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Abstract

This thesis consists of three chapters.
In the first chapter, I estimate the dynamic or inter-temporal knowledge spillovers

resulting from corporate R&D in a setting with cumulative innovation, using a panel
of US firms and a network of corporate patent citations. I show that the positive
effect of dynamic spillovers on other firms' productivity is economically important,
and at least as large as that of own R&D investments. Accounting for both static and
dynamic spillovers, my estimates suggest that the social returns to corporate R&D
are about three times as large as the private returns.

The second chapter, joint with Jean-Noel Barrot, studies the effect of patent term
duration on the rate and direction of follow-on innovation, using a quasi-natural
experiment that lengthened the term of existing patents in the US. Leveraging a kink
in the patent term extension formula, we find no significant impact of extensions on
subsequent innovation, neither locally around the kink using a sharp "Regression Kink
Design" nor on average on the population of treated patents.

The third chapter, joint with Nicolas Caramp and Pascual Restrepo, studies how
consumer durables amplify business cycle fluctuations on aggregate employment. We
show that employment in durable manufacturing industries is more cyclical than in
other industries, and that this cyclicality is amplified in general equilibrium. Our
estimates suggest that consumer durables are responsible for up to 40% of aggregate
employment volatility.
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Title: Gregory K. Palm Professor of Economics

Thesis Supervisor: Heidi L. Williams
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Chapter 1

Cumulative Innovation and Dynamic

R&D Spillovers

Abstract

While much theoretical attention has focused on the important role of dynamic knowl-
edge spillovers for economic growth, such spillovers have been difficult to empirically
measure. Using a panel of US firms and a network of corporate patent citations, this
paper estimates the dynamic spillovers of corporate R&D on firm productivity, value,
and innovation activity. Causal effects are estimated with an instrumental variables
strategy that exploits the persistence of the network as well as variation in tax incen-
tives. The positive effect of dynamic spillovers on firm productivity is economically
important, and at least as large as that of own R&D investments. Dynamic spillovers
accrue mainly for so-called "complex" technologies that build cumulatively on multi-
ple components, they exhibit little depreciation over time, are larger for established
firms than for VC-backed startups, and do not decrease in magnitude with geographic
distance. Around 40% of dynamic spillovers are re-absorbed by the original innovator,
and -accounting for other spillovers- these estimates suggest that the social returns
to R&D are about three times as large as the private returns.

1.1 Introduction

Innovation and technological progress are at the core of long-term economic growth.

The endogenous growth literature attributes steady-state growth to the knowledge

spillovers resulting from innovative activity.' As a result of their central importance,

a substantial literature has attempted to estimate knowledge spillovers accruing be-

'See e.g. Romer (1990), Aghion and Howitt (1992), and Jones (1995).
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tween firms.2 These measurements have traditionally focused on contemporaneous

spillovers resulting among others from complementarities in the research and devel-

opment (R&D) efforts of different firms.3 However, innovation is often cumulative in

nature and the endogenous growth literature in particular depicts knowledge spillovers

as intertemporal or dynamic, accruing when past ideas become the new foundation on

which to build further innovation. We might thus expect a large share of knowledge

spillovers to occur dynamically through the impact of a given technology on subse-

quent future innovation. By not fully accounting for this dynamic dimension, existing

measurements of R&D knowledge spillovers may underestimate the wedge between

the social and private rates of return to R&D. The contribution of this paper is to

provide more robust estimates of the gap between social and private returns to R&D

by flexibly estimating dynamic knowledge spillovers of US corporate R&D.

Since Jaffe (1986)'s seminal paper, the R&D spillover literature has assumed a

rigid inter-temporal structure of knowledge spillovers in which both the private value

of knowledge and its spillovers are assumed to depreciate at the same constant rate,

which marks the progressive obsolescence of past knowledge as it is replaced by new

innovations.4 In other words, R&D expenses build a knowledge stock that depreciates

over time, in the same way that capital investments contribute to a capital stock, and

this knowledge stock is responsible for both private value creation and contempora-

neous knowledge spillovers on others. However, as pointed out by Griliches (1979)

the social depreciation rate of innovation is likely to be lower than the private one,

and depreciation rates may not be the same across innovative streams, as a result of

cumulative processes in which specific past knowledge is used as a foundation upon

which to build future innovation. Knowledge spillovers are thus likely to entail a com-

plex dynamic or inter-temporal structure, and not accounting for dynamism is likely

to lead to underestimating spillovers. Moreover, this bias can be especially acute for

technologies that rely more on long and cumulative innovation processes. In what

follows, and in order to make a sharp distinction between the traditional knowledge

spillover measures and the more flexible spillovers I introduce, I will denote the former

2See Griliches (1979), Jaffe (1986), Bloom et al. (2013), and Manresa (2016).
3For example, Bloom et al. (2013) model knowledge spillovers as occurring through encounters

between scientists or engineers of different firms. These encounters could be in person through
meeting at conferences or local coffee shops, or they could be virtual through online exchanges of
ideas.

4For more literature using this same obsolescence structure, see Bloom et al. (2013), Manresa
(2016), and Schnitzer and Watzinger (2015).
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as static knowledge spillovers and the latter as dynamic knowledge spillovers. 5

In this paper, I estimate dynamic knowledge spillovers by constructing measures

of cumulative knowledge proximity between US publicly-listed firms. My empiri-

cal estimates suggest that the R&D (carried out in the past and largely by other

firms) upon which a given firm builds increases its current productivity by at least

as much as current own R&D. I find that dynamic spillovers complement the tradi-

tional static knowledge and business stealing spillovers, as they were not picked up

by these measures.' However, the share of spillovers that are dynamic versus static is

largely heterogeneous across technologies, with dynamic spillovers being more preva-

lent among industries and technologies characterized by their complexity, that is

by commercializable products or processes being comprised of numerous separately

patentable elements.7 Dynamic spillovers persistently accrue over a long period of

time, are stronger when originating in R&D carried out by established firms rather

than VC-backed startups, and do not decrease in magnitude with geographic distance,

conditional on citation flows being observed. Including all the spillover measures re-

sults in estimates of the social returns to corporate R&D being about three times as

large as the private ones.

The following example illustrates my empirical estimation of R&D spillovers be-

tween organizations. Motorola, IBM, and Apple are R&D-intensive companies that in

the 1980s and 1990s are close in technological space (as revealed by both their patent-

ing in similar technological areas and the large cross-citation patterns between them).
However, only IBM and Apple compete in the PC market, with little product market

competition between the other two pairs. Knowledge spillovers will therefore accrue

between all pairwise relationships, but business stealing spillovers will only occur be-

tween IBM and Apple, so we can estimate both types of spillovers by comparing the

different pairwise combinations. Moreover, traditional knowledge spillover measures

assume that, for example, in 1996 Motorola and Apple are affected by IBM's 1996

5Although static spillovers of R&D expenditures still entail some dynamic component through
building a longer-lived firm-specific knowledge capital, this slight abuse of denomination is appro-
priate if one considers that knowledge spillovers stem from the knowledge capital itself rather than
the R&D spending flow.

6 Static knowledge spillovers have been extensively studied by papers such as Griliches (1979),
Griliches (1992), and Jaffe (1986). More recently, Bloom et al. (2013) separately measure both
types of static spillovers and document that the knowledge spillovers dominate the business stealing
effects, resulting in a social rate of return to R&D up to three times as large as the private returns.

7These technologies inherently involve cumulative innovation processes. See Levin et al. (1987),
Cohen et al. (2000), Hall et al. (2005), and Galasso and Schankerman (2015).
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stock of R&D, which includes past R&D spending depreciated at a constant rate.8

However, in 1996 Motorola was investing heavily in research on copper interconnect

technology within the semiconductor chip industry and learning from IBM's previ-

ously developed technology.' In particular, Motorola developed and filed two patents

that year building upon a 1985 IBM patent that proved to be a foundational inno-

vation for copper interconnect.1 It is therefore hard to believe that knowledge IBM

developed in 1985, upon which Motorola built in 1996, should be discounted by 83% in

compounded terms when looking for knowledge spillovers between the two firms. My

dynamic spillover measure takes this into account, and using patent citation patterns,

selects IBM's 1985 knowledge stock as a candidate for knowledge spillovers affecting

Motorola in 1996. In my empirical application, I incorporate the traditional business

stealing and static knowledge spillover measures between the three firms in my exam-

ple, but also a dynamic spillover measure accounting more flexibly for inter-temporal

cumulative channels.

Measuring innovation spillovers is challenging, because of the non-rivalry and non-

excludability of ideas (Nelson, 1959; Arrow, 1962) and the fact that these spillovers

are not usually formally recorded. Knowledge flows are largely unobserved, and can

in principle affect a wide range of firms. In section 1.2, I propose an approach to

overcome this challenge by using the patent citation network to construct measures

of knowledge proximity between firm-year observations. I primarily rely on two data

sources, Compustat and the NBER Patent Database, which allow me to observe ac-

counting and financial data for all US publicly listed firms and their patents granted

by the US Patent and Trademark Office (USPTO) between 1976 and 2006.11 I use

the patenting activity of firms and their citation patterns to construct a weighted

network linking firm-year nodes. The network is then used as a proxy for the cumula-

tive knowledge proximity between nodes, with network edges used to define proximity

weights of the R&D pool upon which a firm is likely to draw in order to build subse-

quent innovations. These patent citation network measures are significantly distinct

from the static technological proximity measures used previously in the literature,

8 The most commonly used rate of depreciation in the literature is 15% annually. See Griliches
(1979), Jaffe (1986), Hall et al. (2005), and Bloom et al. (2013).

9 See Lim (2009) for more information about the copper interconnect technology, IBM's techno-
logical advantage, and its competitors' strategies on absorptive capacity.

l 0Patent 4789648: Method for producing coplanar multilevel metalinsulator films on a substrate
and for forming patterned conductive lines simultaneously with stud vias.

"See Hall et al. (2001) for more information about the patent data.
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and I am thus able to separately estimate static and dynamic knowledge spillovers.

In section 1.3, I propose an identification strategy to estimate causal spillover

effects on firm-level real outcomes such as productivity and market value. I tackle

the endogenous network formation that underpins my knowledge spillover measures

by exploiting the observed persistence in the network structure. In particular, I use

the 1976-1984 network connecting firm-year observations to predict the 1987-2001

network connections between 340 R&D-intensive firms. I also tackle the endogeneity

of R&D decisions using variation in the tax treatment of R&D expenditures at the

state and federal level. I exploit state and federal changes in R&D tax credit rules

and corporate taxes to construct R&D tax-price shifters, which are used to predict

corporate R&D investment. I combine the predicted network and the tax-predicted

R&D expenditures to construct instruments for the static and dynamic knowledge

spillovers. Finally, I use a set of firm and year fixed effects to take care of unobserved

firm heterogeneity as well as any economy-wide shocks. I also include a full set

of industry-times-year fixed effects in some specifications, to tackle industry-level

shocks more flexibly and ensure that I compare similar firms within narrowly-defined

industries and years.

I estimate R&D spillovers on firm output and market value in section 1.4. I docu-

ment that the past R&D pool upon which any given firm builds increases its current

output by as much as current own R&D, in both the OLS and the 2SLS specifications.

The comparative effects of dynamic spillovers on market value are even larger. These

spillovers are not picked up by traditional static spillover measures, and the dynamic

spillover measures therefore increase the magnitude of total R&D spillovers. Static

knowledge spillovers are about twice as large as the dynamic ones, and although there

is evidence of negative business stealing effects, these are dominated by the positive

knowledge spillovers as in Bloom et al. (2013). These results hold robustly across a

battery of specifications and robustness tests. Among others, they are robust to in-

cluding a set of industry-times-year fixed effects that flexibly control for time-varying

industry-wide common shocks to firms. They are also robust to alternative speci-

fications of the dynamic spillover measure, to controlling flexibly for own R&D, to

including flexible polynomials in patent counts, and to considering only manufactur-

ing firms. Dynamic spillovers are also associated to increases in innovative activity

"Instruments for business stealing spillovers are constructed following Bloom et al. (2013), using
the tax-predicted R&D together with the actual proximity weights based on the firm's position in
the product market space.
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of spillover recipients, in terms of R&D expenditures and citation-weighted patent

production. In particular, an increase in predicted dynamic R&D spillovers of 10%

leads to an increase of 4.2% in citation-weighted patents granted.

Static knowledge spillovers are generally larger than dynamic ones, but when I an-

alyze the heterogeneity in their relative importance across industries and technology

types in section 1.5, I find that it varies greatly. Dynamic spillovers are larger within

industries involving complex product types, that is commercializable products or pro-

cesses being comprised of numerous separately patentable elements, whereas static

spillovers are prevalent within more discrete product industries. Likewise, dynamic

spillovers are large for electrical and mechanical technologies, whereas static spillovers

dominate in chemical industries. Dynamic and static knowledge spillovers therefore

look substantially different, and it seems dynamic measures are more adept at esti-

mating knowledge flows in complex, more cumulative technologies. In other words,

traditional spillover measures are too rigid to account for the extent of inter-temporal

knowledge flows, and this limitation is shown to be especially acute for complex inno-

vation processes. As a result, considering only static spillover measures for analyses

of knowledge flows across technologies or industries can lead to misleading results.

In section 1.6, I study the heterogeneity of dynamic spillovers across a number

of dimensions in order to understand them better. First, I study whether dynamic

spillovers can accrue through second-degree connections within the patent citation

network, and document evidence for indirect dynamic spillovers, which are about

half as large as the direct ones in terms of productivity gains. I then analyze how ge-

ographic and customer-supplier relationships between firms influence the magnitude

of dynamic spillovers. I show that, conditional on knowledge flows being observed,

geographic distance between originator and receiver does not affect the magnitude

of spillovers. However, if the two firms share a customer-supplier relation within a

production network, the dynamic spillovers become insignificant. This is consistent

with cited upstream innovation having to be incorporated in downstream production

processes, rather than being used to further innovative output. I next study the

depreciation of dynamic spillovers, and document evidence that the spillovers con-

tinue accruing over a long time period. R&D of over nine years of age still shows

significant spillover effects. I also examine how the magnitude of dynamic spillovers

varies depending on the size of the originating firm. Although dynamic spillovers

are present across all firm sizes, corporate R&D carried out by larger firms generate
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larger dynamic spillovers. Likewise, dynamic spillovers of R&D carried out by Venture

Capital-backed startups are estimated to be substantially lower than the spillovers

from established firms' corporate R&D.

In section 1.7, I quantify social returns to R&D by including static technology

and business stealing spillovers together with dynamic spillovers, and estimate them

to be about three times as large as private ones. Around 37% of dynamic knowledge

spillovers are re-absorbed by the original innovators, for example in the context of

longer and more complex projects involving separately patentable steps, and therefore

probably do not constitute externalities.1 3 As a result, considering dynamic spillover

measures increases both the private and the social returns to corporate R&D, as well

as the wedge between both returns, but does not increase the ratio between returns.

The estimates suggest a sizable under-investment in R&D in the decentralized equi-

librium relative to the social optimum, with the social optimal level of R&D being

three times as large as the decentralized level for a unitary elasticity of R&D to its

user cost of investment.

This paper contributes mainly to the literature measuring R&D spillovers, with

seminal studies by Griliches (1979) and Jaffe (1986)." More recently, Bloom et al.

(2013) separately measure static knowledge and business stealing spillovers following

the framework set forth by Griliches and Jaffe. Manresa (2016) goes further in esti-

mating spillovers without imposing a structure of knowledge flow interactions first.

The existing literature, however, is mainly focused on static R&D spillover measures,

with rigid inter-temporal structures, and this paper is, to the best of my knowledge,

the first evidence of dynamic inter-temporal spillovers through knowledge flows asso-

ciated to the cumulativeness of innovation.

A large literature studies knowledge flows using citation patterns: in particular

geographic determinants of knowledge flows (Jaffe et al., 1993; Furman et al., 2006),

their age profile (Mehta et al., 2010), how they differ depending on whether the

originating innovator is a VC-backed start-up or an established firm (Gonzilez-uribe,

2012), and the effect of the institutional background (Furman and Stern, 2011; Murray

et al., 2016). I build on this literature by using patent citations as evidence for knowl-

edge flows, and estimate the spillovers associated to these flows. Moreover, I show

' 3 This is consistent with Belenzon (2012), who shows that patents that are subsequently self-cited
by the original patent-holding firm are positively related to its market value, evidence that the future
absorption of spillovers is internalized ex-ante.

14There is also a large literature on absorptive capacity spurred by Cohen and Levinthal (1990),
which focuses on firms' absorption of external knowledge spillovers.

21



heterogeneity in the magnitude of dynamic spillovers across product and technology

types, depending on how prevalent their cumulative process is, and across firm sizes

carrying out the original R&D. I also find evidence of compounding spillovers through

indirect citations, and analyze how the spillover flows are affected by the relationship

between the originating and receiving firm, by the age profile of citations, and by

the size and type of originating firm. Williams (2013), Sampat and Williams (2015),
and Galasso and Schankerman (2015) study the effect of intellectual property (IP)

protection on subsequent innovation, building on a large theoretical literature started

by Scotchmer (1991). In this paper, I document evidence of significant cumulative

spillovers in the presence of patent protection for the original innovations.

1.2 Data and construction of variables

In this section, I discuss the challenges of measuring the R&D spillover flows, and how

I tackle these challenges in constructing the dynamic and static spillover measures. I

also describe the data used for the empirical analysis,

1.2.1 Measuring R&D spillovers

The economic intuition behind knowledge spillovers of corporate R&D is that a firm

might benefit from the knowledge created by another firm. This knowledge absorption

can take many forms: scientists and engineers from different firms might meet and

exchange ideas; a firm can hire scientists and engineers previously employed by other

firms; researchers might read publications or patents written by other researchers; a

firm might reverse engineer its competitors' novel products. These knowledge flows

are typically not recorded, and thus unobservable by the econometrician. An under-

lying challenge to the spillover literature is therefore to determine a way to measure

these flows.

In order to estimate and measure R&D spillovers between different firms, in par-

ticular knowledge spillovers, one would ideally want to proceed in two steps. First,

estimate a knowledge production function within each firm that takes into account

own R&D activity and knowledge spillovers. Then, estimate the effect of that knowl-

edge on firm real outcomes such as its market value, or its productivity. In other

words, we would like to estimate the following system of equations:
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kit = g(RDit , At, kit- , other inputst),

Yit = h(kit, kit , other inputst ),

where kit stands for knowledge specific to firm i at period t, the subscript -i relates

to all other non-i firms, RD is the R&D effort exerted by firms, and At is the stock of

economy-wide knowledge and technology that is used to produce further innovation.

The knowledge variable k can be thought of as firm-specific know-how or ability. In

settings with product differentiation, increases in knowledge could increase product

quality. Likewise, in simpler homogeneous good settings, increases in knowledge can

be thought of as decreasing marginal costs of production. As a result of competition

between firms i and j, the equilibrium production level of firm i will also depend on

firm j's ability. For example, in a Cournot competition setting with two firms and

heterogeneous marginal costs, the production level of each firm depends on both its

own marginal cost and its competitor's marginal cost.

The knowledge production function g(.) includes own R&D effort and past firm

knowledge kit- as variables, but also others' R&D through the term At. At differs

from k in that it is not firm-specific, rather economy-wide. It represents how the

aggregate level of knowledge due to past and current innovations affect the produc-

tivity of current R&D effort, both due to the cumulative nature of innovation and

to complementarities in the R&D effort that arise if scientists and engineers work-

ing in similar areas discuss their research, share ideas or publications, and increase

their productivity as a result. In terms of the different denominations of spillovers

I have used in the introduction, the inclusion of k-it in the production function h(-)

corresponds to business stealing spillovers. Meanwhile, the spillovers included in the

innovation production function g(-) correspond to knowledge spillovers: both static

and dynamic. Cohen and Levinthal (1990), in their seminal paper on absorptive ca-

pacity, discuss a number of strategies through which firms can capitalize on these

knowledge spillovers.

In practice, knowledge is a public and non-rival good which is non-observable by

the econometrician. Knowledge flows between firms are equally unobserved. There-

fore, we are reduced to estimate the reduced form function f(.)

Yit = f (RDit , RD-it, past RDi, past RD-i, other inputs), (1.2)
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where I have combined the previous g(.) and h(.) functions, as well as posited that

the stock of knowledge At is available because it was created as innovations by R&D

in the past and present, and is thus itself a function of past and present R&Dj and

R&D-j. In order to make my estimates comparable with the literature, I use a log-

linear reduced form function f(.). I consider the effect of R&D spillovers mainly

on two different outcomes of interest, firm value and productivity, and analyze how

knowledge spillovers act through the innovation production function by studying their

effect on R&D decisions and innovative output in section 1.4.

As the spillover knowledge flows between firms I am interested in are unobserved, I

need to make assumptions on which external R&D investments enter into the reduced-

form function 1.2 and how they do so, because of the curse of dimensionality.1 5 The

existing literature has dealt with this unobservability by considering pools of external

R&D from all possible neighboring sources, weighted by a measure of the likelihood

that each R&D actually generates spillovers. That is, the relevant pool of spillovers

for firm i would be the sum of all other firms j's R&D, each weighted by the likelihood

that it actually results in spillovers. For a set of firms {1, 2, ... , N}, we have

N

Spillt = E E witjtRDjti, (1.3)
j=1 t'<t

where Spill is the spillover pool of R&D, and w is a weight associated to the proximity

between firm-years. Each witjt, can be thought of as the probability that R&D carried

out by firm j at time t' < t affects firm i at time t. Notice that by convention

Witit = 0, Vi, t, since own R&D enters directly into the equation 1.2. Also, the matrix

Q of weights does not necessarily have to be symmetric, as we can have R&Djt,

more likely to influence outcome Yt than vice-versa. The definition and construction

of the proximity weights w will differ depending on the type of R&D spillover that

is parameterized. I discuss the proximity matrices used to construct the different

measures of R&D spillovers in the following subsections 1.2.3 and 1.2.4.

15Even assuming time-invariant relationships between a panel of N firms' R&D, the number of
directed pair-wise coefficients to estimate is of the order of N2 , with N * T observations. If the
dynamic structure of spillovers is flexible, the coefficients increase with N2 T2 .
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1.2.2 Data

I use yearly firm-level data from Compustat for financial and accounting data. Ac-

cording to the NSF Science and Engineering Indicators,1 6 in 2013 71% of all R&D

conducted in the US was performed by businesses, of which 80% in companies with

over 1,000 employees and 71% in multi-national companies. This suggests that R&D

conducted by large, publicly-listed companies represents a major share of the total.

Compustat firms are matched to their granted patents using USPTO data from the

NBER Patent Project and the provided link.1 7 This data contains detailed informa-

tion on over three million patents granted between 1976 and 2006, as well as their

citation patterns. I consider patents filed between 1976 and 2001 to avoid attrition in

the patent data due to delays between filing and granting of patents by the USPTO.18

The R&D-related data in Compustat is regarded as reliable starting in 1974.1'

I use the patenting data in order to build the proximity measures for the static

and dynamic knowledge spillovers, so I keep firms with active patenting and research

activity. In particular, I restrict the analysis to US firms with at least two patents filed

between 1976 and 2001 and at least three years of strictly positive R&D expenses.

I exclude observations with negative or missing net sales and total book value of

assets, and I drop regulated utilities and financial firms (SIC codes 6xxx and 49xx)

since financial and accounting variables are not strictly comparable for them.2 0 In

order to minimize measurement error of R&D stocks, I require firms to have four or

more Compustat observations, of which at least three years in a row.

I use Bloom et al. (2013)'s business stealing proximity measures. These are con-

structed by matching patenting firms to firms in Compustat Business Segments data

between 1980 and 2001, which disaggregates firm sales by the industry in which they

are conducted. See appendix A.1 for more details. This leaves a sample of 715 firms.

I use the net stock of property, plant and equipment (Compustat variable PPENT)

for the value of capital, and employee counts (EMP) for labor. I use R&D expenses

(XRD) to calculate R&D stocks using a perpetual inventory method with a 15% de-

16See the report at http://www.nsf.gov/statistics/2016/nsb2Ol6I/report/front-matter.
17See Hall et al. (2001).
8 The number of patents in the NBER Patent dataset starts to fall after 2001 due to attrition.

See Figure 1-1. More conservative restrictions in the end year do not affect the results.
19The SEC and the Financial Accounting Standards Board have required since 1972 and 1974

respectively that publicly-listed firms report all material R&D expenditures, in the year in which
they were incurred. See Bound et al. (1984).

2 0This is common in the corporate finance literature, see e.g. Giroud and Mueller (2010).
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preciation rate.21 I use net sales (SALE) as a measure of output, that I deflate using

industry-specific deflators from the NBER-CES Manufacturing Industry Database 22

and the Bureau of Economic Analysis. As a measure of Tobin's Q, I use the market-

to-book ratio calculated following Davis, Fama, and French (2000) as market equity

over book equity, where market equity is price times outstanding shares and book

equity is the book value of common equity, plus balance sheet deferred taxes and in-

vestment tax credit (if available).23 I deflate all monetary values to 2000 USD using

a GDP index from the BEA, and winsorize all variables at percentiles 1 and 99.

1.2.3 Dynamic network proximity measures

In order to measure the dynamic knowledge spillovers according to the framework in

equation 1.3, I must define the relevant dynamic proximity matrix. The matrix con-

struction must take into account the cumulative mechanism through which dynamic

spillovers are expected to accrue, when building upon past innovation. The dynamic

spillovers of R&D are thus to be generated through the ideas it originally creates, and

their posterior use in the creation of further innovation. I use the firms' patenting

activity, and their citation network, in order to proxy for the dynamic accretion of

knowledge. In doing so, I am conceptually using patents as a metric of firm innovative

output and citations as recorded knowledge flows. This patent citation network is

described in more detail in Colino (2016).

