝑯𝒌,𝟑) coercivity materials, respectively. Markers represent 

 values of SDMNPs selected from each set for multiplexing. The long black dashed line 

represents 8, the theoretical maximum. (b) Analogous plot for an AMF of amplitude 𝑯𝟎 = 𝑯𝒌,𝟐 

at 100kHz. (c) Analogous plot for an AMF of amplitude 𝑯𝟎 = 𝑯𝒌,𝟑 at 10kHz. (d)-(f) Simulated 

hysteresis loops for the SDMNPs selected for multiplexing at the AMF conditions corresponding 

to the plots in (a)-(c), respectively. Numerical area of the 𝑴/𝑴𝒔 vs.  loops is equal to individual 

particle loss energy per cycle normalized to ambient thermal energy. The axes are rescaled such 

that the graphical area is proportional to IPLP. From Christiansen et al.
51
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3 Design of Alternating Magnetic Field Coils and Associated Electronics
††

 

 

3.1 Challenges in Generating Alternating Magnetic Fields 

In conducting biological experiments or materials characterization involving heat 

dissipated by MNPs, generating an AMF is a crucial experimental hurdle. Commonly, 

researchers conducting these experiments either buy systems to do this or have them custom 

made. The result typically resembles induction furnaces with large power requirements and fixed 

operating frequency.
37, 79

 Designing AMF setups for the experiments described in this thesis 

played a role in helping to guide the thought process that led to the idea of magnetothermal 

multiplexing and averted adoption of the discouragingly prominent misconception that such 

setups irradiate samples with radiofrequency electromagnetic waves.
19

 For a detailed justification 

of the well-motivated applicability of the magnetoquasistatic approximation of the setups 

discussed here, see Appendix H.  

Given the magnetoquasistatic character of these setups, it may seem counterintuitive that 

reaching amplitudes meeting the 𝐻0𝑓 product limit can be challenging; after all, static magnetic 

fields with magnitudes far exceeding the desired AMF amplitudes are readily and routinely 

produced in the laboratory. Such a view neglects the role of inductance and the basic 

consequences of alternating magnetic flux. Many of the proven strategies that offer strong static 

magnetic fields in the laboratory, such as designs with many turns of wire or yokes made of soft 

ferromagnetic alloys having high saturation magnetization, would utterly fail if they were forced 

to operate at 100s of kHz. Their high inductance would necessitate tremendous voltages for even 

modest currents, potentially exceeding the dielectric breakdown strength of their components. 

Even before this point of failure could be reached, the heating of the conductive yoke would 

                                                 
††

 The structure and content of this chapter is based largely on a manuscript submitted to Review of Scientific 

Instruments. Some aspects of the discussion have been condensed or expanded where appropriate.  
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severely limit accessible amplitudes. Generating suitable AMF conditions is feasible, but design 

strategies must be appropriately adapted to respond to these challenges.  

 Generating a static magnetic field in a small working volume is far easier than doing so 

for a large working volume, and this trend is even more pronounced for AMFs (Section 3.6). The 

comparative feasibility of small setups permits simple, inexpensive strategies to be employed at 

the scale required for materials characterization or in vitro work (Figure 3.1). Enlarging working 

volumes to encompass in vivo animal models requires markedly different design strategies, such 

as resonant tank circuits (Figure 3.1). There is only one published setup that generates an AMF at 

the scale of humans intended to reach similar amplitudes, and its performance and design 

arguably leave room for significant improvement.
80

 Though only occasionally acknowledged,
28

 

the difficulty of scaling up AMFs ought to receive greater attention. Left unaddressed, the 

problem could act as a bottleneck in translating a wide variety of research on MNPs to a clinical 

setting. From a systems level perspective, materials design of the MNPs and AMF setup design 

could potentially inform one another. Indeed, the idea of magnetothermal multiplexing arose 

partly from these kinds of considerations. 

 The intent of this chapter is to communicate design principles with sufficient clarity to 

enable others to reproduce and improve upon the setups that have supported the work presented 

in this thesis, and to provide a useful conceptual starting point for bringing AMFs to clinically 

relevant scales (Figure 3.1). The keenly interested reader should refer to the appendices where 

indicated for useful details.  
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Figure 3.1 Design strategies vary with the scale of the intended working volume. A graphical 

overview of the progression of designs explored in this chapter is shown.  

 

3.2 Justifying the Use of Cored Electromagnets 

In an electromagnet, the introduction of a soft ferromagnetic core allows wire to be 

wrapped around a long, highly permeable section of a flux path. If this path forms a closed loop 

broken only by a small air gap, such as a gapped toroid, then its overall reluctance will 

dominated by that gap. Provided that the gap is small compared to the path length of the core, the 

magnitude of the magnetic field is reasonably uniform (Figure 3.2(a)) and closely approximated 

by a simple expression.  

 

 𝐻𝑔 ≈
𝑁𝐼

𝑤
 3.1 
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Here, 𝐻𝑔 is the field in the gap, 𝑁 is the number of turns, 𝐼 is the current, and 𝑤 is the gap width. 

(Appendix I explains the basis of this approximation for a toroidal geometry.) To clarify how this 

can reduce the power required to reach a desired magnetic field amplitude, this dependence can 

be compared to the familiar case of a long current-carrying solenoid and the field that it produces 

𝐻𝑠, which is also reasonably uniform within the working volume. This field is proportional to the 

number of turns per unit length 𝑁/𝐿 and the current 𝐼.
81

 

 

 𝐻𝑠 =
𝑁𝐼

𝐿
 3.2 

 

One can imagine bending the long solenoid and slipping it over the gapped toroidal core to serve 

as the windings of an electromagnet, while keeping its current constant (Figure 3.2 (b)). The 

simplicity and similarity of the expressions in Equations 3.2 and 3.3 allow for a comparison of 

the field resulting from the two designs in the form of a ratio.  

 

 
𝐻𝑔

𝐻𝑠
=

𝐿

𝑤
 3.3 

 

For a gap that is small compared to the circumference of the toroid, this ratio is large. The 

magnetic field magnitude has therefore been strengthened, though restricted to a smaller volume. 

In order to reach a targeted magnetic field magnitude, the necessary current is reduced by the 

same factor, which also reduces the required power. The same is true of other gapped flux path 

geometries, and the design advantage can be visualized as the core providing a mechanism by 

which the integrated current required to reach a particular magnetic field magnitude can be 

spread over a larger area, reducing current density and with it the dissipated power.  
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Figure 3.2 Detail of the gap region of a magnetostatic planar finite element model of an 

electromagnet with a 7.5mm gap and nonlinear B vs H manufacturer data for 3F3 at 25˚C. 

Magnetic field magnitude is shown relative to the mean magnetic field in the gap (25kA/m) to 

assess uniformity. (b) A representation of an imagined stepwise deformation of a long solenoid 

into the windings of gapped toroidal electromagnet is shown. 

 

 In the magnetostatic case, for field magnitudes below the saturation magnetization of a 

core, the advantage of using a core for an electromagnet is clear. The situation can be less 

straightforward at high frequencies. One consequence of an alternating flux is significant waste 

heat dissipated in the core through hysteresis or eddy currents, often far more than the Joule 

heating of the wires. A core can still offer an advantage, but this is contingent on the scale of the 

electromagnet, proper selection of core material, and the design of the flux path. 

3.3 Practical Considerations for Small Scale Coils 

Undesirable heating of the core is the main source of practical limitation in attempting to 

operate AMF electromagnets, especially when experiments are sensitive to heat. The dependence 

of power dissipation on flux, combined with the poor thermal conductivity of ferrites, can lead to 
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observable hot spots for uneven flux distributions (Figure 3.3). The impact of heat dissipation in 

the core can be mitigated through a combination of design and experimental practice. Active 

cooling with water circulated from an ice bath can help offset the dissipated heat. Combined with 

consistent duty cycling and a well-insulated sample holder, these electromagnets can be used for 

sensitive measurement of MNP heating rates with low background. (See Section 4.4 for 

additional details.) A wide variety of ferrite ceramic materials suited for power magnetics is 

readily available, and careful material selection can reduce dissipated heat.
82

 Of the options 

tested, it was concluded that Epcos’ N87 dissipated the least heat in the frequency range 100kHz 

to 750kHz (Appendix J).  

 

Figure 3.3 (a) Magnetostatic planar finite element model of flux distribution in the core of a 

Ferroxcube 3F3 toroid (TX51/32/19) with a 7.5mm gap and magnitude 16kA/m at center of gap. 

(b) Infrared thermograph of uncooled electromagnet operating with 16kA/m amplitude in the gap 

at 500kHz after 30 seconds. Note correlation of core temperature with flux density. 

Figure 3.4(a) summarizes the maximum field amplitude used in standard operation as a 

function of frequency for several designs, as compared to the 𝐻0𝑓 product clinical limit 

discussed earlier. For electromagnets based on metal powder cores, operation was limited to the 

low tens of kilohertz, due to eddy current losses. Though falling below the 𝐻0𝑓 limit, the 

electromagnet shown in Figure 3.4(b) can reach amplitudes of up to 130kA/m at 16kHz. In the 
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hundreds of kilohertz, power ferrite cores like the one shown in Figure 3.4(c) can easily meet or 

exceed the limit. Although suitable ferrites for similar designs that operate near or above 1 MHz 

do exist
82

 and were tested up to 2.5MHz, it was found that the benefits of using of a core 

diminish at these frequencies. As the required current to reach the conditions suggested by the 

𝐻0𝑓 product limit shrinks, so too does the power savings realized by using a core, and soon a litz 

wire design becomes favorable because it can be cooled more effectively. One such geometry is 

shown in Figure 3.4(d) and Figure 3.4(e) and is intended to maintain the same field direction and 

homogeneity as the designs incorporating cores while reaching frequencies as high as 2.5MHz. It 

employs a conical spiral of litz wire held by a 3D printed wire guide with a pitch selected to 

make it a geometric approximation of superimposed Helmholtz coils with increasing diameter.  

 

Figure 3.4 (a) Summary of normal operating conditions relative to one commonly stated 𝑯𝟎𝒇 

product limit, 𝟓 × 𝟏𝟎𝟗𝑨 𝒎−𝟏𝒔−𝟏 (b) Electromagnet for 16kHz operation with two stacked 

Magnetics Inc. MPP cores (Part number C055866A2) with a 7.5mm gap (c) A Ferroxcube 3F3 

ferrite core (TX51/32/19-3F3) with a 7.5mm gap wrapped with insulated litz wire (d) Sketch of 

wire geometry for a stacked Helmholtz coil (e) Stacked Helmholtz coil incorporating 3D printed 

wire guides. 
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3.4 Series Resonant Circuits for Cored Electromagnets 

Straightforward resonant circuits can be used to drive the AMF electromagnets pictured 

in Figure 3.4. Since incorporating a core both increases inductive reactance and reduces the 

required current for a design incorporating many turns of litz wire, this suggests the need for 

series rather than parallel resonance. For this purpose, arrays of surface mounted high voltage 

mica capacitors with negligible equivalent series resistance may be used. The withstanding 

voltage required by this array can be estimated by accounting for the current required by 

Equation 3.1, the resonance frequency, and the overall capacitance value.  

A circuit similar to the one shown by LaCroix et al.
83

 can be used to step up the current 

supplied by a broadband amplifier designed for 50Ω loads. (An Electronics and Innovation 

1020L amplifier was used in this thesis.) A schematic with simplified nonideal component 

models is shown in Figure 3.5(a), along with a representative photograph of the circuit in Figure 

3.5(b), and a nonideal transformer model in Figure 3.5(c). Simulations based on this model with 

measured component values appear to reproduce measured impedance values at low fluxes 

(Figure 3.5(d)). The resonant frequency can be adjusted over a wide range by selecting different 

capacitance values for the resonant capacitor 𝐶 in the secondary circuit (Figure 3.5(e)).  

 One of the advantages offered by a series circuit is the feasibility of rapidly switching 

between different operating conditions. This is an essential capability for preliminary 

multiplexing characterization and demonstration experiments in which a sample is exposed to 

one AMF condition and then another in rapid succession. Through the use a dual set of relays, 

the circuit can be made to rapidly switch between transformer ratios and resonant capacitances. 

(Figure 3.5(f)). 
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Figure 3.5 (a) Simplified schematic for circuit driving AMF electromagnets with cores (b) 

Photograph of representative circuit (c) Model of nonideal transformer (d) Resonances of the 

same electromagnet placed in series with various capacitor arrays (e) Simulated low current 

impedance of a model based on measured component values is compared to impedance versus 

frequency measurements. (f) A schematic shows how relays can be used to rapidly switch 

resonant capacitors and transformers. This is valuable for any experiment investigating 

multiplexing that requires exposing samples to multiple AMF conditions in quick succession.  

 

3.5 A Design for In Vivo Experiments in Anesthetized Rodents 

For applications such as calorimetry or optical microscopy in vitro, experiments where a 

uniform field within the working volume is desirable and concentrating waste heat far from the 

gap is not problematic, the flux distribution and associated heating shown in Figure 3.3 is 

acceptable. Other designs can use wider gaps to extend working volume to superficial targets in 

small animal models as shown in Figure 3.6(a). Widening the gap sacrifices uniformity and 

amplitude (Equation 3.1), but the field drops off more gradually with distance from the core as 

shown in Figure 3.6(b).  
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Figure 3.6 (a) Sketch of design incorporating wider gap to access shallow targets, e.g. in small 

anesthetized animals. (b) Magnetic field amplitude along centerline away from gap normalized 

to magnetic field magnitude at center of gap (c) Flux distribution for unmodified 7.5mm gap in 

3F3 core (TX51/32/19-3F3) with 65kA/m amplitude at center. (d) Flux distribution for a core 

with an optimally placed additional cut operation, but otherwise identical. (d) Flux distribution 

resulting from a cutting operation removing more than the optimal amount of material. 

In such cases, it is also worthwhile to consider further modifying the core in order to 

favorably influence the distribution of flux. Homogenizing flux in the core at high amplitudes 

reduces overall power dissipation, allowing for more aggressive duty cycles. The flux in the core 

can be made more uniform in the case of a gapped toroid simply by adding an additional cut 

perpendicular to the gap, indicated in Figure 3.6(c)-(e). The best position for this additional cut 

varies with gap width; removing an optimal amount of material from the gap increases its 

reluctance sufficiently to reduce the flux on the opposite side of the electromagnet (Figure 

3.6(d)). Removing too much material concentrates flux near the gap, resulting in an increased 

heating in the vicinity of the working volume (Figure 3.6(e)). An alternative method to 

homogenize the flux in the core of an electromagnet with a gap is to employ symmetric flux 
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paths such as E cores in which the material closest to the gap is likely to experience the largest 

flux (Appendix J).  

 

3.6 Scalability Limitations to Cored Electromagnets 

Having both justified and demonstrated the practical advantage of using a gapped core to 

produce AMF amplitudes in a 1cm
3
 working volume with less dissipated power than coreless 

alternatives would have required, it may be tempting to imagine scaling up such designs to 

working volumes large enough to hold research rodents or human subjects. Doing so is 

inadvisable, and it is possible to show this analytically. Scalability of inductors and transformers 

with cores has been well-studied,
84-86

 typically in the context of maximizing stored or transferred 

energy. A similar analysis can be conducted that considers the consequences of maintaining the 

same AMF amplitude in designs with and without cores as working volume increases. This 

constraint results in somewhat different design tradeoffs than the same analysis with more 

typical goals in power electronics would suggest. 

Compare a hypothetical electromagnet with a core and a coreless solenoid as they are 

uniformly scaled up by a factor 𝜖, and forced to maintain the same target AMF amplitude in the 

working volume. Power dissipation by the core and field amplitude depend on distributions of 

flux density and current density, and this thought experiment of simple scaling without altering 

the number of turns can be viewed as an analytical expedient to scaling these more fundamental 

quantities.  

In the case of a coreless coil, due to the geometric dependence of the Biot-Savart law,
81

 

the new current 𝐼𝜖 would need to increase by the factor 𝜖 in order to maintain the same AMF 

amplitude.  
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𝐼𝜖
𝐼

= 𝜖 3.4 

 

Scaling up the windings also reduces their resistance 𝑅 to a new value 𝑅𝜖. In conditions 

when the full cross sectional area of the wire is expected to be utilized, such as when appropriate 

litz wire is selected,
87

 scaling up the coil reduces its resistance, 
𝑅𝜖

𝑅⁄ = 𝜖−1. With alternatives 

such as copper tubing, for a single-layer winding at high frequencies, the change in resistance 

may be estimated by assuming that the skin effect pushes current density fully to the outer 

surface of the wire. In this case, the resistance is unchanged, i.e.  
𝑅𝜖

𝑅⁄ = 1. These represent 

limiting cases, and the actual exponent of the scaling factor for resistance should fall between 0 

and -1.  

The power 𝑃𝜖 required to maintain the desired AMF amplitude follows directly from the 

scaling relationships of the resistance and current:  

 

 (
𝑃𝜖

𝑃
)
𝑐𝑜𝑟𝑒𝑙𝑒𝑠𝑠

= (
𝐼𝜖
𝐼
)
2 𝑅𝜖

𝑅
 3.5 

 

Such that 

 

 (
𝑃𝜖

𝑃
)
𝑐𝑜𝑟𝑒𝑙𝑒𝑠𝑠

≤ 𝜖2 3.6 

 

The inductive energy stored in the coil, which scales with volume, therefore increases more 

rapidly with scale than the dissipated power. This agrees with the commonly held principle that 

the quality factor of coreless coils increases with size.
84, 86

 

Turning to the case of a scaled up electromagnet with a core, Equation 3.1 implies that, 

similar to the coreless case, the current must increase by the factor 𝜖 to maintain the AMF 

amplitude. The power dissipated in the windings would scale according to the preceding 
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analysis, but it is small compared to the power dissipated in the core. Assuming that the same 

flux distribution in the core were uniformly scaled upward, dissipated power would scale 

proportionally with its volume and therefore 𝜖3.  

 

 (
𝑃𝜖

𝑃
)
𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑒

≤
𝜖2𝐼2𝑅 + 𝜖3𝑃𝑣𝑉

𝐼2𝑅 + 𝑃𝑣𝑉
 3.7 

 

 Here, 𝑃𝑣 is power dissipated per unit volume in the core material and 𝑉 is the volume of 

the core. In Figure 3.7, a plot of estimated power dissipation versus 𝜖 compares two cases based 

on values measured for two designs: a gapped 3F3 toroidal electromagnet and a finite solenoid 

with similar accessible working volume, producing an AMF with an amplitude of 50kA/m at a 

frequency of 100kHz. The upper bound for the power required by the solenoid accounts for the 

proximity effect and skin effect expected with a solid copper conductor. The lower bound is 

based on linear scaling of a measurement of litz wire resistance at 100kHz. For the gapped 

toroid, power dissipation was estimated by the voltage drop across the shunt resistor 𝑅𝑠ℎ𝑢𝑛𝑡, and 

the relative contributions of the core and wire were estimated using the current and known 

resistance of the litz wire alone at 100kHz. As expected, at the scale where the design was 

implemented, the gapped toroid is more efficient than the solenoid, and its power dissipation is 

dominated by its core. Figure 3.7(a) suggests that the justification for using a design with a core 

to reduce required power is rapidly undermined as scale increases. The specific crossover point 

depends on many factors, including AMF frequency and field amplitude, as well as core 

geometry and material.  
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Figure 3.7 (a) Comparison of power requirements for a uniformly scaled gapped toroidal 

electromagnet and a solenoidal coil, generating the same AMF amplitude at a target point central 

to the working volume. The analysis is based on applying bounded scaling laws to extrapolate 

from measured power dissipation and resistances. (b) Estimate of allowable field amplitude in 

gap for constrained temperature change in the core. The estimate is based on applying a scaling 

law to a known set of aggressive operating conditions (65kA/m at 100kHz) for a Ferroxcube 

TX51/32/19-3F3 core with a 7.5mm gap. 

 

 Maintaining the same field amplitude in electromagnets utilizing cores is actually far less 

scalable at high frequencies than an analysis of required power alone suggests. Inductor design 

favors large sizes for high quality factor, but enlarged designs are limited to lower flux densities 

due to heating.
86

 If the core is constrained to remain below a particular operating temperature, 

and the rate at which it can transfer heat to its surroundings is proportional to its surface area, 

then the allowable energy loss density 𝑃𝑣,𝑎𝑙𝑙𝑜𝑤𝑒𝑑is relatable to 𝜖. 

 𝑃𝑣,𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∝
𝜖2

𝜖3
= 𝜖−1 3.8 

 

Losses in core materials can be modeled as a function of the flux density at a given frequency, 

according to Seinmetz’s equation:
88

 

 𝑃𝑣 ∝ 𝐵𝑚𝑎𝑥
𝛽 3.9 
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𝑃𝑣 is volumetric power dissipation, 𝐵𝑚𝑎𝑥 is the peak flux density in the core, and 𝛽 is a 

parameter that is approximately 2.3 for 3F3 and 2.2 for N87 according to fits of resistance versus 

AMF amplitude (Appendix J). This implies that, at sizes sufficient to be limited by temperature 

increase, the maximum allowable field in the gap scales as 𝜖−1 𝛽⁄ . In consequence of this scaling 

relationship, illustrated in Figure 3.7(b), larger designs would need to operate at a lower field 

amplitude, frequency, or duty cycle. Even for particularly well-designed flux paths such as the 

one presented in Gneveckow et al., the use of a core still limits usable amplitudes.
80

 In contrast, 

cooling copper tubing or litz wire in a coreless coil by flowing deionized water is comparatively 

feasible, even in cases with many kilowatts of dissipated power. Magnetic materials could still 

play a role in scaled up designs, where they might be useful as shielding to reduce 

electromagnetic interference or perhaps even limited volumes could be used to influence the 

field distribution. However, it is clear that incorporating large volumes of into the main flux path 

of a large-scale AMF coil is counterproductive. 

3.7 Parallel Resonant Tank Circuit Design Principles 

For working volumes larger than few cubic centimeters, the previous section argued the 

advantage of designs that do not make use of soft ferromagnetic flux paths. In the case of 

coreless coils, it is again desirable to employ some form of resonance, but this time a parallel LC 

resonant “tank” is more appropriate (Figure 3.8(a)). Placing an inductor and capacitor in parallel 

amplifies the supplied current by the quality factor, 𝑄, producing potentially large circulating 

currents. 𝑄-factor is determined by the ratio of resistively dissipated power to stored power.  

 𝑄 =
𝑋𝐿

𝑅𝑇
=

2𝜋𝑓𝑟𝐿𝑇

𝑅𝑇
 3.10 
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 𝑅𝑇 is the resistance of the resonant tank, 𝐿𝑇 is its inductance, and 𝑓𝑟 is its resonant frequency. 

For an intuitive understanding of the frequency dependence of the load presented by a resonant 

tank with a large 𝑄 value, the circuit model in Figure 3.8(a) offers a close approximation.
89

 𝑅𝑝 is 

the apparent resistance of the tank at resonance, which depends on 𝑄 and 𝐿𝑇.  

 𝑅𝑝 = 2𝜋𝑓𝑟𝐿𝑇𝑄 =
(2𝜋𝑓𝑟𝐿𝑇)

2

𝑅𝑇
 3.11 

 

Impedance measurements on a resonant tank with various capacitance values are shown in 

Figure 3.8(b), illustrating how impedance is maximized at resonance and that 𝑅𝑝 tends to 

increase with frequency.  

The intent of an AMF coil in the context of biomedical applications of MNPs is to couple 

an external circuit to magnetic material introduced to the body. The actual power delivered to the 

MNPs can be a fraction of a milliwatt, far less than the kilowatts required to produce the 

circulating currents that create an AMF of sufficient amplitude. This implies that the tank can be 

designed to maximize field amplitude in essentially unloaded operation. Indeed, design 

characteristics such as the use of parallel conductors intended to maximize the field amplitude 

produced at resonance by an unloaded tank would not be worthwhile if the design were intended 

for induction heating. 

General characteristics of the tank needed to maximize field amplitude at resonance can 

be suggested from a few basic circuit considerations that account for constraints on power and 

voltage. The field amplitude produced by a coil with 𝑁 turns can be estimated by  

 𝐻0 ≈ 𝛼𝐼0𝑁 3.12 

 

Here, 𝛼 is a proportionality factor determined by the coil geometry. The approximation is 

warranted for a tightly confined current distribution, such as in a low aspect ratio solenoid. For a 

long solenoid, the dependence on 𝑁 is weaker because adding turns to the ends has a diminishing 
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influence on the field at the center. Assuming that each turn contributes a resistance 𝑅𝑡𝑢𝑟𝑛 to the 

coil, the maximum power that can be delivered to the coil 𝑃𝑚𝑎𝑥 limits the maximum value of the 

field, 

 𝐻𝑚𝑎𝑥 ≤ (𝛼√
𝑃𝑚𝑎𝑥

𝑅𝑡𝑢𝑟𝑛
)𝑁0.5 3.13 

 

 In the idealized resonant tank of Figure 3.8(a), the maximum circulating current is limited 

by the inductive reactance of the coil 𝑋𝐿 in combination with the maximum voltage that can be 

applied to the tank 𝑉𝑚𝑎𝑥. This maximum voltage limit is a design parameter set by the capacitor 

array of the tank or perhaps ultimately by safety and dielectric breakdown considerations, 

especially given the possible path to ground via the circulating cooling fluid. Consistent with the 

approximation made in Equation 3.12, let 𝑋𝐿 ≈ 2𝜋𝑓𝑟𝐴𝐿𝑁
2, where 𝐴𝐿 is a geometry dependent 

inductance factor and 𝑓𝑟 is the resonant frequency.  

