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ABSTRACT

Human obesity is a world-wide health crisis that promotes insulin resistance and type 2 diabetes. Obesity
increases intracellular free fatty acid concentrations in peripheral tissues, particularly the liver, which
disrupts molecular mechanisms that maintain normal glycemia in response to fasting and feeding. The
progression towards outright pathology in response to obesity is a highly complex process that involves
coordinated dysregulation of a variety of molecular processes across multiple regulatory levels. The goal
of this thesis was to apply a quantitative, multi-omic systems biology approach to the study of obesity-
induce hepatic insulin resistance.

We fed male C57BL/6J mice high-fat diets (HFD) to induce obesity and insulin resistance. In the
first presented study, our group collected datasets to profile the hepatic epigenomes, transcriptomes,
proteomes, and metabolomes of chow diet (CD) control and HFD-fed mice. I extended and applied an
established computational modeling algorithm, namely the prize-collecting Steiner forest (PCSF), to
simultaneously integrate these molecular data with protein-protein and protein-metabolite interactions
into a tractable network model of hepatic dysregulation. This model uncovered a variety of dysregulated
pathways and processes, some of which are not well-established aspects of insulin resistance. We further
tested and validated some of these model predictions, finding that HFD induces serious architectural
defects in the liver and enhances hepatocyte apoptosis.

In the next study, we focused more specifically on hepatic transcription. We fed mice short and
long-term HFDs and treated them with the type 2 diabetes drug metformin. Compared to non-treated CD
controls, diet exerted the strongest effect on transcription, progressively inducing changes as HFD
duration increased. We additionally stimulated mice with insulin and collected temporal transcriptomic
profiles. We found that long-term HFD almost completely blunted normal insulin-induced transcriptional
changes, but also found a small set of genes that are specifically insulin-responsive in HFD livers. We
further characterized one of these genes and provided evidence supporting the notion that aspects of
hepatic insulin signaling are intact during insulin resistance.

In another study, we collected transcriptomic and epigenomic data from mice fed a calorie-
restricted (CR) diet. Interestingly, we found a small set of genes altered in the same direction by both CR
and HFD. We then used chromatin accessibility experiments to infer regulators associated with these gene
expression changes and found roles for PPARo and RXRa. We performed ChIP-Seq experiments for
these factors and treated mice and primary hepatocytes with a PPARa activator, uncovering a role for
PPARa in the regulation of anaerobic glycolysis. We also validated novel predicted target genes of
PPARa involved in glucose metabolism.

Finally, we profiled hepatic miRNAs in CD and HFD livers, finding that HFD progressively
alters their expression levels. We implemented an enrichment procedure and a network modeling
approach to analyze these data. We integrated additional mRNA and epigenetic data to infer miRNAs that
may play regulatory roles during insulin resistance. In total, this thesis presents a unique comprehensive
approach to the study of diet-induced hepatic insulin resistance that revealed new insights into pathology.
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CHAPTER 1

GENERAL INTRODUCTION

1.1. Obesity, insulin resistance, and type 2 diabetes

Human obesity is a major world-wide health crisis. Overweight and obesity are typically crudely
defined by the body mass index (BMI), which is calculated as an individual’s weight in
kilograms divided by his or her height in meters; individuals with BMIs in the range of 25-29.9
are generally considered overweight, while people with BMIs greater than 30 are considered
obese. According to the National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK) and the National Health and Nutrition Examination Survey (NHANES), more than two
in three adults in the United States are considered overweight or obese, with more than one in
three considered obese and one in twenty considered extremely obese (BMI > 40) [1, 2].
Between 2011 and 2014, the Centers for Disease Control and Prevention (CDC) estimated a 36%
prevalence of obesity in adults, with a higher prevalence in middle-aged and older adults versus
the young and a slightly higher prevalence in women (38.3%) compared to men (34.3%) [3].
According to the World Health Organization (WHO), 600 million people were considered obese
in 2014 [4]. The WHO also notes that most of the world’s population resides in countries where
overweight and obesity kill more people than complications associated with underweight.
Compared to normal weight individuals, obesity, particularly higher grade obesity (BMI > 35), is
significantly associated with higher overall all-cause mortality rates [5]. Thus, obesity is a highly

prevalent condition of significant public health concern across the world.

Obesity is associated with a number of metabolic complications, including metabolic syndrome
(characterized by insulin resistance, hyperglycemia, and hypertension), B-cell dysfunction, and,
ultimately, type 2 diabetes [6-8]. The CDC projects that the prevalence of type 2 diabetes in the
United States will increase to 25-28% by the year 2050 (from 14% in 2010) [9]. Increases in
adipose tissue mass as a consequence of obesity enhance the release of free fatty acids (FFAs),
proinflammatory cytokines, and hormones (e.g. adiponectin and leptin) from adipocytes and

other cell types (e.g. macrophages) [8, 10, 11]. These molecules can trigger inflammation in
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adipose and other tissues via, for example, activation of NF-kB and c-Jun NH,-terminal kinase
(JNK) signaling [12]. Released FFAs accumulate in peripheral tissues, including muscle and
liver, and modulate normal cellular signaling processes. This leads to insulin resistance in these
tissues [13]. Studies in humans have shown that accumulated intracellular FFAs are much
stronger determinants of peripheral tissue insulin resistance compared to complications induced

by circulating plasma lipids [14].

In healthy individuals, insulin release in response to feeding promotes increased uptake of
glucose in peripheral tissues (primarily skeletal muscle) and reduces gluconeogenesis in the liver
[15]. The onset of insulin resistance in response to obesity suppresses these mechanisms and
promotes hyperglycemia. Obesity and insulin resistance are associated with type 2 diabetes in the
presence of pancreatic -cell dysfunction, which can develop from cellular exhaustion due to
enhanced insulin demand, desensitization due to elevated glucose, and reduced cellular mass [16,
17]. The level of B-cell dysfunction is a major distinguishing feature between glucose intolerance
(also known as “prediabetes”) and pathologic diabetes [17]. First-degree relatives of type 2
diabetes patients, who are at greater risk for developing the disease themselves, show reduced [3-
cell function even when they are not hyperglycemic [18]. Genome-wide association studies
(GWAS) have uncovered many genetic loci linked to type 2 diabetes that, among those that map
most confidently to specific genes (e.g. TCF7L2, SLC30A8, CDKN2A, etc.), are involved in
Wat signaling and cell cycle regulation, suggestive of roles that maintain normal -cell function
[19]. Thus, the progression towards type 2 diabetes in response to obesity is a continuous process

that can be exacerbated by a variety of individual risk factors.

The majority of pharmacological agents used to treat type 2 diabetes aim to control
hyperglycemia [20, 21]. Along with lifestyle alteration and weight loss, metformin, a biguanide
that principally acts in the liver to lower hepatic glucose production, is typically prescribed as a
first-line treatment due to its safety and low risk of hypoglycemia [22-25]. Gastrointestinal side
effects, however, are common in patients taking metformin, particularly in the early stages of
treatment. Other classes of type 2 diabetes drugs include sulfonylureas, glinides, a-glucosidase
inhibitors, thiazolidinediones (TZDs), insulin, and dipeptidyl peptidase 4 (DPP-4) inhibitors [20,

21, 25]. Sulfonylureas, glinides, and insulin itself enhance insulin secretion to lower blood
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glucose, though they can cause hypoglycemia [20, 25]. DPP-4 inhibitors also enhance insulin
secretion but do not carry the risk of hypoglycemia. a-glucosidase inhibitors delay carbohydrate
digestion and reduce glucose absorption rates, though they also produce gastrointestinal side
effects [26]. TZDs are specific ligands for peroxisome proliferator-activated receptor y (PPARY)
that enhance the sensitivity of muscle, fat, and liver to insulin [27]. Side effects associated with
TZDs are weight gain and fluid retention [20]. If glycemic control is not achieved with
metformin monotherapy, addition of a second drug is prescribed, with the particular choice
dependent on specific patient factors and desired effects [21, 23]. Triple therapy is even
recommended in cases where dual therapy no longer controls glycemia. Though many
compounds are available and show efficacy in lowering blood glucose concentrations, cost, side
effects, and patient-specific contraindications and inefficacies are still problematic; thus, novel

therapeutics for the treatment of type 2 diabetes are still needed.

1.2. Mechanisms of hepatic insulin resistance

The work presented in this document principally focused on the effects of obesity in the liver.
The liver is an insulin-sensitive organ that is critical for the maintenance of normal glucose
homeostasis and overall metabolic health. Fasting hyperglycemia, a critical feature of insulin
resistance and type 2 diabetes, primarily results from the inability of the liver to properly shut
down hepatic glucose production in response to insulin [15, 28, 29]. Over-nutrition leading to
obesity (e.g. by consumption of a high-fat diet) prevents insulin-mediated inhibition of hepatic
glucose production [30]. The critical importance of the liver in these contexts is particularly
highlighted by the widespread use of metformin to treat type 2 diabetes, which inhibits hepatic
glucose production and reduces plasma triglyceride levels [24]. The mechanism(s) by which
these effects are accomplished by metformin are not fully understood, though possibilities
include disruption of gluconeogenic enzyme transcription by AMPK-dependent CREB binding
protein (CBP) phosphorylation [31].

Insulin action in the liver is generally understood through the lens of the canonical insulin
signaling pathway (Figure 1-1) [29, 32, 33]. This pathway is initiated when insulin binds to and

activates the insulin receptor, which is itself a tyrosine kinase. The receptor phosphorylates
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Figure 1-1. Canonical insulin signaling pathway. See text for details and explanation.
Abbreviations: insulin receptor substrates (IRS); phosphatidylinositol-3-OH kinase (PI3K);
phosphatidylinositol (4, 5) bisphosphate (PIP,); phosphatidylinositol (3, 4, 5) triphosphate (PIP;);
protein kinase B (AKT); 3-phosphoinositide dependent protein kinase-1 (PDK1); glycogen synthase
kinase 3 (GSK3); glycogen synthase (GYS); mechanistic target of rapamycin (mTOR); sterol
regulatory element binding protein (SREBP); forkhead box protein O1 (FOXO1).

insulin receptor substrate (IRS) proteins, particularly IRS1 and IRS2 in the liver, and these bind
phosphatidylinositol-3-OH kinase (PI3K). The catalytic subunit of PI3K (p110) phosphorylates
phosphatidylinositol (4, 5) bisphosphate (PtdIns(4,5)P, or PIP;) to produce PIP;, which recruits
the downstream effector AKT to the plasma membrane. 3-phosphoinositide dependent protein
kinase-1 (PDK1) then phosphorylates and activates AKT. Activated AKT translocates to the
cytoplasm where it phosphorylates and inactivates glycogen synthase kinase 3 (GSK3) to
activate glycogen synthase, thereby promoting storage of glucose as glycogen. AKT also
phosphorylates and inactivates by nuclear exclusion forkhead box protein O1 (FOXOT1), which

decreases transcription of genes encoding gluconeogenic enzymes.
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This regulatory pathway is dysregulated in response to fatty acid accumulation in the liver. In
rats, insulin resistance can be induced by dietary fat feeding independent of obesity [34]. This is
a specific consequence of hepatic insulin resistance. As early as three days after the start of high-
fat feeding, liver triglyceride and fatty acyl-CoA content increases and inhibition of endogenous
glucose production by insulin is diminished [35]. This occurs without significant increases in
muscle fat content. These changes are accompanied molecularly by hepatic decreases in IRS1
and IRS2 tyrosine phosphorylation, decreased IRS1-PI3K and IRS2-PI3K activity, decreased
AKT activity, and reduced inhibition of GSK3 activity. These results may reflect a signaling
switch from insulin-stimulated tyrosine phosphorylation cascades to fatty acid-induced
serine/threonine regulation [8]. To this, hepatic JNK activity is increased in mice in response to
diet-induced obesity; ablation of JNK1 improves insulin sensitivity and insulin receptor signaling
[36]. INK has been shown to associate with IRS1 and phosphorylate serine 307, leading to
inhibition of insulin-stimulated tyrosine phosphorylation of this target [37]. Hepatic lipid
accumulation can also lead to protein kinase C epsilon (PKCg) activation, which associates with
the insulin receptor and impairs its kinase activities [38]. Knock-down of PKCe in the livers of

rats by antisense oligonucleotides protects them from lipid-induced insulin resistance [38].

This canonical view of hepatic insulin signaling and its relationship to type 2 diabetes
pathogenesis has been challenged by more recent findings. Diabetic mice experience “selective
insulin resistance,” whereby insulin fails to suppress hepatic glucose production but is still able
to induce lipogenesis via SREBP-1c production, indicating only partially dysregulated hepatic
insulin signaling in the disease state [39, 40]. Liver-specific insulin receptor knock-out (LIRKO)
mice are totally insulin resistant and show severe glucose intolerance and elevated fasting insulin
levels, along with an inability to suppress hepatic gluconeogenesis, but actually show slight
fasting hypoglycemia as age increases [41, 42]. Whole-body knock-out of the insulin receptor in
mice, however, does cause postnatal diabetes and early death due to ketoacidosis [43]. More
acute suppression of the hepatic insulin receptor by antisense oligonucleotides in C57BL/6J
mice, resulting in ~95% knock-down of hepatic protein expression of this target, impairs
downstream insulin signaling in the liver but does not alter rates of glucose production [44].
These traditional mechanisms of glucose regulation are particularly complicated by the

observation that mice lacking Aktl, Akt2, and Foxol by triple knock-out are still able to suppress
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hepatic gluconeogenesis normally in response to insulin [45]. Double liver insulin receptor and
Foxol (L-IRFoxo1DKO) knock-out mice also are glucose tolerant and able to normally suppress
hepatic glucose production and gluconeogenic gene expression in response to insulin, processes
which are disrupted with LIRKO alone [46]. Additional recent evidence suggests that liver
insulin signaling may mostly be intact during type 2 diabetes, while increased intrahepatic FFAs
(e.g. acetyl CoA) due to enhanced lipolysis from white adipose tissue inhibit suppression of

glucose production by mechanisms independent of the canonical insulin signaling [47, 48].

Years of experimental analysis have clearly demonstrated the critical role of the liver in the
pathogenesis of type 2 diabetes, though recent findings highlight that our understanding of the
mechanistic underpinnings of its role are incomplete. Therefore, new studies are needed to
interrogate novel hepatic mechanisms that promote and maintain metabolic disease. Such

findings may expand the scope of therapeutic strategies to treat type 2 diabetes.

1.3. Experimental models of hepatic insulin resistance

Crucial to the study of any complex human disease is the selection of an appropriate
experimental model that maximally reproduces aspects of the disease consistent with human
pathogenesis and pathology, while simultaneously allowing for proper experimental control,
reproducibility, and hypothesis testing. A variety of models are available for such purposes, each
possessing their own benefits and limitations. For a given scientific question, the use of multiple
model types can help confirm observations made from initial screens in a chosen system. Here, I
review three major types of experimental models applied to the study of insulin resistance and
type 2 diabetes: cellular models, genetically modified rodent models, and diet-induced obese

rodent models.

Cellular models: A variety of primary cell culture and immortalized cell line systems are
available for the study of insulin resistance and related complications [49]. Primary hepatocytes,
along with other hepatic cell types (Kupffer, stellate, etc. cells), can be cultured from human and
rodent samples and grown in either mono or co-culture systems [49, 50]. To mimic obesity-

induced insulin resistance in such systems in vitro, cells can be cultured in the presence of
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monounsaturated (e.g. oleate) and saturated (palmitate) fatty acids to enhance intracellular FFA
concentrations [50, 51]. Additional treatments are available to induce insulin resistance in
cellular models, including TNFa, hypoxia, high concentration insulin, and dexamethasone [52].
Outside of primary cell cultures, the common perpetual human liver cancer line HepG2 is also
used in these contexts and also often cultured in the presence of FFAs to mimic obesity-induced

insulin resistance [53].

A variety of complications are associated with such in vitro systems. The availability of human
material for such systems is limited, and cultures derived from rodents can de-differentiate and
lose tissue-specific functions as culture time increases [49]. Cell lines like HepG2 do not suffer
from these same issues; however, gene expression microarray studies have shown extensive
differences between HepG?2 expression profiles and those of human primary hepatocytes and
frozen liver tissue [54]. Here, expression profiles between primary hepatocytes and liver tissue
show greater similarity than comparisons involving HepG2, limiting the translatability of
findings derived from such models. Still, comparisons of expression profiles between mono
culture primary human hepatocytes and those of intact liver tissue also display considerable
levels of gene expression differences (~22% of genes in some studies) [54]. These results
demonstrate clear trade-offs associated with ease of use, availability, and down-stream relevance

to the actual human condition when using such cellular models.

Genetic rodent models: Several genetically modified rodent models are available and commonly
used for the study of obesity and diabetes. Ob/ob mice (where ob stands for “obese”) were
discovered in 1949 and characterized in 1994 to possess a frame shift mutation in the leptin gene
that creates a premature stop codon [55]. Leptin protein is important for appetite control; mice
possessing this mutation are hyperphagic and exhibit obesity, insulin resistance, and type 2
diabetes. Db/db mice (db for “diabetes”), discovered in 1966, possess a G-to-T point mutation in
the leptin receptor gene [55]. This mutation impairs leptin signaling and induces obesity, insulin
resistance, and eventual hyperglycemia. Apolipoprotein E3-Leiden (ApoE3L) mice are
transgenic animals crossed to the C57BL/6J background that express the human APOE*3Leiden
and apoC1 gene cluster. These mice display a lipoprotein profile that closely resembles humans

[56]. Additional genetic rodent models, some polygeninc, include Zucker fatty rats (fa/fa), the
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New Zealand obese (NZO) mouse, the Tsumura Suzuki obese diabetes (TSOD) mouse, and the

melanocortin 4 receptor (MC4R) disruption mouse [49, 55, 57]

While genetically modified rodents are widely used in diabetes research, the specific mutations
and/or modifications used to induce these complications do not always reflect aspects of the
human disease [58]. For example, the ob mutation is rare in humans and leptin is not strongly
associated with human type 2 diabetes [49, 59]. Mutations in rodents can therefore induce
additional dysregulation of pathways and processes that are dissociated from the human

condition, complicating the translation of findings from these animals.

Diet-induced obese rodent models: Diets containing excessive nutritional content, especially
high-fat diets (HFD, 30-75% total calories from fat), are commonly used to induce experimental
obesity [49, 55]. The HFD-fed C57BL/6J mouse, which was first described in 1988, is the most
commonly used diet-induced obese rodent model [57, 60, 61]. Critically, C57BL/6J mice fed a
HFD develop complications consistent with human metabolic syndrome, including obesity,
hyperinsulinemia, hypertension, hyperglycemia, and insulin resistance [62]. The effects of high-
fat feeding in mice are strain dependent [55]. For instance, C57BL/KsJ mice display weaker
phenotypic characteristics compared to C57BL/6J mice when fed a HFD. While diet-induced
obese models more faithfully reproduce human complications on the road to pathology,
limitations associated with differences between rodents and humans still must be considered

when interpreting results obtained from such studies.

Considerations regarding reproducibility, availability, and relevance to the human condition are
critical when choosing an experimental model for the study of any disease. While all models
have limitations, critical insights relevant to human disease can be obtained from well-designed
studies. In the work presented in this thesis, our research team utilized a HFD-fed C57BL/6J
mouse model to study obesity-induced hepatic insulin resistance. This model choice is highly
appropriate given its reproducibility and established consistency with human progression

towards metabolic syndrome and type 2 diabetes.

1.4. Systems biology
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Biological processes that promote and maintain disease are often highly complex and involve
molecular mechanisms operating across many levels of biological regulation. In the context of
insulin resistance and type 2 diabetes, we now appreciate that abnormalities occur across many
such levels [63]. For example, GWA studies have shown that genetic variations in genes
encoding transcription factors (e.g. TCF7L2 and PPARG), ion channels (KCNJI1), and insulin
signaling pathway members (/IRS/) are strongly associated with human risk for type 2 diabetes
[64]. Thus, studies that aim to reveal the complex mechanisms associated with such diseases may

reveal new avenues for therapeutic intervention.

The field of systems biology seeks a global understanding of disease by embracing these inherent
complexities within true biological systems [65]. Systems biology approaches draw upon the
wealth of information generated from molecular biology and biochemistry in the past to engineer
systems tools (e.g. computational models) that not only explain observed biological phenomena,
but are capable of predicting responses to new perturbations, thereby uncovering non-intuitive,
emergent system properties that are only observed when biological components are studied in
context with one another [66]. Systems biology as a paradigm is quantitative in its descriptions
of physical interactions and in its data collection methods and philosophically departs from past
“reductionist” approaches to biology in favor of more “holistic” methods [67]. This conceptual

framework is elegantly described by the following quote from Hiroaki Kitano [65]:

“Identifying all the genes and proteins in an organism is like listing all the parts of an airplane.
While such a list provides a catalog of the individual components, by itself it is not sufficient to

understand the complexity underlying the engineered object.”

Systems theory applied to biology initiated in the early to mid-twentieth century. The Austrian
biologist Ludwig von Bertalanffy was a key architect of the general systems theory, which
stressed holistic understanding of systems over reductionism [68]. In 1952, Alan Hodgkin and
Andrew Huxley published a mathematical model describing the ionic mechanisms that generate,
propagate, and terminate action potentials in the squid giant axon using systems of nonlinear,

ordinary differential equations (ODEs) [69]. For their work, they, along with John Eccles, were
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awarded the 1963 Nobel Prize in Physiology or Medicine. These methods were subsequently
(and still are) applied to related cellular phenomena, notably the cardiac action and pacemaker
potentials, which were first modeled in the 1960s [70] and expanded upon in subsequent decades
[71, 72]. Since the early 2000s, following completion of the human genome project and the
advent of new high-throughput “omic” technologies, systems biology has widely been applied to
the study of diverse biological problems and is beginning to mature as a field [65, 73, 74].
Systems biology studies can vary in size and scope, from <10 component signaling pathway
models [75] to genome-scale reconstructions of human central metabolism [76] or whole-cell
models of bacterial pathogens [77], and can employ a wide variety of experimental and

computational methods.

The application of a systems biology approach to the study of insulin resistance may reveal novel
insights into molecular mechanisms that drive pathology and highlight entry points for
therapeutic intervention [78]. The work presented in this thesis utilized such an approach toward

these goals.

1.5. “Omic” datasets for system biology

A branch of modern systems biology aims to collect as much relevant data as possible from as
many biological regulatory levels as can be confidently measured to achieve this goal of holistic
characterization of a given system. To this end, “omic” data technologies have emerged as
valuable tools for systems biology [79]. The Oxford English Dictionary defines the use of the
suffix —ome in the context of cell and molecular biology as “all of the specified constituents of
the cell, considered collectively or in total.” In keeping with this definition, modern omic
methods aim to comprehensively profile a given biological “ome.” For example, transcriptomic
studies aim to capture and quantify all cellular RNA transcripts, proteomic studies measure total
or modified protein levels, etc. Many omic techniques collect this information in an unbiased
fashion, though variants operate in targeted manners to profile specific sub-sets of molecules. A

variety of experimental methods are used extensively today to collect omic data.
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Completion of the human genome project inspired rapid technological growth that has produced
powerful strategies amenable to high-throughput analysis of the genome, epigenome, and
transcriptome. These technologies allow for the measurement of hundreds of millions to billions
of short DNA sequence fragments, exploring a wide array of biological phenomena in a single
experimental run [80]. Such techniques, often appended with the suffix “-Seq” for “sequencing,”
allow for comprehensive analysis of genomic variants, transcriptional output (e.g. mRNAs,
micro RNAs), protein-DNA interactions, epigenetic modifications (e.g. DNA methylation,
histone modifications), and chromatin accessibility on a genome-wide scale. As these
technologies improve and as costs decline, their uses in the modern biological sciences are

rapidly increasing.

RNA-Seq is a commonly used high-throughput sequencing methodology. It is a highly-
reproducible transcriptome-wide approach that can rapidly quantify all or subsets of the RNA
species in a cellular system [81, 82]. This approach has distinctive technical advantages in terms
of sensitivity over earlier transcriptomic methods, such as microarrays [83]. RNA-Seq protocols
are used to profile mature mRNAs (mRNA-Seq), small RNAs (smRNA-Seq, e.g. for micro
RNAs), or total RNA populations following ribosomal RNA depletion (Ribo-Zero RNA-Seq)
[82]. These methods can be used to quantify and compare gene expression levels, individual

transcript levels, and alternative splicing [84-86].

High-throughput sequencing protocols are also used to profile the physical genome [87] and
epigenome [88]. Whole-genome sequencing can provide critical information regarding
alterations physically contained within the DNA sequence, including base mutations, insertions,
deletions, inversions, etc. In contrast, study of the epigenome provides insight into how the
physical genome is regulated and can provide complementary information to gene expression
studies. The arena of epigenomics encompasses covalent histone modifications, DNA
accessibility, and DNA methylation [89]. Chemical modifications to histone proteins induce
electrostatic changes that alter the binding affinities of histone proteins for DNA, thereby
creating “active” or “repressed” regions throughout the genome that regulate gene expression.
Examples of such modifications include tri-methylation of lysine 4 on histone protein H3

(H3K4me3), which “marks” active promoters of expressed genes [90], mono-methylation of
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lysine 4 on H3 (H3K4mel), which marks active and poised promoters and distal enhancers [91],
acetylation of lysine 27 on H3 (H3K27Ac), which marks active promoters and enhancers [91],
and tri-methylation of lysine 27 on H3 (H3K27me3), which is associated with gene repression
[92]. Specific combinations of these marks influence functional consequences related to gene
transcription; these combinatorial effects define what is known as the “histone code” [93]. The
most common high-throughput method used to profile histone modifications is chromatin
immunoprecipitation followed by sequencing (ChIP-Seq), which uses antibodies targeting
specific epitopes on these modified proteins to isolate bound chromatin fragments for subsequent
sequencing [94]. ChIP-Seq is also widely used to directly profile protein-DNA interactions of
specific regulatory proteins, generally transcription factors. DNA accessibility assays, or “open”
chromatin studies, indirectly profile the epigenome in the sense that they do not target a specific
physical modification; rather, they provide information on the state of the epigenome and profile
active regulatory regions across the genome. DNA accessibility profiling methods include
DNase-Seq [95], formaldehyde-assisted isolation of regulatory elements (FAIRE)-Seq [96], and
the assay for transposase-accessible chromatin (ATAC)-Seq [97], all of which provide similar
information via different experimental methods. Finally, DNA methylation is a chemical
modification that occurs on the bases of the DNA molecule itself, particularly cytosine.
Sequencing-based whole-genome and reduced-representation protocols are available to profile

this epigenomic modification [98, 99].

Proteomics is the study of all the expressed proteins in a biological sample. Such studies focus
on total protein levels or chemically modified species, e.g. via phosphorylation, ubiquitination,
acetylation, etc. [100]. Most high-throughput proteomic studies are conducted using mass
spectrometry-based methods that specifically quantify peptides derived from protease-cleaved
full proteins. Traditionally, these studies are run with untargeted “shotgun” protocols, though
targeted approaches, including multiple reaction monitoring, target peptide monitoring, and data-
dependent acquisition, are increasingly being used to quantify specific molecules of interest
[101, 102]. Both relative and absolute quantification methods are used in proteomic studies,
though the former is most common. Relative quantification methods include stable-isotope
labeling with chemical tags (e.g. isobaric tags for relative and absolute quantification [iTRAQ])

[103], label-free quantification [104], and in vivo metabolic stable-isotope labeling (e.g. stable-
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isotope labeling by amino acids in cell culture [SILAC]) [105]. Such methods are used to
measure biochemical properties of proteins (e.g. degradation rates) [106] and are continuously
applied toward the goal of profiling the full human proteome [107]. Proteomic methods are not
only applicable for the identification and quantification of individual proteins and associated rate
parameters, but also for the interrogation of protein-protein interactions [100]. Interaction
information can be derived from mass spectrometry-based approaches by several methods,
including immunoprecipitation [108] and proximity labeling [109]. Known protein-protein
interactions currently number in the hundreds of thousands [110]; this information is critical for
systems biology as it allows for interpretation of high-throughput proteomics (and other omic)

datasets in the context of networks of physical interactions.

Metabolomics is the collective study of all the small molecule species within a biological
sample. Metabolomics is now being used to identify new mechanisms and biomarkers of disease
[111]. Application areas include prostate cancer [112], glioblastoma [113], Crohn’s disease
[114], and type 2 diabetes [115, 116]. Metabolites are the essential constituents of all the
biochemical species that coordinate cellular activities; the full compendium of metabolites
present in the human metabolome consists of ~5,000 known small molecules [117]. Today,
several targeted and non-targeted experimental strategies are capable of detecting and
quantifying hundreds to thousands of small molecules in a sample of interest [111, 118]. These
methods typically use gas chromatography and/or electrospray ionization (in positive and/or
negative modes) with one or two rounds of mass spectrometry to identify and quantify small
molecules. These methods are of critical importance for the study of disease, particularly in the

context of the metabolic conditions of focus in this thesis.

A final omic regulatory level that is increasingly being analyzed in the context of human disease
is the microbiome, which is comprised of the small microbial communities on and within the
body. Dysregulation of the microbiome (termed “dysbiosis”) can affect metabolism and drug
interactions and may be associated with metabolic diseases like type 2 diabetes [119, 120]. For
instance, changes in mouse gut microbiota have been shown to affect feedback loops between
the liver and gut that control bile acid metabolism [121]. Studies of the microbiome typically

involve the identification of microbial species by sequencing of phylogenetically informative
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markers, such as the ribosomal small subunit gene [119]. The microbiome thus represents
another regulatory layer with potential application to systems biology studies of metabolic

diseases.

1.6. Bioinformatics, statistics, and computational modeling for systems biology studies

Statistical methods and bioinformatics are absolutely essential to omic systems biology studies.
Statistical methods identify significant signals in omic datasets (e.g. differentially expressed
genes between conditions, enriched ChIP signal intensities over background noise). Analysis of
omic datasets can require both continuous (e.g. x’-distribution) and discrete (Poisson, negative
binomial) probability distributions for accurate modeling and inference. Such choices are
dependent on the type of data and the methods of quantification. Bioinformatics as a field
combines statistics, computer science, mathematics, and engineering to address biologically-
related problems. Applications include cataloging of biological information, including genomic
sequences and protein interactions, sequence assembly, and methodological development for the
analysis of genomic sequence elements. The University of California Santa Cruz (UCSC)
Genome Browser provides such genomic information, including reference genomic sequences
for humans and model organisms, along with analytical tools (e.g. fast sub-sequence extraction
from large genomes) [122]. Additional examples of Bioinformatics applications include tools for
the identification of transcription factor binding sites using Bayesian modeling of epigenetic
features (e.g. chromatin accessibility) and sequence information (e.g. known DNA recognition
sequences for factors or “motifs”) [123, 124] and for de novo (MEME, HOMER) or hypothesis-
based (THEME) discovery of sequence motifs in sets of relevant short DNA sequences [125-
127]. Catalogues of experimentally determined and predicted DNA sequence motifs for
regulatory factors are available from multiple data sources, including JASPAR [128] and
TRANSFAC [129], and can aid analysis of genomic features identified by omic datasets.
Protein-protein interaction information is also readily available from data sources, including

iReflndex [110].

Analysis of individual datasets is critical for interpretation of omic information; however,

modern systems biology studies now collect multiple omic datasets from the same or related
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samples towards the goal of obtaining holistic systems views. Such multi-omic studies require
analytical techniques that jointly interrogate complimentary biological information.
Methodological development to this end is a current and emerging field in the computational
sciences [130, 131]. Bersanelli et al. (2016) distinguish between two major classes of integrative
methods: network-free and network-based [130]. The former refers to methods that do not utilize
prior assumptions or knowledge of relationships between biological species (e.g. protein-protein
interactions), while the latter utilizes such data. Network-free methods typically employ some
form of correlation or regression analysis to establish relationships between predictor (e.g. gene
and protein expression levels) and response (e.g. measures of phenotype) variables. Such
methodologies include simple pair-wise correlation network analyses [132, 133], though more
sophisticated multivariate statistical routines are also commonly used. Partial least squares
regression (PLSR) is a multivariate statistical procedure that attempts to find a multidimensional
representation of predictor variables that best explains (i.e. maximizes the covariance between)
response variables, and is especially suitable when using large numbers of multi-collinear
predictor variables [134]. Methods implementing variations of PLSR include stochastic
multivariate regression [135], sparse PLS (used in the Integromics package) [136], multi-block
PLS [137], and orthogonal PLS [138]. Additional related multivariate statistical procedures
include independent component analysis [133], extended canonical variate analysis [139], and
principal component regression [140]. Sample discrimination and/or phenotype prediction are
generally improved with these methods when multiple datasets are considered. Bayesian
network-free methods are also available for multi-omic data analysis, including iCluster [141],
which jointly clusters multiple omics datasets, and multiple dataset integration (MDI) [142],
which accomplishes the same clustering task as iClulster, but via Dirichlet-multinomial
allocation mixture modeling. These network-free methods are indeed able to uncover
relationships between multiple types of data, either through supervised or unsupervised
approaches, though they provide little information as to how or why specific signals (e.g. highly

weighted proteins in a PLSR model) contribute to observed responses.

Network or pathway-based computational modeling methods directly utilize information
regarding the underlying mechanisms by which molecules drive biological functions. This

includes static and dynamic interaction information. Modeling is highly critical for systems
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biology as our intuition of systems-level behavior diminishes as the number of components and
potential connections between them increases. A wide array of modeling approaches, varying in
scope, complexity, and abstraction, exist for systems analyses. ODE models have been used to
study a wide-range of biological pathways and processes, including E. coli chemotaxis [143],
apoptosis [144], cardiac signaling and electrophysiology [145, 146], and EGFR signaling [147].
These models attempt to simulate the temporal and spatial dynamics of a biological system using
as much detailed mechanistic information as possible. This typically requires the knowledge
and/or estimation of hundreds of free parameters. As model size increases, ODE modeling is
complicated by such parametric requirements; however, studies of systems biology models have
revealed that many parameter regimes are “sloppy,” meaning that many parameters can vary
over wide ranges without affecting the overall system’s behavior, and that many parameters can
be simply approximated by order-of-magnitude estimates without altering overall model
performance [148, 149]. More abstract formulations, such as logic-based approaches (e.g.
Boolean [150] and fuzzy logic [151]), require less parameter information. These approaches,
however, possess limited ability to accurately model temporal dynamics and absolute
concentrations of biological species. Still, some modeling frameworks abstract parameter
information away completely. This is often done in the field of metabolic network analysis with
approaches like “flux balance analysis” (FBA) [152] or “flux variability analysis” (FVA) [153].
Genome-scale models of central metabolic pathways typically use a “stoichiometric matrix™ § to
describe the system, where the rows of S are metabolites, the columns are metabolic reactions,
and the elements are reaction stoichiometric coefficients. FBA and FVA use constraint-based
linear programming to solve the matrix equation S-v = 0, where v is a matrix of steady-state
“fluxes” through individual reaction paths, to optimize some biological feature (e.g. growth). The
steady-state assumption removes the parametric burden and allows for analysis of normal and
perturbed metabolic flux spaces through large networks. Yizhak et al. devised the integrative
omics-metabolic analysis (IOMA) methodology, which combines proteomic and metabolomic
data with such genome-scale metabolic models [154]. IOMA uses quadratic programming to
solve for the steady-state fluxes through individual metabolic reactions, constraining fluxes to

match estimated values from measured enzyme and metabolite concentrations.
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A critical issue associated with the pathway-based modeling methods reviewed thus far is the a
priori requirement of the specific underlying network structure. Often omic datasets measure
species that are not part of well-defined canonical signaling pathways. Restricting systems
analyses to only such molecules can prevent the discovery of novel aspects of disease [155].
These issues can be directly addressed with network modeling methods. Such methods reveal
underlying network structures from experimental data of physical interactions [156]. Naive
methods, however, can often create uninformative ‘“hairball” networks that are of little use for
subsequent analyses [157]. More tractable network modeling approaches have been developed to
address these issues, including methods that solve the prize-collecting Steiner tree problem [155,
158-160], that perform minimum-cost flow optimization [161, 162], or that model network
diffusion [163]. Network modeling methods are thus highly amenable to multi-omic data

integration.

1.7. Prior omic systems biology studies of obesity, insulin resistance, and type 2 diabetes

To date, several studies have attempted to apply omic systems biology approaches to the study of
obesity, insulin resistance, and type 2 diabetes, though the diversity of omic levels profiled, the
breadth of data integration, and the application of computational modeling differs considerably.

