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Abstract

Geometric patterns, pioneered centuries ago as a dominant form of ornamentation
in Islamic architecture, represent an abundant source of possible topologies and ge-
ometries that can be explored in the preliminary design of discrete structures. This
diverse design space motivates the coupling between Islamic patterns and the form
finding of funicular grid shells for which structural performance is highly affected by
topology and geometry. This thesis examines one such pattern through a paramet-
ric, performance-driven framework in the context of conceptual design, when many
alternatives are being considered. Form finding is conducted via the force density
method, which is augmented with the addition of a force density optimization loop to
enable grid shell height selection. A further modification allows for force densities to
be scaled according to the initial member lengths, introducing sensitivity to pattern
geometry in the final form-found structures. The results attest to the viable syn-
ergy between architectural and structural objectives through grid shells that perform
as well as, or better than, quadrilateral grid shells. Historic and cultural patterns
therefore present design opportunities that both expand the conventional grid shell
design vocabulary and offer designers an alternative means of referencing vernacular
traditions in the modern built environment, through a structural engineering lens.

Key words: grid shell, structural topology, Islamic pattern, parametric design, perfor-
mance driven design, force density method, form finding
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List of topology and form finding variables

Variable Description

𝑜1, 𝑜2 Radial dimensionless pattern offset variable pertaining to the octagonal

and diamond pattern units, respectively (0 ≤ 𝑜1 ≤ 1 and 0 ≤ 𝑜2 ≤ 1).

See Figure 3-3

𝑜𝑑𝑖𝑠𝑡,1, 𝑜𝑑𝑖𝑠𝑡,2 Radial physical offset distance within the octagonal and diamond pat-

tern units, respectively

𝑐1, 𝑐2 Empirically derived constants that are used to remap the dimensionless

offsets to physical distances according to Equation 3.1

𝑑, 𝑑𝑞𝑢𝑎𝑑 Pattern density of the Islamic pattern and its corresponding quadri-

lateral pattern, respectively. Values are expressed as the number of

polygonal units along the outer edge of the square plan. See Figure 3-3

𝑚, 𝑚𝑞𝑢𝑎𝑑 Number of members in a given Islamic pattern or its quadrilateral

counterpart, respectively

𝑎 Area of the square that fully encloses a pattern, held constant through-

out the parametric studies (𝑎 = 100)

𝑖 Pattern or grid shell member number

𝐵𝐶 Boundary condition applied for form finding: 1- convex hull, 2- barrel,

3- corners

𝑝𝑡𝑜𝑡𝑎𝑙 Total external force applied to the grid shell, in the direction of gravity.

This value is held constant at 𝑝𝑡𝑜𝑡𝑎𝑙 = 1

ℎ𝑚𝑎𝑥 Maximum 𝑧-coordinate within the grid shell during the optimization

iterations

ℎ𝑡𝑎𝑟𝑔𝑒𝑡 Predefined grid shell height, defined as the maximum 𝑧-coordinate

within the final structure

𝑞𝑠𝑡𝑎𝑟𝑡 Starting guess for the member force density optimization loop

𝑞, 𝑞′ Force density variables that are minimized in the optimization loop in

phase one and two, respectively (Equations 3.2 and 3.3)

𝑞𝑜𝑝𝑡 Optimal force density to achieve the prescribed height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡
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𝑞𝑖 Force density of a given member, 𝑖. In phase one, 𝑞𝑖 = 𝑞𝑜𝑝𝑡 for all

members, while in phase two 𝑞𝑖 = 𝑞𝑜𝑝𝑡
𝑙𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑓𝑖 Internal force of a given member, 𝑖, in the form-found grid shell

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 Minimum and maximum internal member force in the form-found grid

shell, respectively

𝑙𝑖 Final length of a given member, 𝑖, in the form-found grid shell

𝑙𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Initial length of given member,𝑖, within the two-dimensional starting

pattern
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Chapter 1

Introduction

Contemporary architects and engineers often search for innovative and diverse forms

during conceptual design iterations in order to counteract the rectilinear monotony

that is commonplace in urban areas. In addition, environmental impact is becoming

increasingly important in the built environment, necessitating a shift toward effi-

ciency in design. This can be achieved through reductions in both the operational

and embodied energy of buildings, of which the latter is most significantly affected

by structural form and material distribution [1]. The objective of emphasizing a

structure’s aesthetic qualities while augmenting its efficiency therefore represents a

dichotomy often faced by industry practitioners.

One possible solution that seeks to address this question of combining architec-

tural and structural intents is form finding. Form finding was first manifested through

the physical hanging models that were central to the works of great twentieth cen-

tury engineers [2]: Heinz Isler [3], Antoni Gaudí [4], and Frei Otto [5]. The technique

produces funicular shapes, or forms, acting in pure tension or compression, and are

determined as a direct response to the applied forces. With bending action miti-

gated, all internal forces are transferred axially, which makes the most efficient use of

the member cross-section and allocated material strength. This intentional focus on

structural efficiency during the very foundation of the design process stands in direct

contrast to the highly inefficient approach of designing free-form structures that are

rationalized a posteriori.

11



While free-form design was popularized via the advent of computational design

tools, the development of a multitude of numerical methods [6] has made form finding

equally viable. As a result, form finding has been used to design a variety of typologies

ranging from membrane structures to shell structures. Within the shell structures

category, grid shells are particularly conducive to formalized form finding methods

for two-dimensional discrete networks, or patterns, for which the final structural form

is not known. A grid shell is a surface structure that achieves its strength and stiffness

through double curvature which is articulated through a network of discrete, linear

members. This structural typology is favored for its ability to combine aesthetic,

performance, and daylighting objectives, and as such, has been used as an elegant

solution for long span roof structures. Noteworthy examples of grid shells include

the Great Court at the British Museum in London (2000), as well as the National

Maritime Museum courtyard in Amsterdam (2011), which is particularly intriguing for

deriving a modified funicular form from a complex, historically significant patterned

map (Figure 1-1) [2].

(a) (b)

Figure 1-1: (a) Grid shell roof structure of the Great Court at the British Museum in
London, UK, designed by Foster + Partners (photograph taken by Andrew Stawarz,
reprinted from Ref. [7]) (b) Grid shell glass roof of the National Maritime Museum in
Amsterdam, Netherlands, designed by Ney + Partners (photograph taken by Flickr
user: kaysgeog, reprinted from Ref. [8])

The National Maritime Museum therefore represents a departure from the confines

of quadrilateral or polygonal patterns, and instead makes a case for a broadening of

the grid shell design vocabulary through an investigation of alternative pattern topolo-
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gies [9–11], as opposed to global forms, which have been well studied [12, 13]. The

topology, or connectivity, of a two-dimensional pattern plays a particularly important

role, not only in influencing the overall form of the resulting grid shell, and hence its

visual appearance, but also in determining the force distribution [14]. Extending that

further, the geometry pertaining to a particular topology, defined as the coordinates

of the nodes comprising a pattern, also directly impacts the flow of forces. As a re-

sult, form finding with a variety of pattern topologies and geometries simultaneously

provides designers with creative freedom and control over structural performance in

early stage grid shell design.

1.1 Definition of the problem

This thesis aims to further investigate the effect of pattern topology and geometry

within the context of funicular grid shells, but through an alternative design lens

that looks to historic precedents in the field of geometry. Islamic geometric patterns

are perhaps the most widely recognized ornamental feature of Islamic architecture

and are revered for the breadth of design possibilities that stem from their inherent

mathematical nature. For this reason, the presented research draws upon Islamic

geometric tradition to generate diverse topologies, which are at the confluence of

culture, architecture and design, and instead, reorients their function toward a struc-

tural one. Allowing for both architectural and structural objectives to be prioritized

through topological and geometric considerations, the proposed methodology for the

form finding of grid shells integrates the necessity for rapid design explorations within

a parametric, performance-driven computational framework. Form finding is imple-

mented via the well-established and commonly used force density method [15], with

the addition of an optimization loop that determines the necessary member force

densities to achieve the grid shell height prescribed by the designer. Possible design

outcomes derived from Islamic patterns are demonstrated through a grid shell de-

sign case study comprising two phases that can be performed independently, but are

shown sequentially. The first phase conducts a comprehensive parametric study of the
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grid shell design space with a particular emphasis on topology, as per the variables

defined in Figure 3-3. The second phase examines the effects of pattern geometry by

presenting a strategy for scaling member force densities, and results in efficient, yet

diverse grid shells that have not yet been realized in the built environment.

1.2 Outline of the thesis

This chapter outlined the underlying motivation behind the proposed two-phase grid

shell study, which is addressed through the lens of geometric and topological design

opportunities brought forth by culturally significant patterns. Chapter 2 provides

background information on Islamic geometric design, as well as the use of the patterns

in both historic and modern architectural contexts. Moreover, a brief introduction

to the force density method is included. Building upon this, Chapter 3 presents the

computational methodology for the design investigations in three sections: pattern

parameterization (3.2), form finding and optimization via the force density method

(3.3), and methods to evaluate grid shell designs (3.4). Design outcomes and an

analysis of the performance trends observed in both phases are discussed in Chap-

ter 4. Also, a summary of the research contributions and the possible implications

on architectural and structural design practices are summarized in Chapter 5, along

with suggested avenues for future work. Finally, an appendix that documents the

MATLAB code comprising the computational framework explained in Chapter 3 is

included.
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Chapter 2

Literature Review

This chapter introduces the historical and cultural background that is pertinent to the

patterns used to generate grid shell designs. Contemporary uses and interpretations of

these patterns in architectural design are also discussed, noting a particular emphasis

on the extension of the metaphor of traditional shading lattice screens to intelligent

facades; Islamic patterns have yet to be used as core components of structural systems.

Furthermore, a general overview of the force density method implemented for form

finding is outlined.

2.1 Islamic geometric design

Prior to sampling grid shell designs using Islamic patterns, it is important to establish

the cultural context and significance of this geometric innovation. The history and

development of Islamic architecture is one characterized by a continuous exploration

of personal, communal and religious spaces, as well as material, structural and orna-

mental advancements. The impressive complexity that was achieved centuries ago,

without the aid of computational tools, stands as a testament to the synergy between

architects, engineers and artisans [16]. Of the many innovations that stemmed from

this relationship, geometric patterns are perhaps the most universal, becoming the

dominant decorative repertoire in Islamic architecture from the eleventh century on-

ward, and adopting various styles across the Islamic dominion [17]. The plurality
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of pattern types [18] observed in extant historic structures is in part due to cultural

ties and regional craftwork, but is primarily due to the deeply rooted mathematical

rules and order that create an intrinsically diverse design space. By their very na-

ture, Islamic patterns result in remarkable global pattern variations with only slight

modifications in local geometries, thus enabling a wide variety of design possibilities,

and creative agency [19] (Figure 2-1). Moreover, symmetry and modularity are key

design principles that define these patterns, where motifs are periodically repeated

across a surface, allowing for geometric complexity to be achieved with ease.

