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Abstract

A class of discrete time priority queueing systems with partial

interference is considered. Packet-radio communication networks that

use a certain mode of operation fall into this class. In these systems

N nodes share a common channel to transmit their packets. One node uses

random access scheme while the other nodes use the channel according to

prescribed priorities. Packet arrivals are modeled as a discrete-time

batch processes, and packets are forwarded through the network according

to fixed prescribed probabilities.

Steady-state analysis of the class of systems under consideration is

provided. In particular, we present a recursive method for the derivation

of the joint generating function of the queue lengths distribution at the

nodes in steady-state. The condition for steady-state is-also derived.

A simple example demonstrates the general analysis and provides some insights

into the behavior of systems with partial interference.
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Introduction

The survey paper by Kobayashi and Konheim [1] discusses many models of

discrete-time queueing systems. Such systems have been receiving increased

attention in recent years, [2-4] due to their usefulness in modelling and

analyzing various types of communication systems. Packet-switched com-

munication networks with point-to-point links between the nodes and fixed

length data packets motivated most of these models. The models in [2-4]

are of tandem nature since in point-to-point networks the transport of a

packet from its source to its destination involves the transmission of the

packet over a succession of links. The fixed packet length assumption

induces the discrete-time nature of the models.

In this paper we consider a class of discrete-time priority queueing

systems with partial interference. Consideration of these systems have been

primarily motivated by the class of packet-switched communication networks

called the multi-access/broadcast networks, or packet-radio networks. In

these communication networks all nodes share a common channel through which

they transmit their packets and from which they extract packets destined to

them, hence the multi-access nature of these networks. In addition, when

a node transmits a packet through the shared channel, all nodes that are

within its transmission range hear this transmission, hence the broadcast

nature of the systems.

We assume that the channel time axis is slotted into intervals of size

equal to the transmission time of a packet. All packets are assumed to be

of fixed and equal size. The nodes are synchronized so that they may start

transmission of a packet only at the beginning of a slot, hence the discrete-

time nature of the system. All nodes are assumed to have infinite buffers.
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One of the most crucial issues in multi-access networks is the protocol

required to transmit packets on a shared channel in a distributed environment.

For a survey of multi-access protocols the reader is referred to [5]. The

design and analysis of multi-access protocols is not trivial. This is due

to the folllowing two facts that hold for packet-radio networks: (i) If

two or more nodes transmit during the same slot to, the same node, then the

overlap in transmission destroys all'packets involved in the transmission;

(ii) A transmiting node is unable to receive packets transmitted by other

nodes of the system. These two facts together with the broadcast nature

of the network give rise to statistical dependence between the queues

of the nodes of the network. In most cases this dependence is rather com-

plicated and there is little hope to obtain analytical results for gen-

eral multi-access protocols and for general configuration of networks. The

purpose of this paper is to analyze quite general network with a specific

mode of operation.

One mode of operation that can be accomplished in multi-access networks

is a conflict-free mode.' This can be achieved if every node knows perfectly

which are the nodes that have packets ready for transmission. This is pos-

sible in systems where a central scheduler schedules the transmission accord-

ing to information it receives from the nodes, or in systems where the nodes

exchange this information between themselves [6]. Generally, any order of'

transmission can be used, in particular, priority can be easily implemented.

Yet, if there are some nodes that cannot exchange information with the

scheduler or with other nodes, on which nodes have packets ready for trans-

mission, then their transmissions cannot be accommodated in a conflict-free

mode of operation and they must use some random access scheme [5].
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The class of discrete-time queueing systems that we consider in this

paper consists of systems having N-1 nodes that access the channel in a

conflict-free mode according to fixed priorities that are preassigned to

them. No two nodes have the same priority and a given node is allowed to

use the channel in a given slot only if it has a packet ready for transmis-

sion and all nodes with higher priority have empty queues. In addition,

there is an extra node in the system that cannot be accommodated in the

conflict-free mode of operation and therefore is allowed to use the channel

in any slot on a random basis. If the node uses the channel along with

any other node then their packets are destroyed and must be retransmitted,

hence the interfering feature of the systems under consideration.

To enchace the network structure of the problem we attach to each

node a given probability distribution that indicates the probabilities

that a packet transmitted by the node is forwarded to one of the other

nodes or to the outside of the system.

Outside sources feed the nodes of the system with new packets. An

important feature of this paper is that these sources are allowed to

depend on each other. Thus we are able to characterize a rather general

class of arrival processes.