Most studies have generally focused on a single type of omic data, particularly transcriptomics
[63]. Transcriptomic studies have analyzed responses to various dietary interventions (e.g. high-
fat, high-carbohydrate) in various tissues (liver, fat, muscle) across a number of experimental
models. In general, the biological processes altered by these diets are consistent across models
and treatment conditions. As an example, Radonjic et al. (2009) collected transcriptomic data
from chow and HFD-fed ApoE3Leiden mice at various time points following the start of HFD
using microarrays and noted a switch from early (first few days and weeks) inflammatory
profiles to late (8-16 weeks) steatotic expression patterns, the latter resulting from up-regulation
of genes associated with lipogenesis, lipid accumulation, and fatty acid synthesis [56]. This same
group also profiled hepatic transcriptional responses to various lifestyle and chemical treatments
following HFD in Ldlr” mice [164]. Kelder et al. (2011) also collected hepatic transcriptional

data from low- and high-fat diet-fed mice following glucose treatment and mapped differential

31



genes onto known pathways (e.g. from KEGG) and protein interactions to uncover shortest path

links between pathways altered by diet [165].

Epigenomic studies in these contexts have assayed CpG DNA methylation, chromatin
accessibility, and individual transcription factor binding profiles. Li et al. (2013) compared CpG
methylation patterns in the livers of mice born from lean or obese/diabetic mothers using arrays
and found changes in methylation patterns near genes associated with development [166]. A
study by Nilsson et al. (2015) collected liver biopsies from 35 diabetic and 60 non-diabetic
humans and analyzed CpG methylation with HumanMethylation450 BeadChips [167]. They
found 251 differential CpG sites, 94% of which were lower in methylation in diabetic patients,
that mapped to some interesting gene candidates. Leung ef al. (2014) profiled mouse hepatic
epigenomes using FAIRE-Seq and histone modification ChIP-Seq following HFD and used these
data to map changes in active chromatin to gene expression changes measured by RNA-Seq.
They also inferred bound transcriptional regulators in these regions, finding enrichments for the
liver factors HNF4a, C/EBPa, and FOXA1 [168]. Our group and others have directly assessed
the genome-wide binding profiles for a number of such liver factors in mice and humans [169-

173]

The application of quantitative, high-throughput proteomics in these contexts has been gaining
prominence in recent years. Deng et al. (2010) measured diabetic rat liver mitochondrial total,
phospho, and hydroxy proteomes using shotgun methods and found evidence for up-regulation
of proteins involved in fatty acid B-oxidation, TCA cycle, and oxidative phosphorylation, along
with depression of anti-apoptotic and anti-oxidative stress proteins [174]. Guo et al. (2013) also
applied quantitative shotgun proteomics to mitochondria, but following HFD in mice, and found
up-regulation by HFD of proteins involved in similar biological processes [175]. A study by
Sabido et al. (2013) used targeted proteomics (by selected reaction monitoring) to quantify 144
proteins involved in insulin signaling and general metabolism in the livers of C57BL/6J and
129Sv mice following 6 and 12 weeks of HFD [176]. They observed robust early responses to
diet and noted distinct proteomic profiles between the two mouse strains that separated by
expression levels for metabolic enzymes involved in the TCA cycle, B-oxidation, fatty acid

biosynthesis, and glycogen metabolism. Wu et al. (2014), also using selected reaction
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monitoring, profiled 192 liver metabolic proteins across 40 strains of BXD mice fed chow and
HFDs [177]. In addition, they profiled mRNA expression by microarray and found that changes
in mRNA and protein expression due to diet are only modestly correlated (r ~0.31) and that 80%
of all observed expression and protein quantitative trait loci (eQTL and pQTL) are distinct to

either transcripts or proteins.

Metabolomics is also increasingly being applied in the type 2 diabetes research field [178]. Kim
et al. (2011) measured liver and serum metabolites from lean and obese mice; partial least
squares discriminant analysis (PLS-DA) revealed that fatty acids, lipid metabolism
intermediates, amino acids, and monosaccharides separated the two conditions [179]. Wang et al.
(2011) used targeted LC-MS/MS to measure metabolite levels in 2,422 individuals over a 12
year period, 201 of which developed diabetes, and found that elevated levels of branched chain
amino acids are predictive of diabetes risk [180]. Additional studies have characterized 2-
aminoadipic acid [181], glycine [182], and glyoxylate [183] (among others) as marker
metabolites for type 2 diabetes. Considerable effort has been devoted as of late to studying the
metabolomic profiles within plasma and some tissues of humans and mice in order to

characterize features and risk factors for type 2 diabetes.

The majority of the omic studies discussed thus far focused on individual regulatory layers or did
not focus on integrative analyses that jointly considered multiple datasets. The Wu et al. (2014)
study described above indeed performed a targeted multi-omic analysis of hepatic transcription
and protein expression, comparing changes induced by HFD at both regulatory levels [177].
Kirpich et al. (2011) also collected hepatic transcriptomic and proteomic data from mice
following HFD but mostly described analyses of both data types in isolation [184]. Meierhofer et
al. (2014) collected transcriptomic, proteomic, and metabolomic data from the white adipose
tissue and livers of chow and HFD-fed mice [185]. They performed gene set enrichment analysis
(GSEA) on individual datasets, combined enrichment analysis on all three (using the IMPala
web tool [186]), and network analysis with protein interactions from the STRING database
[187]. Their latter analysis was only performed on their proteomic data, which identified SDHB

and SUCLGI as important hub proteins in adipose tissue.
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Studies attempting more explicit integrative assessment and modeling of multi-omic data have
also been attempted to varying degrees in this context. Oberbach et al. performed independent
component analysis on proteomic and metabolomic data obtained from normal and obese human
plasma samples and found that sample discrimination was enhanced when the two data types
were considered together [133]. Miraldi et al. used stochastic multivariate regression to predict
altered lipid profiles from phospho-tyrosine proteomic data collected from the livers of HFD
mice either expressing or lacking hepatic Ptplb [135]. This analysis suggested roles for
phosphoproteins involved in oxidation reduction in modulating polyunsaturated fatty acid and
triglyceride metabolism. The CircadiOmics resource developed by Patel et al. (2012) maps
normal and HFD-fed mouse metabolomic and transcriptomic data onto an interaction network
built from known pathway, transcriptional regulatory, and protein-protein interaction data [188].
In a similar vein, growing numbers of tissue and cell-type specific genome-scale metabolic
models, or GEMs, are being built to analyze omic information [189]. Tissue-specific gene
expression information (from microarray or RNA-Seq) and proteomic data (from tissue
immunohistochemistry data available in the human protein atlas [190]) are now being used to
constrain such models. GEMs of human hepatocytes [191] and myocytes [192] have been built
recently. Lee et al. (2016) expanded upon these methods by incorporating transcriptional
regulatory networks and protein interaction information with GEMs to produce hepatocyte,
adipocyte, and myocyte interaction networks [193]. They additionally built networks of lean and
obese human hepatocytes and adipocytes from transcriptomic data and predicted obesity-induced
alterations to metabolite concentrations, specifically identifying dysregulation of mannose

metabolism that they subsequently validated by metabolic profiling of plasma.

This section reviewed prior published omic systems biology studies of obesity-induced insulin
resistance and type 2 diabetes. The data and methods presented in this thesis expand upon this

body of work.

1.8. Overview of thesis contents

The overall goal of my thesis work was to apply quantitative, multi-omic systems biology

approaches to the study of obesity-induced hepatic insulin resistance. This entailed 1) the
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collection of matched omic data from the livers of mice fed chow and high-fat diets across the
transcriptome (mMRNA and miRNA expression), epigenome (histone modifications, chromatin
accessibility), proteome (total protein expression), and metabolome, 2) the analysis and
interpretation of individual datasets, and 3) the integration of these multi-omic data through
Bioinformatics and computational modeling approaches, particularly utilizing network modeling
methods, and subsequent analysis of these results for further hypothesis generation and testing.
This work was conducted as part of a collaborative, multi-disciplinary team of experimental and
computational scientists at MIT (laboratories of Ernest Fraenkel, Forest White, and Douglas
Lauffenburger), the University of Massachusetts Medical School (Roger Davis laboratory), and
Harvard Medical School (Jarrod Marto laboratory). The work described in (1) was completed by
the experimental arm of this collaboration. My specific contributions to this effort involved the
completion of the work described in (2) and (3). The approaches described in this thesis surpass
prior efforts in this realm in terms of the diversity of omic datasets collected and in terms of the

level of simultaneous integration and modeling of such data.

Chapter 2 describes a comprehensive multi-omic systems biology analysis of obesity-induced
hepatic insulin resistance. We collected transcriptomic, epigenomic, proteomic, and metabolomic
data from the livers of chow diet (CD) and 16 week HFD-fed mice. I analyzed each of these
datasets individually and uncovered changes induced by HFD. Additionally, I compared and
contrasted information gleaned from each individual omic dataset against one another. I then
adapted an existing computational modeling tool, namely the prize-collecting Steiner forest
(PCSF), to simultaneously incorporate this molecular information into a tractable network model
describing dysregulated pathways and biological processes induced by HFD. This effort required
the novel incorporation of protein-metabolite interaction information with known protein-protein
interactions. I also implemented strategies to enhance the selection of network components with
high specificity to this biological problem by dissuading the inclusion of network “hubs” in
models, and describe methods that aid model selection among families of related solutions. My
modeling efforts uncovered both well and poorly characterized aspects of obesity-induced
hepatic insulin resistance, and our group performed follow-up experiments on hepatic tissue
obtained from additional CD and HFD mice to validate alterations to specific biological

processes, including hepatic architecture, bile acid metabolism, and apoptosis.
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Chapter 3 describes a study in which we collected transcriptomic data from the livers of CD, 6
week, and 16 week HFD mice treated without and with the type 2 diabetes drug metformin. I
analyzed the effects of these diets on hepatic transcription and compared expression profiles
between mice treated with and without metformin. Additionally, we stimulated CD and 16 week
HFD mice with intraperitoneal insulin to profile transcriptional changes induced by this hormone
in both diets. I found that CD mice showed a robust transcriptional response to insulin, whereas
this response was generally blunted in HFD mice. However, we observed a set of more than 100
genes that were altered by insulin specifically in HFD livers. Among these were regulators of G-
protein signaling (RGS) genes. We performed follow-up studies on a particular gene, Rgs4, to

confirm this effect of insulin and to further characterized the role of this gene in HFD livers.

Chapter 4 describes a study of the hepatic transcriptomes and epigenomes of mice fed chow, 16
week high-fat, and calorie-restricted (CR) diets. I analyzed the transcriptional changes induced
by HFD and CR versus CD and found that both diets induce extensive gene expression
alterations. Interestingly, I found a significant sub-set of genes modulated by both HFD and CR
that change in the same direction compared to CD. We also collected DNase-Seq data to profile
chromatin accessibility in these livers and I used motif analysis to identify transcriptional
regulators that are likely associated with genes modulated by diet. Based on these results, we
chose to further test the roles of two specific transcriptional regulators, PPARa and RXRa, by
performing ChIP-Seq experiments for these factors in HFD and CR livers. We found extensive
binding of these regulators near genes modulated by diet and specifically highlighted binding
near genes involved in glucose metabolism. We further tested the role of PPARa in liver by
treating mouse primary hepatocytes with the PPARa activator fenofibrate and found that this
factor modulates anaerobic glycolysis. We additionally validated novel predicted target genes of

PPARa by measuring gene expression changes following in vivo fenofibrate treatment.

Chapter 5 examined mouse hepatic micro RNA (miRNA) expression changes induced by 6 and
16 week HFD and describes methods for integrated analysis of miRNA expression, mRNA
expression, and epigenetics. I found that HFD progressively alters the expression landscape of

miRNAs in the liver. I developed an enrichment scheme to prioritize miRNAs that considers
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overrepresentation of target genes modulated by HFD that are also predicted targets of each
differential miRNA. We also used a network modeling algorithm that incorporated miRNA,
mRNA, and epigenetic data to specifically probe miRNA-transcription factor interactions. Both
methods prioritized miRNAs with both known and potentially novel regulatory roles in the

context of hepatic insulin resistance.

Appendix A contains a manuscript describing the OmicslIntegrator software package developed
by our lab. This package consists of two tools: 1) “Forest,” which runs the PCSF algorithm on
omic data against an input interactome and 2) “Garnet,” which infers important transcriptional
regulators from epigenomic, motif, and gene expression data. Variations of these methods were

utilized in Chapter 2.
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CHAPTER 2

HEPATIC DYSFUNCTION CAUSED BY CONSUMPTION OF A HIGH-
FAT DIET

Obesity is a major human health crisis that promotes the development of insulin resistance and,
ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across
many complex levels of biological regulation that are poorly understood. Here we present a
comprehensive study of the liver in mice fed a high-fat diet. We used an integrative network
modeling approach to interrogate the hepatic epigenomes, transcriptomes, proteomes, and
metabolomes altered by this diet. Our analysis highlights disruption of the hepatic architecture
and hepatocyte apoptosis as processes that contribute to liver dysfunction and low-grade

inflammation during the development of diet-induced metabolic syndrome.
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2.1. INTRODUCTION

Human obesity is a major world-wide health crisis [5], promoting metabolic syndrome, which is
characterized by insulin resistance, hyperglycemia, and hypertension [7], together with B-cell
dysfunction and ultimately type 2 diabetes [8]. The liver is an insulin-sensitive organ that is
critical for the maintenance of normal glucose homeostasis [41]. Insulin promotes increased
uptake of glucose in peripheral tissues (primarily skeletal muscle) and reduces hepatic

gluconeogenesis [15]. Insulin resistance suppresses these normal regulatory mechanisms and

40



thus promotes hyperglycemia. Consumption of a high-fat diet (HFD) causes insulin resistance,
which prevents insulin-mediated inhibition of hepatic gluconeogenesis [30]. Moreover,
peripheral insulin resistance (e.g. in adipose tissue) causes increased lipolysis that promotes
hepatic gluconeogenesis [46-48]. The critical role of the liver in glycemic regulation is
particularly highlighted by the widespread use of the drug metformin to treat type 2 diabetes,
which principally acts in the liver to inhibit gluconeogenesis and reduce plasma triglyceride
levels [24]. Thus, understanding the molecular mechanisms of hepatic insulin resistance may

provide a basis for the design of therapeutic interventions.

The intracellular pathways that promote and maintain insulin resistance and type 2 diabetes are
complex. For instance, genome-wide association studies (GWAS) have shown that genetic
variations in the genes encoding the insulin receptor substrate IRS1 and the transcription factors
TCF7L2 and PPARG (to name a few) are strongly associated with human risk for type 2 diabetes
[64]. As a result, systems biology approaches are increasingly being recognized as vital to the
study of metabolic diseases [63]. Systems biology embraces the inherent complexities of disease
and draws upon the wealth of available knowledge from molecular biology and biochemistry to
facilitate comprehensive, multi-dimensional analysis and modeling of disease-relevant systems

and processes [65].

New omic technologies enable rapid and comprehensive analysis of many biological regulatory
levels. Epigenomic and transcriptomic methodologies (e.g. ChIP-Seq, mRNA-Seq) rapidly
profile full genomic regulatory and gene expression landscapes [80]. Proteomic analysis via
mass spectrometry is increasingly becoming more sensitive and comprehensive, allowing for
detailed analysis of global and modified proteomes [194]. Metabolomics, the collective study of
small molecule species, is now being used extensively to identify new mechanisms and

biomarkers of metabolic disease in both targeted and untargeted fashions [118].

A few studies have attempted to analyze multiple types of omic data in the context of metabolic
disease. Some have used statistical routines, such as correlation network analyses [133] or
stochastic multivariate regression [135]. Other methods have focused on known pathways,

overlaying proteomic and metabolomic data onto genome-scale metabolic reconstructions [154]
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or combining mouse transcriptomic and metabolomic data with known pathway and regulatory
data to allow exploration of local interaction neighborhoods around genes or metabolites of
interest [195]. Here, we go beyond these prior methods by developing a framework that
integrates matched multi-omic data into a tractable network model. Our approach is not biased
towards analysis of interactions that occur within well-established signaling or metabolic
pathways alone. Instead, we collate diverse types of interactions from databases of literature-
curated and high-throughput data to build a large network of physical associations. We then use
advanced network optimization methods to prune the possible interaction space to only the most
relevant connections that model the input data. Our results are thus more interpretable and

provide clearer directions toward follow-up study.

We present a large-scale, integrative systems biology study of high-fat diet (HFD)-induced
hepatic insulin resistance. We fed male C57BL/6J mice a normal chow diet (CD) or a 16 week
HFD to induce obesity and insulin resistance. We then collected multiple omic datasets from the
livers of these animals; specifically, we used histone modification ChIP-Seq to profile the
epigenomes, mRNA-Seq to quantify the transcriptomes, and mass spectrometry to assess the
global proteomes and metabolomes of CD and HFD livers. We identified genes, proteins, and
metabolites altered between CD and HFD. By jointly analyzing the epigenomic and
transcriptomic data, we predicted transcriptional regulators that likely influence gene expression
changes between the diets. We then developed a network modeling approach based on the prize-
collecting Steiner forest (PCSF) algorithm [158, 159] to analyze all the omic data in the context
of known protein-protein and protein-metabolite interactions. For this purpose, we constructed a
vast interactome of such associations and developed computational methods to avoid biases from
well-studied, highly-connected proteins and metabolites. The PCSF model revealed a richly
interconnected network of biological species and processes perturbed by HFD that could be
divided into functional sub-networks. This analysis uncovered well-established features of
hepatic insulin resistance, including glucose, lipid, and amino acid metabolism. Importantly, it
also revealed novel and poorly characterized aspects of the condition, including hepatocellular
injury, cell-cell interactions, extracellular matrix (ECM) organization, and apoptosis. Finally, we
validated some of our global network modeling predictions with additional experiments on

frozen liver sections from CD and HFD livers. We showed that HFD feeding leads to disrupted
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Figure 2-1. Overview of systems biology study of HFD-induced insulin resistance. We fed 8 week
old male C57BL/6J mice a 16 week standard laboratory chow diet (CD) or a high-fat diet (HFD) to
induce obesity and insulin resistance. At 24 weeks we sacrificed the mice and extracted, flash froze,
and pulverized their livers. We used these tissue samples to assay epigenomes, transcriptomes,
proteomes, and metabolomes. We then used mRNA-Seq (differential genes) and histone modification
ChIP-Seq (valleys within enriched peaks) data with known DNA binding motifs to infer active
transcriptional regulators. These regulators, along with differential proteins and metabolites, were used
as input to the prize-collecting Steiner forest (PCSF) algorithm to uncover a network of
interconnections amongst the data.

hepatic architecture and tight junctions, altered bile acid handling, and enhanced cellular

apoptosis.
2.2. RESULTS
2.2.1. High-fat diet feeding induces obesity and insulin resistance in mouse

We examined diet-induced obesity and insulin resistance by feeding eight week old male

C57BL/6J mice a HFD for 16 weeks (Figure 2-1). Control mice were fed a standard chow diet
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(CD) for the same 16 week period and all animals were euthanized at the 24 week time point.
This model is particularly suited for the study of human metabolic diseases as HFD consumption
by mice induces complications consistent with the progression of human metabolic syndrome
[62]. Indeed, we found that HFD-fed mice exhibited obesity, hepatic steatosis, hyperglycemia,

insulin resistance, and glucose intolerance compared with CD-fed mice (Figure 2-S1).

2.2.2. Omic datasets demonstrate wide-ranging effects of HFD on mouse liver biology

We collected an array of datasets using high-throughput omic experimental methods to broadly
capture the effects of HFD in the liver (Figures 2-1 and 2-2). We used the information obtained

from analysis of these datasets to inform our subsequent integrative network modeling efforts.

Epigenomics: We profiled the epigenomes of CD and HFD livers with histone modification
ChIP-Seq experiments for H3K27Ac, which marks active enhancers [91], H3K4me3, which
marks active and poised promoters [90], and H3K4mel, which marks active and poised
enhancers [91] (Figure 2-2, top panels). We tested for differences in histone modification levels
between the diets but found few significant differential regions (< 1%). Overall, these data

provide a comprehensive map of > 22,000 active regulatory regions in the liver genome.

Transcriptomics: We next collected transcriptomic data by mRNA-Seq to identify 2,507 genes
differentially expressed between CD and HFD livers. Of these, 1,572 genes are up-regulated and
935 genes are down-regulated in HFD livers (Figure 2-2, bottom left; Figure 2-S2A). Genes
up-regulated by HFD are enriched in lipid metabolism (Aacs, Fasn, Ldlr, and Srebfl) and
carbohydrate metabolism (Gck, Hk2, and Pfkl) while genes down-regulated by HFD are enriched
in amino acid catabolism (e.g. Argl, Gldc, Gotl, and Hdc) and small molecule catabolism
(Aadat, Aass, Cpsl, Csad). Shared biological enrichments between the two classes of genes
include carboxylic acid and oxoacid metabolism. These genes and enrichment categories are
generally consistent with prior data obtained from similar liver transcriptomic studies [56, 63].
We also performed TagMan assays on additional CD and HFD samples (8 or more livers per
condition) to further test for evidence of immune cell infiltration in HFD livers (as observed in

our mRNA-Seq results) (Figure 2-S3). We found up-regulation of Cd3e (T cells), Cdllc
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Figure 2-2. HFD induces perturbations to hepatic omic levels. (Top panels) Smoothed read density
profiles in -/+ 2kb windows around the union of all identified enrichment regions (22,974 total) for
histone marks H3K27Ac, H3K4me3, and H3K4mel from CD liver samples. The mappings on left are
with respect to the closest RefSeq gene start site: promoter (-2/+2 kb to start site), intragenic, -20 kb
(within 20 kb upstream), +20 kb (within 20 kb downstream), and intergenic (>20 kb away from
nearest gene). (Lower panels) We found 2,507 genes (n = 3 for CD and HFD), 362 global proteins (n
= 4 for CD and HFD), and 96 metabolites (n = 6 for CD and HFD) perturbed by HFD consumption.
Clustergrams show individual z-scored values for species from CD and HFD replicates. Only the most
significantly changing peptide is shown as a representative for each of the differential global proteins,

though full statistics were performed on all peptides.

(dendritic cells/monocytes/macrophages), Emrl (monocytes/macrophages), and Nos2 (M2-like

macrophages), together with down-regulation of Argl (M2-like macrophages). These results
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suggest immune cell infiltration indeed plays a role in promoting and maintaining the insulin

resistant state of HFD mice.

Proteomics: We used mass spectrometry to quantify CD and HFD liver global proteomes,
identifying 51,689 unique peptides that mapped to 6,384 unique proteins. We used a weighted
least squares regression procedure to find 362 differentially expressed proteins, with 189 up-
regulated and 173 down-regulated in HFD livers (Figure 2-2, bottom middle; Figure 2-S2B).
Proteins up-regulated by HFD are uniquely enriched in fatty acid -oxidation (e.g. CROT, ECII,
HADH), fatty acid transport (CD36, FABP1, FABP2) and carbohydrate biosynthesis (FBPI,
GBE1, GCK, GYS2), while the proteins down-regulated by HFD are uniquely enriched in
cholesterol biosynthesis (CYP51, DHCR7, FDPS, IDI1) and the urea cycle (CPS1, NAGS,
OTC). Both sets of proteins are enriched in amino acid metabolism, carboxylic acid metabolism,
and oxidation-reduction processes. Our findings are consistent with similar targeted proteome

studies of HFD-induced changes in liver [177].

Metabolomics: We obtained metabolomic measurements by mass spectrometry of 381
metabolites in CD and HFD livers (Figure 2-2, bottom right; Figure 2-S2C). We found 96
metabolites that are significantly different between the two diets, with 43 up-regulated and 53
down-regulated by HFD. These metabolites include amino acids (11 up-regulated, 22 down-
regulated by HFD), lipids (11 up, 21 down), carbohydrates (10 up, 1 down), and peptides (2 up,
2 down). We observed increased levels of glucose and other carbohydrate molecules; this was
anticipated because hyperglycemia is a well-established feature of hepatic insulin resistance. The
large number of gluconeogenic amino acids down-regulated by HFD are also consistent with

reports from Zucker diabetic fatty rat livers [196].

The overall changes in gene and protein expression induced by HFD consumption are only
weakly to moderately correlated (r = 0.2 — 0.4), even when we restrict our analyses to genes and
proteins called significantly different between both conditions (Figure 2-S4A-B). The lack of
correlation between protein and mRNA pairs in the absence of additional knowledge of
translational and degradational rates has been observed in many other studies [106]. These

findings are also consistent with results obtained from a smaller, targeted set of mRNAs and
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proteins analyzed in CD and HFD livers (observed r = 0.31) [177]. We also observed specific
biological processes that are enriched in the set of differential mRNAs but not in the differential
proteins (and vice versa). For example, proteins up-regulated by HFD are uniquely enriched in
fatty acid B-oxidation and carboxylic acid catabolism (Figure 2-S4C). These comparisons

demonstrate how individual omic datasets can highlight different aspects of disease processes.

2.2.3. Epigenome and transcriptome dataset integration uncovers transcriptional

regulators influencing differential gene expression

We collected epigenomic and transcriptomic data with the goal of uncovering changes in
transcriptional regulation between CD and HFD livers. To reconstruct this transcriptional
regulatory network, we inferred the genomic binding locations of potential transcriptional
regulators using our ChIP-Seq datasets and DNA binding motif data from TRANSFAC® [129].
As we found little evidence for changes in these histone modifications between diets, we used
the set of significant ChIP-Seq regions in CD livers for our analyses. We searched each dataset
for histone “valleys”, or regions between peaks of local modification enrichment where histones
are depleted and where regulators likely bind (Figure 2-3A), and merged these into one set of
123,974 total genomic loci. We then scanned the genomic sequences underlying these regions
for matches to a set of 1,588 DNA binding motifs that map to at least one human or mouse
transcriptional regulator (Figure 2-3B). For each regulator (motif) and each differentially
expressed gene, a transcription factor affinity (TFA) score was derived as a distance-weighted
sum of individual motif enrichment scores in regions near the gene’s annotated transcription start
site. We then used linear regression of each motif’s TFA scores against the expression levels of
all the differentially expressed genes and took significant regression coefficients (FDR < 0.01) as

evidence for active regulators (Figure 2-3C-D).

In total, we identified 358 significant DNA binding motifs that mapped to 272 unique
transcriptional regulatory proteins. Among these significant regulatory proteins are known liver-
enriched transcription factors, including hepatic nuclear factors la, 1B, and 4a, retinoid X
receptors a and B, peroxisome proliferator-activated receptor a, and C/EBPa [197, 198]. We also

found strong enrichment for nuclear factor I proteins (A, B, C, and X), SOX4, FOXO1, and the
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Figure 2-3. Motif regression procedure identifies transcriptional regulators. (A) We extracted
read density profiles for significantly enriched histone modification levels, smoothed the profiles, and
scanned for “histone valleys,” or regions of local signal depletion (an H3K27Ac enrichment region is
shown here as example). (B) For each valley, we scanned the underlying genomic sequence for
matches to a library of DNA binding factor motifs. Against each differential gene, we computed a
transcription factor affinity (TFA) score for all motifs as a distance-weighted sum of individual match
scores. (C) For each motif, we used linear regression to predict gene expression levels from the motif
TFA scores. (D) This procedure found 358 significant motifs that map to 272 regulatory proteins;

select results are shown in the table.

vitamin D receptor (VDR). These significant factors served as the core transcriptional regulatory

data that we incorporated into our network models.

2.2.4. Prize-collecting Steiner forest model integrates multiple omic data sets

Each type of omic data provides a glimpse into the effect of HFD on a particular regulatory level.
To obtain a more comprehensive view of the data, we expanded upon an established network
modeling algorithm called the prize-collecting Steiner forest (PCSF) [158, 159]. We built a
combined protein-protein and protein-metabolite interactome from the iReflndex (version 13)

database [110] for protein-protein interactions and obtained protein-metabolite interactions from
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the human metabolome database (HMDB, version 3.6) [117] and the human metabolic
reconstruction Recon 2 (version 3) [76]. To account for the differences in reliability of the
various types of interactions, we assigned to each an “edge cost” that scaled inversely with our
confidence in the interaction (see Methods for details). We used this interaction network and the
omic data as input to the PCSF algorithm to identify interactions that connect the omic data

(Figure 2-S5).

As part of the PCSF approach, omic results (e.g. differential proteins) are assigned prizes (e.g. as
log, fold-changes) and the algorithm attempts to maximize the inclusion of these prize nodes
while avoiding low-confidence edges, which have high edge costs. Thus, the algorithm is not
constrained to include all data in the final network, but at the same time is capable of introducing
species not present in the original set of data. These interactome-derived species, termed
“Steiner” nodes, are included when necessary to fill connection gaps between the data. We also
implemented a method that assigns “negative prizes” to interactome nodes with many
interactions. These highly-connected species, referred to here as “hubs”, have a high likelihood
of appearing in network models run with almost any input data (e.g. ubiquitin, water). Negative
prizes discourage the algorithm from using such nodes in the PCSF solution and allow for more

specific interactions to explain the data (Figure 2-S6A-B).

We used as input data, or “terminals” in PCSF parlance, 83 differential metabolites, 329
differential proteins, and the 272 transcriptional regulators identified by our motif regression
analysis. We sampled and merged multiple, related solutions to the PCSF problem by running
the algorithm on the same data multiple times with small amounts of random noise added to the
edge costs. This procedure produced a richer set of possible connections explaining the data and
enabled assessment of individual network components’ robustness. We also assessed how
specific the nodes included in our final model are to hepatic insulin resistance by comparing how
many times each node in the final solution appears in networks generated with random input data
(i.e. nodes selected at random from the interactome that match the degree distribution of the real

input data).
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Figure 2-4. Multi-omic PCSF model uncovers features of hepatic insulin resistance. The full
PCSF model includes 398 terminal nodes and 509 predicted Steiner nodes connected by 2,365
interactions. We divided the solution into 20 sub-networks and highlight the specific biological
processes contained within these. Colored nodes (red or blue) represent terminal nodes, gray nodes
represent Steiner nodes, and shapes indicate node types (proteins, metabolites, transcription factors, or
receptors).

The full PCSF solution (Figure 2-4) includes 907 species connected by 2,365 interactions (also
see Table 2-1). We found that the vast majority of nodes included in the final network are very
specific to our particular problem (Figure 2-S6C). To increase interpretability of the network
model, we identified smaller sub-networks and performed enrichment analyses on these using a
variety of gene and small molecule ontology and pathway sets (Figure 2-S7). Additionally, we
devised a scheme to rank interactome-derived Steiner nodes by their likely importance in the

model according to several features, including the robustness and specificity of nodes. We used a
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Terminal type Number of terminals ~Number included in % included
final model

Metabolites 83 63 75.9
Global proteins 329 301 91.5
Transcription factors 272 34 12.5

Table 2-1. PCSF model terminal node inclusion statistics
weighted summation of scores based on these features to perform this ranking (see Methods for

details).

2.2.5. The PCSF model introduces species with known relevance to metabolic disease

We developed an automated strategy to determine which of the nodes in the network are
expected in the context of the observed metabolic states and related diseases and which are
potentially novel predictions. For this purpose, we used the DisGeNET database [199], which
collates gene-disease information from public data as well as from literature via natural language
processing tools, to determine which of the predicted molecules introduced by the PCSF into the
network (Steiner nodes) are known to be associated with obesity, insulin resistance, and/or type 2
diabetes. Of the 394 protein Steiner nodes included in our model, 121 (~30%) possess some
known disease link according to DisGeNET. Some examples include: clusterin (CLU), in which
polymorphisms are associated with type 2 diabetes [200] and where knock-out in C57BL/6J
mice exacerbates HFD-induced insulin resistance [201]; L-arginine:glycine amidinotransferase
(GATM, aka AGAT), where knock-out in C57BL/6] mice depletes creatine, enhances glucose
tolerance, and protects from diet-induced obesity (effects that, interestingly, can be reversed with
oral creatine supplementation) [202]; and nuclear receptor co-activator 1 (NCOAT1, aka SRC-1),
depletion of which can result in increased glucose uptake, enhanced insulin sensitivity, and
resistance to age-associated obesity and glucose intolerance [203]. Literature review revealed
additional Steiner nodes with known relevance to disease, including the metabolite glyoxylic
acid, which has been characterized as a marker metabolite for type 2 diabetes [183]. Thus, our
model incorporates many predicted nodes with known relevance to these conditions, though
there are still many whose roles are not well-established or have not yet been characterized in

these contexts.

2.2.6. The PCSF model includes processes with known relevance to insulin resistance
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We observed sub-networks enriched in glucose and glycogen metabolism (sub-network 2),
amino acid metabolism (sub-network 1), fatty acid and lipid oxidation (sub-network 7), and
transcriptional regulation (sub-network 11), all well-established aspects of hepatic insulin
resistance (Figure 2-S7). In sub-network 2, up-regulated glucokinase (GCK) connects up-
regulated D-glucose, D-fructose, and its own regulatory protein (GCKR). Several studies have
demonstrated a role for altered GCK regulation and activity in glycemic dysregulation and
diabetes [204-206]. Sub-network 1 includes many down-regulated amino acids (e.g. glycine and
serine) and altered amino acid metabolism enzymes, including aminoadipate aminotransferase
(AADAT) and aminoadipate-semialdehyde synthase (AASS). Several high-ranking Steiner
nodes appear here, including glyoxylic acid and CNDP2 (or peptidase A). Sub-network 11
contains the majority of the transcription factors from our motif regression, including RXRa,
PPARa, and VDR. A high-ranking predicted node in this sub-network is the thyroid hormone
receptor (THRA), which is involved in potentiation of insulin signaling in db/db mice [207] and
reduction of hepatic steatosis in ob/ob mice [208]. Additionally, the Steiner nodes NCOA6 and
NCOR2 (aka SMRT) play roles in regulating insulin signaling and sensitivity [209, 210].

2.2.7. The PCSF model identifies biological features of obesity-induced hepatic insulin

resistance

We found sub-networks enriched in biological processes not typically associated with hepatic
insulin resistance. One such sub-network is enriched in extracellular matrix (ECM)
organizational and structural proteins (sub-network 10, Figure 2-5). Proteins associated with the
ECM in this sub-network include collagens 1A1, 1A2, and 6A1 (COL1A1/1A2/6A1), as well as
endoglin (ENG), fibronectin 1 (FN1), intergrin a5 (ITGAS), and the TGF- receptor 1 (TGFB1).
At the center of this sub-network is FN1 which connects, among other nodes, most of the
collagen proteins and ITGAS. Both ENG and TGFBRI1 are predicted Steiner nodes connected
through ITGAS. Several Steiner nodes in this sub-network rank very highly by our criteria,
including CD79A, 5°-3’ exoribonuclease 1 (XRN1), and clusterin (CLU).
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Figure 2-5. PCSF sub-networks for select biological processes. We highlight PCSF model sub-
networks that are enriched in cell-cell interactions (top left), extracellular matrix (ECM, top middle),
bile acid metabolism (top right), and apoptosis (bottom left). Note that node specificities should only
be compared within sub-networks as overall panel sizes differ for clarity.
Changes to the hepatic ECM may also implicate altered cell-cell communication between
hepatocytes in response to ECM and liver architectural disruption. Indeed, we found a sub-
network enriched in proteins related to cell-cell interactions (sub-network 9, Figure 2-5).
Included in this sub-network are the proteins E-cadherin (CDH1), cadherin 5 (CDHS5), junction
plakoglobin (JUP), and vimentin (VIM). These enrichments strongly suggest that changes to

liver structure and the composition of the ECM are relevant to hepatic insulin resistance.

Another sub-network we identified is enriched in bile acid synthesis pathway members (sub-

network 13, Figure 2-5), which include the terminals ATP binding cassette B11 (ABCBI11),
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cytochrome P450 proteins 27A1 (CYP27A1) and 7B1 (CYP7BI1), very long-chain acyl-CoA
synthetase (SLC27A2), and organic anion transporter 1B3 (SLCO1B3). The terminal CYP27A1
is connected to the Steiner metabolite 27-hydroxycholesterol, the product of CYP27A1’s
enzymatic action on cholesterol in the first step of the alternate bile acid metabolism pathway.
CYP7B1 further metabolizes 27-hydroxycholesterol to 7a-hydroxysterol intermediates in this
pathway. SLC27A2, another terminal, activates the precursor of cholic acid 3a,70,120-
trihydroxy-5B-cholestanoic acid (THCA, a Steiner node) to its CoA derivative (THCA-CoA,
another Steiner node) in steps leading to formation of taurine- and glycine-conjugated bile acids
[211]. Bile acid coenzyme A (BAAT), a high-ranking Steiner node, conjugates these bile acids
for biliary excretion [212], and is indeed connected to, among other metabolites, the Steiner
nodes taurocholic acid and glycocholic acid. The terminal ABCBI11 exports bile salts from
hepatocytes [213] and SLCO1B3, a liver-specific organic anion influx transporter, transports bile
salts, thyroid hormones, and eicosanoids [214]. ACSLI, an acyl-CoA synthetase that plays a role
in lipid biosynthesis and fatty acid degradation, is also a high-ranking Steiner node by our

scheme.