Figure 2-1: Examples of patterns, documented by Jules Bourgoin, that illustrate the
abundant variety of Islamic patterns. This thesis reinterprets the patterns as grid
shell topologies and geometries. The images are reprinted from Ref. [18].

Precisely how Islamic geometric patterns were designed by craftsmen many cen-

turies ago remains shrouded with mystery despite continued art historical and math-

ematical research [20]. This is because there are very few surviving manuscripts

that document geometric compositions and the numerous techniques with which they

were created. The primary source of evidence can be found on the historic sites them-

selves; however, the patterns belie the design procedures that led to their existence.

Nonetheless, nineteenth and twentieth century Western architects and scholars, most

notably Owen Jones [21], Emile Prisse d’Avennes [22], Jules Bourgoin [23], and Ernest

Hanbury Hankin [24], were fascinated with the vibrancy of the designs of the Islamic

world, and have collectively written several books that catalog the impressive vari-

ety of patterns that have been achieved. More recently, Eric Broug examined the

patterns through the viewpoint of the artisans, demonstrating that Islamic patterns

can be created with only a compass and ruler in hand [20]. In what is likely one
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possible traditional construction method, a pattern motif begins as a primary circle

from which any geometric shape can be determined in accordance with the chosen

roots and proportions of the design [19]. The primary circle is interlaced with a given

number of secondary circles of various sizes, then intersections are connected with

straight lines [16]. The way in which the circles and lines intersect dictates the ge-

ometry of the resulting motif once it is extracted from the construction lines. Star

patterns, which represent only a subset of possible geometric patterns, can not only

be produced by following the aforementioned procedure, but also via computational

means as a result of the research developed within the field of computer graphics.

It is important to note that no single physical or computational approach to Is-

lamic pattern design can achieve universality, thus numerous computational method-

ologies have emerged in attempts to reproduce existing patterns and uncover new

ones. Group-theoretic approaches are employed by Grünbaum and Shephard [25],

and Abas and Salman [26], who develop algorithms around pattern symmetries. On

the other hand, Kaplan proposes a tiling-based construction method wherein tem-

plate tiles with embedded motifs are used to guide the layout of the final design; star

patterns emerge once the tiling is assembled [27]. These bodies of work, to name a

few, pave the way for extending the generation of Islamic patterns into parametric

design tools that are common in architectural design practices. One such example is

developed by Yazar [28] in Grasshopper for Rhinoceros 5, and builds upon Kaplan’s

method comprising tile units and motifs. Yazar’s script [29] forms the basis for the

grid shell form finding process discussed in Chapter 3.

2.2 Islamic patterns for structural design

Evidently, Islamic patterns are widely recognized for their aesthetic qualities, and

their use has been prolific in ornamentation, but not in structural design. Histori-

cally, these patterns were predominantly used in shading lattice screens (Mashrabiya)

and other ornamental elements, often for both functional and aesthetic purposes (Fig-

ure 2-2 (a)). Referencing these traditional screens, both the Al Bahr Towers in Abu
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Dhabi (2012), and l’Institut du Monde Arabe in Paris (1987), designed in the twenty-

first century, employ patterned facades as key distinctive architectural features in

addition to serving as intelligent shading systems that are responsive to daylighting

conditions (Figure 2-3). Examining historic precedents in Islamic architecture re-

veals that these patterns were rarely, if ever, incorporated as load-bearing structural

elements; the closest parallel that can be drawn is an intricate decorative vaulting sys-

tem, Muqarnas, often used to adorn the interior surface of domes and squinches [30]

(Figure 2-2 (b)). Such designs have generally not been translated into modern archi-

tecture to serve a structural purpose either. Even Jean Nouvel’s design for the dome

of the Louvre in Abu Dhabi (scheduled to open in 2017), which most closely aligns

with the structural intents presented in this thesis, consists of what appears to be

several layers of non-structural interlacing geometric patterns that are supported by

an underlying polygonal grid shell (Figure 2-4). By extension, there is also a limited

availability of literature on the use of Islamic patterns as key components of struc-

tural systems. Emami et al. [31] study the effects of geometric parameters on the

daylighting and structural performance of shading screens designed using the princi-

ples underlying Islamic patterns; however, the parameters and performance metrics

of interest are more conducive to daylighting analysis. Nonetheless, the ever-growing

interest in these patterns exhibited by leading global architecture firms reinforces the

premise that there are many avenues that have yet to be explored in the realm of

structural systems developed from Islamic patterns. As a result, this thesis aims to

begin those investigations and attest to the viability of the use of Islamic patterns as

core components of structural systems. Hence, the historic function of these patterns

is reinterpreted through an engineering lens by deeply engaging the mathematical

principles underlying the design space in order to transform a delicate ornamental

feature to an architectural scale.

18



(a) (b)

Figure 2-2: (a) Decorative lattice screen at the Amber Fort in Jaipur, India (c.
sixteenth century). (photograph taken by Matthew Lewinski, reprinted from Ref. [32])
(b) Muqarnas dome of the Hall of the Two Sisters in the Alhambra in Granada, Spain
(c. fourteenth century) (photograph taken by Flickr user: Funky Chickens, reprinted
from Ref. [33]).

(a) (b)

Figure 2-3: (a) Responsive shading facade system of the Al Bahr Towers in Abu
Dhabi, UAE, designed by Aedas Architects (2012). The design concept is inspired by
traditionalMashrabiya screens (photograph taken by Flickr user: Inhabitat, reprinted
from Ref. [34]) (b) Responsive shading facade system of l’Institut du Monde Arabe
in Paris, France, designed by Ateliers Jean Nouvel (1987). This structure also mod-
ernizes the Mashrabiya shading system, evoking a strong cultural reference that is
central to the building’s program, while also fulfilling both functional and aesthetic
objectives (photograph taken by Jean-Pierre Dalbéra, reprinted from Ref. [35]).
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(a) (b)

Figure 2-4: (a) Aerial view of the Louvre museum dome, designed by Ateliers Jean
Nouvel, shown here under construction in 2015 in Abu Dhabi, UAE. (b) Detail of the
layered interlacing geometric patterns comprising the dome (photographs courtesy of
Nick Leech, writingtoinform.com, reprinted with permission).

2.3 Form finding using the force density method

The proposed methodology for incorporating Islamic patterns for a structural, rather

than ornamental, function involves using form finding techniques to transform two-

dimensional patterns into funicular grid shells. As noted in Chapter 1, form finding

is the practice of determining the optimal structural form that acts in pure tension

or compression, subject to particular loading and support conditions. This principle

is of particular interest to structural engineers and architects since internal bending

moments are minimized while the majority of the applied load is transferred axially,

thus increasing the efficiency of the structure. Many form finding methods have been

developed [6], but perhaps one of the most established and widely used methods is the

force density method developed by Schek in 1974 [15]. One advantage of applying this

theory is that form finding can be performed independently from material properties

and units of measurement, which makes it an ideal candidate for conceptual design.

20

writingtoinform.com


The formulation of the force density method enforces equilibrium at each node in

an arbitrary pattern of nodes and branches, or members, as per the applied loads.

Assuming a load application in the direction of gravity, which could be analogous to

structural self-weight and area loads, the result would be a form-found structure that

acts in pure compression once inverted. The true value of applying this theory mani-

fests itself when considering the fact that the equilibrium equations can be expressed

as a series of linear equations that are conducive to linear algebra solvers in MAT-

LAB and can therefore be solved both quickly and efficiently [36]. This linearization

is made possible via the introduction of force densities for each of the members, which

is the ratio between the internal axial force in the member and its length (𝑞𝑖 = 𝑓𝑖
𝑙𝑖
).

For this reason, the force density method is an efficient theory that enables the rapid

generation of feasible funicular grid shell forms from two-dimensional patterns subject

to external loading, and is thus suitable for conceptual design iterations. Additional

details regarding the input parameters and the steps that a designer must take in

order to initiate the form finding sequence are explained in Section 3.3.
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Chapter 3

Methodology

Generating grid shells that draw upon the Islamic geometric tradition entails coupling

pattern generation with existing form finding methods. The methodology outlined

in this chapter was devised to achieve a synergistic, performance-driven approach to

the conceptual architectural and structural design of funicular grid shells. Namely,

the developed computational framework enables rapid geometry generation via form

finding iterations, along with preliminary structural performance analyses that serve

as a basis for comparing various topologies and geometries; this informed evaluation

of several potential design options is a fundamental process of early stage design. The

key steps of the embedded design process include two investigative phases that may

be implemented independently, but are presented sequentially:

1. Phase one: a comprehensive parametric study of the effect of pattern topol-

ogy on the form of the grid shells, and on the relative structural performance.

The objective of this phase is to generate several forms, while revealing perfor-

mance trends and benchmarks that allow the designer to make informed design

decisions.

2. Phase two: a parametric study of pattern geometry for a grid shell prescribed

by the designer. Here, force densities are scaled to further enhance the diversity

of the achieved forms.
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Design outcomes are demonstrated for one Islamic pattern case study, which is an

eightfold star pattern that is modified from the Grasshopper script implemented by

Yazar [29] (Figure 3-3).

3.1 Overview of the computational framework

Pattern generation
Grasshopper

Force density method
MATLAB

Evaluation + visualization
MATLAB

Inputs:
o1,  o2,  d,  a

Inputs:
BC,  ptotal,  htarget,  qstart 

topology form-found
geometry

Optimize:
min    | htarget - hmax|

Outputs:
Σ(fi li),    fmax /fmini

q

Section 3.2 Section 3.3 Section 3.4

Figure 3-1: Overview of the key stages comprising the computational framework that
conducts parametric studies for the conceptual structural design of grid shells with
Islamic pattern topologies.

The computational framework that enables grid shell design explorations is sum-

marized in Figure 3-1. The three core stages of the framework are as follows: 1-

pattern generation and sampling in Grasshopper [29], 2- form finding via the force

density method with a height-selection optimization loop, conducted in MATLAB,

and 3- structural performance evaluation and form visualization, also in MATLAB.