Several discrete-time queueing systems that have been previously

investigated [7-9] are related to the class of systems considered in this

paper. In [7] a "loop system" in which nodes transmit packets only to the

outside of the system, the arrival processes are independent and there is

no interference, has been considered. In [8] only two-node systems have

been analyzed and in [9] no interference was allowed.

The paper is organized as follows: In Section 2 we describe the model
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:along with the assumptions and several definitions and notations that we use

throughout the paper. In Section 3 we present the steady state analysis of

the class of systems under consideration. In particular we develop a method

for deriving the joint generating function of the queue lengths of the nodes

and we give the.ergodicity condition for the system. Moments of the queue

lengths at the nodes can be derived from the generating function and average

time delays can be obtained by using Little's law [10]. Finally, in Section

4 we give an example and several numerical results.



2. Model Description

We consider a discrete-time queueing system in which the time axis is

divided into intervals of equal size referred to as slots. The slots cor-

respond to the transmission time of a packet and all packets are assumed to

be of the same fixed size. The system consists of N nodes and packets arrive

randomly to the nodes from N sources that in general, may be correlated.

Let Ai(t), i = 1,2,...,N, t = 0,1,2,... be the number of packets entering

node i from its corresponding source during the time interval (t,t+l). The

input process {Ai(t)}i=l t = 0,1,2,... is assumed to be a sequence of

independent and identically distributed random vectors with integer-valued

elements. Let the corresponding probability distribution and generating

function of the input processes be:

N
a(il,i 2,...iN) = Prob{L Aj(t) = ijJ ij = 0,1,2,... 1 < j < N

j=l

(la)

and
N A.(t)

F(z) = E { z. } (lb)
i=l

where we use the notation z = (Zl,z 2, .. . ,z N) .

All nodes share a common channel for transmission of their packets,

and transmissions are started only at the beginning of a slot. No more

than one packet may be transmitted in any given time slot. Using some con-

flict-free protocol the channel is made available to nodes i = 1,2,...,N-1

according to a fixed priority. Namely, node i (1 < i < N-l) transmits the

packet at the head of its queue whenever the queues at nodes 1,2,...,i-1 are

empty and the one at node- i is nonempty. Node N is a special node that

cannot participate in the conflict-free protocol and therefore apply a
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random access protocol. Namely, at the beginning of each slot for which the

queue at node N is nonempty, a coin with probability of success p is tossed.

In case of a success node N transmits the packet at the head of its queue;

otherwise it remains silent. Whenever node N transmits while another node

is also transmitting, then both transmissions are unsuccessful and the two

nodes must retransmit the packets at the head of their queues according to

the protocols described above.

In any case, when a node i (1 < i < N) transmits a packet successfully,

then the packet joins node j (1 < j < N, j $ i) with probability 8i(j) or

leaves the system with probability ei(0) . We assume here ei(i) = 0. All

packets received by a node from an outside source or from other nodes, are

buffered in a common outgoing queue and transmitted on a first-come first-

served basis. It is assumed that packets indeed arrive at every node of the

system, so that there is no node that is empty with probability 1 (in other

words, empty nodes are ignored). Finally we assume that the buffers at the

nodes have infinite length. A schematic figure of a node i in the system is

depicted in Fig. 1.
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3. Steady-State Analysis

To describe the evolution of the queue contents at the nodes, we need

several definitions. Let Li(t) 1 < i < N, t = 0,1,2,... be the number of

packets at node i at time t and let Ui(Li(t)) (1 < i < N, t = 0,1,2,...) be

a binary-valued random variable that takes value 1 if Li(t) > 0 and 0 other-

wise. Let V be a binary-valued random variable that takes values 1 and 0

with probabilities p and p = 1-p respectively. Also let D1(t), 1 < i < N,

0 < j < N, t = 0,1,2,... be a binary-valued random variable that takes value

1 if a packet -is successfully transmitted from node i to node j at time t,

where j=0 corresponds to the case that the packet leaves the system.