I define the dynamic spillover proximity matrix as follows. For firms i and j and

years t and t', with i, j E {1, 2, ... , N} and t, t' E {1, 2, ... , T}, I define each element

of the NT * NT matrix Dyn = (ditjt')1i j N,1t,t'<T as

#Citations_>q
Outcitations '

PE~it qEp,,t

where Pit is the set of patents filed by node it, i.e. firm i in year t. That is, the

proximity between nodes it and jt' will be constructed by counting all the citations

21Following Bloom et al. (2013), and Hall et al. (2005) among others. The R&D stock each year
is RDSi,t = XRDi,t + 0.85 * RDSi,t_ 1 . Accounting for a 5% growth rate in R&D expenses, I set the
first observation of the R&D stock to be XRD/(0.2). Following the literature, I set missing R&D
expenses to zero. Chauvin and Hirschey (1993) empirically test this assumption and confirm that it
is generally appropriate

22See Bartelsman and Gray (1996).
2 In Compustat mnemonics, PRCCF * CSHO/(CEQ + TXDB + ITCB). Results are robust to

alternative specifications of market value over assets, see Appendix A.4 for details.
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from all patents filed by it to all patents filed by jt'. I normalize by the total number

of outcitations for each patent in it in order to keep the spirit of a constant returns

to scale innovation production function. 2 4 That way, a patent does not mechanically

receive more spillovers solely by increasing the size of its bibliography. Notice that

this defines an asymmetric proximity matrix, with ditj, -, djtit. Likewise, for any

it and jt', if t' > t then ditjt = 0. That is, a given firm-year cannot build upon

innovation that has not yet been created.2 ' Finally, we set ditit = 0 for all it, since

own R&D already enters the innovation production function directly.

The dynamic knowledge spillovers are then defined as

N

DynSpillit = E E ditj, * Gt,, (1.5)
j=1 t'<t

where = RDS represents the R&D intensity, or R&D stock over total assets, of each

firm-year node. For more details on the relevance of using R&D intensities for the

construction of dynamic spillover measures, see Appendix A.1.2.

Using patent data to study innovation production presents a set of well-documented

challenges. First, the patenting decision is a strategic one. Patenting is costly, and

there are alternative forms of intellectual property (IP) protection available to firms.

However, a recent survey by Arora et al. (2016) reports 64% of large firms having

patented their most significant recent innovation, testimony to the importance of

patenting as a form of IP. Second, the patent quality distribution is highly skewed,

and a large number of patents have been found to have little or no innovative value

(Pakes and Schankerman, 1984; Bessen, 2009). I correct for this by considering

only patents receiving a minimum amount of forward citations, above a threshold of

three. 26 Third, patent citations themselves are noisy proxies for knowledge flows. In

fact, citations themselves can also be strategic decisions by different actors (inventors,

lawyers, patent examiners) .2' However, in order to gain patent protection of claims

and assert the necessary novelty, as well as to define the boundaries of the protection,

patents are required to cite prior relevant work. Notwithstanding their drawbacks,

patents and citation data are commonly used in the innovation literature as proxies

for innovative output and knowledge flows. Moreover, the drawbacks discussed above

14I also estimate specifications with a non-normalized dynamic knowledge proximity for robust-
ness in subsection 1.4.3. The results are qualitatively similar.

"Results are robust to also setting ditjt, = 0 if t' = t.
26Results are robust to considering all patents instead, with no minimum threshold.
"See for example Alcacer and Gittelman (2006) on citations added by patent examiners.
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only indirectly apply to my analysis as I do not use patent or citation metrics directly

as variables. Instead, I use them to proxy for cumulative technological proximity

between different innovative actors, and measure how likely a given R&D effort is of

generating spillovers. Therefore, using possibly noisy measures of proximity should

result in downward bias against finding significant dynamic spillovers.

1.2.4 Static proximity measures

When considering spillovers, the literature has traditionally considered a proximity

matrix that is static, and does not vary with time. I follow the literature here in

assuming a rigid inter-temporal structure for static spillovers: R&D depreciates con-

stantly across time, and R&D stocks only influence current outcomes through a static

proximity matrix. In that way, for every time period t, we have

N

Spillit = wi RDSi, (1.6)
j=1

where RDSj is R&D stock of firm j at time t, and wij defines time-unvarying prox-

imities between firms i and j. As a result, static spillover pools are composed of only

concurrent R&D stocks by firm i's neighbors. Although the spillovers considered still

entail a dynamic aspect through the influence of past R&D expenses on the R&D

stock, the inter-temporal structure is rigidly defined and the proximity measures are

static. Ultimately, it is an empirical question whether these traditional measures pro-

vide good characterizations of the inter-temporal complexity of knowledge spillovers

associated to R&D.

There are a number of possibilites to define wij depending on the nature of

spillovers we are interested in. In looking for knowledge flows, the most direct ev-

idence of a flow between firms j and i can be established when a patent filed by i

cites another patent filed by j as prior relevant art. The idea is that a patent cit-

ing another previous patent directly builds on knowledge incorporated into this prior

art.2 8 Therefore, to measure the proximity between firms i and j I look at all the

citations from patents applied for by firm i to patents filed by j, aggregate them at

the firm level and standardize by the total number of citations of the citing company,

excluding self-citations: 2 9

28See Schnitzer and Watzinger (2015), Azoulay et al. (2015), and Jaffe et al. (1993).
29See Appendix A.1.1 for more details.
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. #Citationsj_>j (1.7)
ctj Outcitationsi

The resulting proximity matrix cit is asymmetric, and each line defines a set of

weights of unitary sum. Citations are one of the most direct and intuitive way to

construct knowledge spillover proximities. Nonetheless, there are many others. In ro-

bustness tests, I also use the Jaffe (1986) technological proximity measure, as well as

more complex measures such as the Mahalanobis distance introduced by Bloom et al.

(2013), or an expanded Jaffe (1986) technological proximity measure incorporating

patent citation patterns between technology classes.3 O More details on the construc-

tion of these proximity measures can be found in Appendix A.1.1. I choose to use the

citation proximity matrix in my main empirical analysis for two reasons. First, this

matrix defines an asymmetric spillover measure, which can be an important charac-

teristic to capture less efficient producers attempting to replicate industry leadersaA2

best practices. 3 1 Second, this static proximity closely replicates the dynamic proxim-

ity intuition of detecting knowledge flows through patent citations, while keeping the

rigid inter-temporal structure of the other static spillover measures. As a result, it

ensures that differences in the estimates of dynamic versus static spillovers will arise

from the complex dynamic structure of knowledge flows, rather than from possible

differences in detection of knowledge flows through technological proximity as in Jaffe

(1986) versus through citation patterns as in Schnitzer and Watzinger (2015).

Using the proximity weights citij, I define a measure of static knowledge spillovers

SpillCitit = E citiRDSit. (1.8)
j7 i

I show in Figure 1-2 how the resulting static knowledge spillover measure exhibits

significant variation with respect to the dynamic spillover measure that I defined in

the previous subsection.

With respect to business stealing spillovers, the distances between firms are defined

using the product market activity of the firms. The product market vector Si is

defined using each firm' average sales broken down into a total of 597 4-digit SIC

industries, where Sik is the share of sales of firm i in industry k. The product market

"0See He (2015) and Schnitzer and Watzinger (2015).
3 1 See Syverson (2011).
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closeness between i and j is then defined as the correlation between Si and Sj:

sjs'
s i c i = 3 .( .

(S, S1) 1/ 2 (S S )1/ 2 19

As before, this defines a business stealing proximity matrix sic, which is now sym-

metric. Spillovers SpillSic are then calculated as for the SpillCit case but using the

relevant proximity matrix sic. More details about the construction of these spillover

pools, including discussions about the variation between the distinct static measures,

can be found in Appendix A.1.1.

1.3 Identification

In this section, I discuss issues of identification related to the estimation of R&D

spillovers. I take the previously-defined spillover measures into account into equation

1.2 and use a log-linear form for the relationship of interest, in order to make my

estimates comparable with the literature.3 2 I study the reduced-form relationship

InAit = a1 In RDSit+a2 In SpillCitit+a3 In SpillSicit+a4 ln SpillDynjt+a5X'+vit,
(1.10)

where Ait is the outcome variable of interest for firm i at time t,33 the main variables

of interest are own R&D stock RDSit and the spillover terms, XA are controls for

each outcome A, and vit is the error term. The main issues to address in estimating

equation 1.10 relate to unobserved heterogeneity, common shocks, endogeneity of

R&D decisions, and endogenous network formation.

First, I condition out a set of firm dummies and year fixed effects in all my

specifications. This takes care of time-invariant firm heterogeneity, as well as any

economy-wide time-varying heterogeneity and shocks. In some specifications, I also

include a full set industry-times year fixed effects. 34 These take care more flexibly

of any industry-level time-varying shocks, and ensure that I compare similar firms in

my analysis, within narrowly-defined industries and years.

32See Bloom et al. (2013), Jaffe (1986), and Manresa (2016).
33The two main outcomes of interest considered in this paper are firm value and productivity.
34Industry is defined at the two-digit SIC code for these fixed effects, and at a narrower three-digit

level, depending on the specification.
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1.3.1 Endogeneity of R&D

Second, R&D spending is endogenously determined, due for example to transitory

shocks to the profitability of research activity also affecting the outcome variables

directly. This endogeneity problem will affect both own R&D and the R&D in the

spillover terms. These transitory shocks should be mostly dealt with through the

industry-times-year fixed effects. Nonetheless, I also use supply-side shocks to the

user cost of R&D capital brought upon by state-specific and time-varying R&D tax

treatments to instrument for corporate research expenses. I obtain firm-year specific

R&D tax prices from Bloom et al. (2013), who calculate them using Wilson (2009)'s

data on state and federal tax treatment of R&D expenses across time in the US. These

tax R&D prices are affected by research tax credits and corporate income tax rates,

at state and federal levels, as well as by the changing definition of what constitutes

qualified R&D for existing tax credits.

There are two main components to the firm-year specific tax prices of R&D.

First, a given firm will be exposed to different R&D tax treatments depending on the

distribution of its research activity across the different US states. This distribution

is proxied using the distribution of its patenting activity.3 ' A firm's exposure to

a state-specific tax treatment is calculated by its 10-year moving average share of

patents filed from that state." The second component takes advantage of federal

rules to define what counts as qualified R&D for the existing tax credits and how

large these credits can be. First, the federal rules have varied across time and have

entailed an incremental component, where only R&D above a base level is eligible for

tax credits. From 1981 to 1989, the base was the maximum of a rolling average of

the previous three years' R&D. From 1990 onward (except 1995 and 1996, when the

tax credit lapsed), the base was fixed to be the average of the firm&A2s R&D to sales

ratio between 1984 and 1988, multiplied by current sales (up to a maximum of 16%).

Second, if the credit exceeds the taxable profits of the firm, it cannot be fully claimed

and must be carried forward. With discounting, this leads to a lower implicit value

of the credit for tax exhausted firms.

I project the endogenous R&D expenses on the two components of the tax instru-

35 This will be a good proxy as long as the patenting activity of a firm across the different states
is closely related to its distribution of R&D expenses across states.

"6Before September 2012, patents could only be issued to human inventors. As a result, patents
are originally filed on behalf of the inventor employee, and subsequently assigned to the firm before
being granted. The addresses of the investors are recorded in the applications, which are then used
to distribute patents across the different states.

31



ment for the firms in the final sample between 1980 and 2001, and show the results in

Table 1.3. Column (1) shows the basic results, column (2) adds year fixed effects, col-

umn (3) additionally includes firm fixed effects, and column (4) adds industry-times-

year fixed effects. The instruments have considerable power in all specifications, with

all the F-statistics above 28. I discuss the suitability of these instruments and the

relevant exclusion restrictions in Appendix A.2. From the specification in column (3)

with firm and year fixed effects, I calculate the level of R&D expenses R ax predicted

by the tax regressors and then generate the stock RDS ax using perpetual inven-

tory methods as in the true R&D case. This predicted R&D stock is then used to

instrument for R&D stocks.

1.3.2 Endogenous network formation

Finally, I tackle the endogeneity inherent to the construction of the dynamic proxim-

ity metrics. The knowledge flows identified by the citation network may be correlated

with the underlying quality of the researchers, with more knowledgeable researchers

both producing better patents and also being aware of better or more research-

intensive relevant art to build on and cite. The structure of the citation network

underpinning the dynamic proximity matrix is thus likely to be endogenous. I find a

suitable instrument by taking advantage of the observed persistence in the network

structure. For a given firm i, I calculate its propensity to cite any other firm j be-

tween 1976 and 1984. I then use that propensity to predict the likelihood of firm i to

cite j up to 25 years later, between 1987 and 2001.37

Within the 715 firms originally in the network for which the static spillovers can

also be constructed, 340 are found to be originating citations in both the 1976-1984

and the 1987-2001 networks. For those firms, and using the pre-period network, I

average over t E [1976, 1984] the citation propensity dij_, for all i, j and T. That

is, I calculate the average propensity for firm i to cite j's research T years prior in

the past and denote it di-. I then project the 1987-2001 network unto the 1976-

371n choosing the 1984 and 1987 cut-offs, a number of forces are at play. First, I aim to include as
many years as possible in the pre-period network to obtain a more precise estimate of the propensity
to cite between firms. Second, I want to leave a large enough gap between the pre-period network
and the current network, so as to ensure that the exclusion restriction holds. Finally, I want to
include as many years as possible in the current network, to leave time for dynamic spillovers to
accrue and to have a convenient time dimension for the panel analysis. I have carried out a variety
of robustness tests using different cut-offs, and the results hold. I report one such test in subsection
1.4.3.
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1984 network for these 340 firms. That is, for all nodes it and jt' with t > t' in the

1987-2001 network, I regress

ditjt, = iit + pyjt + Ojjjt-t, + citjt', (1.11)

where ditjt, is the weight of the edge it -+ jt', jijt-t, is the propensity for i to cite j's

patents filed t-t' years earlier in the pre-period network, and y and p are node-specific

(i.e. firm-year-specific) fixed effects. The results, with different sets of fixed effects,

are shown in columns (1) to (3) of Table 1.4, all of them with a large F-statistic.

This strong network persistence is also observed by Acemoglu et al. (2016) in a more

aggregated network of patent citations across technology classes rather than firm-year

nodes. I use the specification with both sets of node-specific fixed effects as in column

(3) to construct a predicted 1987-2001 network with edges dit,jt, = hit + p1jt, + k5 dt_, .

Using these predicted weights, I can construct an instrument for the dynamic

spillovers, calculated in the same way as the dynamic spillover metric but with the

predicted dynamic proximity weights rather than the true weights. This instrument

takes care of the endogeneity in the decision of what to cite, but does not account for

a possible endogeneity in the past R&D spending decision. Since this R&D decision

is, by construction of the dynamic spillover network, carried out mainly in the past,

I expect endogeneity concerns to be lessened. Nonetheless, for additional robust-

ness I construct a dynamic spillover instrument DynTax by combining the predicted

dynamic proximity network with the tax-predicted R&D contructed above.

Likewise, I take into account the endogenous citation and R&D decisions in con-

structing an instrument for the static knowledge spillover SpillCit. For the 340 firms

found in both the subsequent 1987-2001 network and the pre-period 1976-1984 net-

work, I calculate the average proximity measure citjj of citation propensity between

firms in the pre-period network. I use this measure, together with firm fixed effects, to

predict the citation proximity in the subsequent network and construct cit. I regress

citij = rp + pu3 + 4'citij + Eg, (1.12)

where citij is the citation proximity measure i -4 j using the subsequent networks,

and citij is the same measure in the pre-period network. Coefficients of this regression

are shown in column (4) of Table 1.4. Finally, I combine this predicted proximity with

the tax-predicted R&D to construct a static knowledge spillover instrument CitTax.
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Last, I follow Bloom et al. (2013) in using the actual sic proximity weights to-

gether with the tax-predicted R&D stocks to construct an instrument SicTax for the

business stealing spillover measures.

1.4 Empirics

Now that the general shape of the functions to empirically estimate is established, and

with the previously-defined identification strategy in mind, in this section I turn to

writing down the specific equations that I estimate and to discuss the main empirical

results, robustness tests, and the effects on innovation-related outcomes. In order to

quantify the effects of R&D spillovers, I focus on their influence on multiple firm-level

outcomes such as productivity and market value, as in Griliches et al. (1991), and

Bloom et al. (2013).

1.4.1 Productivity and market value equations

In order to investigate the effects of R&D spillovers on productivity, I estimate a

log-linearized Cobb-Douglas production function, extended to account for both own

R&D and possible spillovers:

lnYt = Y + 62 + qrdslnRDSjt_1 + Eq$DlnSpillDt_1 + q 5Xy 1 + 'Et. (1.13)
D

In this regression, Y is output (sales), SpillD are the three measure of dynamic,

static knowledge, and business stealing spillovers, and RDS is R&D stock.3 8 The

key control variables in XY are logged fixed capital and employee counts. In order

to mitigate endogeneity concerns due to the simultaneity of decisions on endogenous

variables, I lag the regressor variables compared to the dependent variable. That is,

I look at how the regressors affect output one year later. I also include firm and year

fixed effects, as well as dummies for zero R&D stock and no spillovers, and a 3-digit

SIC industry-specific price deflator in order to account for price effects. In robustness

exercises, I also include a more flexible set of fixed effects through 2-digit SIC and

even 3-digit SIC industry-times-year dummies. Finally, I control for total industry

38R&D stock is calculated using yearly R&D expenses and a perpetual inventory method.
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output and lagged output to account for industry-wide dynamics, 39 and I include the

price deflator in the right-hand side to allow for a more flexible relationship between

revenue and prices. 0

I also analyze how own R&D effort and spillovers influence market value, by

investigating a linearization of the value function introduced by Griliches (1981),

again augmented by the spillover terms:

In MTBit = f+o + 6 ,d ln (RDS/AT)it + E DlnSpillDitl + 0X + 4f, (1.14)
D

where MTB is defined as the market-to-book ratio (or Tobin's average Q).41 This

equation seeks to explain deviations to Tobin's Q from unity through the R&D in-

tensity of firms, and the spillovers they receive stemming from others. I include firm

and year fixed effects in the regressions, to account for unobserved heterogeneity, and

current and lagged log of total industry output, in order to account for industry-level

dynamics that might influence the market valuation of firms. In robustness specifica-

tions, I also include a sixth-order series expansion in In (RDS/AT), to control flexibly

for R&D intensity.

Both the dependent variable and the R&D on the right-hand side are normalized

by measures of book value of assets, so we can be worried about bias if these measures

are noisy proxies for the actual variables of interest. This worry is attenuated in my

specification, because the book value of assets used in constructing the MTB ratio is

different than the total assets used in normalizing the R&D intensity. Nonetheless, in

order to avoid the bias, I separate the relevant log of R&D intensity in two separate

terms, log of R&D stock and log of total assets. I also estimate robustness tests with

39Total industry output measures are constructed as follows. For each industry, data on total
shipments are collected from the NBER-CES Manufacturing Industry Database and the BEA and
deflated appropriately. A firm-year-specific measure is then constructed as a sum over all industries
in which it operates (from Compustat Segments), weighted by its share of sales in each industry. The
results are robust to using only the main four-digit SIC-code reported for each firm by Compustat
instead.

40Results are robust to using deflated sales more straight-forwardly as outcome variable.
41 Market-to-book ratio is defined as market equity over book equity, where market equity is price

at year's end times shares outstanding and book equity is the book value of common equity, plus
balance sheet deferred taxes and investment tax credit (if available). See Davis, Fama, and French
(2000), or Kenneth French's website for a complete description of the variable construction. Results
are robust to alternative specifications of market value over assets. See Appendix A.4 for a detailed
discussion.
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R&D normalized over total sales. The coefficients on the spillover variables of interest

remain robust across specifications.

The data used for this analysis is described in subsection 1.2 above, and the

relevant descriptive statistics are shown in Table 1.1 for the years 1990-2001 as used

in the empirical analysis. I have a relatively balanced panel with an average of

10.7 observations per firm in a panel of 12 years. The firms in this sample are on

average larger, more valuable, and carry out more research than the wider sample

of Bloom et al. (2013). In Appendix A.3.1, I study the implications for a given

firm of a non-tournament model of innovation in which the production of new ideas

results from three inputs: R&D effort by the firm itself, R&D effort by neighboring

firms, and past innovation upon which to build. The qualitative predictions on the

spillover effect signs and magnitudes are shown in Table 1.2. Among others, business

stealing spillovers are expected to have effects only through prices, and thus not affect

quantity-based productivity. In practice I analyze revenue-based productivity,4 2 and

because of the lack of data on firm-specific prices and the use of industry-level price

deflators there may be measurement error in using deflated sales as a measure of

output in the productivity equation. As a result, it is hard to disentangle the effects

of R&D spillovers specifically through prices or through quantities. I therefore do not

seek to differentiate effects of R&D spillovers through prices or through quantities,

as I believe the data is not appropriate for such a fine-grained distinction. The

predictions for the effects of R&D spillovers on productivity or on market value are

qualitatively equivalent, except for the business stealing spillovers which should not

influence productivity, but may still lead to depressed revenue through lower prices.

1.4.2 Baseline results

The baseline results for both the market value equation and the productivity equation

are shown in Table 1.5. The regressions shown include the dynamic spillovers as well

as the static ones, and the standard errors are clustered twoway at the firm and

year level. Columns (1) to (5) correspond to the productivity equation 1.13, whereas

columns (6) and (7) show the coefficients of the market value equation 1.14. The

reported F-tests correspond to the Kleibergen and Paap (2006) rk Wald F statistic

of weak instruments. When available, the Stock and Yogo (2005) 10% critical values

42 See Syverson (2011) for a detailed discussion on revenue- and quantity-based productivity mea-
sures.
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for weak instruments based on size are below the reported F-tests, rejecting that the

instruments be weak.4

I first estimate an OLS specification without controls, regressing deflated or "real"

sales as a measure of output on own R&D stock, the dynamic spillover measures, and

dummy variables for no R&D and no spillovers. In column (1), coefficients on own

R&D as well as on the static knowledge spillovers are positive and significant. The

point estimate on business stealing is negative, although not significant. Incorporat-

ing dynamic spillovers in column (2) mostly does not affect the other coefficients.

Dynamic spillovers are positive and significant at the 1% level, and about five times

smaller in magnitude than the static knowledge spillovers. In terms of magnitudes,

all these coefficients correspond to elasticities: an increase of 10% in past R&D upon

which to build is associated to an increase in output of 0.5%. I include all the control

variables, including fixed capital and employee count, in column (3). The resulting

equation is then closer to estimate the effect of own R&D and spillovers on firm pro-

ductivity. Including the controls, and in particular controls for the size of the firm

in terms of capital and labor, reduces the coefficient on own R&D drastically. The

coefficients on both static and dynamic knowledge spillovers are also reduced, but re-

main statistically significant. I incorporate 2-digit SIC industry-times-year dummies

for my preferred OLS specification in column (4). These account more flexibly for

unobserved industry-level shocks and ensure we compare similar firms within closely-

related industries. The static knowledge spillovers are reduced with the inclusion of

these fixed effects, which suggests that they may be picking up common shocks that

affect all firms within an industry. The dynamic spillovers remain robust.

Column (5) reports the coefficients of the 2SLS specification. I use the combina-

tion of the past network and the tax-predicted R&D as instrument for the dynamic

spillovers. I instrument own R&D stock with tax-predicted R&D stock, and the

static spillovers are also instrumented. The coefficients on both knowledge spillovers

are positive and significant, and are more than doubled relative to the OLS specifica-

tion. The coefficient on own R&D also increases, and is now marginally significant.

The coefficient on dynamic spillover is somewhat larger than that on own R&D, and

slightly less than half that on static knowledge spillovers. The increase in coefficients

is consistent with positive shocks to firm sales or profitability leading to reduced in-

"This threshold indicates that the conventional 5%-level Wald test will have an actual size of
maximum 10%. That means that we can reject the null hypothesis of weak instruments if we are
willing to tolerate a rejection rate of 10%.
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novative effort, possibly because of firms focusing their attention and resources on

the current available opportunities rather than search for new ideas, processes or

products. This would affect both own R&D and dynamic spillover coefficients. It

can also be indicative of measurement error in both measures of own R&D and dy-

namic spillovers. Finally, in the 2SLS specification the coefficient on business stealing

spillovers increases in magnitude and becomes statistically significant. Business steal-

ing spillovers are nonetheless smaller in magnitude than both knowledge spillovers.

Column (6) of the same Table 1.5 reports the coefficients on the OLS specification

of the market value equation including all the controls. The coefficient on the dynamic

spillovers is once again positive and significant, while the coefficient on own R&D

stock and other spillovers are statistically indistinguishable from zero. Instrumenting

for spillovers and R&D in column (6) more than triples the coefficient on dynamic

spillovers, just as in the output equation. The coefficient on static knowledge spillover

also increases markedly and becomes significant, whereas business stealing effects

become negative and significant once again. As for own R&D, even though the

point estimate is markedly increased in the 2SLS specification, it remains statistically

insignificant. Although the lack of strong relation between own R&D and measured

productivity or market value is at first sight a surprising result, this relationship in the

literature is only strong and consistent in the cross-section. Using longitudinal data

with firm fixed-effects, the relationship has been found to be fragile in the past.44

In my sample, the same robust relationship is found in the cross-section. When

including firm fixed-effects, and especially in the 2SLS regressions, the relationship

holds marginally for productivity, but breaks down for the market-to-book ratio.