Obtaining a single funicular grid shell for a given pattern constitutes going through the

entire sequence once. However, to conduct parametric studies for multiple patterns in

phases one and two, which more directly correlate with generative conceptual design,

the process is repeated several times in a loop: the patterns are first sampled [37] inde-

pendently, and then the grid shells are automatically generated by taking advantage

of parallel processing, which capitalizes on the available computational power.
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3.2 Pattern parameterization

The first crucial step in the implementation of the framework for form finding is the

generation of a structural pattern from which a grid shell can be derived. While

the framework is intentionally designed with the flexibility to take any pattern as

an input, all subsequent investigations make reference to the parameterization of an

eightfold star pattern [29] shown in Figure 3-3, and the corresponding summary of

design variables included at the beginning of this thesis.

An intrinsic property of Islamic vernacular star patterns is that several nodes have

only two connecting edges, meaning that these nodes would have to be fixed in order

to ensure structural stability during the form finding procedure. For this reason,

rather than limiting possible design outcomes to a reduced set, the original Islamic

pattern is first modified by reintroducing the construction lines that were used to

generate the pattern in the first place. Here, these construction lines are referred to

as the structural grid (Figure 3-3 (a)), which requires that each node is connected to

at least three edges. In this way, the designer is able to freely select the appropriate

boundary conditions per their design specifications.

The resulting structural pattern now consists of the original eightfold star pattern

enclosed within a semiregular tessellation. The topology is parameterized by two

radially-oriented, dimensionless offset variables: 𝑜1, which controls the offset of the

octagonal unit, and 𝑜2, which corresponds to the diamond unit. The possible offset

node paths are shown in Figure 3-3 (a) for each pattern unit, wherein the movable

nodes are indicated by a circle, and the extremities, where the offset variables are equal

to either 0 or 1, are also shown. While 𝑜1 and 𝑜2 are dimensionless to standardize

the pattern definition, their values need to be remapped to physical offset distances,

𝑜𝑑𝑖𝑠𝑡,1 and 𝑜𝑑𝑖𝑠𝑡,2, when generating patterns. This procedure is achieved according to

Equation 3.1, where 𝑐1 and 𝑐2 are empirically derived constants specific to the pattern

in question, and the shape and dimensions of its plan (Figure 3-2).

𝑜𝑑𝑖𝑠𝑡,1 = 𝑜1 ×
𝑐1
𝑑

and 𝑜𝑑𝑖𝑠𝑡,2 = 𝑜2 ×
𝑐2
𝑑

(3.1)
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Figure 3-2: Plots of the empirically determined upper limits of the physical offset
distances, 𝑜𝑑𝑖𝑠𝑡,1 and 𝑜𝑑𝑖𝑠𝑡,2 versus the pattern density, 𝑑, respectively. The raw data
is represented as points, while the interpolated functions relating the axis parameters
are shown as solid lines. The equations (Equation 3.1) and the values of the corre-
sponding constants, 𝑐1 and 𝑐2, are also shown for the pattern constraints applied in
the parametric studies.

The nature of this offset parameterization results in four possible topologies within

which a myriad of pattern geometries can be generated (Figure 3-3 (b)). It is impor-

tant to note that the force density method is agnostic to the geometry of a particular

pattern topology, or the coordinates of the nodes within the pattern, in the case where

member force densities are equal. This means that the first design phase is able to

isolate the effects of pattern topology from its geometry, allowing for four form-found

structures, corresponding to the four topology categories, to be derived for a single

pattern density and choice of boundary conditions. On the other hand, in the second

phase, where a force density scaling method is proposed, geometric effects are rein-

troduced and the full gradient of 𝑜1 and 𝑜2 values illustrated in Figure 3-3 (b) can be

achieved.

The third and final variable that defines the pattern is 𝑑, which is defined as the

number of polygonal units along a single outer edge of the pattern (Figure 3-3 (c)).

The investigations discussed in this thesis constrain the patterns to square plans,

where the area enclosing the pattern, 𝑎, is held constant to allow for comparisons to

be made across topologies. As a result, 𝑑 serves as a proxy for the pattern density.
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Figure 3-3: Summary of the pattern parameterization, demonstrated for the simplest case where
the pattern density, 𝑑, is set to 2. (a) The transformation of the Islamic geometric pattern to a
structural pattern that can be used in the form finding procedures. The dashed lines represent the
structural grid that is added to the original pattern [29] to ensure that each node has at least three
connecting edges. Movable nodes are indicated with a circle, and the corresponding offset node paths
are shown within the octagonal and diamond units of the pattern, where 𝑜1 and 𝑜2 extremities are
also marked. (b) The four topology categories that can be achieved via the parametric definition
of the pattern. These topologies form the basis of the possible structures that can be obtained in
phase one. The fine lines represent the upper limits of the offset variables within each topology
category; this geometric gradient can only be taken advantage of in phase two. (c) An illustration
of the pattern density, 𝑑, which is defined as the number of exterior octagonal units along the edge
of the pattern.

27



3.3 Form finding and optimization via the force den-

sity method

plan �xity

convex hull

perspective

barrel corners

Figure 3-4: Illustration of the three boundary conditions that are automated within the compu-
tational framework and are subsequently investigated through the parametric studies. The convex
hull boundary condition fixes all nodes along the outer edge of the square plan, while the barrel
vault fixes the nodes along two parallel edges, and the corners case fixes the exterior corner nodes.
The sample form-found structures are shown for the following topology parameterization in phase
one: 𝑑 = 3, 𝑜1 = 0.5, and 𝑜2 = 0.5. Fixities are marked with a filled circle in the plan views. The
plan views of the form-found structures are overlain on top of the original pattern from which the
structures are derived, demonstrating the range of global forms that can stem from a single pattern.

Once the patterns are selected and sampled, the boundary conditions need to

be specified prior to the form finding procedure. Three boundary conditions are

considered and automated within the computational framework: 1- convex hull, which

results in a dome structure with no free edges, 2- barrel, which defines a barrel vault,

and 3- corners, which can be thought of as a pavilion with four inclined arches.

An example of each of these three forms is shown in Figure 3-4; the illustration

demonstrates both the prescription of the fixity locations along the outer edges of the

square plan, in addition to the range of structural geometries that can be generated

from the same starting pattern. The precise definition of the boundary conditions

can be found in Appendix A.3.
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Next, to initiate the form finding process, the designer prescribes the the desired

target height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, in addition to the loading condition, here defined as the total

external force applied to the grid shell, 𝑝𝑡𝑜𝑡𝑎𝑙, in the direction of gravity. The total

load is held constant throughout the parametric studies, and is applied as nodal point

forces once 𝑝𝑡𝑜𝑡𝑎𝑙 is normalized by the number of free nodes in the pattern. Since the

tributary area of each node is not equal, this loading condition is a simplification of

the physical system; however, it is considered acceptable for preliminary design space

studies. This part of the methodology could be refined in future work to encompass a

secondary set of iterations in the form finding procedure, where the loads are updated

to account for changes in geometry until a satisfactory form of the desired height

is reached. Also, it is important to reiterate that since form finding via the force

density method for conceptual design can be conducted independently from material

properties, the material is not specified for the grid shell case study, and physical

units are not selected since the structural analysis is performed in relative terms.

htarget = 2 htarget = 6 htarget = 8htarget = 4

Figure 3-5: Illustration of the different global forms that can be achieved according
to the designer’s prescribed target height. Shallower grid shells could be appropriate
as a courtyard roof structures, while taller grid shells could serve as pavilions, for
example. The form-found structures are shown for the following parameters: 𝑑 = 3,
𝑜1 = 0.5, and 𝑜2 = 0.5.

With all of the input variables set, form finding is then implemented via the

standard formulation of the force density method, according to Refs. [15, 36] (Ap-

pendix A.4). However, the novelty of the process shown in Figure 3-1 is the addition

of the optimization loop, a constrained minimization equation, where the force den-

sity, 𝑞, is updated in each form finding iteration (Appendices A.6 and A.5). This

computation serves the purpose of calculating the optimal force density, 𝑞𝑜𝑝𝑡, which is
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applied to each member such that the maximum height of the form-found structure is

equivalent to the prescribed target height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡 (Equation 3.2). Thus, the arbitrary

value for the member force densities (𝑞𝑠𝑡𝑎𝑟𝑡) that is chosen along with the other input

parameters is of no true significance in the context of this methodology, since the

force density is determined from the optimization loop.

min
𝑞

| ℎ𝑡𝑎𝑟𝑔𝑒𝑡 − ℎ𝑚𝑎𝑥 |

s.t. 𝑞 ≥ 0

(3.2)

This step introduces a constraint into the form finding process that allows the designer

to more closely control the global geometry of the final form, while also providing a

benchmark for a fair comparison between the performance of various topologies (Fig-

ure 3-5). The general optimization method applies to both design phases, however, in

order to introduce a sensitivity to geometry within the pattern topologies, and there-

fore diversity in the final structures, the second phase applies a scaled force density

approach. In this case, rather than obtaining a single value for 𝑞𝑜𝑝𝑡, each member is

assigned a different force density, which has been scaled by 1
𝑙𝑖𝑛𝑖𝑡𝑖𝑎𝑙

. Therefore, mem-

ber length proportions from the two-dimensional starting pattern are translated to

the final three-dimensional form. Note that while this particular scaling method is

implemented within the computational framework, many other geometric approaches

to scaling could be used instead, at the designer’s discretion. The constrained mini-

mization equation for phase two now becomes:

min
𝑞′

| ℎ𝑡𝑎𝑟𝑔𝑒𝑡 − ℎ𝑚𝑎𝑥 |

s.t. 𝑞′ ≥ 0,where 𝑞𝑖 =
𝑞′

𝑙𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
,∀ 𝑖 = 1, . . . ,𝑚.

(3.3)

3.4 Methods to evaluate grid shell designs

The final and arguably most important step is to evaluate and compare the form-found

grid shells (Appendix A.7). The objective of this stage is not to produce the most

comprehensive structural analysis, but rather to present the designer with relative
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performance metrics which can serve as useful aides in the preliminary form finding

process. Further design refinement, structural analysis and member sizing can then

be conducted, but are outside of the scope of this body of work. Instead, simplicity

and speed are preferred over detailed, time consuming computations, which are more

useful in later stages of design.