Using thes.e definitions it is easy to see that the system under con-

sideration evolves for t = 0,1,2,... as follows:

For 1 < i < N,

N i-l

Li(t+l) = Li(t ) + Ai (t) + C D (t) - Vi (t) Ui (Li ( t )) H [1-Um(Lm(t))]1 1= 1 m 1
m=l m1 m

(2a)

where

V UN(LN(t)) 1 < i < N-1

V.(t) = (2b)

V. i =N

Notice that Vi(t ) is a binary valued random variable and for i < i < N-1 it

can be interpreted as the interference factor at time t, i.e. it indicates

whether or not node N interfers with the transmission of node i. Clearly,

{L.(t)} N is a vector Markov chain. Assume that this Markov chain is
1 i=l

ergodic (we shall derive the condition for this later), let us consider

the steady-state joint generating function of the queue lengths distribution,
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(N L.(t)|
G(z) = lim E II z. (3)

t+ ( i= i

For notational convenience, let us define the following boundary generating

functions:

G (z) = G(z) (4a)
0-

Gi(z) = G(z)l 1 < i < N (4b)

Zl=Z2 = . = Zi =0

Gi(z) = Gi ( z)I O < i < N-1 (4c)
ZN=O

Notice that by our definition GN(z) = GN_ (Z) is a constant representing the

steady-state probability that the system will be empty. Let us also define

the following polynoms:

N

Qi(z) = ei(O) + i(m)z 1 < i < N (5)
m= 1

Theorem 1

With the above notations the following holds:

G(z) = F(z){GN(Z) + [G-l(Z) - GN(Z) ] [p +p ZN QN(Z)] +

N-1 ^A -1

+ I [G (z) - G.i(z)]z Qi(z) +

N-1 ^ ^

[ i_(z) - Gi(z) - G. (z) + G i(z)] p + pzi Qi(z)] (6)
i=l

The formal proof of Theorem 1 appears in the Appendix. Let us give

here an intuitive explanation for,(6). The right-hand side of (6) is a

multiplication of the generating function of the joint arrival process,
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that by our assumptions is independent of the state of the system, and an

expression that indicates, for the various -states that the

system may be at, which node is transmitting and how packets are moved

within the network. Specifically, GN(z) corresponds to the case that the

queues at all nodes are empty. GN_ (z)-GN(z) corresponds to the situation

that all nodes except node N are empty, therefore with probability p a

packet leaves node N and joins another node or leaves the system according

to the probabilities 8N(j) 0 < j < N. Gi_ (z)-G i(z) for 1 < i < N-1

corresponds to the situation that node N is empty as well as nodes 1,2,...,i-1

and node i has a packet for transmission. Then, a packet leaves node i and

joins another node or leaves the system according to the probabilities
A A

ei(j) 0 < j < N. Finally, the term Gi_ l(z)-G i(z)-G i l (z) + Gi(z). for

1 < i < N-1 corresponds to the case that nodes 1, 2,..., i-l are empty and

nodes i and N have both packets for transmission. In this case with

probability p the two nodes interfer and no packet is moved, while if node

N remains silent (this happens with probability p = l-p) then a packet leaves-

node i and joins another node or leaves the system as before. Rearranging

(6) we obtain:

N N-l^ A

X H i(z)Gi (Z) + E H i(z)G i(z)
i=l i-= 

G(z) = F(z) i0 (7a)
1 - F(z)[p + pz1 Qi(z)]

where

-1 -l
Pzi+li Z Q i(-)] 1 < i < N-2

H (Z) = 1 - 2p + pzN QN-() P NN-1 Q-(z i =N (7b)

P[1 - N QNZ)] i = N
ZN1QN (z)]
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and

P[1l-zI 1Q(z)] i.= o

^ -1 -1
Hi z pC Li+lQi+l (Z) Zi Qi z)W i < i < N-2 (7c)

P .lN1Qi
p[1 - ZN-1QN-1(z)]

In (7) we encounter a common phenomena in interfering queues, namely that

the generating function G(z) is expressed in terms of several boundary

functions. In order to uniquely determine G(z) in our system-we still

1
have to determine 2N-1 boundary functions, Gi(z) 1 < i < N and

G.(z) 0 < i < N-2. In what follows, we develop the method for obtaining

these boundary functions. The basic idea is to first. express Gi(z)

i = 0,1,...,N-2 (in this order) in terms of Gj(z) i + 1 < j < N-l. Then

Gi(z) i = 1,2,...,N-1 is expressed in terms of Gj(z) 0 < j < N-l and

Gj (z) i + 1 < j < N. Finally the constant GN(Z) is determined from the

normalization condition and using backward substitutions all the boundary

functions are determined. Along the above process we mainly use the fact

that the generating function G(z) is an analytic function in the poly disc

Izil < 1 < i < N.

