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Periodic Subwavelength Photonic Structures

by Erika Ye

Submitted to the Department of Electrical Engineering and Computer Science

May 29, 2015

in in Partial Fulfillment of the Requirements for the Degree of Masters of Engineering in Electrical Engi-

neering and Computer Science

Three applications of the interaction of light with periodic dielectric structures are investigated. The

first application is large-area spectroscopy, for which we use the mid-field diffraction pattern generated by

the light source passing through a transmission grating to determine its spectral composition. By utilizing

a large grating size, we are able to achieve resolutions of < 4 nm experimental while having an etendue of

roughly 0.033 mm 2. Furthermore, since we are sampling the mid-field light pattern as opposed to the far-

field, the entire spectrometer can fit within a 10 mm by 10 mm by 5 mm volume. The second application are

barcodes based on the wavelength-dependent back-scattering off of a photonic crystal resonant cavity. The

challenge is that we want to observe high quality factor resonant peaks while reducing the size of the crystal

to less than 10 microns. So far the highest quality factor observed was about 800. The third application is

a Fano silicon photonic crystal modulator waveguide device. The resonant cavity of the modulator is a 1D

photonic crystal cavity. If we excite the fundamental and first excited mode of the waveguide, we obtain

a Fano resonance that can potentially increase modulation depth and efficiency. We investigated how to

improve the modulator architecture to reliably design resonators with sharp Fano resonance peaks. Those

these applications are still in their early stages, the are promising for furthering each technology.
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Chapter 1

Introduction

1.1 Thesis Overview

In this thesis, we will discuss three applications for sub-wavelength photonic structures: spectroscopy of a

large area beam using a diffraction grating, a small-scale photonic crystal (PhC) resonant cavity barcode or

tag, and a photonic crystal electro-optical (EO) modulator. Though these applications are quite different,

we intend to investigate them from the perspective of understanding how they can be realized by using

periodic structures, on the order of the wavelength, in their design. Furthermore, the final version of these

devices ideally will be CMOS compatible, allowing for efficient and reliable fabrication. The scope of the

thesis includes only the first design iterations of these devices.

Our motivation for investigating large-area spectroscopy is to design a miniature, wearable spectrometer.

By designing the spectrometer to accept a large area of the signal, but likely at the cost of having a small

numerical aperture (NA), we can reduce the size of the spectrometer by using information in the mid-field

diffraction pattern instead of the far-field pattern. We also hope that the large area spectrometer will detect

spectral information from the entire sampling area, which would help us spectrally resolve a diffuse and

potentially non-uniform light source. In order to accurately detect and differentiate optical transitions from

biological compounds like glucose, the spectrometer will need a resolution of 0.3 nm, and have a bandwidth

of at least 100 nm [13]. In order to be integrated into a wearable device, the spectrometer will need to be

less than 5 mm thick, and ideally about 1 cm by 1 cm in horizontal area. In comparison, the company Ibsen

Photonics sells a compact spectrometer with a foot print of 25 mm by 48 mm by 16 mm, a wavelength range

from 475 nrn to 1100 nn, and a minimum resolution of 1.7 nm [59]. A higher resolution spectrometer has a
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resolution of 0.6nm, but has a larger footprint of 61 mm by 65 mm by 19 mm [60].

The main motivation behind designing microscopic PhC tags is to label individual cells in a biological

system. PhC resonant cavities are defects in the periodic dielectric structure that support resonant modes

otherwise not allowed in the surrounding dielectric structure. The resonant frequency of the cavity can be

adjusted by slightly changing the size of the defect and other parameters of the PhC. Because the PhC

resonant modes are in-plane resonances, the angle of incidence would only affect the observed intensity of

the modes but not the observed resonant frequency. Being able to resolve the labels according to frequency

rather than intensity allows for accurate identification of the cells. The goal for this application is to design

at least 10000 different barcodes within a 100 nm spectral range. This would require a small resonant cavity

with a full-width half max of 0.01 nm. Having 10000 different barcodes would ensure that even if 1% of

barcodes were successfully associated with a cell, 1000 cells would be uniquely labelled. This constraint

could be relaxed if there were multiple resonance peaks that could be independently defined in frequency, or

a single cell could associate with multiple barcodes. If the resonant peaks could be independently defined,

in order to have at least 10000 codes, we would need 14 different resonant peaks. To be within a 100 nm

spectral range, the FWHM would have to be at most 7 nm.

The third device, the electrically driven optical modulator, is a the device that imparts information from

an electrical signal onto a constant laser source. A modulator is essentially a resonant cavity, whose resonant

frequency can change depending on changes in its refractive index. Though modulators can be made of

any electro-optically active material, we focus on silicon modulators for the ease of integrating them with

electrical computing systems. One application of EO modulators is to use them as optical interconnects

in a microprocessor environment. Integrating optics with electronics in a microprocessor has the potential

for increasing processor speeds. As modulators are just one component of the entire system, minimizing its

operating energy and its size, while maintaining a usable extinction ratio (at least 3 dB), is ideal. In contrast

to the usual EO modulators that rely on resonant cavities with Lorentzian transmission curves, we hope to

utilize a Fano resonance to increase modulation extinction while requiring a smaller change in the index of

refraction and a smaller peak-to-peak voltage. We hope that these Fano EO modulators will have at least 3

dB extinction at 10 Gbps operation while using less than 1V peak-to-peak.

The following sections provide some background for these three applications, and more detail on our

motivations for pursuing them. We'll first talk about the large-area miniature spectrometer in Section 1.2,

then discuss the photonic crystal barcodes in Section 1.3, and end with the photonic crystal modulators 1.4.

At the end of the introduction, there will be a brief introduction on photonic crystals.
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1.2 Introduction to Diffraction Grating Spectroscopy

Researchers use a variety of spectroscopic techniques to characterize a sample of interest. By exposing the

sample to some form of energy, we probe the sample of interest to gain information about the sample.

One type of spectroscopy that is gaining interest is Raman spectroscopy. Raman spectroscopy relies on

the inelastic scattering of monochromatic light to characterize the system's molecular vibrations, phonons,

and other vibrational excitations of the system. Inelastic scattering changes the energy of the laser source,

so the information in Raman spectroscopy is contained in the energy shifts of the laser source. Since the

inelastically scattered light (Raman scattering) is typically much weaker than the elastically scattered light

(Rayleigh scattering), one filters out the source wavelength and then must resolve the remaining frequencies

of light.

Spectrometers are used to determine the spectral composition of a light source. Most spectrometers today

are large in size, expensive, and use cooled CCD detectors. Especially in the case of Raman spectroscopy,

where the signal tends to be relatively weak, larger systems are needed to detect the signal with less noise.

The work presented in this thesis is the first step in an attempt to build a miniature, chip-scale spectrometer

that can be used to detect Raman signal.

Current spectrometers rely on using a narrow slit to localize the input beam. The input beam is then

incident on a diffraction grating, and diffracts at an angle that is determined by the wavelength. The slit

drastically reduces the intensity of light that the spectrometer is able to collect, so lenses that collect the

desired signal and focus it onto the entrance slit can significantly increase the signal [281. The amount of

light that can be collected by the optical system is called the "etendue," and is a function of the area of the

light and the range in angles of propagation.

1.2.1 The Proposed Technology

In order to determine spectral composition of a large area, diffuse light source, while making a compact

(1 cm x 1 cm x 5 mm) spectrometer, we hope to use a large area grating and uses information from the

mid-field interference pattern, the Talbot effect. The large area grating will allow us to obtain information

from a wide area, though it comes at the cost of needing little variation in the input angle.

Again, the desired specifications of the spectrometer is a spectral resolution of about 0.3 nm, and a

bandwidth from about 800 nmn to 900 nm. Glucose exhibits strong Raman peaks in the range from 350 cm -1

to 1350 cm-1 from the excitation laser [13]. If we use an excitation source at 785 nm, we expect the most
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important Raman signal to be found from 807 nm to 893 nm. The two closest, identifiable peaks in the

range have shifts of about 913 cm- 1 and 898 cm' [83]. This corresponds to wavelengths of 845.6 nm and

844.5 nm. Therefore, the spectrometer should have a resolution between 0.1 nm and 0.6 nm for the peaks

to be clearly distinguished.

Previous Work on "Small" Spectrometers

In 2003, Xu et al. published work on using a disordered photonic crystal with spatio-spectral transmission

patterns to resolve multimodal diffuse sources [92]. They argued that by mapping the spectral transmission

through the photonic crystal at each point of the crystal, the spectrum of the source could be determined.

They proposed that multimode spectrometers with 1-10 nm resolution could be made using this technique,

though they themselves were limited to a 5 nm resolution. The advantage of this technique was that they

could resolve highly diffuse sources without any other lenses. However, most of the incident light would be

reflected by 3D PhC, they had little advantage in intensity despite the apparent higher etendue. In fact,

only certain regions of the photonic crystal behaved like a spectrometer, so even though the aperture area

was large, only small area was usable. Furthermore, the manufacturing process is less than ideal for large

scale reproduction.

A few years ago, Redding et al. published work regarding a compact spectrometer based on a disordered

SOI photonic chip [67]. The light source is delivered from a ridge waveguide into a 2D space with randomly

placed air-holes in the silicon body. They argue that the multiple scattering in a disordered medium increases

the effective optical path, as the effective optical path in the diffusive regime is given by L2 /lt [67] [61], where

it is the transport mean free path and L is the length of the region with random scatterers. Light of different

frequencies bounce through random scatterers differently, and hit a different set of photodetectors that line

the rim of the cavity with the random scatterers. By identifying which combination of photodetectors are lit

up, the spectral composition of the input laser source can be determined. Redding further developed that by

carefully engineering "disorder", out-of-chip scattering could be reduced, improving overall throughput [67].

This confirms that this multi-scattering technique works even if the scatterers are not completely randomly

placed. The main issue with this technique is that the light source is delivered from a ridge waveguide, which

limits the application of this technique as a spectrometer.

The above spectrometers would require training the device to first observe the detector response at a

range of wavelengths, and then using deconvolution methods to determine the spectrum. There has also been

work on spectrometers that require less computation. In 2008, Park et al. presented a spectrometer that
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used the wavelength sensitivity of Fresnel diffraction from a circular gradient grating [581 [57]. Operation of

such a spectrometer is similar to that of a spectrometer that operates in far-field. They determined that by

using a circular gradient grating, the spectral resolution does not depend on the size of the spectrometer.

The reported spectral resolution is about 10 nm to 23 nm.

In 2001, Kung et al. presented a transform spectrometer based on the Talbot effect [38]. The spectrometer

used a typical diffraction grating, but the detector was placed in the mid-field, as opposed to the far-field.

In the mid-field of a diffraction grating, the light field is a series of periodically spaced replicas of the

grating image. The periodicity of these self-images is a function of wavelength. This effect is called the

Talbot Effect. However, Kung et al. were unable to achieve particularly high resolution because they use a

diffraction grating with a large periodicity and use a lens to magnify each self-image onto a pixel of the CCD

detector. The advantage of Kung's technique over the previous two is the simplicity of the data analysis,

requiring only Fourier transforms.

There has been limited work on using the Talbot effect for spectrometry. Other work includes a paper by

Lokshin et al. who was able to achieve 2 nm resolution for mercury vapor radiation [40]. They used a moving

detector within the first self-image to observe different frequencies of light. The resolution was determined

by depth of the self-image. They claimed that by increasing the number of grating lines, the resolution was

increased. They also suggested using a second grating identical to the first to increase the spectral resolution

in a Talbot spectrometer [40]. However, their analysis appears to be theoretical and rely on the paraxial

approximation. In a large-scale system, this approximation cannot be kept with high confidence. With

Lokshin's idea of using two gratings, Guerineau et al. also designed a Talbot spectrometer, with a moving

slit detector. It used a moving color CCD to reconstruct the mid-field light pattern of polychromatic light.

They suggested that their method of obtaining the spectral information of a sample using RGB detectors

would be more suitable for large bandwidth, low resolution samples [26]. Because their diffraction grating

had a long period, their experiments behaved within the paraxial limit.

However, the results from these two works need to be taken with a grain of salt. Their work relies

on the depth-of-focus of the Talbot image, which is reported differently in the two papers, without any

derivation. Their claims also cannot be described by the Rayleigh derivation of the Talbot self-images at a

single frequency (shown in Section 1.2.2). Another source reports a depth-of-focus of zT/4, which is more

consistent with our own simulations and the Rayleigh derivation [70]. A more in depth discussion will be in

the Appendix.

Recently, Wang et al. presented work on using a broadband diffractive optic to perform high throughput
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Table 1.1: Miniature Spectrometers

This table lists recent miniature spectrometers that have appeared in the literature. Estimates of
spectrometer size include the space in between the grating and the detector. Etendue is calculated from

7r(NA)2 A1it.

Author Spectrometer Resolution Etendue (mm2 ) Size (mm x mm
Type x mm)

Kung 2001 [38] Talbot 42 nm 0.003 40+ x 4.9 x 6.5

Xu 2003 [92] Disordered 3D PhC 2-20 nm estimate 0.024 30+ x 5 x 5

Redding 2013 [67] Disordered 2D PhC 0.75 nm le-7 0.100 x 0.050 on
chip

Park 2008 [58] Fresnel 10-23 nm 8.2e-4 1-7 x 0.750 x 0.750

Momeni 2009 [48] Waveguide 0.010 nm le-7 0.080 x 0.200 on
chip

Wang 2014 [87] Broadband Diffrac- 1 nm 0.077 500 x 9 x 9
tive Optic

This work (goals) Talbot 1 nm > 0.003 10 x 10 x 5

spectroscopy. They build a library of pixel response versus wavelength for the given diffractive optic, and

use it to predict the incident photon flux. They assume almost 100% transmission of photons through

their diffractive optics, and use the quantum efficiency to help limit the possible wavelengths. They use

computational errors to predict the spectrum from the detected signal. They were able to experimentally

obtain 1 nm resolution, but simulated that they could achieve resolutions of 0.011 nm. However, similar to

the Talbot spectrometer, they can only use a collimated light source.

A summary of the previous work is in Table 2.1.

1.2.2 Diffraction Grating Theory

In order to motivate using alternate methods for miniaturized spectroscopy, we need to prove that we will be

unable to achieve the desired specifications for our project. Here, we will first review the physics of far-field

diffraction from a grating, and then discuss why we can't use a far-field spectrometer for our project.

General Form of Diffraction and Its Approximations

Consider a spherical wave at a point of area dS, with an field amplitude A and an wavelength A. The electric

field dE at some distance r away from the origin of the wave is [28]
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A
dE = A ei(t-kr)dS. (1.1)Ar

Now imagine that light passes through the aperture S(e, 77, 0) and illuminates a point P(x, y, z), which

is a distance r = fx 2 + y2 + z 2 away from the aperture. If the aperture were only open at a single point,

the electric field at point P, ignoring the time dependence, can be found easily from equation 1.1 to be

E = eikr (1.2)
Ar

According to Huygen's principle, for a point P with a lateral position (x, y) a distance z away from the

input field, the electric field can be obtained by adding together spherical waves being emitted from each

point of the input plane (input aperture). The amplitude of the field can vary along of the plane of the input

aperture. The x and y of the input aperture are represented as E and 77, and z is set to zero.

The x and y are the lateral positions of point P on a screen a distance z away from the aperture, and

U(P) i f A(e, k) e dd (1.3)

where

r' = (x - e)2 + (y -7) 2 + z2. (1.4)

Equation 1.3 is the general equation for diffraction, as no approximations are made to simplify the

spherical wave. Though this equation can be solved numerically, approximations of r are often made in

terms of e and ?1.

For Fresnel (near-field) diffraction, the approximation is

rE r - + (1.5)
r 2r

and for Fraunhofer (far-field) diffraction, the approximation is

r ~ r -- r (1.6)

These approximations are made by taking the dominant Taylor series expansion terms of r(e, q). In

order to for the higher order terms of the Taylor expansion to be negligible in exp(-jkr'), they must satisfy
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krhigherorder << 27r. For Fresnel diffraction, in order for the third and higher order terms to be negligible,

we require that A << z and A << V/(x - e)2 + (y - q)2. Under these assumptions, we're looking at the

region right behind the input aperture. In the case that /(x - e) 2 + (y - ql) 2 << z, we can also ignore the

second order term, as is done for Fraunhofer diffraction. In this limit, we also notice that r' ~ z. Since this

approximation requires us to stay close to the z-axis, this approximation is also referred to as the paraxial

approximation.

The electric field in the Fraunhofer approximation is

i Ae- ikr' 00 u
U(P) = Ar' 00 S(eq, O)eik &ded7 . (1.7)

Farfield Diffraction Grating Spectroscopy

Suppose the input aperture is a ID diffraction grating, with N infinitely long slits of width w, periodically

spaced a distance d away from each other, in a perfectly absorbing material. Mathematically, the diffraction

grating can be expressed as

N Ao (-w/2<e<w/2)+k-N/2
A(E, r7) = E

k=11 0 (w/2 < abs(6) < d/2) + k - N/2

Solving Equation 1.7, we see the electric field is

wA sin / sin Na
E = ( )( ) sin(t - kR + (N - 1)a) (1.8)

z 3 sin a

where a = ( )sin 6 and 3 = (") sin 0.

From this equation we can obtain simplified equations about the maxima and minima of the diffraction

pattern. The maxima for slits spaced a distance d apart, occur at

d sin Om = mA (1.9)

and the minima around each maximum occur at

dsinO, (n +l)A (1.10)
wrN

where m = 0, 1, 2, ... is the order of the maxima, n = t1, 2, ... , (N - 1) is the order of the minima,
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Figure 1.1: Depiction of Diffraction through a Grating in Far-Field

(a) This is a cartoon of the diffraction grating used. (b) This graph shows simulated diffraction patterns

from a diffraction grating with only 1 slit, 3 slits, and 5 slits. Note that with an increasing number of slits,

the peaks get narrower. The 1 slit spectrum is an envelope function for the narrower peaks.

and Om and On is the angle from the center axis that maximum m or minimum n is found. These maxima

and minima are shaped by an envelope diffraction pattern that results from the slit width w, which can be

found from a single-slit transmission grating. If the slit width is much smaller than the slit spacing, there

will be many maxima within the zeroth-order peak of the envelope diffraction pattern. On also decreases

when the number of slits is increased. Equation 1.9 can be made more general by considering oblique angles

of incidence Oi, in which the equation becomes a(sin 6m - sin 0%) = mA.

The spectral resolution of a spectrometer is one measure of how well it performs. First, let us define the

angular width, which is the effective width of a spectral line. Assuming Fraunhofer diffraction, and assuming

a constant angle of incidence, the angular width of the peak is the spacing between two adjacent minima

around the principle maximum, Aa = 1. Plugging in a = ! sin0 from before, we find

N 22

AO = 2A (1.11)
Nd cos 0,

The angular dispersion tracks the difference in angular position corresponding to a difference in wave-

length. Still assuming Fraunhofer diffraction, angular dispersion is

dO m (1.12)
dA dcos 0,
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The chromatic resolving power is defined as the ratio of the wavelength to the least resolvable difference

in wavelength possible, or M Lord Rayleigh's criterion for the limit of resolution is when the

principle maximum at one wavelength coincides with the principle minimum at another. This is equivalent

to half of the angular width, so

(WO)min = . (1.13)Nd cos0.'

We can find another expression for (AO)min using Equation 1.9. After some work we find that

W~min =(LA)min (.4
dcos (1

Setting Equations 1.13 and 1.14 equal to each other and rearranging the variables, we can determine that

_ A = Nd(sin Om - sin i) (1.15)
(AA)min A

We conclude that for a binary diffraction grating, resolution is increased with an increased number of

slits N, increased slit spacing d, decreased wavelength A, and completely perpendicular incident light.

Our specifications require that at about A = 0.830, we have at least 0.5 nm resolution. If we operate in the

first diffraction order, we would need N = 1660 lines. Note that depending on d, different diffraction orders

m may be achievable. However, using higher diffraction orders usually comes at a cost of lower intensity and

lower bandwidth (since the 0 m's are less separated).

If we use a grating with 1660 lines, with a grating periodicity of 1.2d, the size of the grating will be

roughly 1.653 mm. In order to be in the far-field for a grating of this size, we'd need z >> 1.653mm. Let's

say a z of about 165 mm is sufficient. Even if the beam could be folded on itself several times, we note that

it'd be difficult to miniaturize the system into a 10 mm x 10 mm x 5 mm volume.

In practice, a small slit is used to spatially filter the incoming light such that only a certain range of

angles are used in the spectrometer. The slit size is typically on the order of a few hundred microns in width.

The Talbot Effect

In 1836, H.F. Talbot observed that for a periodic diffraction grating as described above, the mid-field

diffraction pattern is an image of the original diffraction grating every ZT from the input aperture [78]. This

effect is now referred to as the self-imaging effect or the Talbot effect, and occurs because of the interference

between the +1, 0, and -1 diffracted beams. The periodicity of the self-images, ZT, which we will refer to as
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Figure 1.2: Talbot Effect
Picture showing the Talbot Effect. a) Simulated diffraction pattern with a periodic grating with a period of
2A. b) Zoomed in image of diffraction pattern marked by the box in (a). c) Intensity of diffraction pattern
along z for a given x. The period of the simple cosine is the Talbot distance. Together, this figure shows
that the simplest self-imaging effect we observe is a result of the interference between the 0, +1, and -1

order diffraction beams.

Talbot depth, turns out to be a function of wavelength, so the Talbot can be used for spectroscopic purposes.

One caveat is that the light source needs to be a plane wave, which is a condition we would like to avoid.

However, to better understand mid-field diffraction as a means of lens-less spectroscopy, we will make this

assumption for our initial analysis.

Lord Rayleigh explained the Talbot effect by calculating the intensities of interfering plane waves prop-

agating at angles dictated by diffraction [41]. The fields of the propagating waves can be expressed as
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Ao exp(j(wt - kz))+

A, cos(kllix) exp(j(wt - k-,lz))+

A 2 cos(kl, 2x) exp(j(wt - k ,2 z)) + ... (1.16)

where kIn = f, k2 ,= - kn , and d is the periodicity of the grating.