As a result, performance metrics are carefully chosen to yield preliminary insights

into important structural design objectives such as structural weight, member sizing

and constructability, while also taking advantage of the parameters that are intrinsic

to the force density method. Firstly, the sum of the product of the axial mem-

ber forces, 𝑓𝑖, by their final lengths in the form found structure, 𝑙𝑖, is determined:∑︀𝑚
𝑖=1(| 𝑓𝑖 | 𝑙𝑖). Since the generated grid shells are funicular, compression-only struc-

tures, the internal forces can be assumed to act in the same direction, and thus the

equation can be simplified to:
∑︀𝑚

𝑖=1(𝑓𝑖𝑙𝑖). This performance metric is referred to as

the load path of the grid shell [38] and is a proxy for the relative weight of the struc-

ture; lower values constitute a lower material intensity for constructing the grid shell,

which is favorable. In addition, the ratio between the maximum member force in the

structure, 𝑓𝑚𝑎𝑥, and the minimum member force, 𝑓𝑚𝑖𝑛 is considered as a measure the

distribution of member forces. Values of 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
by definition are always ≥ 1; lower

values correspond to more a more uniform distribution of forces, which could have

positive implications in terms of member sizing requirements and constructability.

For each iteration in the parametric study, the results are presented to the designer

in the format shown in Figure 3-6 (Appendix A.8). The form-found structures are

displayed from four different viewpoints for each of the three considered boundary

conditions, and are accompanied by two graphs [10,39]: 1- a bar chart that plots the

internal force, 𝑓𝑖 of each member 𝑖, and 2- a histogram of internal forces, 𝑓 . These

graphs serve as visual representations of the internal member force distribution. This

information, along with the structural performance metrics, equip the designer with

the information they need to either repeat the design explorations with a more refined

scope, or to select their preferred designs that they may then analyze in further depth.

Furthermore, as a means of ascertaining the performance of the Islamic pat-
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terned grid shells relative to more conventional quadrilateral grid shells, a compar-

ison methodology is also encoded into the evaluation process of the computational

framework (Appendix A.9). In order to perform this comparison, form finding is

initiated on a near-equivalent quadrilateral pattern. Near-equivalence is achieved by

first specifying identical boundary condition types, loading conditions, and global

pattern dimensions; quadrilateral patterns have more nodes along the outer edge and

will therefore always have a higher number of fixities, which could have positive ram-

ifications on their relative performance. Another key condition is that the number

of members in the Islamic and quadrilateral patterns are as comparable as possi-

ble. This is achieved by setting the number of members in the quadrilateral pattern,

𝑚𝑞𝑢𝑎𝑑, equal to the number of members in the Islamic pattern, 𝑚, and calculating the

corresponding quadrilateral pattern density upon which the form finding and evalu-

ation procedures are conducted in MATLAB (Equation 3.4). It is also worth noting

that since the chosen pattern (Figure 3-3) yields four possible categories of Islamic

pattern topologies, each of which corresponds to a different number of members for

a given pattern density, four quadrilateral patterns are investigated for each pattern

density value, 𝑑. Consequently, the comparison between the Islamic and quadrilat-

eral patterns does not allow for a direct one-to-one correspondence, and is therefore

represented as a shaded region within the appropriate performance plots.

𝑚𝑞𝑢𝑎𝑑 = 2𝑑𝑞𝑢𝑎𝑑(𝑑𝑞𝑢𝑎𝑑 + 1) = 𝑚

∴ 2𝑑2𝑞𝑢𝑎𝑑 + 2𝑑𝑞𝑢𝑎𝑑 −𝑚 = 0

𝑑𝑞𝑢𝑎𝑑 = round

(︂
𝑚𝑖𝑛

(︂⃒⃒⃒⃒
−2 ±

√
4 + 8𝑚

4

⃒⃒⃒⃒)︂)︂ (3.4)
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Figure 3-6: Sample output results for all three boundary conditions for a single pattern
topology. Here, the results are shown for the parameterization where 𝑑 = 3, 𝑜1 = 0.5,
and 𝑜2 = 0.5 for the implementation in phase one. The form found structures are
shown in plan view, perspective view, and in two section viewpoints indicated by the
numbered arrows. The results of each boundary condition are accompanied by a bar
chart that plots the internal force, 𝑓𝑖 of each member 𝑖, in addition to a histogram
of internal forces, 𝑓 . The performance metrics are also shown alongside the optimal
applied force density, 𝑞𝑜𝑝𝑡.
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Chapter 4

Results

The primary research contributions stem from an expansion of the grid shell design

vocabulary via topological and geometric studies of patterns that are at the intersec-

tion of history, culture and mathematics. This chapter shows the outcomes of the grid

shell case study and demonstrates the resulting design diversity. In addition, findings

from the two design phases are outlined, and the broader implications that the work

may have within architecture and structural engineering practices are discussed.

4.1 Phase one: Pattern topology

Given that the application of the force density method in phase one constrains the

form finding results to the four topology categories in Figure 3-3 (b) without geo-

metric effects, data from this parametric study is obtained rather quickly. For this

reason, the results presented in this section are an appropriate starting point for early

stage grid shell design explorations. The generated forms, accompanied by the corre-

sponding performance metrics, therefore serve as a benchmark for the more detailed

geometrically-driven investigations in phase two, here presented in sequence.

This first design investigation entails conducting a parametric study of the grid

shell design space for the four aforementioned topologies. Grid shells forms are ob-

tained for each of the three boundary conditions, for target heights within the range

0.1
√
𝑎 ≤ ℎ𝑡𝑎𝑟𝑔𝑒𝑡 ≤

√
𝑎, and for pattern densities 2 ≤ 𝑑 ≤ 10. Since the sensitivity
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to pattern geometry is concealed once the force density method is applied with equal

member force densities, the exact choice of values for the offset parameters when

0 < 𝑜1 ≤ 1 or 0 < 𝑜2 ≤ 1 is arbitrary; for simplicity, 𝑜1 = 0.5 and 𝑜2 = 0.5 are chosen.

In total, 1, 080 distinct grid shells are studied in this phase.

A subset of form-found structures derived within this phase is shown in Figure 4-1.

The results are presented for ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5 in the form of a grid, in order to demonstrate

the visual and aesthetic effects of varying the pattern density, as well as the boundary

conditions and category of pattern topology. These grid shells are also evaluated

relative to one another, with respect to the chosen performance metrics: Σ(𝑓𝑖𝑙𝑖)

and 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
. Figure 4-2 plots structural performance, as measured by Σ(𝑓𝑖𝑙𝑖), versus the

height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, for the four topology categories for the convex hull boundary condition.

The results corresponding to the barrel and corners boundary conditions are shown in

Figures 4-3 and 4-4, respectively. Upon examining the data through the topology lens,

comparable grid shell performance is achieved, however, the 𝑜1 = 0.5, 𝑜2 = 0 topology

appears to correspond to a slightly lower structural weight and is hardly affected by

pattern density values. This could be explained by the fact that the offset in the

Islamic pattern creates additional load paths for the applied load to be transferred,

resulting with lower internal forces in each member. By the same rationale, higher

pattern densities tend to correspond to slightly improved structural performance as

compared to their counterparts with fewer members. Another interesting finding is

that optimal values for the load path are achieved when the height of the grid shell

is approximately half of the width of the square plan (0.5
√
𝑎 = 5). It is important

to note, however, that while trends are indeed observed in 𝑑 and ℎ𝑡𝑎𝑟𝑔𝑒𝑡, they are not

strongly correlated with the structural performance. Unless a grid shell is particularly

shallow, or has a very sparse pattern, the structural performance, as dictated by the

load path, is generally comparable, meaning that the designer has the creative agency

to control the aesthetic qualities of their design without having a negative impact on

the structural performance.
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Figure 4-1: Phase one: A subset of form-found structures that corresponds to the
results in Figures 4-2 to 4-7. The grid shells are presented for 𝑑 = 2 to 𝑑 = 10 in
increments of 2, for each of the four possible topology categories shown in Figure 3-3
(b). The first four rows correspond to the convex hull boundary condition, and are
followed by barrel and corners, consecutively.
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Figure 4-2: Phase one: Plots of structural performance, as measured by Σ(𝑓𝑖𝑙𝑖),
versus the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1− 𝑜2 combination for the convex
hull boundary condition. Each data set corresponds to a given pattern density, 𝑑.
Considering all four topologies, the approximate optimal grid shell height is equivalent
to half the width of the square plan (ℎ𝑡𝑎𝑟𝑔𝑒𝑡 ≈ 5). Lower pattern densities correspond
to slightly poorer performance, while the metrics are comparable across the four
topologies. Structures with 𝑜1 = 0.5, 𝑜2 = 0 are marginally more efficient.
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Figure 4-3: Phase one: Plots of structural performance, as measured by Σ(𝑓𝑖𝑙𝑖),
versus the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1 − 𝑜2 combination for the barrel
boundary condition. Each data set corresponds to a given pattern density, 𝑑. The
approximate optimal grid shell height is equivalent to half the width of the square plan
(ℎ𝑡𝑎𝑟𝑔𝑒𝑡 ≈ 5). Pattern density does not have a significant effect on the performance,
even when the pattern is fairly sparse (e.g. 𝑑 = 2).
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Figure 4-4: Phase one: Plots of structural performance, as measured by Σ(𝑓𝑖𝑙𝑖),
versus the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1− 𝑜2 combination for the corners
boundary condition. Each data set corresponds to a given pattern density, 𝑑. Again,
the optimal height of the structure is approximately half the width of the square plan.

40



Coupling these observed trends with the data in Figures 4-5, 4-6 and 4-7 allows

the designer to gain a more holistic overview of the grid shell performance. Now,

the four topologies exhibit varying degrees of performances per the 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
metric. In

some cases, the addition of a non-zero 𝑜1 or 𝑜2 offset creates a larger distribution of

forces, which would correspond to a wider variety of member sizes, and perhaps a less

efficient structure with more complex construction procedures and connection details.

Moreover, the performance is now worsened as the pattern is densified for some of

the topologies and as the grid shell height increases, which opposes the findings in

Figure 4-2. Combining the trends extracted from the two metrics reveals that perhaps

the 𝑜1 = 0.5, 𝑜2 = 0 topology performs best for the convex hull boundary condition

case, albeit marginally so. Overall, the results prove that the pattern parameters

do not have a very strong influence on the grid shell performance, particularly with

respect to the load path, and therefore provide the designer with the intended creative

freedom that fuels this work.

Shifting perspectives to the design of a grid shell of prescribed height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5,

Figure 4-8 plots the structural performance for the four combinations of topology pa-

rameters for all three considered boundary conditions. Similar trends are observed to

those previously discussed, and the data also reiterates the fact that design tradeoffs

can be made between the pattern parameters while still retaining structural integrity

and efficiency. This dashboard of results is therefore useful for conceptual design, as

non-intuitive behavior, particularly for the barrel and corners boundary conditions,

are explicitly revealed and can be taken into account in decision-making processes.