In order to proceed we shall need the following Lemma:

Lemma 1: Let F(z) be the generating function of the joint arrival process

(lb), Ql(Z) the function defined in (5) and 0 < p < 1. Then for given

1Notice that in a general system where each node, can interfer with any other

node we might have up to 2N-1 boundary functions to determine. An example
for such a system is a network that all nodes use random access policy.



Izil < 1 2 < i < N, the following equation in Zl,

F(z)[pzl + (l-P)Ql(Z)] = z1 (8)

has a unique solution zl = Zl(z 2 z3, ...,ZN) in the unit circle Izll < 1.

Proof: Here we let 1z 11 = 1 and Izil < 1, 2 < i < N. We distinguish between

two cases: The first is the case that packets do arrive to some node

., 2 < 9 < N, from its corresponding source. The second is the case that

no packets arrive to nodes 2 < . < n from their corresponding sources. Our

assumption that packets indeed arrive to all nodes implies that in the latter

case, packets do arrive at node 1, and it routes some of them to at least

one of the nodes Q, 2 < 9. < N.

Case 1. There exists some node I (2 < g < N) for which the probability

that a packet will arrive to it from its corresponding source is strictly

positive, i.e., there exists a(il,i 2,..., iN) >. O for some i1 and some

i > 0 (2 < . < N). Therefore,

IF(z)[pZ1 + (1-p)Ql(z)]l < IF(z)l =

0 - m - N i.

= I a(ii2 , iN Z.

1z2 N
i=O i2=0 iN=0

< aI o .te I a(t li2m' p'riN)ti azsl

I I. p p lI a(ili2,oce.to..... ti N) = 1 =po i Z1t|. (9)
il=O i2=0 i -O

Hence, applying Rouches' theorem [11] the claim is proved in this case.
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Case 2. Packets arrive at node 1 and it routes some of them to at

least one of the nodes I (2 < 9 < N), i.e. there exist 081(Q) > 0 for some

2 < k < N. Therefore,

F(z)[pz1 + (1-P)Ql(Z)] < p + (1-p)Ql(z) =

N

p + (l-p) 81(0 ) + I 8 l( i)z i l < P + (l-p) = 1 = jZll (10)
i=2

Hence, applying Rouches' theorem the proof is completed.

Let al(Z 2 ,z3... ,ZN ) (for simplicity a1 ) denote the unique solution.

of (8). Let z(1) denote the vector z with its first component z1 replaced

by !1 Using a similar proof as for Lemma l.we can show that for Jzil < 1,

3 < i < N, the following equation in z2,

F(z ( )) [p 2 + (1-P)Q 2 (z()) = z2 (11)

has a unique solution in the unit circle 1z21 < 1. Let o2 (z 3,z 4,...,ZN)

denote this solution and z (2) denote the vector z with its first component

z1 replaced by al(a 2(Z 3 z 4,. .'N), z3 ,..,zN) and its second component z2

replaced by o-2(z3,z 4, ... ZN). Continuing this procedure we can have the

following Lemma that recursively determines the unique functions ai(Zi+l,

Zi+2 ..'.,ZN) 2 < i < N-1 as follows:

Lemma 2: With the notations above and for 2 < i < N-1, the following equation

in Zi,

F(z(i-))[p z. + (1-P)Qi(z(i))] = i (12)

has a unique solution in the unit circle Izil <-1 for I zjl < 1, i+l < j < N
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and z(i1) denotes the vector z with the variables z. replaced by C. for

1 < j < i-l.. This unique solution is denoted by o i(Zi+li+2 ,ZN)

If welet p=O and ZN=O in Lemma 1 and 2 and we use the recursions defined

by (8) and (12) for this case, then the unique functions Ji(Zi -1Zi+2',.

ZN) 1 < i < N-2 are obtained, i.e. 1 is the unique solution in the unitN-1 i - a o

circle jzll < 1 of the equation F(z)Ql(z) = zl where z = (Zl,z2,. .. ZN-1,0)

and Izil < 1 2 < i <N-1 and J. 2 < i < N-2 is the unique solution' in the

^(i-l) ^ l ^(i)
unit circle Izil < 1 of the equation F(z )Q(z(1)) = where z is

the vector z with z1 = al' z2 = 2"'''zi- 1 = i-1 and Izj < 1 i+l < j < N-2.

We are now armed enough to attack the problem of determination of the 2N-1

boundary functions.