The intensity of this field would be

A A1 cos2 (kll, 1x) + Al cos2 (k 1,2x)+

AoA1 cos(kllx)(exp(j(kz - k 1 ,iz)) + exp(-j(kz - k-,lz)))+

AoA 2 cos(kl, 2 )(exp(j(kz - k1 ,2z)) + exp(-j(kz - k ,2 z))) + ... (1.17)

The field is periodic in z, but has multiple periods if there are multiple diffraction orders. If the grating

is engineered such that only the 0, +1, and -1 diffraction orders exist, then A 2 = 0, and kz - k_,iz = 27rn

determines the periodicity of the field in z. The period of the mid-field diffraction pattern, which is referred

to as the Talbot depth, is therefore

ZT =, (1.18)

where d is the period of the grating. For large d, ZT ~41. Because the Talbot depth is a function of

wavelength, if one could measure the Talbot depth from the midfield diffraction pattern, one could potentially

use this information to determine the spectral composition of the light source.

Limitations and Considerations

This section introduced diffraction from a classical perspective that is generally well understood. However, if

we were to foray further into nanoscale features on the diffraction grating, full numerical solvers of Maxwell's

equations would need to be used. For example, if we were to consider a grating with features on the order

of the incident wavelength, as is the case for all of the photonic crystal work, the approximate boundary

conditions used previously are no longer valid, and the vector behavior of the field has to be considered. This
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would lead to varied transmission depending on the polarization of light, and could also exhibit plasmonic

effects that could greatly increase the transmission of light through subwavelength holes [22].

However, in this thesis, we will focus on optimizing the Talbot spectrometer using a basic grating. For

future work on this project, we will need to find a way to use the Talbot spectrometer when in close proximity

to a diffuse light source. This might require investigating light transmission through additional gratings or

more complex photonic crystal-like structures to understand how they could be used to collimate or focus

incoming light.

1.3 Introduction to Photonic Crystal Barcodes

The spectrometer relies on the scattering from an out-of-plane light source on a 1-dimensional periodic

dielectric structure. The next two applications are based on effects that result from in-plane light scattering

off a periodic dielectric structure. The devices are based on waveguide structures, so the light is now

confined and propagates only in the plane of the waveguide. The periodicity of the patterned structures

in the waveguide are typically shorter than the wavelength, so the scattered light no longer has multiple

diffraction orders. So, while the device still uses a periodic dielectric structure, the boundary conditions

lead to very different results. These types of dielectric structures are photonic crystals (PhCs), which are

described in more detail in section 1.5.1.

1.3.1 The Proposed Technology

We aim to create high quality factor (high Q) resonant cavities that would effectively couple to light from

free space at the resonant frequency, such that it would be possible to determine the resonant frequencies of a

photonic crystal cavity by looking at the reflection spectrum. Far from the resonant frequency, we expect the

light to simply reflect off of the photonic crystal. However, near the resonant frequency, the light transfers

energy to the PhC resonant cavity. As a result, the specular reflection off the barcode is reduced. However,

the resonant mode also radiates light, so we'll need to filter out the radiated light from the reflected light.

A more mathematical description explaining the interaction of the incident field with a resonant cavity is in

Section 1.5.1.

In order to use PhCs as biological barcodes, the barcode must be inert and non-toxic, identifiable regard-

less of orientation, and easy to modify and manufacture. Additionally, if we want to have a library of 10000

barcodes, the bandwidth of the resonant cavities must be very small. As mentioned in the overview, we are
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targeting a half-power bandwidth of less than 0.01 nm, which corresponds roughly to a quality factor of 10 5

if we operate at a wavelength of 1000 50 nm. To tag individual cells, the cavities should be at most a few

microns in diameter. These specifications are quite aggressive, compared to other biological barcodes, but

could allow for more advanced biological research.

1.3.2 Potential Applications

Biological research has made significant advances that allow researchers to experiment on individual cells.

However, unless the cell is isolated, it is difficult to repeatedly observe the same cell with high confidence.

Therefore, we hope that our tagging device could be used to track individual cells over time and as they

are transferred from one analysis platform to another. For use in biological systems, these devices and the

reading method should interfere minimally with cell behavior.

Our devices could also be used for tagging other microscopic things. For example, there has been work

to include barcoding in high-density and multiplex assays, due to the sheer number of samples that need

to be processed. Each reaction well could be marked with this optical tag for fast and reliable relocation.

The company Illumina offers an automated microarray processing product, which is able to track samples

using a "PosID reagent barcode scanning" system [32]. Though the details of their tracking technology is

not disclosed, it seems like the chemical reagents used in their microarrays are encoded with some extra

information that can be probed optically. The photonic crystal devices proposed here could be used in a

similar fashion, but with a wider range of applications because its presence is independent of the reaction

inside the well. Since the barcodes can be on the scale of a few microns, they can also be transferred with

the fluids from a single well to another platform if necessary.

Alternatively, these photonic crystal devices can be used more "actively". Because the proposed devices

are sensitive to the index of the surrounding material, these types of devices could also be used as a sensor

that detects changes in index of refraction. In this case, the devices would ideally be in a known location,

so that we could track changes in the index by observing the shift in the resonant wavelength of the device.

1.3.3 Argument for PhC Labels in Biological Systems

Researchers already use many types of visualization markers to understand biological systems. For example,

green fluorescent protein is used to identify cells that have expressed a certain gene. Quantum dots and some

fluorescent dyes are able to bind to the surfaces of cells and other biological elements. Because the chemistry

of the attachment depends on the target and the ligands on the quantum dots or dyes, the binding can be
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very specific. This allows researchers to identify types of cells, like cancer cells.

Some researchers have used cellular barcoding to keep track of the behavior of certain cells. For example,

barcoding has been mostly been used to track cell lineage, and has also provided insight on the migration

of various cells throughout the body [71] [23]. In both papers, retroviral DNA vectors were used as cellular

barcodes. In order to analyze the results, a sample of the cells of interest is taken, and the barcode DNA

must be amplified via PCR. Gerrits et al. sequenced the DNA to determine which barcode the cell obtained

[23]. Schepers et al. labeled the DNA with Cy3 and Cy5 fluorescent particles and measured the fluorescence

signal, which was corrected against an artificial background distribution [71].

These labels generally are minimally invasive, and are widely used for their specific applications. However,

none are used to track individual cells. We hope to create devices that will be able to track individual cells

as they go through a single-cell analysis platform. Optical devices would be preferred over other types of

barcodes, because as long as the laser is below a threshold power, reading the barcodes would be non-invasive.

Existing Biological Tags

There are many ideas for biological barcodes. For example, Nicewarner-Pena et al., fabricated long, metal-

coated cylindrical barcodes. Since different metals have different reflectivities at a certain wavelength, when

observed under the microscope, the stripe will have lighter and darker regions [51]. A large number of

barcodes can be made if many types of metals are used, or if the number of segments is increased. However,

differentiating multiple metals is more difficult to recognize by eye, since some reflected light off one metal

might appear similar to other metals. These barcodes would need an intensity-dependent decoding, so the

system is more prone to error. Furthermore, the particles are metal-based, and may interfere with cell

functions.

Many have functionalized polystyrene beads with multiple small fluorescent particles, in order to create

unique barcodes [5] [91].. Depending on the number of different photoluminescent particles N, the spheres

can be labeled in 2N ways. If we also use m different intensity levels to distinguish between different

barcodes, there could be mN different barcodes. The advantage of these barcodes is all of the required

are well understood. However, if fluorescent dyes are used, there are issues with chemical stability, as well

as photobleaching, photoquenching, and photoinstabiity. Furthermore, the spectral line widths are usually

quite broad, so not as many types of fluorophores can be used without overlap. If quantum dots are used

on the microspheres, the issues with chemical stability are ameliorated. The spectral linewidths are also

narrower compared to those of fluorescent dyes, with a FWHM of about 20 nm. However, they still undergo
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photobleaching, so intensity-dependent readings might be inaccurate. One other major concern is the toxicity

of quantum dots.

Resin beads have also been encoded with polymers that have various functional groups [20] [73]. The

various functional groups had unique Raman spectra, such that by using deconvolution techniques, the

functional groups present on each bead could be determined. However, Raman signal tends to weak and

prone to interference, since most molecules produce a Raman signal. Certain transitions can be enhanced

by SERS (surface-enhanced Raman spectroscopy), but it likely would not be sufficient on a large scale.

Nanoporous particles made from alumina and silicon also can be used as barcodes. Both materials

reportedly are non-toxic to living cells [66] [69]. Both also have broad photoluminescence (PL) curves,

which show distinct peaks that result from structural resonances. In the case of the alumina thin films, the

oscillations in the PL spectrum are a result of Fabry-Perot resonances between the air-alumina-aluminum

interfaces of the films [69]. In the case of the silicon microspheres, the resonances are whispering gallery mode

resonances [66]. Unfortunately for the 2D film, since the resonances are Fabry-Perot based, the location of

the resonant peaks will change depending on the orientation of the film with respect to the excitation source

[30]. For the nanoporous silicon particles, because they are spherical and excited resonances are whispering

gallery modes, the peaks are independent of the angle of incidence. Unfortunately, the synthesis of these

materials is not well understood, and also quite expensive [66].

One barcode uses rugate patterning to create a frequency specific reflection [11]. The line width of the

peak is about 11 nm, which is narrower than typical line widths for quantum dots and other fluorophores.

Each barcode also can be engineered to have multiple resonant frequencies. Therefore, the total number of

codes is 2 N, where N is the differentiable rugate patterns. Unfortunately, the spectral response is affected

by the orientation of the film with respect to the incident light source, so if the label changes orientation,

the barcode will be misread.

Some have made more complex barcodes, such as an RF chip that emits a binary code when pulsed

with electromagnetic radiation [49] [52]. Since the code is given in time, it is not limited to constraints on

the length of the code. However, this chip is an active device, and it requires electronics to work properly.

Therefore, the chip itself will be difficult to integrate into a biological system due to size. RF electromagnetic

radiation also might interfere with cell function.

In summary, there are two main types of optical encoding: image-based encoding and spectrometric

encoding. Image encoding allows for easy visual identification of each barcode. However, it is generally

more difficult to perform computations on these types of barcodes. Spectrometric encoding uses wavelength
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Table 1.2: Example Biological Barcode Technologies

Barcode Description Barcode Type Size Spectral Line Number of
Width Codes

Metal-coated cylindrical Visual 0.2pm x 0.2pm - Nmt a
particles [51] x 6.5pm

Microscopic beads en- Spectroscopic 100pm diameter 35 nm to 100 nm 2N
coded with fluorophores (Visible) sphere (asymmetric) [68]
beads [5]

Microscopic beads en- Spectroscopic 10pm diameter 20 nm to 90 nm mN b

coded with quantum dots (Visible) sphere [7] [68]
[91]

Microscopic beads en- Visual 0.3 pm - 6 mm - N
coded with inorganic
pigments [93]

Resin beads with varied Spectroscopic likely 1 pm - N

functional groups [20] [73] (Raman)

Nanoporous anodic alu- Spectroscopic 2D thin-film about 5 nm < 2N
mina [69] (Visible)

Porous-silicon photonic Spectroscopic 94 mm x 94 mm 11 nm 2N
crystals [11] (Vis-NIR) x 5 mm

Silicon colloid Microcavi- Spectroscopic 4.1 pm diameter 1 nm < 2N

ties [66] (NIR) sphere

Radio-frequency (RF) RF 8 mm x 1 mm x - 2N c
tags in polymer capsule 1 mm
[49] [52]

Goals for this work Spectroscopic 10 pm x 10 pm < 0.5 nm 2 N

x 220 nm

Unless otherwise marked, N corresponds to the
a m = number of segments along the barcode.
b m - number of intensity levels.
' Here, N is the number of bits in the sequence,

number of distinct units (e.g. fluorophores) possible.

specific features. Though these methods generally rely on more expensive equipment, like wavelength specific

detectors or lasers, the deconvolution of many spectra is simple computationally.

The barcode technologies mentioned above are summarized in Table 1.2. The main disadvantages of many

barcode technologies are the wide spectral linewidths, intensity dependence, and orientation dependence. The

photoluminescence-based labels (like fluorophores and quantum dots) have wide spectral peaks because of

thermal broadening and also undergo changes in emitted intensity due to photobleaching [68]. Plasmonic
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antennas also tend have wide spectral features [2], and the metal particles, perhaps with the exception of

platinum, will disturb cell function [36]. Simple dielectric stack structures [69] [11] do not have in-plane

resonances, so the resonant frequency peaks will change relative to the tilt of the cavity with respect to the

input beam. Therefore, they are not useful as tags for individual cells.

Photonic Crystal Resonant Cavity Barcodes

Photonic crystal resonant cavities, which will be made of silicon and silicon dioxide, are chemically and

optically stable in most constant environments. The resonances are in-plane, so the resonant frequencies

of the cavity do not change; only the intensity does. To avoid needing to rely on the intensity of the

resonant peaks when building a barcode library, the line-widths of the resonances must be very small. Many

researchers have developed PhC resonant cavities with line-widths of less than 0.1 nm.

Photonic crystals resonant cavities are interesting because their resonant peaks have narrow line-widths

despite having a small foot print. The peak line-width corresponds to the peak's quality factor Q, which

is defined as Q = w/Aw = A/AA. Here, w and A are the resonant frequency and wavelength, respectively,

while Aw and Aw are the line-widths in frequency and wavelength, respectively. Using CMOS fabrication

techniques, it is possible to fabricate a chip with Q's as high as 105 on the order of tens of microns.

However, a tens of microns is still quite large on a biological scale. Inserting the chip into the cell passively

will be challenging, and will likely disrupt cell function. Studies have shown that gold nanoparticles greater

than 50 nm show a decreasing probability of being absorbed by a HeLa cell [9]. Furthermore, nonspherical

gold nanoparticles have a lower probability of being absorbed. Actively inserting the cell may be possible

with larger cells, like macrophages and neurons. We may have a higher chance of attaching the barcodes to

the cell wall. Iron oxide-doped latex particles 0.83 1.m in diameter have been successfully attached to the

cell wall of lymphocytes [62].

In addition to the size issue, there are many other concerns that need to be addressed when integrating

a silicon micro-chip with a cell. For example, how can the chip be attached to a cell? Will attaching a

semiconducting microparticle to the outside of the cell affect its behavior? Clearly, the biological aspect of

this project still requires extensive research. These questions are outside the scope of this thesis, but are

important to consider if the use of PhCs as biological barcodes will be pursued.

However, as mentioned, tagging individual cells is not the only application for barcodes in biology. Many

of the encoded microsphere types presented above are 0.3 microns to 6 mm in diameter [93]. The larger

spheres are used for multiplex immunoassays, since more combinations of markers can be made on the larger
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Table 1.3: PhC Cavities with Vertical Emission

This table lists PhC cavities that show strong vertical emission. The * marks that the results presented
were simulation results.

Author Cavity Design Quality Factor Line Width Modal Volume Coupling
FWHM (nm) Efficiency

Painter [56] H1 dipole 250 6 0.03 pm3  
-

Kim* [37] H1 hexapole 20000 0.075 - 0.325

Tran [82] L3 and L5 39000 0.040 - 0.3-0.4

Haddidi [27] L3 10000 1.5 0.15

Takagi [77] H1 dipole 25000 0.038 0.47(A/n) 3  0.38

Deotare [12] 5-hole taper in 750000 0.002 0.39(A/n) 3  -

nanobeam

surface area. Photonic crystals can easily be less than 6 mm in diameter, so they could also be used for

labeling multiplex immunoassays.

Previous Work in Free Space Photonic Crystals

In order to use photonic crystal resonator cavities as barcodes, we need to couple light from free-space into

and out of the resonant mode of the crystals. The resonant mode causes some of the light to be back

scattered, but the polarization of the back-scattered light is determined by the orientation of the crystal.

Therefore, it can be differentiated from the specular reflection from the incident light by filtering.

There has been significant work done already on improving the vertical emission of light from photonic

crystals for nonbiological applications, such as photonic crystal lasers [56], cavity quantum electrodynamics

[85]. Researchers optimize cavities to increase the quality factor Q, increase the output coupling efficiency,

and decrease the modal volume V. Because of time reciprocity symmetry, if a light source centered in the

middle of the resonant cavity can radiate power into the far-field, then light that is able incident on the

cavity from free space should be able to be excite the resonant mode of the cavity. Therefore, their photonic

crystal cavity designs can be used for our back-scattering application.

In 1999, Painter et al. published a paper reporting the first photonic crystal laser [56]. The cavity was a

single hole missing from a hexagonal lattice of air holes in a thin InGaAsP membrane, and 2 holes on opposite

sides of the cavity were enlarged to break the degeneracy of the resonant dipole modes. The resonant cavity

had a low Q-factor of 250, which could be increased further by optimizing the cavity.

Kim et al. discussed modifications that could be made to increase the out-coupling of the many resonant
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Figure 1.3: Cavity Modifications and Far-field Effects
By slightly modifying the size and position of the holes around the defect cavity, the far-field radiation

pattern can be engineered to have vertical emission. All figures are from Kim's paper [37].

cavity modes of the single defect cavity [37]. They observed in their simulations that by slightly modifying

2 holes on opposite sides of the cavity, the far-field radiation pattern could be shaped to nearly vertical

emission. They optimized their cavity design for the hexapole resonant mode, which they claimed had a

higher Q. Having a high Q generally means that the radiation loss (and out-coupling efficiency) is low.

However, as expected, as they modified the 2 holes, the quality factor of the cavity dropped and became

comparable to the Q's of the dipole and the monopole.

Since the far-field pattern can change significantly with seemingly nearly identical near-field patterns,

Kim's technique of just modifying 2 holes means the radiation pattern sensitive to disorder [82]. Tran et al.

proposed band-folding, a more robust method of improving the vertical emission of light from a resonant

cavity [82]. Using band-folding, they designed a 5-hole cavity with a theoretical Q of about 39000 and

efficient vertical out-coupling. The measured Q was about 25000. Band-folding is achieved by introducing a

periodicity of 2a, where a is the lattice constant of the photonic crystal, right next to the defect, as shown

in Figure 1.4. The wavevector of the unperturbed resonant mode is usually near k = r/a. The doubled

periodicity halves the corresponding maximum k-vector to k = 7r/2a, creating another line of symmetry. To

maintain symmetry, some of the light was previously confined in the crystal with k ~r/a appears at k = 0.

The light at k = 0 is above the light line, so it is radiated out from the cavity.

Haddidi et al. presented work on a 3-hole cavity variant with band-folding in an InP membrance, which

had a coupling efficiency of 15% and quality factor greater than 10000 [27]. Furthermore, Haddidi observed
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Figure 1.4: Out-coupling from PhC Resonant Cavity
(a, b) These figures show the resonant cavity structure. (c, d) These figures show the radiated power as a

function 0 at # = 0, while (e, f) show a 2D map of the power radiation. Pictures (a), (c), and (e)
correspond to a cavity without band folding, while pictures (b), (d) and (f) correspond to a cavity with
band folding. It is clear that band folding helps increase emission from the cavity. All figures are from

Tran's paper [82].

Fano resonances that resulted from multiple vertical reflections as they coupled light into the cavity. Fano

resonances could reduce the effective width of the resonance peak, allowing for even higher resolution of

barcodes.

Takagi et al. used the dipole mode to generate high Q H1 photonic crystal cavities [77]. Their photonic

crystals were suspended in air, and had a high dielectric constant of 11.96. By making small shifts in the

holes within three lattice periods of the defect, they were able to engineer devices that showed experimentally

Q factors of about 25000, and an external coupling efficiency of 0.38.

Deotare et al. showed that high extraction efficiencies can be achieved in a 1D silicon photonic crystal

as well [12]. Their photonic crystals were on suspended nanobeams, so higher Q factors are expected, and

they were able to obtain Q factors of about 750000. Deotare's work is suggestive that completely detached

barcodes may be able to obtain high Q factors as well.

These references clearly shown that spectral line widths of less than 0.1 nm should be acheivable with

photonic crystal cavities. To bridge the biological barcode field to the photonic crystal field, we will focus on

recreating the photonic crystal cavities in CMOS, and detect the back-scattered fields from the resonators.
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Since we are interested in the physical size of the scatterer as well, we will observe how many mirror holes

are needed to maintain the high Q modes. We chose to first work with the cavities presented by Tran and

Haddidi to achieve high Q and efficient out-coupling despite the larger modal volume.

1.4 Introduction to Silicon Photonic Modulators

1.4.1 The Proposed Technology

The previous set of technologies were passive devices that we could gain information from by observing how

the incident light was scattered as a function of wavelength. In this last device, we use an electrical signal

to change the refractive index of PhCs. By applying an electric current, the transmission of light is either

increased or decreased at a given wavelength. This allows us to transfer binary information from an electrical

signal onto a optical signal.

The motivation for transferring information onto an optical signal is to increase computation bandwidth

while not greatly increasing power requirements. Therefore, these EO modulators need to operate on minimal

amounts of energy, work well even at high bit rates, and generate a readable binary optical signal (usually

defined to be 3 dB or 50% extinction). Modulators with 3 dB extinction can already operate at about 3

fJ/bit, requiring only 1V peak-to-peak, while transmitting data at 12.5 Gbits/s. Though our modulators

as of now have not been as carefully optimized, we hope that by employing Fano resonances, we can also

achieve similar or better numbers.

1.4.2 Motivation for Optical Interconnects

Microprocessors of the past decade dissipate approximately 100 W of power on average. It is estimated

that 60% of the power is from computation, 20% is from on-chip communication, and the last 20% is from

off-chip communication [53] [10]. If 60 W of power is used for computation, and the target energy cost of

one FLOP (floating point operation) is 10 pJ/FLOP [53], a processor can operate at 6 TFLOPs per second.