Most importantly though, this figure plots the results derived from Islamic patterned

grid shells as compared to their near-equivalent quadrilateral counterparts, proving

that the proposed structures can perform as well as, if not better than conventional

grid shells. In addition, Figure 4-9 compares grid shells generated from both quadri-

lateral and Islamic patterns, demonstrating that visual diversity and aesthetics can

be brought to the fore via culturally significant patterns without having to sacrifice

structural performance.

41



convex hull

5

10

15

20

25

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

5

10

15

20

25

htarget htarget

5

10

15

20

25

3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

htarget htarget

10

15

20

25

2

5

f m
ax

/f
m

in

f m
ax

/f
m

in

f m
ax

/f
m

in

f m
ax

/f
m

in

d = 2

d = 3 

d = 4

d = 5

d = 6

d = 7 

d = 8

d = 9 

d = 10

o1 = 0
o2 = 0

o1 = 0
o2 = 0.5

o1 = 0.5
o2 = 0.5

o1 = 0.5
o2 = 0

Figure 4-5: Phase one: Plots of structural performance, as measured by 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
, versus

the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1 − 𝑜2 combination for the convex hull
boundary condition. Each data set corresponds to a given pattern density, 𝑑. Con-
versely, lower pattern densities now correspond to slightly improved performance with
respect to this metric, while the four topologies exhibit varying levels of performance.
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Figure 4-6: Phase one: Plots of structural performance, as measured by 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
, versus

the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1− 𝑜2 combination for the barrel bound-
ary condition. Each data set corresponds to a given pattern density, 𝑑. The force
distribution ratio generally worsens with increasing height and pattern density.
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Figure 4-7: Phase one: Plots of structural performance, as measured by 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
, versus

the height, ℎ𝑡𝑎𝑟𝑔𝑒𝑡, of the grid shell for each 𝑜1 − 𝑜2 combination for the corners
boundary condition. Each data set corresponds to a given pattern density, 𝑑. The
force distribution generally worsens with increasing grid shell height and pattern
density, but the trend in the pattern density results is less intuitive. Therefore,
comparing the results quantitatively, in addition to aesthetically, is key during the
conceptual design process.
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Figure 4-8: Phase one: Plots of structural performance, Σ(𝑓𝑖𝑙𝑖) and 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
, versus

pattern density, 𝑑, for grid shells of height ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5 for all three boundary condi-
tions. Each data set corresponds to one of the four considered topology categories.
The shaded area represents the performance bounds exhibited by the near-equivalent
quadrilateral grid shells. The results prove that similar or better performance can be
achieved using Islamic patterns. Note that the shaded area for the convex hull 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

plot is hardly discernible, as it is approximately a fine horizontal line at 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
= 2.

(fili) = 5.82 (fili) = 6.01

(a) (b)

Figure 4-9: (a) Islamic patterned grid shell generated in phase one with the following
parameters: 𝑑 = 5, 𝑜1 = 0.5, and 𝑜2 = 0 (b) Near-equivalent quadrilateral grid shell
with 𝑑𝑞𝑢𝑎𝑑 = 21. This side by side comparison shows that visual diversity and aesthetic
qualities can be prioritized in design without sacrificing structural performance.
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4.2 Phase two: Pattern geometry

Phase one examines four Islamic pattern topologies for three boundary conditions and

a range of grid shell heights, identifying general performance trends. Building upon

this information, the core objective of phase two is to not only offer the luxury of

increased structural diversity, but also an opportunity to improve, or at least match,

the performance benchmarks defined in phase one through geometric considerations.

Once the designer selects a grid shell height and pattern density to work with, 𝑜1

and 𝑜2 can be sampled at a higher resolution as a result of geometrically scaling

the member force densities. For the purpose of this discussion, a grid shell of height

ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5 and pattern density 𝑑 = 3 are chosen, and 𝑜1 and 𝑜2 are sampled within the

range 0 ≤ 𝑜1 ≤ 1, 0 ≤ 𝑜2 ≤ 1 in increments of 0.2. These chosen constraints yield a

total of 108 grid shells, which are studied in this phase. Figure 4-10 demonstrates the

convex hull

barrel

corners

o1 = 0.2 o1 = 0.4 o1 = 0.8 o1 = 1.0o1 = 0.6

Figure 4-10: Phase two: Plan views of form-found structures are shown for the fol-
lowing parameterization, for each boundary condition: 𝑑 = 3, 𝑜2 = 0, and ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5.
The 𝑜1 offset variable is varied from 0.2 to 1 in increments of 0.2. The achieved offset
gradient shows that the scaled force densities recover the structural diversity that is
lost via the implementation of the force density method in phase one.
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visual effects of scaling force densities according to the initial member lengths through

a series of structures shown in plan. Here, 𝑜2 is held constant at 0, while 𝑜1 is modified,

resulting with smaller open spaces in the grid shell as the offset is increased. Thus,

with this implementation, geometric diversity is recovered and is exhibited through a

true gradient of offset values. The designer is no longer restricted to four patterns as

a result of the limitation intrinsic to the force density method where member force

densities are equal throughout, and unlimited grid shell designs can now be uncovered

from alterations to the pattern geometry in the 𝑜1 − 𝑜2 space. In fact, assuming an

increment of 0.2 in 𝑜1 and 𝑜2, if both ℎ𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑑 were sampled at the same resolution

as in phase one, a collection of 9, 720 unique designs would be possible, as compared

to their 1, 380 quadrilateral counterparts. Thus, 9 times more grid shell options are

made possible with this implementation than in phase one. Three of these additional

grid shell designs, where both 𝑜1 and 𝑜2 are varied, are shown in Figure 4-11.

Considering the structural performance of the sampled pattern geometries with

respect to the 𝑜1−𝑜2 space, Figure 4-12 shows that for all three boundary conditions,

the load path is hardly affected by the offset values. This means that grid shells with

significantly different aesthetic qualities have a comparable structural performance,

reinforcing the notion of design freedom. However, this metric does slightly prefer low

𝑜2 values, while 𝑜1 = 0 is unfavorable. It is also interesting to note that the stems,

representing the results from the original implementation in phase one, are almost on

equal par with the scaled raw data points. Therefore, scaling the force densities can

indeed meet the performance benchmarks set by the preceding design phase, but may

in certain cases worsen the performance. The 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
metric, on the other hand, is less

predictable since the design space is not flat. Minimum values, and thus the most

equally distributed member forces, are found in structures with 𝑜1 = 0 and 𝑜2 = 0,

while 𝑜1 = 1 results in poor performance for the barrel and corner boundary condi-

tions. Nonetheless, the combination of options that are encompassed in this design

space offer the designer many valuable avenues of exploration in preliminary design

investigations by simultaneously prioritizing architectural and structural objectives.
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Figure 4-11: Phase two: 3D-printed form-found structures designed using the scaled
force density implementation in phase two. The designs were generated for the convex
hull boundary condition with ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 0.2

√
𝑎 and 𝑑 = 3. The following combinations

of offset parameters were used: (bottom left) 𝑜1 = 1, 𝑜2 = 1, (bottom middle) 𝑜1 =
0.6, 𝑜2 = 0.8, and (bottom right) 𝑜1 = 1, 𝑜2 = 0. These structures provide additional
visualizations to those in Figure 4-10, and show the aesthetic effects when the 𝑜2
offset parameter is also varied.
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Figure 4-12: Phase two: The results shown here correspond to grid shells where 𝑑 = 3, ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 5,
and where both 𝑜1 and 𝑜2 are varied from 0 to 1 in increments of 0.2. Structural performance metrics,
Σ(𝑓𝑖𝑙𝑖) and

𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
, are plot versus the 𝑜1 − 𝑜2 space for each boundary condition. Sampled data, for

which the force densities are scaled, are shown as points, while the corresponding data from the
four topologies (Figure 3-3 (b)) examined in phase one are shown as stems. The three-dimensional
surfaces represent the interpolated structural performance for phase two. The Σ(𝑓𝑖𝑙𝑖) metric prefers
low 𝑜2 values across the three boundary conditions, offering more flexibility with modifications in 𝑜1.
The 𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
are less predictable, but minimum values, and thus the most equally distributed member

forces, are found in structures with 𝑜1 = 0 and 𝑜2 = 0. High-performing, yet aesthetically distinct
structures are produced in phase two.
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Chapter 5

Conclusion

This thesis deeply engages with the mathematical fundamentals of Islamic patterns

in order to ascribe a new, structural purpose to designs that historically served a

decorative or shading purpose. The patterns are reinterpreted through an engineering

lens, and are considered to be an abundant source of topologies and geometries to

be used in the design of grid shell structural systems. The high-performing and

diverse set of grid shells studied in this work uncovers a new design potential for

these patterns, as the patterns are transformed from the delicate ornamental scale to

the architectural scale.

This chapter summarizes the key contributions presented in this thesis, while also

proposing potential avenues for future work.

5.1 Summary of contributions and potential impact

This research presents a new approach to the conceptual design of funicular grid shells

wherein the design space of traditional, culturally meaningful patterns is used to the

designer’s advantage. Grid shell design is shown to benefit from the introduction of

interesting, topologically and geometrically diverse patterns in order to achieve both

aesthetic and structural design objectives. In fact, a total of 1, 080 unique grid shells

are studied in phase one, where topological effects are isolated, while 108 out of 9, 720

possible designs from phase two are sampled. Thus, the novel geometric force density
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scaling strategy that is implemented in phase two yields 9 times as many grid shells

as in phase one, and also produces a design space that is 7 times more diverse than

that of near-equivalent quadrilateral structures.

In addition, the proposed methodology is proven to produce a wide variety of

design options that can perform just as well as, or better than conventional quadri-

lateral grid shells. One such design example is shown as a courtyard roof structure

in the concept rendering in Figure 5-1. The resulting expansion of the grid shell

vocabulary introduces a new type of creativity into the design process and leaves

many design possibilities that are yet to be discovered and constructed in the built

environment, and would have not otherwise been considered without the embedded

geometric precedents of Islamic patterns. This work therefore encompasses a return

to the synergistic approach to architectural and structural design, where aesthetic ar-

chitectural features and structural systems become more tightly intertwined through

geometry.