The estimates on the spillover terms suggest that although the static measure does

a good job of detecting knowledge spillovers, a sizable share of additional spillovers is

still accounted for through the novel dynamic measure. In Appendix A.4, I use other

traditional static spillover measures such as that introduced by Jaffe (1986), and find

similar results. This indicates that the static measures are not sufficiently flexible to

account for complex dynamic structures of knowledge flows and can prove especially

problematic for technology streams that realy heavily on cumulative innovation pro-

cesses, whose knowledge flows may be particularly prone to not be detected using

static spillover measures. In section 1.5 below, I study how the differential dynamic

structure of knowledge flows across industries and technology types is reflected in the

44 See e.g. Klette and Kortum (2004).

38

[1 II I'l' 1 l llll i m 1l 1IP I RIp I IIII i i ''I''II 1 11111 II IIII'Ill l I ' I II II IIII I I I 'I' I 1 1 ll' 11p l 11 11 '



relative importance of static versus dynamic spillovers.

1.4.3 Robustness of dynamic spillovers

The results regarding dynamic spillovers of R&D are robust across a variety of differ-

ent specifications. I report the coefficients on dynamic and own R&D across a battery

of robustness checks in Table 1.6. Along these tests, I report both the OLS coefficients

and, when applicable, the 2SLS coefficients using the dynamic spillover instrument

as well as the own predicted R&D instrument. First, I introduce a more flexible set

of fixed effects through 3-digit SIC industry-times-year dummies in columns (1) and

(2). These fixed effects take care of unobserved shocks at a fine-grained industry-

year level, and lead to a more specific comparison of similar firms within narrower

industries. Both the OLS and 2SLS results remain robust, in both the productivity

and the market value equation. However, the importance of own R&D relative to the

dynamic spillovers increases in the 2SLS specifications. I then control flexibly for own

R&D using a sixth-order polynomial in columns (3) and (4) to ensure that results are

not driven by non-linearities." Again, the coefficients on dynamic spillovers remain

robust.

I also restrict the analysis to manufacturing firms, which comprise the largest

portion of my sample, to ensure that the coefficients are not driven solely by out-

liers among non-manufacturing firms. I then control flexibly for patent counts using

a fourth-order polynomial in columns (7) and (8),46 in order to ensure that my re-

sults are not driven by non-linearities in the effect of patents on firm outcomes. I

also include citation-weighted patent counts in the regression, to control for the ob-

served quality of the patents filed by each firm in each year. Including this control

variable reduces the effects of dynamic spillovers substantially. Nonetheless, I be-

lieve it constitutes a "bad control", as it corresponds in fact to an outcome variable.

In subsection 1.4.4 below, I show that dynamic spillovers lead to increased citation-

weighted patent counts. Therefore, controlling for citation counts blocks out a possible

spillover channel, as dynamic spillovers may accrue precisely by leading to production

of higher-quality subsequent innovation.4
1 In columns (11) and (12), I use an alter-

45I also estimate unreported specifications with larger order polynomials and find that a sixth-
order polynomial is enough to control flexibly for R&D. I do not instrument for own R&D in the
2SLS regressions that include flexible polynomial controls in own R&D.

46I also estimate unreported specifications with higher-order polynomials of log-patent count, and
find that a fourth-order is enough to control flexibly for patent counts.

"Where quality of ideas is understood as "the magnitude of inventive output associated with
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native definition of R&D intensity as R&D stock over total sales rather than assets

for the dynamic spillover construction. This way, I can ensure that results are not

driven by the specific structure of the normalization parameter itself. Results remain

robust. In unreported specifications, I also use a non-normalized proximity measure

from the patent citation network to construct the dynamic spillover measures, and

find qualitatively similar results.

In columns (13) and (14), I use a rate of 10% for the depreciation of R&D stocks

and estimate a specification including the static spillovers. This lower obsolescence

rate makes R&D and its static spillovers longer-lived, but does not affect the coeffi-

cient on dynamic spillovers significantly.48 This is consistent with dynamic spillovers

not just picking up a mis-specification in the actual obsolescence rate used for the

depreciation of knowledge, but rather channeling spillovers that accrue through cu-

mulative mechanisms. Or in other words, knowledge spillovers depreciate slower only

when past innovation is actually used as a foundation on which to build upon further.

Finally, in the last column, I use the full patent citation network between 1976 and

2001 to analyze dynamic spillovers, with an extended panel of 532 firms between 1980

and 2001. Due to my identification strategy, I cannot estimate any 2SLS specifications

on this larger sample, but the OLS specifications show large and significant dynamic

spillover effects, with the magnitude of these spillovers being similar to those in the

reduced sample.

1.4.4 Effect on innovation outcomes

In order to shed light on the mechanism through which spillovers affect firm produc-

tivity and market value, in this subsection I analyze the effects of the spillovers on

innovation-related outcomes such as R&D expenditures and citation-weighted patent

counts. I posit that the dynamic spillovers' effect on productivity and market value

occur through the innovation production function. Because spillovers increase returns

to R&D, I expect dynamic spillovers to increase R&D expenditures and innovation

production in terms of patents. The dynamic spillover measure itself is influenced

by the degree of innovative activity taking place, because a given firm-year will be

measured as receiving spillovers only if it files patents that are citing prior art. As a

result, I do not us SpillDyn as a regressor and estimate instead a reduced-form IV

them" (Griliches, 1990), and is positively associated to citation counts.
48 Unreported coefficients on the static knowledge and business stealing measures are also similar

to the baseline estimates.
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specification in which I include the dynamic spillover instrument DynTax directly

in the right-hand side. That is, I study how the potential for large dynamic knowl-

edge spillovers, measured using the pre-period citation network and the tax-predicted

R&D, affects R&D expenditure decisions and innovative output. If in the pre-period

network, firm i used to build heavily upon firm j's innovation r years earlier, I ana-

lyze how a predicted increase in R&D spending by firm j in year t influences firm i's

innovation in year t + T.

I estimate the following equations:

in Pat = p ln DynTaxe- 1 + A2 In RDSt- 1 + p3-Xf-' + v[ + tf + cE, (1.15)

In RDt = 71 In DynTax_ 1 + 7lnYe_ 1 +7 3 X + + 6 +e, (1.16)

where P is citation-weighted patent count, RDS is R&D stock, RD is R&D expenses,

and Y is total revenue to account for firm size,4 9 . Controls XR for the R&D equation

and XP for the patent equation include current and lagged industry-wide sales to

account for industry-level dynamics, and a dummy for no dynamic spillovers. Both

equations also include firm and year dummies, and I cluster standard errors twoway

at the firm and year level. The coefficients are shown in Table 1.7. I estimate equa-

tion 1.15 in column (1), and find that the potential for dynamic spillovers increases

patent counts significantly. An increase of 10% in past R&D to potentially build

upon is associated to an increase of 5.2% in the citation-weighted patents filed. The

relationship is slightly reduced but remains strong and significant when including a

lagged dependent variable. In column (3), I estimate a negative binomial count model

with bootstrapped standard errors, and the results are largely unchanged.

I estimate equation 1.16 and show the coefficients of interest in columns (4) and

(5). An increase of 10% in past R&D to potentially draw from is associated to an

increase of 0.4% in the R&D expenses. There is strong persistence in R&D activity

within firms, but the dynamic spillovers retain a strong and significant coefficient in

column (5). The results shown in this table are consistent with dynamic spillovers

being an integral part of the innovation production function, and leading to increases

4 9Results are robust to controlling for total assets AT instead of revenue.
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in R&D spending because of its increasing the returns on R&D activity.

1.5 Heterogeneity across industries and technology

types

In the previous section 1.4, I found significant effects of both dynamic and static

knowledge spillovers on productivity and market value. To this point, I have assumed

that the magnitude of spillovers is constant across industries and technology types.

However, knowledge spillovers can be affected by a number of factors, which may in

fact influence the spillovers estimated through the dynamic and static measures differ-

ently. In this section, I examine how knowledge spillovers vary across industries and

technology types, with a particular emphasis on the static versus dynamic knowledge

spillover decomposition.

I first investigate how the dynamic and static knowledge spillovers vary across

industries. Because of the limited size of my sample, it is difficult to separately

quantify spillovers for every industrial sector. Nonetheless, it would be worrying if

significant knowledge spillovers were not found within high-tech sectors, for example. 50

I first focus on the six sectors for which I have the largest number of observations

within my sample:51 industrial and commercial machinery and computer equipment

(SIC 35); electronic and other electrical equipment and components, except computer

equipment (SIC 36); transportation equipment (SIC 37); measuring, analyzing and

controlling instruments, photographic, medical and optical goods, watches and clocks

(SIC 38); chemicals and allied products, except drugs (SIC 28, except for 3-digit SIC

283); and pharmaceutical firms (SIC 283).

Figure 1-3 plots the coefficients on dynamic and static R&D spillovers for the

baseline productivity equation (across all industries) and for the particular industries

mentioned above. 2 The regression estimates industry-specific dynamic and static

'558% of weighted edges in the patent citation network occur between firms belonging to the same
2-digit SIC code industry, so dynamic spillovers occur majoritarily within industries. In Appendix
A.5.1 I show that dynamic spillovers are statistically significant regardless of whether they accrue
within or between industries, but the point estimates are larger in magnitude within.

5 1These six sectors happen to be high R&D intensive manufacturing sectors, in which I would
expect knowledge spillovers to therefore be large.

5 2 In this section, I use the Jaffe (1986) technological proximity as a static knowledge spillover
measure in order to make a more comparable distinction between the novel dynamic spillover measure
and the measures used traditionally in the literature. Standard errors are clustered twoway at the
firm and year level, and 90% confidence intervals are shown in the figure.
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spillover coefficients on the subsample corresponding to the six industries mentioned

above. I find that dynamic spillovers are larger than the baseline coefficient within

Machinery, Electronics, Instruments, and Chemicals (without Drugs). However they

are insignificant within the Transport sector, and the point estimate is even negative

for Pharma. The pattern for the static knowledge spillovers seems to be reversed,

with large and statistically significant coefficient in Pharma and Transport, while the

estimates for Machinery, Electronics, Instruments, and Chemicals are statistically

insignificant and the point estimates are generally smaller than the baseline level.

In order to understand these patterns better, I consider an industry classification

from Coad and Rao (2008), which defines 2-digit SIC industries 35, 36, and 38 as

high-tech industries that can be classified as complex product types; industry 37 as a

mature complex technological sector; and industry 283 as a high-tech industry that is

nonetheless classified as discrete. The distinction between complex and discrete tech-

nologies follows Levin et al. (1987), Cohen et al. (2000) and Galasso and Schankerman

(2015) in differentiating "whether a new, commercializable product or process is com-

prised of numerous separately patentable elements versus relatively few". I discuss

this characterization in more detail below. According to this classification, it seems

that complex high-tech complex industries exhibit coefficients on dynamic spillovers

that are larger than the baseline, whereas the mature Transport industry as well as

the simple high-tech Pharma industry show small and insignificant coefficients. In

particular, I can reject that the dynamic spillover coefficients in Pharma and Trans-

port are equal to any of the complex high-tech coefficients with 10% confidence in the

productivity equation. This is consistent with dynamic spillovers accruing primar-

ily in high-tech industries, which are more reliant on innovation, but mainly within

complex technologies that are intrinsically more cumulative.

The relative importance of dynamic versus static knowledge spillovers seems there-

fore to be affected by the industrial sector one considers. In particular, for the Chem-

icals sector, the point estimate on the elasticity of output to dynamic spillovers is

even larger in levels than the coefficient on static spillovers, as compared to a base-

line ratio of almost 14 to one in favor of the static spillovers. This is indicative

that considering only static knowledge spillovers, as the R&D spillover literature has

traditionally done, not only leads to underestimating R&D spillovers homogeneously

across the productive sector. It actually will entail heterogeneous biases across indus-

tries, which can hinder our understanding of the mechanisms through which spillovers
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accrue, and lead to faulty policy recommendations.

In order to further study the heterogeneity found above using a wider industry

spread, I classify manufacturing industrial sectors according to their product type.

First, I build upon Levin et al. (1987), Cohen et al. (2000), and Hall et al. (2005) in

classifying industries into complex and discrete products. Discrete products rely on

few patents and the importance of patents for appropriability of returns to innova-

tive activity has traditionally been larger. In fact, "industries with discrete products

tend to patent for the traditional reasons of excluding competitors and preventing

litigation, whereas those in complex product industries are significantly more likely

to patent for cross-licensing and trading/negotiation purposes, as well as to prevent

litigation. "3 Industries that correspond to discrete products are in SIC codes 2000-

3499, and include food and tobacco, textile, wood and paper, chemicals, plastic and

metals. Discrete industries include high-tech sectors such as drugs and pharmaceuti-

cals (SIC 283), or chemicals (SIC 28). On the other hand, industries with SIC codes

between 3500 and 3899 correspond to complex products.54 These include machinery,

electronics, transportation equipment, and instruments.

A related way to classify the industrial sectors is according to their technology

base, depending on whether they primarily innovate on electrical, mechanical, or

chemical technologies." This classification relates to the technology type, rather than

the product, but is nonetheless closely related to the complex versus discrete partition.

Electrical technology sectors are all included within the complex product type, and

correspond to medical instruments, computing and electronic machinery, instruments,

and aero-space equipment.56 Chemical technology sectors are all included within the

discrete product type, and correspond to food and tobacco, chemicals, oil and plastic,

and stone, clay and glass.57 Mechanical technology sectors are partitioned between

discrete and complex product types, and include textiles, paper and wood, metals,

machinery and engines, and transportation equipment other than aero-space.

53Hall et al. (2005), page 9.
"SIC codes 39xx correspond to "Miscellaneous Manufacturing Industries" and are not considered

into any of the categories. The highest considered manufacturing SIC code is thus 3873. For more
details about this classification into complex and discrete technologies, see Hall et al. (2005).

55This classification is also based on Hall et al. (2005).
5 6The SIC codes are 357x, 36xx, 372x, 374x, and 38xx. I also include codes 737x that are not

included in manufacturing, but correspond to Computer and Data Processing Services firms such as
IBM.

57The 2-digit SIC codes are 20, 21, 28, 29, 30, and 32.

44

, 11' 1 1l 11 11 ' l I"I I pPP' RIP IIIPIPIP 1 ''



I show the coefficients on dynamic and static knowledge spillovers for the produc-

tivity equation across both classifications of the manufacturing industries in Figure

1-4. Dynamic spillovers are larger in complex products than in discrete products,

where they are not statistically significant. As for the static knowledge spillovers, the

opposite is true. When partitioning by technology type instead, dynamic spillovers

are large and statistically significant for electrical and mechanical technologies, while

smaller and statistically indistinguishable from zero in chemical technologies. For the

static knowledge spillover estimates, once again the opposite pattern is visible.

It therefore seems like industries with complex products involve relatively large

dynamic spillovers and relatively low static knowledge spillovers, as compared to the

baseline levels. Meanwhile, the opposite is visible in discrete products and partic-

ularly so for chemical technologies, with relatively large static knowledge spillovers

and small dynamic spillovers. An explanation consistent with these results is that the

innovative process in complex products is inherently more cumulative, that the in-

novation production function depends more on past foundational knowledge to build

upon. As a result, the spillover flows are inherently more inter-temporal in nature

and are therefore picked up by the dynamic spillover measure rather than the static

one. Another related explanation leans on the differential use of patents for appropri-

ability reasons across product types. If the use of patents as exclusive mechanisms is

more prevalent across discrete product types, intellectual property rights may hinder

cumulative innovation. 58

Finally, in order to obtain more evidence that the heterogeneous dynamic spillovers

are indeed related to the technology type, I investigate whether this heterogeneity

holds at a more fine grained originating patent technology class level. That is, I

classify patents according to their technological area into complex and discrete types,

and study whether dynamic spillovers stemming from complex patents differ from

those stemming from discrete patents. I follow Galasso and Schankerman (2015) in

categorizing Computer & Communication (Hall et al. (2001) technological category

2), Electrical & Electronics (category 4), Medical Instruments (subcategory 32), and

Biotechnology (subcategory 33) into complex technologies, comprising innovation that

is "highly cumulative and requires the input of a large number of patented compo-

nents held by diverse firms". Galasso and Schankerman (2015) find that decreases

5 8See Scotchmer (1991) and Williams (2013).
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in patent protection, which are likely to lead to increases in dynamic spillovers, are

more conducive to new R&D investment and innovation in complex technologies. It is

important to remark that I do not in my setting analyze heterogeneity in the levels of

IP protection, and that my results on dynamic spillovers are found conditional on the

original patent being granted. In other words, I find dynamic spillovers even though

the initial innovation is protected by patents.

In order to compare dynamic spillovers in discrete versus complex technologies,

I separate the dynamic spillover measures depending on the technology class of the

originating patent. I estimate the productivity and market value equations 1.13 and

1.14 including both types of dynamic spillovers, and plot the resulting coefficients

in Figure 1-5 for both the OLS and the 2SLS specifications. The dynamic spillovers

originating in complex technologies are consistently positive and significant, whereas

patents from discrete technologies show no statistically significant dynamic spillovers.

Therefore, I find that complex technologies result in large dynamic spillovers whereas

these do not appear significant among simple technologies. This is consistent with

the results shown previously, and indicates that the prevalence of dynamic inter-

temporal spillovers within complex products is robust. In terms of cross- versus

within-technology class distribution, most spillovers accrue within technology class

as 77% of weighted citations in the patent citation network occur within technology

class. Moreover, I show in Appendix A.5.2 that dynamic spillovers are statistically

significant only within technology classes.

1.6 Extensions

In this section, I present a number of extensions to my empirical analysis. First,

I look for evidence of second-degree spillovers accruing through indirect network

connections. Second, I estimate the importance of geographic distance as well as

customer-supplier relations for spillovers. Third, I study whether dynamic spillovers

depreciate across time. Fourth, I analyze how the size of originating firms influences

dynamic spillovers. Finally, I examine dynamic spillovers stemming from start-ups

funded by Venture Capital.
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1.6.1 Second-degree spillovers

I consider the possibility that dynamic spillovers also accrue through indirect connec-

tions. That is, suppose that firm-year kt" builds upon research by jt', which itself is

citing it's research. But there are no direct citations between kt" and it. As R&D

from firm-year it contributes to the creation of subsequent knowledge by jt', does it

also contribute to the 1-step-removed production of ideas by firm-year kt"? In or-

der to investigate, I build an indirect dynamic spillover measure using second-degree

connections.59 I estimate the productivity and market value OLS regressions includ-

ing both the usual direct dynamic spillover measure and the indirect second-degree

measure. Results for the two coefficients are shown in Figure 1-6. Both the direct

and indirect spillovers are positive and significant, for both the productivity and the

market value equation. In terms of market value, the coefficients on direct and indi-

rect dynamic spillovers are of similar magnitude. As for the productivity equation,

the coefficient on indirect spillovers is about half that on direct spillovers. Results are

thus consistent with own R&D and past knowledge being used to produce subsequent

knowledge (proxied by the productivity equation), which is itself used to produce fu-

ture knowledge. 60 As such, dynamic spillovers may reverberate through the citation

network and continue accruing as they do so.

1.6.2 Geographic spillovers and customer-supplier relations

In this subsection, I study how the relationship between the originating and absorb-

ing firms influences the magnitude of dynamic spillovers. I analyze in particular two

dimensions, geographic co-location and customer-supplier linkages within production

networks. First, I study how dynamic spillovers vary with geographic distance. An

extensive literature has studied the influence of geographic distance on knowledge

flows and mainly found that knowledge flows decrease with distance and geographic

or political frontiers.6 1 I go further in examining the extent to which geographic dis-

tance influences spillovers of R&D given that a citation is observed, i.e. given that

a knowledge flow is observed. I use the address of the main inventor of each patent

59If the patent citation network is defined by the adjacency matrix Dyn, then the matrix of
second-degree connections is Dyn2 .

60For the OLS specification with controls used, as in column (3) of the baseline table 1.5, the
elasticity of dynamic spillovers is about 64% of that on own R&D. The ratio between the elasticity
on direct and indirect spillovers is similar.

61 See Furman et al. (2006), and Jaffe et al. (1993).
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to allocate the patent to one of the 50 US states or 195 non-US countries. Using

this geographic allocation, I construct a measure of dynamic spillovers SpillDynGEO

similarly to the baseline dynamic spillover measure, except I only consider citations

between patents within each of the 245 geographic locations. If geographic con-

siderations where important for the magnitude of the dynamic spillovers, including

SpillDynGEO in the regressions should lead to significantly positive coefficients on

this measure, and decreases in the coefficient on the baseline measure SpillDyn.

I estimate these regressions in Table 1.8, in columns (3) and (4) for the productiv-

ity equation and (7) and (8) for the market value equation. Columns (3) and (4) show

that geographic considerations do not seem to influence the magnitude of dynamic

spillovers, as the coefficient on SpillDynGEO is small and insignificant, whereas the co-

efficient on the baseline dynamic spillover measure is not markedly reduced. Column

(7) shows that geographic considerations seem to have a marginally significant effect

on market value, but this disappears in the 2SLS specification. These results sug-

gest that, conditional on citations occurring, the dynamic spillovers of R&D are not

affected by geographic distance. On the other hand, static knowledge spillovers are

found to decrease with distance by Bloom et al. (2013) and Lychagin et al. (2016).

These apparently contradicting results can be explained by the fact that the Jaffe

(1986) static spillover measures do not condition on knowledge flows being observed.

Therefore, static spillovers may decrease in geographic distance because of a lower

likelihood of interactions between scientists, while conditional on interactions the

spillover magnitudes could still be sustained.

Second, I study how customer-supplier relations within a supply chain influence

dynamic spillovers. I use data from Barrot and Sauvagnat (2016)2 on customer-

supplier links for Compustat publicly-listed firms. Firms are required to disclose

the identity of any customer that represents more than 10% of the total reported

sales, and that information is used to construct a supplier-customer linkage network.

A small share of around 1% of the citation network links occur between customers

citing suppliers, identified through this dataset. For those connections, I construct

an analogue SpillDynROD to the dynamic spillover measure using as the relevant

weights the share of total sales that corresponds to the customer-supplier linkage.

I estimate in Table 1.8 in columns (2) and (6) regressions including both SpillDyn

62I would like to thank the authors for sharing their data.
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and SpillDynPROD. I find that for the subset of observations that cite their upstream

suppliers, no dynamic spillovers accrue in terms of productivity as the sum of the two

coefficients cancel out. In terms of market value, the sum of the coefficients is also

not statistically different than zero. These results suggest that customers that inno-

vate by building on top of their suppliers innovation do not absorb meaningful R&D

spillovers. This can be due to citations between customers and suppliers being driven

by customers having to adapt their technologies and production processes to the spec-

ifications of their suppliers, rather than innovating further. Citations would thus not

be a result of cumulative innovation processes, but rather an adaptation to idiosyn-

cratic product specifications on the part of the downstream customer-innovator.

1.6.3 Depreciation of spillovers

I next analyze how the dynamic spillovers vary across the span of time between the

original innovation and the follow-on innovation. I am interested in examining the

persistence of dynamic spillovers since the original innovation, to establish whether

they are long-lived or only accrue for a short time. In order to do so, I separate the

dynamic spillovers in three groups, depending on the time span they bridge. In terms

of the subsequent 1987-2001 network, the first group is restricted to a time span up

to three years, the second corresponds to four and five years' worth of span, and the

third to spillovers that accrue six or more years later. The cutoffs correspond to the

median time span of 4 years and the 7 5 th percentile of 6 years. In terms of the full

1976-2001 network, the median is 5 years and the fourth quartile starts at 9 years.

The results are show in Figure 1-7.63 In the subsequent network, dynamic spillovers

tend to decrease with time for the productivity equation, with the spillovers being

insignificant after six years. One explanation consistent with these results is that

using older and possibly more out-of-date prior knowledge reduces the quality of the

innovative output. Nonetheless, this depreciation of dynamic spillovers does not hold

in the full network, which shows spillovers accruing with a gap of more than 8 years

to be still statistically significant and of similar magnitude as the baseline estimate.

Moreover, it seems the decreasing relationship of spillovers with age is reversed for

the market value equation for older spillovers. In fact, the majority of market value

spillovers stem from older spillovers. A tentative explanation could involve the de-

63 The regression panel for the subsequent network is 1990-2001, whereas the full network panel

estimates the equations on 1980-2001.
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cision on which past innovation to build upon having product market competitive

effects. Building upon more recent innovations might lead to increased competition

between companies in the product market, therefore exhibiting larger effects in terms

of productivity rather than firm value.

1.6.4 Size of originating firm

A number of R&D subsidies are explicitly targeted to small and medium-sized en-

terprises (SMEs), through programs such as the Small Business Innovation Research

program in the US. As a result , it is particularly interesting to assess how the mag-

nitude of dynamic spillovers may vary depending on the size of originating firms. I

examine the heterogeneity in the dynamic spillovers across this dimension by dividing

the 340 firms in my sample in two halves depending on their average size in terms of

employment, over the period 1980-2000. I then separate the dynamic spillovers based

on the size category of the firm in which they originate. I show in Figure 1-8 that

larger firms are responsible for R&D that generates larger dynamic spillovers. These

spillovers are on average about 2.8 times larger than the spillover from smaller firms. 64

When looking at static knowledge spillovers, Bloom et al. (2013) also find that the

R&D carried out by larger firms is responsible for larger spillovers. Of course, tech-

nology spillovers are not the only justification for directed government intervention.

Moreover, the median firm in the smaller half of my sample has an average of 2,026

employees over the time period, which hardly makes it a SME. Nonetheless, taken

at face value my estimates suggest that larger firms should receive more generous

subsidies if the government was interested in providing incentives for organizations

to internalize technological spillovers.