If the processor accesses memory at the targeted goal of 1 byte per FLOP, the read and write paths would

each require 48 Tbit/s link bandwidth; together they would require 96 Tbit/s bandwidth. Therefore, off-chip

communication would ideally be able to operate at 96 Tbit/s while using less than 20 W of power.

As single channels are likely to continue operating at around 8-12 Gbit/s (Gbps) to maintain energy

efficiency of computation (assuming the computation clock rate stays at around 2-3 GHz) [53], a 96 Tbit/s

bandwidth can only be achieved by employing parallel channels. It is here that optical channels have a large
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advantage over electrical channels. Orcutt estimates that there would be 2000 electrical channels available

for use (given optimistic power, cost, and manufacturing constraints), which would only be able to provide

a total bandwidth of 20 Tbit/s [53]. On the other hand, optical links could employ wavelength-division

multiplexing and its high carrier frequency to reduce the number of overall channels required.

However, energy costs also need to be considered. If the electrical links operated at 0.5 pJ/bit, an

optimistic goal, [53] operating at 96 Tbps would require 24 W of power. For optical links, even though

the number of channels can be reduced, 9600 modulators still needs to be considered, if all modulators

are operated independent of each other. That means, still assuming a 20 W budget and operation at 10

Gbps, each modulator can only use 200 fJ/bit. Orcutt proposed distributing the energy per photonic link

as 100fJ/bit for thermal tuning, 40 fJ/bit for modulation, and 50fJ/bit for detection [53]. This distribution

also leaves 1 W for powering optical sources.

The amount of energy per bit allotted for modulation seems generous. However, in addition to turning

on and off the modulator, additional energy is needed to interface the modulator with other electronic

components. For core-to-memory links, operating the modulator and interfacing with microprocessor can

theoretically cost around 40 fJ/bit altogether [53]. According to Orcutt's estimations, modulation itself could

require only 3 fJ/bit, while the electronics that interface the modulator with the memory may require the

remainder. However, the target of 40 fJ/bit is significantly lower than the best reported transmitter efficiency

of 70 fJ/bit [16]. The transmitter used by Georgas used a modulator that exhibited 8 dB extinction at 3.5

Gbps.

1.4.3 Argument for Photonic Crystal Modulators

Photonic crystal (PhC) modulators are typically 1D photonic crystals patterned on a waveguide. The

waveguide confines the light in 2 directions, and the photonic crystal structure imposes boundary conditions

in the third direction, the direction of propagation. In contrast to the resonant scatterers, the resonant

cavities here are coupled to an input and output bus waveguide, and we are interested in the transmission

of light through the entire structure. The transmission spectrum is generally Lorentzian in shape, with the

maximum at the resonant wavelength.

PhC modulators are modulated by changes in the index of refraction. By changing the index of the

waveguide, the resonant frequency of the PhC cavity also changes. Depending on the wavelength of the

input laser, the transmission will either increase or decrease. The change in index is usually obtained by

applying a voltage and changing the density of electrons in the material. There are two types of electrical
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Table 1.4: State of the Art Modulators

Summary of recently developed modulators in silicon.

Author Type Extinction Voltage Speed Energy Operation Mode

Green [25] MZI 6 dB 7.6 V 10 Gbps 5 pJ/bit Injection

Thomson [14] MZI 3.1 dB 6.5 V 50 Gbps 4.2 pJ/bit Depletion

Xu [19] Ring 9 dB 3.5 V 12.5 Gbps 300 fJ/bit Injection

Dong [18] Ring 8 dB 1 V 12.5 GHz 10 fJ/bit Depletion

Watts [17] Disk 3 dB 1 V 12.5 Gbps 3 fJ/bit Depletion

Tanabe [79] PhC 10 dB 3 V 500 MHz 3 fJ/bit Injection

Timurdogan [80] Ring 6.18 dB 0.5 V 25 Gbps 0.9 fJ/bit Depletion

modulation: carrier injection modulation and carrier depletion modulation. These two types of modulation

are discussed further in the Appendix. Generally, carrier depletion modulation is favored because of lower

capacitance and thermal heating. However, because the change in the number of electrons is smaller, the

modulator is less sensitive to carrier depletion.

Compared to other EO modulators, PhC resonant modulators can potentially be operable at higher

frequencies while consuming less energy. In photonic crystal resonator cavities, the resonant field is localized

at the defect, which only needs to be on the order of several hundred nanometers in length. Because of this,

PhC resonant cavities are able to maintain high Q factors that axe localized in a small volume, compared

to other modulators. A higher quality factor allows for a lower peak-to-peak driving voltage for modulation

with a given extinction (on-off) ratio. A smaller modal volume allows for smaller p-n or p-i-n junctions and

smaller electrical contacts compared to those used for other modulators.

The energy required for a modulator is Ebit = C..Vjn+ CoffV + I-+I"ff R. where Cis thejunction4 4 off 2 R hr stejnto

capacitance, V is the applied voltage, I is the current through the diode, and R, is the series resistance of

the diode. The 3dB high frequency cut-off frequency for an RC-type circuit is -. Therefore, having an

electrical junction with a smaller cross-sectional area reduces the capacitance of the diode. The modulator

should be able to run at higher frequencies while maintaining comparable gain and operate at lower energies

per bit.

The current state of the art in modulator technology is summarized in Table 1.4. The modulator that

shows the best performance so far operates at 0.9 fJ/bit at 25 Gbps, requiring only 0.5V AC peak-to-peak,

and exhibits 6.2 dB extinction [80].

Modulators that use photonic crystal (PhC) resonant cavities with success comparable to other resonant
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structure modulators have yet to be reported. However, in the past year there was a paper on the simulation

results of a photonic crystal modulator design, which claimed that 6 dB modulation depth at 25-50 Gbps

while only applying 0.6 V peak-to-peak is possible [29]. If the theoretical model can be supported with

experimental results, this PhC design would be competitive with the modulator reported by Timurdogan et

al., and potentially could show even lower energy per bit costs due to the reduced junction area. Hendrickson

claims that the PhC modulator could have energy costs as low as 14 aJ/bit.

1.5 Introduction to Photonic Crystals

1.5.1 Brief Introduction to Photonic Crystals

Photonic crystals are composite materials in which the dielectric constant varies periodically on the order of

the wavelength. Due to boundary conditions on Maxwell's equations, the periodicity results in optical bands

and band gaps for incident light, analogous to how the periodic structure of a crystal creates electronic bands

and band gaps for electrons. When light of a frequency within the band gap is incident on the crystal, the

wave is completely reflected; on the other hand, light riot in a band gap can pass through the crystal at a

certain speed.

By changing the periodicity, the dielectric constants, the periodic structure, and so on, we are able to

control the optical properties of a given structure. One common application of photonic crystals is the design

of a resonant cavity, which is created by intentionally introducing a defect in a periodic structure. Just as

a chemical impurity in silicon creates an energy level within the band gap, the structural defect creates an

allowed state in the photonic band gap. Modes that usually cannot exist in the material but can exist in the

defect will resonate locally at the defect location. Since the structures that comprise the photonic crystal

are typically sub-wavelength in size, photonic crystals provide a means of designing a resonator with a small

footprint but also low loss.

1.5.2 Quality Factor Q of a Resonant Cavity

The quality factor of a resonator is defined as the stored energy WT divided by the outgoing power PD at a

given frequency wo.

WT
Q -W (1.19)

PD
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Figure 1.5: Cartoon of Photonic Crystals
(a, b, c, d) These figures show the electric field and their energy density for the first two bands of that
periodic structure. Together they show how a periodic structure can create different energy levels at a

given wavevector k. (e) This figure shows the bands (through the density of states) and the defect state
introduced in a band gap. (f) This is a cartoon of a defect and the localized resonance. All figures are from

Joannopolous's book [33]

It can also be expressed as Q = , where Aw is the full width half max of the Lorenztian resonance

peak, and also as Q = g, where -y describes the decay rate of the stored energy. Since the energy is the

square of the field, the field decays exponentially with 2. From the last equation defining Q, we see that Q

is directly related to the how well the field stays confined inside the resonant cavity. Radiation and coupling

to other sources are also loss mechanisms, so cavities with efficienct out-coupling tend to have lower Qs.

Typically, the electric field of the resonant mode is defined to decay exponentially with . Therefore, we

can define y with respect to the lifetime -r, and then find Q can be written as

Wo W1r
Q =- = - . (1.20)

^f 2

There are some variations as to how Q and -r are defined. Consider the case where a resonant cavity field

decays through two paths, both with time constant r. The decay is twice as fast as if there were only one

path with time constant -r, so the decay rate 72 = 2- = . This makes sense, because we could equivalently

argue that by adding a second path, the lifetime -r is cut in half. Additionally, the argument is equivalent

to saying that the decay of power of both paths is simply equal to the sum of the decay of power of both
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Figure 1.6: Cartoon of Coupled-mode Theory

Cartoon describing coupled-mode theory. The time constant rWG correspond to coupling from the cavity

to the waveguides, and r0 corresponds to loss of cavity to everything else. S+ corresponds to an incoming

wave and S- corresponds to an outgoing wave [33].

individual paths. Therefore, in this case, we see that

Q=- (1.21)

where,Q is the total quality factor of the cavity decaying through both

sponding to the decay of energy into one path.

paths, and r is the lifetime corre-

1.5.3 Temporal Coupled-Mode Theory for Resonant Cavities

Transmission Through the Resonant Cavity

The general behavior of the photonic crystal can be modeled with temporal coupled-mode theory. The

localized mode is represented as a cavity with energy JAl 2 and resonant frequency wo, coupled to the rest of

the crystal with an input waveguide and an output waveguide as shown in Figure (1.6)) [33]. The amplitude

of the wave going into the cavity along waveguide 1 is defined as S+ and the amplitude of the wave going

away from the cavity along waveguide 1 is defined as S-. The cavity is coupled to the bus waveguides with

coupling constant a,, and reflects the incoming wave with reflection coefficient /3. Energy from the cavity

decays into waveguide 1 with a certain time constant -ri. The temporal coupled-mode can be expressed as

d A A A-- -iwoA - + aS+ + a2+
dt 71 T2

S- =81S+ + at A

(1.22)

(1.23)

If the coupling to the cavity is weak, or, in other words, the coupling between the cavity and waveguide
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1 does not affect the coupling between the cavity and waveguide j, we can approximate the system as a

cavity coupled to only one waveguide. If there are no incoming waves (S+ = 0), by solving Equation 1.23,

we determine that A = A(0)e-iwot-t/. In this case, the only place for the energy to decay to is waveguide

1, so the change in energy IAl 2 is equal to the energy S- 12. Therefore,

dIA1 2  2 JAI -Sl2 = a 2| A| 2  
(1.24)

dt i

and al = V2/ -.

Because of time reversal symmetry, if S- = 0 and SjF = 2/riA, then A = A(0)e-'w1t+t/r. Solving

Equation 1.23, we see that 31 = -1. As expected for weak coupling, all of the incoming wave would be

reflected by the cavity (ignoring second-order effects).

Because of the symmetry of the photonic crystal structure at hand, and the fact that there is no source

of light traveling towards the cavity through the second waveguide in the system, we can define S2j = 0 and

71 = 72 = rwg. Then, the equations can be simplified to

d A A 2+d = -iwo A- - + -- S1 (1.25)
dt Ttot ,

S _ A (1.26)
Twg

where rg is the time constant characteristic of the decay of energy of the cavity into each waveguide,

and rtot is the time constant representing all of the losses in the entire system, including the loss to the

waveguides, radiative losses, and material losses.

Frequency is conserved in linear systems, so the field in the system oscillates at the same frequency w as

the input. Therefore, L = iwA. Solving equation 1.25 for A, we obtain

A2
r2' (1.27)

S+ -i(w - wo) + T

The amplitude of the transmitted mode at the output is defined as a,, = S, which comes to

2

aio = . "' _ (1.28)-i(w -wo) 1
TtO t
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The transmission of a system is defined as ITI = aiol 2 = . For this system, the transmission isISi12

Lorentzian,

(2 )2

T = 'wg (1.29)
Wo - W0)2 + 2

Relationship between Q and Transmission

Maximum transmission is observed at the resonant frequency wo, and isTk = (21w )2. Relating the lifetimes

Tw, and Ttot to their relative quality factors as in equations 1.20and 1.21, we get

Tpk = (Qot) 2 . (1.30)
QWg

We can break down Qtot into its major components: Qwg as defined above, and Qo, the intrinsic Q that

represents the remaining losses of the cavity. Because powers add linearly, and quality factors are defined as

the inverse of power, we can express Qtot as Q-1 = Q- + Q-1. Now we have

Tpk = ( QO )2. (1.31)
Qwg + Qo

From this equation it becomes easy to see that in order to maximize transmission, Qo must be much

greater than QWG. In this limit, Qtot is dominated by QWG. Since we typically desire high Q devices, it is

necessary to reduce radiation and material losses in a resonant cavity.

1.5.4 Motivation for CMOS

We will choose to make the photonic crystal devices in CMOS. The indices of refraction of the typical

materials used are varied enough to make PhCs with usable optical band gaps in the mid-IR region [46].

CMOS semiconductor processes are also well-characterized, allowing for quick and reliable fabrication of

small (<100 nm) structures.

Fabrication in CMOS is precise and easy to reproduce, which is particularly useful when many versions

of the device need to be made. For example, in the case of the barcodes, since we are interested in using

these to identify a large number (at least hundreds of thousands) of items, being able to manufacture a large

number of them quickly and precisely is important to consider.

In the case of the modulator and the diffraction grating, one additional advantage that working in CMOS

gives is the potential for easy integration with an electronic platform. For an electro-optical modulator, not
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only does this allow for easy incorporation of the PhC resonant cavity with the necessary driving circuitry

necessary, it also provides the potential for integrating the system with existing CMOS electronic platforms,

and using the modulators as photonic interconnects. The diffraction grating, if fabricated using CMOS

processes, could be directly integrated with a camera system. This would save on costs required for additional

processing, and help with keeping the size of the spectrometer small.

There already has been some work done with photonic crystals in CMOS. Most of the PhC modulator

work done here is based off the preliminary work done by Mehta et al, who fabricated tapered 1D PhC

resonant cavities in polysilicon that had a loss of about 4 dB/cm in bulk [15]. In these resonant cavities, the

intrinsic quality factors were as high as 58000, ultimately limited by material absorption loss and fabrication

disorder. Electrical contacts were also fabricated for these resonant cavity modulators. It was observed

that the doped regions increased the lossiness of the cavity, whose intrinsic Q's dropped to around 22000.

This observation is consistent with the expected increase of loss due to the increase of free carriers [72]. To

prevent the resonant mode from leaking out from the waveguide through the wings that were added for the

electrical contacts, the wings were hexagonally patterned with silicon oxide-filled holes.

These works show that fabricating photonic crystals (and other photonic structures) in CMOS is possible

and viable, but needs to be optimized further to reduce material absorption losses, especially when the silicon

is doped.

1.6 Summary

The overarching theme of this thesis is developing applications in which light interacts with periodic dielectric

structures that have features that are on the order the wavelength. The boundary conditions that created by

the periodic dielectric constant generate wavelength-dependent optical features that can be used in a wide

range of applications. By engineering the periodic dielectric structure, one can create a material with the

desired optical properties.

In Chapter 2, we will present work done on performing spectroscopy using the mid-field diffraction pattern

past a typical transmission grating. This enables us to miniaturize the spectrometer while maintaining

resolution and etendue. The resonant cavity barcodes will be discussed in Chapter 3. We report our

experimental results ensuring that measuring the back-scattered light from a photonic crystal is possible.

We also show unexpected behavior that could potentially be exploited in the future. Lastly, work on Fano

silicon photonic crystal modulators will be presented in Chapter 4. Because of the Fano line-shape's strong
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asymmetry, Fano modulators could show improved modulation depth and efficiency. We have not yet tested

the performance of the modulators, but we present initial work on designing reliable Fano resonators.
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Chapter 2

Lens-free Mid-field Imaging and

Spectroscopy

2.1 Overview

The main goal of the mini-spectrometer project is to identify the spectral composition of a diffuse incoherent

light source. The light source has a large etendue, as it is spread over a large area and propagates at a wide

range of angles. Additionally, the spectrometer would be only a few millimeters in depth, which precludes

us from using an internal lens system and far-field diffraction.

Several groups have miniaturized the spectrometer by trading off size for computation. Typically, one

trains the spectrometer by creating a library of the expected responses for a range of wavelengths. Given this

library and the response of the spectrometer from the unknown light source, one can determine the spectral

composition of the light source by solving an inverse matrix problem. The library components must be at

least semi-orthogonal to each other in order to be resolved with confidence. One problem with the on-chip

designs, which so far have relied on random waveguide coupling, is that the etendue that they are able to

measure, which is given by 7r(NA) 2Aist, is significantly reduced. Therefore, a free-space spectrometer is

better suited for our application. We choose to investigate the Talbot spectrometer, since one can simply use

the fast Fourier Transform (FFT) to determine the spectrum of the light source. In the future, the maximum

resolution likely could be increased by using matrix deconvolution techniques. Additionally, understanding

the Talbot spectrometer can provide insight on the design of more advanced spectrometers with multiple
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diffraction gratings stacked on top of each other.

In the section 2.2, we will discuss the Talbot spectrometer from a theoretical point of view. Specifically,

we will discuss the design constraints of the Talbot spectrometer to optimize resolution and maximize signal,

and then start to understand how the Talbot effect changes under non-ideal conditions, like an asymmetric

grating and a non-collimated light source. In the second section of the chapter, we will discuss experimental

results obtained from a first iteration design of the spectrometer.

2.2 Theory of Talbot Spectrometer

As derived in the introduction, the periodicity of the Talbot self-images as one moves away from the gratin

in the z direction, is

ZT = , (2.1)

where d is the period of the grating. For a given grating periodicity, the Talbot pattern will have a different

period depending on the wavelength. For large d, ZT ~ A.

We hope to measure the Talbot depth in order to determine the wavelength composition of our signal by

simply taking the Fourier transform of a single image. Therefore, we will need to detect multiple periods in

the z-direction. One method is to use a translational stage and measure variations in intensity as a function

of position. Another method is to use a tilted imager, so the different pixels on the image sensor correspond

to a different distance to the spectrometer (see Figure 2.1). This second method is advantageous because it

avoids the need for moving parts in the system. However, it has other design constraints that we will discuss

below.

2.3 Optimizing the Talbot Spectrometer

The Talbot spectrometer that was previously reported 1381 only had a resolution of 42 nm. The paper also

presented an equation to explain the achievable resolution for the system. However, it doesn't consider

the pixel size of the detector. Furthermore, we hope to remove the magnification lens in their system to

reduce the size of the system, increase resolution, and increase the etendue of the system. Therefore, here

we reanalyze the constraints and limits that the detector imposes.
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Figure 2.1: Talbot Spectrometer
Cartoon of the Talbot Spectrometer defining the orientation of the detector with respect to the grating.
The detector is tilted about the x-axis, while the diffraction orders are propagating in the x-z plane.

2.3.1 Constraint on Grating Periodicity

The mid-field pattern behind a 1D transmission grating is shown in Figure 2.1. The self-images that occur

every Talbot distance would appear as alternating strips of high and low intensity lines, corresponding to

the teeth of the grating. However, between each of the self-images are the phase-inverted self-images, which

have reversed high and low intensity lines. Therefore, when measuring the Talbot periodicity, one can only

look at a single point on the along x and observe how it changes in intensity with propagation distance z.

Because the camera detector has pixels of a finite width, some care needs to be taken when choosing the

periodicity of the grating, so that the Talbot effect and be detected.

Using Lord Rayleigh's approximation of the Talbot effect, the field behind the grating of grating period-

icity d can be expressed as

I(x, z) = IAo1 2 + 41A1I cos(27rx/d)2 + 4AoA1 cos(27rx/d) cos(27rz/zT) (2.2)

,where AO is the diffraction efficiency of the m = 0 diffraction order, and A1 is the diffraction efficiency of

the m = 1, -1 diffraction orders. We assume the power detected by a square pixel with pixel length p is

given by
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Figure 2.2: Signal Strength vs Pixel Width
p is the pixel length of the detector, and xo corresponds to the position of the edge of pixel 0. For

xO = -0.5p, the center of the first pixel is centered at the zero of the x-axis. The grating periodicity was
1.6 pm, and the wavelength was 830 nn.

YO +P Xo+P

Ppixel = I(x, z)dxdy (2.3)

d sin(47r(p + xo)/d) - d sin(47rxo/d)
= p~pAo+4Al(p/2+870 1 8-7r

-dAoA cos(27rz/zT)(sin(27rxo/d) - sin(27r(p + xo)/d))]
7r

The term of the equation that gives us information about the Talbot distance is the cos(27rz/zT) term.

At z = zT, we can see the relationship between the detected power of the Talbot effect and pixel length p is

Ppix,Talbot = dAOA, (sin(27rxo/d) - sin(27r(p + xo)/d)) (2.4)

First, let's assume that the self-image is centered on the pixel, such that xO = -p/2 + mp, where m is an

arbitary integer. Then, if the pixel width p is an odd multiple of half of the grating periodicity d, then the

pixels measuring the Talbot self-images see n peaks and n - 1 nulls and the pixels measuring the inverted

self-images will see n - 1 peaks and n nulls. Note that this assumes that the peaks from the self-image are

centered on the pixel. In contrast, if the pixel width is a multiple of the grating periodicity, each pixel will

see n peaks and n nulls-as a result, each pixel will appear the same, and no Talbot distance can be measured.

As expected, the best one could do is to set n = 1, so that the pixel width is half the periodicity of the

grating, and either measures a single peak or null. However, if the grating is to only have propagating zero
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and first diffraction orders for wavelengths longer than 800 nm, the grating periodicity at maximum can be

1600 nm. The width of each peak or null would be approximately 800 nm, and would require a detector

with a pixel pitch of just 800 nm. Unfortunately there is no detector with a pixel pitch that small yet.