5.2 Future work and concluding remarks

The very nature of Islamic patterns allows for endless topological and geometrical

alternatives to be explored in the context of grid shells, beyond what is demonstrated

in this thesis. One conceivable extension of this work could therefore be to implement

the proposed methodology for different Islamic patterns, or perhaps even for other

cultural or mathematical patterns of the designer’s choosing. Moreover, this design

approach, emphasizing topology and geometry as applied to grid shells, serves as a

facet of a broader outlook on the use of these patterns in modern structural design.

Other discrete structural typologies such as braced frames, space frames and trusses,

could also benefit from the introduced creative freedom.

Furthermore, the notion of a performance-driven conceptual design methodology

could also be further expanded to encompass additional structural criteria, such as

local and global buckling constraints, as well as strain energy calculations so as to

provide the designer with a more holistic understanding of grid shell performance.
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Figure 5-1: Concept rendering of a grid shell roof structure designed in phase two,
where the force densities are scaled. The variables used to generate the form are as
follows: 𝑑 = 5, 𝑜1 = 1.0, 𝑜2 = 1.0, and ℎ𝑡𝑎𝑟𝑔𝑒𝑡 = 1. Rendering produced by Daniel
Marshall, MIT.

Another interesting consideration to build into the evaluation methodology would

be a measure for how planar the faces of the grid shell are to account for cladding

and constructability issues [2]. In addition, the framework in its current form is

only suitable for conceptual design explorations, where speed and quantity of design

options are a priority. Therefore, another possible avenue for future work could be

to build upon the existing functionality to allow the designer to refine a single grid

shell design through several form finding iterations where the loading conditions are

updated according to the structure’s self-weight and nodal tributary areas.

Perhaps most interestingly though, Islamic patterns open yet another set of topo-

logical possibilities through parquet deformations [27], or spatially varying geometric

patterns, which could make for an even richer grid shell design space. This directly
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aligns with the core objectives and contributions of the research presented in this

thesis, where topology and geometry present creative design opportunities beyond

those derived from topology optimization methodologies [11]. Historic and cultural

patterns are shown to produce produce diverse structures that perform well while also

responding to aesthetic priorities, thus offering an additional means for designers to

reference vernacular traditions in the modern built environment.
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Appendix A

MATLAB Code

This appendix contains a collection of ten MATLAB scripts and functions that en-

able a designer to conduct parametric grid shell design studies on a particular set of

patterns. The enclosed code pertains to the latter two stages of the computational

framework, the details of which are outlined in Sections 3.3 and 3.4. In order to

produce a collection of grid shells, the designer only needs to change the input pa-

rameters and run the main script in Appendix A.1, which calls upon the remaining

complementary functions. The code is commented, where appropriate, to define the

variables and function inputs and outputs.
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A.1 Main script

mainIGP.m - Main script to perform form finding using Islamic patterns. This script

enables parametric studies of the design space to be conducted, and is the only code

that the designer needs to interact with.

1 clear variables; clc;

2

3 %% USER INPUTS

4 saveBoolean = true; % true = saves the images that are produced

5 dataBoolean = true; % true = writes data to text file

6 fdmScaleBoolean = true; % true = force densities are scaled (phase ...

two), false = phase one

7 quadBoolean = true; % true = comparison to quadrilateral pattern is ...

conducted

8

9 % FDM

10 totalForce = 1; % total force applied to structure to be divided into...

point loads

11 forceDens = 50; % guess value for force density optimization loop - ...

to be normalised by no. members

12 minH = 1; % this value will be divided by 10 to compute the minimum ...

hfactor (% of length of pattern)

13 maxH = 10; % used to compute the maximum hfactor

14 BCtype = 1; % 1 = convex hull, 2 = barrel, 3 = corners

15

16 % Islamic pattern

17 % Directory where Grasshopper pattern data is stored

18 datadir = 'Data_IGP/Data_grasshopper/';

19

20 % Writing images and data

21 % Input the directories of your choosing for data storage; the ...

folders need to be created and specified prior to running the ...

code:

22 imgdir = 'Data_IGP/Data_images/'; % where images of structures are ...

saved
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23 resdir = 'Data_IGP/Data_results/'; % where text files of results are ...

saved

24 forcedir = 'Data_IGP/Data_forces/'; % where member forces are saved

25 nodedir = 'Data_IGP/Data_nodes/'; % where pattern topology and node ...

coordinates are saved

26 datafilename = [resdir,'parametric_study.txt']; % name of the text ...

file where data will be written

27

28 % -------------------------------------------------------------------

29 %% COMPUTATION

30 tic

31

32 listing = dir([datadir,'*.csv']); % extracts all .csv files from ...

directory

33

34 poolobj = parpool('local', 8); % sets up parallel pool object; number...

of workers will depend on your computer

35

36 for h = minH:maxH % parametric study for a range of heights

37

38 parfor loopvar = 1:length(listing) % parallel processing

39

40 % Pattern generation

41 [gridpts, edges,n,m,constarea,l_initial] = patterngenIGP(...

datadir, listing(loopvar).name);

42

43 % FDM + PERFORMANCE ANALYSIS

44 nodesFind = setBC(gridpts,BCtype);

45 nF = length(nodesFind);

46

47 % Point force applied to all free nodes

48 p = zeros(n-nF,1); %

49 p(:,3) = totalForce/(n-nF); % set z component of force (...

normalized by number of free nodes)

50

51 % Parsing data
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52 [pathstr,name,ext] = fileparts(listing(loopvar).name);

53 % Parsing the file name output from grasshopper to determine ...

the system parameters

54 % Sample name: (datadir)/dx_2_dy_2_o1_0.5_o2_0.5.csv

55 ind = strfind(name, '_');

56 % number of polygonal units in x direction (= pattern density...

in square plan)

57 dx = str2double(name(ind(1)+1:ind(2)-1));

58 % number of polygonal units in y direction (dx=dy for square)

59 dy = str2double(name(ind(3)+1:ind(4)-1));

60 o1 = str2double(name(ind(5)+1:ind(6)-1));

61 o2 = str2double(name(ind(7)+1:end));

62

63 % Force Density Method + results visualization

64 qStart = forceDens/m;

65

66 % Height selection optimization

67 hfactor = h/10;

68 L = sqrt(constarea); % dimension of square grid.

69 targetH = hfactor*L; % target height for the structure

70 picname = [name,'_nF_',num2str(nF),'_bc_',num2str(BCtype),'...

_h_',num2str(targetH)];

71 [optq, diff,exitflag,output] = OptFDMHeight(gridpts, edges, ...

nodesFind, n, m, p, qStart, targetH,l_initial,...

fdmScaleBoolean);

72

73 % FDM implementation

74 if fdmScaleBoolean == false % Phase one: NO SCALING

75 [nodes,f,l] = fdm(gridpts, edges, nodesFind, n, m, p, ...

optq*ones(m,1));

76 else % Phase two: SCALED

77 [nodes,f,l] = fdm(gridpts, edges, nodesFind, n, m, p,...

optq./l_initial);

78 end

79

80 % Performance analysis
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81 [sumFL,fMAXmin] = performance(f, l);

82

83 % Plot the form-found structure

84 formvis(edges, nodes, f, gridpts, nodesFind, picname,imgdir, ...

saveBoolean, sumFL, fMAXmin, optq)

85

86 % Comparison to quadrilateral grid

87 if quadBoolean == true

88 [dquad, sumFLquad,fMAXminquad,optqquad,nodesquad,...

edgesquad,fquad,nFquad] = quadpattern(totalForce, ...

forceDens, targetH, BCtype,constarea, m);

89 else

90 % Initialize quad parameters (for case where quadBoolean ...

== false

91 dquad = []; sumFLquad = []; fMAXminquad = []; optqquad = ...

[]; nodesquad = []; edgesquad = []; fquad = []; ...

nFquad = [];

92 end

93

94 % WRITE DATA TO TEXT FILE

95 writeData(dataBoolean,datafilename,forcedir,nodedir,picname,...

dx,dy,o1,o2,edges,nodes,fMAXmin,sumFL,f,optq,BCtype,...

quadBoolean,dquad,fMAXminquad,sumFLquad,optqquad,...

nodesquad,edgesquad,fquad,nFquad);

96

97 end % parfor END

98

99 end

100

101 delete(poolobj);

102

103 toc
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A.2 Generating Islamic patterns

patterngenIGP.m - This function reads the.csv file that contains the pattern data

that is generated in Grasshopper. This serves as the interface between Grasshopper

and MATLAB, where the pattern is recreated.

1 %% VARIABLE DEFINITIONS

2

3 % INPUTS

4 % cfile Name of current pattern .csv file

5

6 % OUTPUTS

7 % gridpts Matrix of coordinates of all nodes comprising pattern

8 % network (x,y,z=0); (nx3)

9 % edges (mx2) matrix of pattern topology

10 % Each row represents the connectivity of a single member

11 % (column 1 = node i index, column 2 = node j index)

12 % n Number of nodes in the pattern

13 % m Number of members (edges) in the pattern

14 % constarea Area of the square plan enclosing the pattern. Length

15 % and width of base = sqrt(constarea)

16 % l_initial Initial lengths of all of the members in the 2D pattern

17

18 % -------------------------------------------------------------------

19

20 function [gridpts, edges,n,m,constarea,l_initial] = patterngenIGP(...

datadir, cfile)

21

22 % Sample Grasshopper pattern file name: dx_2_dy_2_o1_0.5_o2_0.5.csv

23 filename = [datadir, cfile];

24

25 % Reading data from Grasshopper .csv output

26 % .csv file row 1 = x coordinates of pattern nodes

27 % .csv file row 2 = y coordinates of pattern nodes

28 % .csv file row 3 = z coordinates of pattern nodes

29 % .csv file row 4 = x coordinates of member start nodes
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30 % .csv file row 5 = y coordinates of member start nodes

31 % .csv file row 6 = z coordinates of member start nodes

32 % .csv file row 7 = x coordinates of member end nodes

33 % .csv file row 8 = y coordinates of member end nodes

34 % .csv file row 9 = z coordinates of member end nodes

35 fid = fopen(filename, 'r');

36 data = csvread(filename);

37 fclose(fid);

38

39 % Obtaining data from .csv file

40 gridpts = [transpose(data(1,:)), transpose(data(2,:)), transpose(data...

(3,:))];

41 gridpts = gridpts(any(gridpts,2),:); % removes zero rows generated by...

grasshopper csv write

42 gridpts = round(gridpts,12); % rounds the coordinate values to 12dp

43

44 n = size(gridpts,1);

45 lineStartpts = [transpose(data(4,:)), transpose(data(5,:)), transpose...