 

 𝐼0 ≤
𝑉𝑚𝑎𝑥

𝑋𝐿
=

𝑉𝑚𝑎𝑥

2𝜋𝑓𝑟𝐴𝐿𝑁2
 3.14 

 

 𝐻𝑚𝑎𝑥 ≤ (
𝛼𝑉𝑚𝑎𝑥

2𝜋𝑓𝑟𝐴𝐿
)𝑁−1 3.15 

 

 Taken together, Equations 3.13 and 3.15 illustrate a fundamental tension in designing 

tank circuits that maximize field amplitude. Increasing 𝑁 to reduce the required power 

eventually increases the inductance enough that the field amplitude may instead become limited 

by the voltage that can be applied to the tank. Regardless of the particular geometry or exact 
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dependence on 𝑁, a design maximizing the field amplitude in the working volume operates 

where the power and voltage limits coincide.  

Figure 3.8(c) illustrates this principle with generality for three cases defined in terms of 

the ratio of the prefactors in Equations 3.13 and 3.15. By attempting to reach higher field 

amplitudes in scaled up high frequency coils (increased 𝐴𝐿), increasing 𝑃𝑚𝑎𝑥, and decreasing 

𝑅𝑡𝑢𝑟𝑛, the optimal number of turns is pushed progressively lower and the maximum grows 

progressively sharper, indicating the advantage of geometries with a few turns that carry high 

currents. High 𝑄-factor is desirable so that power can be delivered efficiently and the majority of 

resistive losses occur in the tank. This, however, must be achieved by decreasing tank resistance 

rather than by increasing tank inductance. Decreasing 𝑅𝑡𝑢𝑟𝑛 can be accomplished by the use of 

parallel conductors and actively cooled litz wire. Figure 3.8(d) shows how these strategies 

increase the 𝑄-factor for several coils with comparable inductance and similar resonance 

frequency, pictured in Figure 3.8(e). 
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Figure 3.8 (a) Basic electrical schematic of resonant tank for establishing large circulating 

currents and an intuitive model with nearly identical impedance vs frequency characteristics. (b) 

Impedance vs frequency for a handheld coil with various resonances. (c) Analysis of the role of 

voltage and power constraints on optimizing the number of turns in an idealized tank circuit. (d) 

Measured Q-factor values of resonant tanks with comparable inductance and resonance 

frequencies but different inductor design. (e) Photographs of the coils measured in (d). Tank i is 

a simple 8 turn copper tubing coil. Tank ii incorporates 4 parallel copper tube conductors into an 

8cm diameter two turn solenoid. Tank iii incorporates two parallel litz wires (42x10x10/44 

AWG) surrounded by flexible Teflon tubing for flow. 

 

 The functionality of a resonant tank design employing a copper coil with two turns of 

four parallel conducing copper tubes was assessed by measuring the AMF amplitude with an 

inductive probe consisting of three orthogonal pickup loops. Figure 3.9(a) shows a finite element 

magnetostatic simulation for a current of 1.7kA in such a coil, assumed to be distributed evenly 

over the parallel conductors. A comparison with measurements along the center axis of a coil 

driven at approximately 164kHz suggests that the finite element model provides a reasonable 



66 

 

description of the expected profile and that very high circulating currents are being generated. 

(Figure 3.9(b)). Photographs of two resonant tanks, complete with transformers, high power 

capacitors, copper bus bars, and coils potted by epoxy for user protection are shown in Figure 

3.9(c)-(d). The high circulating current in the tank necessitates active cooling by rapidly flowed 

deionized water passing through the custom made heat exchanger shown in Figure 3.9(e).  

 

 

Figure 3.9 (a) Cross sectional view of finite element model plot for a two turn coil with four 

parallel conductors carrying a combined 1.7kA. (b) Field amplitude at 164kHz as measured by 3 

interpenetrating orthogonal inductive pickup loops along the z axis of the coil, as compared to 

the values predicted in (a). (c) Resonant tank for ~160kHz operation. Insulating black potting 

epoxy covers the turns of copper tubing. (d) Resonant tank for ~720kHz operation. Note two 

series layers of capacitors in the array to increase voltage tolerance. (e) Heat exchanger for 

cooling resonant tanks with rapidly flowed deionized water.  
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3.8 Inverter Design 

The use of an amplifier to drive the series resonant circuits described in Section 3.4 was a 

convenient and robust choice partly because the commercial linear amplifier used is extensively 

engineered to protect itself against failure from mismatched loads. Unfortunately, the cost of 

linear amplifiers climbs steeply with increasing power output capability, and power required for 

a resonant tank circuit like those shown in Figure 3.9 to reach a desired AMF amplitude is orders 

of magnitude higher than the power required by the electromagnets discussed in Section 3.3 to 

reach the same amplitude. This necessitated the design of a system capable of delivering at least 

several kilowatts of power to a resonant tank at a frequency that could be easily adjusted for use 

with different resonant tanks.  

The first design iteration toward this goal in this thesis work was the development of a 

prototype half bridge inverter, shown schematically in Figure 3.10(a). Rather than making use of 

a commercial DC power supply, this design made direct use of AC line power from the wall, 

regulating it with a variable transformer, and stepping up the AC voltage before rectifying it with 

a full wave voltage doubler. A square wave at the desired frequency was delivered by a function 

generator to a circuit that incorporated a typical positive edge delay of about 50ns and a negative 

edge delay of about 5ns before feeding the signal to a digital isolator bridge driver chip (Analog 

Devices ADuM4223). These isolator chips then drove a pair of MOSFETs to switch between the 

high end of the DC power and ground, producing a square wave at the frequency set by the 

function generator. A DC blocking capacitor causes this square wave to be centered at 0V 

(Figure 3.10(b)), acting as a suitable power source for the resonant tank. The maximum 

recommended operating frequency is set by the isolated bridge driver chips at 1MHz, although 

the current handling capability of the MOSFETs decreases with frequency as switching losses 
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increase. The intent of the delay is to prevent common conduction of the MOSFETs, which 

would lead to failure in this configuration. Although it was able to deliver as much as a kilowatt 

of power at 130kHz, it became clear that the reliability and functionality of this prototype could 

be improved by adopting printed circuit board layout practices that reduced inductive noise on 

the gate drive and using a full bridge rather than half bridge topology. (The full bridge topology 

results in a higher square wave voltage, which is desirable considering the voltage limits on 

circulating current discussed in Section 3.7.) 

 

Figure 3.10 (a) Schematic of the half bridge inverter prototype. 120V 60Hz power from a wall 

outlet is stepped up adjustably by a variable transformer in series with a fixed transformer. The 

power is fed to a full wave voltage doubler that rectifies the power with a low ripple voltage. 

This DC voltage is converted to square wave by the half bridge and fed through a DC blocking 

capacitor and transformer to the resonant tank. (b) Various idealized voltage signals are shown, 

including the drive signal for the MOSFETs, inverter output without DC blocking, and inverter 

output with the DC blocking capacitor.  

 

After several iterations of design and revision, an effective full bridge inverter system 

was developed. Its simplified conceptual schematic is depicted in Figure 3.11(a) and the custom 

inverter fed by parallel, computer controlled DC supplies is shown in Figure 3.11(b). The 
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internal layout of the inverter is shown in Figure 3.11(c). Notably, the design uses silicon carbide 

MOSFETs suitable for switching small currents at high voltages and frequencies, placing them 

close to one another and to bypass capacitors to avoid inductive coupling to the drive circuitry. 

Multiple full bridge boards triggered with the same input signal can be used in parallel to handle 

high currents.  

The voltage and current combination demanded by 𝑅𝑃 for maximal power delivery 

typically differs from what is supplied by the full bridge, suggesting the need for a transformer to 

maximize performance. For a transformer core, a stack of power ferrite toroids can be used to 

handle the increased power. In contrast to the transformer used in the series resonant circuits, 

leakage inductance in this context plays a crucial functional role by rejecting higher frequency 

components of the square wave (Figure 3.11(d)-(e)). Without the leakage inductance of the 

transformer, high frequency components of the square wave can shoot-through the tank, 

potentially causing the MOSFETs within the full bridge driver to fail. Partially coupled to the 

capacitance in the tank, the leakage inductance acts analogously to an L matching network, 

slightly shifting resonance and stepping up the voltage applied to the tank. Accounting for this is 

necessary to avoid exceeding the voltage tolerance of the resonant tank. The operating frequency 

of a resonant tank, identified by the phase of the impedance, must be measured with the 

transformer in place. More sophisticated driving circuits could potentially adjust frequency by 

sensing the load, but the methods described here have proven sufficient for functionality. Driving 

the resonant tank far from resonance, or otherwise driving a strongly inductive or capacitive load 

is not advisable and can result in catastrophic failure of the MOSFETs. 

 



70 

 

 

Figure 3.11 (a) Schematic overview of full bridge inverter design (b) Photograph of the inverter 

and high voltage DC power supplies. (c) Photograph of the internal components of the inverter. 

(d) Models of a resonant tank without a transformer and with a transformer incorporating leakage 

inductance. The former model includes resistance and inductance of test leads. (e) Measurements 

of low voltage impedance versus frequency for a resonant tank with and without a transformer, 

as compared to the predictions of the models in (d). 

 

3.9 Outlook for Clinical Scalability 

Research on biomedical applications of MNPs acted upon by AMFs implicitly assumes 

that particular AMF conditions employed experimentally can be feasibly scaled to the human 

body. Although an example of a clinical scale coil does exist,
80

 studies are conducted over a wide 

range of AMF conditions, often with a markedly higher 𝐻0𝑓 product than the AMF produced by 

this particular instrument. It is worthwhile to consider the problem in a more general way by 

extending the reasoning behind the resonant tanks demonstrated in the previous section to coils 

suitable for reaching a target deep inside a human brain.  

Recalling the conclusion of the earlier thought experiment of coil scalability (Figure 3.7), 

a useful geometric starting point for designing a suitable tank is a (purely hypothetical) 

superconducting circular loop with a diameter of 35cm (Figure 3.12(a)) that can accommodate a 
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head with ample room left for insulation. Consistent with the analysis in Figure 3.8(c), the large 

voltages already necessitated by the inductance of this single loop recommend against a design 

with multiple turns (Figure 3.12(b)). Taking the target point to be the center of the loop, a bound 

on the minimum current needed to produce an amplitude meeting the 𝐻0𝑓 product limit can be 

calculated, since distributing current density by adding additional parallel conductors will only 

increase the total required current. In envisioning how to replace this loop with real wire, e.g. 

water-cooled litz wire, it is neither practical to restrict the required current to a single conductor, 

nor to attempt to distribute it over thousands of parallel conductors cocooning the working 

volume. The latter strategy would, in principle, minimize the necessary power, but it does so at 

the expense of dramatically increasing the total required current, which causes the capacitor 

array to grow formidably in size and expense. A rational compromise is to set a target value for 

power to be dissipated per wire. The heat exchanger in Figure 3.9(e) was able to compensate for 

about 1kW of power dissipated per conductor, so this quantity can serve as a conservative limit 

for the purpose of discussion. Using measurements of the linear resistance of the litz wire 

incorporated into the coil in Figure 3.12(c) and the physical dimensions of the loop, the 

maximum current per wire can be estimated, which suggests the necessary number of 

conductors.  

 To determine an efficient geometric distribution of these parallel conductors one can 

assume that together they form a 𝑁 by 𝑀 rectangular cluster of wires, with spacing that accounts 

for the outer diameter of the surrounding cooling tube (Figure 3.12(a)). Then the total resistance 

of the coil and the total field produced at its center may be found by a sum or superposition of 

constituent rings, respectively. Figure 3.12(d)-(f) illustrate how total dissipated power varies with 

𝑀 and 𝑁 for a fixed total number of conductors. At low frequencies (e.g. 50kHz) where large 
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currents are required, the necessary power is >150kW (Figure 3.12(f)), a level that far exceeds 

that of the higher frequency alternatives. In cases where total required power is comparable for 

two possibilities, higher 𝑁 improves field uniformity (Figure 3.12(e),(h)). A finite element 

magnetoquasistatic model for this distribution of current predicts the variation of the field as 

shown in Figure 3.12(g)-(i), and additionally offers a means to calculate inductance using the 

magnetic field energy. The capacitor array must withstand both the total resonance current and 

the voltage applied to produce it. Such an array would consist of up to several hundred parallel 

and series elements that require cooling and account for a significant portion of the cost of such a 

system (Figure 3.12). 

This analysis has several limitations. Notably, the current was assumed to be uniformly 

distributed over the parallel conductors. A more detailed design might balance the inductance 

and resistance of the conductors simply by constraining them to the same length and distributing 

their connections to the capacitor array in a way that mitigated differences in contributions to 

inductance. Also, the power dissipation of the capacitor array was neglected, such that required 

power would certainly exceed the values in Figure 3.12(d)-(f), though the array would operate at 

a lower current density than the coil. Crossover of the wires as they connect to the capacitor 

array (Figure 3.12(b)) would add some resistance, but the field would drop off more quickly far 

from the resonant tank, a feature that could help reduce its inductance. 
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Figure 3.12 (a) Geometric starting point for a scaled up design for applying AMFs to a human 

head. (b) Sketch of top view of a scaled up resonant tank, along with definitions of quantities 

appearing elsewhere in the figure. (c) Measured linear resistance versus frequency for 

42x10x10/44 AWG litz wire surrounded by Teflon tubing for flow. (d)-(f) Power dissipation 

required to achieve stated target field amplitude and frequency in the center a coil with a fixed 

number of parallel litz wire conductors arranged in various rectangular bundles. (g)-(i) 

Cylindrical magnetostatic finite element models of magnetic field magnitude for the 

recommended configurations. Possible capacitor array designs are indicated to corroborate 

feasibility. 
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4 Chapter 4. Empirical Identification of Materials Suited to 

Magnetothermal Multiplexing 

4.1 Considerations Informing Material Selection 

As was indicated in Section 2.8, multiplexing requires designing MNPs with differing 

coercivity, not tuning 𝜎 values for different frequencies.
‡‡

 This chapter focuses on a route for 

identifying such materials via experimental characterization. The focus is on making a robust 

selection of two magnetic materials suitable for multiplexing, though such techniques can be 

readily extended to additional modes.  

A reasonable starting point in a search for multiplexing materials is to assume that one of 

the modes will be based on iron oxide MNPs that have already been demonstrated to heat 

sufficiently for multiple applications.
90

 This raises the question of whether MNPs with greater or 

lesser coercivity will prove to be more readily feasible for the second mode. MNPs with lower 

coercivity would favor use at higher frequencies and lower AMF amplitudes, which in principle 

reduces the required power and complexity of the setup producing the AMF at clinical scales, as 

suggested by Section 3.9. For the purpose of a demonstration that can be restricted to small 

working volumes in which high field amplitudes are more readily achievable, several other 

pragmatic considerations favor the design of a second type of MNPs with greater coercivity.  

If it is supposed, as in Figure 4.1, that despite having different coercivity, two types of 

MNP are designed to have similar 𝜎 values for multiplexing, then lowering the coercivity has 

predictable effects on the energy scale of magnetic dipole interactions between MNPs, 

expressible as a ratio: 

                                                 
‡‡

 Recall from Section 2.4, Equation 2.13, that 𝜎 is a measure of the anisotropy energy barrier of a particle 

normalized to the ambient thermal energy. It was assumed to be proportional to the volume of an MNP.  
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𝑈′

𝑈
= (

𝐻𝑘

𝐻′𝑘
)
2

 4.1 

 

Here, 𝑈 and 𝑈′ are the initial and modified energy of the magnetic dipole-dipole interactions, 

respectively, and 𝐻𝑘 and 𝐻′𝑘 are the initial and modified anisotropy fields, respectively. The 

relationship implies that seeking a material with a lesser coercivity while maintaining a 𝜎 value 

in the ferromagnetic regime necessarily increases interparticle interactions. (See Appendix K for 

a more thorough explanation of the reasoning behind Equation 4.1.) These interactions can lead 

to clustering, aggregation, and settling. Increased energies of interaction are also likely to 

influence the dynamic magnetization response and hysteresis behavior of MNP suspensions at 

high concentration.
72

 The design goals of colloidal stability and intrinsic multiplexing behavior 

clearly suggest the need for materials with higher 𝐻𝑘.  

 

Figure 4.1 For multiplexing, dynamic hysteresis suggests the need for MNPs in the 

ferromagnetic regime with similar 𝝈 values, but differing coercivity. The expected interaction 

energy of MNPs with the same 𝝈, but different anisotropy fields 𝑯𝒌, varies in a predictable way 

according to Equation 4.1. Reducing 𝑯𝒌 leads to stronger interparticle interactions, whereas 

increasing 𝑯𝒌 reduces interparticle interactions.  
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An additional argument can also be made for the pragmatism of seeking higher coercivity 

MNPs rather than lower coercivity MNPs for multiplexing. Although the definition of 𝐻𝑘 may 

appear indifferent to whether 𝑀𝑠 or 𝐾𝑒𝑓𝑓 are varied, the upper theoretical limit on SLPs is 

proportional to 𝐾𝑒𝑓𝑓 and does not depend on 𝑀𝑠 (Appendix E). This suggests that for high SLPs, 

it is better to increase 𝐾𝑒𝑓𝑓 than to decrease 𝑀𝑠. For ferrites incorporating other transition metal 

ions (e.g. MxFe3-xO4), magnetocrystalline anisotropy varies by at least an order of magnitude, 

whereas 𝑀𝑠 stays within a factor of two.
54

 Clearly, manipulating 𝐾𝑒𝑓𝑓 is the most relevant handle 

for designing multiplexing systems. As discussed in Appendix B, 𝐾𝑒𝑓𝑓 can arise from many 

separate influences, including spin orbital interaction within the crystal, shape anisotropy, and 

surface effects. In such a situation, it is generally more realistic to expect to feasibly increase one 

of these contributions appreciably, rather than to reduce all of them simultaneously. Again an 

approach with higher coercivity is indicated.  

With both the theoretical motivation of Chapter 2 and the reasoning presented in this 

section, there is sufficient information to undertake an empirical search for multiplexing 

materials. This chapter will elaborate on the experimental methods necessary to do this. A reader 

familiar with the techniques described in subsequent sections may wish to skip to Section 4.7, 

which describes how such data can be analyzed to predict suitability for multiplexing. 

4.2 Vibrating Sample Magnetometry 

Vibrating sample magnetometry (VSM) is one of several techniques for measuring the 

magnetization of a sample in response to an applied static magnetic field. Typically, a large 

electromagnet with a soft ferromagnetic yoke applies a magnetic field in an adjustable gap about 

1-2cm in width. The magnitude of the applied field can range from a fraction of a militesla up to 

1T or higher. A quartz rod suspends the sample from an actuator that vibrates at some known 
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frequency, e.g. 20Hz. Contained within the faces of the gap of the electromagnet are a probe to 

sense the magnitude of the applied field, and also several thousand turns of fine magnet wire 

acting as inductive pickup coils. As the sample vibrates, its magnetic moment creates a time 

varying magnetic flux in the pickup loops, inducing a measureable voltage. By first measuring a 

nickel standard with a magnetic moment of known magnitude, the voltage signals measured from 

unknown samples can normalized to quantify their magnetic moments. Such a system, if 

optimized and operated appropriately can measure moments as low as 10−9JT−1 (10
-6

 emu).  

 Measurements of moment versus applied magnetic field can provide a variety of useful 

information about samples, best illustrated by several specific examples: 

1. Saturation Magnetization 

If a sample exhibits simple saturation behavior, then the estimated value of the saturation 

moment can be measured as the asymptotic value approached by the moment at the highest 

field magnitudes. The MNPs in this thesis almost always exhibit simple saturation and 

apparent deviation from this behavior at high fields can usually be explained by improper 

background subtraction such as the use of a background reference sample with a different 

volume of water than the actual sample. The saturation moment can be used to deduce 

saturation magnetization if concentration of MNPs is known, or conversely can be used to 

estimate concentration if the saturation magnetization of that batch has previously been 

measured. If concentration is established by an analytical technique that destructively 

measures metal ion content, it is common practice to define magnetization using this quantity 

to avoid making assumptions about the phase or oxygen stoichiometry of the sample. 

2. Estimating Magnetic Moments of Individual MNPs 



78 

 

When measuring dilute, monodisperse MNPs, it is sometimes possible to estimate the 

magnitude of individual particle moments from VSM measurements without needing to 

know concentration or saturation magnetization. If saturation is observed, the curve 

measuring the sample moment 𝑚 can be renormalized to the saturation moment 𝑚𝑠. Since 

the moment of the sample is saturated when the magnetization is saturated,  

 

 
𝑚

𝑚𝑠
=

𝑀

𝑀𝑠
 4.2 

 

Here, 𝑀 is magnetization, and 𝑀𝑠 is saturation magnetization. The Langevin function is a 

result of classical statistical mechanics that describes equilibrium magnetization of moments 

in an applied field that are able to assume arbitrary orientations and do not exhibit 

anisotropy.
54

 In general, the Langevin function should not be expected to provide a good fit 

of the 𝑀/𝑀𝑠 versus 𝐻 curves for real MNPs since the theory behind it does not account for 

magnetic anisotropy or interparticle interactions. However, in the limit 𝐻 → 0, the expected 

susceptibility converges to that of the Langevin function for randomly oriented MNPs, even 

if they exhibit significant anisotropy.
68

 Consequently, the magnitude of their moments 𝑚𝑀𝑁𝑃 

can be estimated by the following equation 

 

 𝑚𝑀𝑁𝑃 =
3𝑘𝐵𝑇

𝜇0
(
𝑑𝑀/𝑀𝑠

𝑑𝐻
)
𝐻→0

 4.3 

 

A more detailed discussion of the reasoning behind this relationship and circumstances of its 

applicability can be found in Appendix L. Larger magnetic moments result in higher 
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susceptibility in the limit of low applied field magnitude, an inference anticipated by 

Equation 4.3 and demonstrated experimentally in Figure 4.2.  

 

Figure 4.2 Vibrating sample magnetometry measurements were made on MNPs samples with 

differing physical diameters, as described in Chen et al.
91

 A linear fit was performed in the limit 

of low field to determine “magnetic diameter,” as described in detail in Appendix L, with larger 

moments resulting in steeper slopes. Taken from Christiansen et al.
51

 

In cases where a comparison to bulk material is warranted, the concept of “magnetic 

diameter” 𝑑𝑚 can provide a readily interpretable proxy for magnetic moment. This quantity 

can be defined as the diameter of a uniformly magnetized sphere with the same magnetic 

moment indicated in Equation 4.3, assuming the bulk magnetization value. This implicitly 

provides a form of comparison between bulk and sample magnetization values, such that the 

magnetic diameter is not expected to exceed the physical diameter of spherical MNPs. 

Expressing the concept mathematically, 

 𝑑𝑚 = (
6 𝑚

𝜋𝑀𝑠,𝑏𝑢𝑙𝑘
)

1
3

 4.4 

 

Aside from useful comparison of nanoscale properties to bulk properties, estimating the 

magnitude of the magnetic moments of a sample of MNPs as suggested offers a 
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nondestructive method to measure 𝜉 for real samples, which is useful if attempting to map 

the results of characterization onto a model as directly as possible. 

 

3. Assessing Interparticle Interactions 

The previous two uses of VSM data were routinely employed for material characterization 

during the course of work presented in this thesis. One less frequent use that nevertheless 

warrants consideration is the use of 𝑀/𝑀𝑠 vs 𝐻 curves to assess interparticle interactions. 

When these curves do not exhibit hysteresis, they can be interpreted as reaching equilibrium 

at each point and sometimes they contain clues that hint at the influence of dipole-dipole 

interactions between MNPs. 

Consider an illustrative example. Iron oxide MNPs nominally 25nm in diameter were 

purchased from Ocean Nanotech, LLC and encapsulated in liposomes as part of the 

controlled release mechanism employed by the experimental study described in Section 6.3. 

Compared to MNPs dispersed in solution, encapsulation in liposomes creates an environment 

of high local concentration where interaction effects are likely to be more pronounced. VSM 

measurements were performed on two highly dilute samples from the same batch of MNPs, 

only one of which was encapsulated in liposomes. The curves, normalized to their apparent 

saturation values, are shown in Figure 4.3. Note that the susceptibility in the limit of low 

applied field magnitude is not significantly different in the two cases, although the approach 

to saturation is more gradual for the MNPs encapsulated in liposomes. Similar behavior 

would be expected from two sets of randomly oriented MNPs with identical moments, but 

differing anisotropy.
68

 Given that the MNPs are from the same batch and encapsulation 

would not be expected to modify the properties of individual MNPs, this effect is presumably 

attributable to dipole-dipole interactions. Related experiments can be imagined, for instance 
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comparing aggregated MNPs to well dispersed ones, in which 𝑀 versus 𝐻 curves offer 

evidence for interaction.  

 

Figure 4.3 Iron oxide MNPs supplied by Ocean Nanotech LLC with a nominal 25nm diameter 

were suspended in 100L of water measured by vibrating sample magnetometry. Using samples 

prepared from the same MNPs, one contained encapsulated the MNPs in liposomes, while the 

other contained freely dispersed MNPs. Linear fits of low field susceptibility (zoom shown inset) 

are indicated by solid lines and did not suggest a significant difference as would be expected for 

different moments. This, combined with the slower approach to saturation in the case of 

encapsulated MNPs, may suggest an effective anisotropy resulting from interparticle 

interactions. (Compare to Figure 2b of Carrey et al.
68

) Data taken from the supplementary 

materials of Schürle et al.
92

  

 

4.3 Inductively Coupled Plasma Atomic Emission Spectroscopy 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is an analytical 

technique for determining the identity and concentration of ions dissolved in dilute nitric acid. 