The next best we could do is to set n = 2, and fit 1.5 periods of the self image onto a single pixel. This

would correspond to a pixel width of at most 2400 nm, which is reasonable size CMOS pixels. Unfortunately,

the measured amplitude of the Talbot effect will be reduced.

Note that in order to maximize the amplitude of the Talbot effect, one needs to have good control over

x0 . On the other hand, one will be unable to observe the Talbot effect if p is a multiple of d, regardless of

xo. In the cases when p # m(d/2), where m is an arbitrary integer, the measured amplitude of the Talbot

effect will vary across the detector (see Figure 2.2 (b)). This actually might be advantageous if one doesn't

have precise control of the position of the grating relative to the detector, because it guarantees there will

be some signal.

If the desired relationship between the grating and pixel periodicities is not available, one can rotate the

grating with respect to the incident beam to reduce the effective grating periodicity to dcos6, though this

will change the diffraction efficiency of the grating.

2.3.2 Tilt Direction of Detector

We also investigated whether or not the detector should be tilted parallel or perpendicular -to the teeth of

the grating. Consider a set-up such that the teeth of the grating are oriented vertically along the y-axis.

If the detector is rotated about the x-axis, as is shown in Figure 2.1, then the detector samples the Talbot

distances along each column, and the grating periodicity along each row. If the detector is tilted around

the y-axis, then the detector samples the Talbot distances and grating periodicity simultaneously along each

row, and no information is collected along each column.

In terms of complexity, the first option is more attractive than the latter. The original motivation for the

second option was that the tilt could allow for the peaks and nulls of the light field to correspond to a single

pixel, thereby increasing the detected Talbot signal. Indeed, by integrating over the field at the detector for

each pixel, where z = x tan 6, we see that depending on the tilt of the detector, the contrast of the signal is

maximized when the pixel length in x is 1/2 the periodicity of the grating. However, when looking at the

signal actually measured at the detector, as shown in Figure 2.3 (c), we see that signal periodicity does not

actually correspond to the Talbot distance we expect to measure (the x's in red).

In favor of simplicity and reliability, we chose to tilt the detector from the vertical axis. However, it may
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Figure 2.3: Signal Strength vs Detector Tilt around y-axis

(a) Contrast of Talbot signal with respect to DC signal as a function of detector tilt around the y-axis. (b)

Detected signal across a row of the detector for increasing detector tilts. The red x's correspond to the

expected period on the detector corresponding to the Talbot distance. p is the pixel length of the detector,

and xO corresponds to the position of the edge of pixel 0. For xO = -0.5p, the center of the first pixel is

centered at the zero of the x-axis. We assumed a grating periodicity of 1.6 ptm, a wavelength of 830 nm,
and a pixel length of 2.4 pm.

be possible to find an optimal design that uses the horizontal tilting orientation.

2.3.3 Resolution Considerations

Because we use the Fourier Transform to determine the frequency, the resolution of the spectrometer is

determined by the number of periods that the detector is able to see. The bandwidth of the spectrometer is

determined by the sampling frequency, which can be approximated by the pixel pitch.

The detector can be modeled as a finite series of delta functions. The spacing of the delta functions

corresponds to the effective pixel pitch a, and the length of the series is determined by the number of pixels

N, or the detector length. This model can be expressed as a train of delta functions with spacing a multiplied

by a large rectangle function. In the Fourier space, the system is a train of delta functions with spacing 27r/a

that is convolved with a narrow sinc function.

Let us now also consider a signal with a single Talbot distance zT. This signal is multiplied onto the

detector in real space, so it is convolved with the detector in Fourier space. So, if we look at a single period

from -7r/a from 7r/a in the Fourier space, then we expect to see two sinc functions at the carrier frequencies

kT = 21r/ZT. We define the bandwidth of the system to be determined by kT = ir/a to avoid aliasing, and

the resolution of this effect is determined by the width of the sinc function.
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detector and Talbot signal in real space and the detected signal in Fourier space.

According the Rayleigh criterion, the next resolvable peak is at the zero of the sinc function. The discrete

time fourier transform (DTFT) of a centered box with N discrete elements is sin(Q(N/2 + 1/2))/ sin(Q/2),

where Q = wa. Therefore, the sinc has zeros at w(N/2 + 1/2) = r/a, and is a function of the number of

pixels we have in each column of the detector.

The effective pixel length is the length of the pixel in z, and is equal to p sin(O), where p is the actual

pixel length, and 0 is the angle that the detector is tilted by from the vertical axis. Therefore, the resolution

of kT is

27r
AkT = (2.5)

(N + 1)p sin 0

and the bandwidth is

kTma, - 27r

(p sin 0)
(2.6)

Recall that when d >> A, where d is the period of the grating, we can make the approximation ZT =

2d2 /A. In this case, the wavelength resolution is

2d2

AA = .ds2 (2.7)
(N + 1)p sin 0
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Figure 2.5: Resolution and Bandwidth Limitations for Example Systems
(a) Maximum resolution achievable for a given pixel length p and grating periodicity d as a function of

detector angle. (b) Bandwidth for a given pixel length and grating periodicity, as a function of detector
angle. The pixel lengths used above are pixel sizes we have access to. The solid curves have d = 2/3p for

maximum signal under ideal conditions. The black dashed curve has d = 2/5p. The red dashed curve
represents parameters from our experimental system.

This equation is consistent with the equation reported by Kung et al [38]. It appears that the minimum

resolvable feature decreases with increasing p, so a large pixel size would actually be desirable. This makes

sense because having a longer pixel size would enable us to sample more periods of the Talbot effect. However,

as discussed above, p is constrained by grating period d, which is constrained by the operating wavelength.

We anticipate not being in the limit d >> A, so we solve for the resolution numerically. Sample curves

are shown in Figure 2.5.

The bandwidth can be solved for analytically without approximation,

Amax 2d
2 

+ ZT,max (2.8)da = 2 + Z2-
T,max

2d2psin0

d2 + (p sin 0)2

and is also shown in Figure 2.5.

Using geometrical arguments, we can also determine the grating size needed for a detector of length

L and width W. The Talbot self-images occur when the +1, 0, and -1 diffraction orders overlap, but

the Talbot distance can only be measured where either the +1 and 0 or -1 and 0 diffraction orders exist,
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Figure 2.6: Definition of Minimum and Ideal Grating Size
Diagrams show assumed set-up when calculating the minimum grating size and ideal grating size for the

system. The box shows the space in the x-z plane that the detector occupies when calculating for the
minimum and ideal grating size.

though the strength of the signal will not be as strong. We define the minimum grating size as the size

for which the Talbot effect ends just at the farthest point of the detector. In this case, the grating size is

G = 2L sin 0 tan Odiff, where 9
diff is the farfield diffraction angle. This analysis neglects the width of the

detector, which enforces that the minimum width of the grating is at least W. We define the ideal grating

size as the size for which the entire detector is in the region where the +1, 0, and -1 diffraction orders all

exist. In this case, the grating size is G = 2(L sin 0 + W/(2 tan Odiff)) tan Odiff. The minimum height of the

grating is L cos 0, though in practice it should be larger to avoid edge effects.

Using these various constraint equations, we can determine the parameters required to obtain a certain

resolution. Because the pixel length and grating period are closely related for optimal performance, all

the constraints can be expressed in terms of pixel length. Figure 2.7 shows the detector tilt required and

corresponding bandwidth as a function of pixel length, for various resolution requirements. The period of

the grating is assumed to be 2/3p. As the graph shows, for a given relationship between d and g, detectors

with smaller pixel sizes are needed in order to achieve higher resolution.

2.4 Generalizing the Talbot Effect

Since the above analysis uses the Talbot Effect in its ideal form (e.g. plane wave incidence, symmetric binary

grating), we need to investigate the robustness of the Talbot effect.
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Figure 2.7: Parameters Required to Achieve Certain Resolution
(a) Curves relating pixel pitch to detector tilt required to acheive a certain resolution. Grating periodicity
is assumed to be d = 2/3p. (b) Corresponding bandwidth of the system with the parameters required to

acheive a certain resolution.

2.4.1 Asymmetric Grating

The diffraction efficiency of each diffraction order m is given by Am. For an asymmetric grating, A, 4 A_ 1 .

The field behind the grating where the three diffraction orders interfere is

E(x, z, t) =A 0 exp(j(wt - kz))+

A1 exp(j(kll,1x)) exp(j(wt - k-,lz))+

A- 1 exp(-j(kll,lx)) exp(j(wt - ki,iz)) (2.9)

Assuming the field amplitudes Am are real, the intensity of the field is

I(x, z) =IAo 2 + JA11 2 + IA-11
2 + 2A1A_1 cos(2kll, 1x)+

2Ao[A 1 + A 1 ] cos(k, 1x) cos((k - km,1)z)+

2Ao[A 1 - A.] sin(kll,lx) sin((k - k ,1)z) (2.10)

The field intensity is still periodic in z, with a period of ZT.
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Figure 2.8: Comparison of Symmetric and Asymmetric Grating
Graph shows how the self-images propagate in the case of a (a) symmetric grating, and (b) asymmetric

grating.

To maximize the cosine term, with the constraint that 1 = AO + A1 + A_ 1 , we need AO = 1/2, while

A1 = A_, = 1/4. The amplitude of the cosine is then 1/2, while the sine term goes to 0. The DC terms

equals 1/2, so the ratio of the Talbot effect to the DC background is 1. To achieve this, we would need a

perfect cosine grating.

To maximize the sine term, we need a perfectly asymmetric grating, with AO = 1/2 and A 1 = 1/2 and

A-, = 0. (A 1 ad A_ 1 are interchangeable). This means the cosine term has an amplitude of 1/2 and the

sine term has an amplitude of 1/2. The DC terms equal 1/2.

The only difference between the perfectly asymmetric grating is the lateral shifts of the Talbot self-images.

For an asymmetric grating, the self-images shift in x as they propagate in z. For a symmetric grating, the

the self-images remain at a constant lateral position. This is shown in Figure 2.8.

Given a diffraction grating, one can optimize the relative angle of the incident beam to maximize the

amplitude of the Talbot signal. However, any orientation of the grating will generate the Talbot effect.

2.4.2 Angular Sensitivity

The analysis for the Talbot Effect assumes that the incident light is a perfect plane wave. But, since the

light source might not be perfectly collimated, we would like to observe the sensitivity of the Talbot effect

with respect to the angular spread of the beam.

First, we should understand the the behavior of the Talbot effect in response to angled incidence. Using
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Figure 2.9: Talbot Effect with Angled Incidence
Pictures (a)-(c) show the Talbot effect from angled incidence at different positions and different zoom

levels. Picture (d) shows what the detected Talbot effect might look like for a non-collimated beam input

(NA =0.17). Figure (e) shows the k-space diagram of the propagating beam at normal incidence (black)
anid angled incidence (red). The blue lines are at km = 27r/d and show the constraint on km imposed by the

grating. The figure is adapted from [39]

the intuition from Lord Rayleigh's derivation of the effect, we expect the self-images point in the direction

of the zeroth order diffraction beam. We simulated this by applying a phase exp(-j45) at the grating, where

4 is the angle of incidence. And indeed, we do see that the self-images are tilted at an angle. In regions with

higher diffraction orders, texture within the self-images were observed.

In k-space, the valid combinations of the components of k for a propagating beam at a diffractive medium

can be represented by the surface of a sphere, with the origin positioned at the value of the propagating

k-vector. For example, if the beam is propagating with k = z then the origin is at x =0, y = 0, and

z = -ks. For simplicity, we can consider a 2D system, and if we use the paraxial approximation, the valid

solutions of k are represented by a parabola.

The grating puts a constraint on the km values the propagating beam can have. As a result, the beam

must have a particular kz, which actually corresponds to the Talbot distance. However, for a beam of angled

incidence on the grating, the origin of the circle would be elsewhere, and the same kx constraint will cause

the diffracted beam to have two different values for kz. If the incident beam has a range of angles, the
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diffracted beam will have a range of kz's, and so the Talbot images will begin to blur together and we will

be unable to extract any information from the mid-field diffraction pattern.
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Figure 2.10: FFT of Noncollimated Light Source
(a) shows a zoomed in image of the Talbot self-images for a grating with an acceptance angle of 10 degrees.
At this level, no difference is immediately apparent by eye. (b)-(d) show FFTs of the simulated diffraction

pattern assuming 0 degree, 4 degree, and 10 degree acceptance angles.

To better understand the behavior of the system with non-collimated light sources, we illuminate the

grating (in Matlab) with a point source some distance away, such that the grating has a certain angle of

acceptance. Acceptance angle is defined as the angle from normal incidence that the point source makes

with respect to the edge of the grating. We assume that the light source is small, so that the response

can be represented by a single point source. It turns out that for small acceptance angles, having multiple

point sources does not affect the detected pattern significantly, since the phase front at the grating looks

approximately the same for each point source.

A summary of the results is in Figure 2.10 and Figure 2.11. From the figures, one can see that increasing

the angle of acceptance increases the breadth of the wavelength peak. In particular, the peak tends to be
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Figure 2.11: Resolution Limits for Noncollimated Light Source
(a) shows a zoomed out image of the Talbot self-images for a grating with an acceptance angle of 10

degrees. Clear warping of the self-images is apparent. (b) shows resolution for a N = 500 grating with

various acceptance angles. Data was taken from the Fourier transform of a single column of pixels near the

center of the grating. (c) shows the limit of resolution as a function of grating size. (d) shows the limit of

resolution as a function of grating size. It shows that at some point, the resolution is no longer determined
by the size of the grating but by the angle of acceptance instead.

broaden .out towards shorter wavelengths.

The FFT images of the entire detector plane show that the response from a spherical wave is well-defined.

Therefore, it may be possible to correct the images to remove the spherical phase front, and thereby reduce

the peak width of the FFT signal.

2.5 Experimental Section

To prove the concept of a lens-free Talbot spectrometer, we used a binary transmission grating with 622 lines

per mm (Ibsen Photonics) with a monochrome Aptina imaging sensor (MT9P031) with a 2.2 pm pixel pitch.

53

K E 'Kmw

(b) 0.7 0.8 0 9 1 1.1 1.2
Normalized Wavelength ()

z (distance from aperture)
I1) 20

0.18
0.16

0.14

0.12

0.1

0.08

- 0.06

ZO0.04

0.02

0

-N = 500
-N = 600

-N = 700
- N=8000
-N = 3000

/-K

(c)

1 1.05 11
Noffnazed Wavelength (a)

1.15



On top of the camera detector is a microlens array and is protected by a glass window. It was purchased

with a read-out board from The Imaging Source. The 2.2 tam pixel pitch detector would work best with a

grating with a period of 1.47 pm, and absolutely would not work with a grating with a period of 1.1 ,um

or 2.2 pm (see Figure 2.2). The Ibsen grating, which has a period of 1.6 pm, was the closest commercially

available grating that we were able to obtain quickly.

A Ti:Sapphire laser is used in CW mode as the tunable laser source. The beam from the Ti:Sapph

is passed through a neutral density filter (OD 4.0), and then focused down using an aspherical lens and

spatially filtered using a 50 micron pinhole. The beam was expanded using a 10x beam expander from

Thorlabs (GBE10-B). Placing a lens between the pinhole and the beam expander did not greatly affect the

measurements, so no lens was used.

U I ~

Ti:Sapph
(cw mode)

Beam
expander

ND 4.0 filter Aspherical lens,
50 pm pinhole

Talbot

Spectro-
meter

Figure 2.12: Talbot Spectrometer Experimental Set-up
Picture of the Talbot set-up used for our experiments. A cartoon of the optics set-up.
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Figure 2.13: Transmission Characterization of Grating
(a) shows the measured powers in farfield for the m = -- 1, 0, and 1 diffraction orders as the grating with

respect to the incident beam. Note that the degree of rotation is with respect to a reference point that does
not correspond to normal incidence. (b) shows the diffraction efficiency of the three modes as a function of

wavelength with the detector was tilted at approximately -11 degrees. The graph on the right is the
maximum Talbot signal expected at each wavelength. It is calculated from A0(A 1 + A_ 1 ), and shows

significant oscillation with wavelength.

2.5.1 Grating Characterization

The grating was characterized by investigating the diffraction efficiency of the m = -1,0, and 1 diffraction

orders. The Ti:Sapph beam without any spatial filters was incident on the grating, and the power of each

diffraction order was measured roughly 4 inches away using a Thorlabs 5 mW power meter. The diffraction

efficiency was first measured as a function of grating rotation with respect to the incident beam. We chose

to optimize the grating when the amplitudes of all three diffraction orders have comparable power, with the

expectation that at longer wavelengths the zeroth order diffraction efficiency will increase. The measurements

are summarized in Figure 2.13.

We see that the diffraction efficiency of each order is not monotonic with wavelength. As a result, the
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expected signal for the Talbot effect, which we calculate as Ao(A 1 + A-1), is also not monotonic with

wavelength.

2.5.2 Response as a Function of Detector Tilt

When using a laser source, if we zoom into the image so that we can see the individual pixels, we can very

clearly see the periodic variations in intensity along each column of the of image (see Figure 2.14). Depending

on the angle of the detector relative to the grating, the periodicity changes visibly. Recall from Figure 2.1

that we expect that each column of the detector to independently measure the Talbot distance from the

mid-field diffraction pattern. When the detector is parallel to the grating, we expect each column to be

alternating light and dark, since it's the self-image of the transmission grating. As we increase the angle,

we expect to sample more and more self-imaging planes, and therefore expect the observed periodicity to

decrease.

(a)

g
MW
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DOW Ck:
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I,
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it
Figure 2.14: Talbot Spectrometer Detector Images

Raw images, images after bandpass filter, and the simulated detector response when the detector is tilted
approximately (a) 0 degrees (b) 10 degrees (c) 20 degrees (d) 30 degrees. As the simulated detector images

show, in (a), we expect to see alternating light and dark rows, such that the picture resembles the
transmission grating. From (b) to (d), along each row of the image, we expect to see higher frequency

oscillations as we measure more and more self-images. In the filtered images, there is some horizontally
striped artifact
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Figure 2.15: Talbot Spectrometer vs. Detector Angle
Spectrum obtained by taking the 1D Fourier Transform along each column of the image.

If we look closely at the image that was taken at 0 degrees, we see that the dark and light lines are not

continuous through the entire image. One explanation is that the detector was not at exactly 0 degrees.

Another explanations is that the detector was unintentionally rotated about another axis in addition to the

x-axis, such that the columns of the detector are not perfectly aligned with the teeth of the grating. Because

the current experimental set-up has many degrees of freedom, either or both possibilities are likely factors,

and can change every time the system is adjusted.

We can also see a background pattern in the images. The origin of this pattern has not yet been identified,

but may suggest that the phase front of the incident beam is not perfect. There seemed to be some issues

with the spatial mode of the Ti:Sapph beam, and the optical system most likely could be better aligned to

produce a collimated beam at the output. Additionally, it could be a result of crosstalk or back-reflection

caused by the microlens array and glass slide cover. Once these issues are accounted for, it's possible that

cleaner data could be obtained.

To analyze the image obtained on the detector, we take the 1D FFT of each detector column, and then

take the mean of all the columns to reduce the noise in the 1D FFT signal. To convert the x-axis of the

FFT data from k, to A, we use the equation
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A= 2d2 (27r/kz)
d2 + (27r/kz)2

When taking the fast Fourier transform along each column of the image (see Figure 2.15), we can identify

peaks that correspond to the wavelength of the incident light. As expected, the resolution of the measured

frequency increases with the angle of the detector, since the detector is able to sample more periods of

the Talbot effect. The calculated wavelength appears to vary with detector angle, but, because there is no

consistent trend, the variation in wavelength is likely a result of the uncertainty of the detector angle.
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Figure 2.16: Data-Processing of Experimental Result
(a) Image from detector taken at 818.20 nm, 45 degree tilt. The triangle in the upper left hand corner is
the region where all 3 diffraction orders exist. It is the region where the Talbot effect exists. (b) 1D-FFT

taken along each column of the detector (row of the image). Note that the line corresponding to the
wavelength (at about 1300 nm) only exists in the top half of the image, where the Talbot self-images exist.
(c) Mean of the 1D-FFT data across all the columns of the detector (d) 2D-FFT of the image revealing an

asymmetry in the frequency domain. Peak features in 2D-FFT image map onto 1D-FFT image.

We also observe that for each measurement, we have two significant peaks in our spectrum correlated to

wavelength, even though we only expect a single frequency component. In Figure 2.16, we see that these two
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Figure 2.17: Data-Processing of Simulated Result
(a) Expected detector response given a normalized wavelength A = 1, and 45 degree tilt. The triangle in

the upper left hand corner is the region where all 3 diffraction orders exist. In this region the Talbot effect
exists. (b) 1D-FFT taken along each column of the detector (row of the image). Note that the line

corresponding to the wavelength (at about A = 1.05) only exists in the top half of the image, where we
expected the Talbot self-images to exist. (c) Mean of the 1D-FFT data across all the columns of the

detector (d) 2D-FFT of the image. Peak features in 2D-FFT image map onto 1D-FFT image.

peaks correspond to an asymmetry in the 2D FFT. Comparing the 2D FFT image (d) to the 1D FFT image

(b), we see that the peaks actually line up. The horizontally shifted peaks in the top half of the image line up

with the 1st and the 4th non-DC peaks in the 1D FFT. The peaks in the bottom half correspond to the 3rd

and 6th non-DC peaks. This suggests that we see multiple peaks in the 1D FFT because the image and the

detector are not perfectly aligned. We also note that if the 2D FFT was symmetric, the calculated wavelength

would be more accurate. For comparison, Figure 2.17 shows what our model predicts the collected data to

look like. There is no asymmetry in the 2D FFT, so there is something in our experiments that our model

does not account for. We also notice that in the simulated calculations, the measured wavelength is actually

A = 1.05, even though the input was A = 1. At 830 nm, this would correspond to a redshift of about 40 nm.