We also identified a sub-network enriched in apoptotic processes (sub-network 5, Figure 2-5).
Terminal proteins involved in apoptosis here include autophagy related 5 (ATGS, a late
apoptosis protein that interacts with FADD ([215]), BCL-2-associated transcription factor 1
(BCLAFI1), and IFN-y-inducible protein 16 (IFI16). The majority of the apoptosis-related
proteins are predicted nodes, including BCL2, BCL2L1, caspases 7, 9, and 10, FAS, the FAS-
associated death domain (FADD), and BAD. The model captures aspects of the extrinsic
apoptotic pathway, whereby the death inducing signaling complex composed of FAS, FADD,
and pro-caspase 8 or 10 signals to downstream effectors [216], as well as the intrinsic pathway,
which involves the pro-apoptotic Bcl-2 family member BAX and anti-apoptotic members BCL2
and BCL2L1 [217]. The model includes both initiator (CASP8, CASP10) and effector caspases
(CASP7) linked to these initiator proteins [218]. Thus, our PCSF model overall suggests a role

for apoptosis in maintaining hepatic insulin resistance.

2.2.8. Liver tissue analysis confirms global alterations in hepatic processes identified by the

PCSF model
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The network results imply roles for unexpected processes related to diet-induced insulin
resistance. To test these predictions, we performed imaging studies on frozen liver sections from
CD and HFD mice. First, we tested the prediction that HFD livers would display altered cell-cell
interactions and overall structural deficiencies. We stained liver sections for Zol, a cytoplasmic

membrane protein of intercellular tight junctions, and cytokeratins 8 and 18, which are dimerized
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Figure 2-6. Hepatic imaging validates global PCSF model predictions.
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Figure 2-6 (continued). Hepatic imaging validates global PCSF model predictions. (A) HFD
induced changes in tight junction structure near bile ducts (BD) as assessed by cytokeratin 8/18
(CK8/18) and Zol1 staining. (B) CK&8/18 staining revealed overall hepatic architectural defects in HFD
samples. (C) We observed enhanced bile acid leakage in HFD livers stained for collagen and
bile/bilirubin compared to CD. (D) TUNEL imaging revealed enhanced regions of hepatocyte
apoptosis in HFD samples. Points on graph represent values from individual fields of view (n =9, 7,
and 4 for HFD livers; n = 4, 5, and 5 for CD livers) and bars are overall TUNEL positive fraction
(total TUNEL positive cells over total cells) based on all fields of view. We found that the overall
difference in TUNEL staining between the diets is statistically significant by two-tailed t-test (p =
0.014).

intermediate filaments present in epithelial cells that help maintain cellular structural integrity.
Using DAPI staining to identify nuclei, we found cellular boundaries and tight junctions around
bile ducts in the liver of CD-fed mice. By contrast, tight junctions and structure near bile ducts of
HFD livers were highly disorganized (Figure 2-6A). In larger fields of view, we saw highly
structured hepatocyte borders and normal architecture in CD livers (Figure 2-6B). In contrast,
HFD livers displayed irregular cytokeratin 8/18 staining with few discernable cell borders,
indicating overall disruption of the hepatic tissue architecture in response to the long-term

dietary challenge.

We also tested the prediction that HFD livers would display abnormal bile acid handling by
staining liver sections for collagen and bile/bilirubin (Figure 2-6C). As expected, we found no
bile acid leakage or accumulation in CD livers. However, we observed significant bile
accumulation in HFD livers. These results corroborate our prediction that HFD livers possess
defects in bile acid maintenance and are consistent with the altered cellular structures we found

surrounding bile ducts of HFD-fed mice.

Finally, we tested whether consumption of a HFD enhances the number of hepatocytes
undergoing apoptosis in the liver. We used DAPI and terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) to assess the number of apoptotic cells. The fraction of
TUNEL positive cells in CD livers was very low (~1%), whereas HFD livers displayed regions
of high TUNEL positivity (as high as 37%, Figure 2-6D). While not prevalent in all regions of
the livers, overall apoptosis was higher in HFD samples (Figure 2-6D, p-value = 0.014). Thus,
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we show here evidence for enhanced hepatocyte apoptosis as a feature of HFD-induced hepatic

insulin resistance.

2.3. DISCUSSION

Our large-scale integrative systems analysis of HFD-induced hepatic insulin resistance
incorporated epigenomic, transcriptomic, proteomic, and metabolomic data. Using a network
approach, we were able to highlight global biological processes perturbed by HFD. The
algorithm also incorporated disease-relevant proteins and metabolites from the interactome that
were either not measured or found to be differentially expressed in our omic data. We validated
several high-level model predictions by examining livers for markers of specific physical
features and biological processes. We found that HFD consumption perturbs hepatic architecture,

disrupts bile acid handling, and enhances hepatocyte apoptosis.

The liver is a major contributor to overall glycemic regulation. Indeed, insulin-stimulated
clearance of blood glucose is mediated, in part, by inhibition of hepatic gluconeogenesis [30], a
fact highlighted by the widespread use of the drug metformin that targets the liver to lower blood
glucose concentration in type 2 diabetic [24]. Consumption of a HFD causes hepatic insulin
resistance, which prevents insulin-mediated inhibition of hepatic gluconeogenesis [30]. As
expected, we found that the HFD feeding in mice caused obesity, insulin resistance, and
impaired glucose homeostasis. The HFD also caused changes in >2,000 genes, 362 global

proteins, and 96 metabolites.

Epigenomic data played an important role in identifying transcriptional regulators relevant to
insulin resistance. We used a motif regression procedure with these data, mRNA-Seq data, and
motif data to find likely transcriptional regulators. The top motifs that emerged from our
approach are consistent with those identified in a prior study that used different epigenomic
techniques [168], and both our study and theirs did not observe many changes in histone
modification levels between the diets despite significant gene expression changes. An advantage

of our integrative modeling approach is that even if a pathway is not detected as changing by one
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experimental method such as ChIP-Seq, it may emerge in the network based on evidence from

other types of data.

To integrate all the omic datasets, we built on the PCSF network modeling approach [158, 159].
The PCSF method is not required to include all omic data yet is capable of introducing critical
predicted nodes important for establishing connections between the detected molecules. PCSF
networks are generally much smaller and more tractable than solutions from more naive methods
and reveal interpretable sub-networks enriched in specific biological processes and pathways.
Here, we have significantly expanded the scope of the PCSF methods by adding physical
associations of proteins and metabolites to the protein-protein interactome. This unified approach
allowed us to capture a wider range of biological pathways and processes relevant to insulin
resistance. We employed several strategies to improve the accuracy of our networks, including
penalizing highly connected (“hub”) nodes, testing the networks for robustness to noise, and

assessing the specificity of nodes to our particular data and problem.

Our integrated approach can identify many different types of links among the omic data. We
found pathways that were largely dominated by proteomic data (e.g. cell-cell interactions, ECM,
apoptosis), but also found several sub-networks almost entirely composed of protein-metabolite
connections (e.g. bile acid metabolism, glucose metabolism). The inclusion of direct
metabolomic data along with protein-metabolite interactions was critical to capturing, for
instance, relevant connections among differential proteins whose roles are best explained in the

context of metabolic processes (e.g. GCK, CYP7B1).

Increasingly, systems biology and omic approaches are being recognized for their utility to the
study of insulin resistance and type 2 diabetes [63]. To date, however, few studies have formally
integrated multiple types of omic data in these contexts, with even fewer including
metabolomics. Prior studies attempting such joint analyses used correlative statistical routines
[133, 135] or methods that overlay proteomic and metabolomic data onto genome-scale
metabolic reconstructions [154]. The CircadiOmics resource maps metabolomic and
transcriptomic data onto interactions derived from known pathway and transcriptional regulatory

data, but lacks methods for identifying high-confidence sub-networks [195]. Our approach goes
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well beyond these previous methods by incorporating multiple data types from the same samples,
allowing for interactions that occur outside well-established signaling or metabolic pathways,
and using advanced approaches to reduce the possible interaction space to only the most relevant
connections, thus increasing the interpretability of results and providing clear guidance for

designing experiments.

Our model uncovered a highly interconnected network associated with the insulin resistant state
in the liver. We predicted that changes to the ECM, cell-cell interactions, and overall hepatic
architecture are features of insulin resistance. Subsequent experiments confirmed that the overall
structure of HFD mouse livers is highly disrupted, especially near bile ducts. Consistent with this
observation, we also found enhanced bile acid leakage (cholestasis) into the tissue of HFD-fed
mouse livers. These structural abnormalities likely also contribute to the increased apoptosis we
observed in insulin resistant livers. The link between hepatic ECM and architectural structural
remodeling with insulin resistance has been studied [219]. Indeed, tail vein injection of HFD-fed
mice with a hydrolase for hyaluronan, an ECM component, reduces features of muscle and liver
insulin resistance [220]. Moreover, integrin ol subunit-deficient mice (ltgal ”) fed a HFD
display reduced fatty liver content, but also severe hepatic insulin resistance, compared to wild-

type HFD-fed controls [221].

The hepatic structural changes detected in HFD-fed mice may be related to changes in apoptosis.
Crosstalk between proteins relevant to insulin resistance and hepatocellular injury, including
TNF, NF-«xB, and JNK, have been proposed as potential drivers of apoptosis in the liver [222].
Indeed, apoptosis is associated with severe hepatocellular injury and steatohepatitis [223]. Here
we report increased hepatic apoptosis in HFD-fed mice. This increased hepatic apoptosis may be
related to dysregulation of the hepatobiliary system [218] and promotes low-grade inflammation

and hepatic insulin resistance.

To summarize, we undertook a large-scale systems biology approach to study HFD-induced
hepatic insulin resistance. We integrated multiple types of omic datasets into a network model
that uncovered altered biological processes associated with the condition. By incorporating

metabolites into the protein-protein interaction network, we were able to identify a wide range of
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molecular changes. We validated several global predictions from our network model with
additional experiments and highlighted components relevant to the hepatic response to HFD
consumption. The pathways and processes we found to be altered by HFD present a wide range
of new directions for future research. Our methods are easily applicable to other large-scale omic

analyses of diverse biological systems and diseases.

2.4. MATERIALS AND METHODS

2.4.1. Animals

We obtained male C57BL/6J mice (stock number 000664) from the Jackson Laboratories. All
mice were housed in a specific pathogen-free facility accredited by the American Association for
Laboratory Animal Care. We fed the mice a standard chow diet (Prolab Isopro RMH 3000,
Purina) for 24 weeks or a high-fat diet (S3282, Bioserve) starting at 8 weeks for 16 weeks HFD.
We measured fat and lean mass noninvasively using 'H-MRS (Echo Medical Systems). We
euthanized all mice at 24 weeks after an overnight fast and froze the livers prior to removal using
clamps cooled in liquid nitrogen. The frozen livers were then pulverized into a powder using a
CryoPREP impactor (Covaris). We prepared aliquots of pulverized liver for all samples for
subsequent analyses. All experiments were carried out in accordance with guidelines for the use
of laboratory animals and were approved by the Institutional Animal Care and Use Committees

(IACUC) of the University of Massachusetts Medical School.

2.4.2. Glucose and insulin tolerance tests

We performed glucose and insulin tolerance tests by intraperitoneal injection of mice with

glucose (1 g/kg) or insulin (1.5 U/kg) using methods described previously [224].

2.4.3. Immunoblot analysis

Protein extracts from pulverized liver were prepared in Triton lysis buffer (20 mM Tris [pH 7.4],

1% Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM B-glycerophosphate, 1
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mM sodium orthovanadate, 1 mM phenylmethyl-sulfonyl fluoride, and 10 pg/ml each of
aprotinin and leupeptin). We quantified protein content by the Bradford method (Bio-Rad).
Standard techniques were used to separate cell extracts (15-80 pg of protein) by SDS-PAGE for
immunoblot analysis using antibodies from Cell Signaling (AKT and pSer473—AKT). The primary
antibodies were detected by incubation with anti-mouse or anti-rabbit IgG conjugated to infrared
dyes (IRDye®, LI-COR Biosciences). We detected immune complexes using the Odyssey

infrared imaging system (LI-COR Biosciences).
2.4.4. mRNA-Seq and analysis

We prepared mRNA-Seq libraries from three CD and three 16 week HFD mouse livers using the
TruSeq RNA Sample Prep Kit vl (Illumina) and size-selected using 2% agarose gel
electrophoresis for 180 +/- 25 base-pairs of insert. We multiplexed mRNA-Seq libraries and
paired-end sequenced samples for 40-50 base-pairs on an Illumina Hi-Seq 2000 machine. On
average, we obtained ~20-30 million raw paired-end sequencing reads. The reads were aligned to
known mouse RefSeq gene transcripts obtained from the UCSC table browser [122] (accessed on
January 25, 2012) and the mouse genome (build mm9) with the splice junction-aware short-read
alignment tool TopHat (version 1.4.0) [225]. We restricted TopHat to only align to known
transcript splice junctions. We observed strong intra-sample correlations between CD (Pearson’s
r > 0.995) and HFD (r > 0.993) replicate gene read count levels (Figure 2-S2A). We used the
Bioconductor package conditional quantile normalization (CQN, version 1.6.0) [226] to remove
systematic biases due to GC-content and gene length coverage and used DESeq2 (version 1.0.18)
[227] to perform differential expression analyses. We considered a gene to be differentially
expressed if it possessed an absolute log, fold-change between conditions > 0.5, an FDR-
adjusted p-value (g-value) < 0.05, and was expressed in at least one tested condition (i.e. > 0.1

FPKM).
2.4.5. ChIP-Seq and analysis

Histone modification ChIP experiments were performed using the MAGnify Chromatin

Immunoprecipitation System kit (Life Technologies, Carlsbad, CA) with antibodies against
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H3K4mel (17-676, Millipore), H3K4me3 (17-614, Millipore), and H3K27ac (ab4729, Abcam,
Cambridge, MA). ChIP-Seq libraries were constructed using the NEBNext DNA Library Prep
Master Mix Set for Illumina (New England Biolabs, Ipswich, MA) and sequenced on an Illumina
Hi-Seq 2000 machine. We aligned raw reads using Bowtie (version 0.12.7) [228] and performed
peak calling using MACS (version 1.4.0rc2) [229] against an IgG control. We considered
significant MACS peaks to be those possessing a p-value < le-6 and an FDR < 10%. We also
performed differential peak analyses between conditions of the same histone mark. We used
MACS-called peaks on replicate-pooled samples and merged significant peak regions from each
condition into one set of common genomic loci. We then extracted raw read counts in these
regions from each individual replicate ChIP-Seq sample and used DESeq2 [227] to perform the
differential enrichment analyses on the read counts. We considered regions possessing an FDR-

corrected p-value < 0.05 as significant.

2.4.6. Global proteomics

We collected global proteomic data from four CD and four 16 week HFD mouse livers. Liver
powder was homogenized (Polytron) in ice-cold lysis buffer consisting of 8M urea supplemented
with 1 mM sodium orthovanadate, 0.1% Nonident P-40 (NP-40), and protease inhibitor and
phosSTOP tablets (Roche). Samples were homogenized on ice using 5x10 sec pulses, with 10
sec intervening periods to prevent tissue heating. Protein concentrations were quantified by a
bicinchoninic acid (BCA) assay (Pierce). Homogenized liver samples were reduced in 10 mM
DTT at 56°C for 45 min and alkylated with 50 mM iodoacetamide at room temperature for 1
hour in the dark. Proteins were digested to peptides with sequencing grade trypsin (Promega) at
1:100 enzyme to substrate ratio at room temperature overnight in 100 mM ammonium acetate,
pH 8.9. Trypsin activity was then quenched with acetic acid at a final concentration of 10%.
Urea was removed by reverse-phase desalting using C18 cartridges (Waters). Samples were then
lyophilized and stored at -80°C. Peptides were labeled with iTRAQ 8plex isobaric mass tags
(AITRAQ, AB Sciex) according to the manufacturer’s protocol.

The iTRAQ labeled peptides were analyzed by multidimensional LC-MS/MS (DEEP SEQ mass
spectrometry) as described previously [230]. Briefly, a NanoAcquity UPLC system (Waters,
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Milford, MA) utilized 2 binary pumps, an autosampler, and an additional 6-port, 2-position valve
(Valco, Austin, TX). Peptides were first fractionated at high pH (10.0) using a reversed phase
column (200 um ID fused silica x 20 cm packed with 5 puM XBridge C18). In the second
dimension, peptides were further resolved at high pH by strong anion exchange chromatography
(200 um fused silica x 20 cm packed with 5 uM SAX; SEPAX technologies, Newark, DE).
Peptides were eluted from each dimension using solutions of acetonitrile and/or ammonium
formate (pH 10) for a total of 20 fractions. Peptides from each fraction were trapped on the final
dimension precolumn (200 pm ID fused silica x 4 cm of POROS 10R2) after in-line dilution
with 0.1% formic acid, and subsequently resolved on an analytical column (25 pm ID fused
silica packed with 100 cm of 5 um Monitor C18, Column Engineering, Ontario, CA) using an
organic gradient: 2-50% B in 580 min, A=0.1% formic acid, B=acetonitrile with 0.1% formic
acid. The analytical column terminated with a ~1 um diameter electrospray emitter [231],
positioned near the mass spectrometer orifice (5600 Triple TOF mass spectrometer, ABI,
Framingham, MA) by use of a computer controlled Digital Picoview Platform (New Objective,
Woburn, MA). The 5600 Triple TOF was operated in information dependent mode (IDA), with
the top 50 precursors (charge state +2 to +5, >70 counts) in each MS scan (800 ms, scan range
350-1500 m/z) subjected to MS/MS (minimum time 140 ms, scan range 100-1400m/z). Dynamic
exclusion was enabled, exclusion duration 20 seconds, and the isolation window was set to unit

resolution. Electrospray voltage was set to 2.2 kV.

Raw mass spectrometry data files were searched using Protein Pilot V4.4 (AB Sciex,
Framingham, MA), with parameters specifying trypsin digestion, 8-plex labeling of peptides, and
carbamidomethylation of cysteine residues. Multiplierz scripts [232] were used to filter PSMs to
a 1% false discovery rate, extract iTRAQ reporter ion intensities, and correct for isotopic
impurities as well as minor variations in source protein concentration. We re-aligned peptides to
the set of non-redundant protein sequences (filtered for mouse sequences) obtained from NCBI's
BLAST FTP database (accessed August 5, 2013) using the BLAST command line tool with the
recommended parameters for short amino acid sequence alignment: -p blastp -e 200000 -F F -G

9-E1-MPAM30-W 2-A40-CF.
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We used a weighted least squares (WLS) regression procedure to find differentially expressed
global proteins between conditions (based on [233]). We included only peptides that uniquely
mapped to one protein and ignored isoform-specific information. We first performed a sample-
wise normalization on the isotope-corrected iTRAQ channels using the procedure described in
[234] to adjust for global differences in overall protein abundance and imputed missing values
with a k-nearest-neighbors procedure (k = 10). We observed strong intra-sample correlations
between CD (Pearson’s r > 0.946) and HFD (r > 0.921) replicates using these normalized and
imputed values (Figure 2-S2B). We then assigned weights to individual peptide measurements
per condition by fitting a locally weighted curve through a plot of the coefficient of variation
(CV) versus log, mean abundance for all peptides. The CV for each peptide in each condition
was set to the maximum of the fit value or the raw calculated CV value and weights were
assigned as the inverse of this value. For every protein i, we fit a WLS regression model that
included information from all peptides 1...j to estimate the overall effect of the treatment

condition on the expression level of the protein, i.e.:

10g2(yijcr) =K+ pep; + cond, + Ejer

where yj;.- are the corrected abundances (iTRAQ intensities) from replicate measurements r of
peptides j derived from protein i in conditions ¢ (i.e. CD and HFD), u; is the overall fit mean for
protein i, the pep;; terms are the fit mean abundances for peptides j (necessary for aligning
distributions as individual peptide abundances from the same protein can vary over orders of
magnitude), cond,. is the overall treatment effect on protein i, and ¢;., are the error terms. The
cond,. terms are of interest as these are the fit log, fold-change values for the proteins between
the conditions. We tested the cond,. terms for significance using two-tailed t-tests and corrected
p-values for multiple hypothesis testing using the Benjamini-Hochberg false discovery rate
(FDR) procedure for all i proteins tested. The Iscov function in MATLAB (The MathWorks, Inc.,
Natick, MA) was used to implement the WLS regression procedure. We retained as significantly

differentially expressed proteins those with an FDR-corrected p-value < 0.1.

2.4.7. Metabolomics and analysis
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We extracted and split samples (6 independent livers per condition, per Metabolon Inc.
recommendations for appropriate statistical power) into equal parts for analysis on GC-MS and
LC-MS/MS (+/- ESI) platforms (Metabolon Inc.). A total of 381 metabolites were identified and
quantitated. We imputed missing values with a k-nearest neighbors procedure (k=10),
normalized samples according to the procedure in [234], and tested for differences using two-
tailed t-tests, correcting p-values for multiple hypotheses. We observed strong intra-sample
correlations between CD (Pearson’s r > 0.923) and HFD (r > 0.85) replicate abundances (Figure

2-S2C). Metabolites possessing and FDR < 0.1 were deemed significant.

2.4.8. Motif regression analysis

Histone valleys: We scanned enriched H3K4mel, H3K4me3, and H3K27Ac regions for histone
valleys, or areas of local signal depletion in broad enrichment regions. We used peaks called
from pooled-replicate runs of MACS [229] against IgG controls for each ChIP-Seq data type.
We created smoothed signal profiles for these peaks from the aligned sequencing reads for each
dataset. To do this, we shifted reads a fixed distance towards their 3’ ends (by the amount
estimated from the MACS peak-shift model), created profiles from the read pileup data in the
peak regions, and smoothed these profiles using a moving average filter. We then used a
numerical procedure to find local minima in each signal profile. For each base-pair in an
individual enrichment region, a “valley score” was calculated as the difference in read pileup
height between the minimum of the two neighboring local maxima in the +/- 500 base-pair
windows around the current point and the current point pileup height itself. A point whose valley
score was 50% smaller in magnitude than the smaller of the two nearest local maxima was
designated as a valley point. Neighboring valley points were then merged into a single region
and the point with the maximum valley score in this region was reported as the valley location.
We then took a fixed 100 base-pair window around each valley location and reported these as the
valley regions for each dataset. We then created a combined set of valleys from all the
discovered regions in the H3K4mel, H3K4me3, and H3K27Ac peak regions, considering one
base-pair overlap as a valid intersection while also retaining unique regions from each individual

dataset. In total, we found 123,974 unique valley regions that were used for further analyses.

65



Motif matching and scoring in valleys: We used 1,588 DNA-binding motifs annotated to human
and mouse transcriptional regulatory proteins from release 2013.3 of TRANSFAC® [129],
represented as position-specific scoring matrices (PSSMs). We extracted the underlying genomic
sequences from the histone valley regions and used TAMO [235] to store the motif PSSMs, read
in the valley region sequences, and score the sequences for matches to the motifs. We computed
a normalized log-likelihood ratio (LLR) score as LLR,,;; = (LLR — LLRjn)/(LLR y0x — LLR,in)
for every k-base-pair sub-sequence in the valley regions, where k is the length of the motif
PSSM. A motif match was called if LLR,,,, was greater than or equal to the TRANSFAC®-
computed minimum false positive matrix similarity score threshold (minFP) for that motif. The
maximum matching LLR,,,, for each motif in each sequence was retained and used to create a
matrix of genomic regions by motifs. Regions with no matches to a given motif were given a

score of zero.

Transcription factor affinity score calculations: We retained histone valley regions that were
within -50/+10 kilobases from the transcription start sites of at least one differentially expressed
gene between CD and HFD livers. We computed transcription factor affinity (TFA) scores for

each motif against each gene as:
— n _d/n,g,i/dn (m)
TFA, .= LLR, (&

where TFA,, is the TFA score for motif m against gene g, LLR,,,; is the normalized LLR score
in the " valley region near gene g for motif m, d,, g, is the distance of the " motif match from
the TSS of gene g in base-pairs, and d,(m) is the exponential distance constant for motif m (set to
10,000 bases for all motifs here). From here, a matrix of genes by TFA scores was created for the

set of differentially expressed genes between CD and HFD.

Motif regression: For each transcription factor motif, we built a simple univariate linear
regression model to predict gene expression levels from the computed TFA scores. We used the
individual TFA scores for each gene as the predictor variables and the corresponding log, FPKM
expression values as the response variables. We mean-centered and variance scaled (i.e. z-

scored) both the predictor and response data and assessed the significance level for each
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regression slope using the t-distribution. We corrected individual p-values for multiple
hypotheses and retained significant motifs as those possessing an FDR g-value < 0.01. By this

metric, 358 motifs possessed significant regression slopes.
2.4.9. Prize-collecting Steiner forest (PCSF) modeling

PCSF formulation: The prize-collecting Steiner forest [158, 159] aims to find a forest F(Vg, Er)
from the graph G(V, E, c(e), p(v)), with nodes V, edges E, edge costs c(e) > 0, and node prizes

p(v) for v € V, that minimizes the objective function:

PCSF(F)= Y p(+ Y c(e) + wlk

vOve e0E;

where « is the number of trees in the forest, @ is a tuning parameter that influences the number of

trees included in the final forest, and:

p(v) =B p,(v) - uldegree(v)”.

The f parameter scales the importance of node prizes versus edge costs in the optimization and
can be a uniform value for all terminals or uniquely set for a given input data type. We employed
a “negative prize” scaling scheme to each node in G proportional to its degree, or number of
connections in the graph, to reduce the influence of highly-connected, well-studied nodes that
have a high likelihood of appearing in PCSF solutions run with almost any input data. The
parameter u scales the influence of the negative prizes and the exponent n allows for non-

linearity in the scaling.

Interactome: We built a combined protein-protein and protein-metabolite interactome from
which the PCSF derived connections between our input data. We used the set of human
interactions contained in version 13 of the iRefIlndex database [110] as our source for protein-
protein interactions, which consolidates information from a variety of source databases. We used

the MlIscore system [236] to assign confidence scores (ranging from O to 1) to these interactions,
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which considers the number of publications (publication score), the type of interaction (type
score), and the experimental method used to find the interaction (method score). We extracted
the relevant scoring information for interactions from the iReflndex MITAB2.6 file, using the
redundant interaction group identifier (RIGID) to consolidate interactions between the same two
proteins reported by multiple databases, and used a java implementation of Mlscore (version

1.3.2, obtained from https://github.com/EBI-IntAct/miscore/blob/wiki/api.md) with default

parameters for individual score weights. We only considered interactions between two human
proteins (i.e. we excluded human-viral interactions) and converted protein identifiers, generally
provided as UniProt or RefSeq accessions, to valid HUGO gene nomenclature committee
(HGNC) symbols. Once converted, we removed redundant interactions (generally arising from
isoform-specific interactions that map to the same protein/gene symbols) and retained the

maximum observed score. This produced a total of 175,854 unique protein-protein interactions.

We collected protein-metabolite interactions from version 3.6 of the human metabolome
database (HMDB) [117] and supplemented these with additional manually curated interactions
from the human metabolic reconstruction Recon 2 (version 3) [76]. We assigned uniform
weights to the HMDB interactions, using the median of protein-protein interaction scores
(~0.448) as this value, and protein identifiers were converted to valid HGNC gene symbols. We
extracted reaction-gene link information from the Recon 2 MATLAB file Recon2.v03.mat,
available at humanmetabolism.org. For edges included in both HMDB and Recon 2, we added
0.2 or 0.3 to their default edge scores if they were assigned a curated score of 3 or 4 in Recon 2.
We included unique edges from Recon 2 with a curated score of 2 or greater, adding 0.1 or 0.3 to
their edge scores if they were assigned a score of 3 or 4. We also excluded edges between drugs,
drugs metabolites, and metabolites of non-endogenous origins (according to HMDB’s origin
information). This protein-metabolite interactome was merged with the iRefIndex protein-protein

interactions to produce a final interaction network of 1,016,322 edges between 36,891 nodes.

PCSF run details and final model selection: We converted all mouse genes (proteins) to their
human orthologs using orthology information from the mouse genome informatics (MGI)
database and HGNC for proteins. Also, we retained metabolites that mapped to a valid HMDB

identifier. We used as prize values in the PCSF optimization the absolute values of the log, fold-
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changes between CD and HFD livers for the global protein and metabolites terminals and used
the absolute values of the regression coefficients from the motif regression results for the
transcription factor terminals. In total, we supplied to the PCSF 83 metabolites that possess valid
HMDB identifiers, 329 global proteins that were successfully mapped to orthologous human

genes, and the 272 transcriptional regulators identified by our motif regression analysis.

We ran the PCSF across an array of values for the relevant tuning parameters. The f values for
global proteins and metabolites varied over [5, 10] and for transcription factors over [1, 5, 10].
The w parameter was varied over [1, 2, 3] and the u for protein terminals (global proteins and
transcription factors) varied over [le-7, Se-7, le-6, 5e-6, le-5, 5e-5, le-4, Se-4]. The u for
metabolite terminals was varied over [le-5, le-4, 1e-3]. The exponent n used in the negative
prize scaling was set to 2 for all PCSF runs. We elected to use different S values for the
transcription factor termini as the prize values for these are on a different scale from the global
proteins and metabolites (regression coefficients versus observed log, fold-changes). We also
used independent u values for metabolites and proteins as the degree distributions between the
two source databases differ. The message-passing algorithm used to solve the PCSF problem
requires as additional input a depth parameter D, which specifies the maximum path length from
the artificial source node to any node in the forest, a reinforcement parameter g, which influences
the convergence of the solution by producing more optimal solutions at lower values at the
expense of increased run time, and a noise parameter r, which adds random noise to edges during
run time. We used D values of 5, 7, and 10, a g of 1e-3 (to force more optimal solutions), and an
r of le-5. For sub-optimal runs (see below), this r value was manipulated to add noise to the

interactome edge scores.

We used several selection criteria to arrive at a final set of parameters for our network model.
Generally, we preferred larger values for £ in an effort to include as much data as possible in the
final networks. The u parameters strongly influences the type of nodes included in the solution.
To select appropriate y values, we visualized, for every combination of all the tuning parameters,
both the average degrees of selected terminal and Steiner nodes, as well as the nodes included in
the optimal solutions (see Figure 2-S6A-B). We preferred solutions in which the difference in

average degree distribution between the terminal and algorithm-introduced Steiner nodes were
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similar; a large disparity here is indicative of generic solutions in which very common, high
degree nodes are used to connect the data. We also clustered a binary heatmap of nodes included
in the various solutions to look for parameter regimes in which the included nodes at least
partially stabilize. The most stable region occurs at low u values for both proteins and
metabolites; however, it is in these regions where we see the most generic Steiner nodes included
(e.g. ubiquitin and amyloid beta precursor for proteins and water, oxygen, and NADH for
metabolites) and where the degree distributions are very discrepant between terminal and Steiner
nodes. Therefore, we selected a solution in a semi-stable region of included nodes that excluded
most of these generic species and where the Steiner and terminal node degree separation was not
too large. We also employed robustness and specificity tests of results to our particular input data

to validate our parameter selections.

The final PCSF solution presented here used f = 10 for global proteins and metabolites, 5 = 1 for
transcription factors, w = 3, D =7, u = 5e-5 for global proteins and transcription factors, and u =
le-3 for metabolites. We merged the optimal PCSF run with 50 “sub-optimal” solutions run at
the same parameter settings but with random noise added to the interactome edge weights. Edge
noise was introduced via the r parameter in the message-passing code and was set to 0.1. This
particular randomization procedure allows the algorithm to find alternative connections between
the data nodes that may be of biological importance when interpreting the data and network
results. Note that the PCSF model is no longer a forest due to the merger of random runs. We
also re-introduced all available edges between included solution nodes from the interactome,

whether selected by the algorithm or not, into the final solution.

We assessed the specificity of each node in the final solution by running the algorithm 100 times
at the same parameter settings, but with random input data. We define specificity in this context
as the frequency with which a given terminal or Steiner node in the final PCSF model appears in
runs with random input data. For each random run, we selected random terminals matching the
degree distribution of the real terminals. For each real terminal, a node from the interactome
matching (within a small error range) the degree of the original true terminal was randomly

selected and assigned the same prize value as the original true terminal. At these final parameter

70



settings, we found that the included terminal and Steiner nodes were generally highly specific to

our particular data (see Figure 2-S6C).

The full PCSF solution includes 76%, 91%, and 13% of includable (i.e. species converted to
appropriate identifiers or genes/proteins possessing a human ortholog) metabolites, global
proteins, and transcription factors. The low inclusion percentage of transcriptional regulators
results from the fact that the f value for these terminals is lower than the £ value applied to the
metabolites and global proteins. When solutions were run with larger £ values, a greater
percentage of the transcriptional regulators were indeed included in the models (74% at frp = 5
and 86% at f7r = 10). The solutions run with these larger values generally produced networks
with large sub-clusters comprised almost completely of interconnections amongst the
transcriptional regulators themselves. Therefore, we selected a smaller value to highlight the

most influential transcriptional regulators.

PCSF model clustering and visualization. We used a community clustering algorithm that
maximizes network modularity [237] to break the full PCSF model into smaller sub-networks.
We performed enrichment analyses on the nodes in each of these subnetworks using as gene sets
human gene ontology terms, pathway members from the small molecule pathway database
(SMPDB) [238], and canonical pathway node sets provided by MSigDB [239] derived from

various database sources. We visualized all networks with Cytoscape [240].

PCSF model node ranking scheme. We used a weighted sum of feature scores to rank nodes
contained in our PCSF network. We did this for Steiner and terminal nodes separately as some
feature score distributions differ between the two node sets. The features we used for each node
were: 1) the robustness of the node to edge noise (i.e. the frequency of solutions run with random
edge noise including this node), 2) the specificity of the node (one minus the frequency with
which the node showed up in solutions run with random input data), 3) the mean of nearest
neighbor node specificities (k = 2 for all neighborhood features), 4) the mean of interactome edge
weights connecting the nearest neighbor nodes, 5) the fraction of neighbor nodes that are
terminals, and 6) and the size of the local neighborhood to which the node belongs, which was

scored as a saturating function of the neighborhood size. We set the weights for the six feature
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scores by taking the inverse of the score variances across all nodes; this scheme favors features
that have more discriminatory power between nodes. For example, the robustness feature had a
higher weight than specificity as the majority of included nodes were highly specific to our

problem. The final weights were adjusted such that the sum of the weights equaled one.

2.4.10. Liver tissue section analysis and imaging

Histology was performed using liver fixed in 10% formalin for 24 hours, dehydrated, and
embedded in paraffin. Dewaxed and rehydrated sections (7 um) were cut and stained for bile
acids (product # KTHBI, American Master Tech Scientific) or with hematoxylin & eosin
(American Master Tech Scientific). Sections (7 um) prepared from liver frozen in O.C.T.
compound (Tissue-Tek) were stained with Oil-red-O (Sigma) to visualize lipid droplets. We
acquired images using a Zeiss Axiovert 200M microscope. Liver architecture was assessed using
frozen sections fixed with 4% paraformaldehyde and stained with an antibody to cytokeratin 8
(TROMA-1-c, DSHB, University of Iowa). Immune complexes were detected using anti-rat Ig
conjugated to Alexa Fluor 488. Liver damage was assessed in frozen sections (7 um) fixed with
cold ethanol/acetic acid (2:1) using an in situ cell death kit (Roche). Bile duct architecture was
assessed in frozen sections (7 um) fixed with cold methanol by staining with antibodies to Zo-1
(sc-10804, Santa Cruz) and Cytokeratin 8/18 (sc-52325, Santa Cruz). Immune complexes were
detected using anti-mouse Ig conjugated to Alexa Fluor 488 and anti-rabbit Ig conjugated to
Alexa Fluor 633 (Life Technologies). DNA was detected by staining with DAPI (Life
Technologies). Fluorescence was visualized using a Leica TCS SP2 confocal microscope

equipped with a 405-nm diode laser.

2.4.11. TUNEL imaging analysis

We used CellProfiler (version 2.1.1) [241] with a custom-built analysis pipeline from modules
included in the program to analyze TUNEL images. All images across CD and HFD samples
were analyzed in a single run of the program at the same settings. The pipeline we used: 1)
loaded images (two channel images for all fields of view, red for DAPI and green for TUNEL),

2) converted images to grayscale, 3) identified nuclei by DAPI staining using the
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“IdentifyPrimaryObjects” module, setting the typical diameter minimum and maximum to 5 and
25, discarding objects touching the border, using the automatic thresholding strategy, and using
shape to distinguish clumped objects and to draw dividing lines between objects, 4) identified
TUNEL positive objects with “IdentifyPrimaryObjects” with same settings for DAPI, though we
set the minimum and maximum diameter to 4 and 20, 5) used the “RelateObjects” module with
nuclei treated as parents and TUNEL objects treated as children, and 6) used “FilterObjects” to
filter nuclei by TUNEL positive objects. The TUNEL positive percentage per field of view was
calculated as the number of positive nuclei over the total. For each liver, we calculated a single
TUNEL positive fraction by dividing the total number of TUNEL positive nuclei by the total
number of nuclei across all fields of view (n =9, 7, and 4 for HFD livers; n =4, 5, and 5 for CD

livers). We used a two-tailed t-test to test for statistical significance between CD and HFD livers.