The method is sufficiently sensitive to allow detection of trace amounts of heavy metals in food, 

drink, or environmental samples in parts per billion.
93

 It is useful to employ such a technique 

because measurements of saturation magnetization (Section 4.2) and specific loss powers 

(Section 4.4) are, at best, only as accurate as the measured concentration of the samples.  
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Preparing MNPs such as the ones described in this thesis for ICP-AES involves dissolving 

them in a small volume of concentrated hydrochloric acid, resulting in a bright yellow (iron) or 

green (cobalt) solution. This solution is then diluted by nitric acid to its final volume. An 

automated peristaltic pump feeds this solution to a nebulizer, which creates a fine mist that is 

sprayed into an argon plasma flame. Here, transitions between excited electronic states of the 

atoms present in the solution result in spectra with emission peaks at known wavelengths. A high 

resolution diffraction grating enables spectral analysis of the light produced by the flame, 

nominally ranging from 167nm to 785nm, but attention typically focuses on ultraviolet peaks for 

greatest precision. (See the manual for the Agilent 5100.) In cases where elemental content is 

unknown, the evidence for the presence of elements can be deduced from set of spectral peaks 

that are observed. 

In the context of the work performed here, the elements are typically known and measuring 

concentration is the primary concern. Concentration values are determined by comparing the 

relative intensity of peaks to a series of standard solutions of varying dilutions of known 

concentration. This series of samples together establish a calibration curve, and the accuracy of 

the results is limited by the quality of the calibration curve.  

4.4 AMF Calorimetry in Samples Suspended in Water 

As was discussed in Section 1.5, one key figure of merit for assessing and comparing the 

power dissipation capabilities of MNPs in an AMF is specific loss power (SLP). Observing 

trends in SLP as a function of 𝐻0 has also played a central role throughout this work in testing 

hypotheses related to the models for hysteresis discussed in Chapter 2. Efforts to perform 

calorimetric measurements began with a focus on measuring the SLPs of MNPs suspended in 

water, which is the situation most frequently relevant to biomedical applications of these 
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materials. Ideal calorimetry in this case consists of placing a sample of a known concentration in 

adiabatic conditions and measuring its rate of change in temperature under continuous exposure 

to an AMF of known amplitude and frequency.  

 

 𝑆𝐿𝑃 =
𝑚𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝐹𝑒
𝐶𝑠 (

𝑑𝑇

𝑑𝑡
) ≈

𝐶𝑤

𝜑
(
𝑑𝑇

𝑑𝑡
) 4.5 

 

Here, 𝑚𝑠𝑎𝑚𝑝𝑙𝑒 is the sample mass, 𝑚𝐹𝑒 is the mass of iron (or more generally total metal ions) in 

solution as determined by ICP-AES, 𝐶𝑠 is the specific heat of the sample and 𝑑𝑇
𝑑𝑡⁄  is the rate of 

change in temperature. This expression can be approximated in terms of the specific heat of 

water 𝐶𝑤 (≈4.184 J g
-1 

K
-1

) and the concentration 𝜑 in g mL
-1

, provided that the following 

approximations are valid: 

1. The density of water at room temperature can be regarded as sufficiently close to 

exactly 1 g mL
-1

 that any variation from this figure can be neglected.  

2. The concentration of magnetic nanoparticles is sufficiently low that 𝐶𝑠 ≈ 𝐶𝑤. In 

practice, most of the calorimetry performed in this work involved samples with a few 

parts per thousand iron by mass. 

3. The specific heat of water is sufficiently independent of temperature to approximate it 

as a constant.  

Equation 4.5 seems simple, but accurately measuring SLP in customized AMF setups requires 

careful mitigation of a variety of sources of error; the literature is replete with questionable 

measurements. Thermal management strategies should be adopted to best approach the adiabatic 

conditions that are assumed for Equation 4.5. This can include adequate insulation of the sample, 

reduction of waste heat from the setup providing the AMF, and measurement only over short 
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durations where the deviation of sample temperature from the holder temperature is small. 

Careful background subtraction, performed by measuring the apparent heating rate of water 

samples, should be done frequently and carefully. When a large set of samples is being 

measured, it is advisable to establish a timed cycle of operation for the AMF setup, with the 

intent that it will reach some steady state temperature versus time profile that allows for direct 

comparison against the control samples.  

 To measure and record temperature, an optical fiber probe was used rather than a 

thermocouple or thermistor. Any metal objects, including most wires, should be expected to heat 

due to eddy currents in the presence of a strong AMF, and in this case such heating would 

artificially inflate the apparent heating rates of the MNPs in the absence of proper controls. 

Unfortunately, the particular temperature probe used in the characterization efforts described 

here (Omega Engineering HHTFO-101) exhibits small jump discontinuities every few degrees 

Celsius, perhaps due to rounding in an internal lookup table (Figure 4.4(a)). Because temperature 

versus time was measured for long times and relatively small temperature deviations, it was 

necessary develop correction factors to account for the effect of these discontinuities, as 

described in Appendix M. 

An extrinsic influence that is not widely appreciated is the role of anisotropy resulting 

from the shape of the sample itself. It has been experimentally demonstrated that changing the 

aspect ratio and concentration of samples comprised of the same MNPs can markedly influence 

heat dissipation.
94

 In order to avoid this effect, the characterization efforts represented here made 

use of cylindrical vials in which the direction of the field was perpendicular to the axis of the 

cylinder. Even before this geometry was adopted, the vials were filled to a level that ensured an 

aspect ratio of approximately unity and relatively low concentrations were used. Shape 
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anisotropy resulting from the sample itself should be proportional to the magnetization squared, 

so reducing concentration in principle also significantly reduces the effect. It is notable that the 

favorability of low concentration is indicated both by the need for relatively small temperature 

changes to approach adiabatic conditions and also for mitigating the role of sample shape 

anisotropy. On the other hand, sufficient concentration is required to produce a heating rate 

observable compared to background noise. Most measurements described in this thesis were 

conducted on samples with concentrations of approximately 2mg mL
-1

.  

 The development of setups to measure heat dissipated by MNPs was an iterative process, 

starting with a prototype limited to low AMF amplitudes (≤ 5kA/m) that emphasized thermal 

management strategies. It consisted of a litz wire solenoid placed in a thin plastic tube affixed to 

the bottom of a bucket, which could be filled with equilibrated ice water (Figure 4.4(b)). The 

space between the sample and the coil was carefully thermally insulated, but alumina based 

thermal grease was placed between the solenoid and the wall of the tube. Preceding operation, 

the coil was run continuously and the level of the ice water was adjusted until the temperature of 

a control sample matched room temperature. In this manner, minute differences in heating rates 

were reproducibly measurable. Aside from its limitation to field amplitudes at or below about 

5kA/m, the direction of the field applied to the effectively cylindrical sample is parallel with the 

axis, which is not ideal for mitigating the influence of sample shape anisotropy. 

 The design of subsequent setups was motivated primarily by the need to reach higher 

AMF amplitudes for relevant comparison to existing literature. This was accomplished by 

shrinking the volume of the sample from 1mL to 100L and adopting coils with gapped soft 

ferromagnetic flux paths, designs that produce high AMF amplitudes with relatively small input 

powers, as explained in Section 3.2. Sample holders were assembled from layers of plastic and 
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insulating polystyrene foam cut with a laser cutter and the electromagnet was cooled with water 

circulated from an ice bath (Figure 4.4(c)).  

 

Figure 4.4 (a) A representative plot of temperature versus time for an Ocean Nanotech iron 

oxide MNP sample nominal average diameter of 25nm and a water sample serving as a 

background control are shown under exposure to an AMF with 𝑯𝟎 = 𝟐𝟓𝐤𝐀/𝐦 at 𝒇 = 𝟓𝟎𝟎𝐤𝐇𝐳 

starting at 𝒕 = 𝟑𝟎𝐬. (Adapted from supplementary of Romero et al. 
95

) (b) A sketch of a 

prototype AMF calorimetry system built early in this thesis work is shown. (c) In an updated 

calorimetry setup, an aquarium pump in a cooler is used to circulate water from an equilibrated 

ice bath to an electromagnet to offset waste heat from the core.  

4.5 AMF Calorimetry in Solid Systems 

Occasionally it is necessary to characterize the heating rates of MNPs embedded in solid 

matrices, whether for the purpose of developing an application such as the one discussed in 

Section 5.3 or for the sake of studying a physical system in which physical rotation should not 
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occur. The previous section explained that there are three necessary input quantities to determine 

SLP: 1) specific heat of the sample, 2) concentration of magnetic material, and 3) rate of 

temperature change under exposure to an AMF in approximately adiabatic conditions. AMF 

calorimetry in solid systems warrants a separate discussion because all three of these quantities 

are determined in a manner different from the liquid suspension. 

The specific heat of water has been thoroughly characterized and studied and is relatively 

constant with respect to temperature, but the same is not necessarily true for polymer or resin 

matrices in which MNPs are embedded. Several straightforward techniques exist to measure 

specific heat. In this case, differential scanning calorimetry was used to compare polymer 

composite samples to a sapphire reference sample. (Details of this technique and the reasoning 

behind it can be found in Appendix M).  

In liquid samples, concentration could be measured directly by dissolving the sample after 

measurement for analysis by ICP-AES. In the case of solid samples, this would require burning 

away the polymer that forms the majority of the sample mass, dissolving all the MNPs, and 

filtering out bits of ash that could clog the nebulizer. A more advisable approach consists in 

measuring the saturation magnetization of a batch of nanoparticles using VSM and ICP-AES, 

and then nondestructively measure the saturation moment of the polymer samples with VSM to 

deduce content of metal ions as suggested in Section 4.2. This, along with a measurement of the 

mass of the sample, provides concentration by weight.  

The temperature probe used for liquid samples needs to be immersed in order to produce 

accurate measurements, and this kind of intimate interfacial contact is not possible for solid 

samples. Instead, an IR thermographic camera was used (FLIR ThermaCam S60) to record 

changes in temperature of the sample during exposure to an AMF. Figure 4.5 sketches the typical 
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setup for this purpose, which includes a custom polystyrene holder to insulate and contain 

samples cured in the shape of circular discs, with approximately 1.5mm thickness and 4mm 

diameter.  

No matter how carefully the above steps are conducted, instrumental uncertainty of 

calorimetry measurements on solid samples is likely to be larger than for samples suspended in 

water. This is because the methods recommended for estimating concentration and measuring 

specific heat inevitably introduce uncertainty that was largely avoided in the techniques 

described in Section 4.4. One of the advantages of normalizing SLP curves to a projected 

maximum value for some particular sample, is that using a ratio that allows these constants to 

cancel reduces uncertainty.  
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Figure 4.5 (a) A sketch shows the relative position of the IR camera, electromagnet, and sample 

holder. (b) A detail of the sample holder, containing a brown polymer composite disc, is shown 

with the sample placed in the gap of the electromagnet. (c) A representative plot of temperature 

versus time for a sample exposed to 𝐻0 = 60𝑘𝐴/𝑚 at 𝑓 = 100kHz is shown. (d) An IR 

thermograph captures the time point with highest sample temperature difference from the trial 

shown in (c). The view is a top-down perspective of the same layout as in (b).  

4.6 AC Magnetometry 

Measuring the heating rates of MNPs exposed to AMFs is a conceptually straightforward 

method of characterization, often with direct relevance to their intended use. However, recalling 

the argument of Section 2.1 that heat dissipation can be understood in terms of hysteresis, even 

hypothetically perfect calorimetry can at best quantify the area of these loops. Alternative 

methods exist to measure loss characteristics in magnetic systems, and one such technique called 

AC magnetometry is capable of capturing 𝑀 vs 𝐻 curves at high frequencies and AMF 
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amplitudes. This is preferable not only for the additional information gained by observing the 

shape of hysteresis loops, but also in reducing the role of extrinsic thermal influences and 

potentially offering a route for high throughput loss power versus amplitude data collection.  

AC magnetometry has a long history and has been employed by researchers to measure 

MNP systems intended for cancer hyperthermia.
75, 76, 94

 The typical design, sketched in Figure 

4.6(a), consists of a long solenoid that applies a uniform AMF to a pair of smaller, more densely 

wound solenoidal pickup coils. The latter are wound in opposite directions, placed in series, and 

positioned at either end inside the large solenoid. One of these pickup coils contains the sample, 

which contributes to the induced voltage with its time-changing magnetization. The second of 

these two series pickup coils is sufficiently far from the sample that the voltage induced in it can 

be reasonably regarded as entirely resulting from the AMF. Because they are wound in opposite 

directions, the second coil compensates for the voltage induced in the sample coil by the driving 

AMF. If the field profile and the windings are perfectly geometrically symmetric, in principle 

only the signal from the sample should remain. In practice, this cancellation is almost always 

incomplete, but the background is reduced to a level where simple subtraction readily reveals the 

signal from the sample. In setups where high driving AMFs are achievable, it has been shown 

repeatedly that square-like hysteresis loops are observed,
75, 76

 evidence that contradicts the 

predictions of linear response theory as applied in these conditions in a way that is more 

consistent with the general character of the models explored in Sections 2.4 through 2.6.  

 An AC magnetometer setup was constructed during the course of this thesis work in an 

effort to provide an additional line of evidence for evaluating a preliminary multiplexing 

demonstration. It was designed to measure over a wide frequency range at AMF amplitudes 

limited to a few kA/m. 3D-printed polymer coil forms were created to maximize geometric 
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symmetry in both the driving coil and the pickup coils, which were wound with fine litz wire. 

Self-resonance of the pickup coils limited their maximum usable frequency. The parasitic 

capacitance responsible for this effect likely resulted from a combination of electric fields 

between fine multilayer windings and the capacitance of the coaxial cables connecting them to 

the oscilloscope measuring induced voltage signals. Fewer turns are needed to produce a robust 

signal from the pickup coils at high frequencies, so this issue was overcome by creating a series 

of three magnetometers spanning the desired frequency range with sufficient overlap to ensure 

continuity. Data from this effort is shown in Figure 4.6. Notably, it shows a crossover point in 

imaginary susceptibility for the two samples at low field amplitudes that is consistent with the 

calorimetry data (Figure 2.9) and with the assertion in that paper that the 25nm MNPs were in 

the ferromagnetic regime.  
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Figure 4.6 (a) A sketch of the AC magnetometer constructed for measuring susceptibility at low 

field amplitudes (≤ 𝟑𝐤𝐀/𝐦), following the typical design. The sample coil and compensating 

coil, which are as geometrically symmetric as possible, are placed in series but wound in 

opposite directions. This causes the voltage signal induced in each by the AMF generated by the 

driving coil to cancel, leaving only the induced voltage signal from the changing magnetization 

of the sample. A pickup loop is used to measure the AMF amplitude. All coil forms were 3D 

printed in ABS plastic. Data from the setup, measuring the real (b) and imaginary (c) parts of the 

susceptibility 𝝌 of the multiplexing samples depicted in Figure 2.9. The observed crossover in 

𝐈𝐦(𝝌) is consistent with the calorimetry findings. Adapted from Christiansen et al.
51

 

4.7 Heuristic Route to Multiplexing Based on Characterization Data 

Perhaps the most pragmatic approach for identifying materials suitable for multiplexing is 

to heuristically extrapolate heating rates from characterization data, making projected 

comparisons at numerous conditions. Studying the models of hysteresis in Chapter 2 was 

valuable primarily because it motivated the feasibility of multiplexing and suggested how 

suitable MNPs might be designed (Section 4.1). However, all models make simplifying 

assumptions, and even the most general models explored in Chapter 2 are no exception. 

Moreover, input quantities for these systems such as 𝐾𝑒𝑓𝑓 are difficult to predict or measure and 

could plausibly vary significantly throughout a population of MNPs (Appendix B). Attempting 

to incorporate these kinds of considerations into a model results in rapidly diminishing marginal 

utility; a small gain in understanding is made at the expense of considerable additional 
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complexity. By comparison, extrapolation of experimental data is a simple approach adequate for 

making suitable selections for magnetothermal multiplexing from a set of MNPs and AMF 

conditions presently available.  

 Experimental data suggests that reasonably accurate extrapolation is possible within the 

frequency range of interest. For a given sample of MNPs, the specific loss energy (SLE) per 

cycle of the AMF, defined by dividing the SLP by the frequency, appears to remain relatively 

consistent in both solid and liquid matrices (Figure 4.7(a)-(b)). Both dynamic hysteresis and 

linear response theory anticipate only small changes in SLE per cycle for MNPs in the 

ferromagnetic regime over the frequency range of interest, so this behavior is not unexpected. In 

order to test the hypothesis that this method can be used to extrapolate heating rates, Figure 

4.7(c)-(d) show an extrapolation of the data in Figure 4.7(b) at amplitudes meeting the 𝐻0𝑓 

product limit at various frequencies, and Figure 4.7(d) compares these predictions against 

calorimetry measurements. This method of extrapolation appears to be adequate for the purpose 

of heuristically identifying of materials and AMF conditions suitable for magnetothermal 

multiplexing, demonstrated in Section 5.4 for bulk heating. 
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Figure 4.7 Specific loss energy per cycle of the AMF (calculated by dividing SLP by frequency) 

versus field amplitude 𝑯𝟎 is shown for samples prepared in polymer composite discs in (a) and 

suspended in water in (b). (c) and (d) show projections for specific loss power at the maximum 

allowed AMF amplitude as a function of frequency, based on the heuristic method described in 

the text for samples in solid matrices and suspended in water, respectively. (d) Includes points 

measured to test validity of the heuristic projections. (e)-(h) Transmission electron micrographs 

of the samples measured in (a) and (b). (e) shows 15.1±2.0nm MNPs with 6.5±1.1% Co 

(Co0.2Fe2.8O4). (f) shows 29.1±2.7nm MNPs with 2.4±0.2% Co (Co0.07Fe2.93O4). (g) shows 

21.9±1.9nm Fe3O4 MNPs and (h) shows ~15nm Fe3O4 MNPs.  
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5 Applications Based on Bulk Heating of MNPs 

5.1 The Case for Methods Based on Bulk Heating 

The term “bulk heating” here refers to the heating that results from the exposure of a 

region with a significant volume fraction of MNPs to an AMF. Viewing MNPs as infinitesimal 

point sources of heat distributed homogeneously throughout a volume, it is reasonable to adopt a 

continuum approximation for heat dissipation. This is in contrast to nanoscale heating effects, 

which are applicable to the case of isolated MNPs, a topic discussed in greater depth in Chapter 

6. One straightforward consequence of the continuum approximation is that heating rates can 

increase with concentration, though the relationship is not necessarily linear and there are 

practical limits on how concentrated suspensions can be. Namely, at high concentrations, the 

formation of large aggregates limits injectability and interparticle interactions are expected to 

influence the heating properties of the MNPs.
72

  

Cancer hyperthermia, probably the longest researched application of MNPs for biomedical 

applications, relies inherently upon bulk heating to elevate the temperature within tumors and 

cause cancer cell death.
21

 In the work presented in this thesis, bulk heating is employed in the 

context of two possible applications: magnetothermal stimulation of neurons with ferrofluid 

droplets
20

 and the actuation of shape memory polymer composites via dissipated heat.
47

  

5.2 Neuronal Stimulation with Ferrofluid Droplets 

The basic scheme for neuronal stimulation via bulk heating that was experimentally 

investigated during this thesis work is represented in Figure 5.1(a). The concept involves 

injecting a highly concentrated droplet of MNPs into the brain in order to produce a rapid rise in 

local temperature upon exposure to an AMF. Prior transfection of the surrounding cells causes 

them to overexpress TRPV1, a heat sensitive channel protein that undergoes a conformational 
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change at temperatures above 43˚C, permitting diffusion of divalent ions such as Ca
2+

.
35

 Neurons 

actively maintain electrochemical gradients and contain voltage gated ion channels in order to 

propagate actions potentials, and these endogenous features help to amplify the effect produced 

by opening TRPV1.  

Experiments to examine this approach were first conducted in vitro, where a series of 

stimulation trials with primary hippocampal cultures transfected to express the calcium indicator 

GCaMP6s that were placed in ferrofluid. Changes in GCaMP6s fluorescence, as measured by an 

inverted fluorescence microscope, were taken to be indicative of intracellular calcium 

concentrations correlated with activity.
96

 By comparing the responsiveness to AMF stimulus of 

neurons both expressing TRPV1 and bathed in ferrofluid to suitable controls that excluded these 

factors, it was strongly indicated that both were necessary for stimulation, a finding consistent 

with the hypothesized mechanism described above (Figure 5.1(b)-(c)).  

A similar experiment was performed in vivo to assess stimulation provided by a droplet of 

ferrofluid to the ventral tegmental area of sedated and restrained mice. In this case, a different 

indicator of neural activity was chosen: postmortem histological staining for c-fos, an 

immediate-early gene expressed in correlation with recent neuronal activity.
97, 98

 A set of trials 

with these animals analogous to the in vitro experiment described above similarly suggested a 

significant increase in neuronal activity for animals exposed to AMF stimulation if they were 

both transfected to overexpress TRPV1 and injected with a droplet of ferrofluid (Figure 5.2(a)).  
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Figure 5.1 (a) A conceptual depiction of neural stimulation via the heating of concentrated 

ferrofluid droplets. MNPs dissipate heat in the presence of an AMF, triggering the opening of 

TRPV1. Ca
2+

 influx is observed via a fluorescence increase in GCaMP6s. (b) False color images 

of GCaMP6s fluorescence intensity in primary rat hippocampal cultures bathed in ferrofluid. An 

increase in fluorescence indicates an increase in intracellular Ca
2+

 under exposure to an AMF as 

compared to a control lacking TRPV1 overexpression. (c) A population study of 100 neurons 

shows the percentage of responsive neurons under AMF stimulation, comparing the 

responsiveness of cultures with TRPV1 expression and MNPs against control trials that remove 

one or both of these factors.  

The promise of this approach for deep brain stimulation is best understood within the 

context of other methods that use AMFs for noninvasive stimulation. Perhaps the best 

established of these is “transcranial magnetic stimulation,” which uses a rapidly pulsed current to 

generate a magnetic field that elicits action potentials through faradic induction.
§§

 This technique 

has been approved by the federal Food and Drug Administration for clinical use on patients with 

depression and other ailments, and research into other applications is ongoing.
13

 Some of the 

relevant field coil designs use superposition to produce focal points for stimulation, but spatial 

specificity is limited.
99

  

 

                                                 
§§

 The circuits that generate these fields typically discharge a capacitor into an inductive field 

coil, which can produce an alternating magnetic field that decays rapidly. The highest 𝑑𝐵/𝑑𝑡, 

and therefore the peak in induced voltages at the targeted site, comes from the rapid initial rise.  
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Figure 5.2 (a) An outline is shown for an in vivo ferrofluid stimulation experiment. Mice are 

transfected by direction injection, 4 weeks are allowed for expression, the mice are injected with 

a concentrated droplet of MNPs in the same region, and they are exposed to an AMF. (b) 

mCherry, a red fluorescent protein (co-expressed with TRPV1 in trials overexpressing TRPV1), 

is used to verify transfection of the targeted brain structure, the ventral tegmental area. (c) 

Confocal microscopy shows DAPI (blue), mCherry (red) and c-fos (green) staining for the 

ventral tegmental area of a mouse expressing TRPV1, but not exposed to AMF. DAPI stains all 

cells, mCherry indicates extent of viral transfection, and c-fos is correlated with activity before 

the animal is killed. (d) The same is shown for a mouse expressing TRPV1 and exposed to an 

AMF. (e) c-fos and mCherry expression are shown as the proportion of cells revealed by DAPI 

staining for micrographs such those in (c) and (d), as well as the two other control groups 

indicated. n = 4 for each group of mice.  

A magnetothermal method demonstrated by Huang et al. made prior use of transgenic 

overexpression of TRPV1 combined with nanoscale heating effects in low concentrations of 

MNPs.
12

 Like the bulk heating approach, this method should provide greater selectivity than 

transcranial magnetic stimulation, both spatially and possibly by cell type through chemical 

targeting or selective transfection. The drawback of using low concentrations of MNPs that bind 

to the membranes of cells for local nanoscale heating is that they are unlikely to persist there for 

long durations. A process such as cellular uptake of MNPs bound to the membrane would limit 

their usable lifetime after injection to perhaps a matter of days, depending on the aspects of their 
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surface chemistry.
100

 Some researchers claim to have avoided the use of magnetic nanomaterials 

and instead purport to use a fully transgenic biomagnetic mechanism.
11, 15

 For instance, Stanley 

et al. describe the expression of ferritin attached to channel proteins that enables response to 

magnetic fields, including alternating magnetic fields.
19

 These fully transgenic approaches have 

come under scrutiny because the mechanisms they claim are unclear or implausible.
39, 40

  

While perhaps less elegant, using the bulk heating of a droplet of ferrofluid offers a 

mechanism that is comparatively simple, robust, and plausible. Additionally, histological 

staining of the tissue surrounding droplets of ferrofluid with PEGylated surface chemistry 

implanted in mice suggests that a reduced immune response is elicited compared to implants.
20

 

This is consistent with prior literature suggesting that better matching mechanical properties of 

brain tissue such as modulus and mass density can contribute to improved biocompatibility.
101, 

102
 Ferrofluid droplets are known to remain for months in the brains of glioblastoma patients 

participating in clinical trials for cancer hyperthermia,
103

 and such persistence ostensibly could 

enable stimulation over long timeframes if a similar injection were used for neuronal stimulation.  