1.6.5 Venture Capital spillovers

The research activity carried out by Venture Capital (VC)-backed start-ups has been

found to be more effective at producing innovation than traditional corporate R&D

(Kortum and Lerner, 2000; Hirukawa and Ueda, 2013). Moreover, Schnitzer and

Watzinger (2015) show that static knowledge spillovers from this VC-backed R&D

are also larger than corporate R&D. I examine here if this VC-backed R&D also

results in increased dynamic cumulative spillovers on the publicly-listed firms that

64Although the differences in coefficients between small and large firms are only significant for
the 2SLS market equation, all four regressions show the same pattern.
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build upon it. Because start-ups are small private companies, no data is available

on their R&D expenditures. Instead, the amount of VC investment that these firms

receive is used as a proxy (Kortum and Lerner, 2000) for their research expenditures. 65

I use VentureXpert data on VC funding and link start-ups to the NBER patent data

by company name. I match 5157 start-ups with at least one patent between 1976 and

2001, of which 3418 are subsequently cited by a publicly-listed firm in my sample. I

construct a citation network between publicly-listed citing firms and cited start-ups

and use it as a weighting proximity matrix. The VC-backed dynamic spillovers are

then the weighted sum of the R&D stocks of the cited start-ups.6 6

I estimate the productivity and market value OLS equations including both the

VC-backed dynamic spillovers and the baseline publicly-listed dynamic spillovers. I

do so using both the subsequent 1987-2001 network and the full 1976-2001 network.6 7

The resulting coefficients are shown in Figure 1-9, and suggest that VC-backed R&D

does not exhibit any significant dynamic spillovers on publicly-listed firms' produc-

tivity. In terms of market value, the coefficients are significant and positive, with the

full-network regression showing dynamic spillovers from start-ups and larger corpo-

rations to be similar. The results suggest that VC-backed innovative activity does

not accrue dynamic spillovers in terms of increased productivity on larger corpora-

tion that build upon it. These corporations do however seem to receive spillovers

on market value, which suggests that the spillovers may occur through prices only.

Nonetheless, within my sample I can reject that dynamic spillovers from VC-backed

innovation on Compustat firms are larger than those from traditional corporate R&D.

1.7 Estimates for the private and social returns to

R&D

In this section, I estimate the private and the social returns to R&D using previously-

estimated coefficients as well as estimates from subsection 1.7.1 below, where I sepa-

65In order for VC funding to be a good measure for the R&D expenditures of start-ups, one must
assume that start-ups have no other sources of funding and that they use the funding primarily
on R&D activities. To the extent that start-ups also have other expenses such as marketing, VC
investments may be over-estimating their research budget.

66Where the weights are obtained from the Compustat-to-VC citation network, and the R&D
stocks are constructed using VC funding as a proxy for yearly R&D expenses.

67The panel using the subsequent network is 1990-2001, whereas the full network estimates the
equations on 1980-2001.
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rately analyze dynamic knowledge flows within and between firms.

1.7.1 Own vs. others' spillovers

In subsection 1.4.2, I analyzed the influence of dynamic spillovers irrespective of where

they originate, and found that they are large and significant. However, these spillovers

do not necessarily correspond to externalities. In fact, even though the patent citation

network does exclude same-node citations (that is, citations within any given firm-

year node), it will still include citations originating and ending in nodes belonging to

the same firm at different points in time. That is, a citing node it can be connected

through an edge to another node it' as long as t' < t. If innovating firms are rational,

they will internalize the share of spillovers that accrue dynamically within themselves

and will take them into account when choosing their optimal R&D investment level.

Belenzon (2012) shows that patents that are subsequently self-cited by the original

patent-holding firm are more strongly positively related to its market value, consistent

with the view that future absorbed spillovers are internalized ex-ante. On the other

hand, spillovers that originate in other firms are more likely to be externalities, and

not be internalized by the original innovator.

Within the subsequent 1987-2001 network, around 37% of weighted edges are self-

cites, with the remaining 63% being citations to other firms. I compute a measure

of own dynamic spillovers just as the main dynamic spillover metric, but considering

only own-cites as possible connections (intra-firm), and likewise for others' spillovers

(inter-firm). I estimate the same baseline regressions except including both own and

others' spillover terms rather than the main one. The results are shown in Table 1.9.

All the regressions include firm and year fixed effects, as well as the preferred controls

discussed in subsection 1.4.2. The OLS regression in column (1) considers only own

R&D and the inter-firm dynamic spillovers, and the coefficients are very similar to the

baseline case. Including within-firm dynamic spillovers does not change the existing

coefficients, and the intra-firm coefficient is positive albeit not statistically significant.

Nonetheless, the elasticity estimate on within-firm dynamic spillovers is likely to

entail a substantial OLS downward bias, as the plausible endogeneity due to firms

abandoning research programs in order to concentrate on the immediately available

opportunities in the presence of positive revenue shocks is likely to affect profitable

albeit more complex and uncertain projects, with a longer maturation period, and

that are based on more in-house research of more separately patentable steps until
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the final commercializable product. The coefficients on both inter- and intra-firm

spillovers are not altered with the inclusion of static spillovers and industry-times-

year fixed effects in columns (3) and (4). In the 2SLS specification in columns (5)

and (6) all the coefficients become significant, and there is some suggestive evidence

of the intra-firm spillover decreasing the returns on own R&D when included. Notice

that in column (6), the coefficient on intra-firm spillovers is slightly larger than half

of that on inter-firm spillovers. This is consistent with the share of dynamic spillovers

that accrues within versus between firms, due to between-firm citations being twice

as prevalent as within-firm cites. I include static spillovers in the 2SLS specification

in column (7) to obtain a specification with all the spillover estimates, in order to use

it for the social return calculation.

1.7.2 Calculating social and private returns

Using the coefficients estimated in the previous section on the three relevant types

of spillovers of R&D, I calculate the private and social rates of returns to R&D for

the sample of firms considered. This exercise assumes that the previously estimated

coefficients can be used for policy purposes. That the estimated functional forms are

correct, that the proximity measures correctly quantify knowledge flows, and that

the coefficients are causal. These are strong assumptions, and the discussion below

should therefore be considered more speculative.

First, and following Bloom et al. (2013), I define the marginal social returns (MSR)

to R&D of firm i as the marginal increase in aggregate output due to a marginal

increase in the R&D stock of firm i. I also define the marginal private return (MPR)

as the respective marginal increase in firm i's output to its R&D stock. The detailed

derivation of the rates is discussed in Appendix A.3.2. The main assumptions used

to derive the formulas are that all firms are fully symmetric and that there are no

amplification effects of R&D. That is, I assume that firms all have the same size in

terms of output and R&D stocks, and are identically connected to other firms in terms

of their dynamic and static proximity measures. Likewise, I do not consider how an

increase in the R&D stock of firm i can affect returns to the R&D of other firms,

or own returns in the future, leading to amplification through additional increases of

R&D effort throughout the economy. Under these assumptions, the social returns of

R&D can be written as
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Y
MSR = (Ords + #sic + #cit + 6 #dyn), (1.17)

RDS

where the coefficients # refer to the coefficients in equation 1.13 for own R&D stock,

dynamic spillovers, business stealing and static knowledge spillovers, and 6 is the dis-

count factor of the social planner that accounts for the fact that dynamic spillovers

accrue in the future. I consider the coefficients from the production function rather

than the value equation, because the latter will not only capture the productivity

increase due to R&D. Instead, it also captures resulting changes in other input vari-

ables such as employment and capital, leading to a larger compounded effect. The

MSR takes into account how increases in own R&D stock yield increases in own

productivity, but also how they affect other firms' outputs through all the spillover

terms.

Under the same assumptions, the private returns to R&D can be written as

Y
MPR = R (Vrds + 6'1intra) , (1.18)

RDS

where #intra represents the coefficient on within-firm dynamic spillovers that are in-

ternalized by the original innovator, and 6' is the discount factor of the firm.68 The

differences between the MSR and the MPR are as follows. First, both take into

account the direct increase in a given firm's output due to increases in its R&D

stock (rds), but the social planner also considers the business stealing spillovers(ic)

and the static knowledge spillovers (qcit) generated by R&D. Second, the private re-

turns only internalize part of the dynamic spillovers generated, equal to the share of

spillovers that are re-absorbed by the firm (#intra). Third, the discount factors of the

social planner and of the firm (6 and 6') may not be equal. In fact, due to possibile

financial frictions in firms, it is likely that 6 > 6'.

The wedge between private and social rates of return to R&D depends on the

magnitudes of the spillover terms, as well as the magnitudes of the parameters 6, 6',

and that of R . In order to evaluate the expressions, I use the value of R for the

median observation in my sample, at 5.8.69 As for 6, within the subsequent network

6 8 The equations derived here diverge from the formulas of Bloom et al. (2013) in two main aspects.

First, I include both dynamic spillovers and re-internalized dynamic spillovers. Second, I include
the effect of business stealing spillovers on sales directly, rather than indirectly through the market
value equation.

6 9 Another possibility is to consider the value of the average output over the average R&D stock,

which is 4.5. These different values will affect rates of return, but not their ratio or elasticities of
output to R&D.
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the average number of years between origination and accrual of dynamic spillovers is

4.2 years. Using a discount rate of 6% for the social planner yields a discount factor

6 = 0.783. But because spillovers continue reverberating across indirect network

connections, and their magnitude is halved at each step, I obtain 6 = 1.28.70 I set

6 = 6', and thus do not consider possible financial frictions or myopia in firms that

could drive a larger wedge between social and private returns.

I use my estimated coefficients from columns (4) and (7) in Table 1.9 together

with the selected values for the parameters above." The estimated value of the MSR

is 91% (= 5.8 * (0.028 + 0.124 - 0.027+ 0.025 * 1.28)) using the OLS coefficients, and

23.7% (= 5.8 * (0.028 + 0.010 * 1.28)) for the MPR. Using the 2SLS estimates, the

values are 235% for the MSR and 80.8% for the MPR. This means that an increase

of $1 in a firm's R&D stock increases its own output by 81 cents and total output

by $2.35. In order to quantify the effect of an extra $ of R&D investment, these

values need to account for the durable effect this investment will have. If we continue

assuming that R&D investment depreciates at a 15% rate and the discount rate is 6%,

the above values must be multiplied by a factor of about 5." That is, an increase of

$1 in R&D investment leads to an increase in own output of $4 (in discounted terms)

and up to $12 in terms of total output.

These estimates are informative, but are also dependent on the choice of values

for the output-over-R&D stock ratio. Considering elasticities instead of the marginal

returns reduces this issue. The elasticity of own output to own R&D stock is equal

to Ords + 6 1 intra, whereas the elasticity of total output to a firm's R&D stock is

H (Ords + Osic + Ocit + 6 4 dyn). Therefore, using the 2SLS estimates and assuming

symmetric firms, increasing the R&D stock of a given firm by 1% leads to an in-

crease in that firm's output of 0.14% and an increase in the total output of the 340

firms of 0405 %.

Therefore, for the sample of firms considered, the social returns to R&D are about

three times as large as private returns. Interestingly, the inclusion of dynamic knowl-

edge spillovers in the calculation of the rates of returns does not substantially affect

the ratio between social and private returns to R&D. Even though dynamic spillovers

increase the MSR to R&D, the MPR, and the resulting wedge between these two, if

2 1-6/2
71For kdyn I use the coefficient from columns (4) and (5) in Table 1.5 instead. This is because

dynamic spillovers for the social value should incorporate both within and between firm spillovers.
72This factor is given by the discounted infinite sum of effects, with discount factor 10.15

1+0.06'
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anything they even slightly reduce the ratio between both returns. This is because

the rate of internalization of within-firm dynamic spillovers slightly smaller than the

ratio between private and social returns. As a result, even though dynamic spillovers

are large and significant, including them in the returns calculations does largely not

affect this ratio. This is comforting in that it reinforces the relevance of past estima-

tions of the ratio between social and private returns to R&D.

In order to obtain estimates of the over- or under-provision of R&D in the de-

centralized equilibrium relative to the social optimum, I need to make additional

assumptions. First, I assume that the marginal social and private returns defined

above are appropriate to measure returns to R&D in terms of social and private sur-

plus. The MSR will be a good proxy for social surplus returns to R&D if increases

in social surplus (both profits and consumer surplus) are associated to increases in

equilibrium market quantities. The MPR will be a good proxy for private returns

to R&D in terms of profits if increases in profits are associated to increases in own

output. 73 For a more detailed discussion, see Appendix A.3.3. Under these assump-

tions, estimates of the provision of R&D can be obtained combining the estimates of

the social and private returns to R&D with the elasticity of R&D with respect to its

cost. The first stage regressions in Table 1.3 show an elaticity of between -0.7 and

-2.6, depending on whether one considers the federal component of R&D tax price or

the state-level one. Previous estimates in the literature range. Hall and Van Reenen

(2000) find a unitary elasticity of corporate R&D to its tax price using Compustat

data, Chang (2014) finds an elasticity of state-level R&D of -2.8 to -3.8 in the US,

and Bloom et al. (2002) report a long-term unitary elasticity of aggregate R&D using

data from a panel of countries. Using a unitary price elasticity of R&D of -1, the ratio

of returns is also equal to the ratio of the optimal social provision of R&D relative

to the decentralized economy's provision.14 Therefore, according to my estimates the

under-provision of corporate R&D in the decentralized equilibrium is sizeable, with

the social optimum level of corporate R&D being about three times as large as the

decentralized levels.

73This includes assuming that re-absorbed within-firm spillovers are indeed internalized, while
spillovers between firms are not, through for example unobserved licensing agreements.

74For a more detailed derivation of this result, see Appendix A.3.3.
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1.8 Conclusion

In this paper, I have used a panel of publicly-listed US firms and their patenting

activity to examine dynamic spillovers of corporate R&D. I have constructed measures

of cumulative knowledge proximity between firm-year observations through a patent

citation network, and used these measures to construct pools of R&D upon which

firms are likely to build further. Causal effects have been estimated exploiting the

persistence of the patent citation network, and variation in the federal and state tax

treatment of R&D expenditures. I have found sizable dynamic spillover effects on firm

output, with an elasticity at least as large as that of own R&D investment. The effect

of dynamic spillovers on market value are comparatively even larger. I have also found

that dynamic spillovers have sizable effects through the firms' innovation production

function, and that they accrue primarily in complex product types, which are more

reliant on cumulative innovation. Lastly, because the dynamic spillovers are partly

internalized by the original innovator, their exclusion does not greatly influence the

estimation of the ratio between social and private returns to R&D. I have found that

social returns to R&D, incorporating knowledge spillovers (dynamic and static) as

well as business stealing spillovers, are about three times as large as private returns.

Using a unitary elasticity of R&D to its user cost, this results in a sizable under-

provision of R&D in the decentralized equilibrium, with the social optimum level of

corporate R&D being about three times as large as the decentralized levels.

I have also found that the relative importance of the knowledge spillovers estimated

through the static and the dynamic measures is highly heterogeneous. It varies greatly

across industrial sectors, and in particular across product and technology types, such

as complex and discrete products, and chemical, electrical and mechanical technolo-

gies. First, this result is informative on the innovation processes involved within each

product or technology category. It highlights that complex products and technologies

do indeed seem to rely more on inter-temporal spillovers, on a cumulative innova-

tion process. Moreover, it also underlines the importance of accounting for flexible

dynamic structures in the analysis of knowledge spillovers in cross-industry studies,

particularly with an eye for policy recommendations. For example, I show that cer-

tain industries, due to their complex inter-temporal knowledge flow structure, would

not exhibit significant knowledge spillovers if only static measures were used, even

though their dynamic spillover estimates are large.

The dynamic spillovers I have estimated are measured between patented inno-
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vations, since the firm citation network uses patent data. This means that I have

observed dynamic spillovers under the presence of patenting IP protection. Whether

these spillovers would have been smaller or larger under an alternative IP system

is outside of the scope of this paper. Studies such as Williams (2013), Galasso and

Schankerman (2015), or Mezzanotti (2015) suggest that strong IP rights inhibit the

rate and direction of innovative activity, and that lowering or ultimately scrapping

patent protection could lead to stronger dynamic spillovers of R&D. However, on top

of providing incentives for innovative activity, one of the aims of the patent system

is also to further the diffusion of knowledge and innovation. In fact, patent exclusion

rights are only awarded in exchange for the publication of innovation in a comprehen-

sible and codified format. As such, the patent system could be furthering dynamic

spillovers by providing for more important knowledge flows. Again, studies such as

Furman and Stern (2011), Murray et al. (2016) or Furman et al. (2006) suggest that

settings that are conducive to stronger knowledge flows will encourage subsequent

innovation. The possible role of patents as codifiers and distributers of innovation

deserves to be investigated further.

The estimates I have found in this paper can be informative of the shape of

the aggregate innovation production function. In particular, I have found that the

magnitude of dynamic spillovers from past innovations are about as large as that of

own R&D and close to being unitary. Likewise, the magnitude of static knowledge

spillovers suggests large complementarities of R&D activity. Following the framework

in Jones and Williams (2000), let us consider an innovation production function of the

type kit = 6tRt at the individual firm level, with R = research effort. At an aggregate

level, however, we have 6N = 6R A'O, as the productivity of R&D varies with the level

of aggregate R&D effort and the existing stock of ideas. The results in this paper are

consistent with such a function, 75 with parameters # a 1 and A % #cit - #sic = 1.9 >

1.76 This exercise is highly speculative, and only intended as an illustration of how the

estimates found in this paper could be applied in macroeconomic models. Whether

these are good estimators for the relevant parameters in an aggregate innovation

75The elasticity of output with respect to own R&D in the empirical specifications is about 0.1
rather than unitary. Since the empirical specifications measure elasticity of output with respect to
its arguments rather than the elasticity of knowledge creation, the coefficients need to be scaled by
the unobserved elasticity of output with respect to firm-specific knowledge. In order to make the
knowledge production proportional to the R&D effort, I multiply the empirical coefficients by 10.

76# = 1 would correspond to the case in Romer (1990). The estimate for A would include both
types of static spillovers, and implies large complementarities of R&D.
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production function at the macro level is a difficult question. On the one hand, my

estimation considers the influence of a selected amount of past and present R&D

on output, chosen precisely because of its potential to have an influence. If one is

considering instead how the entire existing body of knowledge affects the creation of

new ideas, the influence might be smaller as this body includes possibly irrelevant

technologies and ideas. On the other hand, the setting I consider is restricted to

innovations for which patents have been filed and are thus likely to be protected by

IP rights that may hinder or reduce subsequent innovation. In fact, Galasso and

Schankerman (2015) find that reductions in patent IP protections lead to increased

downstream innovation in complex technologies. One would thus expect that science

and innovation carried out in more open settings with institutions devoted to the

certification and dissemination of knowledge, 77 such as basic science in universities or

public research institutes, may lead to larger cumulative spillovers.
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Figure 1-1: Patent counts across time in the NBER data
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Notes: This figure shows the number of patents filed for (in a black continuous line) and granted (in
a blue dashed line) in each year between 1976 and 2006. A vertical line marks 2001, when noticeable

attrition starts.

Figure 1-2: Correlation between static and dynamic knowledge spillovers, DYNSPILL
and CITSPILL

O -
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Dynamic spillovers

Notes: This figure plots the values of the dynamic knowledge spillovers ln(SpillDyn) and the static
knowledge spillovers ln(SpillCit) for all firm-year observations with positive dynamic spillovers in

my sample.
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Figure 1-3: Heterogeneity across industrial sectors
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic and static
knowledge spillovers, separated by the industrial sector of the receiving firm, for the productivity
equation and OLS specification. The baseline coefficients corresponds to the baseline specification
in Table 1.5; Machinery corresponds to 2-digit SIC code 35; Electronics corresponds to SIC code
36; Instruments corresponds to SIC code 38; Chemicals corresponds to SIC code 28, except drugs
SIC code 283; Transport corresponds to SIC code 37; Drugs corresponds to 3-digit SIC code 283.
Standard errors are clustered two-way at the year and firm level, and confidence intervals are set at
the 90% level.
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Figure 1-4: Heterogeneity across product and technology types
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic and static

knowledge spillovers, separated by the industrial sector of the receiving firm, for the productivity

equation and OLS specification. The classification of SIC codes into complex and discrete, electrical,

mechanical, and chemical are discussed in subsection 1.5. Standard errors are clustered two-way at

the year and firm level, and confidence intervals are set at the 90% level.
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Figure 1-5: Heterogeneity across technologies
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic spillovers,
separated by the technology class of the originating patent, for both productivity and MTB equa-
tions, and OLS and 2SLS specifications. Hall et al. (2001) technology categories 2 and 4, as well
as subcategories 32 and 33 are classified as complex, whereas the rest are defined as discrete. The
regressions run are the same as in the baseline regressions in Table 1.5, albeit incorporating both
types of spillovers. Standard errors are clustered two-way at the year and firm level, and confidence
intervals are set at the 90% level.

Figure 1-6: Direct and indirect dynamic spillovers
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Notes: This figure plots the values and confidence intervals of the coefficients on dynamic spillovers,
separated by whether they are constructed using direct or indirect second-degree patent citation
network connections, for both productivity and MTB equations, and OLS specifications. The re-

gressions run are the same as in the baseline regressions in Table 1.5, albeit incorporating both
types of spillovers. Standard errors are clustered two-way at the year and firm level, and confidence
intervals are set at the 90% level.
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Figure 1-7: Depreciation of spillovers

Subsequent network, 1990-2001
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic spillovers,
separated by the time bridged between the application year of the originating patent and that of the
citing patent. It does so for both productivity and MTB equations, and using the restricted 1987-2001
network as well as the full 1976-2001 network. Spillovers are divided into three groups depending on
how their time bridged falls in the corresponding distribution with respect to the median and 7 5th

percentile within each network. The regressions run are the same as in the baseline regressions in
Table 1.5, albeit incorporating all three types of spillovers. Standard errors are clustered two-way
at the year and firm level, and confidence intervals are set at the 90% level.
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Figure 1-8: Heterogeneity across firm sizes
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic spillovers,

separated by the size of the originating firm, for both productivity and MTB equations, and OLS

and 2SLS specifications. Firms are classified as smaller if their average employee count between

1980 and 2001 lies in the bottom half of the distribution, and larger if it lies in the top half. The

regressions run are the same as in the baseline regressions in Table 1.5, albeit incorporating both

types of spillovers. Standard errors are clustered two-way at the year and firm level, and confidence

intervals are set at the 90% level.

Figure 1-9: Spillovers from Venture Capital
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic spillovers,

separated by whether they originate in VC-backed startups or in established publicly-listed firms,

for both productivity and MTB equations, and the full and restricted network. The regressions

estimated are the same as in the baseline regressions in Table 1.5, albeit incorporating both types of

spillovers. Standard errors are clustered two-way at the year and firm level, and confidence intervals

are set at the 90% level.
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Table 1.1: Descriptive statistics, variables

VARIABLES N mean p50 sd p5 p 95

Sales 3,631 4,313 1,106 8,773 45.78 20,040
Market-to-book ratio 3,561 3.022 2.201 2.899 0.713 8.519
R&D flow 3,631 175.4 18.25 514.7 0 1,047
R&D stock 3,631 917.8 108.0 2,394 0 6,233
R&D intensity 3,631 0.232 0.150 0.242 0 0.698
No R&D 3,631 0.128 0 0.334 0 1
Dynamic spillovers 3,631 11.54 0.999 36.33 0 54.50
No dynamic spillovers 3,631 0.261 0 0.439 0 1
Static knowledge spillovers 3,631 5,411 4,127 4,629 163.6 14,314
Static business stealing spillovers 3,631 10,176 3,714 13,763 126.0 39,296
Fixed capital 3,631 1,514 257.0 3,560 8.200 7,197
Employment 3,631 20.61 6.740 39.51 0.352 90
Patent count 3,631 38.22 5 105.5 0 184.3

Notes: The statistics are taken over all non-missing observations between 1990 and 2001. All monetary values are measured in
2000 $ in millions, employment measured in thousand employees. Missing observations are set to zero for R&D expenditures.