2.4.12. Clustering and enrichment analyses

All hierarchical clustering analysis was done with the clustergram function in Matlab with
Euclidean distance and average linkage. For enrichment analyses, we used custom Matlab code
implementing the hypergeometric distribution for enrichment p-value calculations and used the
Benjamini-Hochberg FDR procedure to correct for multiple hypotheses. In general, an FDR <

0.1 was deemed significant.

2.5. SUPPLEMENTARY FIGURES
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Figure 2-S1. Physiological analysis of CD-fed and HFD-fed mice and analysis of hepatic

steatosis.
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Figure 2-S1 (continued). Physiological analysis of CD-fed and HFD-fed mice and analysis of
hepatic steatosis. (A, B) Insulin tolerance (ITT, A) and glucose tolerance (GTT, B) tests were
performed using CD-fed and HFD-fed (16 weeks) mice (mean = SEM; n = 20; *, p < 1e-06; **, p <
5e-07; *** p < 1e-07). (C) CD-fed and HFD-fed mice were fasted overnight and the blood
concentration of glucose was measured (mean = SEM; n=20; *, p < 1e-06). (D-F) The body mass of
CD-fed and HFD-fed mice was measured (mean = SEM; n=20; #, p < 5e-13). Fat and lean mass were
measured by 'H-MRS analysis (mean = SEM; n=20; ##, p < 5e-16). (G, H) CD-fed (G) or HFD-fed
(H) mice were treated with insulin (1 U/kg) by intraperitoneal injection. Hepatic AKT was examined
by immunoblot analysis by probing with antibodies to pSer*”>-AKT and AKT (mean + SEM; n = 3).
(I) Consumption of a HFD causes hepatic steatosis: sections of the liver from CD-fed and HFD-fed
mice were stained with hematoxylin & eosin (H&E) or with Oli Red O. The images are representative

of sections prepared from three mice.
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Figure 2-S2. Replicate correlations for mRNA-Seq, global proteomic, and metabolomic datasets.
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Figure 2-S2 (continued). Replicate correlations for mRNA-Seq, global proteomic, and
metabolomic datasets. (A) Replicate correlations for mRNA-Seq samples (left — CD replicates, n = 3,
log, normalized read counts; right — HED replicates, n = 3, log, normalized read counts). (B) Replicate
correlations for global proteomic samples (left — CD replicates, n = 4, log, normalized iTRAQ levels;
right — HFD replicates, n = 4, log, normalized iTRAQ levels). (C) Replicate correlations for
metabolomics samples (left — CD replicates, n = 6, log, normalized abundances; right — HFD

replicates, n = 6, log, normalized abundances).
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Figure 2-S3. TagMan assays for immune cell marker genes. We performed TagMan assays on
immune cell marker genes to further establish evidence for the role of inflammatory processes in
promoting and maintaining the insulin resistant state following HFD. All comparisons are between
nine independent liver samples for each condition, except for Emrl which used eight livers per

condition. *** p <0.001, ** p <0.01.
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Figure 2-S4. Comparison of gene and protein expression changes between CD and HFD livers.
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Figure 2-S4 (continued). Comparison of gene and protein expression changes between CD and
HFD livers. (A) Clustergrams of mRNA and protein log, fold-changes between CD and HFD livers
restricted to all observed gene-protein pairs (left), differential genes or proteins (middle), and
differential genes and proteins (right). Pearson correlation coefficients are shown for all comparisons.
(B) Scatter plot of same data at right in panel (A), highlighting individual species. (C) Comparison of
gene ontology enrichments specific to either mRNA or proteomic data in species that were either

down-regulated (left) or up-regulated (right) by HFD.
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Figure 2-S5. Schematic overview of PCSF algorithm. The PCSF algorithm is initialized by

connecting all terminal species (data in box at top right) via an artificial root node. A message-passing
algorithm is then run to generate a network model that minimizes the overall objective function
(middle box on right, first equation) which balances penalties accrued by excluding data (prize
function is in middle box on right, second equation) versus costs required to include edges between
nodes (lower confidence edges are more costly). The schematic on the left is a toy representation of a
final forest output form one run of the algorithm. The shading in the area with edges from
transcription factors to genes indicates that we do not directly include transcription factor-gene edges
or gene nodes in the model, though the prize values on transcription factors are influenced by inferred

regulation near differentially expressed genes.
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Figure 2-S6. PCSF model parameter selection criteria and final node specificities.
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Figure 2-S6 (continued). PCSF model parameter selection criteria and final node specificities.
We ran the base PCSF algorithm across a number of settings for the major tuning parameters. The plot
in (A) shows the average degree of Steiner and terminal nodes included in the optimal solutions at the
given parameter settings and (B) shows a binary clustergram of nodes included/excluded in the same
solutions. We show tested parameter ranges for: £ on [5, 10], u for metabolite nodes on [le-5, le-4,
le-3], u for protein nodes on [le-7, Se-7, 1e-6, 5e-6, 1e-5, Se-5, le-4, Se-4], and w on [1, 2, 3]. The
blue arrows indicate the final parameter settings: f = 10, u for metabolites = 1e-3, u for protein nodes
= 5e-5, and o = 3. The final parameter values were chosen based on several criteria: 1) there was a
small difference in Steiner node and terminal node degrees (A), 2) very general, “hubby” nodes (e.g.
ubiquitin, water, etc.) were excluded from the solution (generally the left-most cluster, top row, in (B),
and 3) a high percentage of terminal nodes were included in the solution (note the elimination of
several terminal nodes at higher values of ¢ and lower values of S towards the bottom right corner in
(B)). Also note that the most stable clustering of solutions is at the left-most side of the panel (B)
clustergram; however, these solutions are generally those that contain the most “hub” nodes and are
the most discrepant in terms of node degree differences and were therefore discarded. (C) We ran the
PCSF algorithm at the chosen optimal parameter settings 100 times with random, degree-matched
terminals and computed specificities as one minus the fraction of times a node in the optimal solution
appeared in the random solutions. Overall, both Steiner and terminal nodes included in our final model

are generally highly specific to our particular system.
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Figure 2-S7. PCSF model subnetworks.
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Figure 2-S7 (continued). PCSF model subnetworks.
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Figure 2-S7 (continued). PCSF model subnetworks.
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CHAPTER 3

TEMPORAL TRANSCRIPTIONAL PROFILING REVEALS RGS4 AS A
SELECTIVE MEDIATOR OF HEPATIC METABOLIC ADAPTATION TO
OBESITY-INDUCED INSULIN RESISTANCE

Obesity promotes the development of insulin resistance, hyperglycemia, and metabolic syndrome
which can lead to B-cell dysfunction and type 2 diabetes. In this study we profiled the hepatic
transcriptomes of mice fed a standard chow diet (CD) or a short- or long-term high-fat diet
(HFD). We found that diet progressively dysregulated the hepatic transcriptional landscapes of
these mice. We also treated mice with the type 2 diabetes drug metformin and profiled their
transcriptomes. We found that metformin only modestly affected transcriptional changes in these
mice, although it significantly improved a number of physiological parameters related to insulin
and glucose sensitivity. In addition, we performed temporal transcriptional profiling following
insulin stimulation in CD and long-term HFD-fed mice. Insulin induced a robust transcriptional
response in CD mice that was almost completely blunted in HFD. However, we observed a small
set of 137 genes specifically modulated by insulin in HFD livers. Among these were regulators
of G-protein signaling (RGS) genes, particularly Rgs4. We validated these findings and
demonstrated that RGS4 protein expression is also up-regulated in HFD-fed mice following
insulin stimulation. We fed liver-specific insulin receptor knock-out (LIRKO) mice a HFD and
found that this effect of insulin on Rgs4 gene expression was eliminated by LIRKO. We
additionally obtained Rgs4 knock-out mice and found that these mice are more insulin resistant
compared to wild-type controls following HFD. Thus, we found a potentially novel mechanism

by which hepatic insulin signaling is partially maintained following HFD.
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3.1. INTRODUCTION

Human obesity is a major world-wide health problem that promotes hyperglycemia, insulin
resistance, and, ultimately, type 2 diabetes [5, 6, 8]. During obesity, increased adipose tissue
mass enhances the release of free fatty acids, along with hormones and proinflammatory
cytokines [8]. These free fatty acids are effective signaling molecules whose accumulation in

muscle and liver is strongly associated with insulin resistance [13].
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Proper liver function is critical to maintaining normal metabolic health. Insulin regulates glucose
homeostasis by increasing its uptake in peripheral tissues (primarily skeletal muscle) and via
inhibition of hepatic gluconeogenesis [28]. In the liver, insulin binds and activates the insulin
receptor and initiates signaling cascades that suppress gluconeogenesis and promote glycogen
synthesis [33]. Elimination of insulin signaling in hepatocytes by insulin receptor knock-out
(LIRKO) causes insulin resistance and hepatic dysfunction [41]. Accumulation of lipid
metabolites in the liver activates pathways that disrupt normal insulin signaling, including PKCe
activation and subsequent inhibition of the insulin receptor’s kinase activities [35]. Such
mechanisms that disrupt the liver’s ability to suppress glucose production, however, are still not
fully understood. For instance, mice lacking Aktl, Akt2, and Foxol, three genes encoding
proteins involved in the canonical insulin signaling pathway, are still able to suppress hepatic
gluconeogenesis in response to insulin [45]. Therefore, analysis of hepatic insulin resistance can
reveal new molecular mechanisms that may be exploited for therapeutic benefit against diseases

like type 2 diabetes.

To study obesity-induced hepatic insulin resistance, we fed mice short (6 week) or long-term (16
week) high-fat diets (HFD) and compared these to normal chow diet (CD) fed controls. We used
RNA-Seq to comprehensively profile hepatic transcriptional responses to these diets. We
additionally treated CD and HFD-fed mice with metformin, the most common type 2 diabetes
drug that principally acts in the liver to suppress hepatic glucose production [24, 31], to profile
its effects on hepatic transcription. We also analyzed the effects of insulin stimulation in CD and
long-term HFD-fed mice, performing temporal transcriptional profiling on livers treated with the
hormone for variable lengths of time. This allowed us to compare transcriptional responses to

insulin in normal and obese livers directly.

Our analyses demonstrated that both short and long-term HFD induce extensive changes in
hepatic gene expression, that metformin induces modest effects on these responses, and that
long-term HFD almost completely eliminates normal transcriptional responses to insulin. We did
find, however, a small set of 137 genes that uniquely respond to insulin in HFD livers. Among

these are genes that encode regulators of G-protein signaling. In particular, we found that Rgs4 is

89



specifically induced by insulin stimulation in the hepatocytes of HFD-fed mice and that this
effect is dependent on the presence of the insulin receptor. We further characterized the role of
this gene by feeding liver-specific Rgs4 knock-out mice a HFD. We found that Rgs4-null mice
are more insulin resistant on a HFD compared to wild-type controls. Thus, we identified a
candidate gene whose expression is uniquely insulin-sensitive in HFD livers that appears to play

arole in conferring insulin sensitivity following this diet.

3.2. RESULTS

3.2.1. HFD feeding progressively degrades metabolic health and promotes obesity and

insulin resistance, while metformin improves health during HFD

We examined diet-induced obesity in mice by feeding a HFD for 6 or 16 weeks. We also fed
control mice a standard laboratory CD. We examined several physiological parameters to
confirm that feeding a HFD causes obesity and insulin resistance. Glucose and insulin tolerances
tests demonstrated that both 6 and 16 week HFD-fed mice were severely intolerant to both
insulin and glucose compared to CD-fed controls (Figure 3-S1A-B). Additionally, immunoblots
of insulin-stimulated AKT activation in these mice showed progressive decreases for this
molecular readout as HFD feeding duration increased (Figure 3-S1C-E). We also performed
hyperinsulinemic-euglycemic clamp studies to directly assess insulin resistance in conscious
mice across all conditions. HFD feeding caused a progressive decrease in glucose infusion rate (a
measurement of whole body insulin sensitivity), increased hepatic glucose production, and
decreased hepatic insulin action, whole body glucose turnover, glycolysis, and glycogen plus
lipid synthesis during the clamps (Figure 3-1A). We also found that glucose uptake by the
gastrocnemius muscle and epididymal adipose tissue during the clamps was progressively
suppressed by HFD feeding (Figure 3-S2A-B). These data confirm that consumption of a HFD

causes progressively severe insulin resistance.

In addition to dietary perturbations, we also treated groups of CD, 6 week, and 16 week HFD-fed
mice with the widely prescribed type 2 diabetes drug metformin. During hyperinsulinemic-

euglycemic clamps, we found that metformin treatment in 16 week HFD-fed mice improved
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Figure 3-1. Physiological analysis of HFD-fed mice.
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Figure 3-1 (continued). Physiological analysis of HFD-fed mice. (A) CD-fed and HFD-fed (6
weeks and 16 weeks) mice at age 24 weeks were treated without or with metformin and examined
using hyperinsulinemic-euglycemic clamps to measure the glucose infusion rate, clamp hepatic
glucose production (HGP), hepatic insulin action, whole body glucose turnover, whole body
glycolysis, and glycogen plus lipid synthesis (mean + SEM; n = 8). (B) Mice were examined using
metabolic cages to measure Vo,, Vcop, respiratory exchange ratio (RER), energy expenditure, physical
activity, and food consumption (mean = SEM; n = 8). (C) Mice were examined using 'H-MRS to
measure total body mass, fat mass, and lean mass (mean £ SEM; n = 8). * p <0.05; ** p <0.01; ***

p <0.001 vs CD. #p <0.05; ## p <0.01; ### p < 0.001 vs Control HFD.

several measures of metabolic health, including enhanced glucose infusion rates, insulin action,
and whole body glycolysis (Figure 3-1A). Metformin treatment in 6 week HFD-fed mice
produced minimal effects on these same parameters, where mice only showed improved insulin

action compared to non-treated 6 week HFD-fed controls.

We also used metabolic cage analyses to further characterize the metabolic states of these mice.
We found that both 6 and 16 week HFD caused decreased consumption of O, (Voy), release of
CO; (Vcop), respiratory exchange ratio, energy expenditure, and physical activity (Figure 3-1B).
Such changes contribute to the development of obesity. Indeed, 'H-MRS analysis demonstrated
that HFD feeding caused a progressive increase in fat mass in the absence of significant changes
in lean tissue mass (Figure 3-1C). With metformin treatment, we observed increases in Voo,
Vcoe, energy expenditure, and physical activity (Figure 3-1B) coupled with reduced fat mass in
both 6 and 16 week HFD-fed mice (Figure 3-1C). Together, these data establish that feeding a
HFD causes obesity and insulin resistance that partially develops within 6 weeks and fully
develops after 16 weeks. We also demonstrated that metformin improves many characteristics

associated with metabolic health, particularly in mice fed long-term HFD.

3.2.2. HFD induces extensive and progressive hepatic transcriptional dysregulation while

metformin drives modest alterations to hepatic transcriptomes

We used RNA-Seq to profile the hepatic transcriptomes of CD, 6 week, and 16 week HFD mice

treated without or with metformin. Using non-metformin treated CD livers as controls, we
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detected greater than 3,000 genes differentially expressed in at least one of the five treatment
conditions (Figure 3-2A). Diet by far played the greatest role in determining the extent of
transcriptional dysregulation. Metformin treatment alone in CD livers induced expression
changes in a set of 266 genes that are modestly enriched in glutathione transferase activities.
HFD induced expression changes in 1,137 and 2,507 genes following 6 and 16 weeks of feeding,
respectively. The majority of genes whose expression levels were altered by the shorter-term
HFD are maintained at 16 weeks, where further exposure to HFD expands the total pool of
affected genes (Figure 3-2B). Within the sets of genes commonly up-regulated by 6 and 16
weeks HFD (491 genes), we found strong enrichments for immune, stress, and defense
responses, along with lipid metabolic processes and cytokine responses, while genes commonly
down-regulated by both HFDs are involved in small molecule metabolic processes, including
amino acids, carboxylic acids, and glutamine. Within the expanded set of genes altered by the
longer term 16 week HFD are enrichments for extracellular and membrane components in the set
of up-regulated genes, along with apical junction complex components in the down-regulated

genes.

In HFD livers treated with metformin, we again detected more total expression changes
following 16 week HFD feeding (1,882 genes) versus 6 weeks (1,452 genes). We found
substantial overlap in the genes called differentially expressed in treated and non-treated HFD
livers versus non-metformin treated CD controls (Figure 3-2C). In 16 week HFD livers, where
we observed improved measures of insulin sensitivity as a consequence of treatment (Figure 3-
1), metformin reduced the total pool of differentially regulated genes. Both treated and non-
treated 16 week HFD livers showed expression changes in genes related to immune and defense
responses, along with oxidation-reduction processes, lipid metabolism, and other small molecule
metabolic processes. In genes uniquely differentially regulated in metformin treated livers, we

found enrichments for sterol and cholesterol metabolic processes.

We also directly compared metformin treated HFD livers to their respective non-treated groups
and, as observed when comparing CD treated and non-treated samples, found small total
numbers of significantly differentially expressed genes (179 and 247 genes for 6 and 16 week

HFD, respectively). We then asked which genes metformin consistently alters the expression of
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Figure 3-2. Short- and long-term HFD- and metformin-induced changes in liver mRNA
transcription. (A) Heatmap of z-score normalized (gene-wise) mRNA expression measurements for
3,141 genes in CD, CD plus metformin (CD+met.), 6 week HFD, 6 week HFD plus metformin, 16
week HFD, and 16 week HFD plus metformin liver samples (n = 3 for all conditions). Displayed
genes are those found to be differentially expressed (Jlog, fold-change| > 0.5, g-value < 0.05) in any of
five treatment conditions against control CD group. (B) Venn diagrams of genes found to be
differentially expressed in 6 week HFD or 16 week HFD against CD. The left panel displays genes up-
regulated in at least one of the HFD conditions while the right panel displays genes down-regulated by
at least one of the HFD treatments. (C) The left panel shows a Venn diagram comparing genes found
to be differentially expressed in 6 week HFD versus CD against 6 week HFD plus metformin versus
CD. The right panel shows a Venn diagram comparing genes found to be differentially expressed in

16 week HFD versus CD against 16 week HFD plus metformin versus CD.

in all dietary conditions and found a small set of 24 such genes. Metformin consistently altered
the expression levels of all these genes in the same direction, up-regulating 12, including Acat3,
Acot5, Cox7c, and Ringl, and down-regulating 12, including Cebpb, Cyp3a44, and Mbnli2.
Among these, Cebpb mRNA expression is known to be down-regulated by metformin in
hepatocytes and deletion of this gene reduces hepatic steatosis and diabetes in db/db mice [242].
Thus, metformin appears to induce modest direct effects on hepatic transcription, though such

changes may play critical roles in driving its therapeutic effects in the liver.
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3.2.3. Insulin induces robust transcriptional responses in CD livers and a blunted, yet

distinct, response in 16 week HFD samples

We next profiled hepatic responses to insulin by treating CD and 16 week HFD mice
intraperitoneally with 1 U/kg of the hormone. We performed RNA-Seq on liver samples from
mice stimulated for 15, 30, 60, and 120 minutes and compared each time point to their respective
non-stimulated (PBS) baselines to identify insulin-sensitive genes. We uncovered 851 and 166
such genes in CD and 16 week HFD livers, respectively (Figure 3-3A-B). We identified a small
set of 29 genes that are commonly insulin-sensitive in CD and 16 week HFD livers (Figure 3-
3C), including Sgkl (up-regulated across both time courses), Txnip (down-regulated across
both), Fbfl (up-regulated in CD, down-regulated in HFD), and Hlx (down-regulated in CD, up-
regulated in HFD).

The majority of identified insulin-responsive genes are uniquely sensitive in mice fed a particular
diet, with 822 genes specifically sensitive in CD livers and 137 genes sensitive in 16 week HFD
livers alone. In CD livers, unique insulin-responsive genes are enriched for processes related to
glucose homeostasis (e.g. up-regulated Foxol and Stat3 and down-regulated Gyk and Hnfla),
lipid biosynthesis (e.g. up-regulated Cypl7al, Insigl, and Ldlr and down-regulated Apoa4 and
Insig2), and sequence-specific transcription factor activities (e.g. up-regulated A#f3, Atf4, Fos,
Foxo3, Jun, Rara, and Smad2 and down-regulated Foxal, Hhex, Ppara, Smad7, and Smad9). In
addition, insulin induced up-regulation of glycolytic enzymes, including Gck and Pklr, a
response that is anticipated given insulin’s known role in suppressing hepatic gluconeogenesis
and promoting glycolysis. We also observed down-regulation of Pdk4 by insulin in CD livers,

which is also a known glycolysis-promoting hepatic response to insulin [243].
We used affinity propagation [244] to cluster the temporal expression profiles of insulin-

responsive genes in CD livers (Figure 3-3D, blue curves). In general, expression changes occur

early and return near baseline at later time points, occur early and remain altered throughout, or
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Figure 3-3. Temporal transcriptomic analysis following insulin stimulation in CD and 16 week
HFD-fed mouse livers. (A) Heatmap of z-score normalized (gene-wise) mRNA expression
measurements for 851 genes in CD livers found to be differentially expressed at any time point (15,
30, 60, and 120 minutes) post insulin stimulation compared to no insulin baseline control ([log, fold-
change| > 0.5, g-value < 0.05, n = 3 for all time points). (B) Heatmap of z-score normalized (gene-
wise) mRNA expression measurements for 166 genes in 16 week HFD livers found to be differentially
expressed at any time point (15, 30, 60, and 120 minutes) post insulin stimulation compared to no
insulin baseline control (|log, fold-change| > 0.5, g-value < 0.05, n = 3 for 0, 15, 60, and 120 minutes
insulin, n = 6 for 30 minutes). (C) Venn diagram comparing insulin-responsive genes in CD and 16
week HFD insulin stimulation time courses. (D) Temporal transcriptional profiles of 851 insulin
responsive genes in CD livers (blue traces) clustered into groups by affinity propagation (self-
similarity = -7). Corresponding profiles for the same genes in 16 week HFD livers are shown as red
traces in each plot. The numbers within each plot report how many CD insulin responsive genes fall

into each cluster.
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progressively increase or decrease across the time course. We then overlaid the 16 week HFD
temporal profiles for these same genes onto the CD profiles to compare their temporal expression
patterns, finding that these genes are indeed not responsive to insulin stimulation in HFD livers
(Figure 3-3D, red curves). Thus, long-term HFD generally suppresses the normal
transcriptional responses to insulin in the liver, consistent with the severe insulin resistant states

of these mice.

3.2.4. Temporal analysis of insulin-induced transcription reveals Rgs4 as an insulin-

sensitive target in insulin resistant livers

While we observed that long-term HFD generally suppresses normal transcriptional responses to
insulin, we did indeed observe expression changes in 166 genes following insulin stimulation in
these livers, 137 of which are not significantly insulin-sensitive in CD livers (Figure 3-4A).
Nearly all expression changes occurred at the 30 minute post-insulin stimulation time point and
returned to near basal levels beyond this time. To enhance our confidence in these findings, we
performed our 16 week HFD temporal analysis using additional mouse livers collected following
30 minutes of insulin treatment (for six total livers). Among these 137 genes, we observed four
that are up-regulated by insulin stimulation and that encode proteins involved in termination of
G-protein coupled receptor signaling, namely Adrkb2 (or Grk3, G-protein-coupled receptor
kinase 3), Rgsl, Rgs2, and Rgs4 (regulators of G-protein signaling, or RGS). Adrkb2 encodes a
B,-adrenergic receptor kinase that phosphorylates ligand-occupied receptors, thereby blocking
signaling [245], and RGS proteins are GTPase activating proteins that inactivate G-proteins

directly to shorten signaling [246].

We particularly focused additional analyses on Rgs4 expression following insulin stimulation. It
is established that RGS4 protein binds and inhibits the heterotrimeric GTPases Gog and Gou;
[247]. Rgs4 gene expression specifically increased following hormone stimulation in 16 week
HFD livers, more than doubling (2.25 fold-change) 30 minutes post stimulation before returning
to basal levels at the end of the time course (Figure 3-4B). This Rgs4 transcriptional response
was not observed in CD livers treated with insulin. To confirm our RNA-Seq results, we

measured hepatic Rgs4 mRNA by TaqMan® assays. These experiments confirmed that Rgs4
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Figure 3-4. Insulin-stimulated transcriptional responses in 16 week HFD and Rgs4 mRNA and
protein expression in liver. (A) Temporal transcriptional profiles of 137 genes uniquely insulin
responsive in 16 week HFD livers (red traces) clustered into groups by affinity propagation (self-
similarity = -3). Corresponding profiles for the same genes in CD livers are shown as blue traces in
each plot. The numbers within each plot report how many 16 week HFD insulin responsive genes fall
into each cluster. (B) Temporal transcriptional profiles for Rgs4 gene in CD (blue) and 16 week HFD
(red) livers. Marking at 30 minute time point in 16 week HFD represents significant differential
expression for Rgs4 against basal no insulin samples. (C) TagMan mRNA expression measurements
for Rgs4 gene normalized to 18S mRNA in basal mouse livers or mice treated with 1 U/kg insulin for
30 or 60 minutes. P-values are reported for significantly differential comparisons. (D) Western
immunoblot quantification for an antibody against RGS4 protein normalized to tubulin in basal CD
and 16 week HFD mouse liver samples (-insulin) or in mice treated for 8 hours with 1 U/kg insulin

(+insulin). P-values are reported for significantly differential comparisons.

expression is indeed increased in 16 week HFD livers following 30 minutes of insulin
stimulation (Figure 3-4C). We also observed significant up-regulation of Rgs4 mRNA transcript

levels 60 minutes post-stimulation in HFD livers, along with significant down-regulation of Rgs4
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in CD livers at this same time point. We also detected via Western immunoblots that RGS4
protein expression is indeed increased in 16 week HFD livers following long-term (8 hour)
insulin stimulation. Together, these data indicate that insulin resistance generally does suppress
normal insulin signaling, but that altered actions of insulin on liver regulatory pathways exist
during insulin resistance. Here, we demonstrate that RGS4 is selectively altered by insulin in

long-term HFD livers.

3.2.5. RGS4 is expressed in hepatocytes and its up-regulation by insulin in HFD livers is

insulin receptor dependent

To confirm that RGS4 is indeed expressed and regulated in hepatocytes, we prepared primary
hepatocytes from CD mouse livers and tested the effect of insulin on Rgs4 mRNA expression in
these cells. This analysis demonstrated that Rgs4 is indeed expressed in hepatocytes and that the
slight insulin-mediated inhibition of Rgs4 mRNA expression we observed in whole CD livers is
also observed in cultured primary hepatocytes (Figure 3-5A). We also found that treatment of
primary hepatocytes with the inflammatory cytokine TNFa caused increased expression of Rgs4

mRNA and protein (Figure 3-5B-C).

Given these results, we next sought to characterize whether or not the insulin-stimulated increase
in Rgs4 mRNA expression in HFD mice reflects signaling via the insulin receptor in hepatocytes.
We obtained mice that are selectively insulin receptor deficient in hepatocytes (Alb-cre””
Insr**LF or LIRKO) along with control mice (Alb-cre”" Insr'”*) (Figure 3-S4). We fed
groups of LIRKO and control mice a CD or a 16 week HFD and measured Rgs4 mRNA
expression via RT-PCR following treatment with or without insulin. We found that insulin-
stimulated increases in Rgs4 gene expression were detected in HFD-fed control mice, but not in
HFD-fed LIRKO mice (Figure 3-5D). Insulin receptor deletion did not affect Rgs4 expression
patterns in CD-fed mice. These results further demonstrate that the enhancement of Rgs4 mRNA
expression by insulin in HFD mice occurs in hepatocytes and that this effect is dependent on
signaling via the hepatic insulin receptor. Thus, we provide further evidence that selective insulin

receptor mediated signaling events are active in insulin resistant HFD-fed mouse livers.
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Figure 3-5. Insulin and TNFa regulation of Rgs4 in primary hepatocytes and Rgs4 expression in
HFD-fed LIRKO mouse livers. (A, B) Rgs4 mRNA expression was measured by RT-PCR in mouse
primary hepatocytes following treatment without and with 100 nM insulin (30 minutes, A) and
without and with 10 ng/ml TNFa (24 hours, B) (mean £ SEM, n = 3). (C) RGS4 protein expression
was measured in mouse primary hepatocytes following treatment without and with 10 ng/ml TNFa for
24 hours (mean + SEM, n = 3). (D) Hepatic Rgs4 mRNA expression was measured by RT-PCR
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analysis in 16 week HFD-fed mice either expressing (Ins
Insr™*™"*F or LIRKO) the liver insulin receptor treated without and with 1 U/kg insulin for 30

minutes. *p < 0.01; **p < 0.001.

3.2.6. RGS4 deletion in liver exacerbates HFD-induced insulin resistance

We demonstrated that RGS4 mRNA and protein expression are increased following insulin
stimulation in 16 week HFD mice and that this up-regulation is dependent on the presence of the
insulin receptor in hepatocytes. We next sought to characterize the significance of this action by
insulin on RGS4 expression in the liver. It is established that RGS4 blocks Gog-mediated

activation of PLCP and subsequent activation of PKC [247]. This is significant because hepatic
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PKC is activated by feeding a HFD (Figure 3-S3) and because this signaling pathway can cause
hepatic insulin resistance [33]. Thus, insulin-stimulated RGS4 activation in HFD livers may
serve to improve hepatic insulin sensitivity by limiting PKC signals. Elimination of this

regulatory activity by RGS4 may further promote insulin resistance following HFD feeding.

To test the effect of RGS4 deletion in the liver, we obtained hepatocyte-specific deficient Rgs4
mice (Alb-cre” Rgs4“**** or L-KO) and control wild-type (L-WT) mice (Alb-cre”"). We
extracted DNA from the tails of both mice to check for the presence of the appropriate alleles
(Figure 3-6A). Additionally, we extracted liver tissue DNA and performed PCR to identify the
appropriate alleles (Figure 3-6B). We then confirmed that L-KO mice do not express RGS4
protein in the liver (Figure 3-6C). We fed both 8 week old L-WT and L-KO mice a HFD over a
16 week period and found that both sets of mice progressively gained weight, though L-KO mice
gained slightly less weight than the L-WT controls at each time point (Figure 3-6D). At 16
weeks HFD, 'H-MRS analysis showed no difference in lean mass between the two groups,
though total mass and fat mass were slightly higher in WT mice compared to L-KO (Figure 3-
6E). We performed glucose (Figure 3-6F) and insulin (Figure 3-6G) tolerance tests on 16 week
HFD-fed L-WT and L-KO mice and found no effect of RGS4 deletion during the GTT. We did,
however, observe a significant effect during the ITT where L-KO mice were more insulin
resistant than controls. We additionally found that RGS4 deletion did not affect fasted blood
glucose levels following HFD, but did observe lower levels of glucose in L-KO mice compared
to L-WT controls (Figure 3-6H). These results indicate that RGS4 plays a role in regulating

hepatic insulin sensitivity following HFD.
Additional experiments are currently underway to assess the role of RGS4 deletion on PKC
activity in the liver. Hyperinsulinemic-euglycemic clamp studies will also be used to further

characterize the effect of RGS4 deletion on insulin sensitivity and other relevant physiological

parameters.

3.3. DISCUSSION
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Figure 3-6. Rgs4 deletion in mouse and physiological analysis. (A) DNA isolated from tail snips
from control (L-WT) and liver Rgs4 knockout mice (L.-KO) was genotyped to identify wild-type and
floxed Rgs4 alleles. (B) DNA isolated from liver samples of floxed control (L-WT) and liver Rgs4
knockout mice (I.-KO) was analyzed by PCR to identify floxed and deleted Rgs4 alleles. (C) Protein
extracts prepared from L-WT and L-KO hepatocytes were analyzed for expression of RGS4 by
immunoblot. (D) The body mass of L-WT and L-KO mice fed a HFD was examined over time (mean
+ SEM; n=7-10, * p < 0.05). (E) L-WT and L-KO mice fed a HFD (16 weeks) were examined using
"H-MRS to measure total body mass, fat mass, and lean mass (mean = SEM; n =9 (L-WT), n=10 (L-
KO), *** p < 0.005). (F, G) HFD-fed (16 weeks) L-WT and L-KO mice were examined at age 24
weeks using glucose tolerance tests (GTT, F) and insulin tolerance tests (ITT, G) (mean + SEM; n = 8-
12). (H) Blood glucose levels of fed and fasted L-WT and L-KO mice fed a HFD (16 weeks) were
examined (mean = SEM; n=10). * p <0.05.

In this study, we examined the hepatic transcriptomes of mice fed normal chow, short-term high-
fat, and long-term high-fat diets. We used insulin and glucose tolerance tests, hyperinsulinemic-
euglycemic clamps, and metabolic cage analyses to characterize the physiological effects of
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HFD in these mice. These assays demonstrated that mice fed HFD progressively show signs of
severe insulin resistance and glucose intolerance. We additionally treated these mice with the
type 2 diabetes drug metformin. We found that metformin had a modest effect on transcription
compared to HFD (in terms of raw numbers of affected genes), but highlighted a few key genes
consistently altered by the drug across the diets, some of which are known targets of metformin
action (e.g. Cebpb), that may be linked to the drug’s mechanism of action in the liver [242].
Metformin did improve a number of physiological readouts related to insulin action in HFD
livers. In addition, we performed temporal transcriptomic profiling of CD and 16 week HFD
mouse livers following treatment with intraperitoneal insulin. We observed a robust
transcriptional response to insulin in CD livers (>800 altered genes), but found that the vast
majority of these insulin-dependent changes were blunted by HFD. We did observe, however, a
small set of 137 genes that uniquely respond to insulin in HFD livers. Among these are genes

encoding RGS proteins, particularly Rgs4.

We confirmed our finding of selective Rgs4 insulin sensitivity with targeted gene expression
analysis in mouse livers. We also used primary mouse hepatocytes to demonstrate that Rgs4 is
indeed expressed and sensitive to insulin and TNFa in this cell type. In addition, we showed that
RGS4 protein expression is elevated following insulin stimulation in HFD mice. To test whether
or not these results reflect signaling through the insulin receptor, we treated HFD-fed mice
expressing or lacking the hepatic insulin receptor with insulin and found that the presence of this
protein was necessary for the up-regulation of Rgs4 gene expression by insulin during HFD. We
additionally obtained mice either expressing (L-WT) or lacking (L-KO) liver Rgs4 to further test
the function of this gene. We found that L-WT and L-KO both gained weight on a HFD, though
L-KO mice gained slightly less weight at each time point tested. This was due to changes in the
amount of accumulated fat mass. We performed insulin and glucose tolerance tests on these mice
and found no differences between the groups during GTT, but found a significant impairment of
insulin sensitivity during ITT in L-KO mice compared to L-WT. Thus, RGS4 appears to play a

role in regulating hepatic insulin sensitivity following HFD.

The lack of a robust transcriptional response to insulin in 16 week HFD mice was in itself not

very surprising given that these mice are severely insulin resistant and glucose intolerant.
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However, the finding of a distinct transcriptional response in HFD mice that, at least in the case
of Rgs4, was dependent on the presences of the hepatic insulin receptor was intriguing. The
observation of selective versus total hepatic insulin resistance in diabetic mice provides evidence
towards this notion of active insulin signaling following HFD [40]. Selective insulin resistance is
a state whereby insulin fails to suppress hepatic glucose production but still induces lipogenesis,
creating a simultaneous hyperglycemic and hyperlipidemic state [39]. Total insulin resistance by
LIRKO disrupts both branches of hepatic insulin action [40, 41]. More recent evidence proposes
that liver insulin signaling is mostly intact and capable of promoting hepatic lipogenesis during
type 2 diabetes, while enhanced intrahepatic FFAs, particularly acetyl CoA, resulting from
enhanced lipolysis from white adipose tissue inhibit suppression of glucose production
independent of insulin signaling [47, 48]. Our transcriptional data from HFD mice and results
from HFD-fed LIRKO mice support this view of at least partially intact hepatic insulin signaling

in obese mice.