While bulk heating clearly presents advantages over closely related technologies, it should 

be noted that any approach that requires transfection faces significant hurdles to clinical 

relevance. An additional objection could be raised regarding the long term impact of repeatedly 

heating the healthy tissue surround the injection site of the ferrofluid and the limitations on 

duration or repetition that could result. Chen et al. address the survivability of surrounding tissue 

in their supplementary material,
20

 but even a high expected survival fraction can eventually result 

in significant damage with excessive repetition.
104

 Other unintended consequences might result 

from repetitive heating such as reorganization of local neural networks or changes in the 

behavior of glia. 
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5.3 3D Printed Shape Memory Polymer Composites 

Some polymers are known to undergo a shape memory response that can be activated by 

heat.
105

 The basis of this effect is a second order phase transition between glassy and rubbery 

states, which allows a sample to be heated until it transitions to its rubbery state, mechanically 

manipulated into some desired shape, and quenched back into its glassy state to freeze it in 

place.
106

 Upon heating to restore it to the rubbery state, the sample elastically returns its original 

shape. A composite consisting of such a polymer system embedded with MNPs can be heated 

with an AMF in order to actuate the shape memory response, an idea previously studied in 

several different polymer systems.
47, 107

 In principle, medical devices such as stents or drug 

release devices incorporating such a composite material with a transition temperature slightly 

above body temperature could undergo a predetermined mechanical response upon actuation by 

an AMF. 

Previous work on shape memory composites incorporating MNPs is has typically been 

limited to curing samples in planar geometries. An active collaboration between the MIT 

Bioelectronics Group and the lab of Prof. Qi Ge of Singapore Institute of Technology and Design 

is exploring the possibility of incorporating MNPs into intricate structures produced through an 

additive manufacturing technique in which the monomer precursor is selectively photo 

polymerized one layer at a time to form three dimensional shapes such as the one shown in 

Figure 5.3. The monomer solution consists of benzyl methacrylate (BMA) as a linear chain 

builder, and the crosslinkers poly (ethylene glycol) dimethacrylate (PEGDMA), bisphenol A 

ethoxylate dimethacrylate (BPA), and di(ethylene glycol) dimethacrylate (DEGDMA).
108

 This 

effort combines the additive manufacturing expertise of the Singapore lab with magnetic 
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materials and AMF setups produced at MIT. The collaboration could offer progress toward the 

manufacture of objects with shapes relevant to functionality in medical devices. 

  

 

Figure 5.3 (a) 3D printed shape memory polymer composite claw, incorporating MNPs into the 

part of the shape that is strained when the claws are opened. (b) 3D printed shape memory 

composite spring. Both structures are courtesy of the lab of Prof. Qi “Kevin” Ge at SUTD. (c) 

Temperature change over time is shown for a composite spring like the one shown in (b) under 

exposure to an AMF with 𝑯𝟎 = 𝟐𝟎𝐤𝐀/𝐦 and 𝒇 = 𝟔𝟖𝟎𝐤𝐇𝐳. (d) An IR thermography video 

taken over several minutes shows the heating and shape memory response of 3D printed 

composite spring. It starts frozen in its glassy state in a stretched configuration and collapses 

back to its printed shape upon being heated by an AMF.  

Several of the characterization methods described in Chapter 4 for MNPs in solid samples 

were developed initially in order meet the needs of this project. The availability of a UV curable 

monomer with a measured specific heat made this composite system a convenient one in which 
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the study the heat dissipation of MNPs in environments that preclude rotation. A preliminary 

demonstration of an AMF actuated shape memory response is shown in Figure 5.3.  

Although these initial results are promising, the most persistent challenge is stable 

suspension of the MNPs in the monomer solution. MNPs are currently transferred from 

chloroform into the monomer solution as synthesized,
90

 presumably with a surface on which 

oleate is adsorbed as a remnant of the synthesis reaction. MNPs suspended in this way readily 

disperse under the influence of ultrasonication and vortex mixing, but settle over a timescale of 

hours. While this is sufficient to prepare planar samples for characterization, the issue is 

compounded by the need for stability within the topmost fraction of a millimeter of the solution 

for additive manufacturing. The structures produced for the initial demonstration therefore 

required frequent pausing and mixing of the suspension, a situation that limits the robustness of 

such techniques. Efforts to reduce magnetic dipole interactions, which are known to contribute to 

settling, have improved but not eliminated the issue. Ongoing efforts may include the synthesis 

of a polymer surface coating for the MNPs that favorably influences their stability in the 

monomer solution.  

 

5.4 Multiplexing Applied to Bulk Heated Systems  

Ideal magnetothermal multiplexing in bulk systems can be envisioned as the selective 

heating of two or more separate regions occupied by high concentrations of different types of 

MNPs. An intriguing and similar idea explored in literature is that of frequency-selectable 

macroscopic inductive heating targets.
109

 By incorporating them into temperature sensitive 

viscous gel dampers of a dynamic vibration absorber (DVA), a noncontact method for adjusting 

the natural frequency of the DVA has previously been demonstrated. A similar effect could 
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perhaps be achieved with MNPs incorporated into gels, but they dissipate far less heat than 

macroscopic eddy currents and their properties make them more readily suited to biomedical 

applications.  

Section 1.5 discussed scoring functions for quantitative comparison of efficiency, 

selectivity, and parity in potential multiplexing MNP sets. For bulk heating applications, it is 

most appropriate for these quantities to be defined in terms of SLP. Moreover, achieving parity 

in a bulk heating system is less important than efficiency and selectivity, since concentration in 

the regions can in principle be adjusted to produce parity in the expected temperature change.  

 In the case of neuronal stimulation with ferrofluid droplets, magnetothermal multiplexing 

could offer the option of stimulating two or more separate droplets. These could be implanted in 

different brain structures, perhaps to elicit different therapeutic responses. By contrast, 

attempting to independently heat these droplets by selective exposure to a focused AMF is 

especially implausible for targeted regions close to each other and deep in the brain. A 

preliminary experiment could take place in rodent models, where c-fos staining or behavioral 

observation could be used to assess the effectiveness of multiplexing. (Figure 5.4(a)) 

 3D printing of shape memory structures consisting of multiple materials with different 

transition temperatures has recently been demonstrated.
108

 If the same can be done with shape 

memory composites incorporating different types of MNPs suitable for multiplexing, then it 

should be possible to actuate multistage shape memory response by heating. This capability, 

combined with the versatility of 3D printing could offer numerous intriguing possibilities. A 

graphical representation of the concept is shown in Figure 5.4(b).  

As a practical example of a heuristic search, the SLE data from Figure 4.7(a) were 

extrapolated to identify MNPs well-suited for magnetothermal multiplexing in 3D printed shape 
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memory composites. Using an algorithm that sampled many possible combinations, comparing 

them with an overall score based on efficiency and selectivity, the selection shown in Figure 

5.4(c) was determined to be suitable.  

 

Figure 5.4 (a) Magnetothermal multiplexing could be applied to the selective heating of different 

ferrofluid droplets in the brain of an animal model in order to stimulate different structures 

associated with distinct behaviors. (b) A multimaterial 3D printed shape memory composite 

could exhibit a multistage shape memory response through selective heating of different regions. 

(c) Materials and AMF conditions from among the choices available in Figure 4.7 are suggested 

for the application depicted in (b) based on algorithmic sampling of heuristically extrapolated 

heating rates as described in Section 4.7. 
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6 Applications Based on Nanoscale Heating of MNPs 

6.1 The Peculiarity of Nanoscale Heating 

As the scale of a hypothetical heat dissipating object is reduced, bulk heat transport 

equations predict that its tendency to raise the temperature of its surroundings should be 

dramatically lessened. This may seem obvious in the sense that shrinking size combined with the 

assumption of constant heat dissipated per unit volume or mass results in less total dissipated 

power, but the trend is actually even more dramatic than this observation alone would suggest. 

Even if the temperature change is considered along a spatial coordinate that is scaled with the 

object, the expected change in temperature is reduced. An intuitive explanation is that, all else 

being equal, the surface area to volume ratio increases with decreasing size, allowing smaller 

bodies to exchange heat more efficiently with their surroundings. Recognizing this trend is a 

matter of direct relevance to applications of MNPs for bulk heating, which for instance limits the 

feasibility of cancer hyperthermia to tumors larger than a few cubic millimeters
44

 or, in principle, 

limits the size of shape memory devices such as those explained in Section 5.3. A well-reasoned 

argument based on this logic has also been used to assert the implausibility of nanoscale heating 

at the surface of MNPs,
110

 and it is worth considering in greater depth.  

To estimate the order of magnitude of temperature increase predicted by bulk heat 

transport equations, it is useful to consider steady state heat dissipation by an isolated sphere, a 

geometric approximation of an MNP. For simplicity, the analysis is confined to the temperature 

of the medium surrounding the particle and not the temperature inside the MNP itself. Bulk heat 

transport can be described mathematically by diffusive flow of heat, and the details of this 

treatment are offered in Appendix N. The result is that at the surface of the sphere, the expected 

change in temperature ∆𝑇 can be expressed as follows: 
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 ∆𝑇(𝑅) =
𝑅2(SLP)𝜌𝑚

3𝐾
=

IPLP

4𝜋𝐾𝑅
 6.1 

 

Here, 𝑅 is the radius of the particle, 𝜌𝑚 is mass density and IPLP is individual particle loss 

power. If values are substituted for a series of MNPs with different sizes with characterized SLPs 

at 15kA/m and 500kHz, and assuming approximate thermal conductivity 𝐾 ≈ 0.5
𝑊

𝑚𝐾
 for 

water,
111

 predicted temperature changes are on the order of 10
-7 

K (Figure 6.1). This indicates 

that the temperature at the surface of the nanoparticle is not predicted to differ significantly from 

that of its bulk surroundings, even for SLPs substantially higher than the range of values 

currently observed.  

 

Figure 6.1 (a) A sketch of an idealized MNP as a heat dissipating sphere of radius 𝑹, with 

temperature measured at radial distance 𝒓. (b) The change in temperature at the surface and in 

the immediate vicinity of the MNP is plotted as predicted by bulk heat transport equations. An 

assumption for the heat dissipated by the MNP is estimated from measured SLP at an AMF with 

𝑯𝟎 = 𝟏𝟓𝐤𝐀/𝐦 and 𝒇 =  𝟓𝟎𝟎𝐤𝐇𝐳. Nominal physical dimensions are assumed. Note that the 

prediction is for no significant nanoscale heating. Adapted from supplementary materials of 

Romero et al. 
95

 

 

 Surprisingly, these predictions depart dramatically from experimental observations that 

have attempted to probe temperature in the nanoscale vicinity of the surface of the MNPs; these 

suggest a temperature change many orders of magnitude larger (reaching even 10s of degrees 
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Celsius)
112

 that may evolve over a long timescale of seconds or tens of seconds before reaching 

steady state.
113

 

The body of empirical evidence for nanoscale heating effects is derived from a variety of 

different techniques, several of which address systems with nanoparticles and surface chemistries 

directly comparable to the ones employed in this thesis. For instance, one study by Huang et al 

focused on the use of nanoscale heating from MNPs for neural stimulation produced a set of 

observations based on thermal quenching of fluorescent dye conjugated to the surface of MNPs, 

indicating temperature changes on the order of degrees Celsius.
12

 Another study by Riedinger et 

al. made use of a thermally labile azide bond which released a dye molecule at a temperature 

dependent rate.
112

 Combined with PEG spacers of varying length, these researchers used this 

system to probe temperature as a function of distance, with their results suggesting that the 

temperature at the surface of the MNPs changed by tens of degrees Celsius in some cases, and 

seemed to drop off more rapidly than the 1/𝑟 dependence suggested in Appendix N.  

Similar observations have been made in related, though distinct material systems. For 

example, observing temperature dependent refractive index of polymers surrounding gold 

nanoparticles indicated changes in surface temperature comparable to observations with 

MNPs.
114

 More recently, another study probed nanoscale thermal phenomena through the 

observation temperature dependent upconversion luminescence spectra of nanocrystals 

embedded in mesoporous silica alongside MNPs.
113

 Their results again suggested a temperature 

increase of similar magnitude to the others, and moreover indicated that this temperature change 

can take tens of seconds to reach steady state. In one particularly striking experiment, localized 

heating was observable via luminescence in a system suspended in equilibrated ice water. 
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Forceful rebukes against the notion of nanoscale heating in these kinds of systems have 

been voiced for decades, but the quality and variety of experimental evidence now available 

suggests that the problem deserves reexamination. The reasoning behind the bulk heat transport 

arguments is sound, suggesting that its application to this situation may be in some way 

unwarranted. Indeed, macroscopic heat transport is known to fail at the nanoscale in some types 

of solid-solid systems.
115

 Heat transport at the interfaces between nanostructures and the media 

surrounding them often requires ballistic models, particularly when the structures exhibit length 

scales less than the mean free path of phonons.
115

 Several of the authors employing bulk heat 

transport are aware of this limitation and argue that diffusive heat flow is adequate for water 

even at the scale of nanometers because the disorder of a liquid results in effective mean free 

paths so short they are comparable to intermolecular spacing.
110

 The problem of solid crystalline 

nanoparticles dissipating heat in a solid crystalline matrix has been studied in some theoretical 

depth, and can result in effective interfacial thermal conductivities far reduced from the bulk 

interfacial thermal conductivity. It is unclear whether this model can fully explain the 

discrepancy, even in its limiting cases, and it is possible that some other factors may be playing 

an unexpectedly significant role. 

While nanoscale heating is clearly a topic worthy of further study, the work presented in 

this chapter instead focuses on making use of the effect to accomplish engineering outcomes. 

From this perspective, nanoscale heating is appealing because it enables response to AMF at low 

concentrations of MNPs. In cases where direct injection into the targeted structure would 

ostensibly take place, this allows for a much smaller dose of MNPs and by extension a smaller 

dose of heat dissipated in healthy tissue. For other applications, such as the protease sensors 

explored in Section 6.3, it allows for systemic delivery of theranostic agents. Methods that avoid 
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repeatedly heating healthy cells beyond normal physiological conditions, even for short 

durations, may produce fewer unintended consequences. In short, making use of material 

responses based on nanoscale heating ultimately may prove to be more desirable for many 

applications.  

6.2 Neuronal Stimulation via Rapid Release of Pharmacological Compounds 

An alternative to using the direct action of heat upon a channel protein to elicit neural 

activity is to instead use heat to trigger the release of a chemical compound that can act upon the 

channel protein. TRPV1, the channel protein which was employed in the ferrofluid stimulation 

scheme described in Section 5.2 as well as previous literature making use of nanoscale heating, 

responds to a variety of chemical agonists in addition to heat. Among these is allyl 

isothiocyanate (AITC), which gives horseradish and wasabi their pungency.
116

 By linking an 

AITC payload to the polymer coating of an MNP via a thermally labile azide bonds, its release 

can be triggered through the action of an AMF by a temperature increase within the first several 

nanometers from the surface of the MNP. After release, AITC can bind to TRPV1, allowing the 

influx of divalent ions. (A schematic representing the concept for this mechanism of stimulation 

is shown in Figure 6.2.) 
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Figure 6.2 An overview of the experimental scheme. Functionalized MNPs target the surface of 

neurons made to express TRPV1 and GCaMP6s. Upon exposure to an alternating magnetic field, 

the heat dissipated by magnetic hysteresis results in the release of AITC from their surfaces. This 

liberated AITC binds to TRPV1, triggering Ca
2+

 influx detectable through the fluorescence 

increase of GCaMP6s. From Romero et al. 
95

 

 An earlier study by Riedinger et al. making use of a similar azide linker focused on 

probing temperature as a function of distance from the surface of MNPs, but exposure to AMFs 

in that work lasted for durations of 45 minutes and produced incomplete release.
112

 In that work, 

release was compared against a calibration curve from control trials performed in water baths at 

set temperatures and partial release in the main experiment was necessary to unambiguously 

deduce a nanoscale temperature measurement. In contrast, the goal of producing a robustly 

measureable experimental signal assessing neuronal stimulation in vitro makes it desirable 

instead to release an entire payload as rapidly as possible. Accordingly, an effort was made to 

alter the system to encourage rapid release.  

 As a preliminary experiment, a series of different iron oxide MNPs with nominal 

diameters of 10nm, 15nm, 20nm, 25nm, and 30nm were purchased from Ocean Nanotech, LLC 

and conjugated with dye as chemical payload rather than AITC. Dilute aliquots of dye-

functionalized MNPs were then exposed to an AMF for varying durations while their 

temperature was monitored and a custom sample holder continuously perfused the surrounding 
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space with room temperature water to ensure that the influence of waste heat from the coil could 

be mitigated. The extent of release after exposure to an AMF with amplitude 15kA/m and 

frequency 500kHz is shown in Figure 6.3(b). Several results are notable: 

1. Rapid release was observed for many of the MNPs, which were larger and driven at more 

aggressive AMF conditions than the ones in used by Riedinger et al.
112

 

2. Even though the 20nm and 25nm MNPs have similar SLPs (Figure 6.3(c)), the 25nm 

MNPs released their payload more rapidly and completely, suggesting a higher effective 

temperature at the surface. This is consistent with the notion that IPLP may be a more 

relevant metric for the heating of individual particles, since the IPLP of the 25nm MNPs 

exceeds that of the 20nm MNPs by approximately a factor of two due to their volume 

difference (Figure 6.3(d)). 

3. For the 25nm MNPs, a rapid and complete release occurred after 10 seconds of latency, 

which is consistent with the idea that the large temperature increases at the surfaces of 

these MNPs develop over timescales of seconds,
113

 not reaching steady state in hundreds 

of nanoseconds as bulk heat transport would suggest.
110

 



112 

 

 

Figure 6.3 (a) The chemistry for loading the MNPs is shown. MNP surfaces are supplied with 

carboxyl termination. The surface is electrostatically coated with poly(ethyleneimine), followed 

by the covalent attachment of ACVA through NHS/EDC chemistry. An additional step of 

NHS/EDC chemistry binds AITC to ACVA. Exposure to an AMF results in decomposition of 

the linker, releasing AITC. (b) Release under exposure to an AMF with 𝐻0 = 15kA/m and 

𝑓 = 500kHz is shown for MNPs of various sizes functionalized with the dye CF633. Release is 

compared to controls incubated at 60˚C for 24 hrs. (c) Specific loss powers are shown for the 

MNPs in (b) as measured by AMF calorimetry. (d) IPLP is estimated from SLP and nominal 

physical dimensions. From Romero et al.
95

 

 

Having identified a suitable material system and surface chemistry to produce rapid release, 

an in vitro experiment was designed to test the hypothesized mechanism of stimulation. Primary 

hippocampal cultures were prepared from neonatal rats, transfected with TRPV1 and GCaMP6s, 

and incubated overnight with a low concentration (25g/mL) of the 25nm Ocean Nanotech 

MNPs functionalized with AITC. By exposing samples to AMF and measuring changes in the 

fluorescence of GCaMP6s attributable to calcium influx, it was possible to compare relative 

levels of elicited neural activity (Figure 6.4). In addition to trials that included all components, a 

series of control trials was performed in which various components were subtracted, including 
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the AMF stimulus, TRPV1, the AITC payload. All of these control trials exhibited significantly 

less induced activity. As an additional control, in one set of trials, loaded MNPs were added to 

the media just before AMF exposure rather than allowing overnight incubation, during which the 

MNPs are targeted to the membrane through a weak electrostatic interaction. These exhibited 

less responsiveness than the trials that allowed time for incubation, but significantly more 

responsiveness than the other control trials.  

 

Figure 6.4 False color images indicate GCaMP6s florescence signal from a representative trial 

of primary hippocampal neurons transfected with AITC, incubated with 25g(Fe)/mL AITC-

functionalized MNPs overnight, (a) before and (b) after exposure to an AMF with 𝑯𝟎 =
𝟏𝟓𝐤𝐀/𝐦 and 𝒇 = 𝟓𝟎𝟎𝐤𝐇𝐳. (c) Fluorescence signal from a single neuron is plotted over time, 

with a level of five standard deviations from background noise serving as a threshold for 

“activity.” (d) 100 neurons were randomly selected for analysis and the proportion exceeding the 

threshold in a given second (“likelihood of activity”) is shown as a function of time. The grey bar 

represents AMF exposure. (e) The percentage of responsive neurons is compared between the 

response represented in (d) and control trials that remove various components thought to be 

necessary for the mechanism of stimulation. Adapted from Romero et al.
95

 

The intent of this study was primarily a preliminary exploration of using rapid, 

magnetothermally mediated release to stimulate cellular responses. Because the method was 

based on nanoscale heating effects, the concentration could be reduced by at least three orders of 

magnitude compared to the ferrofluid stimulation method detailed in Section 5.2. Some 

modifications would be required for greater clinical viability, perhaps including the release of 

compounds such as neurotransmitters which would be able to influence neurons without 

requiring transfection. While the approach taken in the study was to select for materials and 



114 

 

conditions that would lead to rapid and complete release, an actual therapy would likely require 

incremental release, though the data shown in Figure 6.3(b) suggest that this is possible. 

6.3 Magnetically Actuated Liposomal Release for Protease Sensors 

Proteases, enzymes that act upon proteins and peptides, take an active role in tumors, 

occurring both intracellularly and extracellularly, and contributing to nearly every hallmark of 

cancer.
117

 Matrix metalloprotinases in particular have been implicated in tumorigenesis, 

progression, invasion, and metastasis.
118

 Some emerging cancer therapeutics interact with these 

proteases,
119

 and in order to be effective, these and other personalized treatments must be 

appropriately tailored to individual tumor environments. Robust diagnostic methods to profile 

protease activity in tumors can help inform clinical care. One approach is to introduce substrates 

known to be selectively cleaved by particular proteases, liberating a reporter molecule detectable 

in the urine.
120

 However, because many of the same proteases perform natural and healthy 

functions throughout the body, systemic introduction can lead to a poor signal to noise ratio, 

resulting in diagnostic uncertainty.
121

  

Several strategies are possible to obtain a spatially specific biomarker readout despite 

systemic introduction, including site specific imaging methods.
122

 However, compared to these 

methods, the approach investigated in this section offers the advantage of simultaneous 

measurement with multiple protease substrates. It entails protecting these substrates from 

cleavage by encapsulation in liposomes that undergo triggered release through the application of 

an AMF to the tumor (Figure 6.5(a)-(b)). This is enabled by co-encapsulation of MNPs expected 

to exhibit nanoscale heating effects in liposomes that exhibit a phase change making them 

permeable when heated above a critical temperature.
123

 An initial experiment was conducted to 
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assess the effectiveness of release triggered by AMFs using florescence measurements on 

liposomes loaded with MNPs and homeoquenching calcein dye (Figure 6.5(c)-(d)). 

 

Figure 6.5 (a) A conceptual sketch for magnetically actuated protease sensors is shown. (b) A 

cryo-transmission electron micrograph shows MNPs encapsulated in a liposome. (c) Release was 

quantified by an increase in calcein fluorescence signal for liposomes exposed to temperatures 

above 37˚C (N = 5). (d) Similarly quantified release is shown for liposomes loaded with MNPs 

exposed to 40 second “cycles” of an AMF with 𝑯𝟎 = 𝟏𝟓𝐤𝐀 𝐦−𝟏 and 𝒇 = 𝟓𝟏𝟓𝐤𝐇𝐳,. Signal is 

compared to a control trial without MNPs and a trial in which the liposomes were disrupted with 

the surfactant TritonX. Adapted from Schürle et al.
92

 

After establishing the capability of this system for triggered release, a set of in vivo 

experiments was performed on immunocompromised mice with xenografted flank tumors 

exhibiting known protease phenotypes. It was hypothesized that after a systemic tail vein 

injection, the liposomes would circulate throughout the animal accumulating preferentially in the 

tumor due to the enhanced permeation and retention effect caused by the leaky and defective 

vasculature of tumors.
124

 During circulation, the protease specific substrates would be protected 

by the liposomes from premature cleavage. Upon exposure to an AMF at the site of the tumor, 

the substrates should be released and if their corresponding proteases are present in the tumor 
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microenvironment, they will be cleaved, liberating a fluorescent reporter for detection in the 

urine.  

A control group (“Group A”) was not exposed to an AMF, whereas another group (“Group 

B”) was exposed to an AMF by an electromagnet of the design explained in Section 3.5 at the 

site of the tumor. Urine was collected for assay at time points before and after the AMF was 

applied. (Figure 6.6(a) shows the timeline of the experiment.) The signal measured in the urine 

before AMF exposure did not show a significant difference between the two groups, validating 

the consistency of the baseline signal in the two groups prior to AMF exposure. As anticipated 

by the hypothesis that release of the substrates would be triggered by the AMF, Group B showed 

a significant increase in the reporter signal detected in the urine (Figure 6.6(b)-(c)). To test the 

diagnostic capability of this system, liposomal release of a mixture of three substrates was 

triggered by AMF exposure in groups of mice with two different types of tumors known to have 

distinct protease phenotypes: LS174T and HCT8.
125

 The relative signal in the urine for the 

reporter molecules associated with these substrates was consistent with known protease profiles 

of the two tumor types (Figure 6.6(d)-(e)).  
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Figure 6.6 (a) Schematic timeline for the in vivo tumor profiling assay.  Magnetically activated 

protease sensors (MAPS) were administered by a tail vein injection, and urine was collected to 

measure background signal after 1 hour. 2 hours later, AMF was applied to the tumor in group B. 