(data(6,:))];

46 lineStartpts = round(lineStartpts,12);

47 m = size(lineStartpts,1);

48 lineEndpts = [transpose(data(7,:)), transpose(data(8,:)), transpose(...

data(9,:))];

49 lineEndpts = round(lineEndpts,12);

50

51 constarea = data(10,1);

52

53 % Initial lengths of the line segments in the base pattern

54 l_initial = diag(pdist2(lineStartpts,lineEndpts));

55

56 % Initializing edges matrix representing grid topology

57 edges = zeros(length(lineStartpts),2);

58

59 % Constructing edges matrix from start and end coordinates of lines

60 for i=1:n

61 current_gridpts = gridpts(i,:);

61



62

63 for j=1:m

64 current_lineStartpts = lineStartpts(j,:);

65 current_lineEndpts = lineEndpts(j,:);

66

67 if isequal(current_gridpts,current_lineStartpts)

68 edges(j,1)=i;

69 end

70

71 if isequal(current_gridpts,current_lineEndpts)

72 edges(j,2)=i;

73 end

74 end

75 end

76 end
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A.3 Setting boundary conditions

setBC.m - This function automates the selection of three typical boundary conditions

in order to standardize the comparisons across grid shells: 1- convex hull, 2- barrel

and 3- corners.

1 %% VARIABLE DEFINITIONS

2

3 % OUTPUTS

4 % nodesFind Column vector of fixed node indices

5

6 % -------------------------------------------------------------------

7

8 function [nodesFind] = setBC(gridpts,bctype)

9

10 xvalues = gridpts(:,1); % isolating x coordinates of pattern nodes

11 yvalues = gridpts(:,2);

12

13 min_x = min(xvalues);

14 max_x = max(xvalues);

15 min_y = min(yvalues);

16 max_y = max(yvalues);

17

18 % Convex hull

19 if bctype==1

20 nodesFind = unique(boundary(xvalues,yvalues,0));

21

22 % Barrel; fixed along y direction

23 elseif bctype==2

24 nodesminx = find(xvalues==min_x);

25 nodesmaxx = find(xvalues==max_x);

26 nodesFind = vertcat(nodesminx,nodesmaxx);

27

28 % Corners

29 elseif bctype==3
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30 % Convex hull nodes within the radius equivalent to cornerDist ...

from the corner nodes will be fixed

31 cornerDist = (max_x - min_x) * 0.25; % NOTE: this is defined ...

heuristically

32 nodesFind = [];

33 convexNodesFind = unique(boundary(xvalues,yvalues,0));

34 convexNodes = gridpts(convexNodesFind,:);

35 corners = [min_x, min_y, 0; min_x, max_y, 0; max_x, min_y, 0; ...

max_x, max_y, 0];

36 for i = 1:size(corners,1)

37 corner = corners(i,:);

38 for j = 1:size(convexNodes,1)

39 node = convexNodes(j,:);

40 if norm(corner-node,2) ≤ cornerDist

41 nodesFind = vertcat(nodesFind, convexNodesFind(j));

42 end

43 end

44 end

45

46 end
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A.4 Implementing the force density method

fdm.m - This function applies a standard implementation of the force density method [15];

it determines the three-dimensional form in pure compression corresponding to the

input pattern, boundary conditions and loading conditions.

1 %% VARIABLE DEFINITIONS

2

3 % INPUTS

4 % p Column vector of point forces applied to each free

5 % node in the network (n-nf x 1)

6 % q Column vector of the force densities of each of the

7 % members in the pattern (mx1) (determined from

8 % OptFDMHeight)

9

10 % -------------------------------------------------------------------

11

12 % OUTPUTS

13 % nodes Matrix of equilibrium coordinates of all nodes

14 % comprising form-found structure (x,y,z); (nx3)

15 % f Vector of internal forces in each of the members

16 % comprising the structure

17 % l Vector of equilibrium lengths of all of the members

18

19 % -------------------------------------------------------------------

20

21 function [nodes,f,l] = fdm(gridpts, edges, nodesFind, n, m, p, q)

22

23 nodesFindex = sort(nodesFind); % sorts fixed nodes indices in ...

ascending order

24

25 % Separating node coordinates into fixed and free

26 nodesF = gridpts(nodesFindex,:); % fixed node coordinates

27 xf = nodesF(:,1);

28 yf = nodesF(:,2);

29 zf = nodesF(:,3);
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30 nodesNindex = setdiff(1:1:n, nodesFindex); % indices of free nodes

31

32 % Initialize branch node matrix

33 C = zeros(m, n);

34

35 % Fill in branch node matrix with node connectivities

36 for i=1:m

37 startNode = edges(i,1);

38 endNode = edges(i,2);

39

40 C(i,startNode)=-1;

41 C(i,endNode)=1;

42

43 end

44

45 % Separate branch node matrix

46 Cf = C(:,nodesFindex);

47 Cn = C(:,nodesNindex);

48

49 % Force densities

50 Q = diag(q);

51

52 Dn = Cn'*Q*Cn;

53 Df = Cn'*Q*Cf;

54

55 % Solve for coordinates of free nodes

56 xn = linsolve(Dn, p(:,1) - Df*xf);

57 yn = linsolve(Dn, p(:,2) - Df*yf);

58 zn = linsolve(Dn, p(:,3) - Df*zf);

59

60 % Solving for element forces

61 u = Cn*xn+Cf*xf;

62 v = Cn*yn+Cf*yf;

63 w = Cn*zn+Cf*zf;

64

65 U = diag(u);
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66 V = diag(v);

67 W = diag(w);

68

69 L = (U.^2 + V.^2 + W.^2).^0.5;

70 l = diag(L); % column vector of element lengths

71

72 f = L*q; % element forces

73

74 % Assemble coordinates of free nodes into a single matrix

75 nodesN = [xn, yn, zn];

76

77 % Assemble all node coordinates into a single matrix for plotting ...

purposes

78 nodes = zeros(n,3);

79 nodes(nodesFindex,:) = nodesF;

80 nodes(nodesNindex,:) = nodesN;

81 end
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A.5 Height-selection optimization loop

OptFDMHeight.m - This is a wrapper function that calls upon Objective.m to perform

a constrained minimization wherein the optimal force density value is computed such

that the final grid shell height is equal to the designer-prescribed target height.

1 %% VARIABLE DEFINITIONS

2

3 % OUTPUTS

4 % optq Optimum force density determined according to Objective

5 % function. Phase one applies the same force density to

6 % each member, while phase two scales the force densities

7 % according to the initial member length.

8 % -------------------------------------------------------------------

9

10 function [optq, diff,exitflag,output] = OptFDMHeight(gridpts, edges, ...

nodesFind, n, m, p, qStart, targetH,l_initial,fdmScaleBoolean)

11 % c is a temporary cell that contains all of the inputs necessary to ...

run fdm.m (except for q) when calling Objective.m

12

13 c{1} = gridpts;

14 c{2} = edges;

15 c{3} = nodesFind;

16 c{4} = n;

17 c{5} = m;

18 c{6} = p;

19 c{7} = targetH;

20 c{8} = l_initial;

21

22 % Constrained minimization: q≥0

23 options = optimoptions(@fmincon,'Display','iter','StepTolerance',1e...

-08);

24 [optq,diff,exitflag,output] = fmincon(@(q) Objective(q,c,...

fdmScaleBoolean),qStart,[],[],[],[],0,Inf,[],options);

25

26 end
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A.6 Constrained minimization objective function

Objective.m - This function implements the force density method with either the

same force density applied to every member in the structure (phase one), or with

scaled force densities (phase two). The objective function which defines the height-

selection procedure is defined in this code and corresponds to Equations 3.2 and 3.3.

1 function [J] = Objective(q, c,fdmScaleBoolean)

2 gridpts = c{1};

3 edges = c{2};

4 nodesFind = c{3};

5 n = c{4};

6 m = c{5};

7 p = c{6};

8 targetH = c{7};

9 l_initial = c{8};

10

11 if fdmScaleBoolean == false % Phase one: NO SCALING

12 % produces a single optimum q to result with the desired height

13 [nodes,f,l] = fdm(gridpts, edges, nodesFind, n, m, p, q*ones(m,1)...

);

14 else % Phase two: SCALED

15 % scales force densities according to member lengths in intitial ...

2D pattern

16 [nodes,f,l] = fdm(gridpts, edges, nodesFind, n, m, p, q./...

l_initial);

17 end

18

19 maxHeight = max(nodes(:,3));

20 J = abs(targetH - maxHeight);

21 end
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A.7 Calculating structural performance metrics

performance.m - This function evaluates the performance of the form found structure

by computing the values for the chosen structural performance metrics.

1 %% VARIABLE DEFINITIONS

2

3 % OUTPUTS

4 % sumFL Load path of the structure; this is a proxy for the

5 % material volume (or weight) of the structure

6 % fMAXmin Ratio between the maximum and minimum internal member

7 % forces within the structure

8

9 % -------------------------------------------------------------------

10

11 function [sumFL,fMAXmin] = performance(f, l)

12

13 % Load path

14 sumFL = sum(f.*l);

15

16 % Ratio between min and max forces

17 fMAXmin = max(f)/min(f);

18

19 end
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A.8 Dashboard visualization of grid shell

formvis.m - This function plots the three-dimensional form-found structure presented

in four viewpoints: 1- plan, 2- perspective, 3- elevation, and 4- section. A force bar

chart and force histogram are also shown, and the corresponding performance metrics

are included. This code makes use of the save2pdf.m function found on the MATLAB

File Exchange [40] in order to save higher quality vector images.

1 function formvis(edges, nodes, f, gridpts, nodesFind, picname,imgdir,...

saveBoolean, sumFL,fMAXmin,optq)

2 if saveBoolean == true

3 % Member forces mapped to line widths for visualization purposes

4 minLineW = 1;

5 maxLineW = 3;

6 [f_lineW,PS] = mapminmax(f',minLineW,maxLineW);

7

8 % Plot axis limits

9 maxX = max(nodes(:,1));

10 maxY = max(nodes(:,2));

11 maxZ = max(nodes(:,3));

12 limits = [0 maxX 0 maxY 0 maxZ];

13

14 % Plot title

15 sf = 3; % no. significant figures

16 % Sample picname: dx_2_dy_2_o1_0.5_o2_0.5_nF_28_bc_1_h_3

17 cell = strsplit(picname,'_');

18 dx = cell{2}; dy = cell{4}; o1 = str2double(cell{6}); o2 = ...

str2double(cell{8}); nF = cell{10};

19 name = [cell{1},' = ',dx,', ',cell{3},' = ',dy,', ',cell{5},...