RGS proteins are GTPase activators that inhibit and shorten signaling through G-proteins [246].
RGS4 in particular blocks Gog-mediated activation of PLCP and subsequent activation of PKC
[247]. This protein has mostly been studied in the context of neurological functions and diseases,
including opiate tolerance and dependence [248], Parkinson’s disease [249], and schizophrenia
[250, 251], along with heart failure [252]. We showed here that PKC activation is higher in 16
week HFD-fed mice compared to CD controls, consistent with earlier reports of hepatic lipid
accumulation leading to protein kinase C epsilon (PKCeg) activation [33, 38]. PKC can associate
with the hepatic insulin receptor and impair kinase signaling, while knock-down of PKCe in rat
livers protects them from lipid-induced insulin resistance [38]. RGS4 activation in hepatocytes
following HFD may act as a compensatory mechanism that limits signaling through the PKC
pathway to enhance canonical insulin signaling (Figure 3-7). Indeed, we found that mice lacking
RGS4 were more insulin resistant compared to wild-type controls when fed a long-term HFD.
We did not observe a similar effect of RGS4 deletion during glucose tolerance tests. This could
result from compensation via increased insulin release from the pancreas during GTT in HFD-
fed L-KO mice. We are currently undertaking additional experiments to assess the role of RGS4
deletion on PKC activity in the liver. These studies can directly indicate effects of RGS4 on

downstream G-protein signaling. We are also performing hyperinsulinemic-euglycemic clamp
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Figure 3-7. Proposed mechanism of RGS4 activity in HFD livers. Signaling through G-protein
coupled receptors (GPCR) during HFD leads to up-regulation of protein kinase C (PKC) activity,
which can inhibit up-stream components of the canonical insulin signaling pathway. RGS4 activity is
increased via an unknown, yet insulin receptor-dependent, mechanism in HFD livers specifically.
RGS4 is known to decrease signaling through GPCRs via its GTPase activities, thereby likely limiting
some signaling potential toward downstream PKC activation. Abbreviations: insulin receptor
substrates (IRS); phosphatidylinositol-3-OH kinase (PI3K); phosphatidylinositol (4, 5) bisphosphate
(PIP,); phosphatidylinositol (3, 4, 5) triphosphate (PIP;); protein kinase B (AKT); 3-phosphoinositide
dependent protein kinase-1 (PDK1); glycogen synthase kinase 3 (GSK3); glycogen synthase (GYS);
mechanistic target of rapamycin (mTOR); sterol regulatory element binding protein (SREBP);
forkhead box protein Ol (FOXO1); Heterotrimeric G, protein (Gg1); Guanosine di(tri)phosphate
(GDP/GTP); G protein a,; subunit (agq;); G protein By subunit (By); phospholipase C B (PLCB); diacyl
glycerol (DAG).

studies to further characterize the effect of RGS4 deletion on insulin sensitivity and other
physiological parameters. Thus, in this work we identified a potentially novel mechanism by

which insulin resistant livers preserve some level of canonical insulin signaling.

3.4. MATERIALS AND METHODS

3.4.1. Animals
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C57BL/6J (stock number 000664) mice, B6.Cg-Tg(Alb-cre)21Mgn/J mice (stock number
003574) [253] mice, B6.Cg-Rgs4™"™/J and B6.129S4(FVB)-Insr™* "/ (stock number
006955) [254] were obtained from The Jackson Laboratories. All mice used for these studies
were backcrossed to the C57BL6/J strain (ten generations) and housed in a facility accredited by
the American Association for Laboratory Animal Care. Male mice were fed either a control diet
(CD, Prolab Isopro RMH 3000, Purina) or a high fat diet (HFD, S3282, Bioserve) at age 8 weeks
(for 16 weeks HFD) or age 18 weeks (for 6 weeks HFD). All mice were euthanized at age 24
weeks. Fat and lean masses were noninvasively measured using 'H-MRS (Echo Medical

Systems).

Treatment of mice with metformin (Sigma, PHR1084) was initiated at age 8 weeks (for 16 week
time points) or 18 weeks (for 6 week time points). Metformin was dissolved in drinking water to
attain a dose of 270 mg/kg/day lean body mass by dilution of a freshly prepared 10 mg/ml stock
solution. Lean mass and fat mass were determined initially at 8 weeks of age, and subsequently
every 2 weeks, by 'H-MRS analysis, and the preparation of metformin-treated water was
adjusted biweekly to maintain 270 mg/kg/day lean body mass. Control studies showed that mice
do not consume less water when metformin is added and that each mouse drinks an average of 4
ml of water per day. Metformin treated water was replaced three times per week for the duration

of the experiment. All mice were euthanized at age 24 weeks.

For insulin treatment studies, CD- and HFD-fed mice were starved overnight after which 1 U/kg
of insulin (Novolin R, Novo Nordisk) diluted in PBS (or PBS alone) was administered by
intraperitoneal injection. The mice were euthanized at various times following insulin
administration, and the livers were frozen prior to removal using clamps cooled in liquid
nitrogen. Frozen livers were pulverized into a powder using a CryoPREP impactor (Covaris) and

aliquots of pulverized liver were prepared and used for subsequent analyses.

All experiments were carried out in accordance with guidelines for the use of laboratory animals
and were approved by the Institutional Animal Care and Use Committees (IACUC) of the

University of Massachusetts Medical School.
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3.4.2. Genotype analysis

Genomic DNA was examined by PCR analysis to identify Cre recombinase using amplimers 5’-
TTACTGACCGTACACCAAATTTGCCTGC -3 and 5-
CCTGGCAGCGATCGCTATTTTCCATGAGTG -3’ (450 bp Cre DNA fragment) and 5’- GTT
TTG TAA AGG GAG CCG AC-3’ and 5’- CCT GAC TAC TGA GCC TGG TTT CTC-3’ (224
bp control DNA fragment). Genotyping of Insr**" mice was performed using the amplimers 5’-
GATGTGCACCCCATGTCTG-3" and 5’-CTGAATAGCTGAGACCACAG-3’ to detect the
Insr*™ (279 bp) and Insr™** (313 bp) alleles. Genotyping of Rgs4“** mice was performed using
the amplimers 5’-GCT CAC CTT GGG AAG TAG CA-3’ and 5’-CTG TGT TCG CAG GAA
TCT GA-3’ to detect the Rgs4" (352 bp) and Rgs4"" alleles (400 bp). Detection of deleted
Rgs4 alleles in liver was determined by PCR analysis of genomic DNA using amplimers 5’-GCT
CAC CTT GGG AAG TAG CA-3’ and 5’-CTG GAC CAC ATT CCT TCA TTC A-3’ to
identify Rgs4" (2927 bp) and Rgs4”* (502 bp) alleles.

3.4.3. Hyperinsulinemic-euglycemic clamp studies.

Clamp studies were performed at the Mouse Metabolic Phenotyping Center at the University of
Massachusetts Medical School. A 2-hr hyperinsulinemic-euglycemic clamp was conducted using
overnight fasted conscious mice with a primed and continuous infusion of human insulin (150
mU/kg body weight priming followed by 2.5 mU/kg/min; Humulin, Eli Lilly), and 20% glucose

was infused at variable rates to maintain euglycemia [255].

3.4.4. Metabolic cages

Food/water intake, energy expenditure, respiratory exchange ratios, and physical activity were
measured using metabolic cages (TSE Systems) by the Mouse Metabolic Phenotyping Center at

the University of Massachusetts Medical School. The mice were housed under controlled

temperature and lighting with free access to food and water.
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3.4.5. Glucose and insulin tolerance tests

Glucose and insulin tolerance tests were performed by intraperitoneal injection of mice with

glucose (1g/kg) or insulin (1.0 U/kg) using methods described previously [224].

3.4.6. Blood analysis

Blood glucose was measured with an Ascensia Breeze 2 glucometer (Bayer). Insulin
concentration in plasma was measured by multiplexed ELISA using the Luminex 200 system
(Millipore). Plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) activity
were measured using the ALT and AST Reagent kit (Pointe Scientific) with a Tecan Infinite
MI1000 plate reader (Tecan). Plasma concentrations of triglycerides and cholesterol were
determined by FPLC analysis by the Mouse Metabolic Phenotyping Center at the University of

Cincinnati.

3.4.7. Primary hepatocytes

Primary hepatocytes were prepared from mice as previously described [256]. Briefly, a modified
2-step perfusion method using Liver Perfusion Media and Liver Digest Buffer (Invitrogen) was
performed. Cells were seeded on plates pre-coated (1 h) with collagen 1 (BD Biosciences) in
plating medium (DMEM, 4.5 g/L glucose) supplemented with 10% FBS, 0.2% BSA, 2 mM
glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, 100 pg/ml streptomycin, 1 uM
dexamethasone, and 1 nM insulin. After attachment (2 h), the medium was removed, and the
hepatocytes were incubated (22 h) in maintenance medium (DMEM 1.0 g/L glucose)
supplemented with 0.2% BSA, 2 mM glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin,
100 pg/ml streptomycin, and 0.1 uM dexamethasone). When indicated, the hepatocytes were
incubated with TNFa (10 ng/ml (R&D Systems) diluted in PBS containing 0.5% fat-free BSA
(Sigma). or insulin (100 nM, Sigma).

3.4.8. Quantitative RT-PCR
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Total RNA was extracted from the pulverized frozen mouse livers (RNeasy kit, Qiagen),
converted to cDNA (High Capacity RT kit, Life Technologies) and quantitative PCR analysis of
mRNA expression was performed using a Quantstudio PCR machine (Life Technologies) and
TalqMaln® assays for Rgs4 (Mm00501389_m1). A duplex PCR was performed in a single well
using TaqMan® assays to quantify the target and 18S mRNA (catalog number 4308329; Life

Technologies). The data are presented as relative mRNA expression normalized to 18S mRNA.

3.4.9. Immunoblot analysis

Protein extracts from pulverized liver and cultured hepatocytes were prepared in Triton lysis
buffer (20 mM Tris [pH 7.4], 1% Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25
mM B-glycerophosphate, 1 mM sodium orthovanadate, 1 mM phenylmethyl-sulfonyl fluoride,
and 10 pg/ml each of aprotinin and leupeptin). Protein content was quantified by the Bradford
method (Bio-Rad). Standard techniques were used to separate cell extracts (15-80 pug of protein)
by SDS-PAGE for immunoblot analysis using antibodies from Santa Cruz (RGS4), Cell
Signaling (phospho-PKC™ ! AKT, phospho-AKT***"*), Millipore (phospho-Tyrosine) and
Sigma-Aldrich (a-Tubulin). The primary antibodies were detected by incubation with anti-mouse
or anti-rabbit IgG conjugated to infrared dyes (IRDye®, LI-COR Biosciences). Immune

complexes were detected using the Odyssey infrared imaging system (LI-COR Biosciences).

3.4.10. mRNA-Seq and analysis

We prepared mRNA-Seq libraries from all mouse livers using the TruSeq RNA Sample Prep Kit
vl (Illumina) and size-selected using 2% agarose gel electrophoresis for 180 +/- 25 base-pairs of
insert. We multiplexed mRNA-Seq libraries and paired-end sequenced samples for 40-50 base-
pairs on an Illumina Hi-Seq 2000 machine. On average, we obtained ~20-30 million raw paired-
end sequencing reads. The reads were aligned to known mouse RefSeq gene transcripts obtained
from the UCSC table browser [122] (accessed on January 25, 2012) and the mouse genome
(build mm9) with the splice junction-aware short-read alignment tool TopHat (version 1.4.0)

[225]. We restricted TopHat to only align to known transcript splice junctions.

109



We performed all differential expression analyses with DESeq2 (version 1.0.18) [227]. Within
the DESeq framework and prior to running the generalized linear model, we used the
Bioconductor package conditional quantile normalization (CQN, version 1.6.0) [226] to remove
systematic biases due to GC-content and gene length coverage. We used the values calculated by
CQN as offsets in the DESeq GLM (as recommended in the DESeq2 manual). For temporal
transcriptional profiling following insulin stimulation, we ran the CD and 16 week HFD
differential expression analyses with multi-contrast GLMs, using the respective non-insulin-
stimulated conditions as baselines and each subsequent time point as contrasts against this. For
dietary and metformin treatment comparisons, we used single contrast GLMs of each test
condition against non-metformin treated CD samples as a baseline. Throughout, we considered a
gene to be differentially expressed if it possessed an absolute log, fold-change between
conditions > 0.5, an FDR-adjusted p-value (g-value) < 0.05, and was expressed in at least one
tested condition (i.e. > 0.1 FPKM). For temporal analyses, a gene passing these criteria in at least

one comparison against baseline was considered “insulin sensitive.”

3.4.11. Clustering and enrichment analyses

All hierarchical clustering analysis was done with the clustergram function in Matlab with
Euclidean distance and average linkage. For enrichment analyses, we used custom Matlab code
implementing the hypergeometric distribution for enrichment p-value calculations and used the
Benjamini-Hochberg FDR procedure [257] to correct for multiple hypotheses. In general, an
FDR < 0.1 was deemed significant. We used mouse gene ontology (GO) terms (GOC validation
date January 30, 2014; downloaded February 5, 2014) for all enrichment analyses [258].

110



3.5. SUPPLEMENTARY FIGURES
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Figure 3-S1. Physiological analysis of HFD-fed mice. (A, B) CD-fed and HFD-fed (6 weeks and 16
weeks) mice were examined at age 24 weeks using insulin tolerance tests (ITT, A) and glucose
tolerance tests (GTT, B) (mean * SEM; n = 8-12). (C-E) CD-fed and HFD-fed (6 weeks and 16
weeks) mice were treated with insulin (1U/kg) by intraperitoneal injection. Hepatic AKT was

examined by immunoblot with antibodies against pSer*’>-AKT and AKT (mean + SEM; n = 3~4).
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Figure 3-S2. Measurements of glucose uptake in vivo. (A, B) CD-fed mice and HFD-fed (6 weeks

and 16 weeks) mice at age 24 weeks were treated without or with metformin and examined using the
hyperinsulinemic-euglycemic clamp technique to measure glucose uptake by gastrocnemius muscle

(A) and epididymal adipose tissue (B) (mean + SEM; n = §8; **, p<0.01; *** p<0.001).
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Figure 3-S3. Measurements of PKC activity in vivo. Hepatic extracts prepared from CD-fed mice

and 16 week HFD-fed mice were examined by immunoblot analysis by probing with antibodies to

phospho-PKC and Tubulin (mean = SEM; n = 3; *** p<0.001).
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Figure 3-S4. Molecular and physiological analysis of LIRKO mice. (A) Control mice and mice
lacking hepatic expression of Insr (LIRKO) were treated with insulin (5 U/kg) by intraperitoneal
injection. Liver protein extracts were examined by immunoblot analysis by probing with antibodies to
phospho-Tyrosine (P-Tyr), IRB, pSer*”-AKT and AKT. (B) Control and LIRKO mice fed a HFD (16
weeks) were examined using 'H-MRS to measure total body mass, fat mass, and lean mass (mean +
SEM; n = 10 (control) and 15 (LIRKO)). * p <0.005; *** p < 1e-07. (C, D) CD-fed and HFD-fed
(16 weeks) control and LIRKO mice were examined at age 24 weeks using insulin tolerance tests

(ITT, C) and glucose tolerance tests (GTT, D) (mean + SEM; n = 7-14 (ITT) and 9-15 (GTT)). * p <
0.05; ** p < 0.01; *** p <0.001.
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CHAPTER 4

HYPER- AND HYPO- NUTRITION STUDIES OF THE HEPATIC
TRANSCRIPTOME AND EPIGENOME SUGGEST THAT PPARa
REGULATES ANAEROBIC GLYCOLYSIS

Diet plays a crucial role in shaping human health and disease. Diets promoting obesity and
insulin resistance can lead to severe metabolic diseases, while calorie-restricted (CR) diets can
improve health and extend lifespan. In this work, we fed mice either a chow diet (CD), a 16
week high-fat diet (HFD), or a CR diet to compare and contrast the effects of these diets on
mouse liver biology. We collected transcriptomic and epigenomic datasets from these mice using
RNA-Seq and DNase-Seq. We found that both CR and HFD induce extensive transcriptional
changes, in some cases altering the same genes in the same direction. We used our epigenomic
data to infer transcriptional regulatory proteins bound near these genes that likely influence their
expression levels. In particular, we found evidence for critical roles played by PPARa and
RXRa. We used ChIP-Seq to profile the binding locations for these factors in HFD and CR
livers. We found extensive binding of PPARa near genes involved in glycolysis/gluconeogenesis
and uncovered a role for this factor in regulating anaerobic glycolysis. Overall, we generated
extensive transcriptional and epigenomic datasets from livers of mice fed these diets and

uncovered new functions and gene targets for PPARa.
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4.1. INTRODUCTION

Diet plays a significant role in shaping human health and disease. Over nutrition leading to
obesity can induce insulin resistance, a major human health concern that promotes the

development of type 2 diabetes and some cancers [259-261]. In contrast, caloric restriction can
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extend lifespan, improve insulin sensitivity, and delay the onset of age-related diseases, such as
diabetes, cardiovascular disease, and neoplasia [262, 263]. While the broad contrasts between
high-fat diet feeding and calorie restriction are well established, the underlying molecular

processes that drive these physiological and metabolic differences are incompletely understood.

The liver is a critical regulator of metabolism and is sensitive to dietary changes. The liver
maintains normal glucose homeostasis by suppressing hepatic gluconeogenesis in response to
insulin following feeding, while promoting glucose production during fasting [15, 41]. High-fat
diet induced obesity and insulin resistance disrupts these hepatic mechanisms and promotes
hyperglycemia [30]. Caloric restriction, however, lowers liver fat accumulation and improves
hepatic glucose regulation in obese humans [264, 265] and reduces the expression of stress and
inflammatory genes in mouse livers, which may contribute to the anti-aging effects associated
with this diet [266]. The liver, therefore, is a critical driver of the body’s response to dietary
challenges. Thus, analysis of hepatic responses to dietary extremes may enhance our

understanding of how diet shapes overall human health.

In this study, we profiled transcriptional and epigenomic landscapes in the livers of mice fed
either a standard laboratory chow diet (CD), a long-term (16 week) high-fat diet (HFD) to induce
obesity and insulin resistance, or a nutrition-restricted diet to model caloric restriction (CR).
Overall, we present a comprehensive analysis of diet-induced effects on mRNA expression and
chromatin accessibility in the mouse liver following HFD and CR. We find that calorie
restriction and high fat feeding have common and independent epigenetic and transcriptomic
signatures. We also show that PPARa activation underlies both extreme metabolic situations and

identify new PPARa targets that regulate glucose metabolism.

4.2. RESULTS

4.2.1. High-fat diet and calorie restriction induce extensive changes in hepatic gene

expression
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We examined mice following a long-term (16 week) high-fat diet (HFD) or a calorie restricted
(CR) feeding protocol. As anticipated, mice fed a HFD gained body mass while CR mice lost
mass compared to chow diet (CD)-fed controls (p < Se-5, two-sided t-tests) (Figure 4-1A). We
assessed glucose homeostasis in HFD mice compared to controls using tolerance tests for
glucose (GTT, Figure 4-1B), insulin (ITT, Figure 4-1C), and pyruvate (PTT, Figure 4-1D) and

confirmed that mice fed a HFD are strongly insulin resistant glucose intolerant.
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Figure 4-1. High-fat diet and calorie restriction alter body mass and induce extensive hepatic

transcriptional changes.
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Figure 4-1 (continued). High-fat diet and calorie restriction alter body mass and induce
extensive hepatic transcriptional changes. (A) HFD and CR feeding increase and decrease overall
mouse body mass, respectively, compared to CD (n = 12, 10, and 12 for CD, HFD, and CR, *** p <
Se-5, two-sided t-tests). (B-D) HFD induces insulin resistance and alters glycemic regulation as
assessed by (B) glucose tolerance test (GTT), (C) insulin tolerance test (ITT), and (D) pyruvate
tolerance test (PTT) (p-values from t-tests of area under the curve measurements, n = 30, 25, and 23
for CD and n = 37, 27, and 23 for HFD). (E) Venn diagrams show numbers of genes differentially
expressed between CD and HFD livers (red circle) as well as CD and CR livers (blue circle). The
overlap region shows 695 genes that are differentially expressed in both CR and HFD compared to
CD. The clustergram shows these 695 overlapping genes that are up-regulated by both HFD and CR
(255 genes), down-regulated by both CR and HFD (183 genes), up-regulated in HFD and down-
regulated by CR (186 genes), and up-regulated in CR but down-regulated in HFD (71 genes), along
with gene ontology and pathway enrichment terms. The numbers reflect the numbers of genes in each
group that are annotated to each term. Values are log, fold-changes for individual replicate expression
levels (in FPKM) versus the mean CD expression level. (F) 3,901 genes are differentially expressed
between CR and HFD livers (green circle). The clustergram shows individual replicate gene
expression levels as log, fold-change compared to the mean expression level for the opposite
condition (CR or HFD). The numbers reflect the numbers of genes in each group that are annotated to

each term.

We comprehensively quantified the hepatic transcriptomic landscapes of these mice using RNA-
Seq (Figure 4-S1B). Both HFD and CR induced widespread changes in hepatic gene expression
compared to CD, with 2,830 and 2,724 genes differentially expressed by the two conditions,
respectively (FDR < 0.05, absolute log, fold-change > 0.5) (Figure 4-1E). HFD induced the
expression of genes involved in immune response (FDR < 6.4e-22, e.g. Ccrl, Ccr2, Cd36, Tirl),
lipid metabolism (FDR < 8e-6, e.g. Abcdl, Apoa4, Cypl7al, Srebfl, Thrsp), stress response
(FDR < 1.3e-5, e.g. Anxal, Axl, Car3, Hifla, Jak2), and cell death (FDR < 6e-4, e.g. Bakl,
Casp7, Jun), among others. CR up-regulated genes are involved in cholesterol metabolism (FDR
< 2.5e-11, e.g. Cebpa, Dhcr7, Hmgcr, Ldlr) and mitochondria (FDR < 7e-7, e.g. Atp5Se, Cox5a,

Mrps24), among other processes.

We found a significant set of 695 genes (p < 3.6e-14, hypergeometric test of 695 overlapping
genes) that are differentially regulated by both HFD and CR compared to CD, including 255
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genes up-regulated by both HFD and CR, 183 down-regulated by both, 186 up-regulated in HFD
and down-regulated by CR, and 71 up-regulated in CR but down-regulated in HFD (Figure 4-
1E). Of note, the majority of these genes (438 or ~63%) change in the same direction compared
to CD (p < 2e-14, Fisher’s exact test). The first set of genes (up-regulated in both conditions) is
enriched in processes related to oxidation-reduction (FDR < 0.004) and lipid metabolism (FDR <
0.021). This latter category includes genes involved in cellular fatty acid synthesis (e.g. Fadsl,
Fads2, Fasn, Scdl), lipid and cholesterol production (Dhcr24, Nsdhl, Srebfl), triglyceride
synthesis (Thrsp), and peroxisomal import of free fatty acids (Abcdl, Abcd2). We note that
expression changes in oxidation-reduction and lipid metabolism in CR mice are not a
consequence of any increases in consumed dietary fat content, as the CR diet contains a similar
percentage fat content to the CD and because CR mice consumed overall less food, and therefore
less fat, than both the CD and HFD mice. The second set of overlapping genes (down-regulated
in both conditions) is enriched in organonitrogen catabolism (FDR < 0.02, e.g. Aass, Agxt, Cbs,
Kynu, Pnp). Genes up-regulated by HFD but down-regulated by CR are involved in immune
response (FDR < 6.9e-8, e.g. Apoa4, Clga,b,c, Gas6) and inflammation (FDR < 6.5e-3, e.g.
Aifl, Axl, Csfl, Tgfbl), while genes up-regulated by CR but down-regulated by HFD compared
to CD are involved in translation and ribosomal composition (FDR < 0.019, e.g. Rpl37, Rpsi5a,
Rps28, Rps3). This analysis highlights a common set of genes altered by both conditions that, in
a majority of cases, are altered in the same way, a surprising result given the differences in the

overall metabolic states of CR and HFD mice.

We next compared the CR and HFD liver RNA-Seq samples to directly contrast the two dietary
extremes. We found in total 3,901 differentially expressed genes, with 1,857 genes up-regulated
in HFD and 2,044 up-regulated by CR (Figure 4-1F; Figure 4-S1A for qPCR validation of
select genes). Similar to our other comparisons of the gene sets altered by these diets, genes up-
regulated by CR are enriched in processes related to ribosomes, mitochondria, translation, and
tRNA processing, while HFD-induced genes are enriched in immune responses, extracellular
matrix components, and cell death. Thus, although we found evidence for genes regulated
similarly following CR and HFD (Figure 4-1E), in general these two dietary extremes induce

distinct gene expression programs.
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4.2.2. DNase-Seq and motif analyses identify PPARa and RXRa as common regulators of

HFD and CR-induced gene expression in liver

Given the widespread hepatic transcriptional changes induced by both HFD and CR feeding, we
performed DNase-Seq on the livers of CD, HFD, and CR mice in order to uncover accessible
regulatory regions throughout these genomes that likely harbor regulatory proteins associated
with the transcription of these differential genes. Globally, we found high correlations (r = 0.76 —
0.84) between hypersensitive regions identified in the livers of the mice on the three diets
(Figure 4-S2A-C). For subsequent analyses, we merged the regions identified in all three diets
into a set of 92,626 total hypersensitive sites to maximize the search space for regulators (Figure
4-2A). We mapped each of these regions to known gene coordinates within the mouse genome
and found that the majority of these regions reside within introns (41%). Additional near-gene
sites include: proximal promoters (12%), distal promoters (9%), sites downstream of gene bodies
(8%), coding exons (3%), 5> UTRs (3%), and 3° UTRs (1%). The remaining sites map to distal
intergenic regions linearly distant from known gene boundaries (23%). Thus, the majority (77%)
of identified hypersensitive regions appear in or near annotated gene boundaries throughout the

mouse genome.

As specific examples, we found hypersensitive regions across the conditions near the gene
Cyp2b10, which is a known target of the nuclear hormone receptors CAR and RXR [267, 268]
(Figure 4-S2D). Additionally, we found a number of hypersensitive sites near and within the
introns of the gene Abcal, which is a known target of RXR and LXR in the liver [269] (Figure
4-S2E). We performed direct motif analysis on the hypersensitive regions near these select genes
and indeed found enrichment for the RXR:LXR motif (Figure 4-S2F). Thus, the use of motif
analysis on the hypersensitive regions near genes altered by diet could reveal regulators

associated with these changes.
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Figure 4-2. DNase-Seq reveals regulatory regions across liver genomes and motif analyses
identify potential transcriptional regulators. (A) We found 92,626 hypersensitive regions among
CD, HFD, and CR livers. The majority of identified sites reside within annotated gene introns (41%)
as well as other near-gene locations. Regions were mapped near genes according to: proximal
promoters — within 200 bp of gene TSS; distal promoters — within 5 kb upstream of gene; downstream
— within 5 kb downstream of gene end; introns, exons, 5’ UTR, and 3’ UTR - if region intersected one
of these features; and distal intergenic — outside 5 kb window around gene. (B) The numbers of
identified hypersensitive regions near differential gene sets (first column) within +/- 10 kb of gene
transcription start sites (TSS) in low (middle column) and high (right column) CpG content sequence
sets are presented. (C-D) The most enriched DNA binding motifs near all gene sets are shown for low

(C) and high (D) CpG content sequences.

We examined the discovered DNase hypersensitive regions near the transcription start sites
(TSSs, +/- 10 kb for this analysis) of our differential gene sets for enriched transcriptional
regulator motifs (Figure 4-2B). We divided the hypersensitive sites near these gene sets into low
(< 0.5) and high (> 0.5) CpG content sequences and assessed motif enrichment in both sets of
sequences (see Methods). We found distinct motif enrichments in low versus high CpG content
hypersensitive sequences, but consistently observed nearly the same motif enrichments (and
rankings) across all the gene sets for the two sets of sequences. In low CpG content regions, we

observed strong enrichments near all the gene sets for nuclear hormone direct repeat 1 motifs,
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corresponding to the factors PPARa, PPARY, RXRa, and HNF4a, as well as ATF/CREB, HNF1
dimer (HNF1a and HNF1p), FXR:RXR inverted repeat, fork head factor (FOXA, FOXO, FOXJ,
FOXK, etc. factors), and nuclear factor 1 dimer (NFIA, NFIB, NFIC, and NFIX) motifs (Figure
4-2C). In high CpG content regions, we also observed motif enrichment for ATF factors, though
with more preference for thymine as opposed to guanine in the second position of the motif
(ATF, HLF factors), as well as dimeric nuclear respiratory factor (NRF1), ELK/ETS/ETV, E2F
(E2F and DP-1 factors), AHR/EGR, and heterotrimeric transcription factor (NFYA, NFYB,
NFYC) motifs (Figure 4-2D). We only found modest enrichments for factors when comparing
conditions against one another, e.g. low CpG content regions near up-regulated genes in CR
versus regions near genes up-regulated in HFD. This observation is likely due to the fact that we
saw such strong enrichments for the same factors in low and high CpG content regions
regardless of the gene sets tested. Thus, these factors likely play multiple roles in different
contexts to regulate the gene expression programs we observed across the various diets. Given
the strong enrichment for nuclear hormone receptor motifs in the low CpG content regions we
analyzed, we chose to investigate further the genome-wide binding profiles for the factors

PPARa and RXRa to examine their roles in regulating CR and HFD hepatic gene expression.

4.2.3. ChIP-Seq profiling of PPARa and RXRa binding in CR and HFD livers reveals

extensive genome-wide regulation and uncovers novel targets

Our motif analysis strongly suggested that PPARa and RXRa, two transcription factors
prominently expressed in liver [270, 271], contribute to the differential expression of genes in the
livers of mice fed either a high fat or calorie restricted diet. We also found significant enrichment
for a set of 228 known PPARa target genes among all the differential genes (hypergeometric p-
values < 5e-4) [272]. For example, 27 of the 695 genes differential in both CR and HFD livers
compared to CD (Figure 4-1E) are among this set of known PPARa targets (p < 3.7e-7). We
thus used ChIP-Seq with specific antibodies against these factors (Figure 4-S3A) to profile their
genome-wide binding profiles in CR and HFD livers.

As anticipated from our motif analyses, our ChIP-Seq datasets confirmed that both PPARa and

RXRa bind extensively near genes in these livers (Figure 4-S3B). Overall, we detected more
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RXRa binding than PPARa, likely due to the lower obtained sequencing depth from PPARa
samples. Over all binding sites for each factor, we detected some form of the PPAR:RXR
heterodimer motif (direct repeat 1) in 91% and 90% of PPARa and RXRa regions, respectively;
thus, the majority of identified binding sites contain an expected motif for these factors, though
~10% of these sites likely reflect alternative binding mechanisms (e.g. via other DNA-binding
co-regulatory proteins). PPARa binding sites mapped to 1,253 and 2,320 annotated genes in CR
and HFD, respectively, while RXRa enriched regions mapped 3,381 and 4,767 genes (+/- 10 kb
window). The genome-wide binding distributions for these factors also closely mirror those
observed in our DNase-Seq experiments, with the majority of binding regions located in introns
(42-44%) as well as other near-gene regions (Figure 4-S3B, left and middle columns). 23-32%
of all binding sites were classified as distal intergenic. We also searched for regions in which we
found proximal binding events for both factors (peak summits within +/- 100 bp) and found
2,831 and 8,838 such regions in CR and HFD livers. The genome-wide binding locations for
these regions were similar to those observed for the individual factors (Figure 4-S3B, right

column).

We used the uncovered binding events to identify known and novel genes that are likely
regulated by these factors. PPARa, typically bound as a heterodimer with RXRa, is a well-
characterized regulator of lipid metabolism [273], and we saw strong enrichment for such
metabolic processes in up-regulated genes in both CR and HFD livers (Figure 4-1E). Consistent
with this, we identified binding events near the transcription start sites of genes involved in
various lipid metabolic processes which are known to be regulated by PPARo/RXRa [272],
including Acadl (involved in mitochondrial B-oxidation), Cpt2 (involved in mitochondrial
oxidation of long-chain fatty acids), Fabpl (involved in fatty acid uptake and transport), and
Fgf21 (involved in fatty acid oxidation and ketogenesis) (Figure 4-3A). Among these, we found
binding evidence for both PPARa and RXRa near Fgf2/ in HFD only (Figure 4-3A, bottom
right). This result is consistent with our RNA-Seq data in that Fgf2/ is up-regulated in HFD
livers compared to CR (log; fold-change of 2.9, FDR < 4.5e-7).

Our analyses identified several novel targets of PPARa and RXRa, including Crtc2 and Nfic
(Figure 4-3B). Crtc2 is a known co-regulator of glucose metabolism [274]. We identified
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binding events for both factors across the two diets at the promoter of this gene. We also
highlight binding near Nfic, a gene also up-regulated in HFD livers compared to CR, which has
up-stream binding events for PPARa in HFD only, as well as clear binding peaks for RXRa
alone at its TSS in both CR and HFD. Thus, our profiling of PPARa and RXRa in CR and HFD-

A 150/ Chr 1 —PPARaCR  140[Chr4 — PPARa CR
100} —PPARa HFD —PPARa HFD
a 70+
2 50t
Qo ~— — -~
.5- 0 B e A O : - ECTRCIOCIT
T 150 —RXRaCR M0y —RXRa CR
& 100 —RXRa HFD 2o —RXRa HFD
50
ol Aaa A - o
66904883 - 66914883 1075911 107601194
Acadl Cpt2
100 Chr 6 —PPARaCR 901 Chr7 —PPARa CR
—PPARa HFD —PPARa HFD
50 @ -
o
2
az 0 — '
g 100 —RXRa CR S0r —RXRa CR
o —RXRa HFD —RXRa HFD

50 25t
0 —te 0 e
71144882 71154881 52865860 52875860
Fabp1 Fgf21
B o0 chr3 —PPARaCR 1207 Chr 10 —PPARa CR
60l —PPARaHFD g0} —PPARa HFD
S 30t “ 40t
2 &M—A.m&—a—m
T 90 —RXRa CR 120 —RXRa CR
@ 60¢ —RXRaHFD o] —RXRa HFD
40
’ 0 o — —
90053203 90063202 80884918 80894918
Crtc2 Nfic
40+ Chr 14 —PPARa CR 40r Chr4 —PPARa CR
—PPARaHFD w  —PPARaHFD

Read pileup O
N
o

o

0
119105441 —_— — 6192759 — 6202778
119116441 — B 1

P
Abcc4 Cyp7al

Figure 4-3. ChIP-Seq of PPARa and RXRa transcription factors in CR and HFD livers reveals

extensive binding near known and novel regulated genes.
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Figure 4-3 (continued). ChIP-Seq of PPARa and RXRa transcription factors in CR and HFD
livers reveals extensive binding near known and novel regulated genes. (A) The binding profiles
(+/- 5 kb gene TSS) for known PPARa and RXRa targets Acadl, Cpt2, Fabpl, and Fgf21 in CR and
HFD livers are shown. (B) The binding profiles (+/- 5 kb gene TSS) for novel PPARa and RXRa
targets Crtc2 and Nfic in CR and HFD livers are shown. (C) The binding profiles for PPARa near the
differentially expressed genes Abcc4 and Cyp7al (CR vs. HFD) that contain differential binding
events between the same two diets in our ChIP-Seq data. Arrows indicate differential binding regions;
N.S. stands for not significant. Read pileup refers to extended, normalized, and smoothed read pileup
counts extracted from concatenated pools of aligned reads for the biological replicates for each factor
(see Methods). Green lines indicate significantly called peaks in both CR and HFD. Red and blue lines
indicate significantly called peaks in HFD and CR, respectively.

fed mouse livers revealed binding events near many genes known to be regulated by these

factors, while also uncovering new genes not previously characterized as targets of these factors.

Finally, we tested our PPARa and RXRa ChIP-Seq datasets for evidence of differential binding
between CR and HFD livers. We observed a small set of statistically significant differential
binding events between the diets for RXRa regions (381 regions, 1.2% of total), even though we
identified roughly two times as many called RXRa peaks in HFD compared to CR (Figure 4-
S3B). This result is likely due to thresholding differences during binary peak calling (e.g. due to
sequencing depth) which do not always manifest as true statistical differences when comparing
read counts in these regions directly. 112 of these 381 differential peaks mapped within +/- 20 kb
of 103 differential genes between CR and HFD livers. We saw more evidence for differential
binding of PPARa between CR and HFD, with 1,201 (9.3% of total) identified peaks showing
significant differential enrichment. Only 307 of these, however, mapped to a gene differentially
expressed between CR and HFD, covering 284 of the nearly 4,000 potential differential genes.
Among these, we observed a differential peak ~10 kb upstream of the Abcc4 gene promoter that
shows lower enrichment in HFD compared to CR (Figure 4-3C, left). Indeed, Abcc4 is
expressed significantly lower (~ -1 log, fold-change) in HFD compared to CR in our RNA-Seq
data. As another example, we found a differential peak with higher enrichment in CR within the
gene body of Cyp7al, which is also expressed higher in CR compared to HFD by RNA-Seq
(Figure 4-3C, right). Though we did not detect many differential binding events near these

genes, we did detect many binding events in general for these factors near a substantial number
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of the differential genes. 4,060 PPARa sites map to 1,879 of these genes and 10,271 RXRa
peaks map to 2,994. Thus, we found specific instances of differential PPARa and RXRa binding
near differential genes between CR and HFD, though such differences only explain small
fractions of the total differential gene pools. These results suggest that these factors, given that
they indeed bind near many of the differential genes even if the degrees of binding do not
measurably change, regulate gene expression differences by mechanisms other than differential
binding (e.g. due to differential activity levels or co-factor/co-repressor binding events), though

some genes may be more sensitive to differential binding events by other factors.