Urine was collected from both groups A and B one hour later. (b) Prior to activation, groups A 

and B exhibit similar background levels. (c) After exposure to AMF, detected reporter 

concentrations significantly increased for the group exposed to AMF (n = 5; *, P < 0.05 

Student’s t test; data normalized to Group A). MAPS urinary signatures after activation across 

the three substrates (S1, S2, S3) for (d) LS174T and (e) HCT-8 indicate that S1 and S3 are 

cleaved more rapidly than S2 in LS174T tumors (n ≥ 5 per group; data normalized to S2 signal 

for both LS174T and HCT8). From Schürle et al.
92

 

 

Provided that AMFs scaled to the human body can be sufficiently focused to trigger 

release primarily within a tumor, this method represents a promising diagnostic approach. It 

should be noted that other magnetothermally actuated liposomal release schemes have been 

studied, and these have the advantage of compatibility with release of contents including drugs, 

signaling molecules, viruses, etc.
126, 127

 These payloads are not subject to the same chemical 

restrictions as the method in the previous section, which relied upon covalent attachment to a 

thermally labile bond.  
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6.4 Disruption of Amyloid  Aggregates 

Plaques containing a misfolded and aggregated version of the protein amyloid beta (A) 

have long been associated with Alzheimer’s disease, though their role remains unclear.
128

 One 

route to investigate the role of these plaques in Alzheimer’s pathology has been to attempt to 

clear them away. This includes methods that use local heating of gold or graphene oxide 

nanoparticles to disaggregate A deposits under exposure to microwave or near infrared 

radiation.
129, 130

 While these forms of electromagnetic radiation clearly can penetrate tissue more 

effectively than visible light, scattering and absorption are still a concern. In the case of NIR, 

experiments with cadaver heads have indicated that the delivered NIR intensity drops by about 

an order of magnitude per centimeter of penetration.
131

 The absorption of tissue in the 

microwave range makes this a less than ideal band for delivering energy to nanoparticles without 

also indiscriminately heating the surrounding tissue.
132

  

 

Figure 6.7 Conceptual sketch for protein disaggregation using alternating magnetic field and 

MNPs. Under exposure to an AMF, targeted MNPs dissipate heat, leading to fragmentation of 

amyloid aggregates. From Loynachan et al.
133

 

Since MNPs exhibit local heating effects and AMFs should penetrate tissue substantially 

undiminished provided that they can be successfully scaled to clinically relevant dimensions, it is 

similarly worthwhile to consider whether this nanomaterial system can be used to disrupt A 

aggregates. To do this, a surface chemistry designed to produce stable suspension of MNPs in 
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solution and targeted binding to A was developed. Starting with MNPs coated with poly acrylic 

acid, 10kDa poly ethylene glycol (PEG) was grafted to the surface with carbodiimide chemistry. 

Then the carboxymethyl end group of the PEG was functionalized with a peptide sequence 

(leucine-proline-phenylalanine- phenylalanine -aspartic acid, LPFFD) known to bind to a 

hydrophobic domain on the A structure.
134

 Both PEG and LPFFD have been shown to influence 

the aggregation behavior of A, but the MNPs were used in such limited concentration in this 

study (28g/mL Fe) that the corresponding quantity of PEG and LPFFD was low enough to rule 

out these mechanisms.
134, 135

  

 A was procured through collaboration with the Walsh laboratory of Harvard University 

and aggregates self-assembled as verified through thioflavin T fluorescence
136

 and dynamic light 

scattering.
137

 Analysis of transmission electron micrographs comparing the coverage of MNP-

PEG to MNP-PEG-LPFFD suggested that LPFFD is correlated with preferential binding to A 

aggregates. The MNPs tend to bind in clusters, and a simple model based on pseudorandom 

seeding of MNPs onto a grid of sites suggested that even MNPs well suspended in solution 

would tend to cluster in their binding behavior (Appendix O).  
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Figure 6.8 (a), (b) Representative TEM images of Aβ (168 hours) decorated with MNP-PEG-

LPFFD, (a) untreated and (b) exposed to an AMF with 𝐻0 ≈ 28kA m−1 and 𝑓 ≈ 100kHz for 6 

hrs. (c) Histogram of the areas of aggregates analyzed from 8 randomly selected TEM images 

from each sample set. AMF-exposed samples (orange) and no AMF exposure (green). (d) 

Dynamic light scattering is used to measure the average aggregate size for Aβ alone with no 

AMF exposure (green), mean value: 1191  198 nm and Aβ + MNP-PEG-LPFFD after exposure 

(orange) to 3 hour AMF, mean value: 387 ± 12.5 nm. (E) Fluorescence intensity of AMF-treated 

(orange) and untreated (green) samples (Gain = 177). A decrease in intensity is observed for Aβ 

targeted with MNP-PEG-LPFFD following AMF, correlated with the disruption of the β-sheet 

structure. Number of trials n = 3, Student’s t-test p = 0.003. Adapted from Loynachan et al.
133

 

 A series of experiments was conducted to assess the extent of AMF induced 

disaggregation of the A structures as indicated by several distinct lines of evidence including 

TEM on dried samples, dynamic light scattering, and Thioflavin T fluorescence. These 

experiments made use of AMF electromagnet setup capable of applying an AMF with an 

amplitude of 28kA/m at a frequency of 100kHz continuously for up to 6 hours, while producing 

consistent background heating that maintained the samples at 34±1˚C. Together, all three lines of 

evidence strongly suggest that the exposure of samples with MNPs targeted to A aggregates 
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tend to break those aggregates into smaller fragments without entirely eliminating them (Figure 

6.8(c)-(e)). Elevated temperature has been suggested by atomistic modeling to introduce defects 

into aggregates, causing them to bend or break,
138

 so some form of nanoscale heating from the 

MNPs could have played a significant role, though this assertion was not tested directly in the 

study.  

 Because previous studies have suggested that short soluble A oligomers can exhibit 

cytotoxic effects,
139

 a subsequent in vitro experiment was conducted combining A aggregates 

with primary hippocampal cultures extracted from neonatal rats (Figure 6.9(a)). A colorimetric 

assay was used to assess the viability of these cultures to assess whether disaggregation of A 

influenced the health of the cells. All trials received a 3 hour exposure to AMF (Figure 6.9(b)), 

with a control group left unexposed to A, a group exposed to A and no MNPs, a group 

exposed to A and untargeted MNPs, and finally a group exposed to A and targeted MNPs. The 

group exposed to A and left untreated showed significantly reduced viability as compared to the 

other groups, though no significant difference was distinguished between the targeted and 

untargeted MNPs. (Figure 6.9(c)) 

To put this study into context, it should be acknowledged that pharmacological approaches 

have been demonstrated to reduce or eliminate the plaques associated with Alzheimer’s disease, 

and yet have failed to show significant improvement in clinical trials.
140

 The inherent 

invasiveness of introducing MNPs throughout the brain makes the likelihood of a widespread 

adoption quite low for a treatment based on this, especially considering the existence of 

compelling alternatives. One recently reported method even purports to entirely circumvent the 

introduction of any foreign substance into the body, instead using a light pulsed at 40Hz to 

stimulate an immune response that clears the plaques.
141

 The disruption of protein aggregates 
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observed in this study may have relevance to other diseases that involve misfolded proteins, or 

more broadly represents a mechanism of noninvasive protein manipulation that could be useful 

in other therapeutic contexts.  

 

Figure 6.9 (a) Confocal microscopy image of hippocampal neurons incubated with Aβ 

aggregates. Neurons were transfected with mCherry (red) and Aβ was stained with thioflavin T 

(green). (b) The experimental setup used for the in vitro viability study is shown. (c) Cell 

viability assessed by colorimetric assay of hippocampal neurons after 3h AMF treatment 

(control), and after 3h AMF treatment in presence of Aβ, Aβ+MNPs-PEG, or Aβ+MNPs-PEG-

LPFFD. Adapted from Loynachan et al. 
133

 

 

6.5 Magnetothermal Multiplexing Applied to Nanoscale Heating Systems 

For systems based on nanoscale heating, the possibility of multiplexing is particularly 

exciting because responses can be actuated in overlapping spatial regions with low 

concentrations of MNPs. Emerging applications that utilize selective independent heating of 

plasmonic gold nanostructures offer appealing analogues for what may eventually be possible 

with MNPs. For instance, Lee et al. demonstrated independent control of two genetic circuits 

using the thermally driven release of siRNA from gold nanorods engineered to respond 

selectively to 785nm and 660nm irradiation.
142

 Puig et al. used a similar selective plasmonic 

heating scheme with two types of gold nanorods for bidirectional control of blood clotting.
143

 In 

this study, triggered release of a thrombin binding aptamer inhibited clotting and then release of 
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the complementary single stranded DNA counteracted its effects. Though such strategies would 

certainly need to be modified for compatibility with magnetothermal multiplexing, these 

examples serve to illustrate the kinds of actuation that may eventually be possible. 

Some of the nanoscale heating applications explored in this thesis could serve as a starting 

point for demonstrating magnetothermal multiplexing. For instance, a mixture of liposomes 

containing different types of MNPs and different payloads could undergo selective release 

triggered by AMFs. In the case of neuronal stimulation, AMF conditions could be chosen to 

selectively release excitatory or inhibitory compounds (Figure 6.10). Alternatively, selective 

heating could provide the basis for multistage release of the same compound, prolonging the 

duration of release. In systems that depend directly upon nanoscale heating to actuate channel 

proteins, multiplexing could again provide a means for independent stimulation of different 

regions, and in this case would even allow the stimulation of different cell types in the same 

region or bidirectional stimulation of a single population if different kinds of temperature 

activated ion channels could be employed. Moreover, in the event that multiple therapies based 

on the heating of MNPs were employed in a single patient, magnetothermal multiplexing would 

provide a way to reduce or eliminate crosstalk. 

 For the purpose of assessing magnetothermal multiplexing for nanoscale heating 

applications using the scoring functions defined in Section 1.5, IPLP appears to be a more 

relevant metric than SLP, for reasons discussed in Section 1.5. Rather than IPLP, it would be 

ideal to compare expected temperature change at some well-defined point near the surface of an 

MNP. Perhaps further study of nanoscale heating will enable such comparisons to be made 

readily, though this could depend sufficiently on extrinsic conditions that IPLP may remain a 

reasonable proxy for surface heating. For nanoscale heating, efficiency, selectivity, and parity are 
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all important metrics to consider. Unlike the bulk heating case, parity cannot be achieved simply 

by adjusting concentration. Figure 2.10 showed that dynamic hysteresis models predict this 

should be possible.  

 

Figure 6.10 An idealized representation of magnetothermal multiplexing being used to 

selectively stimulate the release of compounds from two separate types of MNPs, e.g. for 

selective control of neural excitation or inhibition.  
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7 Conclusion and Key Lessons 

 

This thesis has focused on the development of the concept of magnetothermal multiplexing, 

which was first anticipated theoretically and then investigated experimentally. It is has 

endeavored throughout to both elucidate the underlying physical principles that permit selective 

heating of MNPs, and to provide practical and straightforward guidance for empirically 

identifying suitable materials. The experimental challenge of constructing setups capable of 

supplying AMFs at various length scales was sufficiently central for these efforts to warrant 

analysis and discussion of their design principles. Several projects were summarized that 

investigated biomedical applications using heat dissipated by MNPs in AMFs to actuate 

biological and material responses. When considered individually, each of these topics explores 

appealing technological possibilities, and together they help provide a context and impetus for 

the development of magnetothermal multiplexing.  

 

Key Lessons: 

 

Optimization of loss power is subject to AMF constraints. 

Studies on the heating of MNPs in AMFs have a predilection for claiming loss powers that are 

either high or the highest ever recorded. Unfortunately, the implied comparison with related 

literature is often specious because AMF conditions differ dramatically from study to study. This 

work adopted a field frequency product (𝐻0𝑓) as a rudimentary constraint, which played a 

central role in anticipating the possibility of magnetothermal multiplexing. Moving beyond the 

rudimentary 𝐻0𝑓 product assumed in this thesis, more nuanced constraints might consider off-

target heating in tissue or factors such as the relative expense of different AMF setups. 
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Quantitative attempts toward optimization could help advance materials design for these 

applications in a more systematic and effective way.  

 

Linear response theory as a model for the heating of MNPs has a limited domain of validity.  

As discussed in Chapter 2, linear response theory’s domain of validity is limited to AMF 

amplitudes much lower than the anisotropy field 𝐻𝑘. The fact that linear response theory is 

mathematically identical to the Debye theory for dielectric losses in polar solvents draws 

attention to a crucial difference inherent to these systems: the moments of MNPs are large and 

their interaction with the applied field often cannot be neglected. All three of the improved 

models for hysteretic heat dissipation discussed in this thesis account for the barrier to 

magnetization reversal being lowered by the AMF and overcome through thermal fluctuation. As 

a result, they all predict square like hysteresis loops in some circumstances, a prediction that 

appears to be borne out experimentally.  

 

Scaling up setups that produce AMFs is an underappreciated challenge that must be 

addressed if clinical therapies based on heating MNPs are to offer practical utility. 

Despite the proliferation of studies on possible therapies that use MNPs in AMFs, the best 

example of an AMF setup scaled to human dimensions produces AMF conditions (100kHz and 

18kA/m) that are far less aggressive than what is used in research.
80

 Although design principles 

for scaling resonant tanks were presented here, the topic is deserving of further study and 

experimentation.  
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AC magnetometry is a superior experimental method for characterizing hysteresis and loss 

power as compared to AMF calorimetry. 

In the experimental work described in this thesis, the task of calorimetry data collection 

frequently limited the rate of progress. Automated AC magnetometry could offer a compelling 

alternative method that is not only more rapid by orders of magnitude, but also provides higher 

quality data. For example, it could allow observations of hysteresis loop shapes and highly 

resolved SLE vs 𝐻0 curves of the kind used in Section 4.7 for extrapolation of heating rates. In 

contrast to the setups shown in literature, an ideal AC magnetometry setup would leverage low 

power electromagnets to access high AMF amplitudes at readily adjustable resonant frequencies. 

These electromagnets by necessity have narrow gaps, suggesting the use of side by side spiral 

pickup coils, rather than end to end solenoidal pickup coils. If a multilayered printed circuit 

board with very fine traces could be used for such a magnetometer, with minimal physical 

construction steps, the setup could easily be made widely available and perhaps improve data 

collection practices in the field for measuring hysteretic heat dissipation by MNPs. 

 

Methods to stimulate neurons with AMFs and MNPs, even if effective, will face significant 

barriers to widespread adoption.  

As it currently stands, these methods tend to require transfection, which presents significant 

challenges for approval as a therapy for humans. Perhaps an approach based on release of 

neurotransmitters triggered by MNPs could circumvent this difficulty, but this would likely offer 

a limited number of stimulations before carriers become depleted. As an experimental tool for 

neuroscientists wishing to simply and precisely excite neurons in freely behaving animal models, 

the inherent difficulties of AMF generation in large volumes are likely to discourage adoption by 
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researchers other than those investigating the stimulation method itself. Compelling alternatives 

based on AMFs are rapidly emerging. For example, Draper Laboratories is currently developing 

highly miniaturized (<1mm
3
), inductively powered neural stimulators. These can be easily 

selectively addressed because of their adjustable resonant response and the inductive coils that 

power them require watts rather than tens of kilowatts to generate a suitable AMF for the volume 

of an animal cage. Researching stimulation methods with MNPs is nevertheless worthwhile 

because the techniques and technologies investigated may translate into other therapies. For 

instance, the concept of magnetothermal multiplexing as presented in this thesis was initially 

investigated with the intent of providing multiple channels for neural stimulation, but as a 

broader materials concept could eventually be used in other technologies.  

 

The phenomenon of nanoscale heating is both fundamentally interesting and technologically 

useful.  

The peculiarity of nanoscale heating at the surface of MNPs, a topic motivated at length in 

Section 6.1, is not yet generally appreciated. This is perhaps best demonstrated by the fact that 

some of the studies that have yielded fascinating and compelling experimental evidence for the 

existence of nanoscale heating model their systems with bulk heat transport equations and 

constant temperature boundary conditions—a choice tantamount to assuming loss powers eight 

to ten log units larger than any ever observed.
12, 112

 The existence of nanoscale heating in MNPs 

represents such a dramatic departure from seemingly well-motivated predictions that the topic 

begs for further fundamental study, either to explain the phenomenon or correct the experimental 

record.   
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Appendix A Details and Extensions of Magnetothermal Multiplexing Figures of Merit 

In Section 1.5 of the main text, scoring functions were defined in order to quantify 

comparisons in a search for a set of two multiplexing MNPs. The concept of magnetothermal 

multiplexing encompasses two or more types of MNPs, so some explanation is needed on how 

these scoring functions might be extended to compare more than two types of MNPs. In practice, 

a function calculating efficiency might appear as follows: 

 

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
Max(𝐿𝑃𝑥,1, 𝐿𝑃𝑥,2) + Max(𝐿𝑃𝑦,1, 𝐿𝑃𝑦,2)

2𝐿𝑃𝑚𝑎𝑥
 A.1 

 

If the different MNP sets, x and y, heat most effectively in the same AMF, the condition in 

Equation 1.4 ensures that the selectivity will go to zero. Extending this form of comparison to a 

situation in which 𝑁 types of multiplexing MNPs are desired is straightforward. 

 

 
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

Max(𝐿𝑃𝑥,1, 𝐿𝑃𝑥,2, … 𝐿𝑃𝑥,𝑁) + ⋯Max(𝐿𝑃𝑧,1, 𝐿𝑃𝑧,2, … 𝐿𝑃𝑧,𝑁)

𝑁 𝐿𝑃𝑚𝑎𝑥
 A.2 

 

A function for selectivity might be written as follows when two types of MNPs are desired: 

 

 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

=

{
 
 

 
 0 if 

𝐿𝑃𝑥,1 − 𝐿𝑃𝑥,2

𝐿𝑃𝑦,1 − 𝐿𝑃𝑦,2
> 0

Min [1 −
4𝐿𝑃𝑥,1𝐿𝑃𝑥,2

(𝐿𝑃𝑥,1 + 𝐿𝑃𝑥,2)
2 , 1 −

4𝐿𝑃𝑦,1𝐿𝑃𝑦,2

(𝐿𝑃𝑦,1 + 𝐿𝑃𝑦,2)
2] if 

𝐿𝑃𝑥,1 − 𝐿𝑃𝑥,2

𝐿𝑃𝑦,1 − 𝐿𝑃𝑦,2
< 0

 

 

A.3 

 

This assumes that it is prudent to take the less selective of the two selectivity values as 

representative of the overall selectivity of the system. Perhaps in applications such as sequential 

release, the case could be made for a less stringent approach. Rather than a minimum, in such 

cases it may be more appropriate to take a maximum and assume that the most selective MNP 

would be responsible for initial release.  

When seeking simultaneous selectivity in 𝑁 MNP types in 𝑁 AMF conditions, the most 

direct approach might be to first establish preferred AMF conditions for each MNP type. If any 

of the MNP types heats best at more than one of the AMF conditions under consideration, 

selectivity could be conditionally evaluated to zero. Selectivity could then be evaluated for each 

of the MNP types, comparing the favored AMF conditions against all other AMF conditions. For 

example if 𝑁 = 3 and MNP type x is favored at AMF condition 1, then the selectivity score for x 

could be assessed as follows: 

 

 

 

Min [1 −
4𝐿𝑃𝑥,1𝐿𝑃𝑥,2

(𝐿𝑃𝑥,1 + 𝐿𝑃𝑥,2)
2 , 1 −

4𝐿𝑃𝑥,1𝐿𝑃𝑥,3

(𝐿𝑃𝑥,1 + 𝐿𝑃𝑥,3)
2] 

A.4 
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The overall score for selectivity of these choices in MNPs and AMF conditions could then 

simply be taken as the minimum of the selectivity for x, y, etc., depending on the particular 

application.  

For applications based on nanoscale heating where parity is a significant consideration, a 

similar approach could be taken. The goal in that case is for comparable heating rates at the 

favored AMF conditions, and since favored conditions were already determined to evaluate 

selectivity, these can be used directly in evaluating parity. Once again, retaining the lowest parity 

value permits the most realistic assessment of the system. For example, consider a case when 

N=3, MNP x is favored at AMF 1, MNP y is favored at AMF 2, and MNP z is favored at AMF 

3. The parity might be evaluated as follows: 

 

 

partiy

= Min

{
 

 

[
 
 
 

𝐼𝑃𝐿𝑃𝑥,1𝐼𝑃𝐿𝑃𝑦,2

(
𝐼𝑃𝐿𝑃𝑥,1 + 𝐼𝑃𝐿𝑃𝑦,2

2 )
2

]
 
 
 
8

,

[
 
 
 

𝐼𝑃𝐿𝑃𝑦,2𝐼𝑃𝐿𝑃𝑧,3

(
𝐼𝑃𝐿𝑃𝑦,2 + 𝐼𝑃𝐿𝑃𝑧,3

2 )
2

]
 
 
 
8

,

[
 
 
 

𝐼𝑃𝐿𝑃𝑥,1𝐼𝑃𝐿𝑃𝑧,3

(
𝐼𝑃𝐿𝑃𝑥,1 + 𝐼𝑃𝐿𝑃𝑧,3

2 )
2

]
 
 
 
8

}
 

 

 
A.5 

 

The discussion thus far has outlined an approach intended to ascertain suitable AMF 

conditions for magnetothermal multiplexing with a given set of MNPs. A more likely scenario is 

that, in addition to unknown optimal AMF conditions, a palate of materials would need to be 

evaluated as possible candidates. The general procedure for comparing 𝑀 candidate MNP sets to 

find 𝑁 that multiplex effectively is simply to separately consider the (
𝑀
𝑁

) possibilities for 

different combinations of MNPs. For instance, Figure 5.4(c) was developed based on considering 

(
4
2
) = 6 separate combinations of MNP types, where each combination involved an algorithmic 

search of accessible conditions to attempt to maximize the most relevant figures of merit: 

selectivity and efficiency.   



131 

 

Appendix B Subtleties of Anisotropy 

In MNPs, anisotropy can be understood in its most general sense as the existence of 

certain preferred orientations of the magnetic moment, separated from one another by energy 

barriers. This concept, accompanied by thermal fluctuations that can eventually surmount such 

barriers to reorient the magnetization, is a central feature of all of the models explored in Chapter 

2. Attempting to correlate these models with experimental observations relies upon estimating or 

inferring reasonable values for anisotropy. Because anisotropy is influenced by numerous 

characteristics of MNPs, and inherent variability is present not only between different 

synthesized batches of MNPs but also within a single population, a distribution of anisotropies 

should be anticipated.  

 To some extent, the models in Chapter 2 gloss over the full complexity of anisotropy by 

assuming a uniaxial form. This assumption is convenient because of the resulting azimuthal 

symmetry, especially in the case of easy aligned MNPs, where the interaction of the moment 

with the field has the same symmetry. In real MNPs, anisotropy can take nonuniaxial forms, and 

some distribution of physical orientations should be expected with neither fully aligned easy 

axes, nor completely random alignment. Attempting to capture all of these complexities could 

perhaps improve the predictive accuracy of the models, but this would carry a substantial cost. 

No model is perfect; ultimately their purpose is to offer intuition and understanding. This is the 

view motivating the representation of the 𝜎- 𝜉 space in Figure 2.5, which depicts the results of 

dynamic hysteresis with a broad view of normalized energy scales. The remainder of this 

appendix will address several important nuances concerning the anisotropy of MNPs.  

 

1. Leading order coefficients for uniaxial and cubic anisotropy are not interchangeable 

for estimating the value of the barriers separating easy axes. 

There is a tendency in literature to conflate the first order coefficient of cubic magnetocrystalline 

anisotropy with the first order coefficient of uniaxial anisotropy. Doing so ignores the basic 

functional forms of these different anisotropies. For the uniaxial case, the first order dependence 

is as follows: 

 

 𝑈(𝜃, 𝜙) ≈ 𝐾𝑢,1 sin2 𝜃 B.1 

 

𝐾𝑢,1 denotes the first order uniaxial anisotropy coefficient. A polar plot of this function is shown 

in Figure B.1(a). The first order cubic case can be similarly expressed in terms of 𝜃 and 𝜙 

 

 𝑈(𝜃, 𝜙) ≈ 𝐾𝑐,1 sin2 𝜃 (cos2 𝜙 sin2 𝜙 sin2 𝜃 + cos2 𝜃) B.2 

 

Here, 𝐾𝑐,1 is the first order cubic anisotropy coefficient. If 𝐾𝑐,1 > 0, there are six easy axes, as 

shown in Figure B.1(b). If 𝐾𝑐,1 < 0, there are eight easy axes, as shown in Figure B.1(c). 

Clearly, the sign of 𝐾𝑐,1 is a significant consideration. A comparison of Equations B.1 and B.2 

indicates that |𝑈(𝜃, 𝜙)| in the cubic case will be less than or equal to |𝑈(𝜃, 𝜙)| in the uniaxial 

case for all 𝜃 and 𝜙 if 𝐾𝑢,1=𝐾𝑐,1. This is significant because it also impacts the magnitude of the 

barriers separating easy axes, as shown in Figure B.1(d).  
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Figure B.1 Polar plots are shown for the first order terms of (a) positive uniaxial anisotropy, (b) 

positive cubic anisotropy, and (c) negative cubic anisotropy. A constant has been added to the 

expression for negative cubic anisotropy to allow for a polar plot, which cannot depict negative 

values. (d) The minimal energy paths connecting easy axes are shown for each case, assuming a 

coefficient of 1.  

 

2. The overall anisotropy of an MNP often results from contributions other than the 

magnetocrystalline component. 

In literature that models the heating of MNPs, it is frequently assumed that the anisotropy of 

MNPs originates primarily from magnetocrystalline anisotropy. This is an approximation that 

may be warranted in some cases, but not nearly as often as it is made. For instance, Usov et al. 

have shown theoretically that for ellipsoidal MNPs comprised of materials such as metallic iron, 

metallic cobalt, and magnetite, only slight deviations from spherical shape lead to shape 

anisotropy dominating relaxation times.
60

 Experimental comparisons between faceted and round 

MNPs of comparable volume have suggested the role of surface anisotropy, which can become 

especially pronounced in cases of very small MNPs
55

 or where other contributions are weak.
144

 

Many synthesis methods produce MNPs that are strained,
90

 and for magnetostrictive materials, 

this may also contribute to anisotropy, as has been shown repeatedly in thin films.
145

  

 If the energy scale of interaction between MNPs is comparable to or larger than the 

intrinsic anisotropy of isolated MNPs, then it may instead dominate the response of 

magnetization to the field.  
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3. Deviations from a spherical shape do not necessarily contribute to shape anisotropy.  