Table 1.2: Predictions for market value, productivity and R&D

Empirical
Equation Counterpart Prediction

Market value Market value with Positive

SpiliCit
Market value Market value with Negative

SpillSic
Market value Market value with Positive

SpillDyn
Productivity Productivity with Positive

SpiliCit
Productivity Productivity with Zero

SpillSic
Productivity Productivity with Positive

SpillDyn

Notes: See theoretical framework in Appendix A.3.1 for the derivation
of the predictions. The predictions are shown under the assumptions
of positive technology spillovers and strategic complementarity between
product market competitors' knowledge stock. SpillCit is the static
technology-distance weighted sum of all other firms' R&D stocks. Spill-
Sic is the static product market-distance weighted sum of all other firms'
R&D stocks. SpillDyn is the dynamic technology-distance weighted sum
of all other firms' R&D stocks.
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Table 1.3: First stages, effect of tax instruments on R&D expenses

(1) (2) (3) (4)

ln(Federal component of tax) -1.659** -1.874** -0.789*** -0.714***
(0.677) (0.750) (0.257) (0.237)

ln(State component of tax) -2.114*** -6.547 -3.571** -2.584*
(0.370) (4.142) (1.442) (1.460)

F-statistic 170.1409 172.5993 28.20957 29.29535
Observations 7372 7372 7372 7372

Year FE $ V $
Firm FE $ /
Industry-year FE V

Notes: Dependent variable is ln(R&D expenses) between 1980 and 2001. Regressions include a dummy for no R&D
expenses and for no firm-specific federal tax instrument (about a third of observations). Standard errors in brackets
are clustered two-way at the year and firm level. ** ** and * denote statistical significance at the 1%, 5% and
10% respectively.
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Table 1.4: First stages, pre-period network on spillover network

Dynamic Static

(1) (2) (3) (4)

Pre-period weight 0.068*** 0.068*** 0.067***
(0.013) (0.013) (0.013)

Inter-firm weight 0.584***
(0.032)

F-statistic 356.4111 322.9695 325.4914 332.5909
Observations 2.8e+07 2.8e+07 2.8e+07 11615

Citing firm and year FE $ I/
Citing node FE V $
Cited node FE
Citing and cited firm FE /

Notes: Dependent variable in columns (1) to (3) is weight of network edge in 1987-2001 citation network.
Regressions include citing firm and citing year dummies in column (1), citing firm-times-year dummies in
column (2), and a saturated set of citing firm-times-year and cited firm-times-year dummies in column (3).
All regressions also include a dummy when both observations are zeros. The dependent variable in column
(4) is the average weight of the 1987-2001 network between two firms, averaged across all years. Regressors
include citing and cited firm dummies, and the average weight between the two firms in the pre-period 1976-
1984 network. Standard errors in brackets are clustered two-way at the citing and cited firm level. * **

and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 1.5: Baseline estimates

Output Market value

OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7)

Own R&D stock 0.348*** 0.328*** 0.036 0.029 0.092* 0.024 0.144
(0.049) (0.046) (0.027) (0.026) (0.049) (0.050) (0.142)

Knowledge spill. 0.229** 0.225** 0.193** 0.122** 0.280** 0.019 0.277**
(0.101) (0.100) (0.076) (0.062) (0.130) (0.162) (0.133)

Business steal. -0.034 -0.035 -0.040 -0.026 -0.087** 0.116 -0.112*
(0.071) (0.065) (0.032) (0.030) (0.038) (0.103) (0.067)

Dynamic spill. 0.052*** 0.023*** 0.025*** 0.107** 0.050*** 0.171*
(0.012) (0.008) (0.009) (0.047) (0.019) (0.089)

First stage F-test 13.68 11.275
Observations 3631 3631 3631 3631 3631 3561 3561

Firm and year FE /
Controls
Industry-year FE

Notes: Dependent variable is lead In(Sales) in columns (1) to (5), and ln(Market-to-book ratio) in columns (6) to (7). All regressions include
dummies for no R&D and no spillovers as well as a full set of firm and year FEs, output regressions also include a lead industry-specific price
deflator. Controls include: industry-wide log-sales and lagged log-sales; log counts of patents filed; a sixth-order polynomial in ln(R&D
stock), only the first term is shown for brevity; dummies for no patents filed. Standard errors in brackets are clustered two-way at the
year and firm level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively. Reported F-tests correspond to the
Kleibergen and Paap (2006) rk Wald F statistic of weak instruments.
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Table 1.6: Robustness checks

3-digit SIC R&D Only Patent count Citation-weighted Alternative R&D Lower rate of Full
industry-year FEs polynomial manufacturing polynomial patent count intensity depreciation network

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A: Productivity

Own R&D stock 0.037 0.156*** 0.045* 0.040* 0.041* 0.114** 0.040* 0.109** 0.042* 0.118*** 0.042* 0.101** 0.036 0.102* 0.047***
(0.024) (0.053) (0.023) (0.023) (0.023) (0.045) (0.023) (0.044) (0.023) (0.045) (0.023) (0.045) (0.031) (0.057) (0.011)

Dynamic spill. 0.023* 0.072** 0.023*** 0.103** 0.022*** 0.106** 0.023*** 0.104** 0.016** 0.030* 0.014** 0.107** 0.024*** 0.103** 0.020**
(0.012) (0.034) (0.008) (0.046) (0.008) (0.047) (0.008) (0.047) (0.007) (0.017) (0.006) (0.048) (0.008) (0.044) (0.009)

First stage F-test 13.623 51.154 27.862 25.25 125.49 19.494 14.554
Observations 3631 3631 3631 3631 3541 3541 3631 3631 3631 3631 3631 3631 3631 3631 9011

Panel B: Market Value

ln(R&D stock) 0.072 0.130 0.019 0.009 0.013 0.042 0.008 0.035 0.016 0.059 0.017 0.028 0.022 0.015 -0.119***
(0.056) (0.121) (0.062) (0.064) (0.054) (0.135) (0.053) (0.132) (0.054) (0.129) (0.054) (0.136) (0.060) (0.170) (0.032)

ln(Dynamic spill.) 0.058** 0.223** 0.050*** 0.200** 0.051*** 0.178* 0.052*** 0.165 0.033** 0.045 0.037** 0.180* 0.053*** 0.182* 0.041***
(0.025) (0.094) (0.018) (0.095) (0.019) (0.100) (0.018) (0.101) (0.017) (0.043) (0.017) (0.102) (0.019) (0.094) (0.013)

First stage F-test 12.094 39.754 22.685 20.55 112.46 17.062 11.767
Observations 3561 3561 3561 3561 3471 3471 3561 3561 3561 3561 3561 3561 3561 3561 8814

Firm and year FE
Industry-year FE

Notes: In panel A, dependent variable is lead ln(Sales) and regressions include the log of an industry-specific price deflator; in panel B dependent variable is ln(MTB). All regressions include
industry-wide log-sales and lagged log-sales; log counts of patents filed; dummies for no R&D, for no dynamic spillover and for no patents filed, as well as a full set of firm and year FEs. Columns (1)
and (2) include narrow 3-digit SIC-code industry-times-year FEs, columns (3) and (4) include a sixth-order polynomial in ln(R&D stock) (only the first term is showed for brevity), columns (5) and
(6) restrict the sample to manufacturing firms, SIC codes 2000-3999, columns (7) and (8) include a fourth-order polynomial in log patent counts, columns (9) and (10) include log of citation-weighted
patent counts, columns (11) and (12) use R&D/Sales instead over R&D/Assets as a measure of research intensity, columns (13) and (14) use a lower depreciation rate of 10% for all R&D stocks, and
column (15) estimates the OLS estimation on a 1980-2001 sample using the whole 1976-2001 network. Standard errors in brackets are clustered two-way at the year and firm level. and
denote statistical significance at the 1%, 5% and 10% respectively. Reported F-tests correspond to the Kleibergen and Paap (2006) rk Wald F statistic of weak instruments.



Table 1.7: Dynamic spillovers on R&D and citation-weighted patenting

Citation-weighted patents R&D activity

Neg. Bin.

(1) (2) (3) (4) (5)

Own R&D stock -0.034 -0.040 0.006
(0.092) (0.088) (0.041)

Dynamic spill. 0.519*** 0.420*** 0.344*** 0.037*** 0.024**
(0.084) (0.080) (0.035) (0.012) (0.010)

R&D/Salest_1 0.538***
(0.047)

Patentst_ 1  0.122** 0.141***

Observations 3289 3289 3289 2872 2863

Firm and year FE / / $ / /
Notes: Dependent variable is lead ln(Citation-weighted patent count) in columns (1) and (2), lead citation-
weighted patent count in column (3), and lead ln(R&D expenditures) in columns (4) and (5). Column (3)
estimates a conditional negative binomial model with panel fixed effects, and the other columns estimate OLS
regressions. Regressions include controls for industry-wide log-sales and lagged log-sales; dummies for no dy-
namic spillover, as well as a full set of firm and year FEs. Columns (1) to (3) also include log R&D stock and a
dummy for no R&D stock; columns (2) and (3) also include logs of citation-weighted patent counts; columns (4)
and (5) include the log of sales in order to normalize by firm size, and column (5) includes current ln(R&D ex-
penditures). Standard errors in brackets are bootstrapped in column (3), and clustered two-way at the year and
firm level in all other columns. *** ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 1.8: Supply chain and geographic spillovers

Productivity Market value

Base- Supply Geographic Base- Supply Geographic
line chain spillovers line chain spillovers

OLS OLS OLS 2SLS OLS OLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7) (8)

Own R&D stock 0.042* 0.040* 0.041* 0.116*** 0.016 0.014 0.013 0.048
(0.023) (0.022) (0.023) (0.044) (0.054) (0.054) (0.053) (0.129)

Dynamic spill. 0.022*** 0.023*** 0.018** 0.049** 0.052*** 0.053*** 0.037** 0.111*
(0.008) (0.008) (0.008) (0.020) (0.018) (0.018) (0.017) (0.058)

ln(Supply chain spill.) -0.025** -0.093***
(0.010) (0.033)

ln(Geographic spill.) 0.008 -0.001 0.026* 0.008
(0.008) (0.020) (0.015) (0.033)

First stage F-test 20.133 19.94
Observations 3631 3631 3631 3631 3561 3561 3561 3561

Firm and year FE V$
Notes: Dependent variable is lead In(Sales) in columns (1) to (3), and ln(Market-to-book ratio) in columns (3) and (4). Regressions include controls for industry-
wide log-sales and lagged log-sales; log counts of patents filed; dummies for no R&D, for no dynamic spillover and for no patents filed, as well as a full set of firm
and year FEs. Columns (1) to (4) also include the log of an industry-specific price deflator. Standard errors in brackets are clustered two-way at the year and
firm level. *, and * denote statistical significance at the 1%, 5% and 10% respectively. Reported F-tests correspond to the Kleibergen and Paap (2006) rk
Wald F statistic of weak instruments.
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Table 1.9: Own vs others' spillovers, output

OLS 2SLS

(1) (2) (3) (4) (5) (6) (7)

Own R&D stock 0.045* 0.043* 0.034 0.028 0.135*** 0.119** 0.083*
(0.023) (0.023) (0.027) (0.026) (0.044) (0.047) (0.049)

Intra-firm dynamic 0.009 0.010 0.010 0.042* 0.044*
(0.006) (0.006) (0.006) (0.022) (0.023)

Inter-firm dynamic 0.027*** 0.029*** 0.029*** 0.029*** 0.091*** 0.081** 0.085**
(0.007) (0.008) (0.007) (0.008) (0.034) (0.033) (0.034)

Knowledge spill. 0.194** 0.124** 0.279**
(0.077) (0.063) (0.129)

Business steal. -0.040 -0.027 -0.094**
(0.032) (0.029) (0.038)

First stage F-test 12.704 13.25 8.7923
Observations 3631 3631 3631 3631 3631 3631 3631

Firm and year FE /
Controls /
Industry-year FE

Notes: Dependent variable is lead ln(Sales). All regressions include dummies for no R&D, no spillovers and no patents filed; industry-wide
log-sales and lagged log-sales; log counts of patents filed; a sixth-order polynomial in ln(R&D stock), only the first term is shown for brevity;
a lead industry-specific price deflator, as well as a full set of firm and year FEs. Standard errors in brackets are clustered two-way at the
year and firm level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively. Reported F-tests correspond to the
Kleibergen and Paap (2006) rk Wald F statistic of weak instruments.

73

1K_ .



74



Chapter 2

Patent duration and cumulative

innovation: Evidence from a

quasi-natural experiment (joint with

Jean-Noel Barrot)

Abstract

Cumulative innovation is at the core of economic growth, but the impact of patent
policy on it is not well understood. This paper investigates whether patent term
duration affects the rate and direction of follow-on innovation. We use a quasi-natural
experiment that lengthened the term on existing patents in the US, and leverage a
kink in the extension formula to identify the effects of patent term increases. We
find no statistically significant impact of patent extensions on subsequent innovation,
neither locally around the kink using a sharp "Regression Kink Design" nor on average
on the population of treated patents. We further analyze whether the null average
effect could be masking important heterogeneous effects, and find no such evidence.

2.1 Introduction

Innovation is at the core of long-term economic growth. However, the non-rivalry and

non-excludability of ideas (Nelson, 1959; Arrow, 1962) can lead to lessened incentives

for innovation production. Recognizing this, intellectual property (IP) rights have

been established by most governments in order to provide incentives to innovate.1

'For example, the U.S. constitution explicitly links IP rights to incentives to innovate in its
article I, section 8: The Congress shall have power... To promote the progress of science and useful
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Most evaluations of IP rights have focused on the trade-off between ex-ante incentives

for innovation and the ex-post inefficiencies associated with the increased market

power derived from the IP exclusionary rights.2

A more recent empirical literature adds a layer of complexity to the analysis by

recognizing that innovation is often cumulative in nature, 3 and that IP rights on exist-

ing technologies can also have implications for the intensity and direction of follow-on

innovation. It largely finds that IP rights reduce technology use, as well as subsequent

research and innovation, and complements a more extensive previous theoretical liter-

ature that provided no clear predictions on the impact of IP on cumulative innovation

(Kitch, 1977; Scotchmer, 1991; Green and Scotchmer, 1995). However, this recent lit-

erature has mostly concentrated on the extensive side. That is, it has compared

follow-on outcomes under IP protection to outcomes without it, or to outcomes when

IP protection drops markedly. This research is useful to determine whether particu-

lar technologies should be awarded IP rights or not. However, it does not necessarily

help determine policy parameters of interest on the intensive side, such as what is the

optimal duration of IP protection?

The impact of IP duration on follow-on innovation could depend both on the

impact of the actual lapse in protection at the end of the term, but also on the

strategic response of agents before the term lapses. In terms of the direct impact, if

patent protection reduces follow-on innovation4 due to bargaining or transaction costs,

increases in patent terms can depress subsequent innovation for longer. Moreover,

longer patent terms result in the release into the public domain of older and more

obsolete technologies, which may therefore be less valuable to build upon when the

patent lapses.5  Furthermore, the strategic response of agents before patent lapse

can strengthen this impact. For example, Li et al. (2016) study the UK Copyright

Act of 1814 and find that additional years of copyright protection increased prices by

improving publishers' ability to practice intertemporal price discrimination. Similarly,

arts, by securing for limited times to authors and inventors the exclusive right to their respective
writings and discoveries.

2 See for example Nordhaus (1969); Klemperer (1990); Gilbert and Shapiro (1990); Budish et al.
(2015).

31n fact, the endogenous growth literature in particular depicts knowledge spillovers as dynamic,
accruing when past ideas become the new foundation on which to build further innovation. See e.g.
Romer (1990), Aghion and Howitt (1992), and Jones (1995).

4As in Murray et al. (2016); Williams (2013); Galasso and Schankerman (2015); Biasi and Moser
(2017); Nagaraj (2016).

5Mehta et al. (2010) study age profiles of patent citations and find that citations peak at around
two to three years after grant date, and then decrease with age.
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longer patent protection could slow technology diffusion, as well as hinder follow-

on innovation in the presence of transaction costs by strengthening the bargaining

position of the upstream innovator. Nonetheless, empirical research on the effect of

patent protection term duration on subsequent innovation is lacking.

The contribution of this paper is to provide, as far as we know, the first formal

empirical analysis of whether longer patent terms hinder follow-on innovation. We

leverage a quasi-natural experiment in 1995 with the passing of the Trade-Related

Aspects of Intellectual Property Rights (TRIPS). This reform package, negotiated

during the Uruguay Round of trade agreements that led to the creation of the World

Trade Organization, lengthened patent terms for existing outstanding U.S. patents.

Specifically, it moved patent terms from a maximum length of 17 years after patent

grant to 20 years after patent application for new patents, and included a clause of

retro-activity that also awarded existing patents a lengthened term equal to the more

generous of the two regimes. As a result, most outstanding patents received a term

boost that depended negatively on their processing time, that is on the difference be-

tween application and grant date. Meanwhile, outstanding patents with a processing

time longer than three years saw no change in their term. In our empirical analysis,

we identify the impact of patent term extensions on follow-on innovation by taking

advantage of the kink in the TRIPS-induced term extension function at a processing

time of 3 years. Under the assumption that the impact of processing time on follow-

on innovation is the same on both sides of the kink, we can identify the impact of the

TRIPS treatment by comparing the estimates on either side.

In section 2.2, we describe the research setting in more detail, including relevant

institutional information about the U.S. patent law and the implementation of TRIPS.

The TRIPS reform has been exploited as a quasi-natural experiment by a number of

recent papers. Among the most relevant for our analysis, Abrams (2009) analyzes

the impact of longer expected patent term on innovation after the implementation of

TRIPS, and finds differential effects by technology class. More recently, Lemus and

Marshall (2017) as well as Sukhatme and Cramer (2014) find that TRIPS increased

incentives for assignees to shorten patent processing times. Hshieh (2017) studies the

response by firms to windfall profits due to patent term extensions because of TRIPS,

and finds no evidence of increased internal R&D expenditures. We contribute to this

literature by analyzing how TRIPS impacted incentives for follow-on innovation on

existing outstanding patents.
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We present our empirical strategy and results in section 2.3. We follow an estab-

lished empirical literature in using in-citations by later patents to the focal patent of

analysis to trace knowledge spillovers on follow-on innovation.' First, we use panel

and cross-sectional specifications to estimate the impact of processing time on in-

citation counts on both sides of the TRIPS-induced 3-year kink. These specifications

allow us to identify the average treatment effect on the treated under the assumption

that the underlying impact of procesing time on follow-on innovations is the same on

either side of the kink. We analyze a number of empirical specifications, and study

different outcome variables in terms of the span of time considered for follow-on in-

novation, as well as depending on whether the follow-on innovation is carried out by

the original patent assignee or not. Across all specifications, we consistently find no

evidence of an impact of longer patent terms on follow-on innovation.

We then carry out a more local analysis around the 3-year kink, using regression

kink design specifications. On the one hand, the underlying identifying assumption

of equal impact of the processing time running variable on follow-on innovation is

more likely to be satisfied in a regression kink design, as it focuses on differences

within a localized bandwidth around the cutoff. On the other hand, the regression

kink estimates correspond to a local treatment effect on the treated conditional on

processing time being equal to 3 years, which may or may not present external validity

further away from the kink. We first show that there is no discontinuity in patent

covariates around the cutoff in either levels or slopes, nor any evidence of bunching.

We then estimate regression kink specifications and consistently find no significant

impact of longer patent terms on follow-on innovation. Although our regression kink

estimates are noisier, they lend weight to the null average result estimated over the

population of treated patents.

In section 2.4, we analyze whether the zero average treatment effects mask hetero-

geneity of treatment impacts across patent characteristics. We differentially estimate

impacts of TRIPS on follow-on innovation depending on the technology class of the

focal patent, and show null results across each of Hall et al. (2001) technology classes,

as well as for both complex and discrete product types. We then separately estimate

the impact by focal patent grant year and filing year, and show homogeneously null

results. We also study heterogeneity across focal patent assignee sizes, and across

the distribution of patent quality or value, as proxied by pre-TRIPS citation counts.

6 Although using this proxy is not perfect, it is "the only feasible approach if one wants to study
the impact of patent rights across diverse technology fields" (Galasso and Schankerman, 2015).
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Once again, we find no evidence of meaningful heterogeneity being masked by the

average null treatment effect.

Finally, in section 2.5 we discuss the implications of our empirical results and

their place in the extant empirical literature. Murray et al. (2016) and Williams

(2013) find that non-patent IP protection on genetically-modified mice and on the

human genome respectively reduces subsequent research and innovation. On the other

hand, Sampat and Williams (2015) find no effect on follow-on innovation of patent

protection on human genes. Meanwhile, Galasso and Schankerman (2015) do find

that patent invalidations by courts increases follow-on innovation for a broad range

of technologies. Moser and Voena (2012) find that compulsory licensing of German

patents during WWI led to increased follow-on innovation in the US. Finally, Biasi

and Moser (2017) and Nagaraj (2016) find that copyright protection decreases re-use

and may hinder creation of follow-on innovation. In our panel specifications, we can

reject reductions in citation counts of 0.6% during the first 11 years post-reform per

additional year of patent term protection. Meanwhile, our cross-sectional estimates

are noisier, and allow us to reject reductions of 6% in post-TRIPS citations. We

discuss our contribution to the literature, and conclude in section 2.6.

2.2 Research setting

2.2.1 Uruguay Round

The Uruguay Round was a set of multilateral negotiations spanning from 1986 to

1994, conducted within the framework of the General Agreement on Tariffs and Trade

(GATT). It involved 123 countries and led to the creation of the World Trade Organi-

zation. The main goals of the Round were to expand GATT rules to new areas such as

agriculture, textiles, and services; to reduce restrictions on foreign direct investment;

and to set international minimum standards for IP rights.

The Uruguay Round culminated with the signing of the Marrakesh Agreement in

April 1994 by 124 countries, which included an agreement on Trade-Related Aspects

of Intellectual Property Rights (TRIPS) to unify minimum IP standards. The United

States implemented the Marrakesh Agreement into U.S. law through the Uruguay

Round Agreements Act (URAA). The URAA bill was introduced in the House on

September 27, 1994, and was passed on November 29 of that same year. It then

passed the Senate on December 1, and was signed into law by President Clinton
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on December 8, 1994. Although the bill was submitted under special procedures

that prohibited either chamber from modifying it, its passage was uncertain until

late November. The bill faced strong opposition in the Republican-controlled Senate,

where the soon-to-be Majority Leader Robert Dole demanded a capital-gains tax cut

in exchange for support. It also faced strong protectionist forces, and formidable

opponents in Ralph Nader and Ross Perot.

Most of the uncertainty regarding the bill was lifted on November 24, 1994, after

a meeting between President Clinton and Senator Dole. Dole agreed to drop his

demand in exchange for the White House to back legislation contemplating future

U.S. withdrawal of the WTO if its membership was deemed to hurt the United States

(see Fletcher (1994)). Given extended Democrat support, and with Dole poised to

become the Senate Majority leader in the coming January, the bill's approval was

largely anticipated after this announcement. The contents of the TRIPS reform were

therefore known throughout 1994, although the uncertainty on whether the reform

would be implemented or not was not lifted until the end of November.

2.2.2 TRIPS reform

The TRIPS reform was implemented in the U.S with the signing of the URAA.

TRIPS affected a number of aspects of IP policy, not all of them related to patent

policy, but the most salient change for patents was to make their protection extend

for a minimum of twenty years. U.S. patent law at the time provided for 17 years

of protection after granting, which TRIPS reformed to 20 years of protection after

filing. This change in patent term duration was the largest in the U.S. since 1861,

and was implemented in June 8, 1995. It affected outstanding and incoming patents

in the following way:

" For all patents filed on or after June 8, 1995, the patent term becomes 20 years

from the filing date. 7

* For all patents filed before June 8, 1995, but still outstanding on that date,8 the

patent term becomes the longer of the two following options: either 17 years

from the grant date of the patent, or 20 years from the earliest filing date.

71n fact, from the earliest U.S. or international filing date to which priority is claimed.
8That is, patents granted after June 7, 1978 that were not expired.
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* All patents granted on or before June 7, 1978 or other patents that were expired

by June 8, 1995 were not affected by the TRIPS reform.

That is, the TRIPS reform not only affected patents filed for after its implemen-

tation in June 1995, but also increased the patent terms of outstanding patents that

had been previously applied for and possibly already granted. For the latter, the

term extension depended on the processing time, or time between the earliest filing

date and the subsequent grant date. For outstanding patents, the term extension was

equal to 3 years minus the processing time, with no reduction in term, i.e. a floor at

zero if processing time was greater than three years.

This patent term reform significantly affected the remaining maturity of outstand-

ing patents. In Figure 2-1 we plot the histogram of extensions awarded to outstanding

patents due to TRIPS. The average extension granted is almost 14 months, with a

median extension of just under 15 months, and with a share of patents that receive

no term extension of just under 10%. Moreover, there is suggestive evidence that

patent assignees believed this patent term increase to be valuable. In Figure 2-2 we

plot the number of weekly patent applications9 and patent grants between 1993 and

1997. It shows a clear spike in applications before June 8, 1995.10 The figure shows

the equilibrium effect of two countervailing forces: filing before the TRIPS deadline

results in the option value of receiving the greater of the two patent term options,

and this option value actually increases with the number of patent filings, as more

patent filings will likely lengthen the backlog at the U.S Patent and Trademark Office

(USPTO) and slow down the process. On the other hand, applying for a patent ear-

lier could lead to a looser application file which might face more difficulties in being

approved or result in less comprehensive protection. It also decreases the option value

of waiting if the value of the patentable technology is uncertain.

The TRIPS reform also included other elements for the patent system, although

with less salience and significance. The main changes, other than the patent term

modification, involved allowing for foreign activity to prove a date of invention and

the creation of provisional patent applications." However, these additional reforms

affected new patent applications rather than outstanding patents previously granted.

9This count only includes applications to patents that are ultimately granted by December 16,
2016.

10For more evidence of this spike, see Abrams (2009), Sukhatme and Cramer (2014), Hshieh
(2017).

"iSee Van Horn (1995) and Sukhatme and Cramer (2014).
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In order to avoid conflating concerns, we focus our empirical analysis on patents that

were granted years before the implementation of TRIPS. Since the Uruguay Round

would plausibly have led to increased trade and cross-country patenting activity that

could affect citation patterns, we control directly for whether the original assignee is

a foreign or US entity in our empirical specifications.

2.2.3 Data and variable construction

We use utility patent data from the USPTO PatentsView platform, current up to

December 16, 2016. The data includes information on granted patents since 1976

and published patent applications since 2001. Variables include filing and grant date,

number of claims, technology class and subclass, citation patterns, and patent assignee

information. We combine this data with administrative information of maintenance

fee payments from the USPTO bulk downloads. Utility patents issued on or after

December 12, 1981 have to pay renewal fees in the sixth months prior to their 4 th,

8 th, and 1 2 th year of protection in order to maintain validity. Failure to pay these fees

in a timely manner results in patent expiry. We use the maintenance fee payment

profile of each patent to more closely ascertain the running validity of each patent.

We keep patents granted in the 1980s for our empirical analysis. This allows us

to focus on patents that are still outstanding (that is, as long as they paid their

corresponding fees) by the time of the TRIPS reform in 1995 and that were not set

to lapse immediately after. We restrict the analysis to patents granted before 1990 in

order to observe enough of a pre-treatment citation profile.1 2 Moreover, notice that

our analysis focuses on patents that were filed for and granted years before the TRIPS

reform took place. We can safely assume that no TRIPS-induced consideration would

affect strategic patenting decisions in our sample.

For each patent i in the sample, we construct the following variables that are

determined at grant date.

* treats is the TRIPS-induced extension of patent term, in years. This treatment

intensity is defined as Max(0, 3 - Grant date + Filing date). That is, it is equal

to three calendar years minus the patent's processing time, with a floor at zero.