4.2.4. mRNA expression, binding data, and fenofibrate-treated primary hepatocytes

further suggest a role for PPARa in regulating glucose metabolism

While PPARa has extensively been characterized as a regulator of lipid metabolism, there is
evidence that this transcription factor plays a role in regulating glucose metabolism [272, 275-
277]. In particular, PPARa knock-out mice show severe hypoglycemia and depleted hepatic
glycogen stores during fasting [278]. Moreover, PPARa has been shown to regulate the
gluconeogenic genes G6pc, Pckl, and Pcx, the glycerol converting genes Gpdl and Gpd2, and
the pyruvate dehydrogenase inhibitor Pdk4 [272, 277, 279]. Indeed, we detected PPARa binding

events near the transcription start sites or within the bodies of these genes.

We examined genes in the canonical gluconeogenesis/glycolysis pathway for evidence of
PPARa binding and found events near nine genes (of fourteen queried) encoding enzymes in this
pathway (Figure 4-4A). Interestingly, we found that Aldob, Fbpl, Fbp2, Pckl, and Pklr not only
bind PPARa, but are sensitive to PPARa activation [275] (Figure 4-4A, blue highlighted genes).
Furthermore, our RNA-Seq data demonstrate PPARa-bound genes are regulated by feeding a
HFD or CR, including Gck and Pkir that are up-regulated by CR and HFD, G6pc and Gapdh that
are down-regulated by CR, and Eno3 that is down-regulated in HFD (Figure 4-4A, colored

bars). Thus, PPARa likely influences diet-induced expression changes in these genes.

To further test the role of PPARa in regulating hepatic glucose metabolism, we treated mouse

primary hepatocytes with fenofibrate, a PPARa agonist, and measured glycolytic rates. PPARa
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Figure 4-4. PPARa binds extensively near genes involved in gluconeogenesis/glycolysis in CR
and HFD livers and activation by fenofibrate enhances anaerobic glycolysis in primary
hepatocytes. (A) Canonical gluconeogenesis/glycolysis pathway highlighting genes bound by PPARa
(purple outline boxes) and genes both bound by PPAR« in our dataset and sensitive to fibrate in Kane
et al. (2009) study (blue outline boxes). The two-element color bars near the bound genes represent the
log, fold-changes in mRNA expression (by RNA-Seq) for these genes in HFD and CR livers,
respectively, versus CD. * indicates statistically significant changes (g < 0.05). (B) Lactate production
in mouse primary hepatocytes following vehicle (black line) or fenofibrate (red line) treatment in the
presence of glucose. (C) Glucose production in the presence of lactate/pyruvate as a gluconeogenic
source following vehicle (black line) or fenofibrate (red line) treatment. (D) Oxygen consumption rate
(OCR) assessed in the presence of glucose following vehicle (black line) or fenofibrate (red line)
treatment. OCR also assessed following oligomycin, FCCP, and rotenone drug treatments. (E-G)
Assessment of basal OCR (E), respiratory capacity (F), and ATP turnover (G) in primary hepatocytes

following vehicle or fenofibrate treatment.
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activation in hepatocytes cultured with glucose as a fuel displayed a significant increase in
lactate production, suggestive of an increase in glycolytic flow (Figure 4-4B). Consistent with
this result, we observed decreased glucose production in the presences of lactate/pyruvate as a
gluconeogenic source in fibrate-treated hepatocytes (Figure 4-4C). These results suggest that
PPARa enhances glycolysis, leading to non-oxidative conversion of glucose to lactate. To test
this hypothesis, we assessed the oxygen consumption rate (OCR) in primary hepatocytes using
glucose as a fuel (Figure 4-4D). OCR was consistently lower in fenofibrate-treated hepatocytes,
even in the presence of oxygen consumption inhibitors (oligomycin and rotenone) and enhancers
(FCCP). We observed reduced basal OCR (Figure 4-4E) and maximal respiratory capacity
(Figure 4-4F), as well as lower ATP turnover (Figure 4-4G), in fenofibrate-treated primary
hepatocytes compared to vehicle controls, confirming that PPARa activation decreases oxidative
metabolism of glucose. These results, together with our binding data and RNA-Seq results in CR

and HFD livers, further stress a role for PPARa in regulating glucose metabolism.

4.2.5. In vivo fenofibrate treatment confirms role of PPARa regulation near genes involved

in glucose metabolism in liver

We next tested the effect of in vivo fenofibrate treatment on specific PPARa targets identified by
our ChIP-Seq data. We treated mice for two weeks with either vehicle or fenofibrate and
measured hepatic gene expression of PPARa targets using quantitative PCR. We found
significant up-regulation of well-characterized PPAR« target genes following fibrate treatment,
including Acoxl1, Ehhadh, and Pdk4 (Figure 4-5A). We next tested several novel PPARa targets
identified from our ChIP-Seq data analysis. In keeping with our identification of a role for
PPARu in regulating glucose metabolism, we found binding sites near the genes Fbpl and Gck
in both CR and HFD and Pklr in HFD. Following in vivo fenofibrate treatment, the expression
levels of these genes were significantly repressed, providing further support that these are
regulated targets of PPARa (Figure 4-5B). We also tested other novel targets bound in our
ChIP-Seq data, including Aldhl, Aldh2, Enol, Pcx, and Sirt3; however, these were not
significantly altered following fibrate treatment by qPCR, suggesting that additional mechanisms

are necessary to control their expression in vivo.
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Figure 4-5. Identified targets are regulated in vivo by PPARa. (A) Read pileup profiles for CR and
HFD PPARa ChIP-Seq near known regulated genes with corresponding in vivo qPCR results
following fenofibrate treatment. (B) Read pileup profiles for CR and HFD PPARo ChIP-Seq near
novel regulated genes with corresponding in vivo qPCR results following fenofibrate treatment. Read
pileup refers to extended, normalized, and smoothed read pileup counts extracted from concatenated
pools of aligned reads for the biological replicates for each factor (see Methods). Green lines indicate
significantly called peaks in both CR and HFD. Red and blue lines indicate significantly called peaks
in HFD and CR, respectively. * p < 0.05, ** p < 0.01.

4.3. DISCUSSION

In this study, we examined the hepatic transcriptional and epigenetic landscapes of mice fed
chow, high-fat, and calorie-restricted diets. Joint analysis of our epigenetic data with regulatory

protein DNA binding motif data revealed a common set of transcription factors that may regulate
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the genes altered by these diets. In particular, we found strong enrichments for the PPARa and
RXRa motifs near all the identified differential gene sets. We further investigated these findings
with direct ChIP-Seq experiments for these factors and found that they do indeed bind
extensively near these genes throughout the genomes of HFD and CR mice, further suggesting
extensive roles for these factors in the hepatic response to dietary challenges. We particularly
focused on the role of PPARa in regulating glucose metabolism in the liver and found extensive
binding near genes encoding proteins involved in metabolism of carbohydrates. We validated
these findings by treating primary mouse hepatocytes with fenofibrate to stimulate PPARa
activation, discovering that activation of this factor enhances anaerobic glycolysis. We also
performed in vivo fenofibrate treatment experiments in mice and, using quantitative PCR,
validated several novel gene targets for PPARa involved in glucose handling. Overall, we
present a comprehensive analysis of the effects of high-fat feeding and caloric restriction on
mouse hepatic transcriptomics and epigenomics, along with new insights into how the divergent
physiological and metabolic states induced by these diets are regulated at the level of

transcription.

Our transcriptional profiling data revealed extensive changes in gene expression induced by both
HFD and CR compared to CD, as well as many changes between HFD and CR directly.
Interestingly, we observed a significant set of 695 genes that change in both extreme diets
compared to controls, with 438 of these changing in the same direction. Genes that are up-
regulated in both HFD and CR are enriched in oxidation-reduction and lipid metabolic processes,
while genes down-regulated in both conditions are enriched in organonitrogen catabolism. Our
data thus suggests that some processes and pathways, e.g. fatty acid synthesis, are commonly
utilized by the liver in response to divergent dietary challenges. To this end, HFD induces
unsaturated fatty acid and triglyceride synthesis to accumulate fat [280] while CR induces
adipose and liver enzymes involved in fatty acid metabolism, including Fasn and Srebf] which
were significantly up-regulated by both diets in our data, to reduce oxidative stress and to induce
energy production via B-oxidation [281]. Thus, the liver can co-opt specific pathways for

purposes suitable to the needs of various external challenges, in this case dietary changes.
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The majority of transcriptional changes induced by HFD and CR, however, are divergent.
Specifically up-regulated at the mRNA level in HFD livers are genes involved in immune
responses, inflammation, extracellular matrix, and cell death, consistent with anticipated
complications resulting from obesity-induced insulin resistance [56, 282, 283]. CR livers induced
genes related to ribosomes, translational processes, and mitochondria. The inflammatory state
observed in HFD livers likely maintains complications related to the insulin resistant state,
whereas the reduction in genes associated with these processes in CR, whether compared to CD

or HFD, may contribute to the beneficial effects of caloric restriction.

Epigenetic data from DNase-Seq experiments allowed us to map the landscapes of accessible
regulatory regions throughout the livers of mice fed each of these diets. We found that most of
these accessible regulatory regions reside either within or proximal to known gene boundaries
(77%), with the majority residing in introns (41%). We used sequence analysis of these
accessible regulatory regions with known DNA-binding motif preferences for regulators to infer
factors that are likely associated with transcription of the genes altered by diet. We separated
sequences into low and high CpG content sets and looked for motif enrichments across several
differential gene sets. While we did find factor enrichment differences between the low and high
CpG content sets of sequences, as can be anticipated, we did not find many differences in motif
enrichments between the various gene sets. These results suggest that common sets of regulatory
proteins are utilized for numerous purposes in the liver. We identified strong enrichments for
nuclear hormone receptors, ATF/CREB, and HNF1 factors in low CpG content regions, whereas
we found nuclear respiratory factor and ELK/ETS/ETV factor enrichments in high CpG content
regions (among others). The strong enrichment of nuclear hormone receptor factors led us to

examine the binding profiles for some of these factors more specifically in HFD and CR livers.

We profiled PPARa and RXRa binding throughout the livers of HFD and CR mice using ChIP-
Seq. Overall, we found extensive binding for these factors across the genomes as suggested by
our motif analyses. We confirmed many known binding sites for these factors near the
transcription start sites of specific genes, but also found several novel binding events near genes
not known to be regulated by PPARa or RXRa (e.g. Crtc2 and Nfic). We also directly compared
binding events for these factors between HFD and CR. Overall, we found that only 1.2% (381
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regions) of RXRa binding sites were differential between the diets, whereas a greater percentage
(9.3%, 1,201 regions) of identified PPARa binding sites showed some evidence for differential
binding. However, only a small portion of these differential sites mapped near genes found to be
differentially expressed between HFD and CR, though many of these genes do indeed possess at
least some binding evidence for these factors within or near their boundaries. We highlighted
Abcc4 and Cyp7al as examples of genes that change in expression between the diets and that

also possess a differential binding region for PPARa nearby.

While PPARa is a well-established regulator of lipid metabolism in the liver [273], we noted
extensive binding for this factor near genes involved in glucose metabolism. Prior studies of
PPARo mutant mice [277, 284], induced activation of PPARa in mice [275, 285], and others
[276, 286] have also suggested a role for PPARa-dependent regulation of carbohydrate
metabolism. Here, we found evidence for PPARa binding near many genes specifically involved
in the glycolysis/gluconeogenesis pathway (9 of 14 genes in the canonical pathway analyzed),
many of which are sensitive to PPARa agonist treatment according to prior data [275] and five
of which are altered in expression in response to HFD and/or CR according to our RNA-Seq
data. To further test the role of PPARa in regulating glucose metabolism, we performed in vitro
experiments in mouse primary hepatocytes and in vivo experiments in mice following fenofibrate
treatment. We found that activation of PPARa by fenofibrate enhanced lactate production in the
presence of glucose, but decreased glucose in the presence of lactate as a fuel. These results
suggest a role for PPARa in enhancing anaerobic glycolysis in the liver. To further test these
results, we showed that fenofibrate treatment reduces oxygen consumption rates in hepatocytes.
We also found that fenofibrate treatment reduces the expression of the genes Fbpl, Gck, and
Pklr in vivo, all of which are novel PPARa-regulated genes identified in this study that are
involved in glucose metabolism and contain clear binding sites for PPARa near their
transcription start sites. Indeed, evidence for a regulatory role of PPARa on Gck expression is
somewhat contradictory from previous studies [277]. Fibrate has been shown to decrease its
expression in mouse (as we see here), though the PPARa agonist WY 14643 does not have the
same effect. Moreover, rats possess a PPAR response element (PPRE) near this gene that is
activated by LXRa/RXRa and PPARY/RXRa in luciferase assays, though the role of PPAR« in

such studies has not been elucidated. Here, we show that PPARa indeed binds near the liver
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promoter of Gck and that the expression of this gene is sensitive to in vivo fenofibrate treatment.
Overall, our results strongly suggest a role for PPARa in regulating glucose metabolism, in

particular anaerobic glycolysis.

4.4. METHODS

4.4.1. Animals and treatments

Calorie restricted male C57BL/6J mice (5 months of age, 40% calorie restriction [287], 13.7%
calories from fat) were obtained from Charles River Laboratories. Additional male C57BL/6J
mice (stock number 000664, Jackson Labs, Bar Harbor, ME) were fed a standard normal (chow)
diet (Prolab Isopro RMH 3000, LabDiet, St. Louis, MO, 14.3% calories from fat) or a high fat
diet (HFD) (TD.93075; Harlan Laboratories, South Easton, MA, 54.8% calories from fat) for a
period of 16 weeks with free access to food and water. All mice used in this study were housed
in a facility accredited by the American Association for Laboratory Animal Care (AALAC).
Calorie restricted mice were acclimated in the same animal facility as the chow and HFD mice
prior to euthanasia. All experiments were carried out in accordance with guidelines for the use of
laboratory animals and were approved by the Institutional Animal Care and Use Committees
(JACUC) of University of Massachusetts Medical School and Massachusetts Institute of

Technology.

Glucose tolerance tests were performed by intraperitoneal injection of mice with glucose (1
g/kg). Insulin tolerance tests were performed by intraperitoneal injection of mice with insulin
(0.5 U/kg). Pyruvate tolerance tests were performed by intraperitoneal injection of mice with

pyruvate (1 g/kg). Assays were performed using methods described previously [224].

We also injected 8 week old C57BL/6 male mice intraperitoneally with the fenofibrate (100
mg/kg), the PPARo antagonist GW6471 (10 mg/kg), or with vehicle (DMSO/Solutol

HS15/Sterile water) (10:15:75) three times a week over a two week period.

4.4.2. RNA-Seq
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Total RNA was extracted from the livers of mice (three per dietary condition) fasted overnight
using the RNeasy Plus Mini kit (Qiagen, Valencia, CA). mRNA was isolated from DNA-free
total RNA using an Illumina mRNA Purification Kit (Illumina, San-Diego, CA). The cDNA
library was size-fractionated via gel electrophoresis by cutting a narrow slice (~2 mm, +/- 25bp)
of the cDNA lane centered at the 300bp marker. cDNA from the gel slice was extracted using the
Qiagen PCR mini elute kit (Qiagen). The sample was then amplified by PCR using the paired-
end primers and amplification reagents supplied with the Illumina ChIP-Seq genomic DNA prep
kit. The amplified product was purified using a Qiagen PCR mini elute kit (Qiagen). The library
was then used to build clusters on the Illumina flow cell according to the manufacturer’s

protocol.

Following sequencing, the raw paired-end reads were aligned to known mouse RefSeq gene
transcripts obtained from the UCSC table browser [122] (accessed on May 19, 2016) and the
mouse genome (build mm9) with the splice junction-aware short-read alignment tool TopHat
(version 2.1.0) [225]. We restricted TopHat to only align to known transcript splice junctions.
We used the Bioconductor package conditional quantile normalization (CQN, version 1.6.0)
[226] to remove systematic biases due to GC-content and gene length coverage and used
DESeq2 (version 1.0.18) [227] to perform differential expression analyses. We considered a
gene to be differentially expressed if it possessed an absolute log, fold-change between
conditions > 0.5, an FDR-adjusted p-value (g-value) < 0.05, and was expressed in at least one

tested condition (i.e. > 0.1 FPKM).

4.4.3. Clustering and enrichment analyses

All hierarchical clustering was performed with the clustergram function in Matlab with
Euclidean distance and average linkage. For enrichment analyses, we used custom Matlab code
implementing the hypergeometric distribution for enrichment p-value calculations and used the

Benjamini-Hochberg FDR procedure to correct for multiple hypotheses [257].

4.4.4. Microarray analysis
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Raw CEL files from a published microarray study were obtained from the Gene Expression
Omnibus, accession number GSE12147 [275]. This included data from male C57BL/6 mice
treated with several selective PPARa agonists for 24hr or 5 days at Img/kg/day or water
(vehicle) as control. Samples were background adjusted and normalized using the Bioconductor

package gcrma and tested for differential expression between conditions using /imma [288] in R.

4.4.5. DNase-Seq

We performed DNase-Seq on livers from mice fed CD, HFD, or CR according to a previously
described protocol [289]. Briefly, liver nuclei were isolated from a pool of 3-4 mice using
sucrose based buffer and digested with DNasel (Promega, Madison, WI). The chromatin was
incubated overnight with Proteinase K (Life technologies, Grand Island, NY) at 55°C. DNA was
extracted using phenol chloroform and small DNA fragments were isolated using a sucrose
gradient ultracentrifugation followed by a gel size selection step. The DNA fragments were

subjected to library preparation and sequencing according to the [llumina protocol.

Sites of DNase cleavage are identified as the 5' ends of the sequenced short reads from the
DNase-Seq assay. We used the GPS algorithm [290] to identify regions of enriched cleavage
compared to a control DNase-Seq assay performed on naked genomic DNA (proteins stripped
from the chromatin by phenol-chloroform extraction). GPS builds a probabilistic mixture model
to predict the most likely positions of binding events at single-base resolution, requiring an
empirical spatial distribution of DNase reads around a typical binding event to build its event
detection model. To build the empirical distribution, we identified binding regions from PPARa
and RXRa ChIP-Seq data in the same condition, centered in on regions containing known motifs
for the protein in question, and summed the DNase read distribution at every base pair in a 600
base pair window around these binding sites. We also performed pairwise comparisons between

conditions by submitting both DNase datasets to GPS in multiple condition mode.

4.4.6. Motif analyses
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For DNase hypersensitive sites, we took a 100 bp window around the single base GPS-identified
sites for calculation of CpG content and motif matching. We calculated normalized CpG content

of sequences using [291, 292]:

ObservedCpGs _ ObservedCpGs

NormalizedCpG = >
(Expected CpGs|GCcontent)  (GC content/2)

and divided sequences into low (<0.5) and high (>0.5) CpG content sets based on the bimodality

of the empirical CpG content distribution obtained.

For motif analyses, we used a set of 1,588 DNA-binding motifs annotated to human and mouse
transcriptional regulatory proteins from release 2013.3 of TRANSFAC® [293], represented as
position-specific scoring matrices (PSSMs). All motifs used were of sufficient total information
content (>8 total bits). We extracted the underlying genomic sequences from DNase
hypersensitive regions and used TAMO [235] to store the motif PSSMs, read in sequences, and
score the sequences for matches to the motifs. We computed a normalized log-likelihood ratio
(LLR) score as LLRyym = (LLR — LLR,;;in)/(LLR o — LLR,,;) for every k-base-pair sub-sequence
in the region, where k is the length of the motif PSSM. A motif match was called if LLR,,, was
greater than or equal to the TRANSFAC®—c0mputed minimum false positive matrix similarity
score threshold (minFP) for that motif. The maximum matching LLR,,,, for each motif in each
sequence was retained. Regions with no matches to a given motif were given a score of zero. We
also computed motif match scores for sets of equally-sized, GC-content matched background

sequences obtained by randomly sampling regions from the mm9 genome.

We used a hypergeometric test to determine enrichment of a motif in the sets of foreground
sequences (i.e. DNase regions) compared to matching random background sequences. For such
tests, we counted, for a given motif, the number of motif matches in both the foreground and
background sets of sequences and compared these values to one another. As many of the motif
models are redundant, we used affinity propagation [244] to cluster the motifs, using the pairwise
Kullback-Leibler divergence as the similarity metric and a self-similarity parameter of -0.4. This

procedure created 284 motif clusters. We post-clustered the motif enrichment results, retaining
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the result from the most significantly enriched motif in each cluster, and corrected the raw p-

values with the Benjamini-Hochberg procedure.

4.4.7. ChIP-Seq

Following overnight fasting, mice were anaesthetized and the liver was processed as previously
described [294]. ChIP experiments were performed on two livers per condition (biological
replicates) using antibodies against RXRa (sc-153x, Santa Cruz Biotechnology, Santa Cruz, CA)
or PPARa (MAB3890, Millipore, Billerica, MA). We fragmented chromatin with a Covaris S2
sonication machine (Covaris, Woburn, MA) to obtain fragments ranging from 500 to 1000 base
pairs. 5 pg of antibody or IgG was incubated with beads for 6 hours before incubating with
sonicated chromatin overnight. We then washed the beads, eluted the chromatin, reversed
crosslinks for 2 hours, and treated samples with RNase and Proteinase K. We purified the DNA
and constructed sequencing libraries using the DNA Sample Kit (Part# 0801-0303, Illumina, San
Diego, CA) according to the manufacturer's instructions. The samples were sequenced on an
INlumina GAIlI/HiSeq sequencing platform and the resulting short reads were aligned against the
mm9 reference mouse genome using Bowtie (version 0.12.7) [295]. Enriched genomic regions
were identified by MACS (version 1.4) [296] using an IgG control and the resulting peaks were
filtered to have an enrichment p-value of <le-10. Overlapping peaks between RXRa and PPARa
ChIP-Seq datasets were restricted to those whose summits mapped within =100 bp. Transcription
factor binding motifs from the TRANSFAC database were used with the THEME software
package [125] to find enriched motifs in the DNA sequences under the filtered ChIP peaks. For
ChIP-Seq read pileup visualizations, we concatenated the aligned sequence reads from biological
replicates for each factor in each condition, extracted reads mapping within the specified
windows (allowing for only two reads mapping to the exact same location to minimize PCR
biases), extended each read in the 3’ direction to a full length of 200 bp, summed the number of
extended reads overlapping each base pair within the window, normalized the read count levels
to account for sequencing depth differences between samples, and smoothed the read profiles
using a moving average filter (120 bp rate). Thus, read pileup axes in figures 4-3 and 4-5 refer to

these concatenated, extended, normalized, and smoothed read profiles.
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4.4.8. Primary hepatocytes

We isolated mouse primary hepatocytes with a modified 2-step perfusion method [297] that uses
Liver Perfusion Media and Liver Digest Buffer (Invitrogen) [298]. We seeded cells on plates
(pre-coated [1 h] rat tail collagen I [BD Biosciences]) in DMEM supplemented with 4.5 g/L.
glucose, 10% FBS, 0.2% BSA, 2 mM sodium pyruvate, 2 mM glutamine, 1 M dexamethasone,
100 nM insulin and 1% penicillin /streptomycin. After attachment (2 h), the medium was
removed and the hepatocytes were incubated (22 h) in maintenance medium (DMEM
supplemented with 4.5g/L glucose, 0.2% BSA, 2 mM sodium pyruvate, 2 mM glutamine, 0.1
uM dexamethasone, 1 nM insulin and 1% penicillin/ streptomycin). In some cases, we incubated
hepatocytes (16 h) with fenofibrate (100 uM, Sigma). The drugs were dissolved in DMSO;

control studies were performed by addition of vehicle (DMSO) alone.

We evaluated glucose production by incubating 5.5x10° primary hepatocytes in collagen-coated
35 mm wells (6 well plates) with M199 media (Invitrogen) supplemented with 0.5% BSA and
1% penicillin/streptomycin for 18 hours. Cells were then incubated in glucose/glutamine/phenol
red-free DMEM (Sigma) supplemented with 3.7 g/ sodium bicarbonate, 2 mM lactate and 20
mM sodium pyruvate for the indicated times. Glucose production in the medium was assessed

using the glucose (HK) assay kit (Sigma) and values were normalized to total hepatocyte protein.

We evaluated lactate production by incubating 5.5x10° primary hepatocytes in collagen-coated
35 mm wells (6 well plates) with M199 media (Invitrogen) supplemented with 0.5% BSA and
1% penicillin/streptomycin for 18 hours. Cells were then incubated in glucose/glutamine/phenol
red-free DMEM (Sigma) supplemented with 1.85 g NaCl, 0.2% BSA, 0.1 uM dexamethasone, 1
nM insulin and 138 mM glucose for the indicated times. Lactate production was measured in the
medium using the reconstituted Lactate Reagent (Beckman Coulter) and values were normalized

to total hepatocyte protein.

4.4.9. Oxygen consumption rates
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We quantified oxygen consumption rates (OCR) in primary hepatocytes using an XF24
Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA) and XF assay kits to measure
extracellular flux changes of oxygen and protons. Briefly, primary hepatocytes were plated
(4x10* cells/well) in collagen-coated XF24-microplates (Seahorse Bioscience). After attachment
(2 h), the hepatocytes were transferred to running medium (sodium bicarbonate-free DMEM
supplemented with 4.5 g/L glucose, 0.2% BSA, 2% penicillin/streptomycin, 1 nM insulin and 0.1
MM dexamethasone) and incubated at 37°C in a humidified atmosphere without CO,
supplementation. Baseline measurements were performed prior to the addition of substrates (1
g/LL glucose, 200 uM palmitate-BSA, or 10 mM lactate/l mM pyruvate) or inhibitors (1 uM
oligomycin, 0.1 uM FCCP, or 100 nM rotenone). Mitochondrial oxygen consumption rates were
calculated as the difference between the maximal respiratory rate (in the presence of FCCP) and
the respiratory rate after addition of rotenone. Data obtained from 11 independent wells were

examined for each condition.
4.4.10. Quantitative RT-PCR

The expression of mRNA was examined by quantitative PCR using a Quantstudio PCR machine
(Life Technologies). TagMan® assays were used to quantify Acox]! (MmO01246834_m1), Ehhadh
(MmO00619685_m1), Fbpl  (Mm00490181_ml), Gck  (Mm00439129_ml), Pdk4
(MmO01166879_m1), and Pkir (MmO00443090_m1). The relative mRNA expression was
normalized by measurement of the amount of /8§ RNA in each sample using TalqMaln© assays

(catalog number 4308329; Life Technologies).
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4.5. SUPPLEMENTARY FIGURES

A B
15 ' ' ' Total paired- % Aligned % Proper pair % Aligned
10} Cidea ® | Sample end reads reads alignments uniquely
o CD-1 37643030 97.5 94.1 79.2
T 5 1 CD-2 33414197 96.6 92.4 79.6
g ol | CD-3 35945949 96.6 92 79.2
I ® HFD-1 36262557 97.2 93.8 81.3
= 5¢ ] HFD-2 37447506 96.5 92.8 77.3
° r=0.978 HFD-3 25037298 96.6 93.5 84.3
107 1 CR-1 39189223 96.6 92.5 85.5
45 , ®Fmo3 ‘ , CR-2 19858320 96.9 93.7 85
15 10 -5 0 5 10 15 CR-3 30429450 97.7 94.8 84.7

log,(HFD/CR) FPKM

Figure 4-S1. qPCR validation of CR versus HFD gene expression changes and RNA-Seq
sequence read alignment statistics. (A) qPCR validation of gene expression level changes between
CR and HFD for genes Alb, Apoal, Apoa4, Cidea, Egrl, Fmo3, Fos, Illrn, Rpsi4, and Sirt3. (B) Total
obtained reads, alignment percentages, proper paired mapping percentages, and the percentage of

uniquely aligned reads for paired-end reads from CD, HFD, and CR RNA-Seq samples.
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Figure 4-S2. DNase-Seq dataset correlations and example binding profiles. (A-C) Correlation
plots between read counts (tags) from CD, HFD, and CR DNase-Seq datasets: HFD versus CD (A),
CR versus CD (B), and HFD versus CR (C). Correlation values are for Pearson correlation
coefficients. (D-E) Example read pileup tracks from CR and HFD DNase-Seq datasets near genes
Cyp2b10 (D) and Abcal (E) which are known to contain LXRa:RXRa binding sites. Bottom tracks
show RXRa profiles from CR and HFD ChIP-Seq samples, confirming binding sites in these
hypersensitive regions for expected factors. (F) Motif logo for LXRa:RXRa DNA-binding preference

that is enriched in DNase-Seq regions.
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Figure 4-S3. Validation of PPARa and RXRa antibodies and binding locations from ChIP-Seq
studies. (A) (Left) Nuclear or cytoplasmic fractions of homogenized CR and HFD livers were assayed
by Western blot using anti-RXRa or B-actin primary antibodies. (Right) Whole-cell lysates from CR
and HFD livers were immunoprecipitated with PPARa antibody; IP and supernatant were
immunoblotted with anti PPARa or B-actin antibodies. (B) Genome-wide binding locations of PPARa,
RXRa, and overlapping PPARa:RXRa ChIP-Seq peaks with total enrichment region numbers.
Regions were mapped near genes according to: proximal promoters — within 200 bp of gene TSS;
distal promoters — within 5 kb upstream of gene; downstream — within 5 kb downstream of gene end;
introns, exons, 5> UTR, and 3’ UTR - if region intersected one of these features; and distal intergenic

— outside 5 kb window around gene.
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CHAPTER 5

INFERRING MICRO RNA-MEDIATED REGULATORY ACTIONS
FOLLOWING OBESITY-INDUCED HEPATIC INSULIN RESISTANCE

Micro RNAs (miRNAs) are a small (~22 nucleotides) class of RNA species that target and
regulate mRNAs post-transcriptionally, affecting a wide variety of biological processes that are
relevant to disease. These molecules have been examined in the context of cancers,
neurodegenerative diseases, and metabolic diseases. Small RNA-Seq is a method to
comprehensively profile the full expression landscape of miRNAs in cells and tissues. In this
work, we performed small RNA-Seq on liver samples collected from mice fed a standard
laboratory chow diet (CD), a 6 week high-fat diet (HFD), and a 16 week HFD to analyze miRNA
expression profiles in the context of hepatic insulin resistance. We found that HFD progressively
alters the expression of miRNAs in the liver. We integrated these data with mRNA-Seq and
histone modification ChIP-Seq data collected from mice fed these same diets to identify potential
regulatory roles conferred by these miRNAs. Specifically, we used an enrichment scheme that
considered overrepresentation of mRNAs in the pool of differentially regulated genes by HFD
that are targets of each miRNA and used a network modeling algorithm that incorporated
miRNA, mRNA, and epigenetic data to specifically probe miRNA-transcription factor
interactions. Both methods prioritized miRNAs with both known and potentially novel
regulatory roles in the context of hepatic insulin resistance that can be readily examined with

additional targeted experiments.
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5.1. INTRODUCTION

Micro RNAs (miRNAs) are a class of small (~22 nucleotide) RNA species that target and
regulate mRNAs post-transcriptionally [299, 300]. In mammals, greater than 60% of protein-
coding mRNAs possess at least one conserved miRNA target site in their 3> UTRs [301], while
the existence of non-conserved and non-3" UTR target sites (e.g. in coding exons) points to the
potential for miRNAs to regulate a substantial majority of protein-coding genes [300]. miRNAs
exert their regulatory activities by pairing with target sequences on mRNAs and promoting either
translational inhibition or mRNA degradation, the latter of which appears to be the major
mechanism [302, 303]. miRNA biogenesis and activation occur through a multi-step process:
primary miRNAs (pri-miRNAs) are transcribed from the introns of coding and non-coding
transcripts (though some derive from exons); the nuclear RNase III Drosha in complex with

DGCRS8 crops a ~65 base pair stem-loop hairpin (called a pre-miRNA) from the pri-miRNA;
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exportins assist in translocation of the pre-miRNA from the nucleus to the cytosol; the
endonuclease Dicer cleaves pre-miRNAs to produce a small RNA duplex; the miRNA duplex is
loaded onto an AGO protein to form an RNA-induced silencing complex (RISC); and the
passenger strand of the duplex is removed to form a mature RISC that can initiate the miRNA’s

regulatory activities [300].

Critical regulatory roles for miRNAs have been identified in the contexts of numerous biological
processes and diseases, including development [304], differentiation [305], apoptosis [306],
cancers [307], cardiovascular diseases [308], neurodegenerative diseases [309], and autoimmune
diseases [310]. Relevant to this work, miRNAs in liver and other peripheral tissues have also
been associated with a variety of processes related to obesity and insulin resistance [311, 312].
These include miR-122 [313], miR-802 [314], miR-103 and miR-107 [315], miR-33 [316], miR-
143 [317], and miR-181 [318], all of which likely regulate a host of targets across many
biological processes. While many regulatory roles for hepatic miRNAs in the context of insulin
resistance have been identified to-date, the sheer number of potential regulated targets warrants

further exploration into mechanisms that may prove exploitable as therapeutic interventions.

Small RNA-Seq is a powerful experimental tool that can comprehensively quantify full miRNA
expression landscapes in cells and tissues. While it is fairly straightforward to arrive at lists of
differentially expressed small RNAs in a system of interest, interpreting and prioritizing such
results remains challenging. Collection of complementary data, including transcriptome-wide
mRNA expression profiling, can drastically improve analyses of miRNA-mediated activities

relevant to disease.

The identification of target mRNAs, along with analysis of miRNA expression profiles
themselves, is a crucial step to understanding miRNA-mediated actions. miRNAs recognize
complementary sequences on target mRNAs with nucleotides 2-7, called the miRNA seed, and
downstream sites can additionally aid target recognition [319]. Both experimental and
computational approaches can be used to identify miRNA targets. High-throughput experimental
methods, including AGO CLIP-Seq [320] and CLASH [321], can directly identify tissue and

condition-specific targets through isolation, sequencing, and analysis of AGO-associated RNA
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duplexes. Computational approaches to target identification use a variety of features for
prediction, including seed pairing, conservation, site number, and 3’ supplementary pairing. Such
algorithms include TargetScan [301], DIANA-microT [322], and PITA [323]. These datasets and
tools are immensely useful for generating hypotheses regarding relevant miRNA-mRNA target

interactions.

In this work, we performed small RNA-Seq on the livers of mice fed chow diets (CD), short-
term (6 week) high-fat diets (HFD), or long-term (16 week) HFD. We additionally incorporated
mRNA-Seq and histone modification ChIP-Seq data from these animals with computational
methods. Specifically, we developed a scheme that ranked differentially expressed miRNAs by
the enrichment of predicted target mRNAs (determined by TargetScan) present in the pool of
genes differentially regulated following HFD. We also utilized a network modeling algorithm
(simultaneous analysis of multiple networks or SAMNet [162, 324]) to directly test hypotheses
regarding miRNA regulatory influences on transcription factor expression levels and subsequent
downstream gene expression. Both of these methods identified miRNAs that are known to
regulate processes related to hepatic insulin resistance, while also identifying new species that

may be relevant to this metabolic condition.

5.2. RESULTS

5.2.1. HFD induces progressive dysregulation of hepatic miRNA expression profiles

We fed male C57BL/6J mice a CD, a 6 week HFD, or a 16 week HFD and profiled their hepatic
transcriptomes (via mRNA-Seq) and epigenomes (via ChIP-Seq experiments for the histone
modifications H3K4me3, H3K27Ac, and H3K27mel). Major findings from analyses of these
datasets are reported in Chapter 2 of this document. Briefly, we found that HFD feeding
progressively induces widespread changes in hepatic gene expression, while producing minimal
detectible differences in histone modification profiles and amounts. We did utilize, however,
these epigenomic datasets, along with DNA binding motif data, to identify regulatory factors that

likely influence the observed transcriptional changes.
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We also specifically profiled hepatic miRNA expression profiles in these mice using small RNA-
Seq. We built a custom analysis pipeline to process the obtained raw sequencing reads, to align
reads to known mouse miRNA hairpin sequences, and to quantify the expression levels of known
mature miRNA species. We performed differential miRNA expression analyses on these datasets
and found that 15 and 50 miRNAs are significantly altered by 6 and 16 week HFD compared to
CD, respectively (Figure 5-1). Six miRNAs were altered in the same direction by both diets: up-
regulated miR-674-3p, miR-34a-5p, miR-149-5p, and miR-532-5p and down-regulated miR-21-
S5p and miR-5117-5p. Among these, miR-21 activation in pancreatic B-cells reduces cell death
through anti-apoptotic regulatory actions [325], but up-regulation in response to high glucose in
kidney is associated with diabetic renal injury and pathology [326, 327]. miRNAs specifically
altered by 6 week HFD include miR-125a-5p and miR-30c-5p, both of which are down-
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Figure 5-1. Differential miRNAs in 6 and 16 week HFD livers. We found 15 and 50 miRNAs
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differentially expressed by 6 and 16 week HFD compared to CD. The heatmap shows hierarchically

clustered z-scored (miRNA-wise) expression values in replicate livers across the three conditions.
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Feeding a HFD for 16 weeks expanded the pool of dysregulated miRNAs. Among these
additional miRNAs are up-regulated miR-802-5p, miR-185-5p, and miR107-3p and down-
regulated miR-379-5p and miR-182-5p. miR-802 is known to be up-regulated in the livers of
obese mice and humans and is thought to impair glucose tolerance and insulin signaling via
regulation of Hnflb [314]. miR-185 has been shown to regulate lipid and cholesterol metabolic
processes in hepatic cells [328, 329] and miR-107/103 up-regulation in obese mouse livers can
impair glucose homeostasis [315]. Also, hepatocyte-specific reduction of miR-379 reduces very
low-density lipoprotein levels in mice [330]. Thus, HFD induces alterations in miRNA
expression profiles that, consistent with our observations for mRNAs, progressively diverge
from CD expression levels as HFD feeding duration increases. We also identified miRNAs
differentially expressed in our data that are consistent with prior, focused studies on the roles of

these species in related metabolic processes.