Some additional explanation of shape anisotropy is required to illustrate this point. One 

formulation of magnetostatics envisions fictitious magnetic monopoles bound to the surfaces of 

magnetized objects. In free space outside the magnetized body, these monopoles produce a field 

with the same direction as M, but there is also a resulting H field inside the object with the 

opposite sign. This internal field is sometimes called the demagnetizing field 𝐻𝑑
⃑⃑⃑⃑  ⃑, a name that 

anticipates the nature of the interaction between this field and the magnetized volume.  

 

 𝑈 ∝ −∫ 𝑀⃑⃑ ∙ 𝐻𝑑
⃑⃑⃑⃑  ⃑𝑑𝑉 ≥ 0 B.3 

 

The sign indicates an energy penalty associated with magnetizing an object. The direction and 

magnitude of 𝐻𝑑
⃑⃑⃑⃑  ⃑ depends on the direction of 𝑀⃑⃑ . This can be understood intuitively by 

envisioning the distance between the fictitious monopoles at the surface of a magnetized object 

changing for different orientations of 𝑀⃑⃑ , particularly in a disc or a needle. A potential energy 

difference that depends on angular coordinates leads to a torque.  

 One convenient property of ellipsoids is that 𝐻𝑑
⃑⃑⃑⃑  ⃑ is uniform. The demagnetizing tensor 𝑁 

describes the directional dependence of the energy penalty. With appropriate selection of 

coordinate axes (principal axes), its form is diagonalized, and its action reduces to 

 

 𝑈 =
𝑀0

2𝜇0

2
𝑉(𝑁𝑥𝑚𝑥

2 + 𝑁𝑦𝑚𝑦
2 + 𝑁𝑧𝑚𝑧

2) B.4 

 

Where 𝑀⃑⃑ = 𝑀0𝑚⃑⃑   and the demagnetizing tensor is 

 

 𝑁 = (

𝑁𝑥 0 0
0 𝑁𝑦 0

0 0 𝑁𝑧

) B.5 

 

Note that 𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 = 1 and these values have to appropriately correspond to the geometric 

symmetry of the shape. The Brown-Morrish theorem asserts the existence of an “equivalent 

ellipsoid” for every magnetized shape.
146

 This does not imply that 𝐻𝑑
⃑⃑⃑⃑  ⃑ is uniform inside every 

shape, but rather that when energy is integrated over the entire volume, an appropriate coordinate 

system can be selected to diagonalize the demagnetization tensor. A corresponding ellipsoid 

would have produced the same result, though actually finding this ellipsoid can be nontrivial.  

 For instance, the equivalent ellipsoid of a circular disc would unsurprisingly be a highly 

oblate spheroid. The situation can be somewhat less obvious in cases of cubes or faceted shapes, 

which are commonly encountered in MNPs and exhibit discreet rotational symmetry. 

Surprisingly, these shapes are not expected to exhibit shape anisotropy and thus their 

corresponding equivalent ellipsoids are spheres.
147

 Though the form of 𝐻𝑑
⃑⃑⃑⃑  ⃑ would change 

significantly with orientation in many of these shapes, changing the energy density in the 

magnetized object, the total integrated energy is constant.  
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4. Interactions between particles can plausibly have an effect similar to adding a term 

to the anisotropy. 

Suppose that there are two MNPs separated by a distance 𝑑 from one another, and that the 

reorientation of their moments and the period of the applied AMF are sufficiently fast compared 

to translation of the MNPs through solution that taking a “snapshot” view is appropriate. Their 

energy of interaction could play a role in influencing the orientation of the moments. Here, a 

simple case can be considered where the moments of the two particles are equal and aligned. 

(Figure B.2).  

 

 
 

Figure B.2 A sketch of the geometry for interacting identical MNPs separated by a distance 𝑑 

and constrained to orient together is shown. 

 

The resulting energy of interaction 𝑈 that results is as follows 

 

 𝑈 =
−𝜇0𝑚

2

4𝜋𝑑3
(3 cos2 𝜃 − 1) B.6 

 

A constant can be added to an expression for energy without influencing the forces or torques 

that that it implies. It is revealing to add the following constant to Equation B.6: 

 

 𝑈 +
2𝜇0𝑚

2

4𝜋𝑑3
=

3𝜇0𝑚
2

4𝜋𝑑3
sin2 𝜃 B.7 

 

This shows that these simple assumptions have produced an interaction with a functional form 

identical to positive uniaxial anisotropy. One intuitive way to view this is as a form of shape 

anisotropy of a cluster, such that clusters of many MNPs could exhibit different dependences. 

Sweeping conclusions should not be drawn from this highly simplified picture of MNP 

interaction. For instance, it is easy to imagine a long chain of interacting MNPs exhibiting long 

range order and undergoing reversal processes analogous to nucleation and growth of opposing 

domains under the influence of an applied field. This simple model merely serves to illustrate 

dependencies on 𝑚2 and 𝑑−3, which helps to motivate the basis of more involved modeling of 

interparticle interactions such as Usov et al,
72

 and to demonstrate that in some cases these 

interactions can plausibly contribute to anisotropy.   



135 

 

Appendix C Thermodynamic Reasoning for Hysteresis 

Starting with the first law of thermodynamics, where 𝑈 is energy, 𝑄 is heat and 𝑊 is 

work, heat exchange will be neglected in order to consider just the magnetic work being done on 

the system, 𝑊𝑚.  

 

 𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 C.1 

 

 𝑑𝑈 = 𝑑𝑊𝑚 = 𝐻𝑑𝐵 C.2 

 

Substituting 𝜇0(𝑑𝐻 − 𝑑𝑀) for 𝑑𝐵, and integrating over a full cycle of the alternating field, 

 

 Δ𝑈 = 𝜇0 ∮𝐻𝑑𝐻 − 𝜇0 ∮𝐻𝑑𝑀 C.3 

 

The first term, which describes energy reversibly stored in the magnetic field itself, goes to zero 

because 𝐻 varies cyclically. The second term can be rewritten using integration by parts, 

 

 ∮𝐻𝑑𝑀 = 𝑀𝐻 − ∮𝑀𝑑𝐻 C.4 

 

The first term on the right-hand side will go to zero for steady state hysteresis, which by 

definition produces closed loops. This can be interpreted as the energy stored reversibly by 

magnetizing an object. Substituting the nonvanishing part into Equation C.3, 

 

 Δ𝑈 = −𝜇0 ∮𝐻𝑑𝑀 = 𝜇0 ∮𝑀𝑑𝐻 C.5 

 

Both of these integrals are representations of the area of a hysteresis loop. The area of such loops 

may be interpreted as a graphical representation of loss energy per cycle of the field.   
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Appendix D Details of Linear Response Theory 

Linear response theory finds loss powers by integrating over elliptical hysteresis loops 

described by complex valued susceptibility. As explained in the main text, complex values can 

be interpreted as a mathematical tool for describing a phase shift. 

 

 𝑀 = 𝜒̃𝐻0𝑒
𝑖𝜔𝑡 = |𝜒̃|𝐻0𝑒

𝑖(𝜔𝑡+𝛿) 
D.1 

(2.5) 

 

The relationships between complex values and their real and imaginary components can be 

understood straightforwardly with the Argand plane, shown in Figure D.1.  

 

 
Figure D.1 The Argand plane is used to represent all possible complex values analogously to the 

way a real number line represents all possible real values. The abscissa of the Argand plane is the 

real number line and the ordinate is the imaginary number line. Any complex value, such as 𝜒̃, 

can be represented by a point in the plane. To describe this point, one can equivalently specify 

either an angle 𝛿 and distance |𝜒| together, or the projections along the real and imaginary axes, 

Re(𝜒̃) and Im(𝜒̃).  

 

Complex periodic functions in time are convenient because they allow for simultaneous 

consideration of sine and cosine functions. This is because both the real and imaginary parts 

implied in Equation D.1 must be separately equal. Introducing a phase shift to linear 

susceptibility describes elliptical hysteresis loops, and to show this mathematically, it is useful to 

specifically consider either the real or imaginary part of Equation D.1. Take for instance the 

parametric equations represented by the real component.  

 

 𝐻(𝑡) = |𝜒̃|𝐻0 cos(𝜔𝑡) D.2 

 

 𝑀(𝑡) = |𝜒̃|𝐻0 cos(𝜔𝑡 + 𝛿) D.3 
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Describing the response of a material within the framework of complex susceptibility allows |𝜒| 
and 𝛿 to be altered in the above parametric equations, but the family of loops represented are 

ellipses, as illustrated in Figure 2.2(b). 

 

Loss energy per cycle of the field can be found by integrating over a generalized loop, as shown 

in Equation C.5, and in this case analytical integration is possible.  

 

 𝑑𝐻 = −𝐻0𝜔 sin(𝜔𝑡)𝑑𝑡 D.4 

 

 𝑀 = |𝜒̃|𝐻0 cos(𝜔𝑡 + 𝛿) D.5 

 

 Δ𝑈 = 𝜇0 ∮𝑀𝑑𝐻 = −|𝜒̃|𝐻0
2 ∫ cos(𝜔𝑡 + 𝛿)𝜔 sin(𝜔𝑡)𝑑𝑡

2𝜋
𝜔

0

 D.6 

 

A trigonometric identity readily provable using Euler’s rule allows the phase shifted cosine term 

to be split into an in phase and out of phase component.  

 

 Δ𝑈 = −|𝜒̃|𝐻0
2 ∫ [cos(𝜔𝑡) cos(𝛿) − sin(𝜔𝑡) sin(𝛿)]𝜔 sin(𝜔𝑡)𝑑𝑡

2𝜋
𝜔

0

 D.7 

 

Referring to the Argand plane diagram in Figure D.1, one can see geometrically how the above 

expression can be recast in terms of the real and imaginary components of the susceptibility. 

These terms represent the in phase (storage, Re(𝜒̃)) and out of phase (loss, Im(𝜒)) component, 

respectively.  

 

 Δ𝑈 = −𝐻0
2 ∫ [Re(𝜒̃)cos(𝜔𝑡) − Im(𝜒̃) sin(𝜔𝑡)]𝜔 sin(𝜔𝑡)𝑑𝑡

2𝜋
𝜔

0

 D.8 

 

As expected, the storage term vanishes from the integration.  

 Δ𝑈 = 𝐻0
2 ∫ Im(𝜒̃)ω sin2(𝜔𝑡)𝑑𝑡

2𝜋
𝜔

0

= 𝜋𝐻0
2Im(𝜒) D.9 

 

To find the specific loss power, the susceptibility is put in terms of mass of metal ions per unit 

volume and Δ𝑈 is multiplied by the frequency, 
𝜔

2𝜋
.  

 SLP =
1

2
𝜇0𝜒0𝐻0

2𝜔 (
𝜔𝜏

1 + (𝜔𝜏)2
) D.10 

 

In practice, the Langevin function is often incorporated into the expression for 𝜒0. 

 

 𝜒0 ≈
𝑀𝑠𝜙 𝐿(𝜉)

𝐻0
 D.11 

 

Where 
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 𝐿(𝜉) = coth 𝜉 −
1

𝜉
 D.12 

 

Substituting into Equation D.10, 

 

 SLP =
1

2
𝜇0𝜙𝑀𝑠𝐻0𝐿(𝜉)𝜔

𝜔𝜏

1 + (𝜔𝜏)2
 D.13 

 

The intent of this “chord” approximation is to bound the magnetization so that loops are not 

predicted in which 𝑀 > 𝑀𝑠. It should be emphasized that the assumed equilibrium behavior is 

still linear; now the susceptibility is simply assumed by drawing a line from the origin to a point 

on the Langevin curve. In limit of low 𝜉 (low 𝐻0), the SLP will be proportional to 𝐻0
2. As 𝐿(𝜉) 

saturates, SLP will be proportional to 𝐻0, and this is the case most relevant to the AMF 

conditions and MNP sizes discussed in this work. The prediction of linear response theory that 

SLP should grow linearly without bound in 𝐻0 can be seen as resulting from its inability to 

restrict the coercive field 𝐻𝑐 in the same way it bounds 𝑀. 
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Appendix E Details of Dynamic Hysteresis for Easy Aligned Uniaxial MNPs 

Section 2.4 of the main text offers context and interpretation for the results of dynamic 

hysteresis models, and this appendix is intended to provide a more detailed account of the 

reasoning behind it. Carrey et al.
68

 offer additional details on topics such as equilibrium 

magnetization curves including anisotropy and random orientation and much of what follows is 

based on the model they describe.  

 

For easy aligned MNPs with uniaxial anisotropy, the energy landscape experienced by individual 

MNP moments is azimuthally symmetric and can be expressed as follows.  

 

 
𝑈(𝜃, 𝜙)

𝑘𝐵𝑇
= 𝜎 sin2 𝜃 − 𝜉 cos 𝜃 

E.1 

(2.5) 

 

Note that 𝜎 ≡
𝐾𝑒𝑓𝑓𝑉𝑚

𝑘𝐵𝑇
 and 𝜉 ≡

μ0𝐻𝑀𝑠𝑉𝑚

𝑘𝐵𝑇
, unitless quantities describing the magnitude of the 

anisotropy energy barrier and Zeeman energy normalized to the energy scale of ambient thermal 

fluctuations. The moments can be considered to exist in populations that statistically inhabit the 

energy minima (a so called “macrospin approximation”), where 𝑃𝐴 and 𝑃𝐵 are the proportion of 

the total population inhabiting minimum A and minimum B respectively. (See Figure 2.3 or 

Figure E.1). Let 𝜈𝐴 be the probability of escape from minimum A per unit time, and 𝜈𝐵 be the 

probability of escape from minimum B per unit time. The system of coupled differential 

equations that describes how 𝑃𝐴 and 𝑃𝐵 evolve in time can be written as follows 

 

 
𝑑𝑃𝐴

𝑑𝑡
= −𝜈𝐴𝑃𝐴 + 𝜈𝐵𝑃𝐵 E.2 

 

 
𝑑𝑃𝐵

𝑑𝑡
= 𝜈𝐴𝑃𝐴 − 𝜈𝐵𝑃𝐵 E.3 

 

Note that the sum of these two equations vanishes on the right-hand side. This indicates that the 

sum 𝑃𝐴 + 𝑃𝐵 is conserved, as it must be.  

 

 
𝑑

𝑑𝑡
(𝑃𝐴 + 𝑃𝐵) =

𝑑𝑃𝐴

𝑑𝑡
+

𝑑𝑃𝐵

𝑑𝑡
= −𝜈𝐴𝑃𝐴 + 𝜈𝐵𝑃𝐵 + 𝜈𝐴𝑃𝐴 − 𝜈𝐵𝑃𝐵 = 0 E.4 

 

The main text provided a justification for expressing the instantaneous escape rates as follows 

 

 𝜈𝐴 = 𝜈0𝑒
−𝑈𝐴(𝜎,𝜉)

𝑘𝐵𝑇  E.5 

 

𝑈𝐴 is the effective energy barrier for moments escaping from minimum A into minimum B, and 

conversely 𝑈𝐵 is the effective energy barrier for moments escaping from minimum B to 

minimum A. 𝜃𝑚𝑎𝑥 is the orientation of the moment at which energy is maximized. (Figure E.1).  
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Figure E.1 The energy of an easy aligned MNP with uniaxial anisotropy is shown, along with 

the definitions of 𝑈𝐴, 𝑈𝐵, and 𝜃𝑚𝑎𝑥.  

 

With the application of an AMF, 𝑈𝐴 and 𝑈𝐵 will vary periodically in time. To describe this 

mathematically, the barriers can be considered functions of 𝜎 and 𝜉. At some value of 𝜉, the 

barrier to reversal will vanish, and this can be investigated by taking a derivative of 𝑈 with 

respect to 𝜃 and considering the conditions under which the maximum 𝑈(𝜃𝑚𝑎𝑥) corresponding 

to the barrier will exist.  

 

 
1

𝑘𝐵𝑇

𝑑𝑈

𝑑𝜃
= sin 𝜃 (2𝜎 cos 𝜃 + 𝜉) = 0 E.6 

 

The sin 𝜃 prefactor ensures that this equation is always satisfied for 𝜃 = 0 and 𝜃 = 𝜋, where 

stationary extrema occur. The expression in parenthesis is associated with maximum that occurs 

at the angle 𝜃𝑚𝑎𝑥. Setting this expression to zero and solving, 

 

 𝜃𝑚𝑎𝑥 = arccos
𝜉

2𝜎
 E.7 

 

Note that the domain of the arccosine function is bounded between -1 and 1. This implies that 

when |
𝜉

2𝜎
| exceeds 1, the barrier to reversal vanishes. This is a familiar result from Stoner 

Wholfarth theory, in which very low temperature reversal takes place at the applied field where 

the barrier to reversal vanishes, the “anisotropy field,” 𝐻𝑘. The quantity can serve to normalize 

applied fields in generalized hysteresis loops in a physically meaningful way, as depicted in 

Figure 2.5. In magnetic nanoparticle systems at the physiological temperatures relevant to 

biomedical applications, the coercive field 𝐻𝑐 of hysteresis loops should be expected to always 

be less than 𝐻𝑘.  

 

 
𝜉

2𝜎
=

𝜇0𝐻𝑀𝑠

2𝐾𝑒𝑓𝑓
≡

𝐻

𝐻𝑘
 E.8 

 

For the purpose of finding accurate expressions for the energy barriers determining escape rates, 

it should merely be noted that the effective barrier should be 0 after 𝐻𝑘 is exceeded in the 
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direction favoring escape and 2𝜉 in the other direction. Equation E.7 can be substituted into 

Equation E.1 to find intermediate values. 

 

 

𝑈𝐴

𝑘𝐵𝑇
= 𝑈(𝜃𝑚𝑎𝑥) − 𝑈(0) = 𝜎(1 − cos2 𝜃𝑚𝑎𝑥) − 𝜉 cos 𝜃𝑚𝑎𝑥 − 𝜉 

𝑈𝐴

𝑘𝐵𝑇
= 𝜎 +

𝜉2

4𝜎
− 𝜉 

E.9 

 

The overall function for 𝑈𝐴 can either be defined piecewise or by using Heaviside step functions, 

𝐻𝜃(𝑥).  

 

 
𝑈𝐴(𝜎, 𝜉)

𝑘𝐵𝑇
= {

2𝜉,  𝜉 ≤ −2𝜎

𝜎 +
𝜉2

4𝜎
− 𝜉,  |𝜉| ≤ 2𝜎

0,  𝜉 ≥ 2𝜎

 E.10 

 

Equivalently,  

 
𝑈𝐴(𝜎, 𝜉)

𝑘𝐵𝑇
= (𝜎 +

𝜉2

4𝜎
− 𝜉) [1 − 𝐻𝜃(𝜉 − 2𝜎)] − (𝜎 +

𝜉2

4𝜎
+ 𝜉)𝐻𝜃(−𝜉 − 2𝜎) E.11 

 

The energy barrier to escape in the opposite direction 
𝑈𝐵(𝜎,𝜉)

𝑘𝐵𝑇
 can be found either by applying the 

same logic to the other easy axis or by realizing that the barrier to reversal ought to vary 

antisymmetrically with respect to the sign of the applied field. I.e., 

 

 𝑈𝐵(𝜎, 𝜉) = 𝑈𝐴(𝜎, −𝜉) E.12 

 

Figure E.2 shows a these barriers and the resulting instantaneous escape rates vary with 𝜉 for the 

case of 𝜎 = 10. Notably, the escape rate can potentially vary by many orders of magnitude 

during a single cycle of the AMF.  
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Figure E.2 (a) As an illustrative example, the magnitude of the energy barriers 𝑈𝐴 and 𝑈𝐵 are 

plotted as a function of 𝜉 (which is proportional to 𝐻) according to Equation E.11 for the case of 

𝜎 = 10. (b) The corresponding escape rates over the barrier, normalized to the attempt rate are 

shown for the same case of 𝜎 = 10.  

 

With expressions for 𝑈𝐴(𝜎, 𝜉) and 𝑈𝐵(𝜎, 𝜉), there is now sufficient information to numerically 

solve the system of differential equations E.2 and E.3. 𝜉 assumes a form that oscillates in time, 

 

 𝜉 = 𝜉0 cos𝜔𝑡 E.13 

 

The time dependent form of Equation E.11 can be substituted into E.5, which can be substituted 

into E.2 and E.3, and the system can be solved numerically to find 𝑃𝐴(𝑡)and 𝑃𝐵(𝑡). In the main 

text, the macrospin approximation was used to relate these populations back to the 

magnetization, however a Boltzmann distribution of moment orientations should be expected in 

the minima to be consistent with model’s assumptions about the escape rate. A small refinement 

can help account for this thermal spreading.  

 

 
𝑀

𝑀𝑠
= 𝐶𝐴𝑃𝐴 + 𝐶𝐵𝑃𝐵 E.14 

 

Here, 𝐶𝐴 and 𝐶𝐵 are functions that account for thermal spreading by approximating the total 

energy function with a second order Taylor series expansion about the extrema at 𝜃 = 0, 𝜋 

(Figure E.3) 

 

 𝐶𝐴 =
∫ sin 𝜃 cos 𝜃 exp [

−(𝜉 + 2𝜎)
2 𝜃2 + 𝜉] 𝑑𝜃

𝜋
2
0

∫ sin 𝜃 exp [
−(𝜉 + 2𝜎)

2 𝜃2 + 𝜉] 𝑑𝜃
𝜋
2
0

 E.15 
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 𝐶𝐵 =
∫ sin 𝜃 cos 𝜃 exp [

(𝜉 − 2𝜎)
2 (𝜃 − 𝜋)2 − 𝜉] 𝑑𝜃

𝜋
𝜋
2

∫ sin 𝜃 exp [
(𝜉 − 2𝜎)

2 (𝜃 − 𝜋)2 − 𝜉] 𝑑𝜃
𝜋
𝜋
2

 E.16 

 

 

 
Figure E.3 (a), (b), and (c) show the uniaxial easy aligned energy landscape described by 

Equation E.1 for the values of 𝜎 and 𝜉 shown, along with second order Taylor series centered at 

the stationary extrema at 𝜃 = 0, 𝜋. These expansions are used to determine coefficients for 

thermal spreading in Equations E.16 and E.17. (d), (e), and (f) show equilibrium magnetization 

functions for the 𝜎 values in the panels above. The equilibrium magnetization as determined by 

Equation E.17 is shown along with the result of applying thermal spreading to an equilibrium 

distribution of macrospins. Bounds are provided in the form of the Langevin function for 

classical moments without anisotropy, and the hyperbolic tangent function for “macrospins” 

which can only assume the values 𝜃 = 0 or 𝜃 = 𝜋. 

 

Note that a macrospin approximation combined with thermal spreading does not exactly 

reproduce a treatment of the full energy landscape at equilibrium, which would be given by a 

numerical evaluation of the following expression. 

 

 𝑀(𝜎, 𝜉) =
∫ sin 𝜃 cos 𝜃 exp[−𝜎 sin2 𝜃 + 𝜉 cos 𝜃] 𝑑𝜃

𝜋

0

∫ sin 𝜃 exp[−𝜎 sin2 𝜃 + 𝜉 cos 𝜃] 𝑑𝜃
𝜋

0

 E.17 

 

The macrospin approximation without spreading results in the hyperbolic tangent function just as 

it would for a quantum mechanical treatment for which the available states are quantized. The 

hyperbolic tangent predicts a more rapid approach to saturation than the Langevin function or an 

equilibrium function based on the entire energy landscape (Figure E.3). Incorporating thermal 
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spreading in E.14 partially accounts for the difference at low 𝜎 values and agrees well with the 

more rigorous equilibrium landscape as 𝜎 becomes large (Figure E.3). In some sense, thermal 

spreading is probably more appropriate as a form of local equilibrium justifiable when 

populations of moments within the wells equilibrate more rapidly than they transition between 

them. In practice, the effect on the shape and area of hysteresis loops is small.  

 

With a framework in place to determine 𝑀/𝑀𝑠 as a function of time, and a form assumed for 𝜉 

as a function of time, it is now possible to parametrically define hysteresis loops. These graphical 

representations are intuitive and instructional, and are worth examining to make sure that they 

have symmetries that make them physically plausible. In streamlined code, it is often the goal to 

simply quantify expected heat dissipation and to do that it is necessary to determine the area of a 

hysteresis loop, 𝐴.  

 

 𝐴 = ∮
𝑀(𝑡)

𝑀𝑠

𝑑𝜉(𝑡)

𝑑𝑡
𝑑𝑡 E.18 

 

This area can be interpreted as the individual particle loss energy per cycle of the field, 

normalized to the ambient thermal energy. To see this, consider the units of area of a 𝑀/𝑀𝑠 vs 𝜉 

loop: 

 

 𝐴 ⟹
𝑀

𝑀𝑠
𝜉 =

𝜇0𝐻𝑀𝑉𝑚
𝑘𝐵𝑇

 E.19 

 

𝜇0𝐻𝑀 is a volumetric energy density recognizable from macroscopic hysteresis loops, 𝑉𝑚 is the 

magnetized volume of an MNP, and 𝑘𝐵𝑇 is the energy scale of ambient thermal fluctuations. 