Determination of the boundary functions G (z)0 < i < N-2

Letting zN + 0 in (6) we obtain:

G (z) = F(z){GN-l(Z) + PQN(Z)GNl(Z) +

0N- -1 
N-1A -1
+ [Gi-l (z)-Gi(z)]z Qi(Z)} (13a)
i=l

where z = (Zl,Z 2 ,...,ZN-10)

dGN_1 (z)
and G' 1 (Z) = (13b)

dZN zZN=0

Notice that G_ l(z) is a constant.

Rearranging (13a) and noticing that by definition GN_(Z) = GN (z) we obtain:N-1(-z) N
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N-2 -1 A 1 AN-2

E(z) + i i+ i+l(z) i Qi(z)]Gi(z)+li1Qi ^ 1
G(z) = F(z) A -

1 - F(z)z1 Qz) (14a)

where,

A - A^ A A

E(z) = [1 - ZN1QN- (z)]GNl(z) + pQN(Z)G_() (14b)

Notice that in (14) the boundary function G0(z) is expressed in terms of the

boundary functions G (z) 1 < i < N-1 and the constant G' (z). Now using

the analytic property of Go(z) we immediately obtain the following result:

Theorem 2: Let C and z(1 ) be as defined before. Then,

N-2 +lQi _(1) -i i) -

Gl(z) = F(z ( ))

i - F(z - (2 (z

This is true since Go(z) is an analytic function in the polydisk

lzil < 1 1 < i < N-1. Then in this polydisk whenever the denominator of

Go(z) vanishes, the numerator must also vanish. Since the demoninator of
A A

Go(z) vanishes at al, we have from (14) that:

N-2
^ (i )N-i ' ^

E(z) + Z [i+i+ ZQi iQi( )](z) =
i=2

A-1 (1) -1 (1) (
= 1 Q[(z ) - Q22 )ZG 1

i (z) (16)

which together with the fact that F(z(l)Ol Q(Z( )) = 1 and imply (15).

Now, exploiting the similarity between (14) and (15) and repeating the

above procedure for i = 2,3,...,N-2 we obtain the following result:



Theorem 3: Let i. and z(i) -2 < i < N-2 be as defined' before. Then

for 2 < i < N-2,
N-2

AA() - 3E(z tZJ+1Qj+ 1 (Z +) - 'j (Z(i) )G (z)

(17)

The proof of (17) is similar to that of (15).

Now, using (17) for i = N-2 we have,

z-1 (i )] ) + NPQ (ZQ(N-2)
(N-2) N- NlQN-l Nl-)+P(z )N 

G (z) = F(zi )
N-2 F-z) A(N-2) -1 (Nz2)2 1 - F(z z)N-1lQi+l (Z )

(18)

and since GN 2(Z) is an analytic function for tzN 1l < 1 we obtain from (19)

that

A1 (N-1)

pG' (Z) G (Z) N-lQN-l-z) (19)

constant GN l(z) Using (17) for i = N-3, N-4,...2, and then (15) and (14)

we obtain all the functions G.(z) 0 < i < N-2 expressed in terms of the

constant GN l(z) = GN(Z) Specifically, as we shall need it later let

us define the function k(z) as follows:

k(z) = GO(z)/GN(z) (20)

Determination of the boundary functions G (z) 1 < i < N-2

To obtain the boundary functions Gf (z) 1 < i <'N-2 we use a similar

procedure as for Gi(z) 0 < i < N-2. Let us first rewrite (7a) as follows:
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N
H(z) + I Hi(z)Gi(z)

G(z) = F(z) (21a)
1 - F(z)[p+pZl Q1 (z)] 

where H i(z) 1 < i < N are defined in (7b) and H(z) is a known function up

to the constant GN(z) defined by:

N-1

H(z) = I Hi(z)Gi (z) (21b)
i=O

Hi(z) are defined in (7b).

Now, using Lemma 1 and 2 we immediately obtain the following result:

Theorem 4: Let of z (i) 1 < i < N-1 be as defined in Lemma 1 and 2.

Then for 1 < i < N-2 we have:

Hz(i)) + Hz(i))G (z)H(z )+ H H, )G.(z)
G.(z) _ F(zi) j=i+l J 3 (22a)

1 M P--11 - -1 (i)- F(z ))[P+pzi+lQi(_ )]

and

H(z(N l)) + N(z(N )GN(z)
G -)(Z) (22b)
N-i HN_1 ((N ' 1))

We will demonstrate how (22a) is proved for i=l. Then by induction

one can easily obtain (22a) and (22b). Since G(z)-is an analytic function

for Izil < 1 1 < i < N and since the demoninator of G(z) vanishes at a 1,

we have from (21a) that:

H(z( 1)) + ( Hi(z( 1))Gi(z) + Hi(z(1))Gl(z) = 0 (23)
i=2
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Using the definition of Hl(z() from (7b), i.e. Hl(z() =

-1 (1) - (1) (1) - z
p[z2iQ2 (z(i )) -ii Qi(z(l))] and the fact that F(z ())[p+pl lQ(z )] =1

we getimmediately (22a) for i=l.