5.2.2. miRNA-mRNA integration and target enrichment analysis prioritize miRNAs

We next sought to prioritize miRNAs for potential follow-up studies, focusing on their roles in
alleviating or exacerbating the effects of obesity on hepatic insulin resistance. To do this, we
devised an approach whereby we ranked miRNAs by statistical enrichment for target mRNAs
differentially expressed by HFD in our data (Figure 5-2). We used TargetScan to generate
miRNA-mRNA target predictions and queried our set of differential mRNAs for target matches
to each miRNA. As miRNAs mainly serve inhibitory functions through enhancement of mRNA
degradation and translational repression, we focused on miRNA-gene target pairs where the
expression fold-changes of the two species induced by HFD were anti-correlated (i.e. if HFD
increased a miRNA’s expression, a potential target must have decreased). We then used the
hypergeometric distribution to compute enrichment statistics for overrepresentation of predicted

targets in the pool of differentially expressed genes for each miRNA.
We performed this enrichment analysis on the differentially expressed miRNAs between CD and

both HFDs (Table 5-1). We found that miR-674-3p, miR-34a-5p, miR-149-5p, and miR-532-5p,
all of which are up-regulated by both HFD conditions, are strongly enriched for differential
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Figure 5-2. Schematic of miRNA-mRNA target enrichment analysis. Up and down-regulated

miRNAs were matched to differentially expressed mRNAs that are predicted targets and anti-
correlated in terms of expression change following HFD. We used the hypergeometric test to search

for miRNAs with significant target enrichments in differential genes.

target genes in both analyses. In particular, miR-34a serum levels are up-regulated in patients
with non-alcoholic fatty liver disease [331] and it has been shown to regulate retinoid X receptor
a (RXRa), Kriippel-like factor 4 (KLF4), and Sirtuin 1 (SIRT1) mRNA in liver [306, 332, 333].
In 16 week HFD, up-regulated miR-152-3p appears at the top of the enrichment list. This
miRNA is significantly elevated in obese patients [334] and can modulate the Wnt signaling
pathway through targeting of DNA methyltransferase 1 [335]. Mice overexpressing miR-378,
which is also up-regulated by 16 week HFD and highly ranked, display hepatic insulin resistance
via targeting of the catalytic subunit (p110a) of phosphoinositide 3-kinase (PI3K) [336].

While our analysis indeed identified miRNAs with known roles in regulating processes relevant
to hepatic insulin resistance, we also identified several high-ranking species whose roles are not
well established. In particular, miR-1839-5p is substantially expressed and up-regulated by HFD
in our data and is highly ranked by our enrichment scheme. This miRNA is a non-canonical
small RNA, meaning it bypasses the typical Drosha processing pathway but is still cleaved by
Dicer for its biogenesis [337], whose predicted target genes include Crat and Pdk4. miRNAs
miR-149-5p, miR-455-5p, and miR-532-5p are also among the group of high-ranking targets

where little is known with respect to their potential roles in regulating hepatic insulin resistance.
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CD vs. 6wk HFD miRNAs CD vs. 16wk HFD miRNAs

miRNA % DEG targets| ¢-value| |[miRNA % DEG targets| g-value
mmu-miR-149-5p 43.2% 2.83E-54| |mmu-miR-152-3p 32.9% 4.62E-65
mmu-miR-674-3p 36.9% 3.84E-49] |mmu-miR-34a-5p 36.1% 7.78E-62
mmu-miR-34a-5p 37.8% 2.29E-39| |mmu-miR-674-3p 31.8% 1.30E-58
mmu-miR-27a-3p 31.5% 3.22E-39] |mmu-miR-107-3p 31.7% 1.70E-56
mmu-miR-378-5p 25.0% 5.33E-28| |mmu-miR-149-5p 34.8% 1.85E-51
mmu-miR-125a-5p 29.7% 2.48E-25| |mmu-miR-222-3p 23.0% 9.71E-46
mmu-miR-145-5p 23.7% 4.04E-19] |mmu-miR-351-5p 31.0% 9.19E-45
mmu-miR-19b-3p 19.8% 2.01E-18] |mmu-miR-1839-5p 20.5% 7.96E-40
mmu-miR-365-3p 16.5% 1.36E-15| |mmu-miR-378-3p 25.1% 5.05E-39
mmu-miR-7a-5p 19.7% 2.40E-14| |mmu-miR-185-5p 30.2% 5.16E-38
mmu-miR-532-5p 16.6% 1.22E-13| |mmu-miR-98-5p 21.7% 6.87E-38
mmu-miR-21-5p 10.3% 2.32E-10[ |mmu-miR-148b-5p 15.6% 2.15E-36
mmu-miR-5117-5p 8.8% 3.29E-07| |mmu-miR-455-5p 20.2% 1.03E-35
mmu-miR-30c-5p 11.5% 4.59E-06| |mmu-miR-582-3p 17.5% 4.92E-33
mmu-miR-122-3p 4.0% 0.0185798| |mmu-miR-1843b-5p 23.9% 4.28E-31

mmu-miR-532-5p 18.1% 4.16E-29

mmu-miR-676-5p 15.7% 6.52E-29

mmu-miR-152-5p 17.3% 8.84E-29

mmu-miR-501-3p 16.9% 1.24E-28

mmu-miR-802-5p 15.5% 1.55E-28

Table 5-1. miRNA-mRNA target enrichment results. Results from enrichment analyses performed
on differential miRNAs in 6 week (left) and 16 week (right) HFD. The second column reports the
percentage of anti-correlated differential mRNAs that are predicted targets of the miRNAs and the
third column lists the FDR-corrected enrichment p-values. Note that we only show the top 20 most

significant enrichments for the CD vs. 16 week HFD analysis.
Thus, our enrichment analysis provides a basis from which candidate miRNAs can be identified

for follow-up study based on potential gene targeting.

5.2.3. Integrative modeling of miRNA, mRNA, and epigenomic data reveals miRNA-

regulated transcriptional networks

Our integrated miRNA-mRNA target enrichment analysis was indeed able to prioritize miRNAs
based on overrepresentation of differentially expressed predicted targets. However, each miRNA
still potentially regulates hundreds of mRNA species; therefore it is difficult to assess which
interactions are most relevant to disease. We can reduce this search space by focusing on
particular types of miRNA targeting interactions. In this vein, miRNAs may actually exert

profound effects through their regulation of mRNAs encoding transcriptional regulators. Such
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regulation can amplify the effects of altered miRNA activities through secondary alteration of

downstream transcription mediated by these factors.

To search for such regulatory interactions in this context, we used the SAMNet network
modeling tool [162] to generate a reduced graphical model of these potential regulatory
interactions (Figure 5-3). SAMNet incorporates a flow-based algorithm that searches for the
optimal path through a hierarchy of nodes and edges, starting at an artificial source node and
collecting at a terminal sink node. This approach considers multiple types of evidence during the
optimization and produces compact networks for simpler interpretation. In our formulation
(based on [324]), nodes represent miRNAs, transcription factors, active epigenetic regions, and
mRNAs, while edges were assigned weights according to miRNA expression changes, predicted
miRNA-mRNA target scores (considering only anti-correlated relationships), mRNA expression

changes in genes encoding transcription factors, predicted affinity scores for transcriptional
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Figure 5-3. SAMNet formulation for miRNA regulatory network. SAMNet implements a flow-
based algorithm that sends flow from source to sink through an intermediate regulatory layer. We
included four regulatory layers (left) and used five types of evidence for edge weight assignments

(right).
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regulators near differentially expressed genes, and mRNA expression changes. We ran several
iterations of the algorithm using different values of the y tuning parameter, which effectively
controls the size of the solution. The final network presented here was chosen because it is

reasonably sized and solutions run at larger y values were very similar to this.

The resulting network model run on our insulin resistance data is shown in Figure 5-4. We show
only the algorithm-identified miRNA-transcription factor interactions for simplicity. The
algorithm predicted that miR-34a and miR-149 may regulate several transcriptional regulators,
including E2f3, Sox12, Atf5, Hnflb, and Nr6al, to affect transcriptional regulation in response to
HFD. Among these predictions, E2f3 is a validated target of miR-34a [338]. Both of these

21-5p mmu- 07-3p mmu- 11-5p mmu-m17-5p mmu- 02-5p
40 A F 1 ESRRG G B

20 2
. I miRNA o

o miRNA/gene log2
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Figure 5-4. SAMNet model results. These results used a SAMNet tuning parameter (y) equal to 16.
Rounded squares and triangles represent miRNAs and transcription factors, respectively, node sizes
reflect the relative amount of flow passing through each node of the graph, and the color scale reflects
the level of differential expression between 16 week HFD and CD livers for miRNAs and
transcription factors. We only show the miRNA-transcription factor regulatory layers here for

simplicity.
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miRNAs were also highly ranked by our target enrichment analysis. While HnfIb has been
shown to be regulated by miR-802 in obese livers [314], our model predicts that miR-149 may
also play a role in regulating this factor. miR-802 itself is predicted to potentially play a role in
regulating Gtf2b, which is a ubiquitous transcription factor required for initiating RNA
polymerase II transcription. In alternate simulations (data not shown), miR-802 was also
identified as a regulator of Hnflb. The model also predicts several regulatory interactions for
miR-379, one of which is targeting of A#f3, a transcription factor that is activated by stress
signals and can induce liver dysfunction [339]. The network model additionally implicates miR-
21, which is down-regulated by HFD, in regulating Thrb and Bhlhe40. A direct interaction
between miR-21 and Thrb has been confirmed in other cellular contexts [340]; we show here
evidence for this potential regulatory interaction in the liver. As a final example, miR-182 is
predicted to regulate Foxo3 and Foxql mRNA. A regulatory interaction between miR-182 and
Foxol has been demonstrated in breast cancer cells [341] and helper T lymphocytes [342]. Our
model implicates miR-411 in regulating Foxol mRNA, an interaction that has recently been
validated in lung cancer cells [343], while also highlighting roles for miR-182 in regulating
additional forkhead family members. Thus, our network model provides known and novel
predictions surrounding the roles of miRNAs in regulating liver transcription factors during

insulin resistance.

5.3. DISCUSSION

In this work, we collected small RNA-Seq datasets to profile miRNA expression in CD, 6 week,
and 16 week HFD mouse livers. Direct analysis of these datasets revealed that HFD
progressively alters the expression landscape of hepatic miRNAs, with the short and long-term
HFDs altering the levels of 15 and 50 miRNA species, respectively. Six miRNAs were
significantly altered in the same direction by both diets, including miR-34a-5p, miR-149-5p, and
miR-21-5p. We then used target predictions from TargetScan and mRNA-Seq data collected
from these same conditions to prioritize interesting miRNAs for follow-up study. To do this, we
used an enrichment scheme that queried the amounts of differential mRNAs that are predicted
targets of each altered miRNA. This analysis pointed to miR-674-3p, miR-34a-5p, miR-149-5p,
and miR-532-5p as relevant in both 6 and 16 week HFD. Several of these predictions correspond
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to miRNAs with established roles in regulating biological processes relevant to insulin
resistance; however, we did identify several high-ranking miRNAs whose roles, to our
knowledge, are not established in these contexts, including miR-1839-5p, miR-149-5p, miR-455-
5p, and miR-532-5p.

We also used a graphical modeling methodology to analyze miRNA regulation of transcription
factor networks more explicitly. miRNA’s may exert significant influence by participating in
regulatory motifs with transcription factors and the downstream genes they regulate [344, 345].
We incorporated our miRNA expression, mRNA expression, and histone modification data using
the SAMNet algorithm [162, 324] to model such interactions directly. The resulting network
consisted of a wide array of potentially relevant miRNA-transcription factor interactions to
hepatic insulin resistance. We noted that some of these interactions have been reported
previously, including miR-34a with E2f3 and miR-21 with Thrb [338, 340], though it appears
that the majority of the model’s regulatory paths have not been previously identified or
considered in these contexts. Thus, our modeling efforts provided a substantial, yet tractable, set
of miRNA-transcription factor interactions that may serve as additional regulatory mechanisms

that either alleviate or promote the effects of obesity on hepatic insulin resistance.

Reliable determination of miRNA targets is crucial to the study of their regulatory functions.
Here we used the TargetScan algorithm to computationally predict which mRNAs contain sites
for miRNA regulation in their 3° UTRs [301, 319]. While TargetScan is generally a reliable tool
for target site identification, high-throughput experimental approaches, including AGO CLIP-
Seq [320], allow for direct assessment of miRNA-mRNA interactions in samples of interest.
These experimental methods can potentially identify context-specific, non-canonical, and non-3’
UTR binding interactions between miRNAs and mRNAs. Indeed, miR-34a, which is up-
regulated by both 6 and 16 week HFDs in our data, can regulate the levels of RXRa via a coding
region interaction with this gene [332]. Analysis of AGO CLIP-Seq data with sophisticated
biophysically detailed models has revealed substantial numbers of non-canonical binding sites
for miRNAs on target mRNAs [346]. However, more recent analysis of such non-canonical
interactions suggests that mRNAs possessing these types of sites are no more repressed than

mRNAs with no sites at all [347]. Thus, complementation of computational methods for target
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site prediction with direct experimental approaches may improve predictions drawn from the
methods applied here, though our analyses provided a wealth of new hypotheses that can be

validated with direct experiments.

Additional modeling strategies and complementary dataset integration may also improve our
understanding of miRNA-mediated regulation during hepatic insulin resistance. Biochemical
considerations, including miRNA and target mRNA abundances and duplex binding strengths,
likely play a major role in determining the influence of miRNA regulatory networks. Detailed
mathematical modeling of target site abundance effects suggests that higher concentrations of
targets may titrate the availability of miRNAs for effective repression [348]. Additional
mathematical models have also provided insights into how miRNA regulation fine tunes
downstream protein expression levels [349, 350]. In our modeling efforts, we weighted miRNAs
by their level of change between diets (i.e. log, fold-changes) but did not explicitly consider
abundance effects. While TargetScan provides continuous scores reflecting the predicted levels
of transcriptional repression expected from a given miRNA-target site interaction, additional
biochemical considerations may improve modeling of these regulatory interactions. Additionally,
we did not incorporate proteomic-level data in our SAMNet models. Such data added as extra
regulatory layers could enhance our understanding of these regulatory networks by incorporating
evidence of miRNA-induced effects on transcription factor protein levels directly, as well as
effects on down-stream protein levels due to altered transcription via these factors.
Unfortunately, our proteomic data collected from these samples did not quantify many
transcription factor proteins due to their low abundances, rendering the first proposed regulatory
layer difficult to implement. Future studies could specifically quantify the levels of target

transcription factor protein levels to further constrain models and enhance predictions.

In summation, we collected small RNA-Seq data to quantify miRNA expression changes in
response to HFD in the liver. We integrated these data with mRNA-Seq and epigenetic data
using an enrichment method and a network modeling algorithm to identify critical roles for
miRNAs altered by HFD. These methods provided a wealth of knowledge that can be used to

drive further study of miRNA regulatory networks in the context of hepatic insulin resistance.
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5.4. MATERIALS AND METHODS

5.4.1. Animals

We obtained male C57BL/6J mice (stock number 000664) from the Jackson Laboratories. All
mice were housed in a specific pathogen-free facility accredited by the American Association for
Laboratory Animal Care. We fed the mice a standard chow diet (Prolab Isopro RMH 3000,
Purina) for 24 weeks or a high-fat diet (S3282, Bioserve) starting at 8 weeks for 16 weeks HFD
or at 12 weeks for 6 weeks HFD. We euthanized all mice at 24 weeks after an overnight fast and
froze the livers prior to removal using clamps cooled in liquid nitrogen. The frozen livers were
then pulverized into a powder using a CryoPREP impactor (Covaris). We prepared aliquots of
pulverized liver for all samples for subsequent analyses. All experiments were carried out in
accordance with guidelines for the use of laboratory animals and were approved by the
Institutional Animal Care and Use Committees (IACUC) of the University of Massachusetts
Medical School.

5.4.2. Small RNA-Seq data collection and analysis

We extracted total RNA from the pulverized frozen livers of mice (three per condition) using the
miRNeasy Mini kit (Qiagen). We prepared small RNA-Seq libraries using the NEBNext® Small
RNA Library Prep Set for Illumina with 1 pg of total RNA. These libraries were multiplexed and
single-end sequenced for 40 base-pairs on an Illumina Hi-Seq 2000 machine. On average, we

obtained ~10 million raw sequencing reads for each individual library.

We built a custom analysis pipeline to quantify mature miRNA read counts in samples. First, raw
reads were trimmed at their 3’ ends to remove excess adapter sequences and contamination reads
(e.g. adapter dimers or too long [28 bp] or short [16 bp] reads) were discarded using the clipper
tool in the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx toolkit/). We then aligned the

clipped and filtered reads to known mouse miRNA hairpin sequences obtained from version 18
of miRBase [351] using the short-read alignment tool Bowtie (version 0.12.7) [352] with the

parameters “—-solexal.3-quals -S -v 1 -q -a --best --strata --norc”. Reads that
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aligned within a +/- 3 base pair offset to the annotated -5p or -3p mature miRNA positions within
these hairpin sequences were retained and added to the total read count for each mature miRNA.
Ambiguous alignments, i.e. those that mapped to >1 mature miRNAs, were either discarded if
they mapped to mature miRNA sequences that differ or retained if they mapped to different
mature miRNAs that have the exact same sequence (e.g. miR-3107-5p and miR-486-5p). For the
latter case, we combined the records for these miRNAs into a single combined species. We
created a table of mature miRNA counts for each sample and used DESeq2 (version 1.0.18)
[227] to find differentially expressed miRNAs between conditions. We considered a miRNA to
be differentially expressed if it possessed an absolute log, fold-change between conditions >
0.32, an FDR-adjusted p-value (g-value) < 0.05, and possessed at least 10 raw read counts in at

least one tested condition.

5.4.3. mRNA-Seq and analysis

We prepared mRNA-Seq libraries from three CD and three 16 week HFD mouse livers using the
TruSeq RNA Sample Prep Kit vl (Illumina) and size-selected using 2% agarose gel
electrophoresis for 180 +/- 25 base-pairs of insert. We multiplexed mRNA-Seq libraries and
paired-end sequenced samples for 40-50 base-pairs on an Illumina Hi-Seq 2000 machine. On
average, we obtained ~20-30 million raw paired-end sequencing reads. The reads were aligned to
known mouse RefSeq gene transcripts obtained from the UCSC table browser [122] (accessed on
January 25, 2012) and the mouse genome (build mm9) with the splice junction-aware short-read
alignment tool TopHat (version 1.4.0) [225]. We restricted TopHat to only align to known
transcript splice junctions. We used the Bioconductor package conditional quantile normalization
(CQN, version 1.6.0) [226] to remove systematic biases due to GC-content and gene length
coverage and used DESeq2 (version 1.0.18) [227] to perform differential expression analyses.
We considered a gene to be differentially expressed if it possessed an absolute log, fold-change
between conditions > (0.5, an FDR-adjusted p-value (g-value) < 0.05, and was expressed in at

least one tested condition (i.e. > 0.1 FPKM).

5.4.4. Histone modifications and determination of transcription factor gene targets
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These methods are described in detail in Chapter 2 (sections 2.4.5 and 2.4.8) of this document.
We used the transcription affinity scores calculated for each factor motif against each
differentially expressed gene between CD and 16 week HFD as the weights connecting

transcription factors to genes in the SAMNet modeling formulation described below.
5.4.5. miRNA-mRNA target predictions

We generated custom miRNA-gene target predictions by running Perl scripts obtained from
TargetScan (version 6.0) [301, 319]. We extracted miRBase (version 18) mature miRNA
sequences and mm9 3’ UTR sequences from RefSeq gene models (from January 25, 2012) for
use with the targetscan60.pl (to predict targets) and targetscan_60_context_scores.pl
(to compute context+ scores) scripts. We retained predicted miRNA-gene target pairs possessing
a total context+ score < -0.1. By TargetScan convention, the more negative the score, the more

the interaction is expected to influence target repression.
5.4.6. miRNA-mRNA target enrichment analysis

We queried the sets of differentially expressed mRNAs in our mRNA-Seq datasets for predicted
targets of each differential miRNA using our custom TargetScan miRNA-mRNA target
predictions (context+ score < -0.1). We only considered miRNA-mRNA target predictions in
which the two species in question were anti-correlated in terms of expression log, fold-changes
in HFD versus CD. We used the hypergeometric distribution to compute enrichment statistics for

overrepresentation of predicted targets for each miRNA:

min( K,N) ; N —
wipy = "5 LA N =)

i=numTargets M
N

where MirPV is the upper-tail hypergeometric p-value for the current miRNA, K is the total

number of differential mRNAs that are anti-correlated with respect to the current miRNA, N is
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the total number of predicted mRNA targets for the current miRNA, numTargets is the number
of identified anti-correlated predicted mRNA targets (i.e. the overlap of K and N), and M is the
total number of expressed genes. We then corrected these p-values for multiple hypotheses
testing using the Benjamini-Hochberg FDR procedure [257] and reported miRNA enrichment

rankings as an ascending list of corrected p-values.

5.4.7. SAMNet modeling

We used the SAMNet algorithm [162] to jointly model our small RNA-Seq, mRNA-Seq, and
epigenetic data, adapting the structural layout of Gosline et al. (2016) [324]. In this formulation
(see Figure 5-3) nodes represent differential miRNAs, transcription factors, active epigenetic
regions, and mRNAs, while edges were assigned weights for each regulatory layer using 1)
miRNA expression log, fold-changes, 2) predicted miRNA-mRNA target scores from
TargetScan (considering only anti-correlated relationships), 3) mRNA expression changes in
genes encoding transcription factors, 4) predicted affinity scores for transcriptional regulators
near differentially expressed genes derived from our epigenetic data set analyses, and 5) mRNA

expression log, fold-changes.

SAMNet drives “flow” through this constructed graph, which consists of all the possible
interactions amongst the data, beginning at an artificial source node, flowing through the data
layers, and collecting at an artificial terminal sink. The algorithm finds a compact network
representation by using constrained optimization to find the best path from source to sink that
balances the inclusion of many data nodes at the expense of many high cost edges with including
only high confidence edges at the expense of excluding many data nodes. A tuning parameter y
is utilized to balance these competing objectives; generally, larger y values produce larger
networks. We generated networks using y = [12, 13, 14, 15, 16, 17, 18]. For the final network
shown in Figure 5-4, we used a SAMNet solution run with y = 16 as this model incorporated
many of the differential miRNAs and solutions run with larger values differed only minimally
from this run. For presentation, we only show the miRNA-transcription factor regulatory layer

for simplicity, removing the artificial, epigenetic, and mRNA nodes.

161



162



CHAPTER 6

GENERAL CONCLUSION

6.1. SUMMARY, DISCUSSION, AND IMPLICATIONS

This thesis primarily presented applications of quantitative, multi-omic systems biology
approaches to the study of obesity-induced hepatic insulin resistance. This work is novel in terms
of 1) the breadth of the omic levels profiled, encompassing the transcriptome (both mRNA and
miRNA expression), epigenome, global proteome, and metabolome, and 2) the level of
simultaneous multi-omic integration and computational modeling applied to such data in these
contexts. Throughout, I described methods that are readily scalable and applicable to the holistic
study of diverse biological phenomena. I anticipate that these methods and the results gleaned
from their application will be useful to a wide variety of experimental and computational

scientists.

Chapter 2 described the major thrusts of my graduate work. It is here that I presented analyses of
the hepatic transcriptomes, epigenomes, proteomes, and metabolomes of chow diet and long-
term high-fat diet-fed mice, along with subsequent multi-omic integration of these datasets with
the PCSF network modeling algorithm. I uncovered changes induced by HFD at each omic
regulatory level individually and, importantly, I found distinct differences in terms of the
biological processes implicated by each dataset in isolation. For instance, I showed that mRNA
and protein changes induced by HFD are only modestly correlated; thus, the use of mRNA
information as proxies for protein-level information is generally unreliable without knowledge of
additional biochemical parameters (e.g. translation and degradation rates). These results are
consistent with observations made by others in this realm and elsewhere [106, 177]. Thus, it is
critical that we design studies that consider multiple types of information to truly gain a holistic

view of disease.
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Integration of these omic levels with computational network modeling uncovered a highly
interconnected web of biological processes and pathways affected by obesity. Novel aspects of
this modeling were 1) the inclusion of protein-metabolite interactions derived from the human
metabolome database [117] with protein-protein information (from iReflndex [110]), 2) the use
of negative prizes on interactome molecules to enhance the specificity of network solutions by
avoiding “frequent fliers” in network results, and 3) the implementation of new criteria to aid
model selection. This latter task is especially difficult because no true gold-standard against
which we can validate network results exists. In work not presented in the previous chapters of
this thesis, I found that members of well-established canonical signaling pathways possess many
interactions beyond those conveniently included in such interaction models, highlighting the
level of cross-talk between molecules and pathways in true biological systems. In addition, and
in contrast to many other systems biology studies in this realm that applied some form of
network modeling, I did not include mRNA expression data directly into my models due to the
weak mRNA-protein correlations I found. Rather, this data was used, along with epigenetic data
of histone modifications, to infer transcriptional regulatory proteins that likely influence
downstream gene expression changes induced by HFD. Transcriptional datasets are still highly
informative, however, as they contain latent information of upstream regulatory actions. Here, I

leveraged transcriptional datasets for these purposes.

Clustering of our final PCSF model revealed twenty sub-networks with unique enrichments for
various biological processes. These results critically stress that complications associated with
obesity-induced insulin resistance and type 2 diabetes are not restricted to well-studied pathways
and processes alone. Indeed, I reviewed recent work that has proposed novel mechanisms of
hepatic insulin resistance that complicate traditional views of such processes [45-48]. I found
enrichments in pathways with well-established relationships to hepatic insulin resistance,
including glucose metabolism, amino acid metabolism, fatty acid metabolism, and transcriptional
regulation. More interestingly, I found alterations to a number of biological processes and
components that are typically not considered in these contexts, including -cell-cell
communication, the extracellular matrix, bile acid metabolism, and apoptosis. In addition, we
found a sub-network enriched in unfolded protein response (UPR) molecules; Wu et al. (2014)

recently found evidence for dysregulation of the UPR in these contexts [177]. We tested and
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validated a number of these predictions with follow-up imaging studies of CD and HFD mouse
hepatic tissue and found dysregulation of general hepatic architecture, tight junctions, and bile
acid metabolism, along with enhanced hepatocyte apoptosis in HFD livers. Thus, these results

suggest directions for future study of the liver’s role in type 2 diabetes pathogenesis.

Chapter 3 focused more specifically on transcriptional regulation in the liver. We compared
mice fed CD, short-term (6 week) HFD, and long-term (16 week) HFD treated without and with
the type 2 diabetes drug metformin. My transcriptional analysis found that HFD progressively
induced transcriptional dysregulation in the liver as time on this diet increased. Metformin only
had modest effects on hepatic transcription, though some of the metformin-sensitive genes
identified (e.g. Cebpb) indeed play a role in regulating hepatic glucose handling and may be

critical to this drug’s mechanisms of action in vivo [242].

We additionally performed temporal profiling of hepatic transcription following stimulation with
intraperitoneal insulin in CD and 16 week HFD mice. As may be expected, insulin induced a
robust transcriptional response in the liver, with >800 genes changing in expression following
stimulation. This effect was almost completely abolished in HFD livers, with only 29 genes
changing significantly in response to insulin in both diets. However, we did find a set of 137
genes that significantly responded to insulin in HFD livers alone. Among these is the regulator of
G-protein signaling 4 (Rgs4) gene, which has previously been studied extensively in the context
of neurological processes and disorders [248-252]. Rgs4 expression was uniquely induced by
insulin in HFD livers according to our temporal transcriptomic data; we validated these findings
in mice and established that Rgs4 is indeed expressed and sensitive to hormone (insulin) and
cytokine (TNFa) treatment in primary mouse hepatocytes. We additionally tested this response
in mice lacking the liver insulin receptor and found that this effect of insulin on Rgs4 expression
in HFD mice depends on this gene. These results together expand upon the notion that hepatic
insulin signaling is actually intact in the insulin resistant state. This phenomena has been
described as “selective insulin resistance,” whereby only the branch of insulin signaling that
controls hepatic glucose production is dysregulated, while the lipogenic effects of insulin remain

intact [40]. Others have proposed that insulin signaling is nearly fully intact during insulin

165



resistance and that mechanisms dependent on signals from other tissues (e.g. adipose) hamper

insulin’s ability to control glucose output [46-48].

We further characterized the role of RGS4 in the liver by feeding mice lacking this gene a HFD.
We observed a significant effect of Rgs4 deletion on hepatic insulin sensitivity, whereby mice
lacking this gene were more insulin resistant compared to wild-type mice during an insulin
tolerance test. We proposed that this effect is mediated in part by RGS4’s ability to inhibit G-
protein signaling and subsequent activation of PKC [247]. PKC is known to inhibit the kinase
functions of the insulin receptor, and knock-down of this target protects rats from hepatic insulin
resistance [38]. Indeed, we found that PKC activity is elevated in 16 week HFD-fed mice. Thus,
we identified a potentially novel mechanism that promotes hepatic insulin sensitivity in the face
of enhanced liver fatty acid content. Our group is currently performing additional analyses to
further characterize the role of RGS4 in the liver. Additional findings may reveal new avenues

for therapeutic intervention based around this molecule’s action.

Chapter 4 described analyses of hepatic transcription and epigenetics in mice fed a calorie-
restricted diet, in addition to mice fed the CD and long-term HFDs discussed above. Caloric
restriction has been shown to extend lifespan, improve insulin sensitivity, and delay the onset of
age-related diseases, including diabetes [262, 263]. Mice fed a CR diet lost weight compared to
CD controls and are generally considered healthy, especially in comparison to HFD mice. I
compared transcriptional changes induced by HFD and CR versus CD and found that both diets
induce extensive changes in gene expression. Most interestingly, I uncovered a significant sub-
set of genes modulated by both HFD and CR that change in the same direction compared to CD.
This included genes that promote fatty acid, lipid, and cholesterol synthesis. Up-regulation of
such genes is a well-characterized consequence of HFD [353]. Interestingly, CR mice also
enhance fatty acid synthesis to promote subsequent energy production via -oxidation as they

intake less overall energy from food [281].

In addition to transcriptional data, we collected chromatin accessibility data by DNase-Seq to
profile active regulatory regions throughout the genomes of CD, HFD, and CR mice. I used

bioinformatics sequence analysis of the discovered accessible regions near genes modulated by
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the diets to infer regulators that may play a role in controlling differential transcription.
Somewhat surprisingly, I found nearly identical transcription factor enrichments near all the gene
sets tested. These results imply that a relatively small set of factors are capable of responding to
various dietary challenges to alter gene expression. We particularly focused on enrichments for
nuclear hormone receptor family members by performing follow-up ChIP-Seq experiments in
HFD and CR mice for PPARa and RXRa. We indeed found that these two factors bind
extensively throughout the genomes of these livers. In particular, we noted extensive binding of
PPARa near genes involved in glucose metabolism, a number of which whose expression levels
were modulated by diet. We further tested the role of PPARa in vivo and in vitro by treating
mice and primary mouse hepatocytes with the PPARa activator fenofibrate. In vitro results
demonstrated that PPARa plays a role in enhancing anaerobic glycolysis. Our in vivo results
validated several novel predicted gene targets of PPARa involved in glucose metabolism. Thus,
this multi-omic study identified new roles for the PPARa transcription factor in the control of

glucose metabolism in the liver.

Finally, in Chapter 5, 1 examined HFD-induced changes in mouse hepatic miRNA expression
profiles. Similar to results observed for mRNAs in Chapter 3, HFD feeding progressively
modulated miRNA expression patterns. To identify differential miRNAs that may play important
functional roles following HFD, I devised an enrichment scheme whereby miRNAs were ranked
by the prevalence of target mRNAs present in the pool of HFD-sensitive genes. I used the
TargetScan algorithm to computationally establish gene targets of these miRNAs [319]. Among
the high-ranking miRNAs established by this approach were miR-34a, miR-152, and miR-378,
all of which are known to regulate targets involved in processes related to obesity and insulin
resistance [306, 332-335]. Importantly, this approach also identified miRNAs with less
established relevance in this context, including miR-1839-5p, miR-149-5p, miR-455-5p, and
miR-532-5p. These miRNAs may indeed perform critical functions in the liver that either

promote or relieve complications associated with obesity.

We also employed a flow-based network modeling method called simultaneous analysis of
multiple networks (SAMNet) [162, 324] to directly interrogate miRNA-transcription factor
regulatory networks. This approach integrated miRNA expression, miRNA-mRNA target

167



predictions, mRNA expression, and transcription factor affinity information inferred from
histone modification and motif data. This analysis identified a number of potentially relevant
miRNA actions. In fact, the majority of the interactions predicted by this model, to the best of
my knowledge, have not been investigated in this context by prior studies. Thus, this work
presented methods by which miRNAs can be functionally analyzed in context with additional
omic measurements. I particularly assessed such miRNA-mediated regulatory activities in the

context of obesity-induced hepatic insulin resistance and suggested avenues for future study.

6.2. LIMITATIONS AND FUTURE PERSPECTIVES

As is the case with all scientific endeavors, limitations in terms of the chosen model system and
methods used must be considered. To start, all of these results and insights derive from studies in
mice. It is probable that metabolic differences between mice and humans contribute to variable
responses to HFD between these species. Indeed, in the context of cancer, evidence for
differences in tumorigenesis between humans and mice has been shown [354]. However, given
the limited availability of human tissue samples, the amount of material required to collect the
breadth of data described here, the ability to stringently control genetic and environmental
factors, and the similarities between mice and humans in terms of observed pathologies on the
road to metabolic syndrome following obesity, these studies present crucial insights into general
hepatic complications that promote the insulin resistant state. Future human studies are necessary

to truly assess the translational aspects of our findings.

In these studies, we used whole-liver tissue from CD and HFD (and CR) mice as our physical
material. An advantage of this is that we captured as closely as possible the true in vivo state of
the system. However, differences do still manifest between mice raised in the same environment,
which can introduce noise into the system that may mask important molecular changes. Also, a
multitude of liver cell types beyond hepatocytes (which comprise ~90% of the liver) exist, and
stressors like HFD activate dormant cell types that contribute to molecular changes. Such cell-
type specific contributors are difficult to ascertain. While computational methods attempting to
de-convolve cell type contributions in complex tissues exist [355, 356], they typically require a

priori data from purified reference populations and generally use linear methods to estimate
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proportional contributions. Such linear assumptions likely do not hold true in all cases as positive

and negative feedback mechanisms induce synergistic and/or antagonistic effects on molecules.

The goal of omic data collection is to comprehensively quantify a given layer of biological
regulation in as unbiased a fashion as possible. RNA-Seq has been shown to be a highly
reproducible tool for profiling the transcriptome [80], though biases due to sequence content (e.g.
GC content) can influence observed expression patterns [226]. In this work, I applied
computational methods to limit biases due to GC content and gene length effects when calling
differentially expressed genes. This was critical because I observed a significant correlation
between sequence GC content and estimated log, fold-changes between conditions when not
correcting for these influences, perhaps due to batch effects. Additionally, sequence effects
hampered some early epigenetic data we collected, whereby we observed severe read coverage
depletion in annotated CpG islands across the genome. Thus, these are critical considerations
that must be made when collecting any high-throughput sequencing datasets. In some cases these
effects can be corrected with statistical modeling, while in severe cases experiments may need to

be repeated to assure proper quality and downstream interpretation.