12 Mehta et al. (2010) find that the usual citation profile of patents starts at grant date in a
sample of patents granted up to 2002. Most of of their dataset corresponds to patents granted

before 2001, when the USPTO only published patent grants and not applications. This is consistent
with technology diffusion largely starting at publication date.
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" proctimej is patent i's processing time, equal the Grant date - Filing date. The

underlying running variable that defines the treatment intensity is procruni

and is equal to the patent's processing time minus three calendar years; the

treatment intensity is then treati = Max(0, procruni).

* We use the categorization of patent technology classes by Hall et al. (2001) to

define 6 HJT technology classes and 36 subclasses.

" We measure the HHI (from 0 to 1) of HJT technology subclasses among patent

i's out-citations. This index, defined by Hall et al. (2001) as originality is meant

to capture how diverse the set of patents cited by the focal patent are.13

" Other control variables include counts of out-citations by the focal patent and

counts of the number of patent claims. We also include dummies for the number

of maintenance fees paid for, between 0 and 3. We also include dummies on

whether the country of origin of the original patent assignee is the US or is for-

eign, in order to control for the internationalization asociated with the Uruguay

Round.

As our outcome variable, we follow a well-established literature using patent ci-

tations to follow knowledge spillovers resulting in follow-on innovation (Galasso and

Schankerman, 2015). We distinguish between in-citations by subsequent patents that

are filed by other assignees from those filed by the original innovator.1 4 In the first

part of our empirical analysis, we aggregate a focal patent's citations at the year of

application of the subsequent patent, and use the resulting panel data variation. In

the cross-sectional analysis, we aggregate the citation data to pre-TRIPS counts as

control variables15 and post-reform counts as outcome variables. Finally, we drop

the 1 "t and 9 9 th percentile in terms of the processing time running variable in order

to avoid outliers, and we restrict the patent sample to patents that paid the rele-

vant maintenance fees and were still outstanding by the TRIPS reform. The latter

restriction allows us to maintain comparable patents in the treated and untreated

subsamples, since less valuable patents would be more likely to lapse prior to the re-

form and therefore would be disproportionately represented among untreated patents.

"In the case of a patent with zero out-citations, we set its HHI to 1.
4
1n order to distinguish both, we rely on the PatentsView assignee disambiguation. See their

website for a discussion of the algorithm used.
"We include both all citations before 1994, as well as a more restricted count from 1990 to 1993

as controls.
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We address potential selection into the sample by also including lapsed patents and

by analyzing intent-to-treat in robustness checks, and find that our results are robust

to these variations. Descriptive statistics in our sample of patents are shown in Table

2.1.

2.2.4 Empirical strategy

We exploit the TRIPS reform in 1995 as a natural experiment that increased the

patent term length of enforceable patents. The extent of patent term increase was

highly heterogeneous, as shown in Figure 2-1, ranging from no increase to a lengthen-

ing of the term by close to three years. By focusing on the effect of TRIPS on patents

granted well before the implementation of the reform, we avoid concerns of endoge-

nous or strategic selection into the treatment. Abrams (2009) finds an heterogeneous

impact across technologies of TRIPS on patent applications after its implementation,

depending on their average expected patent term increases. In our analysis, we refrain

from such considerations and include flexible fixed effects to absorb technology-wide

effects in some specifications. Instead, we are interested in how, within each technol-

ogy class,16 the duration of effective patent protection impacts follow-on innovation.

The contents of the TRIPS reform were known throughout 1994, although the uncer-

tainty on whether the reform would be implemented or not was not lifted until the

end of November. As a result, we expect any impact of TRIPS on follow-on inno-

vation to fully start taking place in 1995, although it is possible that some impacts

could start as early as late 1994.

Although our empirical setting reduces concerns of strategic selection into treat-

ment, we still worry that the treatment intensity is not randomly assigned. In fact,
patent term extensions are a deterministic function of the patent processing time,

defined as the span of time between the first application date and the eventual patent

grant date. This processing time has an element of randomness, as it will be af-

fected by backlog at the USPTO, and can depend on the efficiency of the individual

patent officer quasi-randomly assigned to the application. 17 However, processing time

will also likely depend on the complexity of the application. More complex patent

"6 As shown later on in the empirical analysis in section 2.3, we focus on even more restrictive
within-group variation. Our groups are generally defined as narrow technology subclasses times
application year, in order to keep patents highly comparable within groups.

17For more information about the patent grant process, see Sukhatme and Cramer (2014). For
more information about the quasi-random allocation of patents to examiners, see Lemley and Sampat
(2012).
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applications, e.g. with more claims, might take longer to evaluate. Likewise, more ob-

scure applications with uncertain novelty could also lead to longer processing times.18

Finally, processing time can also be directly affected by the filing party requesting

extensions to their allotted time for responses. 9 Again, since the patents we focus

on were granted well before the terms of the TRIPS agreement were public, concerns

of strategic processing time modifications should be absent. Nonetheless, in Table

2.2 we analyze differences in patent observables for our sample of patents between

untreated patents with a processing time slightly longer than 3 years (between 3 years

and 3 years and 50 days) in column (1), compared to treated patents with a processing

time of around 2 years in column (2). Patents with longer processing times tend to

have more out-citations, more claims, and tend to remain valid for longer by paying

more maintenance fees. They also receive significantly more citations prior to the

TRIPS reform. Even though we can control explicitly for these variables in our em-

pirical specifications, processing time is likely also correlated with some unobservable

measure of patent quality which may skew our results.

We account for selection into treatment by taking advantage of the shape of the

treatment intensity function. As a reminder, the effect of the TRIPS reform on

outstanding patents was to change their duration from 17 years after grant date to

the greatest of the former and 20 years after filing date. As a result, if we define an

underlying running variable as 3 years minus the processing time, the extent of patent

term increase due to TRIPS is equal to that underlying running variable as long as

the variable is positive. If the running variable is negative (for processing times above

3 years), the treatment intensity is zero. Figure 2-3 plots the relationship between

the TRIPS treatment intensity as a function of the processing time. We see that the

function is flat at zero for values of processing time above 3 years (negative values

of the running variable), and has a negative slope of -1 for values below three years

(positive slope of 1 with respect to the running variable for positive values).

In order to identify the TRIPS treatment effect, we separately estimate the impact

of an extra processing day on citations on both sides of the kink at zero. For negative

18 n general, patent examiners will issue successive rounds of non-final rejections that can be
responded to with arguments and/or amendments to the patent claims. This back-and-forth can
last for many rounds (Sukhatme and Cramer, 2014). In fact, even faced with "final" rejections,
applicants can still request extensions to make their case, or register an appeal.

1In particular, Sukhatme and Cramer (2014) and Lemus and Marshall (2017) show that the
implementation of TRIPS does change the incentives to the filing party to hasten or slow down the
patent processing to take advantage of new patent term rules after the implementation of TRIPS.
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values of the running variable (that is, for processing times longer than 3 years), this

will incorporate effects due to unobservable patent quality differences." For positive

values, the effect will incorporate both the direct effect of processing time on follow-on

innovation (as in the previous case of negative values) as well as the effect of patent

term extension. If we assume that the impact of processing time absent treatment

is the same on both sides of the kink, any differential effect we would find can be

attributed to the TRIPS term extension. In the empirical analysis in section 2.3,
we follow this empirical strategy to identify the impact of patent term extension by

including both a treatment variable and a processing time variable.2 ' This allows to

separate the impact of patent term extension from selection-into-treatment concerns.

The identifying assumption in our analysis is that the impact of processing time

on follow-on innovation, after controlling for observable covariates, is the same on

both sides of the kink. We address a number of concerns about this homogeneity

assumption. First, we suspect that the assumption is more likely to hold close to the

kink rather than further away, because of possible nonlinearities or because patents

with very different processing times are not comparable. Suggestive evidence for this

can be found in Table 2.2, which compares covariates for two groups of patents that

are quite diverse in term of their processing time. Most t-tests of the covariates

show a statistically significant difference between the two groups. We address this

first by considering sequentially narrower cut-off thresholds around the kink on which

we conduct the analysis. Moreover, we also estimate regression kink discontinuity

specifications in subsection 2.3.3, which correspond to a very local analysis of the

differential slope of the impact on either side of the kink. Second, for the regression

kink design specifications we require that the only differential impact of processing

time on follow-on innovation around the kink is due to the TRIPS treatment. We

therefore verify that there is no bunching of patents on either side of the kink by

plotting a histogram of the processing time around the 3 year mark in Figure 2-4. We

also study whether there are differences in observable covariates around the kink at

zero in Table 2.3, and find no significant differences in most covariates.2 2 And finally,

20 Mehta et al. (2010) find that patent citation profiles start at grant date for patents mainly
granted prior to 2001. To the extent that some technology diffusion could start before grant date,
and could affect citation profiles in a correlated way to processing time, this will also be incorporated
in the measured coefficient on processing time.

2 1The treatment variable is equal to the underlying running variable for positive values, and equal
to zero for negative values. The processing time variable is equal to 3 minus the running variable.
We define the variables in more detail in subsection 2.2.3.

22We believe that the significant difference in filing years stems from our sample selection. Since
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in subsection 2.3.3 we estimate a regression kink design using patent covariates as

outcome variables, and again find no significant differences in covariates around the

kink.

2.3 Impact of patent term extension

In this section, we analyze the main impact of patent term extensions on follow-on

innovation along three dimensions. First we employ a panel dataset, we then focus

on the cross-sectional variation to investigate longer-lived TRIPS impacts, and finally

we implement a regression kink (RK) design.

2.3.1 Panel evidence

We follow a diff-in-diff framework with variable treatment intensity, and include years

between 1990 and 2005: four calendar years before the TRIPS reform and up to 10

years later. We think of 1995 as the first year of the reform. The URAA was signed

in December 1994, and there was considerable uncertainty as to whether it would

be approved until late November. Likewise, even though the implementation of the

act starts in June 1995, all of its provisions and subsequent impact on the term of

existing patents were known by the time of its approval.

In order to investigate the effect of patent term extensions on citation counts, we

estimate the following model for calendar years 1990 until 2005:

ln(1 + citationsit) =ac + 6 t + / 1treati x postt + 2proctimej x postt (2.1)

+ m1treati + 772proctimej + 973 1 {treati>O} X POstt + Eit,

where the outcome citationsit is a yearly count of citations to the focal patent i

by subsequent patents filed at t, treati is the patent's TRIPS treatment variable in

years, proctime is its processing time, postt is an indicator variable equal to one in

years 1995 and up, and ac is a patent-level fixed effect, and also included is a dummy

variable for positive treatment interacted with postt. We include a number of different

specifications of fixed effects in the estimations. In the baseline specification, we

we select patents based on their grant year, patents with a longer processing time (i.e., untreated)
will mechanically have an earlier filing date.
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include a set of fixed effects for calendar year times HJT technology subclass. These

fixed effects absorb common technological shocks that affect patent citations due to

time-varying attractiveness of the different technologies. We also include a dummy

variable for years in which the patent is lapsed, to account for differential citation

patterns under and without patent protection. Finally, standard errors are clustered

at the patent level to allow for serial auto-correlation over time, and we multiply the

outcome variable by 100 to express coefficients in terms of log points.

In Table 2.4, we show the coefficients on patent term extension and processing

time interacted with the post-TRIPS dummy. By including both treatment and

processing time variables, the treatment effect is identified as the differential effect

on citations of having a shorter processing time on either side of the three year

cut-off mark. That is, by comparing the effect of shorter processing time when the

processing time was under three years (patents that are treated) versus the effect of

shorter processing time when the processing time was above three years (patents that

are not treated). Panel A shows results using citations stemming from patents filed

by other assignees, while Panel B shows results using own citations. We analyze both

outcome variables, since we believe that the effects of patent protection on follow-

on innovation could differ depending on whether the subsequent innovator owns the

focal patent or not. Differences in the number of observations between columns (1)

to (3) are solely driven by singletons within FE groups being dropped.2 3 In column

(1), we show the coefficients for the baseline specification and find no statistically

significant effect of term extension on post-treatment citation counts by others. With

95% confidence, we find an impact of an extra year of patent term on citation counts

by others between -0.55% and 0.63%.2 Meanwhile, we find that patents with longer

processing times do exhibit larger citation counts by others post-TRIPS, by about

0.5% per year of processing time, although the effect is only marginally significant. In

column (2), for our preferred specification, we add a set of more flexible fixed effects:

we interact HJT technological subclass with application year and calendar year, as

well as HJT subclass interacted with grant year and calendar year. This accounts

fully for the age profile of patent citation depending on their application year times

HJT subclass, as well as depending on their grant year times HJT subclass. In this

specification, both coefficients on patent term extension and processing time remain

essentially unchanged. In terms of the impact of an extra year of patent term on

231n order to maintain consistent standard errors singletons should be dropped, see Correia (2015).
24For such small coefficients, log points approximately correspond to percentage points.
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others' citation counts, we can reject with 95% confidence a reduction larger than

0.56%. In column (3), we add an even more flexible set of fixed effects by interacting

HJT subclass with application, grant, and calendar year. This set of fixed effects

accounts for flexible age profiles of citations depending on a given patent's technology

subclass, grant year, and application year. Note that with this set of fixed effects,

the only variation in processing time and hence in term extension that can be used

is capped. Within each group, the difference between the patent with the longest

processing time (filed for on January 1 of filing year, and granted on December 31

of grant year) and that with the shortest time (filed for on December 31 of the same

filing year, and granted on January 1 of the same grant year) must be under two

years. Using that smaller variation leads to still insignificant albeit noisier estimates.

In terms of in-citations by subsequent patents filed by the original patentee in

Panel B, the specification in column (1) shows a significantly negative treatment im-

pact. However, once we add a set of interacted fixed effects to account for differential

citation age profiles for our preferred specification in column (2), the point estimate

is largely reduced and becomes insignificant. Adding a fully interacted set of fixed

effects in column (3) increases standard errors, but does not vary the point estimates

by much.

Because the prior specifications conflate the impacts of patent term increases on

both citations after patent lapse, and possible strategic responses prior to patent

lapse, we restrict the analysis to years during which the patent is still outstanding in

column (4). We find no evidence of strategic response to patent term increases by

either other agents or the original focal patentee. Finally, in column (5) we investigate

possible behavioral responses due to the salience of the patent term increase in the

year of the reform by focusing exclusively on the impact of the TRIPS reform in 1995.

That is, we restrict the analysis from years 1990 to 1993 in the pre-period and only

1995 as the post-period in column (7).25 Once again, we find no evidence of response

by citations in 1995.

We examine further whether we are missing out on yearly variation in the impact

of TRIPS by interacting the treatment and processing time variables with calendar

"We leave out 1994 from the pre-period because of the TRIPS reform passing in 1994. If there
was an effect on citations that started already in 1994, keeping it in the pre-period sample would
lead to underestimating the true magnitude of the effect.
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year dummies rather than the post-treatment dummy." The estimation results are

shown in Figures 2-5 and 2-6, with 1994 used as the baseline year. Figure 2-5 plots

the treatment coefficients A
3 of equation 2.1 without controlling for processing time,

as well as their 95% confidence intervals.2 7 By not controlling for processing time,

we are conflating here the impact of TRIPS treatment as well as omitted variables

related to extended processing time in the point estimates. The figure suggests that on

1995, the first year of treatment, receiving a term extension of one year is associated

with about 0.75% fewer citations. Moreover, it shows no impact between 1996 and

1998, followed by significantly negative impacts of around 1% in the 2000s. However,

we also observe positive and statistically significant coefficients prior to 1994, when

the TRIPS agreement was signed. This is suggestive of selection into treatment, as

discussed previously in subsection 2.2.4.

In order to take selection concerns into account, we control directly for processing

time interacted with year dummies in Figure 2-6. By including both treatment and

processing time variables, the treatment effect is now identified as the differential

effect on citations of having a shorter processing time on either side of the three year

cut-off mark. That is, by comparing the effect of shorter processing time when the

processing time was under three years (patents that are treated) versus the effect

of shorter processing time when the processing time was above three years (patents

that are not treated). Including these controls results in no differential pre-trend.

However, although the point estimates do not vary much relative to Figure 2-5, the

standard errors increase, leading to no significant treatment effect on the outcome

variable after treatment until 2001. Starting in 2002, we find some evidence of a

negative impact of patent term extensions.

2.3.2 Cross-sectional evidence

In order to investigate the impact of patent term extensions further, we use a cross-

sectional analysis where each observation is a patent. This allows us to analyze the

impact of the TRIPS treatment on all citations until the end of our sample period,28

rather than restrict the analysis to a fixed set of years post-reform. It is especially

useful considering Figure 2-6, which seems to show significant impacts for later sample

years. Just as before, we restrict the analysis to patents granted between 1980 and
2 'Also interacted with calendar year is a dummy for positive treatment.
2 7Standard errors here are clustered at the patent level.
2 8 December 16, 2016
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1989 affected by TRIPS, i.e. still outstanding in June 1995,29 and restricted to patents

with a processing time running variable between -1 year and +1 year. That is, patents

whose processing time lasted from 2 years to 4 years. This restriction allows us to

analyze the differential impact of processing time more narrowly on both sides of the

kink between more comparable patents, where the identifying assumption is more

likely to hold. We also consider alternative restrictions on the application and grant

years, as well as processing time in some specifications in order to check for robustness.

Our baseline specification is

ln(1 + postcitesi) = ag(i) + 3 treati + 7 proctimej +6 ln( 1+ precites) + rXi + ei, (2.2)

where the outcome variable postcitesi is a count of in-citations starting in 1995,30

ag(i) are a set of fixed effects defined in greater detail later on, treati is the TRIPS

patent term extension treatment variable, proctimej is the underlying processing time

running variable, and precitesi is a count of in-citations by patents filed between 1990

and 1993. Covariates Xi include controls for focal patent originality, logs of out-

citation counts plus one and number of claims, type of assignee, and dummies for

the number of maintenance fees paid for in order to proxy for patent quality. The

baseline fixed effects consist in a dummy for positive treatment, as well as a set of HJT

technological subclass times application year, and a set of HJT subclass times grant

year. These fixed effects absorb differential post-treatment citation counts across year

times technology subclass groups of patents, and ensures that we compare similar

patents. In some specifications, we fully interact the previous dummies to provide for

more flexible fixed effects, and we also include cubic controls in the processing time

running variable. Finally, we multiply all the coefficients by 100 to interpret them

in terms of log points, and cluster standard errors at the application year times HJT

subclass level.

The first set of coefficients are shown in Table 2.5, looking at both citations by

other assignees in Panel A and at own citations in Panel B. The coefficients represent

the impact in log points of the patent term extension (and underlying processing

2 9Although the term of any patent granted after 1980 would extend to at least 2002, utility
patents filed after December 11, 1980 have to pay renewal or maintenance fees prior to years 4, 8,
and 12 in order to remain valid. If these fees are not paid, the patent expires automatically.

'OThe citation data we use is current up to December 2016. Truncation concerns are likely small
since the considered focal patents are all granted before 1990.
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time respectively) on the citation outcome. Column (1) shows coefficients from our

preferred baseline specification, with the coefficient of interest being statistically in-

significant in both panels. In terms of magnitude of the point estimate, an extra

year of patent term protection leads to a reduction in citations of around 1.5% post-

reform. We can reject with 95% confidence that the actual impact is a reduction

larger than 6%. Adding more flexible cubic controls for the processing time running

variable in column (2) increases the standard errors, and results in a more negative

point estimate on others' citations, but the effect remains insignificant in both panels.

We add a set of interacted fixed effects for application year times grant year times

HJT subclass in column (3), and the coefficients and standard errors do not vary

much from the baseline. In column (4), we restrict the sample more narrowly around

the kink, within a band of 6 months of processing time above and below the 3-year

cutoff. When comparing these more similar patents, and although the point estimate

in Panel A is more negative than the baseline, the impact of increased patent terms

is still insignificant. Because of the reduced sample size, the estimates are noisier,

but we can still reject a reduction of 19% due to the a one-year patent term increase

among this sample of highly comparable patents.

Because the decision on whether to pay maintenance fees can be influenced by

a number of variables, including the expectation of patent term length, we restrict

the analysis to patents that are not required to pay a fee during 1994. In 1994, the

contents of the TRIPS reform were know but it was unclear whether it would pass

or not, nor which patents it would affect. As a result, any fee payment decision

would have incorporated a possible option value of keeping the patent valid until the

reform is ultimated, which could introduce selection into the set of renewed patents.

As a result, we restrict the analysis to patents granted in 1987-89, which paid their

4 th year maintenance fee by 1993 and do not need to pay their 8 th year fee until

at least 1995. Likewise, with patents granted between 1983 and 1985 for the 8th

and 12th respectively. Because of the reduced sample size, the estimates are noisier

than for the baseline, but we still find them to be statistically insignificant and in

the same ballpark of magnitude. We investigate possible selection concerns further

by including all lapsed patents in the analysis and estimating a 2SLS specification

in column (7) in which we instrument for actual treatment intensity (including zeros

for lapsed patents) using the treatment patents would have received had they not
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lapsed." The results, similar to those in the baseline specification, comfort us in that

there does not seem to be selection concerns.

In Table 2.6, we analyze the effect of patent term extensions on other outcome

measures. The same baseline specification as in Table 2.5 is shown in column (1),

followed by a specification in which the outcome variable is the count of citations by

patents filed in 1995 only. Figure 2-5 suggested that, when not controlling for the

underlying running variable, most of the effect of the TRIPS treatment was localized

in 1995. We confirm here further that, with the proper controls for the processing

time running variable, there is no negative impact of term extensions. If anything, the

impact on others' citation is marginally significantly positive. We then look at cita-

tion counts after patent expiry as well as after the TRIPS reform but prior to patent

expiry. We find that the patent term increase leads to significant decreases in citation

counts by others after expiry, and to similar increases before lapsing. However, this

symmetric effect is mechanical: if the citation rate per year is constant, as the patent

term increases it encompasses more years and thus more citations. Symmetrically,

less citations are included in counts after expiry. In fact, the effect breaks down once

we include a set of dummies for the effective year of patent expiration in unreported

specifications. In column (5), we restrict the set of considered patents to patents

granted between 1985 and 1989, and returning to the baseline outcome variable of

post-treatment citations. The impact of an extra year of patent protection on others'

citations among these patents is still insignificant, and we can reject reductions in

citation counts larger than 5.3%. For additional robustness tests, in Table 2.7, we

estimate the impact of patent term extensions on citation counts after the TRIPS

reform, three years at a time. Across all of the considered gaps of time, the effects are

remarkably consistent, and very close in magnitude to the baseline impact in Table

2.5.

Across the empirical analysis, we have consistently found no impact of TRIPS-

induced patent term extension on follow-on innovation. Nonetheless, we have so far

focused on citation counts and citation counts by other assignees as our preferred mea-

sures of subsequent innovation. Galasso and Schankerman (2015) show that patent

invalidation leads to increases in patent citations, driven by entry of assignees into the

technological field, which they measure using counts of assignees that cite the focal

"The unreported Kleibergen and Paap (2006) rk Wald F-stat is around 8.5 * 103 in both panels.
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patent rather than patent counts. We study this question in Table 2.8, where we

estimate our usual specifications from Table 2.5 but using counts of citing assignees

rather than citing patents post-TRIPS, pre-reform, and between 1990 and 1993. For

the five specifications we show here, which correspond to the same specifications as

in Table 2.5, the coefficients and their significance are very similar to those on cita-

tion counts. Therefore, there does not seem to be a differential impact on follow-on

innovation, be it in the extensive or intensive margin.

2.3.3 Regression Kink design

We analyze the impact of patent term length on follow-on innovation further using

a regression kink (RK) design. This method exploits discontinuous variation in the

slope of a policy variable and determines whether there is a subsequent discontinuous

change in the slope of the outcome. RKs are analogous to regression discontinuity

(RD) designs, but analyze slopes instead of levels. In our setting, the treatment

(i.e. the patent term extension) is a function of the patent's processing time with

a kink or discontinuous slope at 3 years. By comparing how the outcome varies in

the underlying processing time running variable locally on either side of the kink, we

can identify the average treatment effect of increasing the patent term conditional on

the processing time being equal to 3 years. This corresponds to the treatment on the

treated for patents at the kink point (Ganong and Jaeger, 2016).

The RK design provides an estimate of treatment that is interpretable causally,

provided there are no other discontinuities at the kink point that also affect the

slopes of the outcome variables locally. We are not aware of any other institutional

quirks that would occur at a processing time of 3 years. In Figure 2-4, we show a

histogram of the distribution of processing times around the 3 year kink for patents

in our sample. We find no evidence of bunching on either side of the kink, which

would be indicative of patent assignees or the USPTO strategically responding to

other institutional incentives.3 2 Moreover, we investigate whether patent covariates

vary discontinuously around the kink by estimating RK designs in Table 2.9 using

patent covariates determined prior to the TRIPS reform as outcome variables. We

evaluate a specification without any controls nor fixed effects in Panel A, and in

Panel B a specification in which we estimate the RK design on the residual of a

"The whole process of patent granting for the patents in our sample occurred over 5 years prior
to TRIPS, so we expect no strategic bunching in prevision to the reform.
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regression of the covariate on dummies for: HJT subclass times grant year, HJT sub-

class times filing year, and count of maintenance fees paid for the patent. In each

column we indicate the standard RK treatment effect estimate at the 3-year cutoff,

p-values and 95% confidence intervals based on the procedure developed by Calonico

et al. (2014)." Optimal bandwidths are selected based on Calonico et al. (2014)

with cluster-robust variance estimator at the application year times HJT technology

subclass level. Finally, the observation count corresponds to the effective number of

observations considered within the bandwidth span. We find no statistically signifi-

cant difference in the slopes of our covariates on either side of the kink in Table 2.9,

with or without controls.