Now in (22b) GNl(z ) is expressed in terms of the constant GN(Z). Us-

ing (22a) for i = N-2, N-3,..., 1 we finally have all the boundary functions

Gi(z) 1 < i < N-1 expressed in terms of the constant GN(z).

Now that we have already determined G.(z) 0 < i < N-2 and G. (z)

1 < i < N-2 in terms of the constant GN(z) we still have to determine this

constant.

Determination of the constant GN(z)

To determine the constant GN(z) let us first prove the following:

Theorem 5: For 1 < Z < N let,

3F(z)
~r = at, 01(24a)

Zl=Z 2
= .. =ZN=l

and
N

;k = r, + i .j ej () (24b)
j=1

Then the following holds:

xi = p[Gi_l(l) - Gi(1)] + p[Gil() Gi(l)] 1 < i < N-1 (25a)

XN = P[GN- l(l) - GN(l)] (25b)

where,
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Gi.(1) = G i(z) O < i < N-1 (26a)

Zi+l Zi+2 '. ZN=l

Gi.(l) = Gi(z) 0 < i < N-2 (26b)

i+l i+2 ... N-1

and GN(1) = GN_1 (l) is just the constant we are looking for.

Proof: For 1 < i < N, let us derive both sides eq. (6) with respect to z.

and substitute zl=z2=... =zN=l. Then for 1 < i < N-1 we obtain

o = ri [GN 1 ( 1 ) - GN(1)]P ON(i) +

N-1 

+ [Gj-l (l) - Gj(l)]ej (i) - [Gi_ (l1) - Gi.l )] +
j=-1 
jai

N-1 / A

+ . [Gj l (l) - Gj(l) - Gj l ( ) + Gj(l)]p (i)
j=l
jai

p[Gi_1 (l) - Gi ( l) - Gi_ (1 l) + Gi (l)] (27a)

and

O = rN - P[GN_ 1(1) GN(1)]

N-1 A A

+ [Gi_ 1(1) - G i ( l ) ] i )
i=1

N-1 A A

+ . [G i-(1) - Gi(l) - Gi_l(1) + Gi(1)]PGi(N) (27b)
i=1

when in (27) we used the fact that G(1) = G0(1) = 1. Rearranging (27) we

get for 1 < i < N-l:
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o = r i + [GN1 (1) - GN(1)]peN(i) +

NJI 

+ j {p[Gj-l(l) - Gj()] + p[Gjl() - Gj(1)]}j (i)

jsi

- {P[G i-l(1 ) - Gi(l)] + p[Gil(l) Gi(l)]} (28a)

and

o = rN - P[GNl(1) - G(1) +

N-1

+ . {P[G il(1) - Gi (l)] + p[G i_(1) - Gi (l)]}ei(N) (28b)
i =1

In (28) we have N linear equations with N unknowns P[Gi_1(l) - Gi(l)] +

P[Gi 1(1) - Gi (l)] for 1 < i < N-1 and p[GN_1 (1 ) GN(l)]. Clearly (25)i-i- i -l)1 

solves these equations.

From (25) we obtain:

N-1^ ^

xi = PL[1-GN (1)] + P[Go(l)-GN-(1-)]

= p[l.XN/p-GN(1)] + p[G0 (l) - GN(i)] (29)

Therefore,

^ N-1

GN(1) - PGo(1) = P[1-XN/P] - (30)

A A

Recalling that Go(z) = k(z)GN(z) we finally have that:

N-1

p [i-XN/P] - 4 i
i=l 1

GN(1) =(31)
1 - pk(l)
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where k(l) = k(z) . (31) implies that the condition for

Z1=Z2= .=ZN_-l=

steady-state is:

N-1

. Xi < P(1-XN/P) (32)
i=l

Rewriting (32) as:

N-1

XN < p(l - X ki/P) (33)
i=l

we can explain the steady-state condition intuitively as follows: Clearly,

node N is the bottleneck of the system. If it is heavily loaded, then the

fraction of time that the channel is used by the N-1 nodes is
N-1 _

i Ai/P, so the fraction of time that the channel is available for node N
1=l - N-1

for successful transmissions is 1 - I Xi/P. As node N transmits with
i=l

probability p when nonempty the rate of its successful transmissions is
N-1

p(l- I Xi/P) which for stability must be greater than the arrival rate to
i=l

the node.