Our proteomics data quantified >50,000 unique peptides that mapped to >6,000 unique proteins.
While this is indeed a rich dataset, there are still many expressed liver proteins that were not
quantified, likely due to low abundance. In particular, we either did not observe or only
quantified a small number of peptides for many transcriptional regulators that are known to be
expressed in the liver, including FOXO1, HNF1A, HNF1B, and PPARa. Missing data is also
common in such proteomics datasets, requiring either imputation methods to fill in gaps or
outright removal of poorly covered peptides. In addition, technical noise combined with
biological noise may have masked some true signals. To this, we additionally collected phospho
serine and threonine data from CD and long-term HFD samples and, although we quantified
~9,000 modified peptides, we were unable to reliably detect any statistical changes due,
potentially, to measurement noise. I noted that the changes between CD and HFD livers that we
did observe are consistent with a number of other studies that performed both targeted and
untargeted proteomics in this context, but we are likely missing some important measurements

that may influence the insulin resistant state. Similarly, we only quantified ~400 small molecules
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in our metabolomics data. As proteomic and metabolomic data collection methods improve and
become more sensitive [357, 358], additional insights may be revealed from deeper analyses of

these omic levels.

My network modeling efforts indeed revealed unique insights into hepatic insulin resistance;
however, mechanistic interpretation of the included interactions is still limited due to incomplete
information. For instance, a number of interactions derive from high-throughput experiments,
which provide little additional information (e.g. directionality or activation/inhibition) beyond
simple binary interaction calls. More detailed mechanistic modeling methods require a variety of
additional parameters to simulate network behavior, including molecular concentrations, sub-
cellular locations, binding strengths (i.e. Kp), catalytic rate constants, etc. In work performed by
Minyi Lee, an MIT undergraduate student who worked with me as part of the MIT UROP
program, we attempted to apply mechanistic modeling principles to small sub-networks that
would arise from network modeling of omic data. We started with a model of IL-6 signaling in
hepatocytes [359], whereby we extracted the protein-protein interaction information of this
pathway from the interactome and attempted to fit this model to “data” derived from the well-
parameterized version of this model. This procedure generally did a good job of matching the
characteristics of the “true” model. Minyi also applied this methodology to a sub-network of
EGFR signaling generated from network modeling of time-series phospho-proteomic data.
Again, parameter fitting produced a model that fairly accurately matched the kinetics and
trajectories of the true measurements. Additional simulations with perturbations are needed to
accurately assess overall model performance. Thus, a goal for the future in general is to produce
more detailed interactomes that enable such mechanistic modeling efforts. Indeed, considerable
effort towards inferring causality in networks is an active area of computational systems biology
research, though methods thus far have mostly been applied to small, well-defined pathways that
may not scale to larger interaction networks [360]. In the future, network modeling methods,
including the PCSF, could be run on directed interactomes where edge scores reflect some form
of biophysical quantity (e.g. Kp) and where node prizes are assigned weights according to their
concentrations in specific cell types or tissues (in addition to correlation with disease). Indeed,
Hein et al. (2015) applied a method called quantitative bacterial artificial chromosome green

fluorescent protein interactomics (QUBIC [361]) in HeLa cells to identify specific interactions of
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>1,000 bait proteins, measuring interaction stoichiometries and cellular abundances [362]. This
allows for classification of stable versus transient interactions and provides additional data
dimensions from which physical interactions can be characterized. This type of data can enhance

subsequent down-stream interpretation, modeling, and hypothesis testing of disease networks.

Here we profiled a wide array of biomolecules using several omic methods. Still, additional omic
layers are quantifiable and likely involved in the pathology of type 2 diabetes. For instance,
obesity is associated with changes in the gut microbiome and fecal transplantation from lean
donors into patients experiencing metabolic syndrome has been shown to improve insulin
sensitivity [120, 363]. More mechanistically, changes to mouse gut microbiota affect FXR in the
ileum and modulate bile acid metabolism in the liver [121]. Additional data types, including
methylome data and cytokine expression profiles, may enhance systems analysis of type 2

diabetes.

6.3. CLOSING REMARKS

Obesity-induced hepatic insulin resistance is a highly-complex condition that involves
coordinated dysregulation of many molecular entities across a spectrum of biological regulatory
levels. We strove towards a holistic understanding of this metabolic condition by applying a
systems biology approach to the study of diet-induced obesity. The results presented in this
thesis provide new insights into how this condition manifests molecularly and will hopefully

drive future exploration of approaches to treat diseases like type 2 diabetes.
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APPENDIX A

NETWORK-BASED INTERPRETATION OF DIVERSE HIGH-
THROUGHPUT DATASETS THROUGH THE OMICS INTEGRATOR
SOFTWARE PACKAGE

This work has been published as:

Nurcan Tuncbag*, Sara J.C. Gosline*, Amanda Kedaigle, Anthony R. Soltis, Anthony Gitter,
and Ernest Fraenkel, “Network-based interpretation of diverse high-throughput datasets through
the Omics Integrator software package,” PLoS Computational Biology, 12(4): €1004879. doi:
10.1371/journal.pcbi.1004879. April 20, 2016.

*Denotes equal contribution.
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Abstract

High-throughput, ‘omic’ metheds provide sensitive measunes of bological responses to per-
turbations. Howewver, inhenent biases in high-throughput assays make it dificult to interprat
expariments inwhich mone than cne type of data is collected. In this work, we intreduce
Omics Integrator, a software package that takes a variety of ‘omic’ data asinput and identfies
putative undedying molecular pathways. The approach applies advanced network optimiza-
tion algorithms to a network of thousands of molecular interacfons to find high-confidence,
interpretable subnetworks that best explain the data. These subnatworks connect changes
ohsarved in gene expression, protein abundance orother global assays to proteins that may
not have been measured in the screens due to inherant bias ornodse in measurement. This
approach reveals unannotated molecular pathways that would not be detectable by searching
pathway databases. Omics Integrator also provides an elegant framework to incorporate not
only positive data, bit also negative evidence. Incomorating negative evidance allows Omics
Integrator to avoid unexpres sed genes and avoid being biased toward highly-studed hub pro-
teins, except when they ara strongly implicated by the data. The software is comprised of two
individual tools, Gamet and Fomest, that can be run together or independenthy to allow a user
to perfom advanced integration of multiple types of high-throughput data as well as create
condition-spacific subnetworks of proin interactions that bast connect the obsarved
changesinvarious datasets. Itis available at hitp:/frasnkd miteduw'omicsintegratorand on

GitHub at https:/githiib comfrasnkela WOmicsinteqrator.

Thisis a PLOS Computational Biology Software paper.
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Introduction

High-throughput technologies are now able to provide comprehemsive and quantitative mea-
surements of moleanlar changes in response to perturbations or disease. Measurements of the
transcriptome, epigenome, proteome, etc. serve to complete the opagque picture of the many
active pathways and processes in cellular systems. However, no single dataset fully captures all
aspects of cellular activity in a given experimental setting. For example, transcriptional datasets
allow us to see which genes are up- or down-regulated relative to a control state, but do not
provide information about post-translational modifications that are critical for signaling. In
addition, high-throughput datasets often contain many “hits’ (Le. species that change signifi-
cantly between conditions in a given omic dataset) that either lie in unexpected pathways [1.2]
or fail to map to any existing canonical pathways [1-5]. Thus, in order to discover novel bio-
logicl processes associated with spedfic perturbations or disease [6—8] we need to consider
data from complementary high -throughput datasets jointly,

Metwork modeling approaches allow us to overcome such limitations because they can com-
bine multiple types of data without requiring prior pathway information. These approaches
can either use user-generated or publicly available data, such as protein-proten interactions
and epigenctic data, to find either direct or indirect (Le via unobserved molecoles) connections
between experimental hits. Critical to these approaches are protein-protein interaction data-
bases, which collate data from multiple experimental platforms and cell types to provide net-
works of experimentally detected interactions [9-12]. In addition, recently generated protein-
metabolite and proten- small molecole interadion networks, including HMDB [13], DrugBank
[14] and STITCH [15], allow for richer assessment of molecolar interaction types that occur in
cdlular systems, These collections of physical molecular interactions, or interactomes, enable
researchers to apply network modeling approaches to a wide variety of data.

Measurements of transcriptional changes in response to perturbation or disease are a com-
manly generated omic data type However, the proper approach for including tran scriptiomnal
measurements n networks requires some thought. Since these data do not directly measure
protein abonda noe or activity, it is misleading to map them directly to ther corresponding pro-
teins in the interactome. Instead, Omic Integrator combines such transcriptional data with
epigenetic data to identify putative changes in the activity of DN A binding proteins that influ-
ence transcriptional changes [16].

This wealth of interaction data gives rise to new challenges. The published interactions
betwemn proteins, DNA, and small moleqiles comprise a network of millions of connections that
isa hairball, ora network that is too dense to interpret [5]. There are numerows individoal tools
that are now available to analyze these networks, each with different capabilities and intended
application areas [1,41 7-25] (see Fig 1). Many network optimization methods that aim to reduce
hairball interactomes to higher confidence subnetworks exist; however, many of these have limi-
tations that inhibit their general appliabidity, such as requiring predefined source and target sets
[L4.20.26-23], which is not applicable in @ses where omic data do not fit a “source-tar get” frame-
work. There are also methods that map mBNA expression datasets to protein interaction net-
works (MATISSE [30]), methods that identify tran scription factor binding sites from epigemetic
data (Centipede [22] and PIQ [24]), and methods that relate chromatin features and DNA-bind-
ing motifs to gene expression via multivariate'univariate regression (REDUCE [23] and MOTIF
REGRESSOR [18]) or support vector regression [31]. These methods fall into two general dasses:
methods that attempt to reconstruct signaling pathways of interaction networks from data hits
or methods that focus specifially on transcoiptional regulatory networks, These two dasses of
toals are both essential to fully integrate diverse types ofhigh-th roughput data.
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algorithms. from selecting p articular nodes due to prior knowdsdgs or 2 biss, such as node degree.
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The tools currently available for omic data integration provide only a subset of the features
provided by Omics Integrator (Fig 1). Furthermore, there is no existing algorithmic framework
that enables the inmrporation of weighted negative evidence. We define negative evidencr in this
context as any data or feature that supports potential exdusion of a spedes (protein, metabolite,
etc.} from a network modd solution (eg. due to lack of expression in the system of interest, etc. L
Supporting negative scores can hdp avoid misleading results in netwods analysis, KeyPathway-
Miner [17] allows a list of negative nodes as input, but these are hard cut-offs. By contrast, Omics
Integrator allows for weighted negative scores so the wser @n halance the prior evidence for
exduding a node against the benefits of wsing it to connect nodes with positive soores.

In summary, we introduce Omics Integrator, a software package that fills a noticeable gap
in omics data analysisby providing a unified framework for integrating transcriptomic data
together with other omic data using interactome data. Although the individual components,
Garnet and Forest, have similarities with existing tools, uniting expression analysis and net-
work analysis in a single package makes it substantally casier to model multiple types of omac
data. O'mics Integrator expands opon and combines the prise-collecting Steiner forest (PCSF)
algorithm [2537] and methods similar to those implemented in previous network algorithms
[4.33]
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Design and Implementation

The Omics Integrator package (Fig 2} consists of two distinct tools: Garnet and Forest. These
tonls work together to enable the integration of data derived from measurements of mRNA,
proteins, genetic perturbations or metabolites.

Garnet takes chromatin acoessibility data (eg. DNase-Seq, histone modification ChIP-Seq),
cither generated by the user or acquired from public repositories (eg. the ENCODE consor-
tiurn [34], the NIH Roadmap Epigenomic Mapping Consortium [35]), and identifies a set of
transcriptional regulators that potentially explin observed gene expression levds or changes
between conditions in an experiment of interest (Fig 24 ). From the chromatin accessibility
data, (rarnet scans regions proximal to transcribed genes for transaription factor hinding sites.
Binding sites are inferred from sequence matches in the underlying DN A to a dustered set [36]
of DMNA-binding motifs. Garnet then vses a pseudo-thermodynamic metric [37] to compute a
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transcription factor affinity (TFA) score in these regions and maps these scores to genes within
a fimed window (e.g. Zkb). Gamnet estimates transaription factor activity by performing univari-
ate linear regression of the TFA scores against corresponding mBN A expression measure-
ments. Significant regression coetficients indicate mndidate transcriptional regulators that can
then be used as input to the Forest program or analyzed indepen dently,

The Forest tool identifies a parsimonious interaction network connecting a subset of user-
defined omic data hits (Fig 28 ). These hits can be the transcription factors selected by Garnet
and/ar any other type of hiological data (e siRNA hits, phosphoproteomic changes, metabo-
lites, etc. ). Specifically, Forest solves the prize-colledting Steiner forest problem [5] that takes
into account the importance assigned to the omac hits (e.g. by sigmificance level or fold-change
between conditions) as well as the probability that each reported interaction is real. Each omic
hit and/for Garnet-selected transcription factor is given a positive "prize’, reflecting the confi-
dence in the reiability of the underlying data (eg a set of differentially expressed proteins).
These user-defined hits are referred to as terminals. When the algorithm includes a terminal in
the network, it is rewarded with the prize assigned to that hit, but also has to pay oosts for the
interactions used to link the data to the rest of the networle By seeking to maximize the col-
lected prizes and minimize the edge costs, the algorithm uncovers a high-confidence set of
physical interactions that ecplain how the omic hits are rdated. Because the algorithm is not
forced to include all omic hits, it can remove those that are poorly connected and give rise to
the ‘hairball’, However, Forest an at the same time select additional, mteractome-derived
niodes called *Steiner nodes’ when necessary. Steiner nodes are likely relevant to the biological
response in question, but may be missed by the high-th roughput assays. Forest generates out-
put files that can be @sily viewed using the network visualization software package Cytosape
[38].

Forest includes numerous features to efficiently generate biological networks, while avoiding
commaon pitfalls often encountered when implem enting network-based algorithms, For ecam-
ple, many network methods are inherently biased towards using nodes that have been studied
more extensively and have more reported interactions [39-41]. Forest can penalize these
highly-connected nodes, termed hub’ nodes here, by assigning to thema prize with a negative
value. Without the negative prizes, hub proteins are often selected even when they are ot bio-
logically relevant or mteresting. With negative prizes, they only appear in the network when
other data strongly implicate them. Additionally, Forest includes randomization strategies to
ensure that the resulting networks are robust to noise in the biological data. We include in our
software package a straightforward example in which phosphoproteomic measurements are
integrated with changes in mBN A expression [42 ] using epigenetic data from a related cell line
from ENCODE [34,43] W e also include examples in which Gamet and Forest can be run inde-
pendemtly, described in more detail on our website: httpd/ fraenkd. mit edufomie integrator,

Mapping gene expression changes to proteins

The Garnet algorithm reveals mndidate transcriptional regulators that likely influence gene
expression levds or changes. We prefer to not use mRN A measurements as proxies for changes
in protein levels or activities as the relationship between mENA and protein levels is complec
[44-46]. In addition, changesin protein concentrations are not reliable evidence for changes in
the activities of pathways, which are often post-translationally regulated. Onae Garnet identi-
fies franscription factors that give rise to the observed mBNA changes, the transcription factors
can then be used as input to Forest.

(zarnet is a core part of omics integration, enabling gen e expression changes to be mapped
to trans aription factors in the interactome that can then be then analyzed alongside other data
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[47]. Garnet builds on the rich epigenetic datasets that have been collected through consortia
such as ENCODE by using data from histone modifications or open chromatin experiments to
restrict the search space for motif matches to areas more likely to be bound by some regulator.
This strategy has been used by this lab [48] and others [49] to reduce spurious motif matches
and thus to improve the accuracy of transcription factor binding prediction [22]. Although this
type of inference cannot eliminate uncertainty about the binding of a TF to a specific site or
gene, the comulative evidmoe is pradictive of the activity of the TF in a transcriptional
response. As Omics Integrator salves the prize-collecting variant of the Staner problem, it can
exclude false positives that are difficult to connect to upstream signaling. Omics Integrator also
provides options to filter the candidate TFs from Garnet, including chedeing whether or not
the TFis expressed in the tissue or od] type of interest,

Garnet consists of two steps: (1) computationally predicting transcription factor-DNA
interactions from epigenetic data and a set of DN A binding motifs and (2) estimating regulator
activities by corrdating these predicted transcription factor-DNA interactions with mBNA
expression changes in genes neighboring the predicted binding sites,

Epigenetic data processing.  Garnet first finds genomic regions that likely harbor tran-
scriptional regulatory proteins by searchimg enriched open chromatin regions for matches to
DM A binding protein motifs. These regions are typically identified using epigenetic data either
within a similar cell type or from conserved regulatory regions across cdl or tissue types [50].
Garnet first searches a list of chromatin regions, provided by the user or included with Omic
Integrator, and assigns the regions to genes with open chromatin sites within a user-defined
distance threshold (eg 2000 base pairs). Garnetthen scans these regions to determine the like-
lihood that a transcription factor wil bind a region using a set of position weight matrices
(PWMz),

Transcription factor binding prediction. Each region of DN A associated with an epige-
netic signal is given & score representing the probability ofbinding for cach motif matrix using
a statistical-mechanics framework, where the number of possible binding sites and their PWhM
scores in each sequence are combined to create a single transcription factor binding probability
for cach region. The Boltemann weighted partition function below is used for each motifand
chromatin region and has been described in this context previousty [37]. The equation to
define transcription factor affinity is:

o i |

TE. —E
- . 1
Y ErTen W

TEA; estimates the probability of binding for motif j using all scoring windows i in the
region, w;estimates the probability that the motif score is not a false positive, i, represents the
PWM log-likelihood score at the i" window in the region, and 8 estimates the probability that
motif score is a false positive. In practice we use wy and §; as tuning parameters hased onthe
TRAMNSFAC MATCH minSUM and minFP score thresholds for each motif. For genes with
multiple epigenetic regions within the associated window, Garnet chooses the highest TFA;
value for each motif j across all regions, The result isa matrix representing the affinity score for
cach gene and each transaiption factor binding motif,

Transcription factor selection. (arnet uses inear regression to identify motifs mapped to
transcription factors with the strongest relationships to the expression data. This approach is
similar to that in previous work [37] and assumes that the better the match of a sequence to a
motif (summed over anepigenctic region), the stoonger the binding and the greater the effect
the regulator has on transcription. We apply least-squares regression to relate the TFA saores
described above to mRNA ecpression changes for a particular condition of interest.

PLOS Compuiational Biology | DOI0. 137 1 joumal pebi 1004679 April 20, 2016 /18

179



@'PLOS

COMPUTATIONAL

BIOLOGY

The Omics Integrator Software Package

Significance is assessed by testing the null hy pothesis that the slope of the regression line is 0.
Transcription factors with motifs exhibiting statistically significant regression coefficients (p-
value-<0.05 or any desired threshold) are given a wedght of-log{p-value).

Metwork modeling

Selection of the torminal node set and assignment of prizes.  To map cxperimental data
to an interactome of interest (Fig 2B), the user must first identify the most biologically signifi-
cant hits from each dataset and define them as terminal nodes in the network, Terminal nodes
are any entities represmted by nodes in the neterork that the user would like the algorithm to
analyze in a larger biological context. Typically, these are molecules that change significantly
undera treatment relative to an appropriate control. Prizes, denoted p(v), where v is a vertex
(node} in the interactome graph, are assigned to the terminal nodes by the user. These prizes
can be, for example, the log fold dhange of proteins inan experiment or negative log of the sig-
nificance level describing changes between conditions {p-value or g-value). If there is no quan-
titative information and only a set of terminal nodes is available, users can assign uniform
prizes to each terminal.

As already noted, Forest can use node prizes to incorporate negative evidence about the rele-
vance of 2 node. A priori, it is impossible to know if such a protein has a high degree because it
is truly involved in many interactions or because it has been studied more extensively than
other proteins because it is highly-conserved, essmitial, or highly-expressed [39-41]. To avoid
the potential bias introduced by these hub nodes, we created a generalized prize function that
assipnis negative weights to nodes based on the number of connections they have in the interac-
tome. As a result, hubs are lesslikely to be selected but can still be used when the data strongly
support their inclusion. The function for this negative weighting is:

Flv)=F§-plv)— - degree(v) (2)

where degree(v) is the number of connections of node v in the interactome The §and g param-
cters are scaling factors to adjust the effect of terminal nodes and hub nodes in the final net-
work, respectively. When p isset to 0, the hob correction is disabled (default behavior),
Increasing u attenuates the hub dominance in the optimal solution, Increasing # promotes
mare terminal nodes to be included in the optimal solution (Eg 2).

In addition to redudng the influmae of hob proteins, negative prizes could be wsed to
reduce the influence of molecules that are poorly expressed ina particular tissue or condition.
Similarly, negative prizes could be used to exdude molecoles that have been experimentally
determined to not be rdevant to the process under study. Users can take advantage of this fea-
ture by simply adding negative values to the original prize file.

Confidence-wedgh ted interactome and edge costs.  Calculating the probahility ple) that
an edge e between two proteins reflects a real interaction allows us to avoid false positive edges,
which are assumed to be less reprodudble and therefore less confident. Forest takes as input a
set of edge weights (plel) and converts them to costs using the scoring fundion ofe) = 1 —ple).
Several approaches have been described for deriving these probabilities or other confidence
scores [1,10,26,51,53].

Forest problem fomulation

The input to Forest is a directed, partially directed, or undiredted network GEV, E, cie), pivl)of
node set Vand edge set E, where the function p'(v) assigns a prize to cach node v € Vand the
function cfe) > { assigns a cost to each edge e € E. The aim is to find a forest F{Ve, Eg) that
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minimizes the objective function:
FiF)= E,;.,.pp’l'ﬂ 3 g cle) Fai K (3}

where p'{v}is as defined in Eq 2, xis the number of tree in the forest, and o is a tuning param-
eter whose purpose is explained below. Here, an artificial node, or "dummy’ node, v, is intro-
duced to the initial network and connected to a suhset of nodes N (using the - -dummyMode
option detailed bdow). The nodes in N are a subset of all the nodes in the interactome Y and
are assigned a uniform edge oost w to the dummy node, Forest constrains F to be a tree—a con-
nected graph without cycles- that is rooted at v,. The optim zation problem is solved with the
msgsteiner message-passing algorithm to identify a tree subnetwork [53]. Once the network
optimizatinn problem has been solved, the root node (vg) and all its edges are removed, provid-
ing a final forest network that is a collection of one or more sub-trees. These sub-trees concep-
tually represent parallel biological pathways. Given that the resulting solution is dependent on
the particular values of B, w, and p, we suggest that the wer run the algorithm with different
settings to select an optimal solution. We recommend choosing optimal parameters based on
twro criteria. First, the parameters should maximize fraction of terminal nodes included in the
network that are also robust to noise; this robustness can be determined by permutations
derived from the --noisyEdpes flag. Among the parameter settings that yield a similar fraction
of robust terminals, we prefer larger networks. It is often also helpful to check that the selected
hidden nodes are enriched for biclogially- rdevant @ategories using known pathways or gene
sets (e from MSigDB [54] or Gene Ontology [55]).

Up to six PCSF parameters are supplied to Forest in a configuration file. The minimum
required parameters are w, #and . The parameters w (controlling the number of trees; Eq 3)
and & (controlling the trade-off between including more terminals and using less reliable edges;
Eqg 2) are as described above. D (the depth parameter) controls the maximum path-length from
vato terminal nodes. Suggested values for D range between 5 and 10. The optional parameters
are y, g, and garnetBeta. The parameter p controls the degree-based negative prizes (Eq 20 if
not provided, pis assumed to be zero. The ranforcement parameter, g, affects the comvergence
ofthe solution {smaller values produce solutions closer to the optimum, but increase run time )
and isset to Ie-3 by default The gurnetBeta parameter is used to scale the Garnet output prizes
relative to the provided protein prizes. The default for garmetBeta is 0.01.

Additional algorithm features

Forest converges on a single, optimal solution. However, it can be useful to perform perturba-
tion analyses to determine the robustn ess of this network and how it relates to suboptimal solu-
tinng, Forest provides three different perturbation strategies. To ascribe confidence in the
selected hidden nodes, the user can use the --noisyEdges flag to assign noise to the edges of the
interaction network. Hidden nodes that appear often in networks run with noisy edge weights
are likely more robust than those that only appear in the optimal solation or 2 small number of
sy rumns. A wser can also use —shufflePrizes to identify those hidden nodes that are robust to
noise in the prize data. Lastly, the user canalso assess specificity of hidden nodes using

the --random Terminals flag that runs the optimization with a random selection of terminals
(preserving the degree distribution of the original terminal set). Hidden nodes that occur less
frequently in forests run with random prizes are likely to be more specific to the user’s problem
ofinterest and therefore more biologically meaningful. The results of these perturbations can
cither be used to weaght nodes and edgesin the original network using the ‘fraction of optimal
neterorks included’ attribute or viewed together wsing the merged network produced by the
algorithm.
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Aspreviously mentioned, Forest incorporates a dummy node into the graph when solving
the optimization problem. When this dum my node is removed after the opti mization, the
solutionis divided into disjoint subnetworks. The - -dummyMode option tells the algorithm
which nodes in the interactome should be nnected initially to the dummy node. The
default option (- -dummybod e terminal ) connects the dummy node to all of the input termi-
nals, guaranteeing that each sub-network in the optimal solution is rooted by a terminal
node, The option --dum myMode filmame allows the user to explicitly specify which nodes
to connect to the dummy node. For example, in our previous work, we used this option to iden-
tify signaling pathways originating at cell-surface receptors [5]. There are additional values for
the --dummyMode option, recommended for advanced users, as described in Table 1.

Forest can also antomatically perform in silico knock-out experiments, Le, identifying new
solutions when a specific node removed from the interactome These can be vahable for deter-
mining the robustness of the solution and the significance of individual nodes [5]. To wse this
option, the user specifies - -lmockout and provides node names specifying node(s) the user
would like to “lmock out’, ie. TP53 or TP53 EGFR

There are other Forest options in addition to those explained here, The full list is provided
in Table 1. The step-by-step procedure to mn Omics Integrator and troubleshooting gudance
are provided in the Sup plementary Material. A flowdhart showing how to run Omics Integra-

tor is depicted in Fig 3.

Resulis
Omic data integration and network reconstructionin lung carcinoma

To showcase the whility of Omics Integrator, we analyzed several types of omic data from lung
carcinoma cells. We collected previously published data [42] from H358 odls, 2 model of lung
cancer, that were stimuolated with TGF-f. Measured gene expression changes were used as
input into Garnet together with DNase [ hypersensitive regions from A549 cells, a rdated lung
carcinoma-derived cell line, The resulting transcription factors identified by Garnet were used,
together with phosphoproteomic expression changes from the same experimental con ditions,
as input into Forest. Forest then found a collection of edges from the protein interaction net-
work that connected the two classes of nodes with TGF-B receptors.

The resulting networl, depicted in Fig 4, showcases the ahility of the forest alporithm to con-
mect kenown targets (derived from phosphoproteomic and expression data) using the pmtein-pro-
tein interaction network as well as identify hidden “Stener’ nodes (hexagons) that interact with
Garnet-identified transcription factors (triangles) and proteins that exhibit phosphorylation
changes (drcles). Included among the more robug Steiner nodes (node size correlates with
robustness to perturbation) are proteins that have been linked to EMT signaling in @noer, such
as PIAST, a SUMO E3 ligase that is repressed by TGF-f to prevent EMT suppression [56], and
COLAATL, which has also been linked to TGF- stimulation [57]. SUFU and GLI3 have been
linked to Hedgehog signaling [55], another pathway in @ancer [59], sugpstinga putative expla-
nation for the link between TGF-f and Hedgehog signaling. Additional Steiner nodes present in
our network, induding ABCAT and ATGI2, to the best of our knowledge have not been studied
in this context and may point to nove aspects of the TGE-B signaling pathway.

To generate the network illustrated, users can run the test-tgfb-data. py saript in the exam-
plefa549 directory of the Omicsintegrator package This script will run Garnet using the
EWNCODE-derived DiNase | hypersensitive data from AS549 cells with the pene expression data
from related cells. This script then runs Forest using a scored version of the iRefindex interac-
tome {version 13] [4] provided with Omics Integrator to identify links between the Gamet
transcription factors and the proteins phosphorylated upon TGF-f stimulation.
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Table 1. Description of the parameters used in the Forest. py script.

-p PRIZEFILE, --prize=PRIZE FILE

-2 EDGEFILE, --edge=EDGEFILE

-c CONFRILE, —cont=00ONFRILE

-d DUMMYMODE,
—dummydode=DUMMYMODE

—pamet=GARNETOUTRUT

—magpath=MEGPATH

—outpath=0UTPUTPATH

—oufahel=0UTPUTLABEL

—cyio3d

—Ccyio2s

—nioisy Edges=NOISENLM

—shuffledPrizes="SHUFFLENUM

—randomT erminats=T EAMMLUIM

= kout =KMNOCK OUT

-3 SEED, —sesd=SEED

Path 1o the text file containing the prizes

Path 1o the text file containing the interactoms
edges

Path 1o the text file containing the parameters.
Defaull = *fconf 1"

Tells the program which nodes inthe
inleraciomes o conned to the dummy root node.
Default = Yerminats”

Tells the program that it will also use the Gamst
output for network modeding. The prizes will be
scaled by the gametBeta pa rameter you provide
in the conf file, defautt 0.01

Fizg 1o 2dd negative prizes o hub nodes
pmpariional 1o fheir degree®, rather han degres.
Use to penalize hub nodes morne infenssly. Must
specity a positve mu in conf file.

Path 1o the megsisiner execulabile, incuding the
executsble name. Default = */magsteinar”

Path 1o the direcions which will hold the output
file. Detault = this direciony

A, sting 1o put at the beginning of the names of
the files oulput by this program. Defaull = *resuit”
Use this flag i you want fie output files 10 be
compatible with Cyloscape v3.0 (his is the
detzuity

Use this flag if you want e owtput files 1o be
compatible with Cyloscape v2 5

Spedfies how many tmes you would liks o sdd
noise 1o the given edge values and =4un e
algoritim. Resulls of these runs will be merged
together and writien in files with the wand

" _noisyEdges_" added i their names.
Defautt =0

Spedfies how many tmes you would like 1o
shutfle the given prizes anound the tBminals and
re-run the algonthm. Resuls of these runs will be
mearnged iogether and written in files with the word
*_shulfledPrizes_" added 1o their names.
Defautt = 0

Spectfies how many tmes you would like o spply
the given prizes 1o random nodes in the
imieraciome (with & similar degres distribubon )
and re-run the algonthm. Results of these runs
willl be merged together and writien in files witn
the word *_randomT erminals " adoded 1o their
names. Default = 0

Spedifies protein(s) you would like to “knock ouf’
of the inleraciome to simulste & knock-out
xpeniment

A seed for the pseudo-random numiber
generaiors. if you want to reproduce exsct
results, supply the same seed. Default = Nons

Path 1o a tab-delimied plain teat file with lines “P roleinflame
FrzeVaiue"

Path 1o a tab-delimied pizin texd file with 3 or 4 columns:
“Proteind ProtinB Weightioetwesn 0 and 1) Directionality (U
or D), opbonal)

Fath to & tab-delimied plain texd file with lines
“Pammeterilame = Parametervalue”. Must contain values for

w, b, D. Optiona | parameiers mu, gamelBeta, g may also be
included

Eitner & file name (containing & list of nodes), “termin als”
(connect o all prize nodes), “others” (connedt to nodes with no
prize}, or “al (connect to all nodes)

Full patn + filename of e Gamet oulput file

Path where the msagsieiner exscutable is located

Paty

Siring

Imt=ger

Imiegar

The name(s) of the prokein(s), Le. TP53or TP53 EGFR

Inieger

1013 fourmeatpehy 1004879 100
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Download and unzip
Omicsintegrator-0.1.0.tar.gz

Install Boost C4++
library and

msgsteiner binaries

Prepare prize data

Prepare expression data

Collect and format
epigenetic data

Collect and format
interactome data

Prepare garnet
configuration file

Run garnet.py

Prepare forest
configuration file

Run forest.py

Open Cytoscape
to visualize results

Fig 3. The flowchart of the software. Siep 1 reguines downioading and UNz pEing the scnips and dats files.
Siep 2 congists of the ingtallztion of e ne cessary tools o wn Omics Integratar. Step 3 describes how 1o
prepare input files. Step 4 and 5 are designed ford ate collection and formatting for Gamet and Forest
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micduies, respectvely. At Siep 6, configuraton files are prepared whers parameters are defined tor Gamet
and Forest separatety. Gametand Forest sonipts are mn atStep 7. 1fthe inftial date contains ranscap bonal
dsta, ven Gamet must be run before Forest. Otherwise Forestcan be run independently. Detailed
Iinstructions of these si8p 5 ane in the 'Proce dure’ section of the 5 1 Text.

10,137 foum al ety 1004ETE 003

Metwork modeling and in silico knock-out experiment in human primary
Glioblastoma cells
Forest also has the ability to perform in silioe knock-outs of specific nodes to model loss or

lmock-out of these species from a system. Such lmockouts @n be useful to examine signaling
that can occur after a receptor has been inactivated through mutation or pharmacological

Legend
. Phosphoproteomsc hit
‘. Transcnption factor hit

.swm

Fig#. Anticipated results: Network reconstructed from changes in phosphoproteomic measurements (cincles) and gene expres sion
measurements (triangles) in lung cancer cell lines stimulated with Tgf4. Bilus nexagons represent *Steiner nodes” that were not me asured a5 ch anging
in the oniginal expenimental measurements but identified through neteark B constructon. Nodes that are not blue were measurned in the phosphop olsomic
data, with color indica ing the degree of change in phosphoprotecmic measurements: grey indicstes no change and yellow indicates a large amountof
change. Metwork robu stness was measured by adding notse 1o the edges using the --noisyEdges fiag. The shade of the edge is cometaied with the number
oftime s the edge was selected overall perfurbations, and the size of a node represents number of time s the node was selected. The width of the edge

represents fhe weight assigned o the intemotion in the onginal interaciome.
doi= 10137 foumalpen 1004879 9004
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treatment. For example, the epidermal growth factor receptor (EGFR) is the target of tyrosine
kin ase inhibitors including erlotinib and gefitinib. To determine the alternate signaling path-
ways that could function in the presence of such inhibitors, we use the Forest algorithm to con-
struct a network from phosphoproteomic data measured in US7 cdl lines, a model of
glioblastoma tumors which has been published previously [60]. We compared this networl,
called the wild type (WT) network, with a second network bult from the sarme data, but with-
out EGFR included in the interactome (knock-out or KO network ). A comparison of the WT
and KO networks is depicted in Fig 5. When EGFR is removed from the interactome, the blue
dashed edges are removed in the final network, but many key signaling nodes, such as GRE2,
CBL and PIK3R1, remain, Also, several cell surface receptors, such as MET, TFRC, EPHAZ2 are
robust to EGFR removal. The network sugpests that these receptors could continue signaling to
the same downstream targets of EGFR. Indeed, crosstalk between MET and EGFR has been
previously identified [61]. These results suggest the presmoe of alternate pathways that could
contribute to the fatlore of some glicblastoma tumors to respond to treatment.
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Megative prize weighting reduces bias in interaction networks

Megative prizes can improve the accaracy of Forest's reconstructed natworks, We tested the
efficacy of adding negative prizes by testing the ability of Forest to reconstruct annotated path-
way data from ConsensusPathDB as separate trees [62]. We mlledted proteins from three path-
ways in ConsensusPathDB: mBNA splidng, pyruvate motabolism and Rho cell motility. In
theory, we would expect these proteins to form three independent trees using the Forest alpo-
rith m because they are biologically distinct processes. Without negative prizes, however, Forest
assembles all nodes into a single tree (see Fig A in 51 Tect). When we penalize high-degree
neodes using negative prizes using the p parameter, the nodes from each pathway form distine
subtrees, llustrated in Fig 6. Inaddition to recapitulating an notated pathways, nodes in each
subtree are enriched for distinct GO prooesses and shown in Fig Bin 51 Text.

Availability and Future Directions

Omics Integrator is an open-source project licensed under the Creative Commons Attribution-
NonCommercial 4.0 International Public License. It is available for download at httpyframbel
mit edu/omicsintegrator, The install nstructions will msure that all required Python libraries are
installed. To solve the prize-collecting Steiner forest problem, Forest uses the message-passing
algorithm misgsteiner, which requires a C+4 compiler and the Bmstli:rrar:.r www. boost arg).
The msgsteiner source code can be downloaded from hittp !/ i
bpstaper. For installation, follow the guidelines in the downloaded files. [-"-wdupm:m of

Omics Integrator is ongoing through owr GitHob site (https)/github, com/ fraenkel-lab/
Cmicsintegrator), which provides a framework for collaborations acoss institutions,
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Future directions include adding support for more types of interactions (such as protein-
EMNA interactions ), multiple sets of prizes derived from patient data [32], and additional oper-

ating systerns. We also plan to improve the parameter selection process and Garnet execution

time

Supporting Information

51 Text. Supplementary material. Detailed procedure to run Omics Integrator Software and

interpret the results,
(DOCX)
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