Table 2.10 reports the RK estimates, defined as in the previous paragraph, for the

outcomes of interest. In Panel A, we estimate the RK specifications without control-

ling for covariates nor fixed effects, and find only a marginally significant treatment

effect on post-TRIPS citation counts, but no significance in the estimates on citation

counts between 1995 and 2000, on citation counts after patent lapse, on post-TRIPS

citation counts before patent lapse, nor on 1995 citation counts. In Panel B, we first

regress the outcome variables on a set of controls3 4 and then estimate the RK spec-

ification on the residuals. 35 We find that the estimates with controls are smaller in

absolute value than without controls, and all of them remain insignificant.

We carry out a final RK analysis in Figures 2-7 and 2-8. We return to the panel

data and estimate RK specifications for each of the calendar years between 1990

and 2005, with or without controls.3
1 We plot the RK estimate and robust 95%

confidence intervals37 without controls in Figure 2-7, and with controls in Figure

2-8. We find in both figures that the patent term extension treatment effects are

statistically indistinguishable from zero for all calendar years, except for 2002. We

interpret the results for that specific year as not very informative: first, because as

33Ganong and Jaeger (2016) finds that this procedure leads to an adequate test size. Notice that
the confidence intervals are not necessarily centered around the point estimate.

34The controls include: log of pre-TRIPS citation count plus one, originality, log of out-citations
plus one, log of number of claims, and a set of dummies for HJT subclass times grant year, HJT
subclass times filing year, maintenance fee counts, and foreign assignee.

35This is not ideal, since the Calonico et al. (2014) optimal bandwidth selection also depends on
the covariates. However, because of the number of covariates, and in particular the fixed effects,
running the full procedure is computationally problematic.

36The controls include originality, log of number of claims, log of out-citations plus one, and a
set of dummies for: HJT subclass times grant year, HJT subclass times filing year, foreign assignee,
maintenance fee counts, and a dummy for years in which the focal patent is lapsed.

37Notice that the Calonico et al. (2014) robust C.I. are not necessarily centered around the point
estimate.
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we are estimating 16 different regressions, the fact that one turns significant at 5% is

close to the size of the test; second, because we find in unreported specifications that

the significant effect in 2002 is highly dependent on the size of the selected bandwidth.

All in all, the coefficients of interest found in the RK specifications in this sub-

section are noisily estimated. As a result, it is difficult to meaningfully talk of the

magnitudes of effects rejected by these tests. Nonetheless, we find comfort in the

fact that the estimated coefficients in this analysis are largely statistically insignifi-

cant, which is consistent with our previous findings in the panel and cross-sectional

specifications.

2.4 Heterogeneity

The null results we have found in the previous section are average impacts, and could

be masking large heterogeneous effects. For example, a strong positive impact of

patent term extension on follow-on innovation in mechanical technologies could cancel

out with a large negative impact on drugs patents. In this section, we investigate

possible heterogeneous effects of patent term extension along a number of observable

dimensions.

2.4.1 By technology class

The impact of a patent term duration could be highly heterogeneous across technology

classes for a number of reasons. First, the strategic use of patents as an exclusionary

mechanism varies by industry and technology. Second, theoretical models of follow-

on innovation tell us that the impact of IP rights on subsequent innovation will be

more marked in instances where bargaining is more complex (Ziedonis, 2004; Galasso

and Schankerman, 2015). This could lead to heterogeneous impacts depending on

the fragmentation of patent ownership in the technology class. Finally, the intrinsic

cumulative nature of innovation also varies by technology, and could also affect the

impact of of patent term extensions.

In order to investigate possible heterogeneity by technology class, we allow the

coefficients on the treatment and on the underlying processing time running variable

to vary by HJT technology class. The coefficients of interest are shown in Figure

2-9, with 95% confidence intervals,38 and show that the impact of patent term on

38The confidence intervals are constructed from robust standard errors, rather than clustered.
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follow-on innovation is statistically insignificant and relatively homogeneous across all

technology classes. We analyze heterogeneity further by separating technologies into

complex and discrete.39 The coefficients, also shown in Figure 2-9, remain small and

statistically insignificant in both instances. Moreover, in unreported specifications we

also analyze the effect of patent-holder concentration on the impact of term extensions

and find no heterogeneous effect. We measure concentraction as the share of patents

applied for by the four largest patent-filers in each technology subclass between 1990

and 1993, prior to the TRIPS reform.

2.4.2 By grant and filing year

We further analyze heterogeneous impacts by patent grant years, using our baseline

specification for years ranging between 1980 and 1989 but allowing for the coefficients

on treatment and running variable to vary by grant year. The resulting coefficients

are shown in Figure 2-10, with their corresponding 95% confidence intervals, again

using robust rather than clustered standard errors. The figure shows no significant

coefficients and relatively homogeneous effects across grant years. This is consistent

with our previous finding of no impact of the rescaled treatment in order to proxy

for patent value increase. Rescaling the treatment by the amount of patent term left

after the TRIPS reform is akin, albeit less flexibly so, to allowing for the treatment

effect to vary by grant year. We find no significant impact in either specification.

We then study the heterogeneity by application year, for patents granted between

1980 and 1989 by allowing the coefficients to vary by application year. We restrict the

data to patents filed between 1977 and 1986, since they are the only ones that provide

variation on both treatment intensity and the processing time running variable for

zero treatment (processing time longer than three years). The coefficients of interest

on the treatment intensity are shown in Figure 2-11, together with the corresponding

95% confidence intervals for robust standard errors. We see that there is only one

statistically significant coefficient at the 5% level for 1980, and all magnitudes are

relatively homogeneous. We do not see the 1980 coefficient as strong evidence of an

impact of patent term extensions on follow-on innovation. Instead, we believe it is a

This tends to go against finding insignificant effects.
39This distinction follows Levin et al. (1987); Cohen et al. (2000), in differentiating hAiwhether a

new, commercializable product or process is comprised of numerous separately patentable elements
versus relatively fewhAl. Following Galasso and Schankerman (2015), complex technologies comprise
HJT classes 2 and 4, as well as subclasses 32 and 33. Discrete technologies comprise all other
technologies.
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by-product of estimating a large number of different specifications, which should lead

to some of them providing significant estimates.

2.4.3 By assignee size

As discussed before, fragmentation of the distribution of patent-holders can lead to

more costly bargaining, itself resulting in decreases follow-on innovation. We there-

fore investigate the heterogeneous impact of patent term extensions on subsequent

innovation depending on the size of the original assignee of the focal patent. We

characterize assignees depending on the size of their portfolio of patents, among all

patents filed between 1990 and 1993. We classify assignees with a portfolio larger

than the 9 5th percentile (15 or more patents) as large, assignees with one or less

patents filed between 1990 and 1993 are classified as small, and all others in-between

are categorized as medium. The resulting coefficients are shown in Figure 2-12, and

are all small and statistically insignificant.

2.4.4 By patent quality

Finally, we analyze heterogeneity in the effect of patent term extensions based on un-

derlying patent quality.40 The distribution of patent citations is highly skewed, and

by analyzing average effects over the whole population, we could be missing signifi-

cant effects on the most important patents. We thus separately estimate the impact

of TRIPS-induced patent term extensions on four categories of patents, depending on

their pre-TRIPS citation counts. For each HJT class times grant year we calculate

the distribution of citation counts between 1990 and 1993, and classify patents de-

pending on the percentile of the distribution they fall in within their group. 41 We plot

the coefficients of interest as well as their 95% confidence intervals for standard er-

rors robust to heteroskedasticity in Figure 2-13 separately for patents in the bottom

10% of the within-group citation distribution, patents between the 1 0 th percentile

and the median, patents between the median and the 9 0 th percentile, and patents

in the top 10% of the distribution. We see that all four coefficients are statistically

indistinguishable from zero, and the point estimates fall within a relatively homo-

geneous range of -3 to +8 log points by additional patent term year. Moreover, in

4 0 Where patent quality is understood as "the magnitude of inventive output associated with
them" (Griliches, 1990), and is positively associated to citation counts.

41This allows us to compare standardized patent citation counts.
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additional unreported tests, we carry out a yearly RK analysis as in Figures 2-7 and

2-8, separately by patent quality category. The resulting estimates are consistently

statistically insignificant across all four quality groups.

2.5 Discussion

The predictions on the effect of patent protection on follow-on innovation established

by an ample body of theoretical literature are ambiguous. Kitch (1977) argues that

patents allow for coordination of subsequent innovation by the focal patentee. By

fostering information sharing and thus avoiding duplication of research costs, this

coordination can lead to increased innovation downstream. Moreover, patents can

facilitate technology transfers across firms and foster a market for ideas that can

increase efficiencies (Arora et al., 2001). On the other hand, Scotchmer (1991) and

Green and Scotchmer (1995) emphasize how bargaining failures between the first

and subsequent innovators could depress sequential innovation. These bargaining

failures stemming from asymmetric information can be exacerbated by the existence

of transaction costs between the parties (Bessen, 2004; Anand and Khanna, 2000).

More recently, a literature has sought to evaluate the impact of IP protection

on follow-on innovation empirically. It has consistently found that non-patent IP

protection hinders reuse and in general reduces subsequent research and innovation

(Williams, 2013; Murray et al., 2016; Moser and Voena, 2012; Biasi and Moser, 2017;

Nagaraj, 2016). Regarding patent protection, the evidence is more mixed. Galasso

and Schankerman (2015) show that patent invalidations by the Court of Appeal for the

Federal Circuit, with exclusive jurisdiction over patent-related appeals since 1982, lead

to increases in citation counts in the order of 50%. This effect is very heterogeneous,

and is concentrated on patents with high unobserved quality as well as in technological

areas characterized by their complexity 4 2 and patent-holder fragmentation. Moreover,

they find the effect to be primarily driven by invalidations of patents held by large

firms that lead to entry of small subsequent innovators. On the other hand, Sampat

and Williams (2015) show that patent protection on human genes have no impact on

follow-on research and innovation.

This paper contributes to the literature by analyzing the intensive side of patent

42Following a distinction between complex and discrete by Levin et al. (1987); Cohen et al. (2000),
in differentiating AAiwhether a new, commercializable product or process is comprised of numerous
separately patentable elements versus relatively fewaA.
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protection, and providing evidence consistent with no significant impact of patent

term extensions on follow-on innovation, measured in the form of subsequent patent

citations. In our baseline panel specifications we can reject decreases in citation counts

larger than 0.6% for every extra year of patent term awarded for the initial 11 years

after reform, while in our cross-sectional specifications encompassing all citations

until 2016 we can reject decreases in citation counts larger than 6%. These results

contribute to our understanding of how the intensive margin of patent protection

impacts cumulative innovation, which to the best of our knowledge has not been

previously investigated empirically.

Moreover, to the extent that the extensive and intensive impact of patent pro-

tection on cumulative innovation are related, this paper can also shed light on the

impact of patent protection on follow-on innovation. Our results, together with Sam-

pat and Williams (2015) suggest that patent protection has an insignificant impact

on follow-on innovation. Meanwhile, Galasso and Schankerman (2015) find that the

impact of patent invalidations decreases with patent age, with no significant effect on

patents with over 15 years of age. The average age of their patent sample is 10 years,

with 10 years of protection remaining. Therefore, their results could be read as a 5%

citation reduction per extra year. We cannot reject an effect of such size in the long

term. Although it falls well wide of the 95% confidence interval in our preferred panel

specification, it remains close to the edge of the confidence interval in our baseline

cross-sectional specification. 43

2.6 Conclusion

In this paper, we study the impact of patent term length on follow-on innovation.

We leverage a quasi-natural experiment in 1995, the TRIPS reform, that extended

patent terms on established still outstanding patents. The patent term increase was

a step-wise linear function of the patents' processing time, and presented a kink at a

processing time of 3 years. We leverage this kink to identify the causal effect of term

lengthening on subsequent citation counts, under the assumption that the underlying

effect of processing time on citation counts is the same on both sides of the kink.

First, we present results from panel and cross-sectional specifications that show

no average effect of patent term increases on follow-on citations on treated patents.

43More specifically, it falls at the 6 th percentile of the normal distribution of the true parameter
centered around the baseline point estimate.
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Our panel evidence allows us to reject citation count decreases larger than 0.6% per

additional patent term year, and our noisier cross-sectional estimates reject impacts

below -6%. We then restrict to a more local analysis using regression kink designs.

These designs ensure that the identifying assumption is more likely to hold, as it

only has to hold locally, but at the expense of possible lack of external validity. Our

regression kink design specifications provide corroborate the absence of a statistically

significant impact of patent term extensions on cumulative innovation, although the

standard errors are too noisy to provide meaningful inference.

This paper is, to the best of our knowledge, the first formal empirical study on the

impact of patent term length on follow-on innovation. It contributes to an extensive

theoretical literature on the optimal breadth and length of patent protection, as

well as a smaller and more recent empirical literature focusing on the impact of IP

protection on cumulative innovation.
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Figure 2-1: Histogram of patent term extensions due to TRIPS
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Notes: Histogram of patent term extensions in years due to the TRIPS reform for patents affected

by TRIPS.
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Figure 2-2: Patent applications and grants around TRIPS implementation
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Notes: Plot of weekly patent filing counts in dark blue and patent grant counts in light red at the
USPTO. Patent filing counts correspond to patent applications for patents eventually granted before
December 16, 2016.

Figure 2-3: TRIPS treatment function
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Notes: Plot of TRIPS treatment function in red. The x-axis is patent processing time, defined as
grant date minus application date. The y-axis is patent term extension due to TRIPS.
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Figure 2-4: Histogram of processing time around 3-year TRIPS cutoff.
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Notes: Histogram of patent processing times in months around the three year mark (vertical red
line). The sample of patents corresponds to patents affected by TRIPS.
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Figure 2-5: Difference in yearly citation counts per extra term day
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment by
calendar year between 1990 and 2005 for the panel specification, with 1994 taken as baseline year.
Patents considered are all patents granted in the 1980s still outstanding on June 8, 1995. Citation
counts considered are citations by other firms. The specification includes patent and calendar year
times HJT subclass fixed effects, as well as a lapsed-patent dummy, but no controls for the patents'
processing time interacted with calendar year. Standard errors are clustered at the patent level, and
confidence intervals are set at the 95% level.
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Figure 2-6: Difference in yearly citation counts per extra term day, controlling for

processing time
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considered are all patents granted in the 1980s still outstanding on June 8, 1995. Citation counts

considered are citations by other firms. The specification includes patent and calendar year times

HJT subclass fixed effects, a lapsed-patent dummy, and controls for the patents' processing time.

Standard errors are clustered at the patent level, and confidence intervals are set at the 95% level.
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Figure 2-7: Difference in yearly citation counts per extra term year, RKD without
controls
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment for the
regression kink design specification for each calendar year between 1990 and 2005. Each year corre-
sponds to a separate RK specification, without fixed effects nor any other covariate controls. Plotted
are the non-parametric estimates of the treatment effect form local quadratic regressions, as well as
bias-corrected robust 95% confidence intervals based on Calonico et al. (2014) optimal bandwidth
selector with cluster-robust variance estimator at the application year times HJT technology subclass
level.
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Figure 2-8: Difference in yearly citation counts per extra term year, RKD with con-
trols
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment for
the regression kink design specification for each calendar year between 1990 and 2005. Each year
corresponds to a separate RK specification on the residual of the post-TRIPS citation outcome on a
set of fixed effects and covariate controls. Plotted are the non-parametric estimates of the treatment
effect form local quadratic regressions, as well as bias-corrected robust 95% confidence intervals
based on Calonico et al. (2014) optimal bandwidth selector with cluster-robust variance estimator
at the application year times HJT technology subclass level.
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Figure 2-9: Difference in yearly citation counts by technology type
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment, separated
by technology classes and types, for the cross-sectional specification. The outcome variable is log of
post-TRIPS citations by others, scaled up by 100. The specification includes the baseline fixed effects
for the cross-sectional specifications, covariate controls and controls for the patents' processing time.
Chemical corresponds to HJT class 1, Communications to HJT class 2 Computers & communications,
Medical to HJT class 3 Drugs & Medical, Electrical to HJT class 4 Electrical & Electronic, Mechanical
to HJT class 5, and Others to HJT class 6. Complex technologies correspond to HJT classes 2 and
4, as well as subclasses 32 and 33; Discrete technologies span the rest of technologies. Standard
errors are robust to heteroskedasticity, and confidence intervals are set at the 90% level.
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Figure 2-10: Difference in yearly citation counts by grant year
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment, separated

by grant year of patents, for the cross-sectional specification. The outcome variable is log of post-

TRIPS citations by others, scaled up by 100. The specification includes the baseline fixed effects for

the cross-sectional specifications, covariate controls and controls for the patents' processing time.

Grant years span from 1980 to 1989. Standard errors are robust to heteroskedasticity, and confidence

intervals are set at the 90% level.
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Figure 2-11: Difference in yearly citation counts by application year
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment, separated
by filing year of patents, for the cross-sectional specification. The outcome variable is log of post-
TRIPS citations by others, scaled up by 100. The specification includes the baseline fixed effects for
the cross-sectional specifications, covariate controls and controls for the patents' processing time.
Application years considered span between 1977 and 1986 for patents granted between in the 1980s.
Standard errors are robust to heteroskedasticity, and confidence intervals are set at the 90% level.
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Figure 2-12: Difference in yearly citation counts by assignee size
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment, separated

by the size of the patent's original assignee, for the cross-sectional specification. The outcome

variable is log of post-TRIPS citations by others, scaled up by 100. The specification includes the

baseline fixed effects for the cross-sectional specifications, covariate controls and controls for the

patents' processing time. Patents considered are those granted between 1985 and 1989 that were

still outstanding by June 8, 1995. Large corresponds to assignees filing 15 patents or more between

1990 and 1993, Medium corresponds to between 2 and 14 patents, and Small to 1 or less patents.

Standard errors are robust to heteroskedasticity, and confidence intervals are set at the 90% level.

112



Figure 2-13: Difference in yearly citation counts by pre-TRIPS patent citation count
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Notes: This figure plots the values and confidence intervals of the coefficient on treatment, separated
by the pre-TRIPS citation count of the patent, for the cross-sectional specification. The outcome
variable is log of post-TRIPS citations by others, scaled up by 100. The specification includes the
baseline fixed effects for the cross-sectional specifications, covariate controls and controls for the
patents' processing time. Patents considered are those granted between 1985 and 1989 that were
still outstanding by June 8, 1995. The distribution of pre-TRIPS citations is taken for each HJT
class times grant year group, and the patents are classified into the different categories depending
on how they fall in their corresponding within-group distribution. Standard errors are robust to
heteroskedasticity, and confidence intervals are set at the 90% level.
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Table 2.1: Descriptive statistics, variables

VARIABLES N mean p50 sd p5 p95

Others' citations post-TRIPS 200,290 11.06 4 27.55 0 41
Others' citations pre-TRIPS 200,290 4.779 3 6.144 0 16
Own citations post-TRIPS 200,290 0.774 0 6.165 0 4
Own citations pre-TRIPS 200,290 0.852 0 2.402 0 4
Out-citations 200,290 6.820 6 5.656 1 16
Claims 200,290 11.62 9 10.34 2 30
Foreign 200,290 0.390 0 0.488 0 1
Fees 200,290 1.352 1 1.329 0 3
Filing year 200,290 1,982 1,981 2.925 1,978 1,986
Grant year 200,290 1,984 1,984 2.921 1,980 1,989
Chemical 200,290 0.168 0 0.374 0 1
Communications 200,290 0.134 0 0.341 0 1
Medical 200,290 0.0778 0 0.268 0 1
Electrical 200,290 0.191 0 0.393 0 1
Mechanical 200,290 0.235 0 0.424 0 1
Others 200,290 0.194 0 0.396 0 1

Notes: The statistics are taken over all patents granted between 1980 and 1989 that were still outstanding on June 8, 1995,
by paying their required maintenance fees.
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Table 2.2: t-tests of covariates for large processing time differences

Untreated Treated Difference t-stat
Others' citations pre-TRIPS 5.252 4.201 1.051*** 7.967

(0.132)
Own citations pre-TRIPS 0.838 0.870 -0.0322 -0.711

(0.0453)
Out-citations 7.784 7.165 0.619*** 4.083

(0.152)
Originality 0.768 0.796 -0.0279*** -5.004

(0.00558)
Claims 12.91 12.19 0.716*** 3.176

(0.225)
Foreign 0.426 0.438 -0.0120 -1.108

(0.0108)
Fees 2.455 2.358 0.0976*** 5.858

(0.0167)
Filing year 1983.9 1985.3 -1.436*** -47.52

(0.0302)
Grant year 1986.9 1987.3 -0.393*** -13.14

(0.0299)
Notes: The table reports means of covariates from two samples, their difference together with standard deviation
in column (3), and a t-test of the significance of their difference in column (4). The untreated sample in column
(1) corresponds to patents with procrunE (-50, 0) and treated patents in column (2) with procrunE (350,400).
These correspond to patents with processing time between 3 years and 3 years + 50 days) in column (1) and
around two years in column (2). The population of patents considered are granted between 1980 and 1989 and
still outstanding on June 8, 1995.
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Table 2.3: t-tests of covariates around the kink

Untreated Treated Difference t-stat
Others' citations pre-TRIPS 5.252 5.287 -0.0348 -0.243

(0.144)
Own citations pre-TRIPS 0.838 0.863 -0.0247 -0.522

(0.0474)
Out-citations 7.784 7.782 0.00213 0.0134

(0.159)
Originality 0.768 0.766 0.00185 0.328

(0.00563)
Claims 12.91 13.19 -0.284 -1.104

(0.257)
Foreign 0.426 0.438 -0.0114 -1.062

(0.0107)
Fees 2.455 2.447 0.00887 0.564

(0.0157)
Filing year 1983.9 1984.0 -0.0889*** -2.910

(0.0306)
Grant year 1986.9 1986.9 0.0309 1.018

(0.0303)
Notes: The table reports means of covariates from two samples, their difference together with standard deviation
in column (3), and a t-test of the significance of their difference in column (4). The samples correspond to patents
with procrunE (0, 50) in the treated group in column (2) and patents with procrunE (-50, 0) in the untreated
group in column (1). These correspond to patents with processing time in (3 years, 3 years + 50 days) in column
(1) and (3 years - 50 days, 3 years) in column (2). The population of patents considered are granted between
1980 and 1989 and still outstanding on June 8, 1995.
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Table 2.4: Panel specifications

Before Reduced
Baseline expiration years

(1) (2) (3) (4) (5)
Panel A: Others' citations

Patent extension 0.039 0.075 -0.787 0.510 -0.441
(0.302) (0.323) (0.576) (0.477) (0.524)

Processing time 0.494* 0.537* -0.269 1.207** 1.303**
(0.284) (0.325) (0.552) (0.483) (0.527)

Observations 6,709,952 6,709,840 6,707,648 3,718,814 2,096,825

Panel B: Own citations

Patent extension -0.742*** 0.043 0.137 -0.011 -0.189
(0.113) (0.122) (0.219) (0.191) (0.218)

Processing time 0.257** 0.214* 0.301 0.186 0.325
(0.106) (0.122) (0.209) (0.193) (0.219)

Observations 6,709,952 6,709,840 6,707,648 3,718,814 2,096,825

Fixed effects:
Patent $ V I $ /
Year x tech $ / / v /
Year x tech x grant / / / /
Year x tech x app. $
Full FE

Notes: The dependent variable in all columns in Panel A is 100 * In(1 + others' citationsit) for years between 1990 and 2005,
and 100 * ln(1 + own citationsit) in Panel B. The focal patents considered were granted between 1980 and 1989 and still
outstanding on June 8, 1995. The coefficients shown are interacted with a post-TRIPS dummy. All specifications include
the non-interacted terms as well, treatment dummies interacted with post-TRIPS, and a lapsed-patent dummy. Column (1)
includes a set of fixed effects encompassing: patent, and HJT subclass times calendar year. Column (2) adds a set of more
flexible fixed effects: HJT subclass times grant year times calendar year, HJT subclass times filing year times calendar year.
Column (3) adds fixed effects for: HJT subclass times grant year times filing year times calendar year. Column (4) estimates
the specification in (2) but only on calendar years when the patent is not lapsed. Column (5) estimates it on years 1990-1993
and 1995. Standard errors in brackets are clustered at the patent level. ***, ** and * denote statistical significance at the
1%, 5% and 10% respectively.
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Table 2.5: Cross-sectional specifications

Around Years Years Intent-
Baseline kink 1987-89 1983-85 to-treat

(1) (2) (3) (4) (5) (6) (7)
Panel A: Others' citations

Term extension -1.571 -4.265 -0.961 -7.415 1.469 -6.717 -0.111
(2.194) (8.693) (2.908) (5.819) (4.279) (4.080) (2.015)

Processing time 2.962 -5.392 3.579 0.095 6.547 -3.178 4.608***
(2.080) (6.263) (2.654) (5.136) (4.150) (4.342) (1.262)

Observations 200,287 200,287 200,280 75,413 53,989 54,215 259,032

Panel B: Own citations

Term extension -1.556 -1.446 -1.035 -0.877 -1.890 -0.293 -1.374
(1.136) (4.549) (1.480) (3.120) (2.190) (2.256) (1.020)

Processing time -0.637 1.571 -0.149 -1.501 -1.446 0.910 -0.602
(1.073) (3.394) (1.355) (2.576) (1.985) (2.056) (0.661)