59



As we will see later, the 2nd and 5th peaks in the 1D FFT image are frequency components that are

inherent to the image. The peak location is not sensitive to wavelength, but is sensitive to the detector

angle. It turns out the peak corresponds to a period equal to four times the effective pixel length, so it most

likely is a feature of the detector itself.

When tuning the laser source, we see the peaks tune accordingly. We are to resolve different peaks from

about 780 nm to 900 nm, as shown in Figure 2.18. The bandwidth can be greater, but ultimately is limited

at longer wavelengths due to the limited sensitivity of the CMOS imager, and limited at lower wavelengths

due to the unoptimized transmission through the grating. Note that at about 1038 nm, there is a peak

feature that stays constant regardless of wavelength. This is the peak we believe to be from the detector

itself, since it is wavelength independent.
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Figure 2.18: Talbot Spectrometer vs. Wavelength
Spectral response of Talbot spectrometer with the detector at 30 degrees (above) for input wavelengths

from 780 nm to 905 nm. At approximately 1038 nm, we see the wavelength independent peak which likely
is a feature inherent to the detector image.

Figure 2.19 shows the resolution limitations of the spectrometer response. When the detector is tilted at

30 degrees, the measured peaks have an average FWHM of about 4.58 nm, but wavelengths about 1.1 nm

apart can be differentiated and likely could be resolved using deconvolution techniques. When the detector

is tilted at 45 degrees, the peak widths are slightly decreased. The average FWHM is about 2.71 nm, and

wavelengths about 0.8 nm apart can be differentiated. When peaks are not resolvable, the peak shapes are
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Figure 2.19: Talbot Spectrometer Resolution

Spectral response of Talbot spectrometer with the detector at (left) 30 degrees and (right) 45 degrees. The

average FWHM of peaks in (left) is 4.58 nm. The minimum FWHM for is about 4.20 nm. The average

FWHM for (right) is 2.71 nm, and the minimum FWHM is 2.38 nm.

not readily distinguishable from neighboring peaks, and tend to be broader since they overlap both of the

peaks of the neighboring wavelengths.

The most obvious discrepancy is that the measured wavelengths are not accurate. In Figure 2.20, we

see that the estimated wavelength has a reasonable slope (about 0.92), though is offset by 256 nm. We also

see this offset change when adjusting the positioning of the detector. By looking at the experimental data

presented in the section, we see the measured wavelength vary significantly even though all of the actual

wavelengths are all between 780 to 900 nm. Therefore, this discrepancy most likely is because the detector

is not perfectly aligned with the grating. This would cause the measured Talbot distance to be smaller than

expected, resulting in a longer wavelength than expected. On the other hand, if the detector is not perfectly

collimated, then one expects the Talbot distance to increase and the measured wavelength to decrease as

we go farther away from the grating. This does not seem to be the main issue, since the wavelengths are

significantly redder than expected.

Another concern is that the amplitudes of the peaks are not all the same, even though the pictures have

been normalized by the power collected by the detector. The normalization power was found by multiplying

the total intensity of the image by the detector's reported quantum efficiency at the wavelength of interest.

The diffraction efficiencies (as reported in Figure 2.13) most likely contribute to the change in amplitude
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Figure 2.20: Talbot Spectrometer vs. Wavelength
Measured wavelength with respect to the actual wavelength. The wavelength was found by finding the

maximum point in the high frequency region. The three outlier x's at the longer wavelengths correspond to
the wavelength insensitive peak that is inherent in the detector.

over a wide range of wavelengths. However, in some cases, like in Figure 2.19, we notice that if the change

in wavelength is too small, the measured peak position does not change, though the amplitude usually

decreases.

Lastly, the observed peak width is not as good as was predicted theoretically. On the other hand, the

minimum AA that the spectrometer can differentiate matches the design curve well. This might mean that

the incident wavefront is not a perfect plane wave. So, the peak width likely will be reduced when the optics

are better aligned so that the beam incident on the spectrometer is well collimated. The Ti:Sapph beam also

has a spectral bandwidth of about 0.2 nm, as measured by the HP Optical Spectrum Analyzer (HP70951B).

The spectral non-zero bandwidth also will increase the observed peak width.

We were also able to clearly, simultaneously resolve lasers at two different wavelengths (see Figure 2.22).

We managed to couple an Ondax laser operating at 829.95 nm and the Ti:Sapph beam to single-mode fibers,

and used a 50/50 beam splitter so to combine the two. At the end of the fiber was a collimation lens, so

most of the emitted light was incident on the beam expander. The expanded beam directly illuminated the

grating and detector, which was roughly 2 inches away.
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Figure 2.21: Resolution Limit for Current Spectrometer
Design curves for the experimental spectrometer. With a30 degree tilt, we expect a resolution about about
1.5 nm, and with a 45 degree tilt, we expect a resolution of slightly less than 1 nm. Notice that when at a

45 degree tilt, our grating size is smaller than the ideal grating size.

When we attempted to use a non-laser light source, no distinguishable signal could be obtained. This

is somewhat unexpected because there are reports of the Talbot effect with white light sources [26]. We

first tried using a neon calibration source. We spatially filtered the light through a 50 micron pin-hole or

variable diameter iris, and then attempted to collimate the beam using a lens. The attempts at using neon

calibration source were cursory, so the incident light was not properly collimated. However, it also might be

the case that the peaks are too broad, so the periodic Talbot effect appears as white noise on the detector.

This explanation does not make sense from the Fourier perspective and the superposition principle, which

claims that as long as there is no aliasing, the detector should be able to successfully measure each frequency

component that is present. However, in reality, the detector pixels are not simply delta functions. Instead,

they report a single number which is the sum of the field at the detector. A better description of the pixels

would be delta functions convolved with a rectangular function, though that still neglects the error that

arises by summing over the field at each pixel.
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Figure 2.22: Talbot Spectrometer with Two Lasers
(left) The Ondax laser at 829.95 nm and a Ti:Sapph beam at two different frequencies (835.35 and 839

nm). Both peaks are clearly resolvable. (right) The Ondax laser at 829.95 nm and the Ti:Sapph beam at
830.53 nm. Though the two lasers can be differentiated separately, the spectrum when both lasers are on

only has a single peak. Using FFT, these two peaks are not resolvable.

2.6 Summary

Plugging in our results into the table from the introduction, we see that, ignoring the size of the read-

out electronics used for the testing phase, we have successfully engineered a miniature spectrometer with

comparable resolution and etendue specifications. According to our theoretical design curves, we should be

able to build a spectrometer with even higher resolution by changing the pixel pitch and grating periodicity.

For the most part, our simple theoretical model was able to correctly predict the experimental results of

the system. However, our model was unable to account for the unexpectedly large peak width, and also was

unable to explain the offset of the measured wavelength and why there are two peaks in the FFT spectrum

instead of just one. One contribution to the large peak width is the non-zero linewidth of the laser. For a

linear system, the detected linewidth should be a convolution of the expected resolution and the linewidth of

the light source. However, the peak width is still significantly wider. The offset in the measured wavelength

an the presence of the two peaks might be because of extra degrees of freedom in the experimental set-up,

allowing the detector to be rotated around multiple axes. However, it could also be crosstalk caused by the
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Table 2.1: Miniature Spectrometers

This table lists recent miniature spectrometers that have appeared in the literature, as well as our
experimentally-verified Talbot spectrometer and the theoretical high resolution version. The estimates of
the spectrometer size included the space in between the grating and the detector. Etendue is calculated

from ir(NA) 2Ait ._

Author Spectrometer Resolution Etendue (mm 2) Size (mm x mm
Type x mm)

Kung 2001 [38] Talbot 42 nm 0.003 40+ x 4.9 x 6.5

Xu 2003 [92] Disordered 3D PhC 2-20 nm estimate 0.024 30+ x 5 x 5

Redding 2013 [67] Disordered 2D PhC 0.75 nm 1e-7 0.100 x 0.050 on
chip

Park 2008 [58] Fresnel 10-23 nm 8.2e-4 1-7 x 0.750 x 0.750

Momeni 2009 [48] Waveguide 0.010 nm le-7 0.080 x 0.200 on
chip

Wang 2014 [87] Broadband Diffrac- 1 nm 0.077 500 x 9 x 9
tive Optic

This work (exp.) Talbot 4 nm 0.033 5 x 10 x 10

This work (theor.) Talbot 0.5nm 0.033 3 x 10 x 10

microlens array, or a result of the reflections off the glass cover slide. To understand this observation, we

could expand our simulation so we can determine the detector response when it is tilted at any arbitrary

angle with respect to the grating. On the experiment side, we can attempt to remove the glass cover and

nicrolens array to ensure that they are not generating extra artifacts.

Additionally, though two independent lasers were detected simultaneously, it would be better if the

spectrum of a multi-line non-laser light source could be measured.
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Chapter 3

Photonic Crystal Resonant Scatterers

In this Chapter, we will discuss the second of three applications, the resonant scatterer barcode. We inves-

tigate the possibility of using a silicon/silicon dioxide 2D photonic crystal (PhC) resonant cavity for this

application.

In order to be useful as a barcode, the scatterer needs to have at least 10000 optically differentiable

variants within a 100 nm spectral range. Furthermore, to be useful in a biological setting, the scatterer

cannot interfere with cell function, and must be on the order of a few micrometers. At first glance, silicon

PhCs are a sensible solution. Photonic crystal resonant modes can have spectral line-widths that are less

than a nanometer, while the mode is confined to volumes on the order of a few microns. So, a PhC cavity

could potentially be very small. Furthermore, silicon dioxide is a non-toxic material, so it would be suitable

for biological applications.

In the following sections, we first will review the theory on optical back-scattering from a resonant cavity,

and then discuss simulation results of a first iteration design. Finally, we will compare the theoretical

simulations with experimental observation from the first iteration of devices.

3.1 Photonic Crystal Resonant Cavities

In order to design resonant cavities for this application, we need to understand the main loss mechanisms

and be able to engineer them to achieve high Q radiative emission.

The possible losses in an isolated 2D PhC resonant cavity are material absorption losses, losses from

the cavity into the rest of the 2D plane, radiative losses into free space. Material absorption loss is simply
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the loss due to the absorption of energy by the cavity material. For now, we will assume the absorption

loss is negligible compared to the other loss mechanisms. In reality, the measured loss in these cavities are

approximately 30 dB/cm at 1300 nm, which actually is quite high, and will limit the maximum achievable

Q of a resonant cavity. In the future, this loss should be more carefully considered but our experiments

show that absorption is not the dominant loss mechanism. The experimental results from Chapter 4 also

support this approximation. The in-plane loss is from the fields that are no longer confined by the PhC

cavity. The loss describes how well the resonant mode is confined to the cavity. For PhC cavities, this loss is

decreased for an increased number of mirror holes surrounding the cavity. (For reference, a picture of a 2D

PhC resonant cavity is shown in Figure 3.1.) This makes sense intuitively because the periodic boundary

conditions that generate the PhC's optical band gap assume an infinite number of periodic elements. A

photonic crystal with a reduced number of periods would have higher transmission for frequencies in the

band gap. The radiative loss is from the fields that are scattered out of the cavity and out of the chip.

The radiative loss mechanism is what we will utilize in order to couple a free space beam into the cavity

and detect a back-scattered signal. By fine tuning the defect cavity structure, the radiative emission of the

cavity can be engineered further. We will use simulation software to predict the resonant modes of the cavity

and their far-field radiation pattern.

3.1.1 Back-Scattering Coupled-Mode Theory

To understand how these losses play a role in the the back-scattered signal from a PhC cavity, we use

temporal coupled-mode theory, which was introduced in Section 1.5.1.

The electromagnetic energy stored in the cavity, f 1E 12 /2 + polH1 2/2dV, is defined to be JA1 2 . If the

cavity is perfect so that the energy remains completely confined in the cavity, A(t) = A(0)e(-wo'). However,

the cavity always has loss, and A and is assumed to decay with a lifetime of -rtt. The lifetime is determined

by the radiative coupling out of the resonant cavity mode (Trad), as well as loss of energy through absorption

or other means (mrios), and can be expressed as rZ-J = -' + -r,-' . Energy also can be coupled into the

cavity. Here, we consider an incoming wave with amplitude S+ that couples into the cavity at a rate given

by r- In this case, since the incident wave is coupled into the cavity from free space, and the radiated

wave is coupled into free space from the cavity, rin = rad. As a result, the rate equation for A is

dA A 1
= -iwA = -iwoA - - + -- S+ (3.1)

t tot rad
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The electric field leaving the cavity has an amplitude S_ and can be found from

S_ = -+ + A (3.2)
rad

The incident field of frequency w drives the time dependent oscillation of A, such that A(t) = eiwt, since

frequency is conserved for linear systems. The intensity of the reflected wave is

IS_ 12  (iuw - wo) + Ta I i)) 2 ((w )w)2 + (TeI - )2)
S12 (i (W -WO)~ ) - ((W -wo)2 - I )

If we are able to isolate the back-scattered signal radiating from the cavity from the specular reflections

from the incident wave, then S- becomes S- A, and the intensity of the reflected wave is
Trd

1S 12
Trd =(3.4)

|S+12 W( _ WO)2_
(i(W - WO) - i )( Trd) =(w-w)-

Note that if the radiative lifetime is much longer than the lifetime of other loss mechanisms (Trad > 710s,),

then the intensity of the back-scattered light will be 0 regardless of wavelength. On the other hand, if the

radiative lifetime is significantly shorter (Trad < rioss), then rtot T Trad, and the reflected intensity is 1 when

on resonance and approaches 0 farther away from resonance. This is the ideal case for the back-scattering

measurements. But, in order for the resonant cavity to have a narrow spectral line-width, the cavity needs

to be low loss.

Therefore, there are two challenges that need to be overcome for this application. The first is to control

the radiative quality factor to balance between having a high quality factor cavity and getting detectable

back-scattered signal, and the second is to decrease the in-plane loss while miniaturizing the resonant cavity.

3.1.2 Resonant Cavity Simulation

The cavity design was based on the cavity in Haddidi's paper [27]. As discussed in the introduction, by

changing the size and shifting of the lattice holes at the edge of the resonant cavity, the far-field pattern

can be engineered to maximize vertical emission. Specifically, according to Tran et al., by modulating the

hole sizes to create a 2a periodic structure, fields that were originally trapped beneath the light line can be

"folded" above the light line, thereby increasing the intensity of the far-field radiation [82].

A picture of the 2D cavity is shown in Figure 3.1. We define riattice to be the radii of the unmodified

holes in the lattice and a to be the lattice constant of the hexagonal 2D PhC. The radii of the band-folding
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Figure 3.1: Resonant Cavity Design
(a) A 2D slice of the resonant cavity as simulated in MEEP. The red box shows the simulation boundary

and the green box marks the defect cavity. The holes filled with purple are responsible for the band-folding
effect and have radius rfold = 0.28a. The holes filled with yellow are the cavity-edge holes. They are

shifted outward by Axedge = 0.16a and have a radius of redge = 0.24a. Here, rcavity = 0. (b) The optical
band structure of the 2D hexagonal photonic crystal with and without a SiN cladding layer. The region in
pink shows the frequencies for which there is an incomplete band gap for the crystal with a 70 nm cladding

layer.

holes, marked in purple, are rfold rlattice - Arfold. The radii of the cavity-edge holes, marked in yellow,

are redge = rlattice - Aredge, and are shifted outwards by AXedge. The holes in the cavity can be reinserted,

and their radii is ravity. There are M, and My mirror holes in the x and y directions of the cavity.

The default structure for the simulations and measurements are riattice = 0.30a, Arfold = 0.02a, Aredge =

0.06a, AXedge = 0.16a, and ravity = 0. Unless otherwise specified, one can assume these parameters for the

device. Typically, Mx = My and is simply referred to as M.

The band structure of a hexagonal lattice of SiO 2 holes in a slab of silicon about 0.22 prm thick was

simulated using MPB, a software program that uses fully vectorial eigenmode solutions of Maxwell's equations

to determine the band structure of periodic dielectric structures [341. This simulation confirmed that a

hexagonal lattice of riattice with oxide only would have a band gap from about 1413 nm to 1189 nm, if a

was 0.350 nm. Most of the following simulations were done assuming the body was silicon and everything

else was silicon dioxide. However, in practice, a conformal nitride layer is grown on top of the silicon to

minimize material absorption loss. The red lines in the band diagram correspond to when a 70 nm nitride

layer covers the silicon body. It shows that the band gap starts at a slightly redder wavelength, about 1436

nm, but ends at about 1313 nm.
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Table 3.1: PhC Resonant Cavity Modes

This table lists resonant modes of the PhC cavity, their quality factors, and their out coupling efficiencies.

Resonant Frequency Quality Coupling Efficiency Coupling Efficiency
Mode (wa/27rc) Factor (NA = 1) (NA = 0.5)

Y3 0.25016 3549.5 1.217e-4 4.317e-5

X2 0.26684 234.41 0.3069 0.1365

X1 0.26980 189.95 0.1178 0.0489

Y5a 0.28235 1219.7 0.0125 0.0025

a This mode is not well confined when the silicon is lined with SiN.

Because the nitride layer is thin, and because the index of refraction is similar to the index of SiO 2 , we

expect that the simulated results with or without the nitride layer will give us comparable results, but with

slightly different values. In particular, we expect that the simulated resonant modes will have slightly bluer

wavelengths than what we observe in our experimental results. We can account for this difference simply by

adjusting the lattice constant a or the thickness of the silicon in our simulations. We also neglect material

absorption in the simulation.

Farfield Radiation Pattern and Band Folding

The near-field resonant field solution of the cavity was calculated using MEEP, a finite-difference time domain

(FDTD) software [55], and the built in harminv resonant mode finder [43]. The far-field radiation pattern

was found by taking the 2D Fourier transform, as elaborated in the paper by Kim et al. [37] and in the

Appendix.

The resonant modes of the cavity and their farfield patterns are shown in Figure 3.2. The quality factors

and resonant frequencies (normalized to lattice constant a) is listed in Table 3.1. The modes are labeled by

the dominant polarization (X or Y) and the number of peaks along the x-axis.

To verify the band folding technique, we vary rfold and observe how the farfield patterns of the Y3

mode are affected. As is noted by others [371, even though the near-field patterns do not appear to change

significantly, the far-field patterns can vary significantly, as is shown in Figure 3.3. As discussed in Tran et

al., changing band-folding holes can increase or decrease the band-folding effect. By changing Arfold from

0.02 to 0.10, the vertical emission from the Y3 mode is significantly increased.

These findings support the results presented in previous papers [82] [27], confirming the accuracy of our

simulations. However, our simulations also revealed that there are highly emissive x-polarized modes that
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Figure 3.2: Resonant Modes of PhC Cavity
Resonant modes in the defect cavity (Top) Near-field resonant cavity fields as calculated by MEEP in

increasing frequency. (Middle and Bottom) Far-field radiation patterns, found by taking the 2D FFT of the
near-field pattern. The circles in white show the range of light that is collected for objectives with

numerical apertures of 0.5, 0.9, and 1. Here, Arfold is 0.02a. These modes (left to right) will be referred to
as Y3, X2, X1, and Y5, respectively.

Table 3.2: Band-Folding for Y3 Modes

Resonant frequency, quality factor, and out-coupling efficiency of the Y3 mode for different Arfold.
Arfold (a) Frequency Quality Factor Coupling Effi- Coupling Effi-

(wa/27rc) ciency (NA ciency (NA
1) 0.5)

0 0.25147 4015.5 1.645e-5 2.667e-6
0.02 0.25016 3549.5 1.217e-4 4.317e-5
0.06 0.24789 1829.4 5.956e-4 3.739e-4
0.10 0.24594 1219.7 0.0449 0.0310

the previous papers did not report. Without modification of the cavity structure, these modes have vertical

emission patterns, which provides a strong signal for back-scattering. Unfortunately, because the radiative

losses are so high, the quality factor of those modes are too low.
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Figure 3.3: Effect of "Band Folding"
These simulations show how the farfield radiation pattern changes with variations of the radius rfold in the

resonant cavity. Arf0 Id 0, 0.02, 0.06, 0.10 from left to right.

Simulations of Size Dependence

One important factor for us that has not been mentioned explicitly in the previous work is the total size

of the cavity. For the current device design, a device with M mirror holes is approximately (2M + 10)a

by (2M + 5)a in size. Therefore, a device with 8 mirror holes is approximately 9.1 ym by 7.35 pum. A

device with 16 mirror holes is approximately 14.7 pm by 12.95 pum. Because of the size constraints for our

applications, we need to limit the number of mirror holes M, increasing the in-plane loss of the defect cavity.

In 3D numerical simulations, when the absorptive losses are set to zero, the main loss mechanisms are

radiative losses and in-plane losses. In a 2D simulation, since no energy can be radiated out-of-plane, the

radiative losses are also zero. Therefore, the reported quality factor from a 2D simulation is the quality

factor for lateral confinement (Qiat).

As expected, the quality factor of the cavity in our 2D simulation increases with the number of mirror

holes surrounding the cavity. Notice that Qiat is at least a few magnitudes larger than Q found from the

3D simulations as presented above in Table 3.1. This tells us that for our cavity design, radiative loss is the
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Table 3.3: In-Plane Quality Factor vs Number of Mirror Holes

This table lists the simulated Q of the resonant modes as a function of the number of mirror holes.

Mode M=O M=8 M=12 M=16

Y3 N/A 66540.2 775788.9 951370.1

X2 N/A 8500.8 71244.5 158827.7

X1 N/A 7571.1 14303.2 15692.0

dominant loss mechanism. Because of this, the effect the number of mirror holes has on the quality factor

will be negligible.

Also note that in order to have a Qtot ~ Qad at about 105, Qiat needs to be orders of magnitude larger.