Having obtained the joint generating function G(z) we can derive, at

least in principle, any moment of the queue lengths at the nodes. Specifical-

ly, if we denote by L. the average queue length at node i in steady-state,

then

aG(z)
L. = (34)

z i Zl=2 = '. .=ZN l

Assuming that packets arrive at the nodes only at the end of a slot, then
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using Little's law [10] we may also obtain the average time delays at node i

denoted by Ti as follows:

T = Li/Ai (35)

where Xi is the total arrival rate at node i as defined in (24b). The total

average time delay in the system is obtained by applying Little's law to the

whole system and it is given by:

N N
h L / ri (36)

i=l i=l

where ri is the arrival rate at node i from its corresponding source as

defined in (24a). The total average delay T is clearly a function of the

transmission probability p. Obviously, as p decreases, the total average

delay increases since node N transmits rather rarely. Also when p increases

the total average delay also increases since there are many conflicts in

the transmission. Consequently, there is some intermediate value of p

(that depends on the arrival rates to the nodes) that'minimizes the total

average delay in the system. This will be demonstrated in the example given

in Section 4.
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4. Example

In this section we will use a simple example in order to show some

details of the general solution method developed in the previous section.

The example conists of the network of Fig. 2, where packets arrive to

nodes 1, 2, 3 and node 2 forwards its packets to node 1. Consequently

Ql(Z) = Q3() = 1; Q2(z) = z1 (here z = (Z1'Z 2 ,Z3)). We shall also assume

that:

F(z) = rlz 1 + rz2z3 + 1 - r1 - r

i.e., during each slot a packet arrives to node 1 with probability rl, with

probability r a packet arrives to both nodes 2 and 3 and with probability

l-rl-r no packet arrives to the system. Then using (8), (12) for 3 = 0,

p = 0, we obtain:

r

= 1 l-r

r 2

2 (1l-r)

Using (19), (18) and (14) we have:

P G1 (0,0,0) r G(O,O,O)
2 G(O, OO) = l-rl(,0

G(O,z2,0) = G(O,O,O)

G(zl,z2,0) = G(O,O,O)[1 + l-r-r z1]

Using (31) we have that:

p(l-r/p) - (rl+2r)
G(O,O,O) = l-pl-r)/(l-r1-r)
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and the condition for steady-state is:

p(l-r/p) - (r 1 + 2r) > 0

From (8) and (11) we obtain:

l(Z 2 ',z 3 ) = (1-f(z2 ,z 3 ) - rlP - /A)/2rlP

where,

f(zlz 3 ) = P(rz2 z 3 + 1 - r - r)

A = (1 - f(z 2 ,z 3 ) - rlP) - 4rlpf(z 2,z3)

and 2 (z 3 ) is the solution of

2
2 (Z 3 ) = c(c2 (z3), z3 )

in the unit circle [G2 1 < 1.

From (15) and (17) we obtain:

p(z -1) + 1 r(1-r ((z )3 I-r (2 z3),z3
G(O,O,z3 ) = G(O,O,O) -1

1 -2p + pz3 - (l 2(z,z 3

and

rp. l 1p.
G(O,z 2,z 3 ) = G(0,0,O) [p(1-z31) + 1-r _r (1-1(z2,z 3 ))

+ G(0,O,z93 ) (1-2p+pz3 -pz2 1(z2 z3 )}/{p(al (z 2 z3-z 2 1 (z 2 z3

Finally we have that:
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rlp
G(zl,2,Z3) = F(Zl,2 ,Z){G(0,0,0)[p(lz (1-z31) +

-1 - -1
+ G(O,O,z3)(1-2p+pz 3 -PZ2 z1) +

• G(O,z 2 93)P(Z 2 Z1-Z1 )f/[1-F(zz.,Z,2 z3) p+p 1 )]

The explicit expressions for the average delays in the system are too

complicated to be given here. To give some insight into the behavior of

this network we plotted these quantities in Fig. 3-5. In Fig. 3 T1, T2,

T$ and T are plotted as a function of r = rl for p = 0.4. In Fig. 4,

these quantities are plotted as a function of p for rl = r = 0.05. As

we can see, for small values of p, the queue is built up only at node 3

(since it is rarely transmitting) while for large values of p, queues are

built up at all the nodes and this is due to the interference.