20 ' = ', num2str(o1,sf),', ',cell{7},' = ',num2str(o2,sf),', ',...

cell{9},' = ', nF];

21 line1 = [name,', q = ',num2str(optq,sf)];

22 line2 = ['\Sigma (fl) = ', num2str(sumFL,sf),', f_{max}/f_{min} =...

',num2str(fMAXmin,sf)];

23
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24 % PARENT FIGURE - to copy to subplot arrangement (different ...

viewpoints of form-found structure)

25 fig1 = figure(1);

26 ax1 = axes('Parent',1);

27 for i = 1:length(edges)

28 connectedNodes = edges(i,:);

29 coordinates = nodes(connectedNodes,:);

30 plot3(ax1,coordinates(:,1), coordinates(:,2), coordinates...

(:,3),'k','LineWidth',f_lineW(i));

31 hold all;

32 end

33 % Shading

34 DT = delaunayTriangulation(nodes(:,1:2));

35 faces = trisurf(DT.ConnectivityList, nodes(:,1), nodes(:,2), ...

nodes(:,3));

36 set(faces, 'FaceColor', [.9 .9 .9], 'EdgeColor', 'none', '...

FaceAlpha', .6);

37

38 hold off

39 set(gca,'Color','none');

40 axis(limits);

41 axis equal;

42

43 % SUBPLOTS

44 subRow = 2; % number of rows in subplot grid

45 subCol = 3; % number of columns in subplot grid

46 fontSize = 20;

47 titleSize = 30;

48

49 fig2 = figure('position',[0,0,2250,750]);

50

51 % Plan

52 ax2 = subplot(subRow,subCol,1);

53 copyobj(allchild(ax1),ax2);

54 hold on

55 scatter(gridpts(nodesFind,1),gridpts(nodesFind,2),'k','filled');
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56 view(2);

57 set(gca,'Color','none','FontSize', fontSize);

58 axis(limits);

59 axis equal;

60 hold off;

61

62 % Perspective

63 ax3 = subplot(subRow,subCol,2);

64 copyobj(allchild(ax1),ax3);

65 view(3);

66 axis(limits);

67 set(gca,'Color','none','FontSize', fontSize);

68 axis equal;

69 hold off;

70

71 % Elevation

72 ax4 = subplot(subRow,subCol,4);

73 copyobj(allchild(ax1),ax4);

74 view([90,0]);

75 axis(limits);

76 set(gca,'Color','none','FontSize', fontSize);

77 axis equal;

78 hold off;

79

80 % Section

81 ax5 = subplot(subRow,subCol,5);

82 copyobj(allchild(ax1),ax5);

83 view([-45,0]);

84 axis(limits);

85 set(gca,'Color','none','FontSize', fontSize);

86 axis equal;

87 hold off;

88

89 % Plot of all member forces

90 ax6 = subplot(subRow,subCol,3);

91 bar(ax6,sort(f,'descend'),'FaceColor','k','EdgeColor','k')
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92 xlabel('Member number','FontSize',fontSize);

93 ylabel('Member forces','FontSize',fontSize);

94 axis([0 length(f) 0 max(f)]);

95 set(gca,'Color','none','FontSize', fontSize);

96

97 % Histogram of force distribution

98 ax7 = subplot(subRow,subCol,6);

99 histogram(ax7,f,'facecolor','k');

100 xlabel('Member forces','FontSize',fontSize);

101 ylabel('Frequency','FontSize',fontSize);

102 set(gca,'Color','none','FontSize', fontSize);

103

104 % Subplot title

105 subTitle = suptitle({line1,line2});

106 set(subTitle,'FontSize',titleSize);

107

108 % Directory to save images

109 filenamepdf = [imgdir,picname,'.pdf'];

110 set(gcf,'renderer','painters');

111 save2pdf(filenamepdf,gcf,800);

112 end

113 close all;

114 end
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A.9 Comparing Islamic patterned grid shells to near-

equivalent quadrilateral grid shells

quadcompare.m - This function computes the quadrilateral pattern density to satisfy

the requirement that the number of members in the pattern is almost equivalent to the

number of members in the Islamic pattern. An algorithm, developed to produce gen-

eral quadrilateral patterns, is then employed to generate the quadrilateral grid upon

which the force density method is applied. The corresponding performance metric

values are output to facilitate the relative comparisons with the Islamic patterned

grid shells.

1 function [dquad, sumFLquad,fMAXminquad,optqquad,edgesquad,nodesquad,...

fquad,nFquad] = quadpattern(totalForce, forceDens, targetH, ...

BCtype,constarea, m)

2 %% GENERATING QUADRILATERAL PATTERN FOR COMPARISON

3 L = sqrt(constarea);

4

5 % Solving for quadrilateral pattern density for near-equivalence to ...

Islamic pattern

6 p = [2 2 -m];

7 r = roots(p);

8 dx = round(min(abs(r)));

9 dy = dx;

10 dquad = dx;

11

12 % Scaling square/ rectangle dimensions

13 ox = L/dx;

14 oy = ox;

15

16 % Initializing vectors

17 gridpts = zeros(1,3);

18 edgesquad = zeros(1,2);

19

20 base_pts = [0,0,0; 0,oy,0; ox,oy,0; ox,0,0];
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21

22 % Stamping square / rectgangle to form quadrilateral patterm

23 for i = 0:dx-1

24 for j = 0:dy-1

25 new_shape = [base_pts(:,1)+i*ox, base_pts(:,2)+j*oy, base_pts...

(:,3)];

26 nodeID = [size(gridpts,1);size(gridpts,1)+1;...

27 size(gridpts,1)+2;size(gridpts,1)+3];

28

29 % Checking for duplicate nodes

30 [Lia,Locb] = ismembertol(new_shape,gridpts,1e-3,'ByRows',true...

);

31

32 % Removing duplicate points

33 for k = 1:length(Locb)

34 if Locb(k) == 0 % not a duplicate point

35 gridpts = vertcat(gridpts,new_shape(k,:));

36 nodeID(k)= size(gridpts,1);

37 else % duplicate point - replace node ID with ID of ...

existing node

38 nodeID(k)=Locb(k);

39 end

40 end

41

42 edges_new = [nodeID(1),nodeID(2);nodeID(1),nodeID(4);...

43 nodeID(2),nodeID(3);nodeID(3),nodeID(4)];

44

45 % Sort: Swap columns of edges matrix such that node i < node ...

j

46 for p = 1:size(edges_new,1)

47 if edges_new(p,1)> edges_new(p,2)

48 edges_new(p,[1,2])=edges_new(p,[2,1]);

49 end

50 end

51

52 % Checking for duplicate edges
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53 [Lia_edge,Locb_edge] = ismember(edges_new,edgesquad,'rows');

54 for h = 1:length(Locb_edge)

55 if Locb_edge(h) == 0 % not a duplicate edge

56 edgesquad = vertcat(edgesquad,edges_new(h,:));

57 end

58 end

59 end

60 end

61 edgesquad(1,:) = [];

62

63 %% FDM FOR QUADRILATERAL PATTERN

64

65 nquad = size(gridpts,1);

66 mquad = size(edgesquad,1);

67

68 nodesFind = setBC(gridpts,BCtype);

69 nFquad = length(nodesFind);

70

71 % Point force applied to all free nodes

72 p = zeros(nquad-nFquad,1);

73 p(:,3) = totalForce/(nquad-nFquad);

74

75 % Force Density Method with height selection

76 qStart = forceDens/mquad;

77 [optqquad, diff,exitflag,output] = OptFDMHeight(gridpts, edgesquad, ...

nodesFind, nquad, mquad, p, qStart, targetH,ox,false);

78 [nodesquad,fquad,lquad] = fdm(gridpts, edgesquad, nodesFind, nquad, ...

mquad, p, optqquad*ones(mquad,1));

79

80 % Performance analysis

81 [sumFLquad,fMAXminquad] = performance(fquad, lquad);

82

83 end
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A.10 Writing data from parametric study to text file

for post-processing

writeData.m - This function writes the key pattern data, along with grid shell perfor-

mance metrics, and stores it in a text file for post-processing. The node coordinates

of the form-found structure, along with the internal member forces and the pattern

topology are also saved as individual.csv files.

1 function writeData(dataBoolean,datafilename,forcedir,nodedir,picname,...

dx,dy,o1,o2,edges,nodes,fMAXmin,sumFL,f,optq,BCtype,quadBoolean,...

dquad,fMAXminquad,sumFLquad,optqquad,nodesquad,edgesquad,fquad,...

nFquad)

2 if dataBoolean == true

3

4 % Saving the performance metrics for each form-found structure in...

the same text file

5 fid = fopen(datafilename,'at'); % append to end of existing file

6 fprintf(fid,'%d\t %d\t %f\t %f\t %f\t %f\t %f\t %f\t %d\t %d\t %f...

\t %f\t %f\n',dx,dy,o1,o2,max(nodes(:,3)),fMAXmin,sumFL,optq,...

BCtype,dquad,fMAXminquad,sumFLquad,optqquad);

7 fclose(fid);

8

9 % Saving all forces in each form-found structure (Each structure ...

has its own corresponding .csv file)

10 forcefilename = [forcedir,picname,'.csv'];

11 csvwrite(forcefilename,f);

12

13 % Saving all deformed node coordinates and topology (Each ...

structure has its own corresponding .csv file)

14 nodefilename = [nodedir,picname,'_nodes.csv'];

15 edgefilename = [nodedir,picname,'_edges.csv'];

16 csvwrite(nodefilename,nodes);

17 csvwrite(edgefilename,edges);

18

19 % Saving the data for the quadrilateral pattern
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20 if quadBoolean == true

21 quadforcefilename = [forcedir,'Quad/',picname,'-quad_d_',...

num2str(dquad),'_nF_',num2str(nFquad),'.csv'];

22 csvwrite(quadforcefilename,fquad);

23 quadnodefilename = [nodedir,'Quad/',picname,'-quad_d_',...

num2str(dquad),'_nF_',num2str(nFquad),'_nodes.csv'];

24 quadedgefilename = [nodedir,'Quad/',picname,'-quad_d_',...

num2str(dquad),'_nF_',num2str(nFquad),'_edges.csv'];

25 csvwrite(quadnodefilename,nodesquad);

26 csvwrite(quadedgefilename,edgesquad);

27 end

28

29 end

30 end
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