For the current cavity design, Qia, for the X1 mode is noticeably low, and is not greater than 105 even with

16 mirror holes. Therefore, in addition to increasing the quality factor of the radiative losses, we will need

to find a way to miniaturize the system further while increasing the lateral confinement of the mode.

3.2 Measurements

To verify our numerical simulations, we measure the back-scattering from devices with different variations

of the defect cavity. The devices were fabricated by CNSE using a 65 nm bulk CMOS process. These

devices are patterned in polysilicon that is about 0.220 pm thick, and remained embedded in the chip for

these measurements. The lattice constant of the photonic crystals was 350 nm. Again, unless otherwise

stated, the default structure for the measured devices are rlattice = 0.30a, Arfgld = 0.02a, Aredge = 0.06a,

AXedge = 0.16a, and reavity = 0.

3.2.1 Experimental Set-up

The experimental set-up was based off of the method used by Deotare [12], and is shown in Figure 3.4. A

tunable laser source (Santec TSL-210F) was used to provide 100 AW of power from 1260 nm to 1620 nm. A

polarizing beam splitter (PBS) (Thorlabs PBS254) was used to polarize the incoming light. The s-polarized

light is reflected down through a microscope objective (Mitutoyo M Plan NIR 100, NA=0.50, f=200). If the

light is at the correct frequency, then one of the resonant modes of the cavities is excited and some radiated

light is recollected by the objective. The p-polarized light radiated from the PhC cavity will be transmitted

through the PBS to the IR Camera (Xenics Xeva-1785). An integration time of 25 ms is used to capture

each frame. This integration time was chosen to avoid saturation of any of the pixels while still getting
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Figure 3.4: Experimental Set-up
(a) The optical set-up of a slightly modified optical microscope with an NIR camera on top. A polarizing

beam splitter (PBS) is used to polarize the incident beam and also to filter out the specular reflections that
are not back-scattered reflections from the photonic crystal. (b) SEM image of sample photonic crystal
device. As is done in Haddidi and Tran, holes every 2a are modified in size to create the "band-folding"

technique. The holes at the edge of the cavity are slightly smaller and slightly shifted outward to increase
the quality factor Q. The scale bar in red is 1 micron. (c-e) are images taken with a 5x, 20x, and 100x

microscope objective. The scale bar in (d) is approximately 35 microns and the scale bar in (e) is
approximately 12 microns.

appreciable signal.

The polarization of the radiated field is determined by the resonant mode of the cavity, whereas the

polarization of the specular reflection largely remains the same as the polarization of the incident beam.

Therefore, if the cavity is rotated by an angle 0 with respect to the axes of the polarizing beam splitter,

the back-scattered beam will have both s-polarized and p-polarized light. Since only p-polarized light is

transmitted through the PBS to the IR Camera, only that component of light will be observed.

Using the NIR camera, pictures of the resonant cavity and the back-scattered light at a various wave-

lengths are taken. The back-scattered signal at a given wavelength is calculated from
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Figure 3.5: Images of Back-Scattering Devices

Images of back-scattering response when the excitation source (on resonance at 1296 in) is focused outside

the device, in the center of the device, on the edge of the device, and off centered but in the device (right
to left, top to bottom).

background = percentile(pixel values,0.98)

signal = E pixel values - background

From the camera images, it is easy to see the observe the back-scattered light at the resonant frequency.

As shown in Figure 3.5, when the cavity mode is on resonance and centered on or close to the resonant cavity,

a strong signal from the center of the device is seen. When the excitation source is clearly not centered on

the cavity, no back-scattered signal is observed.
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Figure 3.6: Spectra with Various Theta and Phi
Reflection spectra as the chip is rotated (a) in-plane by angle 0 and (b) out-of-plane by angle 0.

3.2.2 Spectral Dependence on Orientation

Because the resonant mode is an in-plane resonance, we expect the signal to only vary in intensity and not

in frequency as the orientation of the device changes. For different 0, we expect the detected signal intensity

to be zero when 0 = 0, 90, ... and to increase as we get closer to 0 = 45, because the signal is filtered by the

PBS, which acts as cross polarizers.

By changing the out-of-plane rotation angle #, we expect better or worse coupling to each mode, depend-

ing on the farfield radiation pattern. In the case of the dipole modes, we expect that reflection will decrease

with increasing phi, since radiation from the cavity is mostly vertical. On the contrary, if the farfield pattern

shows greater emission at certain angles, when the chip is tilted at that angle, the coupling efficiency should

increase. Unfortunately, due to the size of the chip the PhC barcodes are on, and the short working distance

of the microscope objective, it is difficult to increase the angle of incidence beyond the 20 degrees.

Our experimental results shown in Figure 3.6 clearly shows that the resonant frequencies stay constant

with changes in 0 and #. Unlike Fabry-Perot devices, these photonic crystal resonator cavity devices can

be identified by a given frequency of light under any orientation-only the efficiency of the back-scattering

is affected. It may be possible to design a cavity such that the farfield pattern is relatively uniform for any

given angle, but this comes at the cost of a reduced intensity of the back-scattering .
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Figure 3.7: Back-Scattering Spectra for Cavity Variants

The reflection spectra measured for cavities with different Ar old. For increased Arfold, the Y3 mode was
detectable, but also had broadened linewidths.

3.2.3 Effect of Band-Folding

When measuring devices with larger Arfld, the band-folding effect is more pronounced and the Y3 mode

can be observed.

The anticipated collection efficiency for the Y3 mode in the cavity with Arf"ad = 0.06a with a NA = 0.5

objective was 3.74e-4. The measured Q is approximately 728. In order to detect signal from even higher Q

resonant modes, the sensitivity of the measurement set-up will have to be improved significantly. Increasing

the NA of the objective might assist in collecting more signal, but also will collect more background light.

As a result, with the current set-up and image processing method, the signal will be reduced.

This quality factor of the Arfold = 0.06a and 0.10a Y3 resonant mode is noticeably lower than the

simulated Q's of 1829.4 and 1219.7, respectively. This suggests that either the SiN cladding, which was not

included in the simulation, reduces the quality factor of the resonant mode, or that the material absorption

loss of the silicon is actually not negligible. The loss on the chip at 1300 nm was approximately 30 dB/cm

for a wave propagating in a waveguide. If we assume that the modal overlap with the silicon body is roughly
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80%, and the effective index is about 2.7, then we can approximate the energy decay rate at -30 dB per 10-10

seconds. The lifetime is defined as when the intensity in decays by 1/e, which is about -4 dB. Therefore,

if we assume the entire mode profile exists in the polysilicon, the lifetime is approximately 10-1. This

corresponds to a quality factor, which can be calculated from Q = woT/2, is approximately 10'. Therefore,

the quality factor of the cavity actually is limited to about 1000.

3.2.4 Dependence on Number of Mirror Holes

We also observed the behavior of the barcodes with respect to the number of mirror holes. The cavity had

default parameters (rjattice = 0.30a, Arfold = 0.02a, Aredge = 0.06a, AXedge = 0.16a, and rcavity = 0).

Aside from the cavity with no mirror holes, the peak width of the x-polarized modes X1 and X2 remain

relatively constant for at least more than 8 mirror holes. This is because Qrad is much less than Qiat, so the

radiative loss dominates the lifetime and peak width. This is true even for the Y3 modes, as the mode's Q

does not increase with the number of mirror holes. For the device with zero mirror holes, we most likely are

measuring a resonant mode of the silicon slab itself, hence the very broad spectral feature.

What remains unexplained is the clear dependence of the resonant frequency on the size of the cavity.

Increasing the number of mirror holes by 4 shifts the resonant frequency by about 5 nm. This trend is

unexplained by our simulations in MEEP, and suggests that our modeling of the confined resonant cavity

is incomplete. The frequencies of the resonant modes as found in a 3D simulation of the defect cavity are

listed in Table 3.4. Though some modes show a small change in resonant frequency as a function of size

of the cavity, the shift is not 5 nm large. Because two physically different devices about 1400 pm apart,

with the same barcode design, show the same reflection spectrum (Figure 3.10 (b)), it is unlikely that the

shift in wavelength is due to fabrication uncertainty. Therefore, our understanding of these barcodes is still

incomplete.

Table 3.4: Resonant Frequency vs Size

Frequencies of the simulated resonant modes as a function of the number of mirror holes. As expected, the
frequencies do not change significantly with cavity size. Here we assume a = 350 nm.

Mode M=O M=8 M=12 M=16

Y3 1390.7 1387.8 1387.9 1387.9

X2 1311.2 1311.6 1311.8 -

X1 1293.4 1297.2 1298.7 -

In addition to the shift of the resonant frequency of the cavity, the amplitude and the line-shape of
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Figure 3.8: Effect of Cavity Size on X2, X1 modes

The reflection spectra of the X2 and X1 resonant modes are measured for cavities of different sizes. (a)

shows the full spectrum for the M18 cavity, while (b) and (c) show the each peak as a function of cavity

size. The peaks within each reflection peak may be in-plane resonance due to the small size of the entire

device. The redder peaks correspond to the X2 mode.

the peaks were unusual. Instead of being constant, the amplitude of the resonant modes seemed to vary

in a shape similar to the MO resonant peak. This might provide some insight on how the photonic crystal

resonant modes interact with the isolated silicon body. The line-shape of some of the resonant peaks also were

non-Lorentzian and clearly showed fine-structure. These peaks might result from coupling of the resonant

cavity mode to other resonant modes (like Fabry-Perot resonances) of the silicon body. Though it was not

done here, it would be interesting to see how the fine structure changes with device tilt. If the fine structure

is not sensitive to device orientation, then it would provide another method of encoding information for the

barcode application.
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Figure 3.9: Effect of Cavity Size on Y3 Modes
The reflection spectra measured for cavities of different sizes. The approximate Q's for the Arfoad = 0.06a

cavities are 852 and 702 for the M=8 and M=12 cavities respectively. The Q's for the Arf"ld = 0.10a
cavity cannot be estimated accurately because of the resonant mode's non-Lorenztian peak-shape. The

FWHM linewidth is about 10 nm and 6 nm for the M = 8 and M = 12 resonant cavities.

3.2.5 Device Summary

In addition to the devices mentioned above, the chip contains other variants of the barcode device. The

barcodes were predominantly free-space devices, as shown in Figure 3.1, with variations in the hole size or

placement near the defect cavity. In addition to the devices with different rfld and different M that are

discussed above, barcode variants also have varied radii redge and positions AXedge of the holes at the edge

of the resonant cavity. Some variants also have holes of reavity = 0.2 in the cavity center.

Variants with non-default values of redge and AZxedge were not investigated because those parameters

did not appear to significantly affect the resonant modes of the cavity. The observed resonant modes were

actually the X2 and X1 modes, so it makes sense that the different variants, which were meant to improve the

Q of the y-polarized modes, had similar reflection spectra. Therefore, these variants should be investigated

further on devices where the Y3 mode is clearly visible.

There were also devices coupled to the straight and cosine waveguides to determine the coupling efficiency
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Figure 3.10: Reproducibility of Barcode Measurements

(a) Multiple measurements of the reflection spectrum of the M22 cavity. Note that the fine structure in the

redder peak is reproducible. (b) The spectra of two physically different devices with the same cavity design

(default parameters, M = 12). The devices are approximately 1400 pm apart. The spectra are overlaid to

show how the spectra show the same resonant frequencies, though the measured signal amplitude is slightly

different. The dashed lines show repeated measurements of the same cavity.

of the waveguide to the Y3 mode, depending on the number of mirror holes. However, the grating couplers

were optimized for coupling at 1550 nm, so they were unable to be used to measure the resonances of the

cavity.

Devices with a = 330 nm and a = 350 nm were fabricated, but the devices with lattice constant a = 350

nm were reported above. A map of the devices on the chip is in the Appendix.

3.3 Discussion

We successfully were able to measure frequency dependent back-scattering from photonic crystal resonant

cavities that are roughly 10 microns by 10 microns in size. However, there are a few observations that were

not expected from our simulations.

Most obvious is the correlation between the size of the cavity and its resonant frequency. The consistency

of the resonant cavities across multiple iterations of the same device suggests that the dependence of resonant

wavelength on device size is not just fabrication error. Because the resonant modes are low Q and therefore

not well-confined to the defect cavity, the size of the chip may influence the resonant frequencies of the
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Figure 3.11: Effect of Different Modifications on X2 and X1 Modes
The reflection spectra measured for cavities with different rshift, Ax, rcavity, and rfold.

cavity. However, our simulations suggest that the mode is relatively well-confined, and do not anticipate

large changes in the resonant frequency with M. Experimentally, one could verify this effect by studying

devices with different numbers of mirror holes in x but a constant number in y, and compare the shifts in

resonance frequency for the x-polarized and y-polarized modes.

The second unpredicted observation is the intensity of each of the resonance peaks. Depending on M,

the resonant peak height changes. The quantum efficiency of the detector remains approximately constant

(within 10%) for wavelengths from 1 pm to 1.5 pm, so the change in intensity is related to the cavity. From

the size series data in Figure 3.8, it seems like the back-scattering intensity is related to the resonant mode

of the cavity with

Another observation is the presence of multiple peaks inside the supposedly Lorenztian peak of the

resonant mode. This noise might be from other resonances of the non-radiated fields propagating in the

device (like Fabry-Perot resonances). These extra peaks are probably more noticeable for low Q modes

because of the breadth of the peak and also for the weaker confinement of the mode in the cavity. Some of

the non-reproducible peaks might be noise, since for some of the measurements there were oscillations in the
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measurement set-up that we were unable to dampen.

Our experimental results show that we are able to achieve spectral features with linewidths of less than

10 nm, for a device that is about 10pm by 10pm in size. Though the linewidths are about half of what is

reported for quantum dots and similar barcodes, they are considerably bigger and would be more difficult

to incorporate into a cell. Reducing the size of the barcodes while achieving Q's of 100000 seems impossible

with the current approach. We may be able to increase Q to 10000 while maintaining the current size of the

barcode, though the applications in cellular environments may be limited.

3.3.1 Next Iteration of Devices

Increasing Q to 10000 will still be difficult and will require optimization of the cavity design since, there are

still limitations on the achievable Qrad due to the thickness of the silicon in the device, and limitations on

the achievable Qiat because of the size of the device.

To reduce the line widths of the resonances, we most likely cannot solely rely on trying to reduce the losses

of the device. Instead, we can also use interference. For example, it might be possible to use Fano resonances

to reduce the line-width. In Haddidi et al., the observed Fano resonances were a result of the reflection of

the incident light off of other layers of the device in addition to the back-scattered light. However, this might

only work for normal incidence, since the reflection off the non-PhC layers will scatter away otherwise.

Alternatively, one could potentially interfere two resonant modes to increase the radiative Q [33] [86] [35].

This technique, which is called cancellation, will generate nodal planes in far-field radiation pattern [33], but

that may be acceptable for our application if it decreases the linewidths of the cavity's resonance peaks.
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Chapter 4

Silicon Photonic Crystal Modulators

4.1 Overview

In this Chapter we will present work on silicon resonant cavity modulators that have Fano line-shape trans-

mission curves. These transmission curves have a very steep slope near the resonant wavelength. So, if a

modulator were to operate near that wavelength, a slight change in the index of the material would result

in a large change in the transmitted intensity. Therefore, utilizing a Fano transmission curve could greatly

increase the extinction and efficiency of the modulator.

Experiments of all-optical modulation utilizing the Fano line-shape was reported by Mehta et al [47]. By

adjusting the fiber position, they were able to couple to the fundamental and first excited TE modes in the

waveguide, and observed a Fano line-shape transmission spectrum. The modulator showed higher extinction

when the cavity exhibited a Fano resonance as opposed to a Lorentzian resonance.

Here we hope to extend the concept to electrically-driven optical modulators, and also design devices

that consistently show Fano resonances, without dependence on the fiber position. We will start by quickly

reviewing the basic physics of silicon photonic crystal modulators, and then characterize a few traditional

devices to have a baseline expectation of the devices. In the next section of the Chapter, we will review

the theory for obtaining Fano resonances, and then present results from the two ways we tried to achieve

Fano resonances. Unfortunately, we were unable to characterize the actual Fano modulators due to time

constraints, but investigating that would be the obvious next step.
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4.2 Silicon Photonic Crystal Modulators

The architecture of the silicon photonic modulators are shown in Figure 4.1. The figure is adapted from the

paper by Mehta et al [15], and shows the entire structure of the modulator on chip. To couple light from a

fiber onto the chip, we use a standard grating coupler designed by the Popovic et al [531. The light propagates

through the silicon bus waveguides to the resonant cavity, at which the light is reflected or transmitted. The

transmitted light is coupled out of the waveguide to an output fiber. The details of designing the silicon

modulator and grating couplers is discussed in previous work [46] [53], so it will not be discussed in depth

here.

Input fiber Grating coupler Bus WGI Photonic crystal Taper

525 prm

Figure 4.1: Basic Architecture of Modulator Devices
(a) This picture shows the entire modulator structure on the chip. The yellow spots mark the approximate

location the fibers should be. (b) A zoomed-in image of the photonic crystal resonant cavity. The field
profile of the resonant wave is overlayed on the PhC image.

These modulators were fabricated using two different processes, one with Micron Technologies and one

with CNSE. The devices on the Micron chips are older, and were designed by Karan Mehta. On both of

the chips, there are a few variants of the photonic crystal modulators. There are passive devices, which are

the modulators without any of the accompanying electronics, as well as active devices, which are the full

modulators. The structure of the defect cavity is the same across all of the modulators, but the number of

holes (mirror holes) confining the mode to the defect cavity varies. This helps us characterize the intrinsic

loss of the devices on this chip, and allows for a variety of Q's and peak transmissions when characterizing

modulators. The CNSE chip also has more interesting modulators that have varied architectures to achieve

Fano resonances. In addition to the default TE, Lorenztian photonic crystal modulators, there are two

different variations in transmission grating, and four types of asymmetric tapers connecting the bus waveguide

to the resonant cavity. These variations will be discussed in this Chapter.
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4.2.1 Waveguiding in Silicon

The waveguide body is 0.480 microns by 0.220 microns, and has 0.100 thick wings that extend about 3.5

microns on either side (see Figure 4.2). The modes of the waveguide were simulated using CST Microwave, a

fully vectorial electromagnetic wave solver. This waveguide design supports multiple modes, including both

the fundamental TE and TM modes and higher order TE modes. This feature is important to achieve a

Fano line-shape, which requires the interference of two different modes.

The fundamental TE mode has a propagation constant /TE,1 = 10.627 pmm1 , and the propagation

constant for the first excited TE mode is I
3TE,2 9.111 Am-1 . For fundamental TM mode, 3TM,1= 6.994

pm-1.

Fundamental TE mode (E ) Fundamental TM mode (E.)

Excited TE mode (Ey)

Figure 4.2: Modes of the Silicon Waveguide
The figure shows the a cross-section view of the waveguide, and shows the mode profiles for the

fundamental TE, fundamental TM, and first exited TE mode. The propagation constants of each or mode
are summarized in the table.

4.2.2 Theory and Design of Resonator Cavity

The 1D PhC resonant cavity for the modulator and the waveguide was designed in previous work [46]. The

photonic crystal is a series of holes with radius r = 0.28a in the silicon waveguide. The main defect in the

PhC is 2 holes with r = 0.33a,but to reduce reflective losses, the hole sizes are tapered from r = 0.28a to

r = 0.33a and back across 20 holes. This set of holes is what we will refer to as the defect cavity. The

number of mirror holes M is defined as the number of r = 0.28a holes on each side of the defect.

The band structure of the 1D row of holes with radius r = 0.28a and r = 0.33a is shown in Figure 4.3.

Near k = ir/a for (quasi)-TE polarization, the band for the r = 0.33a PhC structure is in the band gap of

the PhC structure with r = 0.28a. Therefore, the defect cavity of larger holes supports a mode that is not
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allowed in the remainder of the PhC. That mode is confined to the defect cavity and is called the resonant

mode of the cavity.

0.35 0.35
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Figure 4.3: Band Structure of PhC
(a) shows the band structure assuming quasi-TM polarization, and (b) shows the band structure assuming

quasi-TE polarization, for r = 0.28a and r = 0.33a. (c) shows the predicted tranmission curve for the
fundamental TE mode when r = 0.28a and when r = 0.33a.

4.2.3 Characterization of Passive Cavities

The first set of cavities were fabricated at Micron Technologies, using a 180 nm bulk CMOS process. The

second set of cavities were fabricated at CNSE, using a 65 nm bulk CMOS process. The CNSE is a newer

process, so the processing is still being perfected to minimize losses. The devices are fabricated in polysilicon,

covered first with a thin layer of SiN to reduce material loss, and then covered with SiN.

The measurements below have been corrected for the coupling and waveguide loss, which was about 20

dB for the Micron measurements and about 13 dB for the CNSE measurements.

The chips were characterized by observing the changes in the Q of the resonant peak with the number

of mirror holes. For devices with larger number of mirror holes, the coupling from the bus waveguide to

the cavity decreases, so we expect the peak transmission to decrease and the Q to increase. By observing

the variation in peak transmission with Qtot, the intrinsic Q (QO) of the cavity can be predicted using the
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Figure 4.4: Characterization of Passive Cavities in Micron Process
Characterization of chip and simple resonator cavities. As expected, increasing the number of mirror holes
increases the quality factor Q of the resonator, but also increases the insertion loss of the resonant cavity.
By comparing the transmission at the resonant peak to the quality factor of the cavities, we can determine

the loss inherent to the physical device. For this chip we measured an intrinsic Q of 25520.

relation Tpeak = (Qtot/Qwg)2  Qtot/Qo) 2 . The intrinsic loss is defined as Q-1 = Q-1 - Q- and

represents the loss of the device. It typically is affected by the fabrication process.

The intrinsic Qs of the devices, which corresponds to the absorption and radiative losses of the reso-

nant cavity, are both quite low. If these losses are reduced, the modulator devices could show improved

performance.