Clearly, the loop area 𝐴 corresponds to the unitless loss energy of a single MNP normalized to 

thermal fluctuations, analogous to the definitions in Equations 2.13 or 2.14. Thus, 

 

 𝐼𝑃𝐿𝑃 = 𝐴𝑘𝐵𝑇𝑓 E.20 

 

And 

 𝑆𝐿𝑃 =
𝐴𝑘𝐵𝑇𝑓

𝑉𝜌𝑚
 E.21 

 

The analysis can be extended a bit further by considering the limiting case of maximal area. Note 

that this limit corresponds to the Stoner Wohlfarth curve at zero temperature, which has an area 

that can be expressed compactly in terms of 𝜎. (Figure E.4)  
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Figure E.4 A Stoner Wohlfarth zero temperature hysteresis loop is shown for the easy aligned 

and hard aligned uniaxial cases in terms of 𝑀/𝑀𝑠  versus 𝜉. Equation E.8 indicates that 𝜉 = 2𝜎 

when 𝐻 = 𝐻𝑘. This produces a square loop with area 8𝜎. 

Taking 8𝜎 as an upper bound for 𝐴, and applying it to Equations E.20 and E.21, it can be 

asserted that 

 

 𝐼𝑃𝐿𝑃 ≤ 8𝜎𝑘𝐵𝑇𝑓 E.22 

 

And,  

 

 𝑆𝐿𝑃 ≤
8𝜎𝑘𝐵𝑇𝑓

𝑉𝜌𝑚
 E.23 

 

Substituting the definition of 𝜎 into Equation E.23 results in cancellation that shows SLP is 

bounded by 𝐾𝑒𝑓𝑓 

 

 𝑆𝐿𝑃 ≤
8𝐾𝑒𝑓𝑓𝑓

𝜌𝑚
 E.24 

 

This result helps to justify why it is better to increase 𝐾𝑒𝑓𝑓 in cases when higher 𝐻𝑘 is desired, 

rather than decreasing 𝑀𝑠, as suggested in Section 4.1. 
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Appendix F Details of Landau-Lifshitz-Gilbert Equation with Thermal Noise 

This appendix explains details about modeling hysteresis with the LLG equation by 

incorporating stochastic fluctuations. The simulation shown in Figure 2.6 is based on a project 

completed for a course, 18.086, for which a simple 4
th

 order Runge-Kutta solver was written to 

propagate the system forward in time. The information provided here emphasizes physical 

background rather than the details of the numerical treatment.  

 

Equation 2.20 can be rewritten by dividing throughout by 𝑀𝑠 in order to re-express it in terms of 

the unit magnetization vector 𝛼  

 

 
𝑑𝛼 

𝑑𝑡
= −𝛾1𝛼 × (𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ) − 𝜅𝛾1𝛼 × [𝛼 × (𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ)] F.1 

 

Where, as before 𝛾1 ≡
𝛾

1+𝜅
 and  

 

 𝛾 =
𝜇0𝑔|𝑒|

2𝑚𝑒
 F.2 

 

Here, 𝑒 is the elementary charge, 𝑔 is the Landé g factor, 𝑚𝑒 is the electron mass, and 𝜇0 is the 

permeability of free space. The effective field is defined to supply a torque consistent with the 

overall energy landscape that the MNP experiences.  

 

 𝐻⃑⃑ 𝑒𝑓𝑓 = −
1

𝜇0𝑀𝑠𝑉𝑚

𝜕𝑈

𝜕𝛼 
 F.3 

 

This energy 𝑈, for a uniaxial MNP, can be written as in Equation 2.15, but in this case, it is 

helpful to notate the angular dependence in a form that aids in differentiating with respect to 𝛼 . 

 

 𝑈 = −𝜇0𝑀𝑠𝑉𝑚[𝛼 ∙ 𝐻⃑⃑ 𝑎𝑝(𝑡)] + 𝐾𝑒𝑓𝑓𝑉𝑚(𝛼 × 𝑧̂)2 F.4 

 

Using this expression for 𝑈 to calculate 𝐻⃑⃑ 𝑒𝑓𝑓, the Zeeman energy term reduces to a simple added 

contribution 𝐻⃑⃑ 𝑎𝑝(𝑡), as anticipated by the form given to Equation F.3. The assumption of 

uniaxial anisotropy results in a simple form for the second term incorporated into 𝐻⃑⃑ 𝑒𝑓𝑓. Its 

prefactor reduces to 𝐻𝑘 as defined in Section 2.4 and Appendix E:  

 

 𝐻⃑⃑ 𝑒𝑓𝑓 = 𝐻⃑⃑ 𝑎𝑝(𝑡) −
2𝐾𝑒𝑓𝑓

𝜇0𝑀𝑠
(

𝛼𝑥

𝛼𝑦

0
) = 𝐻⃑⃑ 𝑎𝑝(𝑡) − 𝐻𝑘 (

𝛼𝑥

𝛼𝑦

0
) F.5 

 

Had a nonuniaxial anisotropy instead been considered, 𝐻⃑⃑ 𝑒𝑓𝑓 would have been more difficult to 

write, but would have had a similar underlying influence.  

 



147 

 

The thermal field 𝐻⃑⃑ 𝑡ℎ fluctuates stochastically, but with well-defined statistical properties. The 

first of these properties states that the time average of the component in each direction must be 

zero.  

 

 〈𝐻𝑡ℎ,𝑖(𝑡)〉 = 0 F.6 

 

The time averaged product of any two components of the field is taken to be the following 

 

 〈𝐻𝑡ℎ,𝑖(𝑡)𝐻𝑡ℎ,𝑗(𝑡
′)〉 =

2𝑘𝐵𝑇𝜅

𝑀𝑠𝑉𝑚𝛾
𝛿𝑖,𝑗𝛿(𝑡 − 𝑡′) F.7 

 

The Kroneker delta 𝛿𝑖,𝑗 simply indicates that for different components (i.e. when 𝑖 ≠ 𝑗), the time 

average of the product should vanish. If this were not the case, the components of 𝐻⃑⃑ 𝑡ℎ would be 

spatially correlated. The Dirac delta 𝛿(𝑡 − 𝑡′) with reference to an arbitrary future or past time 𝑡′ 

similarly indicates that 𝐻⃑⃑ 𝑡ℎ is uncorrelated in time.  

 For the purpose of numerical propagation, it was helpful to recast equation F.1 in units 

more natural to the timescale of precession than seconds. One such possible choice is to divide 

Equation F.1 throughout by 𝛾𝐻0 and define the units of time such that 𝛾𝜇0𝐻0 = 1.  

 

 

 
𝑑𝛼

𝑑𝑡𝑃
=

2𝜋

1 + 𝜅
{𝛼 ×

(𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ)

𝐻0
+ 𝜅𝛼 × [

𝛼 × (𝐻⃑⃑ 𝑒𝑓𝑓 + 𝐻⃑⃑ 𝑡ℎ)

𝐻0
]} F.8 

 

The thermal field was generated by calling function that generates pseudorandom values with a 

Gaussian distribution, 𝑁[𝜇, 𝜎], where 𝜇 is the mean and 𝜎 is the standard deviation. 

 

 𝐻⃑⃑ 𝑡ℎ = 𝐻𝑡ℎ0 ∗ 𝑁[0,1] F.9 

 

Where 𝐻𝑡ℎ0 comes from Equation F.7, but of necessity must also depend on the timestep in its 

normalized units indicated above.
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 𝐻𝑡ℎ0 = √
2𝑘𝐵𝑇𝜅

𝑀𝑠𝑉𝑚𝛾
∗ √

𝛾𝜇0𝐻0Δt

2𝜋
→ 𝐻𝑡ℎ0 = √

2𝑘𝐵𝑇𝜅

𝑀𝑠𝑉𝑚𝛾
∗ √

Δt

2𝜋
 F.10 
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Appendix G Differing Predictions for the Feasibility of Magnetothermal Multiplexing 

It is reasonable to question what is truly gained by adopting models such as dynamic 

hysteresis in place of linear response theory, because the decision comes at the expense of 

additional complexity. This thesis provides a partial answer to that question because linear 

response theory predicts that multiplexing is infeasible, whereas improved models that account 

for the influence of an external field on the barrier to magnetization reversal predict that it is. 

This appendix supports this assertion in greater detail than the main text of Section 2.8.  

Suppose that 𝑆𝐿𝑃 is considered at the maximum allowable field amplitude at various 

frequencies as determined by a constraint such as the 𝐻0𝑓 product, calling it 𝑆𝐿𝑃𝑐(𝑓) for clarity. 

Section 2.8 argues that applying this kind of constraint results in a unique maximum at some 

frequency, 𝑆𝐿𝑃𝑐(𝑓𝑚𝑎𝑥) = 𝑆𝐿𝑃𝑐,𝑚𝑎𝑥. When considering the predictions of linear response theory, 

the possibility of normalizing the 𝑆𝐿𝑃𝑐(𝑓) curve to this value as in Figure 2.8 conveniently 

allows for many of the constants in Equation D.13 to be neglected, focusing instead on the 

functional dependence arising from 𝐻 and 𝑓. The dependence may be reduced to the following. 

 

 𝑆𝐿𝑃𝑐 ∝ 𝐻0𝐿(𝜉)𝑓
2𝜋𝑓𝜏

1 + (2𝜋𝑓𝜏)2
 G.1 

 

In order to make general assertions about this dependence without assuming MNP properties, it 

is possible to approximate the action of the Langevin function. Since operating at the maximum 

allowable field amplitude will tend to saturate MNPs that heat well, it can be approximated that 

𝐿(𝜉) → 1, only losing generality at the highest frequencies, where loss powers have already 

fallen below their maximum value. Additionally, consistent with the constraint being applied, a 

substitution can be made for 𝐻0 in terms of the 𝐻0𝑓 product:  

 

 𝐻0 =
5 × 109Am−1s−1

𝑓
→ 𝐻0 ∝

1

𝑓
 G.2 

 

The result is that, for this particular constraint, 𝑆𝐿𝑃𝑐 is proportional to Im(𝜒̃). 

 

 𝑆𝐿𝑃𝑐 ∝
2𝜋𝑓𝜏

1 + (2𝜋𝑓𝜏)2
 G.3 

 

As discussed in Section 2.3, this function will be maximized by selecting MNPs such that the 

timescale of stochastic reversal corresponds to the frequency of the applied field. This dictates 

the approach taken to imagine sets of MNPs with distinctly different optimal driving conditions 

in the context of linear response theory shown in Figure 2.8(a).  
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An analogous analysis can be made of the results of dynamic hysteresis modeling. This is a 

numerical model without closed form analytical solutions, but we can momentarily circumvent 

this by defining a numerical function for the area of a hysteresis loop, 𝐴 = 𝐴(𝜉, 𝜎, 𝑓). Equation 

E.21 relates 𝐴 to SLP. Just as in the case of linear response theory, considering selectivity allows 

for normalization of 𝑆𝐿𝑃𝑐 to some maximum value that causes constants to cancel.   

 

 𝑆𝐿𝑃𝑐 ∝ 𝐴(𝜉, 𝜎, 𝑓)𝑓 G.4 

 

While the curves for 𝐴 do not have an analytical form, they do have a shape that can be readily 

interpreted approximately. They are rounded step functions. Figure G.1(a) shows curves for 𝐴 

assuming constant 𝜎 = 40 for two frequencies. Figure G.1(b)-(c) shows how these curves are less 

sensitive to distributions in 𝜎 than distributions in 𝐻𝑘, an important point for materials design. 

 

 
Figure G.1 (a) Area of hysteresis loops produced by a dynamic hysteresis model for uniaxial 

easy aligned MNPs as described in Appendix E for 50kHz and 500kHz assuming 𝜎 = 40. This 

value of 𝜎 ensures that the MNPs are in the “ferromagnetic” regime at both frequencies. (b) The 

influence of assuming a Gaussian distribution of values in 𝜎 is shown. The effect is not very 

pronounced since 𝜎 does not play the same role as in linear response theory. (c) The effect of 

considering Gaussian distributions in 𝐻𝑘 with comparable standard deviations is far more 

marked, offering a possible explanation for why the onset of plateaus in SLE vs 𝐻0 tend to be 

more gradual experimentally than is predicted in dynamic hysteresis.  

 

A substitution for 𝜉 can be made that incorporates the 𝐻0𝑓 product constraint in an intuitive way: 

 

 𝜉 =
𝜇0𝑚 (5 × 109A m−1s−1)

𝑘𝐵𝑇𝑓
= 2𝜎

 (5 × 109A m−1s−1)

𝐻𝑘𝑓
 G.5 

 

For maximizing SLPs, 𝐻𝑘 is less important than the effective coercive field 𝐻𝑐 of the squarelike 

loops, where the onset of the plateau occurs. For 𝜎 = 40, the 𝐴 versus 𝐻 curves are relatively 

independent of frequency, an observation consistent with the experimental results in Section 4.7. 

The apparent 𝐻𝑐 can be related back to 𝐻𝑘 as some fraction of its value determined from Figure 

G.1(a).  
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 𝐻𝑐 ≈ 0.6𝐻𝑘 → 𝐻𝑘 ≈
𝐻𝑐

0.6
 G.6 

 

For a response favored at 50kHz, the maximum allowable amplitude should be approximately 

equal to 𝐻𝑐: 

 

 𝐻𝑐 ≈
5 × 109A m−1s−1

50kHz
= 100kA m−1 G.7 

 

And this indicates how 𝜉 should be scaled 

 

 𝜉 = 2𝜎
0.6 (5 × 109A m−1s−1)

(1 × 105𝐴𝑚)𝑓
= 2𝜎

30kHz

𝑓
 G.8 

 

The same can be done for a response favored at 500kHz. 

 

 𝐻𝑐 ≈
5 × 109A m−1s−1

500kHz
= 10kA m−1 G.9 

 

 𝜉 = 2𝜎
0.6 (5 × 109A m−1s−1)

(1 × 104𝐴𝑚)𝑓
= 2𝜎

300kHz

𝑓
 G.10 

 

Figure 2.8 represents idealized optimization subject to a realistic constraint for both linear 

response theory and dynamic hysteresis models. Producing maxima for linear response theory 

unsurprisingly required “tuning” 𝜎. In contrast, dynamic hysteresis permitted the assumption of 

constant 𝜎, calling instead for appropriate “tuning” of 𝐻𝑘. 
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Appendix H Justifying the Magnetoquasistatic Approximation for AMF Setups 

Some confusion exists in the literature as to the nature of the fields that typically heat 

MNPs, with some authors going so far as to assert that their MNPs are being heated with “radio 

waves.” Throughout this document, it has been assumed, often tacitly, that it is more appropriate 

to consider the fields to which samples are exposed as magnetoquasistatic. For instance, this 

allowed the use of finite element simulations at magnetostatic conditions to be reasonably 

extrapolated to their operating frequency. A magnetoquasistatic approximation is appropriate 

when the displacement current term in Maxwell’s equations can be safely neglected, giving the 

field more the character of a magnetostatic field that happens to vary in time rather than the 

inherently electrodynamic character of a free space wave solution. There are several logical 

routes to justify this assumption for the setups described in this thesis. The following reasoning is 

based on Haus pp.71-74,
149

 and focuses on estimating the magnitude of the error field, 𝐻𝑒𝑟𝑟𝑜𝑟, 

which results from the neglecting the displacement current term.  

 

𝐻 will result primarily from the current density 𝐽, such that 

 

 ∇ × 𝐻⃑⃑ ≈ 𝐽  H.1 

 

Without treating the detailed geometry, it is possible to estimate the magnitude of 𝐻 as a function 

of current 𝐽 and ℓ, a characteristic length scale of the dimensions of the coil, such as diameter of 

one of the resonant tank circuits described in Chapter 3. The action of the curl can be 

approximated as 1/ℓ. 

 

 
𝐻

ℓ
≈ 𝐽   ⟹     𝐻 ≈ 𝐽ℓ H.2 

 

Estimating 𝐻 permits a prediction of the order of magnitude of the induced electric field 𝐸⃑ .  

 

 ∇ × 𝐸⃑ =
𝜕𝜇0𝐻⃑⃑ 

𝜕𝑡
    ⟹     

𝐸

ℓ
≈

𝜇0𝐻

𝜏
=

𝜇0𝐽ℓ

𝜏
 H.3 

 

Here, 𝜏 is a characteristic timescale that estimates the action of the partial derivative in time. It is 

now possible to estimate the magnitude of the error field that results from neglecting the time 

varying electric field. 

 

 ∇ × 𝐻⃑⃑ 𝑒𝑟𝑟𝑜𝑟 =
𝜕𝜖0𝐸⃑ 

𝜕𝑡
    ⟹     𝐻𝑒𝑟𝑟𝑜𝑟 ≈

𝜇0𝜖0𝐽ℓ
3

𝜏2
 H.4 

 

The absolute magnitude of 𝐻𝑒𝑟𝑟𝑜𝑟 is less useful for the purpose of assessing the quality of the 

approximation than a fractional error normalized to 𝐻, the magnetoquasistatic field. 

 

 
𝐻𝑒𝑟𝑟𝑜𝑟

𝐻
=

𝜇0𝜖0ℓ
2

𝜏2
 H.5 

 

Recalling that the speed of light in free space can be written in terms of 𝜇0 and 𝜖0,  
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 𝑐2 =
1

𝜇0𝜖0
 H.6 

 

Substituting into Equation H.5, 

 

 
𝐻𝑒𝑟𝑟𝑜𝑟

𝐻
= (

ℓ

𝑐𝜏
)
2

 H.7 

 

If the error is small, then 𝐻𝑒𝑟𝑟𝑜𝑟 𝐻⁄ ≪ 1, such that 

 

 
ℓ

𝑐
≪ 𝜏 H.8 

 

If the characteristic timescale is taken to be the frequency, 𝑓, the comparison can be made in 

terms of the wavelength of electromagnetic radiation in free space,  

 

 𝑓𝜆 = 𝑐    ⟹     
ℓ

𝜆
≪ 1 H.9 

 

For a stringent case, let 𝐿 be the diameter of the largest AMF coil setup represented in this thesis, 

~10cm, and assume a frequency of 10MHz, which is at least an order of magnitude larger than 

the typical operating frequencies.  

 

 
10−1 m ∗ 106 1 𝑠⁄

3 × 108 m s⁄
= 0.003̅ ≪ 1 H.10 

 

Clearly the use of the term “alternating magnetic field” is justified, though it should be noted that 

the magnetostatic simulations employed in this thesis do not account for proximity and skin 

effects, which do not originate from displacement current and can also significantly impact 

expected magnetic field profiles in some cases.  
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Appendix I The Magnetic Field Magnitude of a Gapped Toroidal Electromagnet 

Soft ferromagnetic flux paths with an air gap can be described as acting to focus 

magnetic flux into that gap, although this terminology is somewhat imprecise. Fortunately, the 

simple case of a gapped toroid lends itself to straightforward analysis and can provide a more 

complete sense of how this geometry and similar gapped flux paths can lead to strong fields in 

the gap. A magnetostatic toroidal coil with a small gap of width 𝑤 and 𝑁 turns of a wire carrying 

a current 𝐼 is shown in Figure I.1.  

 

 
Figure I.1 A sketch of the basic geometry for a gapped toroidal electromagnet with 𝑁 turns is 

shown. 𝑟 corresponds to the radius of a circular Amperian loop passing through the core and the 

gap. 𝑤 represents the width of the gap.  

 

The Amperian loop around the circumference of a circular path of radius 𝑟 that falls 

within the core relates the magnetic field 𝐻 to the current 𝐼, 

 

 ∮ 𝐻⃑⃑ ∙ 𝑑𝑙⃑⃑  ⃑ = 𝑁𝐼 ≈ 𝐻𝑔𝑤 + 𝐻𝑐(2𝜋𝑟 − 𝑤) I.1 

 

Here, 𝐻𝑔 is the magnitude of the magnetic field in the gap and 𝐻𝑐 is the magnitude of the field in 

the core, both assumed to be tangential and vary only with 𝑟, which is the case for an intact 

toroid. Magnetic flux is locally conserved, and in the limit of small gap width relative to the 

cross sectional area of the core 𝐴, the fringing behavior of the field in the gap may be neglected 

such that a statement of flux conservation reads 

 

 𝐵𝑔𝐴 ≈ 𝐵𝑐𝐴 I.2 

 

 𝐴𝜇0𝐻𝑔 = 𝐴𝜇𝑐𝐻𝑐 I.3 

 

Here, 𝜇0 and 𝜇𝑐 are the permeability of free space and the core, respectively. Likewise, 𝐵𝑔and 𝐵𝑐 

are the magnetic flux density in the gap and the core, respectively. This allows for the 

substitution  
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𝜇0

𝜇𝑐
𝐻𝑔 =

1

𝜇𝑟
𝐻𝑔 = 𝐻𝑐 I.4 

 

Where relative permeability 𝜇𝑟 ≡
𝜇𝑐

𝜇0
⁄ . Substituting Equation I.4 into I.1 and solving for 𝐻𝑔 

yields 

 

 
𝐻𝑔 =

𝑁𝐼

𝑤 [1 +
1
𝜇𝑟

(
2𝜋𝑟
𝑤 − 1)]

≈
𝑁𝐼

𝑤
 

I.5 

 

In the limit 𝜇𝑟 ≫ (
2𝜋𝑟

𝑤
− 1) the dependence reduces to the simple approximation shown in 

Equation 3.1. For perspective, 𝜇𝑟 ≈ 2000 for Ferroxcube 3F3, and a typical electromagnet of the 

kind used for calorimetry would have 𝑟 ≈ 2.5cm and 𝑤 = 0.75cm. Since 2000 ≫ 20, the 

approximation is clearly applicable.  
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Appendix J Core Selection for Electromagnets 

One significant decision involved in engineering the electromagnets described in Section 

3.3 is core material selection. Identifying a material that dissipates minimal waste heat under the 

required magnetic flux conditions is not only necessary to mitigate the need for active cooling, 

but more fundamentally is required to justify the use an electromagnet with a core to produce an 

alternating magnetic field, as indicated by Figure 3.7(a). Numerous core materials and 

geometries were investigated, with only a small subset of these documented in this thesis. Of the 

metal powder core materials tested, only Mag. Inc. MPP material was suitable for operation at 

high fluxes, and even it was limited to a frequency of 15kHz. Other metal powder materials and 

metal glass cores from several suppliers (e.g. Metglas, Micrometals, Mag. Inc.) were eliminated 

from consideration based on obvious deficiencies such as reaching only limited amplitudes or 

producing so much waste heat they melted plastic surfaces beneath them. Ferrite ceramic 

materials proved most effective and relevant for meeting the 𝐻0𝑓 limit discussed in Section 1.3. 

Comparisons of various core materials from several manufacturers are made in literature,
82

 

though these comparisons are typically focused on energy transfer or storage capability at higher 

frequencies than the range of greatest interest.  

Manufacturers of toroidal ferrite ceramic cores include Epcos, Ferroxcube, and Fair-Rite. 

To assess the available options, a methodical comparison of these materials was undertaken. 

Toroidal cores with similar dimensions were procured and cut with a diamond saw to incorporate 

a 7.5mm gap. Two kinds of measurements were made to compare their performance: IR 

thermography of the cores during operation at comparable fluxes and effective resistance 

measurements. Figure J.1 summarizes the result. Both types of measurements indicate that the 

best choice from the options tested is Epcos N87, which exhibits an effective resistance 

approximately half of the next best material, Ferroxcube 3F3. (Figure J.1(d)).  

Although the gapped toroidal geometries served well as electromagnets for the purposes 

of the experiments described in this thesis, improved geometries are possible. For instance 

electromagnets made from two E-cores modified to include a gap (Figure J.2) may offer a 

superior alternative for two main reasons: 

1. If an electromagnet is limited by saturation, then ideally the region of highest flux 

should be near the gap. This will ensure that the highest field magnitudes are reached.  

2. A well designed flux path that splits the flux introduced in the center region between 

two symmetric return paths could, in principle, operate at a lower flux density in the 

majority of the material comprising the core, reducing dissipated power in the case of 

AMFs.  

A logical extension would be to use a sufficiently large pot core geometry that is gapped in the 

center. However, it is difficult to find such cores with suitable dimensions and accessibility of 

the gap is a necessary feature to maintain in order to easily perform experiments.  
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Figure J.1 (a) and (b) Change in temperature versus time is shown for uncooled cores with 

7.5mm gaps operated at the indicated conditions in the gap, as determined from IR 

thermography. (Part numbers: Ferroxcube TX51/32/19-3F3, Ferroxcube TX51/32/19-3C95, 

Epcos B64290L82X87, Fair-Rite 5978003801.) (c) A schematic of the series resonant circuit 

powering the electromagnet is shown for reference. Equivalent series resistance of the 

electromagnet 𝑅𝑒𝑚 is determined from the voltage drop across the sense resistor and known ratio 

of the transformer. (d) 𝑅𝑒𝑚 is plotted as a function of alternating magnetic field amplitude in the 

gap for various frequencies for the best performing ferrites.  

 

 
Figure J.2 A magnetostatic finite element simulation of an E-core electromagnet is shown, 

assuming a current of 20A and the material properties of Epcos N87. Note the highly symmetric 

distribution of flux in the core and refer to Figure 3.3(a) for a comparison with a gapped toroid. 
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Appendix K Reasoning for Influence of Coercivity on Expected Interparticle Interactions 

Part of the reasoning that suggests the favorability of higher coercivity materials for a 

preliminary demonstration of magnetothermal multiplexing relates to the expected dependence 

of interparticle interactions on coercivity. Consider two kinds of MNPs with different coercivity 

that are constrained to have the same 𝜎 values, a supposition fully consistent with Section 2.8 

and Appendix G. The energy of magnetic dipole interactions between MNPs is proportional to 

the square of their moments, such that the ratio of the new energy of interaction 𝑈′ and old 

energy of interaction 𝑈 can be related to the ratio of the new and old individual MNP moments 

𝑚′ and 𝑚, respectively. 