As we see, there is an optimal transmission probability p* that

minimizes the total delay in the system. In Fig. 5 T min --the minimal

total delay in the system is plotted as a function of r = rl. It is

interesting to mention that p* - 0.34 and it is almost insensitive to the

value of r = r1. Also Tmin is not very sensitive to small variations in p*.
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Appendix
N L.(t)

Consider the evolution equation (2) and let Gt(z) E { i }.
i=l

Then,

N L. (t+l)

Gt+l(z) = E n zi 1 } =
i=l

N i-l
N Li(t)+ . D (t)-Vi(t)Ui(Li(t))H [ 1-U(Lm(t))]

F(z)E II zi m. m=l m1 (Al)
i=l

where in (Al) we used (1) and the fact that the vector of arrival processes

{Ai(t)}N is independent of the state of the system.
i=l

Now for 0 < j < N let the event that Li(t) = 0 for 1 < i < j and

Lj+l(t) > 0 be denoted by Qj(t). Then from (Al) we obtain:

Gt+1 (z) = F(z){Prob(QN(t)) +

LN(t)
+ Prob(QNl(t), v = b)E[zN /N_ l(t) , v- O] +

-1 LN(t t
+Prob(Nl(t), v = zN t)ZN / l(t), v = ll.QN((z) +

N-2 N-l L (t)
+ C Prob(Qj(t ) E[ n m /=j(t),LN(t = O] Qj(z) +

j=0 N m=j m ),LN(t)=

N-2 1 N L (t)
+ C Prob(Qjt),L(t >, v O)z E[ z /Qj(t),LN(t) > O, v=O]Qj(z)

j=0 m=j m 

N-2 N Lm(t)
+ [ Prob.(Q (t),LN(t) > 0, v = 1)E[ n z /Qj(t),LN(t) > 0, v = 1]}
j=0 N ' mtj m

(A2).

where in (A2) z0 - 1 and we used the definition of Qj(z) 1 < j < N. Now

since v is an independent random variable we obtain from (A2):
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Gt+ (z) = F(z){Prob(N(t)) +

LN(t)
+ Prob(N l (t))E[zN /QN l(t)p+pz

N-2 N-1 L (t) -1
+ I Prob(Qj (t),LN (t)=O)E[ II zm /Q(t)LN(tO)= ]z Qj(z) +

j=0 m 

N-2 N L (t)
+ Prob(j (t),LN(t) > O)E[ II z /j (t),LN(t) > O][p+pzj Qj(z)]}r=0 N( t mNj j-j=o m=j

(A3)

Now it is easy to see from (3)-(4) that for t +o we have:

Gt+ (z) G(z)
t+l - -

Prob(QN(t)) +- GN(z)

LN(t)
Prob(QN l(t))E[zN /QN1t(t)] - GNl(z)-GN(Z)

N-1 L (t) ^ ^

Prob(Pj(t),LN(t) = O)E[ I z /Qj(t),LN(t) = 0] + G (z)-G+l (Z)N m.j m j N -j
m=j

N L (t)
Prob(2j(t),LN(t) > O)E[ Z /Qj(t) LN(t ) > 0] +

N m=j 

+ Gj(z)-Gj+ (z)-Gj (z)+Gj+(z)

Therefore (6) follows and Theorem 1 is proved.



-29-

o o

o
o- 0

o

CD 0
cD

zCD

t'.
Xr! .XQ· at

(D
ED C

x

D-. o

o (]

0

.cD ZD CD

0



-30-

oo

(D )CD

0 CDL~ D

CQ.

ozC ~i CD

T o

D Z



15

T3

20

m) 15

4j

TO
em I

10 '

Figure 3am i

. ,.. . .· . . . . T1

Arrival Rate (Packets/Slot) r = r t

Figure 3: Average delays versus arrival rate



-32-

20

T3 T

I4

0

S I

I' . T100 p

0 
0.2 

04 
0.6 

0.8 

Transmission Probability p

Figure 4: Average delays versus transmission

Probability



-33-

Miinimal Total Delay (in slots)

0 ~ ~ ~ U . .. U, 0' ..... ..
C:

a) 0Y

( 0

o> o 

I- CD 0

Cn

CD O~~3 r·~~

0CD

11 x

0P.OCD ae XItt

0o 
CP ~ ~ g V100~

o 
. }
ND I
0 1 ieY~~~~~~'