Observations

The behavior of the transmission with respect to fiber position and polarization was observed. The transmis-

sion line-shape of the cavity is sensitive to the positioning of the fibers with respect to grating couplers, but

is not sensitive to the polarization. This confirms that the waveguide is able to support modes in addition to

the fundamental mode, and that the grating coupler is optimized for coupling to TE polarized input light.

By changing the lateral position of the fiber, such that the fiber is no longer centered with respect to

grating coupler, the input light can couple to the first excited TE mode. As we will explain more in depth

later in the chapter, coupling to the first excited TE mode causes the asymmetry in the resonant peak.

Depending on which side the fiber is relative to the grating, the asymmetry of the peak changes sign. This

is consistent with the work presented by Mehta et al [47].

When the TM component of the input light is increased, the detected transmission decreases because less
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Figure 4.5: Characterization of Passive Cavities in CNSE Process
Characterization of chip and simple resonator cavities. As expected, increasing the number of mirror holes
increases the quality factor Q of the resonator, but also increases the insertion loss of the resonant cavity.

By comparing the transmission at the resonant peak to the quality factor of the cavities, we can determine
the loss inherent to the physical device. For this chip we measured an intrinsic Q of 10220. For devices

with higher mirror holes, it was difficult to obtain a symmetric resonance peak.

light is coupled to the waveguide. The transmission curves are all normalized to the waveguide transmission

assuming a purely TE input. The transmission line shape does not change at all, suggesting that the only

change is reduced coupling from the fiber to the waveguide. We expect that if each transmission curve was

normalized to the wavegide transmission for the corresponding mixed TE/TM input, the transmission curves

would all appear to be the same.

4.2.4 Characterization of Active Cavities

We investigated the sensitivity of cavity performance on the design of the p-i-n junction around the cavity

for the Micron chip. Though there were several variations on the distance of the p/n and p+/n+ doping

regions from the resonant cavity, we will summarize the results of only two cavities. In general, decreasing
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Figure 4.6: Other Parameters Influencing the Transmission

(a) shows how the symmetry of the resonant peak changes with the lateral (y) position of the fiber relative
to the grating coupler. (b) shows how the transmission varies as the input polarization has an increasing

TM component. The dashed line represents a reference transmission spectrum for a TE-only input.

the distance between the p/n or p+/n+ doped regions increased loss significantly, though the sensitivity of

the resonant wavelength was also increased due to the larger change in carrier density with applied voltage.

The p+/n+ doped regions tended to generate more loss than the more lightly doped regions.

Here we will report measurements taken for two modulator devices. The p-i-n junction is characterized by

the distance from which the p/n and p+/n+ doping regions start with respect to the edge of the waveguide.

The first device has a large 'T region. For this device, the p/n regions in the wing regions start 2 rows

of holes away from the body of the waveguide, as shown in Figure 4.1. The 'T region is approximately

1.31 microns wide. The second device has a small 'T region. Here the p/n regions start right next to the

waveguide, and the width of the 'T region is approximately 0.48 microns wide. For both devices, the p+/n+

regions start a 3 rows of holes from the waveguide. The defect cavity for both devices has 12 mirror holes.

The transmission curves and i-v curves for these devices are shown in Figure 4.7. We expect the increased

insertion loss (reduced peak transmission) is a result of the doping regions adjacent to the defect cavity.

Because the resistance of the p-i-n junction is higher for the large 'T cavity, the index change due to

carrier depletion or injection will be less than for the small 'T cavity. Therefore, we expect to see lower

extinction modulation for a given peak-to-peak operating voltage. The characterization results of the large

and small 'T regions, shown in Figures 4.8 and 4.9 respectively, agree with our expectations.

Notice that at high bias voltages, bistability of the resonant cavity causes a sharp drop in the DC
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Figure 4.7: Characterization of Active Cavity with Large Intrinsic Region
(a) Transmission curves of the resonant cavity at different reverse bias voltges. (b) Modulation extinction

versus frequency. (c) High (solid) and low (dashed) intensity levels during modulation, as a function of
frequency. (d) Shows extinction as a function of wavelength for various bias points, with a 4V peak-to-peak

applied voltage.

transmission spectrum. Since the bistability is observed at high reverse bias voltages, we expect the bistability

to be a thermal effect, induced by the Joule heating from the high energy charge carriers. Because the

bistability is a thermal effect, it likely will be relatively slow. Therefore, when the bistable device is modulated

at a high frequency, the bistability does not generate increased extinction. When plotting the high and low

intensity values of the transmitted power as a function of wavelength, the transmission spectrum still shows

the bistability. However, both the 'high' and 'low' values of the modulated signal drop from high transmission

to low transmission at the same wavelength. Therefore, it appears that modulation at 100 MHz or greater

frequencies is too fast for bistability to affect modulation.

The modulation behavior of the cavities under forward bias was also observed. All the devices seem

to have similar cut-off frequencies/similar frequency responses, regardless of whether they are operated at

forward or reverse bias . We did not optimize the positioning or structure of the pads, so it likely is that

the capacitance of the pads is the dominant capacitance of the modulator, as opposed to the capacitance

of the junction. This suggests that by designing better electrical contacts, the frequency cut-off of these

modulators could be much higher. The pads used for these junctions were designed for 100 pm pitch GSG

probes, and were 60 pm by 60 pm in size. The p-i-n junction was about 6.4 microns wide.
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Figure 4.8: Characterization of Active Cavity with Large (1.31 pm) Intrinsic Region
(a) Transmission curves of the resonant cavity at different reverse bias voltges. (b) Modulation extinction

versus frequency. (c) High (solid) and low (dashed) intensity levels during modulation, as a function of
frequency. (d) Shows extinction as a function of wavelength for various bias points, with a 4V peak-to-peak

applied voltage.

4.3 Theory and Design of Fano Cavities

Fano line-shape resonances occur when a non-resonant mode interferes with a discrete resonant mode. There-

fore, the modulator architecture would have to be such that the fiber input coupled to both the fundamental

TE mode and another continuous propagating mode.

Consider the case when the input light couples to the fundamental resonant mode and an excited propa-

gating mode that has a propagation loss of (1- ,). Assume the coupling efficiency to the fundamental mode

is ri at the input and KO at the output, the coupling efficiency to the excited mode is 1 - ., and no other

modes are excited.

With both the resonant cavity mode and a propagating mode, the transmitted field at the output is
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Figure 4.9: Characterization of Active Cavity with Small (0.48 m) Intrinsic Region

(a) Transmission curves of the resonant cavity at different reverse bias voltges. (b) Modulation extinction

versus frequency. (c) High (solid) and low (dashed) intensity levels during modulation, as a function of

frequency. (d) Shows extinction as a function of wavelength for various bias points, with a 4V peak-to-peak

applied voltage.

= rio (2/wg) +o
S(P - WO) + 1/rtot + (1 - Ki)(1 - (4.1)

The intensity is therefore

T - KiKo(2/rwg) 2  4 Cs(#)/rtot - sin(O)(w - wo)
T = Wt|2 = +17/_7)2 (1--)(1-r 2 + 7 Kr'IO(1 - Ki)(1 - r ( W ) )2  2 (1/rt)2

(Lo - UjO)2 + (1/,rtot)2 7reg( -w)+(/t)
(4.2)

This bulky equation helps us understand how the propagating mode affects the resonant cavity mode,

but it has too many fitting parameters. The Fano lineshape can be more concisely expressed as [271,
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Figure 4.10: Characterization of Active Cavity in Forward Bias
(a) Extinction versus frequency for modulation from OV to 2V forward bias at different operating

wavelengths. (b) Extinction versus wavelength for different modulation voltages. (c) and (d) are the same
as (a) and (b) but for the large i region device.

F = Ao + Fo
1 + (2(uj - Ujo)/7)2

(4.3)

According to this expression, the asymmetry of the Fano resonance is maximized when Iql = 1. When

Iql is much less than 1 or much greater than one, then the transmission curve appears Lorenztian. The sign

of the peak depends on the sign of FO.

Comparing Equations 4.2 and 4.3, we determine that the quality factor of the cavity can be determined

from -y = wo/Qtot. Comparing the terms of both equations, we can determine that
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Y= wo/Qtot (4.4)

-(1 + K cos q) V/2 + 2Kcos 0
Ksin5

Ttot
F0  -2q tvi/o -(1 - 1 - ,o' sin /q

Twg

Ao = ( -o)(1 -- K,)72 - Fo

where K = 7_ g -k) When deriving these definitions, we used the relation Qtot Ttotwtot/ 2 .

Here, we see that the maximum asymmetry of the peak, which is given by q, depends on the waveguide

coupling parameters, the total lifetime of the cavity, and also the phase of the propagating wave with respect

to the confined mode. Therefore, in order to reliably fabricate Fano modulators, in addition to knowing the

quality factor of the cavity and the coupling strength to the waveguide, one would need to understand and

control how the phase between the two modes is determined.

Since both the fundamental TM modes and the first excited TE mode are not confined to the cavity,

they both potentially could exhibit Fano resonances. To couple into these modes, we slightly modify the

modulator architecture, as is explained in the following sections.

4.3.1 Exciting Higher Order Spatially Confined Modes

As seen in some of the passive measurements and in the literature [47], the second order excited mode can

be excited by shifting the fiber position with respect to the grating coupler. Quick simulations in MEEP

confirmed this. However, ideally, we would be able have a Fano resonator that is not sensitive to fiber

position.

To achieve this, we hope to use an asymmetric taper that excites both the fundamental and the excited

mode of the waveguide. The input waveguide is chosen such that the TE mode is the only mode that is

well-confined to the body of the waveguide-the fields of the excited modes are predominantly in the wings

of the waveguide.

By changing the width at the output of the taper, the coupling efficiency to the fundamental and excited

modes can be engineered. For output tapers that are wider than the waveguide itself, the asymmetric taper

is connected to the waveguide via a symmetric taper. The tapers at the input and output are mirror images

of each other. Increasing the waveguide width decreases the power transmitted by the two relevant modes,

95



ooooooooooooo oo000000000{0ooooooooooooooo

Figure 4.11: Transmission through Crystal with Offset Source
The top image is the field in the resonant cavity when the input source is perfectly centered on the

waveguide. The bottom image is the field when the input source is along the upper edge of the waveguide.
The first excited mode profile is visibly propagating through the entire crystal.
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Figure 4.12: Fano Taper Design
The picture on top shows the field profile as the excited wave propagates through the taper, and also shows
the nomenclature for each part of the taper. The bottom pictures show the mode profiles of the waveguide
assuming (left) "taper in width" = 0.33 pim and (right) "wg width" = 0.48 jpm. The mode profile on top is

the fundamental mode and the mode profile on the bottom is for the first excited mode.

likely because coupling to higher order modes is increased. Increasing the taper length increase the overall

power transmitted by the two modes, but the coupling efficiency to the excited mode is decreased because

the expansion of the waveguide is closer to adiabatic.

The experimental results of devices with various taper lengths and taper widths are shown in Figures
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Figure 4.13: Fano Taper Design

(a) shows the coupling efficiency of fundamental mode at the input of the taper to the fundamental and

first excited mode at the output of the taper, as well as the total power transmitted with those two modes.

(b)-(d) show effect of the taper length on the coupling efficiency to the fundamental mode, the total power

transmitted at the output of the taper, and the coupling efficiency to the first excited mode. TOW refers

to the output width of the taper.
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Figure 4.14: Fano Transmission Spectra of Tapered Devices

The graphs show the transmission spectra for two example devices with an asymmetric Fano resonance. (a)

has a taper length of 0.1 pm and a taper output width of 0.48 pm (device P2F1), and has 8 mirror holes.

(b) has a taper length of 0.1 tim, a taper output width of 0.48 pm, and 18 mirror holes (device P2F2).
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Figure 4.15: Summary of Measurements on Fano Tapered Devices
The graphs show different fitting parameters (peak transmission, asymmetry, and Qtot) for devices with

various taper out widths and taper lengths, as summarized in the table in the figure. Recall that the Fano
peak is most asymmetric when jql = 1. Devices were on the CNSE chip.

4.14 and 4.15. It appears that the Fano effect is more prominent in devices with shorter taper lengths and

narrower widths at the taper output. However, no trends can really be determined from these measurements,

since the phase between the two modes is not considered. But, using the Equations 4.4, the expected phase

between the two modes can be determined to provide insight on controlling the phase between the modes. If

the taper can be better engineered in the next iteration of devices, better Fano modulators could be tested.

4.3.2 Exciting Both Transverse Electric and Transverse Magnetic Modes

It was also proposed that the Fano line-shape could be created by interfering the TE an TM modes. Since the

photonic crystal design has no band gap for TM polarized light, the TM mode is able to propagate through

the PhC freely. Since the TE fundamental mode is resonant at the defect cavity, while the TM mode is a

propagating mode, the Fano resonance might be able to arise from interference between the TE and TM
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modes. TE and TM modes are considered orthogonal because they utilize different vector components of

the electric field. But in a high-index 3D system, the modes are not perfectly orthogonal and have non-zero

power in other field components. Therefore, the two modes still might interfere with each other to some

degree.

Ve designed grating couplers that had comparable far-field radiation patterns for both the TE and TM

modes. Because of time reversal symmetry, the approximate effectiveness of the grating coupler can be

determined by its farfield radiation pattern. The directivity of the far-field patterns determines the angle

the fiber output should be for maximum coupling. For our purposes, we would need the TE and TM modes

to have high directivity in the same direction, though it was accepted that coupling efficiency would likely

decrease. The grating couplers were not carefully optimized, since this was just for proof of concept.

Grating couplers use 1D periodic elements to diffract the light from inside the chip out-of plane. According

to the Bragg condition, the scattered waves exhibit constructive interference when k, = 13 ,g nkgr, for

n = ... , -1,0,1, ... is satisfied. The propagation of the mode in the waveguide is /3wg, and the effective

grating wavevector is approximated as kgr ,2 , where n is the effective index of the
flt~oot h Wtoothfl pngap ,

grating tooth or the SiO2 gap between the teeth, and w is the width of the tooth in the z direction.

Solving for the coupling angle # from k= k sin 0, we get

sin-1)( - kgr (4.5)
net (27r/A

For the fundamental TE mode, the 0,g is roughly 10.627 ttm 1 . The current grating design used for

these devices have teeth that are 0.380 pm wide and spaced 0.25 pm apart. The coupling angle is about 8

degrees.

The idea was that to couple both TE and TM polarized light to the waveguide, a kg, could be found

such that the constraint

/3 wg,TE + nkgr,TE /
3Owg,TM + mkgr,TM (4.6)

is met for some combination of integers n and m. However, kgr for TE and TM modes is different given

the same structure, since the effective indices of the teeth and spaces are different for the two polarizations.

Furthermore, from our simulations it appears that the effective grating wavevector can be calculated only

for a single tooth and gap, because at each interface from silicon to oxide a significant portion of the wave

is scattered. An approximate solution could potentially be found by using methods like the Marcatili to
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estimate the effective index of the grating components, but that was not attempted here [45].

Our approach was to alter the grating coupler design such that the grating was periodic with every two

teeth. The spacing between the teeth were all of width dgap and teeth had widths of dtooth,1 and dtooth,2, as

is shown in Figure 4.16. During our simulations, we assumed that the thickness of the SiN cladding layer

was 40 nm, though the cladding thickness on the physical chip was closer to 70 nm.

Ultimately we chose two designs. Design 1 had dgap = 0.396 pm, dooth,1 = 0.324 1ttm, and dtooth,2 = 0.780

pm. Design 2 had dgap = 0.340 Mm, dooth,1= 0.340 Mm, and dtooth,2 = 0.85 pm.

I0.040Opm

0.220 pm

tooth,1 dt..th,2

00 0000
-300 30 -30 30 TE -30 30

-6 0 \\00 -6*/'\1600
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Figure 4.16: TE/TM Grating Coupler Design
The picture on top shows the nomenclature used to define the grating pattern. The plots on the bottom

show the far-field directivity patterns for purely TE, Design 1, and Design 2 grating couplers. The arrows
correspond to the approximate angles the fibers will be at with respect to the grating coupler.

Simulation results are shown in Figure 4.16. Though the directivity of the grating is somewhat com-

promised by roughly 2-3 dB because there is stronger radiation in other directions, the farfield radiation

patterns for both TE and TM modes show peaks at around 10 degrees.

Experimental results are shown in Figure 4.17. As the graphs show, as the TM component of the incident

light increases, more light passes through the waveguide, so the peak height decreases with respect to the
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Figure 4.17: TE/TM Grating Coupler Device Measurements
Transmission spectra with different input polarizations for modulators with Design 1 and Design 2 grating

couplers. Devices were on the CNSE chip.

background transmission. When the TM polarization dominates, the transmission spectrum of the photonic

crystal cannot be detected. No interference is observed. Therefore, the TE and TM mode will not interfere

with each other and generate a Fano line-shape transmission spectrum. Note that the normalization of power

was done using an average transmission efficiency through the waveguide, so the regions of the transmission

spectra that exceed zero are artifacts of the normalization, and do not represent gain of any sort.

4.4 Summary

We showed that Fano interference could be obtained by interfering the fundamental and first excited TE

modes, but could not be obtained by interfering the fundamental TE and TM modes. In theory, the

fundamental and first excited modes in an "infinite index rectangular waveguide" (the optical analogy to a

particle in an infinite well system for quantum mechanics) should also be orthogonal. However, both modes

have a dominant Ey component, so when the modes do overlap, the modes interfere. In contrast, the TM

mode has a dominant E, component, so the interference efficiency is limited by the mode overlap of either

E. or E2, which will already is small.
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Because of previous work [47], we expect that Fano interference will improve modulator extinction and

efficiency. However, we have yet to test the active Fano devices to ensure that they work as expected.

In the future, more work needs to be to optimize the modulators. One task would be to characterize the

phase between the fundamental and first excited TE modes. This could be done by systematically varying

the lengths of the cavities. Another would be to design the supporting electronics to reduce its capacitance

and reduce its effect on the quality factor and insertion loss of the resonant mode.
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Chapter 5

Summary and Future Work

This thesis presented work on three different projects. Each project was an application of sub-wavelength

photonic structures, but appear very different because of the system's different boundary conditions. We

first used theory or numerical simulations to predict the behavior of each system, and then verified our

simulation results with experiments. For all of the projects, a next iteration device needs to be designed in

order to improve on what we presented here.

In summary, the first project was the large aperture, miniature spectrometer. By using a large area

1D diffraction grating, we built a spectrometer that used the Talbot effect to resolve different wavelengths.

Conservatively, the resolution was 4 nm, though wavelengths of less than 1 nanometer were differentiable.

We also found a spectrometer design that can potentially have a resolution of less than 0.5 nm resolution.

The spectrometer, excluding the read-out electronics and the extra space, could fit within a 10 mm x 10 mm

x 5 mm box. Including the extra components of the spectrometer, the spectrometer was still able to fit within

a 25 mm x 25 mm x 20 mm box. The etendue of the spectrometer was approximately 0.033 mm 2 . This

was calculated assuming a 1 degree acceptance angle. Though this was not explicitly tested, our simulations

suggested that a the wavelength can still be detected, albeit at a lower resolution. We also saw broadened

peaks for clearly diverging light sources, so this estimate is reasonable. While we were able to successfully

miniaturize the spectrometer, we still were unable to completely and accurately explain some parts of our

experimental results. For example, the measured wavelength was always offset from the actual wavelength,

and the offset varied with detector position. Our spectrum also sometimes showed two peaks, instead of a

single peak, that corresponded to the incident wavelength. In the future, we could improve the spectrometer

increasing its acceptance angle. This would improve the light-collecting power of the spectrometer, and
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reduce the sensitivity of the spectrometer to the incident angle of the beam.

The second project was the photonic crystal barcodes. By engineering the defect cavity of the resonant

cavity, the back-scattering efficiency can be increased. We presented an initial set of measurements on

CMOS PhC barcodes to better understand the resonant modes and how the defect cavity modfications

affected them. The defect cavity contained three resonant modes, two of which had strong vertical emission

but low Q, while one mode had low vertical emission but high Q. The highest Q mode that we measured

was roughly 800, which corresponds to a FWHM linewidth of roughly 1.75 nm. This fell short of our target

linewidth of less than 0.5 nm, but is narrower than other proposed barcodes like quantum dots. If we obtain

a better understanding of photonic crystals in confined materials in order to explain some of the phenomena

we observed, like the shifting of the resonant frequency with device size and fine structure within in the

resonant peaks, we might be able to use this knowledge to engineer barcodes with even narrower linewidths.

The third project was the Fano resonance modulators. We investigated generating Fano resonances

by coupling to the fundamental and excited TE mode, and also by coupling to the fundamental TE and

TM mode. Fano interference was observed only using the first method. We attempted to characterize the

asymmetry of the Fano line-shape depending on the coupling efficiency to the two modes, but were unable

to do so because we did not consider the phase between the two resonant modes. More work needs to be

done in order to present modulators that will reliably exhibit Fano resonances, and the Fano modulator's

extinction and efficiency still need to be characterized.

5.1 Next Steps and Future Work

Though the next steps for these projects were mentioned briefly in the previous chapters, we will summarize

and elaborate on the work that needs to be done to finish or improve each project.

5.1.1 Talbot Spectrometer

As of now, we are able to resolve two different laser lines that are about 3 nm apart. The theoretical resolution

of this spectrometer, assuming plane-wave incidence, was calculated to be about 1 nm. To improve the current

spectrometer design, we should first understand why the experimental resolution is not as small as predicted-

this might be a result of an imperfectly collimated beam at the input, or perhaps it is line-broadening due

to the finite line-width of the laser itself.

We were able to resolve the wavelengths of two laser sources that were about about 6 nin apart from each
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other. The next step would be to use the spectrometer to resolve the spectral composition of a incoherent

light source, like a calibration lamp. As of now we were unable to resolve the spectral composition of a

neon calibration source. The light from the calibration source was filtered using a 50 pm pin-hole or an

iris, and the expanding beam was either directly incident on the detector or was passed through a lens or

beam expander in attempt to collimate the beam. However, the light incident on the detector seemed to

be very weak, since the picture appeared dark and required longer integration times than previously used.