 

 
𝑈′

𝑈
= (

𝑚′

𝑚
)

2

 K.1 

 

𝑚 will be proportional to magnetized volume 𝑉𝑚, which can be expressed in terms of 𝜎 by 

rearranging the definition of 𝜎 (Equation 2.13).  

 

 𝑉𝑚 =
𝜎𝑘𝐵𝑇

𝐾𝑒𝑓𝑓
 K.2 

 

Using this equation and the relationship between magnetization and moment for a uniformly 

magnetized sphere, 𝑚 = 𝑀𝑠𝑉𝑚, and recalling that all quantities kept constant will vanish, 

Equation K.1 can be rewritten. 

 

 
𝑈′

𝑈
= (

𝑀𝑠′𝑉𝑚′

𝑀𝑠𝑉𝑚
)

2

= (
𝑀′𝑠𝐾𝑒𝑓𝑓

𝐾′𝑒𝑓𝑓𝑀𝑠
)

2

 K.3 

 

From Equation 2.16, 

 

 𝐻𝑘 ≡
2𝐾𝑒𝑓𝑓

𝜇0𝑀𝑠
 K.4 

 

This allows Equation K.3 to be rewritten in terms of 𝐻𝑘 and 𝐻′𝑘 

 

 
𝑈′

𝑈
= (

𝐻𝑘

𝐻′𝑘
)
2

 K.5 

 

It would usually be inadvisable to conflate the ratio of anisotropy fields with the ratio of coercive 

fields in the dynamic hysteresis model, especially considering the disparate behavior of MNPs in 

the superparamagnetic and ferromagnetic regimes. Constraining 𝜎 to remain constant or 

approximately constant in the ferromagnetic regime represents a special case where this may be 

justified. Under these circumstances, the unperturbed state of the anisotropy barrier tends to trap 

moments and the instantaneous rate of reversal spikes when the effective barrier reaches some 

reduced value, as shown in Appendix G. (This is the origin of square-like loops.) Although the 

coercive field will often be considerably less than 𝐻𝑘, exactly the same barrier is being perturbed 
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in this thought experiment with constant 𝜎, just with a different scaling factor relating 𝐻 to 𝜉. An 

approximate correlation can therefore be drawn at high field amplitudes, where the hysteresis 

loops of both MNP types are square like: 

 

 
𝑈′

𝑈
≈ (

𝐻𝑐

𝐻′𝑐
)
2

 K.6 

 

This energy of interaction matters for at least two reasons: 

1. It will influence the tendency of the MNPs to aggregate and settle out of solution, with 

higher energies of interaction driving this behavior. 

 

2. Large interactions between MNPs can dominate reversal behavior rather than intrinsic 

anisotropy. Obviously this is an undesirable outcome when attempting to engineer MNPs 

capable of multiplexing that is not strongly dependent on factors such as concentration.  
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Appendix L Fitting Vibrating Sample Magnetometry Curves for MNP Moments 

Using a room temperature magnetometry technique on certain kinds of samples, it is 

possible to estimate the magnetic moment of the MNPs from the 𝑀 vs 𝐻 curve, even without 

knowing concentration. The suggested approach essentially consists of determining the MNP 

moment that fits the Langevin function to the low field susceptibility of the sample. The 

Langevin function is derived from a classical statistical mechanics treatment that considers only 

the Zeeman energy of moments that are able to assume any angle with respect to the field 

direction (Figure L.1). The result is as follows: 

 

 
𝑀

𝑀𝑠
= 𝐿(𝜉) = coth 𝜉 −

1

𝜉
 L.1 

 

Where 

 

 𝜉 ≡
𝜇0𝑚𝐻

𝑘𝐵𝑇
 L.2 

 

 
Figure L.1 The Langevin function is shown with its linear fit in the limit 𝜉 → 0, along with the 

hyperbolic tangent function.  

 

Real MNPs exhibit anisotropy, so the Langevin function is almost never a good fit for an 

entire M vs H curve. Convergence is expected only in the limit of low field amplitudes for 

randomly oriented anisotropic MNPs.
68

 This fit is expected to work well for samples that exhibit 

the following characteristics: 

 

1) Dilute and well suspended  
This minimizes interparticle interactions. If the sample is too dilute, the signal will be 

small, so a balance must be struck. A typical example is 100uL of 1-2mg/mL Fe for 

VSM. 

 

2) Free to physically rotate 
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Fitting the linear susceptibility assumes equilibrium. To conduct a measurement in a 

reasonable timeframe without observing hysteresis, it is best to choose a system known to 

equilibrate through physical rotation more rapidly than the several seconds required for 

measurement at each point along the curve. 

 

3) Reasonably monodisperse  
It is possible to integrate over a known distribution of volumes derived from TEM, but 

generally the approach being describes is used to produce a rough estimate that will be 

most accurate with narrow size distributions. 

 

The 𝑀 vs 𝐻 curve should be normalized to its saturation value, producing an 𝑀 𝑀𝑠⁄  vs. 𝐻 curve. 

Note that this curve is independent of concentration, since normalizing the sample moment to its 

observed saturation value produces the same curve. 

 

The next step is to fit the linear portion of the curve in the vicinity of zero field magnitude. If the 

curve is not linear, a higher resolution of points may be needed in the vicinity of zero field, 

especially for MNPs with large moments. If hysteresis is evident, it is not appropriate to apply 

this fitting technique and it may be worthwhile to consider diluting the sample or pursing 

strategies that improve suspension of the MNPs.  

 

An estimate of the moment is given by the following equation: 

 

 𝑚 =
3𝑘𝐵𝑇

𝜇0
(
𝑑𝑀/𝑀𝑠

𝑑𝐻
)
𝐻→0

 L.3 

 

To justify this assertion, it is possible to find an expression for 𝜒 both in terms of a fit to the 

linear portion of the Langevin function and in terms of experimentally measured quantities, and 

to set these expressions for 𝜒 equal to each other.  

 

Consider the approximate form of the Langevin function in the limit of zero field amplitude, 

where it is linear.  

 

 lim
𝜉→0

𝐿(𝜉) =
𝜉

3
      ∴       lim

𝜉→0

𝑑𝐿(𝜉)

𝑑𝜉
=

1

3
 L.4 

 

To find 𝜒 in terms of 𝑚, the chain rule can be used to expand the derivative that defines 𝜒. 

 

 𝜒 =
𝑑𝑀

𝑑𝐻
= (

𝑑𝑀

𝑑𝜉
) (

𝑑𝜉

𝑑𝐻
) = (𝑀𝑠

𝑑𝐿(𝜉)

𝑑𝜉
) (

𝜇0𝑚

𝑘𝐵𝑇
) = (

𝑀𝑠

3
) (

𝜇0𝑚

𝑘𝐵𝑇
) L.5 

 

Various experimental methods permit experimental observation of 𝑀 vs 𝐻, from which 𝜒 can be 

readily determined.  

 

 𝜒 = (
𝑑𝑀

𝑑𝐻
)
𝐻→0

= 𝑀𝑠 (
𝑑𝑀/𝑀𝑠

𝑑𝐻
)
𝐻→0

 L.6 
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Equating the two expressions for 𝜒, 

 

 𝑀𝑠 (
𝑑𝑀/𝑀𝑠

𝑑𝐻
)
𝐻→0

= 𝑀𝑠

𝜇0𝑚

3𝑘𝐵𝑇
 L.7 

 

Solving for 𝑚 produces Equation L.3. 

Occasionally is it useful to translate the magnitude of the moment into a physical 

dimension of a uniformly magnetized object with the bulk saturation magnetization. This 

facilitates comparison to expected moment magnitude. Since the bulk saturation magnetization 

value should be greater than or equal to the magnetization of MNPs, this dimension derived from 

the moment should be less than or equal to physical dimensions measured by e.g. TEM.  

 

An example employed during this thesis work for spherical iron oxide MNPs is “magnetic 

diameter.” For a uniformly magnetized object with bulk saturation magnetization, 

 

 𝑚 = 𝑀𝑠,𝑏𝑢𝑙𝑘𝑉𝑚 L.8 

 

Here, 𝑉𝑚 is the magnetized volume, 𝑀𝑠,𝑏𝑢𝑙𝑘 is the bulk saturation magnetization. (E.g., for 

magnetite, ~92 Am2kg−1 per mass Fe3O4 or ~127 Am2kg−1 per mass Fe at 290K.)
54

 For a 

sphere, 

 

 𝑑𝑚 = √
6𝑉𝑚
𝜋

3

 L.9 

 

Solving Equation L.8 for 𝑉𝑚 and substituting Equation L.3 for 𝑚,  

 

 𝑑𝑚 = √
6𝑉𝑚
𝜋

3

= [
18𝑘𝐵𝑇

𝜋𝑀𝑠,𝑏𝑢𝑙𝑘𝜇0
(
𝑑𝑀/𝑀𝑠

𝑑𝐻
)
𝐻→0

]

1
3

 L.10 
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Appendix M Details of AMF Calorimetry 

The description of the techniques used for AMF calorimetry in Sections 4.4 and 4.5 is 

intended to offer an overview with sufficient detail to reproduce these methods. Additional 

explanation of some subtleties exceeded the scope of the main text, yet might benefit the keen 

reader.  

1. Some infrared temperature probes require a correction factor when fitting the slope. 

Careful study of the data in Figure 4.4(a) will reveal small discreet jumps in the temperature 

versus time curve. These are not physical, but rather are artifacts of the temperature probe that 

consistently occur at particular temperature values. Perhaps they result from rounding errors 

within a digital lookup table or some other mysterious source. Regardless of their origin, they 

can alter the apparent 𝑑𝑇 𝑑𝑡⁄  slope, particularly if the change in temperature is sufficiently small 

or the duration of measurement is sufficiently short that a linear fit would not transect multiple 

jumps. Fortunately, it is straightforward to correct the slope for these jumps.  

Let 𝛿𝑇 be the size of the jump and Δ𝑇 be the temperature difference between jumps (Figure 

M.1). If the slope were fit within part of a curve that did not transect any of these jumps, the 

change in temperature would be underestimated in the numerator. A correction factor 𝛼 that 

multiplies the apparent slope to arrive at the true slope would be written as follows 

 

 𝛼 =
Δ𝑇 + 𝛿𝑇

Δ𝑇
 M.1 

 

This assumes that the temperature probe is calibrated to match the true temperature on average. 

In practice, Δ𝑇 and 𝛿𝑇 can be observed either from the data itself or control trials with slow 

heating. 𝛼 can be calculated to have a value of about 1.10. 

 

 
Figure M.1 A sketch illustrates the discreet temperature jumps that are measurement artifacts 

associated with the infrared temperature probe used for liquid AMF calorimetry samples. The 

scale of the jumps has been exaggerated for clarity.  

 

2. Differential scanning calorimetry can be used to determine the specific heat of solid 

samples. 

A necessary step in performing calorimetry measurements on solid samples, particularly 

composites comprised of materials without well-known reference values, is to determine specific 

heat. One possible method to do this makes use of differential scanning calorimetry (DSC), 
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which should not be confused with AMF calorimetry. (The term “calorimetry” simply implies 

that a heat flow is being measured.) In the case of DSC, a sample and an empty sample holder 

are scanned through a temperature curve at constant rate. The difference in heat flow between the 

empty holder and the holder with the sample is measured. DSC is perhaps most often used to 

precisely observe the onset of phase transitions, but it is also possible to measure specific heat.
150

  

 This can be accomplished by measuring heat flow for a sample of the material of interest 

with known mass as well as a reference sample, such as sapphire. An example specific heat 

versus temperature curve determined by this method is shown in Figure M.2. A suitable 

reference should have slowly varying and well characterized specific heat versus temperature 

characteristics. For each case, 

 

 (
𝑑𝑄

𝑑𝑡
)
𝑠𝑎𝑚𝑝𝑙𝑒

= 𝑚𝑠𝑎𝑚𝑝𝑙𝑒 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 (
𝑑𝑇

𝑑𝑡
)
𝑠𝑎𝑚𝑝𝑙𝑒

 M.2 

 

And 

 

 (
𝑑𝑄

𝑑𝑡
)
𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒

= 𝑚𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒  𝐶𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒 (
𝑑𝑇

𝑑𝑡
)
𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒

 M.3 

 
𝑑𝑄

𝑑𝑡
 is heat flow, m is mass, C is specific heat, and 

𝑑𝑇

𝑑𝑡
 is the preset temperature ramp rate. 

Subscripts indicate the relevant sample or standard. Since both curves were measured with the 

same temperature ramp, a ratio between Equations M.2 and M.3 causes the 
𝑑𝑇

𝑑𝑡
 to cancel, leaving 

 

 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 =  𝐶𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒

(
𝑑𝑄
𝑑𝑡

)
𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒 

(
𝑑𝑄
𝑑𝑡

)
𝑠𝑎𝑝𝑝ℎ𝑖𝑟𝑒

𝑚𝑠𝑎𝑚𝑝𝑙𝑒

 M.4 

 
 

Figure M.2 Specific heat calculated from DSC data is shown for a set of 16 samples of shape 

memory composites. The bold line represents the average, and the shaded area represents ± one 

standard deviation. For the purpose of calculating SLP from AMF calorimetry, the average 

specific was used and assumed to remain approximately constant over the measured temperature 

range.   
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Appendix N Solving Bulk Heat Transport Equations for a Heat Dissipating Sphere 

In order to clarify the way in which nanoscale heating effects represent a significant 

departure from the expectations of bulk heat transport equations, it is useful to treat the simple 

case of an idealized sphere uniformly dissipating heat into its surroundings. (See Figure 6.1.) 

 

 𝐶𝑝

𝜕𝑇

𝜕𝑡
= −∇⃑⃑ ∙ 𝐽𝑄⃑⃑  ⃑ N.1 

 

Here, 𝑇 is temperature, 𝑡 is time, 𝐶𝑝 is specific heat at constant pressure, and 𝐽𝑄⃑⃑  ⃑ is heat flux. Heat 

flux can be expressed in terms of thermal conductivity 𝐾 and temperature gradient ∇⃑⃑ 𝑇 

 

 𝐽𝑄⃑⃑  ⃑ = −𝐾∇⃑⃑ 𝑇 N.2 

 

Substituting, 

 
𝜕𝑇

𝜕𝑡
=  

𝐾

𝐶𝑝
∇2𝑇 N.3 

 

Assuming a steady state solution, which is predicted to be a reasonable assumption for 

timescales longer than a few hundred nanoseconds,
110

 this reduces to Laplace’s equation. 

Spherical symmetry of the idealized particle will produce a spherically symmetric solution, 

𝑇 = 𝑇(𝑟), allowing for further simplification.  

 

 ∇2𝑇 =
1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) = 0 N.4 

 

This is a second order differential equation with the solution 

 

 𝑇(𝑟) =
𝐴

𝑟
+ 𝐵 N.5 

 

Here, 𝐴 and 𝐵 are constants determined by the application of appropriate boundary conditions. In 

the limit of 𝑟 → ∞, 𝑇 → 𝐵. For an idealized isolated particle, the solution would not be expected 

to heat far away, such that B can be set equal to the far field temperature and the equation can be 

rewritten in terms of the change in temperature, ∆𝑇.  

 

 ∆𝑇(𝑟) =
𝐴

𝑟
 N.6 

 

𝐴 can be found by setting the heat flux at the surface of the sphere equal to the average heat 

dissipated per MNP, as estimated by calorimetry measurements and physical dimensions. 

Applying constant temperature conditions at the surface of the nanoparticle is inadvisable 

because it does not take the magnitude of the rate dissipated energy per particle into account. 

 

Evaluating 𝐽𝑄⃑⃑  ⃑ at the boundary, 
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 𝐽𝑄⃑⃑  ⃑ = −𝐾∇⃑⃑ 𝑇|
𝑟=𝑅

=
𝐾𝐴

𝑅2
𝑟̂ N.7 

 

The integrated heat flux over surface of the spherical boundary should not exceed the population 

averaged power dissipation of each nanoparticle (individual particle loss power, IPLP) as 

estimated by bulk measurements. 

 

 𝐽𝑄4𝜋𝑅2 =
4𝜋

3
𝑅3 ∗ (SLP) ∗ 𝜌𝑚 = IPLP N.8 

 

Time and population averaged IPLP, can estimated from bulk SLP measurements in combination 

with information about the physical diameter of the particles 𝑑 in nanometers as follows. 

 

 IPLP ≈ SLP ∗ (
5.25gFe3O4

cm3 Fe3O4
) (

0.724gFe

1 g Fe3O4
) (

1𝑐𝑚

107𝑛𝑚
)
3

∗
𝜋

6
𝑑3 N.9 

 

Equations N.7 and N.8 can be combined to solve for 𝐴 in terms of known quantities. Substituting 

back into Equation N.6, for 𝑟 ≥ 𝑅 (i.e. outside the nanoparticle),  

 

 ∆𝑇(𝑟) =
𝑅3(SLP)𝜌𝑚

3𝐾𝑟
=

IPLP

4𝜋𝐾𝑟
 N.10 

 

As discussed at length in Section 6.1, substituting realistic values predicts that the temperature at 

the surface of a nanoparticle should not differ significantly from its surroundings.  
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Appendix O Explaining Clustering Behavior of MNPs Binding to Amyloid   Aggregates 

The content of this appendix is closely based on the supplementary materials of 

Loynachan et al.
133

 In that work, it was observed that MNPs tended to occur in clusters when 

bound to A aggregates. This raised the question of whether these clusters form before binding 

to the A, casting doubt on their stability in solution, or whether the clusters form during the 

process of binding to the A. While DLS data contradicted the hypothesis that the magnetic 

nanoparticles in this study spontaneously form large clusters in solution, a simple model was 

developed to explain why superparamagnetic nanoparticles might cluster upon binding. The 

topic is illustrative of the considerations that go into working with MNPs in these kinds of 

systems, but sufficiently tangential to the points in the main text that it was included in the form 

of an appendix. 

The model begins by assuming a two dimensional grid of available binding sites, 

arranged in a pattern originating from a thresholded TEM A fibrils, as shown in Figure O.1(a). 

To prevent overlapping particles, the grid spacing was taken to be the physical diameter 𝑑𝑝ℎ𝑦𝑠 of 

the nanoparticles, 22.0nm (±0.7), measured by TEM. A bound MNP has both a position on the 

grid and an orientation of its moment. The Zeeman energy of a trial dipole 𝑚⃑⃑ 𝑡 in the field of a 

source dipole 𝑚⃑⃑ 𝑠 can be written as follows: 

 

 𝑈𝑍𝑒𝑒𝑚𝑎𝑛 =
−𝜇0

4𝜋
{𝑚⃑⃑ 𝑡 ∙ [

3(𝑚⃑⃑ 𝑠 ∙ 𝑟 )𝑟 

|𝑟 |5
−

𝑚⃑⃑ 𝑠
|𝑟 |3

]} O.1 

 

Where 𝜇0 is the permeability of free space (which is essentially unchanged in water) and 

𝑟  is the position of the trial dipole relative to 𝑚⃑⃑ 𝑠. Relative position 𝑟  is expressible in terms of 

the grid positions of the trial dipole 𝑟 𝑡and source dipole 𝑟 𝑠: 

 

 𝑟 = 𝑟 𝑡 − 𝑟 𝑠 O.2 

 

If the moments of the source and trial dipoles are both equal to |𝑚⃑⃑ | and the trial dipole is 

assumed to be locally aligned with the source dipole’s field, its minimal energy configuration, 

then equation 1 reduces to: 

 

 𝑈𝑍𝑒𝑒𝑚𝑎𝑛 =
−𝜇0𝑚

2

4𝜋
[
3(𝑚̂𝑠 ∙ 𝑟̂) − 1

|𝑟 |3
] O.3 

 

In this case, the magnitude of the MNP moments could be estimated in the manner 

described in Appendix L. The magnetic diameter 𝑑𝑚 of the particles used for all data shown in 

the main text was found to be smaller than the physical diameter, or approximately 18.8nm, 

assuming a saturation magnetization of magnetite, 4.7 × 105𝐴𝑚−1. Dividing 𝑈𝑍𝑒𝑒𝑚𝑎𝑛 by the 

ambient thermal energy and converting the units of distance on the grid into meters suggests a 

convenient unitless prefactor 𝜍.  
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𝑈𝑍𝑒𝑒𝑚𝑎𝑛

𝑘𝐵𝑇
=

−𝜇0𝑀𝑠
2

4𝜋𝑘𝐵𝑇
(
𝜋𝑑𝑚

3

6
)

2

(
1 grid unit

𝑑𝑝ℎ𝑦𝑠
)

3

 [
3(𝑚̂𝑠 ∙ 𝑟̂) − 1

|𝑟 |3
] O.4 

 

 𝜍 =
𝜇0𝑀𝑠

2

4𝜋𝑘𝐵𝑇
(
𝜋𝑑𝑚

3

6
)

2

(
1 grid unit

𝑑𝑝ℎ𝑦𝑠
)

3

 O.5 

 

Suppose that an ensemble of MNPs is built up one by one, with particles remaining 

irreversibly bound to the sites where they are added. These MNPs could be added randomly to 

available sites, as in the example shown in Figure O.1(b). Alternatively, the pseudorandom 

addition of MNPs can be weighted according to a scheme motivated by statistical mechanics in 

order to take into account the relative influence of magnetic interaction versus thermal 

fluctuation. The total energy of a test dipole at any grid site 𝑈𝑖,𝑗 is just a sum of the dipole 

interactions with all the particles presently on the grid. If the weighting scheme assumed for the 

addition of particles follows a Maxwell distribution, then the probability of adding a new particle 

to an available site 𝑝𝑖,𝑗 is given by: 

 

 
𝑝𝑖,𝑗 =

exp (−
𝑈𝑖,𝑗

𝑘𝐵𝑇
)

𝑄
 O.6 

 

Where 𝑄 is a partition function. 

 

 𝑄 = ∑ exp (−
𝑈𝑖,𝑗

𝑘𝐵𝑇
)

𝑎𝑙𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖,𝑗

𝑖,𝑗

 
O.7 

 

Figures O.1(b), (d), and (f) show that the energy of magnetic interaction predicted for 

sites close to particles on the grid is attractive and of comparable or larger magnitude to the 

ambient thermal energy. (I.e., for sites close to particles, 𝑈𝑖,𝑗 𝑘𝐵𝑇⁄ ≤ −1).  

One additional nuance to consider is the influence of the particles upon the orientation of 

the moments of their neighbors. Neighbors will exert torques upon each other and thereby 

influence the overall profile of the magnetic field. In a real system, one can imagine that the 

orientation of moments would fluctuate, but exhibit correlation with the local field. Rather than 

account for this complexity directly, it is possible to consider two comparatively simple limiting 

cases: randomized moments with no correlation and fully correlated moments.  

In order to consider the second case, an algorithm was employed that began by randomly 

sampling different moment orientations to coarsely determine a minimal energy configuration. 

After this, the moments are finely relaxed into alignment with the local field. Both the 

uncorrelated and fully correlated cases lead to clustering when magnetic interactions are taken 

into account, as shown in Figures O.1(c) and (e). Assuming interaction with uncorrelated and 

randomized moments, a single cluster was typically formed, and hence a lower median 
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interparticle distance was predicted (Figure O.1(c)). In the case of fully correlated moments, the 

formation of chains was predicted, demonstrated quantitatively by comparing the distance of 

each particle from the line defined by the two particles previously added, or “chain departure 

distance” (Figure O.1(e)). That these chains tend to form horizontally and vertically is likely an 

artifact, a consequence of the fact that the mesh is rectangular and the distance between grid 

points is minimal in these directions. The correlated moments often form multiple clusters 

because the superposition of dipole fields from a chain of aligned dipoles results in large 

magnitudes at the ends, and comparatively small magnitudes near the middle of the chain. This, 

in combination with the possibility that a site at the end of an existing chain might be unavailable 

for binding, provides an explanation for the frequent occurrence of multiple clusters in the 

simulations with correlated moments.  

It should be emphasized that this model is highly simplified in order to illustrate that 

magnetic interaction could plausibly account for clustering behavior of ideally 

superparamagnetic particles as they bind to A, even though they are stably suspended in 

solution. Though relevant features are physically motivated, it is not intended to be fully 

rigorous. For instance, the presence of binding sites would be determined by protein structure, 

rather than assuming the whole A surface is available. Binding would likely be reversible, 

which could lead to additional mechanisms for clustering. A more computationally intensive 

approach might model MNPs as undergoing simultaneous 3D weighted random walk in solution, 

with each step influenced by both binding and magnetic interactions.  
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Figure O.1 (a) A TEM image and the corresponding grid (inset), produced by setting thresholds 

for Aβ fibrils. White pixels denote available binding sites. (b) A representative example of a 

contour plot of the energy of a test dipole locally aligned with the field and normalized to 

ambient thermal energy is shown for a distribution of pseudorandomly placed MNPs on the grid 

in (a). (c) A histogram illustrates the distribution of interparticle distances (inset graphic: black 

lines connecting the MNPs shown with red circles) for MNPs placed onto the Aβ grid with 

different kinds of interaction. Inset: The histogram with 22 nm bins resolves the distribution of 

distances < 300 nm. (d) A representative contour plot illustrates clustering of MNPs on an Aβ 

grid in the presence of magnetic interaction with uncorrelated moments. (e) A histogram 

illustrating the distribution of chain-departure distances (inset graphic: black arrow orthogonally 

connecting an MNP to a dashed line between MNPs forming a chain) for MNPs with different 

types of interaction. Taking a local correlation between moments in the MNP ensemble into 

account yields a strong preference for the formation of chains. Inset: The histogram with 22 nm 

bins resolves the distribution of distances < 220 nm. (f) An example contour plot similar to the 

ones in (b) and (d) illustrates chain formation of MNPs on Aβ grid in the presence of magnetic 

interaction with moments fully correlated with the local magnetic field. From Loynachan et al.
133
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