When the light source was close to the detector and directly incident on the detector without any spatial

filter, the intensity seemed to be sufficient, but no spectrum from the mid-field pattern could be found. This

most likely is because a wide range of angles are incident on the detector, so the Talbot effect is blurred out.

Therefore, if we are able to increase in the incident power while the beam remains collimated, we may be

able to measure the spectral composition of the calibration source.

In theory, there should be no reason why the Talbot spectrometer should be unable to spectrally resolve

the signal. One concern is that since the pixel does not simply sample the light-field pattern, but integrates

over a region of it, the detector image might be dominated by a DC background if the spectrum contains too

many different wavelengths. This should not be a serious limitation because if multiple images corresponding

to different laser wavelengths are added together manually, the FFT still reveals all of the wavelength

components. However, we should still develop a model to predict how the Talbot effect behaves when the

incident light contains a range of wavelengths.

To understand the origin of the measured wavelength offset and the two peaks in our spectrum, we should

develop code to predict the detector response at any orientation in the mid-field. At best, this may fully

explain the our experimental results. At worst, this can help us understand the tolerance of the spectrometer

when the components are misaligned. Other people in the group are working on removing the glass slide

and micro-lens array on top of the detector, as they might also contribute to the non-ideal features in the

spectra.

Table 5.1 compares our work to the existing miniature spectrometer. Our miniature spectrometer has

one of the higher etendues of the spectrometers presented so far, and potentially can have a comparable

resolution. It is not the smallest spectrometer presented, but is good enough for our application.

Our experimental work was done with off-the-shelf components. A higher resolution spectrometer can

be built according to the design curves. This would help us verify that the design curves are correct, and

could potentially be used to measure actual Raman data, if the signal-to-noise ratio and dynamic range of

the detector is sufficient.
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Table 5.1: Miniature Spectrometers

This table lists recent miniature spectrometers that have appeared in the literature. The estimates of the
spectrom-

eter size included the space in between the grating and the detector. Etendue is calculated from 7r(NA)2 Asjjt.

Author Spectrometer Resolution Etendue (mm2 ) Size (mm x mm x mm)
Type

Kung 2001 [38] Talbot 42 nm 0.003 40+ x 4.9 x 6.5

Xu 2003 [92] Disordered 3D PhC 2-20 nm estimate 0.024 30+ x 5 x 5

Redding 2013 [67] Disordered 2D PhC 0.75 nm le-7 0.100 x 0.050 on chip

Park 2008 [58] Fresnel 10-23 nm 8.2e-4 1-7 x 0.750 x 0.750

Momeni 2009 [48] Waveguide 0.010 nm le-7 0.080 x 0.200 on chip

Wang 2014 [87] Broadband Diffrac- 1 nm 0.077 500 x 9 x 9
tive Optic

This work (exp.) Talbot 4 nm 0.033 5 x 10 x 10

This work (theor.) Talbot 0.5nm 0.033 3 x 10 x 10

The etendue of this device could be improved if the angle of acceptance is increased. This can potentially

be done using computational methods, or maybe by designing a flat lens, as reported by Arbabi et al., [3] to

collimate the incoming light. This step would help reduce the size of many spectrometers, since all systems

right now require some optics to clean or focus the light onto the spectrometer itself.

5.1.2 Photonic Crystal Barcodes

The barcodes devices fabricated were on the order of 10pm by 10pm, and the narrowest linewidth measured

was about 2 nm. Our high-end goal for this application was to design resonators that were as small as

possible and exhibited Q's of about 100000. This would enable us to make 10000 barcodes with single

resonant peaks within a 100 nm spectral range. However, as shown by our experiments, one resonant cavity

can have multiple peaks. Having multiple peaks increases the number of barcode variants that can be made.

The spectral characteristics of the PhC barocdes as they are now are not terrible compared to the existing

barcodes technologies. Considering the broadest linewidths, which are about 10 nm, we would have about

10 barcodes within a 100 nm span. Then if we were able to engineer the three resonant frequencies such

that the relative position of the three resonant frequencies was altered, we could make another 10 barcodes

for each new orientation.

The main concern is the barcode's size. The barcode is already relatively large for a cell, and would have

a lower chance of being useful in a cellular environment if the barcode size is increased. Because the in-plane
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Table 5.2: Comparison to Existing Biological Barcode Technologies

Barcode Description Barcode Type Size Spectral Line Number of
Width Codes

Microscopic beads en- Spectroscopic 100ptm diameter 35 nm to 100 nm 2N
coded with fluorophores (Visible) sphere (asymmetric) [681
beads [5]

Microscopic beads en- Spectroscopic 10pm diameter 20 nm to 90 nm mN a

coded with quantum dots (Visible) sphere [7] [68]

[91]

Nanoporous anodic alu- Spectroscopic 2D thin-film about 5 nm < 2N
mina [69] (Visible)

Porous-silicon photonic Spectroscopic 94 mm x 94 mm 11 nm 2N
crystals [11] (Vis-NIR) x 5 mm

Silicon colloid Microcavi- Spectroscopic 4.1 pm diameter 1 nm < 2N
ties [66] (NIR) sphere

This work (goal) Spectroscopic 10 pm x 10 pm < 0.5 nm 2N
x 220 nm

This work (exp.) Spectroscopic 9.1 pm x 7.35 2 nm 2N
pm x 220 nm

Unless otherwise marked, N corresponds to the number of distinct units (e.g. fluorophores) possible.
a m = number of intensity levels.

and material absorption loss of these devices limits the maximum Q achievable for each resonant mode, it

will be difficult to increase Q by two to three orders of magnitude while maintaining the barcode size, and

potentially impossible if we had to reduce the barcode's size as well.

In order to increase the quality factor of the cavity, we first should understand why the resonant frequen-

cies of the cavity change with cavity size, and the origin of the fine structure of the peaks.

The fabricated devices could be carefully characterized to better understand how small changes in the

resonant cavity affect the radiative Q of the resonant modes of the cavity, but understanding how the

photonic crystal resonant modes behave in a confined slab can lead to insight on how to use these features

to our advantage. For example, the fine structure in the peaks could be in-plane or out-of-plane Fabry-Perot

resonances that the PhC resonant mode couples particulary strongly to. To determine whether or not the

fine-structure peaks are in-plane or out-of-plane, one could tilt the resonant cavities at various 4s to see if the

fine-structure is changes or not. Once this effect is understood, the device can be designed to avoid or utilize

these features. If the fine structure is independent of device orientation, it could be used to encode even more
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information in the barcode. The PhC barcode would then be similar to the colloidal silicon microcavities

[11], but be able to store even more information because it would also have the resonances from the PhC.

Investigating the design of the resonant cavity more thoroughly might also be worthwhile. For example,

it may be better to simulate other cavity designs, like a hexapole design as propose by Takagi et al. [77] and

Kim et al [37]. Because of symmetry, these Q's for the resonant modes may be more similar, as opposed to

the current cavity where the x-polarized modes are extremely low Q while the y-polarized mode is relatively

high Q. If we do not limit ourselves to CMOS processing, we could also increase the radiative Q by increasing

the thickness of the device.

Relying only on engineering the defect cavity to change the vertical emission and radiative Q of a single

mode might not be enough to achieve resonant peaks with line widths of about 0.01 nm. In order to

achieve the target Qrad and Qlj0 for the back-scattering devices, non-traditional PhC designs need to be

investigated. For example, we should investigate using interference effects, like Fano interference [27] or

cancellation [33] to decrease the linewidth of the resonant peak.

It would also be interesting to investigate how the boundaries of the PhC device can be engineered to

reduce in-plane loss of the resonant mode. For example, it may be possible to engineer the PhC so that

the edges totally internally reflect the resonant mode, preventing the fields from leaving the device. To do

this, one could investigate the transmission and reflection properties of the photonic crystal by finding its

isofrequency diagram through simulation.

On the measurement side, the current experimental set-up needs to be improved. For example, by

replacing the camera with a large area photodetector and replacing the polarizing beam splitter with two

polarizers with a higher rejection ratio, the sensitivity of the measurement will improve. By rebuilding the

system so that it is not vertically oriented on a microscope that is sensitive to vibration, the noise in the

measurement will be reduced.

5.1.3 Fano Resonance Modulator

To complete our analysis on the Fano modulators, we need to characterize the modulation extinction and

efficiency of the modulators on the most recent tape-out. This was not done due to time constraints.

Before we can compare with state-of-the-art silicon photonic modulators, the next step for this project

would be to better understand how to reliably engineer Fano resonances with strong asymmetries; the key

concept that is still missing is being able to predict the phase between the fundamental and first excited

TE modes. This might be as simple as using the propagation constant of each mode to figure out how the
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ideal length of the modulator. If there is another chance to put a few Fano devices on a tape-out, it would

be worth having Fano modulators of different lengths to check if our predictions are correct. In a previous

iteration of devices, a resistor was used to thermally tune the index of the bus waveguide and control the

phase between the resonant mode and the propagating mode. However, the previous devices showed high

loss, so we did not use include a tuning resistor to minimize losses. Furthermore, if one could accurately

predict the phase of the Fano modulator, the modulators would be easier to design and test in the future.

To prove that the photonic crystal modulators can have remarkably low energy costs per bit and better

high frequency modulation response due to the small size of the resonant mode, we would need to optimize the

doping distributions and the modulator pads. For example, we could optimize the doping distribution around

the cavity and reduce the internal capacitance of the contact pads. Alternatively, since more researchers

have worked on optimizing the structures of ring resonator modulators, one could attempt to design ring

resonators that exhibit a Fano resonance to improve their modulation extinction and efficiency.

5.2 Conclusion

Though each application (the spectrometer, optical barcode, and electro-optic modulator) already has rela-

tively well-defined solutions, the presented ideas can expand the limits of each technology. Specifically, by

utilizing interference effects, such as the interference between the m = -1, 0, +-1 diffraction orders for the

Talbot spectrometer, or the interference between two resonant modes for the PhC barcodes, or the interfer-

ence between one resonant mode and one continuous mode for the Fano modulators, the limits of existing

technologies can be pushed further. We were able to create functional, first-iteration devices that all used

periodic, subwavelength dielectric structures, though more work needs to be done to optimize the devices to

prove their benefits over the current state-of-the-art technologies.

Of these three technologies, the theory explaining the spectrometer was the most complete, since the

Talbot effect is relatively easy to understand. The theory behind the Fano modulator is also relatively well

understood, though we still have not developed a model to estimate the phase between the two modes. For the

barcode application, though the back-scattering theory is well understood, developing size-constrained, high

quality factor PhCs is an interesting challenge that will require more insight. If successful, the applications

might extend beyond what we proposed here.
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.1 Electrical Modulation

.1.1 Carrier Depletion Modulation

The first method is the depletion of carriers that were introduced to the resonator structure by material

doping. Typically, p-n junctions are used for depletion mode modulation, since much of the resonant mode

in the cavity would overlap with the depletion region and see the most change in carrier concentration. In a

p-i-n diode, the depletion width approximately remains constant. Because the the carrier concentrations p

and n are generally much greater than the doping of the intrinsic (i) region, the i region is usually completely

depleted even at zero bias voltage. The width of the depletion region still does change with reverse bias,

though the change is usually small compared to the width of the i-region.

Assuming the i-region is completely depleted at zero bias voltage, the total depletion width is

I2esi NA + ND kBT NDNA
Wdep Wi +i l n 2 -VA ) (1)

q NAND q ni

where Wi is the width of the intrinsic region, si is the dielectric constant of silicon, NA and ND are the

doping concentrations of the p- and n-regions respectively, and VA is the applied voltage.

The junction in AC can be modeled as a parallel plate capacitor (with a parasitic series resistance).

When a higher reverse bias voltage is applied, carriers are removed from the edge of the depletion region

and doping impurities are ionized. When the bias voltage is returned to a lower bias voltage, carriers return

to the edges to the quasineutral region. Considering only the AC signal, it is as if the edges of the depletion

region are the plates of parallel plate capacitor that are being charged and discharged. In the case of the p-i-n

junction, the capacitance only decreases slightly with reverse bias voltage because the junction width only

slightly increases, and is largely determined by the i-region width. For a junction of area A, the capacitance

can be modeled as

C esiA EsiA(20= ~s~ E 4. (2)

The resistance of the p-i-n junction is largely determined by the resistance of the intrinsic region,

R =W (3)
o A

where a = q(ppp + pian) is the conductivity and A is the area of the junction [75]. In reverse bias, the

conductivity is largely defined by the photo-generated carriers due to the absorption of the light in the
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Figure 1: Diode Small-Signal Model
(a) This graph shows the minority carrier density when the device is in forward bias. (b) This graph shows

the charge in the depletion region. The shaded regions show the "parallel plates" that are charged and
discharged with modulation. (c) This circuit is the model of a diode, where Cdiff is the diffusion

capacitance (dominant in forward bias), Cdep is the depletion capacitance (dominant in reverse bias), rd is
the small-signal resistance of the diode, and Rs is the series resistance of the diode (which can be ignored

in small-signal analysis). [761

resonant cavity. An estimate of the maximum switching frequency can be found by modeling the junction

as an RC circuit in parallel.

.1.2 Carrier Injection Modulation

The second way to achieve modulation is through the injection of carriers by applying a forward bias. The

IV characteristics on p-i-n junctions are similar to p-n junctions, except that the current is a function of

the intrinsic region width Wi as opposed to the minority carrier diffusion length. The IV relation can be

expressed as [751

AqWi (4)

I = (Pn,o + np,o)e kBT. (4)

In this equation we assume the lifetimes of the minority carriers (-r) to be the same.
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Figure 2: Theory of Turn-on and Turn-off Transients

(a) This figure shows what typical on and off transients look like in a p-n junction. When the diode is

turned off, carriers must either recombine or be carried out of the depletion region by the internal electric

field. When the diode is turned off, carriers are injected into the depletion from the quasineutral regions.

(b) This figure shows what the minority carriers look like in the on and off states. [761

Because of the current going through the diode, the diffusion capacitance dominates. Defined generally

as C = , where Q = Q, + Q, = 7re(I + I,), the diffusion capacitance can be expressed as

Aq2 W_
Cdiff = kBT (P,o + nP,o)e kBT. (5)

The resistance is still as previously defined in equation (3). However, the conductivity is largely deter-

mined by the injected carriers, and is proportional to the current through p-i-n junction in forward bias.

The small signal resistance resistance, r = - (vI) is then approximately the inverse of the forward cur-

rent. Again, to find the maximum switching frequency, the diode can be modeled as a RC circuit with time

constant r = RC.

However, since typically square waves of bits are used to characterize modulators, which have high and

low frequency components as opposed to sinusoidal waves of a pure frequency, r = RC is not the most

accurate estimate of the roll-off frequency. A more useful way of approaching the problem is by looking at

the transient behavior, which is determined by a combination of recombination/turn-on and injection/turn-

off time constants. When the electrical signal goes from high to low, the optical signal turns off when the

carriers in the intrinsic region have been removed. The removal of carriers in the intrinsic region is affected

by the carrier drift from the electric field and the recombination of electrons and holes.

The minimum switching time is [751 [42] is about
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1 1 (e + P/h)(Vbi + VR) 1 Vsat'n + Vsat,p (6)
Toff f e Wi2 -e Wi

where re is the recombination lifetime, ya and yu, are the mobilities of the electrons and holes respectively,

Vsat,n and Vsat,p are the saturated velocities of the electrons and holes respectively, Vi is the built-in voltage,

VR is the applied reverse bias voltage, and Wi is the width of the intrinsic region. The physical intuition

behind this switching frequency is simply that there are two parallel mechanisms of carrier removal: recom-

bination (characterized by the recombination lifetime), and electrical removal (characterized by the time it

takes for the minority carriers to cross the intrinsic region width). Notice that the larger the intrinsic region

width, the longer the turn-off time constant is.

When the electrical signal goes from low to high, the optical signal turns on once the carrier density in

the intrinsic region reaches NON. The turn-on time constant can be approximated as [76]

J.In
Ton = Teln( Zn (7)

Jinj - Jon

where -e is the carrier lifetime, Jini is the injected current density, and Jon is the current density that

corresponds to the on-state carrier density. In single-crystalline silicon, the carrier lifetime is around 1 to

5 ns, it becomes difficult to obtain picosecond switching required for Gbit/s communication without large

driving currents. Therefore, depletion modulators tend to be more energy efficient at rates faster than 1

Gbps.

However, in polysilicon, the carrier lifetime is significantly reduced. According to Ghosh et al, the effective

lifetime of polysilicon can be expressed as [24]

Tef f d(8)6-vN,

where d is the dimension of the grain (which was modeled as cube), o- is the measured capture cross section

for surface states, v is the thermal velocity of the carriers, and Ns, is the concentration of recombination

centers per unit area at the grain boundaries. If we assume a = 2 x 10 1 6cm 2 , V = 10' cm/sec, and

Ns, = 1.6 x 10 3 cm-2, then

reff = 5 X 10- 6 d. (9)

For the all-optical microring modulator devices fabricated by Preston et al, the polysilicon grain size
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was anticpated to be approximately 300 rnm, which corresponds to an effective lifetime of around 150 ps.

Experimentally, they measure an effective lifetime of 135 5 ps [65]. Therefore, reducing the carrier lifetime

by about a factor of 3 is very possible, and would allow for modulation up to at least 3 GHz if the injection

current was 0.

.2 Talbot Effect Depth of Field

In Lokshin and Guerineau, they claim that the depth of field of the Talbot effect is dependent on the number

of lines in the grating [40] and the width of the grating slit [26]. Though neither of these papers showed

derivations, it is likely that they superposed spherical waves propagating from the transmission grating.

Consider a 2D system, with an infinitely long transmission grating with infinitely small slits spaced a

distance d apart. The slits are infinitely thin, so that transmission from each slit is a spherical wave. The

intensity at any x and z, I(x, z), can be expressed as

I(X, z) = exp(-jkrN) (10)
N-- sqrt(rN)

where rN is the distance from point (x, z) to the Nth slit.

If we look at the intensity as a function of z at x = 0, the equation is simplified to

exp(-jk(iJ(z 2 + (Nd)2 )))I(x, z) = (11)
N=-oo z2 + (Nd)2

Using a Taylor expansion to simplify the square root, we get

I(X, z) exp(-jkz) exp(-jk(N2 d2 /2z))
N=-oo z+N2 d2/2z)

We notice that only when kN2
d

2 = mir is the intensity non-zero. Solving for z, we obtain the Talbot2z

distance, as expected. However, this also means for an infinite grating, we obtain delta functions at the

Talbot distances. With a grating of a finite size, we'd get a sinc function in z at the Talbot distance. We

could also predict that by making the slits wider, the depth of field for the Talbot self-image would also

increase.

The above equations are a restatement of Fresnel diffraction for a transmission grating. However, the

conclusions we reached do not match the simulation results-this is because of the decreasing intensity of the
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Figure 3: Variation of Talbot Effect Depth of Field
This graph shows simulations of the intensity as a function of z for a variety of grating sizes and slit

widths. Here, N is the approximate number of slits an w is the width of the slit relative to the period. The
wavelength-to-period ratio (A/d) is 1.89.

spherical wave as it propagates farther away from the slit. The above conclusion assumes that the waves

from all slits are equal, when in reality, the slits that are closest to it dominate the intensity pattern. As a

result, the mid-field diffraction pattern looks more like cosines than delta functions.

Most of them closely match, with the exception of the N = 20 plot and the w = 1 plot. The N = 20

plot decays because the z on the graph goes past the region where the Talbot effect exists. The region where

the Talbot effect exists is determined by the region where the m = -1,0, and +1 diffraction coexist. The

w = 0.1 plot is different because the smaller slit size transmits waves that are more spherical/non-paraxial.

.2.1 Farfield Radiation Pattern Calculation

The surface electric (J,) and magnetic (M,) currents are calculated using

123

N = 20, w =0.5
... N20 w= 05



Js= f x H = - Hv + H

Ms -h x E = 2Ev - DE.,

The vector potentials for each are

In the far-field, r ~ R - p cos T, where

kxx + kYy.

Under this approximation, we have

p = v/x 2-+y 2 . Note that kp cos IF = kx sin 0 cos #+ky sin 0 sin 0 =

e-jkr
A = to N

4irr
e-jkr

F =e0  L47rr

, where

Nx(kx, ky) = -FT {H,(x, y)}

Ny(kx, ky) = +FT {H,(x, y)}

Lx(kx, ky) = +FT {Ey (x, y)}

Ly (kx, ky) = -FT {Ex (x, y)}

(17)

(18)

The numerical aperture in this coordinate system is simply kX

acceptance of the objective.

Alternative explanation: Because typically a single polarization

k = k2 sin2 , where 0 is the angle of

of the electric field is dominant, the
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far-field radiation pattern can be determined by propagating the near-field pattern using spherical waves.

Because we are interested in the far-field, the Fraunhofer approximation can be used. This also tells us that

the far-field radiation pattern is the 2D Fourier transform of the near-field pattern.

.2.2 Barcode Device CNSE Chip Layout

Barcode devices on the CNSE chip are explained in the figures.
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Figure 4: Map of Barcode Devices on Chip
Key explaining devices.

.2.3 Modulator Device CNSE Chip Layout

Active and passive devices contain the same modulator architectures-the basic Lorenztian modulator, four

types of tapered Fano modulators, and two types of TE/TM grating coupler modulators. Each cavity has

variants with at least 0, 8, and 12 mirror holes. The active devices have different p-i-n structures (small 'i',

large 'i') around the cavity so that hopefully a few devices will work well. The pads are designed for a 100
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Figure 5: Map of Barcode Devices on Chip
Picture of device layout.
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Figure 6: Map of Modulator Devices on Chip

devices. Region enclosed by red box are the waveguide designs.
box are passive devices.

Region enclosed by green

micron pitch and are 60 1um squares.
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