Observations 200,287 200,287 200,280 75,413 53,989 54,215 259,032

Covariates $ / V/ Vt V/ Vt V/
Base FE V t Vt Vt Vt
Cubic proctime
Full FE

Notes: The dependent variable in all columns in Panel A is 100 * In(1 + post-TRIPS others' citations;), and 100 * In(1 +
post-TRIPS own citations;) in Panel B. The patents considered were granted between 1980 and 1989 and still outstanding on June 8,
1995. All specifications include a set of fixed effects for HJT subclass times grant year and HJT subclass times filing year. They also
control for originality, log of number of claims, log of out-citations plus one, log of citation counts plus one between 1990-93 as well
as up to 1993, and dummies for foreign assignees, as well as for count of maintenance fee payments and for positive treatment (i.e.
processing time below 3 years). Column (1) is the baseline specification. Column (2) adds cubic controls in the patents' processing
time, only the first term is shown. Column (3) adds a set of more flexible fixed effects to the baseline: HJT subclass times grant year
times filing year. Column (4) estimates the baseline specification for a more restricted set of patents around the kink, with processing
times betwee 2.5 and 3.5 years. Column (5) estimates the baseline specification for patents granted in 1987-89. Column (6) estimates
the baseline specification for patents granted in 1983-85. Column (7) estimates a 2SLS specification on the previous sample using the
possible treatment had a patent not lapsed to instrument for the actual TRIPS treatment received. The unreported Kleibergen and
Paap (2006) rk Wald F-stat is around 8.5 * 103 in both panels. Standard errors in brackets are clustered at the application year times
HJT technology subclass level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 2.6: Alternative cross-sectional specifications

Only After 1995- Granted
Baseline 1995 expiry expiry 1985-89

(1) (2) (3) (4) (5)
Panel A: Others' citations

Term extension -1.571 2.291* -8.956*** 7.023*** 1.161
(2.194) (1.201) (2.117) (1.696) (3.210)

Processing time 2.962 4.077*** -5.300*** 8.390*** 6.960**
(2.080) (1.152) (1.957) (1.632) (3.036)

Observations 200,287 200,287 200,287 200,287 83,981

Panel B: Own citations

Term extension -1.556 -0.019 -2.220** 0.550 -0.688
(1.136) (0.463) (0.866) (0.804) (1.671)

Processing time -0.637 0.411 -1.456* 0.716 -0.903
(1.073) (0.445) (0.797) (0.762) (1.569)

Observations 200,287 200,287 200,287 200,287 83,981

Covariates V/ Vt Vt' / /
Base FE / V/ / / V/

Notes: All specifications include a set of fixed effects for HJT subclass times grant year and HJT subclass
times filing year. They also control for originality, log of number of claims, log of out-citations plus one,
log of citation counts plus one between 1990-93 as well as up to 1993, and dummies for foreign assignees,
as well as for count of maintenance fee payments and for positive treatment (i.e. processing time below 3
years). The patents considered were granted between 1980 and 1989 and still outstanding on June 8, 1995.
The dependent variables in all columns in Panel A consider only others' citations, while they consider only
own citations in Panel B. The dependent variable in column (1) is 100 * ln(1 + post-TRIPS citations;). The
dependent variable in column (2) is 100 * In(1 + 1995 citations;). The dependent variable in column (3) is
100*ln(1+post-lapse citations;). The dependent variable in column (4) is 100*ln(1+ 1995-lapse citations;).
Column (5) considers an alternative treatment and processing time definition, where the processing time
(and therefore treatment) is normalized by the amount of term left after reform on June 8, 1995. Standard
errors in brackets are clustered at the application year times HJT technology subclass level. *, ** and
denote statistical significance at the 1%, 5% and 10% respectively.
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Table 2.7: Alternative cross-sectional specifications, citations by years

1995 1995 1995 1995 1995 1995 1995
-97 -00 -03 -06 -09 -12 -15

(1) (2) (3) (4) (5) (6) (7)
Panel A: Others' citations

Term extension 1.872 -0.565 0.088 0.041 0.060 -0.762 -1.153
(1.324) (1.633) (1.810) (1.897) (1.916) (1.979) (2.019)

Processing time 4.668*** 3.635*** 4.588*** 5.246*** 5.660*** 5.505*** 5.355***
(1.052) (1.312) (1.466) (1.525) (1.527) (1.587) (1.610)

Observations 200,287 200,287 200,287 200,287 200,287 200,287 200,287

Panel B: Own citations

Term extension -0.363 -0.621 -1.373 -1.341 -1.179 -1.142 -1.344
(0.703) (0.914) (1.038) (1.113) (1.170) (1.215) (1.239)

Processing time -0.137 -0.364 -1.052 -0.988 -0.756 -0.674 -0.804
(0.554) (0.711) (0.816) (0.872) (0.911) (0.950) (0.971)

Observations 200,287 200,287 200,287 200,287 200,287 200,287 200,287

Covariates $ / / V// V
Base FE $ I I / $ / /

Notes: All specifications include a set of fixed effects for HJT subclass times grant year and HJT subclass times filing year. They also
control for originality, log of number of claims, log of out-citations plus one, log of citation counts plus one between 1990-93 as well as up
to 1993, and dummies for foreign assignees, as well as for count of maintenance fee payments and for positive treatment (i.e. processing
time below 3 years). The patents considered were granted between 1980 and 1989 and still outstanding on June 8, 1995. The dependent
variables in all columns in Panel A consider only others' citations, while they consider only own citations in Panel B. The dependent
variables are 100*ln(1+ citationsi), where citationsi correspond to: 1995-1997 citations in column (1), 1995-2000 citations in column (2),
1995-2003 citations in column (3), 1995-2006 citations in column (4), 1995-2009 citations in column (5), 1995-2012 citations in column
(6), 1995-2015 citations in column (7), Standard errors in brackets are clustered at the application year times HJT technology subclass
level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 2.8: Extensive margin, assignee counts

Around Granted
Baseline kink 1985-89

(1) (2) (3) (4) (5)
Term extension -2.921* -7.026 -2.935 -5.785 -0.033

(1.560) (5.968) (2.021) (3.952) (2.273)
Processing time 0.634 -4.089 0.660 -0.043 3.159

(1.410) (4.526) (1.809) (3.558) (2.088)

Observations 200,287 200,287 200,280 75,413 83,981
Covariates / / $/
Base FE $ / I $ /
Cubic proctime /
Full FE

Notes: The dependent variable in all columns is 100*ln(1+post-TRIPS citing assignees;). The patents
considered were granted between 1980 and 1989 and still outstanding on June 8, 1995. All specifications
include a set of fixed effects for HJT subclass times grant year and HJT subclass times filing year. They
also control for originality, log of number of claims, log of out-citations plus one, log of citation counts
plus one between 1990-93 as well as up to 1993, and dummies for foreign assignees, as well as for count
of maintenance fee payments and for positive treatment (i.e. processing time below 3 years). Column
(1) is the baseline specification. Column (2) adds cubic controls in the patents' processing time, only the
first term is shown. Column (3) adds a set of more flexible fixed effects to the baseline: HJT subclass
times grant year times filing year. Column (4) estimates the baseline specification for a more restricted
set of patents around the kink. Column (5) estimates the baseline specification for patents granted
in 1987-89. Column (6) estimates the baseline specification for patents granted in 1983-85. Standard
errors in brackets are clustered at the application year times HJT technology subclass level. *,
and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 2.9: Regression kink discontinuity on covariates

90-93 cites Originality Out-cites Claims Foreign Fees

(1) (2) (3) (4) (5) (6)
Panel A: Without controls

Treatment -34.8 -.0415 -.42 -.108 .227 -.447
Robust p-value .367 .636 .317 .945 .516 .452
Lower CI -110 -.443 -1.33 -.85 -.544 -2.21
Upper CI 40.5 .271 .432 .792 1.08 .986
Bandwidth .812 .647 .69 .806 .583 .726
Observations 58,488 45,324 48,379 58,371 40,133 51,385

Panel B: With controls

Treatment -16 -.0914 -.352 -.0538 .215
Robust p-value .815 .398 .463 .95 .536
Lower CI -80.3 -.521 -1.25 -.737 -.544
Upper CI 63.2 .207 .569 .692 1.04
Bandwidth .804 .611 .643 .874 .593
Observations 57,841 42,401 44,886 63,990 41,021

Notes: The table reports the estimated impact of an extra year of patent term on patent covariates. The patents considered
were granted between 1980 and 1989 and still outstanding on June 8, 1995. All estimates are form local quadratic regressions
with a triangular kernel based on Calonico et al. (2014) optimal bandwidth selection with cluster-robust variance estimator at
the application year times HJT technology subclass level Reported are the RK point estimate, the robust p-value, the robust
uncentered 95% C.I., the optimal bandwidth selection, and the effective number of observations that fall within the bandwidth.
Panel A includes no controls, Panel B includes estimates the RK specification on the residual of a regression of the covariate
on dummies for: HJT subclass times grant year, HJT subclass times filing year, count of maintenance fees paid for the patent.
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Table 2.10: Regression kink discontinuity on outcome variables

95-00 After 1995- Only
Baseline cites expiry expiry 1995

(1) (2) (3) (4) (5)
Panel A: Without controls

Treatment -98.1 -. 852 -81.1 -56.5 -31.2
Robust p-value .0939 .118 .158 .204 .405
Lower CI -251 -2.32 -226 -163 -102
Upper CI 19.7 .262 36.8 34.8 41.3
Bandwidth .737 .666 .736 .844 .731
Observations 51,995 46,213 51,995 61,726 51,871

Panel B: With controls

Treatment -46.8 -. 419 -51.5 -9.66 -9.26
Robust p-value .265 .428 .228 .773 .852
Lower CI -158 -1.66 -177 -107 -72
Upper CI 43.5 .705 42.1 79.7 59.5
Bandwidth .801 .631 .75 .724 .712
Observations 57,841 43,845 52,999 51,384 49,910

Notes: The table reports the estimated impact of an extra year of patent term on patent citation
outcomes. The patents considered were granted between 1980 and 1989 and still outstanding on
June 8, 1995. All estimates are form local quadratic regressions with a triangular kernel based
on Calonico et al. (2014) optimal bandwidth selection with cluster-robust variance estimator at
the application year times HJT technology subclass level. Reported are the RK point estimate,
the robust p-value, the robust uncentered 95% C.I., the optimal bandwidth selection, and the
effective number of observations that fall within the bandwidth. Panel A includes no controls,
Panel B includes estimates the RK specification on the residual of a regression of the outcome
variable on controls that include: log of pre-TRIPS citation count plus one, originality, log of
out-citations plus one, log of number of claims, and a set of dummies for HJT subclass times
grant year, HJT subclass times filing year, maintenance fee counts, and foreign assignee.
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Chapter 3

Durable Crises (joint with Nicolas

Caramp and Pascual Restrepo)

Abstract

Consumer demand for durable goods is highly pro-cyclical: it falls substantially during
recessions and rises sharply during booms. Using U.S. County Business Patterns data
between 1988 and 2014, this paper studies how consumer durables amplify business
cycle fluctuations. We show that employment in durable manufacturing industries
is more cyclical than in other industries, and that this cyclicality is amplified in
general equilibrium at the commuting zone level. We provide evidence of three mech-
anisms that generate amplification. First, employment changes propagate through
input-output linkages, which amplify effects on local aggregate employment because
industries co-locate. Second, the reduction of employment in durables negatively af-
fects employment in non-tradable sectors, consistent with the existence of demand
spillovers. Third, we find that workers do not completely reallocate to other less cycli-
cal tradable industries. Our estimates suggest that consumer durables are responsible
for up to 40% of aggregate employment volatility.

3.1 Introduction

The consumption of durable goods is highly cyclical. Relative to other goods, it

contracts sharply during recessions and expands in booms (Bils and Klenow, 1998;

Bils et al., 2013). In this paper we explore the role that consumer durables play in

amplifying business cycles. We ask if the cyclicality of demand for durable goods

contributes to aggregate employment reductions during recessions and corresponding

raises during booms, or if on the contrary, these sectoral demand shocks are mitigated

by reallocation to other industries and do not affect the aggregate employment level.
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We first document that employment in industries that produce consumer durables

is more cyclical than employment in other industries.1 Using a measure of life ex-

pectancy of consumer goods adapted from Bils and Klenow (1998) and U.S. data

from the County Business Patterns (CBP) covering the period from 1988 to 2014,
we show that, relative to other manufacturing industries, employment in durable

industries declines sharply during downturns but also recovers faster subsequently. 2

Quantitatively, when the slack in the U.S. labor market rises by 5 percentage points, 3

as it did during the recent Great Recession, industry-level employment decreases by

2.265% more per additional year of expected life of the consumer good it produces.

For the average durable industry, this translates into an additional 17% decline in

employment with respect to industries that produce non-durables. These estimates

imply that, when the slack in the U.S. labor market rises by 5 percentage points,

employment in industries that produce consumer durables contracts by an additional

700 thousand jobs relative to other industries, or about half a percentage point of the

labor force. Our results hold after we control for the secular decline in manufacturing

and any potential trend that is specific to industries producing durable goods. The

finding that employment in durable industries is particularly pro-cyclical is consistent

with the view that business cycles may affect different industries heterogeneously.4

We next explore the implications of this volatility on aggregate employment. Our

estimates of the cyclicality of employment in durable industries capture the differen-

tial effect across industries of the volatility of consumer durable consumption. These

effects do not, however, correspond to the equilibrium impact on aggregate employ-

ment, which also encompasses indirect channels that could mitigate or amplify the

impact of this sectoral shock on employment levels. One could expect the reduction

in durable employment during recessions to have a small or no aggregate impact if

workers quickly reallocate across sectors, in which case our estimates could simply

reflect the reallocation of workers to less cyclical industries during downturns (Loun-

'In what follows, we use interchangeably the terms durable industries and industries that pro-
duce durable consumer goods. These do not include industries producing materials used mainly as
intermediary goods, such as primary metals, concrete and cement, or lumber and wood products
except furniture.

2This result, also shown recently by Bils et al. (2013), complements the literature showing that
durable goods have a more cyclical demand (Bils and Klenow, 1998); affect the volatility of exports
(Engel and Wang, 2011); and affect the exposure to risk among firms that produce durables (Gomes
et al., 2009).

3Measured as the difference between the unemployment rate and the natural rate of unemploy-
ment.

4See Abraham and Katz (1986).
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gani and Rogerson, 1989). If indeed workers reallocate to less cyclical industries, the

volatility of durable good consumption would not affect the aggregate behavior of em-

ployment (Baxter, 1996). Even if workers need to spend some time in unemployment

to reallocate, the large gross flows of workers across industries imply that this real-

location could be achieved without any significant impact on aggregate employment

(Pilossoph, 2012).

To estimate the equilibrium impact of the volatility in durable employment on the

labor market we exploit differences in the industry composition of U.S. commuting

zones. Because the bulk of the adjustment to labor demand shocks, and especially

the reallocation of workers, takes place locally, commuting zones provide an ideal

laboratory to investigate the aggregate effects from the decline in the demand for

durables. Indeed, the evidence provided by Autor et al. (2013), Notowidigdo (2013),

and Yagan (2014) suggests that the extent of workers' migration in response to labor

market shocks is modest.5 Using CBP data covering all commuting zones in the

contiguous U.S., we document that employment is more cyclical in commuting zones

that host more durable industries. This finding holds even after we control for the

secular decline in manufacturing and any potential trend specific to commuting zones

hosting durable industries.

Quantitatively, when the aggregate slack in the economy rises by 5 percentage

points, employment in a commuting zone that produces consumer durables that last

for one additional year declines by 3.25% more relative to a region that produces no

durables. The estimated impact of durables on a commuting zone is larger than what

a shift-share projection based on the initial industry estimates would predict, which

suggests that rather than mitigating the shock to durables, the equilibrium forces that

operate at the commuting zone level amplify the effect of the decline in the demand for

durable goods. Although they affect a single sector, the substantial albeit temporary

changes in the demand for durables during recessions and booms have aggregate

effects at the local labor market level, and impact national employment cyclicality as

a result. These novel results are quantitatively significant. A back of the envelope

calculation suggests that if overall U.S. employment behaved as it does in areas that

do not produce durables, national employment would be 20% less volatile. Figure 3-1

5 Though this evidence is in the context of more persistent shocks, we find it reasonable to expect
even less migration in response to temporary shocks as the ones we study in this paper. Indeed,
we analyze migration patterns in section 3.4 and find evidence of only little reallocation between
commuting zones.
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previews this result and plots the series for the cyclical component of the observed

employment rate in the U.S. (in black circles) and a series of the counterfactual

employment rate if no region produced durables (in blue hollow diamonds), resulting

in decreased business cycle employment volatility.

We identify three mechanisms that explain why the volatility of demand for

durables has a significant effect on aggregate employment. First, changes in the

demand for consumer durables affect upstream industries that supply intermediate

goods to durable goods producers. In line with this propagation through input-output

linkages, we document that employment in upstream suppliers of durable industries

is also highly cyclical, and so is employment in the commuting zones that host these

suppliers. Quantitatively, when the aggregate slack in the economy rises by 5 percent-

age points, employment in a commuting zone with the average amount of linkages to

durable goods declines by an additional 2.5% relative to a region with no linkages.

A back of the envelope calculation suggests that if overall employment behaved as it

does in areas that do not produce durables nor supply durable industries, U.S. em-

ployment would be 40% less volatile; input-output linkages double the contribution

of consumer durables to the volatility of employment. The cyclical component for

the counterfactual employment rate if the U.S. produced no durables nor supplied

durable industries is also shown in Figure 3-1 in red squares.

In addition, we document that industries locate close to their suppliers (Ellison

et al., 2010). Thus, input-output linkages amplify the impact on employment in local

labor markets that host durable industries, and contribute to explaining why other

industries in affected areas do not expand to pick up the slack in the labor market.

Quantitatively, the fact that upstream firms co-locate close to producers of consumer

durables explains one third of the impact of durable goods on local labor markets.6

The importance of amplification through input-output linkages is in line with recent

evidence showing that industry shocks affect upstream industries (Acemoglu et al.,
2015, 2016; Pierce and Schott, 2016; Carvalho et al., 2014; Barrot and Sauvagnat,

2016), and with the theoretical literature emphasizing how sectoral shocks could have

aggregate effects because of input-output linkages (Acemoglu et al., 2012).

Second, we show that employment in non-tradable services is more volatile in areas

that host durable industries. This volatility cannot be explained by input-output link-

ages, and suggests that lower consumption by laid-off workers may affect employment

6 We take this co-location into account when aggregating results due to both direct effects of
durables and upstream linkages.
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in non-tradables through demand spillovers.7 This finding is in line with the empirical

literature emphasizing how local declines in consumption affect employment in the

non-tradable sector (Mian and Sufi, 2014), and with the literature emphasizing how

demand externalities may amplify shocks when reallocation is imperfect (Beaudry

et al., 2014). Quantitatively, the impact on non-tradable employment explains one

fifth of the impact of durable industries on local labor market cyclicality. However,

whether durable cyclicality results in negative spillovers on non-tradables at the na-

tional level as well will depend on the response of monetary and fiscal policy.8

Finally, we find little evidence of reallocation to non-durable tradable industries

during crises. Abstracting from the impact of input-output linkages and the nega-

tive spillover on non-tradables, 9 each additional year in the average expected life of

consumer goods produced in a local labor market is associated with an extra decline

of 1.5% in employment when the slack in the economy rises by 5 percentage points.

This is smaller than our industry-level results predicts but still suggests that workers

do not fully reallocate to other sectors and industries that are less cyclical. In line

with this observation, we find no evidence that non-durable tradable industries that

are not affected by input-output linkages,10 expand more in regions that host durable

industries compared to others. These results are at odds with models in which a fric-

tionless or rapid reallocation of workers mitigates the aggregate impact of a sectoral

shock to the durable industry (Baxter, 1996; Pilossoph, 2012). Instead, one interpre-

tation that may be consistent with the data is that, due to reallocation costs and the

expectation that sectoral conditions may revert, workers do not reallocate but remain

"rest unemployed" (Jovanovic, 1987; Hamilton, 1988; Gouge and King, 1997; Alvarez

and Shimer, 2011).

Besides the literature already mentioned, our paper relates to the debate on the

role of sectoral shocks in generating employment fluctuations. Lilien and Hall (1986)

emphasizes that sectoral shocks generate business cycles, while in our case business

cycles are amplified because some sectors are more sensitive to the cycle as argued by

Abraham and Katz (1986). A literature going back to Schumpeter (1942) emphasizes

that firms in declining sectors may be permanently liquidated during recessions, which

7For evidence on decreased consumption by unemployed workers, see Ganong and Jaeger (2016).
8Even if monetary or fiscal policy did fully offset the aggregate employment effects on non-

tradables, our estimates still suggest major distributional impacts in terms of employment between
commuting zones depending on their exposure to durables.

9That is, considering only direct effects of durable volatility on aggregate local employment.
' 0Nor are they affected by local demand spillovers, because of their tradable nature.
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implies that permanent sectoral shifts may coincide with the onset of recessions.11

Although manufacturing is on a secular decline in the U.S., we show that our results

are robust to controlling in a number of ways for this decline and that our findings are

specific to durable goods, rather than all manufacturing. Moreover, employment in

durable industries and the commuting zones that host them rebounds in a pro-cyclical

manner following a recession. Finally, our findings differ from Chodorow-Reich and

Wieland (2016), who emphasize how secular reallocation, understood as the response

of the economy to permanent sectoral shocks, may generate unemployment, especially

during recessions.

The rest of the paper is structured as follows. Section 3.2 describes our data.

Section 3.3 presents our evidence for industry employment and wages, which shows

that there are large sectoral shocks that take place during recessions. Section 3.4

shows that these sectoral shocks have aggregate effects in U.S. commuting zones that

host durable industries or their suppliers. Section 3.5 presents our investigation of

mechanisms that generate amplification. Section 3.6 concludes by discussing the

quantitative implications of our exercise and future avenues for research.

3.2 Data sources

We use yearly data from the County Business Patterns (CBP) between 1988 and

2014. CBP is an annual series covering U.S. employment during the week of March

12 and annual payroll data by county and industry. It covers all employment except

self-employed individuals, employees of private households, railroad employees, agri-

cultural production employees, and most government employees. In order to maintain

a consistent panel of industries over our time period, we use the industry crosswalks

in Autor et al. (2013) and aggregate our data to 479 industry codes. We restrict the

analysis to the 48 states of the contiguous United States and aggregate the data to

722 commuting zones to study local labor markets. We supplement this data with

information on within-U.S. net migration rates for each commuting zone from the In-

ternal Revenue Service's Statistics of Income U.S. Population Migration Data, which

records yearly migration flows between counties. In order to control for demographic

covariates at the commuting zone-level, we use the 1990 Census. Finally, we use the

"See also Davis and Haltiwanger (1990); Hall (1991); Caballero and Hammour (1994); Aghion
and Saint-Paul (1998); Koenders and Rogerson (2005); Berger (2016); Jairnovich and Siu (2014);
Restrepo (2015).
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long-term NAIRU, observed unemployment, and potential and realized GDP series

from the Federal Reserve Bank of St. Louis Economic Data to define two measures

of economic slack. The first measure is defined as the difference between the ob-

served national unemployment rate and the long-term natural rate of unemployment,

whereas the second one is defined as the difference in log points between the potential

and the realized GDP. Both measures are plotted in Figure 3-2, with NBER recessions

periods shaded in grey.

We explore different measures for consumer durable exposure, all of which yield

qualitatively similar results. In the main text we focus on a measure adapted from Bils

and Klenow (1998), which defines for every industry the durability of the consumer

goods it produces. If an industry does not produce consumer durables, it is assigned

a zero, which allow us to focus on how changes in consumers' demand for durables

affect employment. The average durability of consumer goods is 0.35 years (which

takes into account that some industries do not produce consumer durables). Among

industries that produce consumer durables, the average durability is 7.5 years. 12

To measure the upstream and downstream exposure to industries that produce

durables and investigate possible propagation through supply chain linkages, we use

the 1992 input-output table for the U.S. economy from the Bureau of Economic

Analysis. 1 3 We compute for each of the 497 industries a measure of the share of their

sales that are directly or indirectly used in the production of consumer durables.

In particular, we use the matrix of cross-industry sales S = {ssj} (in shares) from

industry j to i to compute its Leontief inverse L = (I - S)- - I. The row vector

LU = (lI, lu,... ,l) indicates the upstream exposure of industry i to shocks in all

the industries it directly or indirectly sells its products to. We compute the upstream

propagation for a non-durable industry as

Upstream Propagation. = -l- Durability.

This measure captures the extent of upstream propagation on non-consumer durable

industries; it tells us the share of total production that is eventually used by indus-

tries to produce consumer durable goods, weighted by their respective durability.

We also compute for each of the industries a measure of the share of their inputs

1 2These averages are weighted by the employed population in each industry, to mimic our speci-
fications in section 3.3.

13 The table is available at www.bea.gov,/industry/io benchmark.htm.
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that are consumer durables or are produced using consumer durables. In particular,
we use the matrix of of cross-industry purchases P = {pjj} (in shares) from indus-

try j to i to compute its Leontief inverse LD = (I P)- 1 ' _ I. The row vector

LP = (ljDla,.. .,l) indicates the downstream exposure of industry i to shocks in

all the industries it directly or indirectly purchases inputs from. We compute the

downstream propagation for a non-durable industry as

Downstream Propagationi = l- - Durability.

This measure captures the extent of downstream propagation on non-consumer

durable industries; it tells us the share of consumer durable goods, weighted by their

respective durability, that is needed to produce final goods in each industry. Figure

3-3 maps the geographic location of commuting zones that host durable industries

and their upstream suppliers with extensive geographic variation across the US. The

means of the 1990 Census covariates at the commuting zone level are shown in column

(1) of Table 3.1.

3.3 Evidence from U.S. industries

We begin by exploring whether national-level employment in industries that produce

consumer durables is more cyclical than in other industries over the period 1988-

2014.14 To that end, we estimate the industry-level model:

In Eit =aj + 6t + /3 - Slackt x Durability industryi

+ 7y - t x Durability industry + 0, - t x Manufacture + eit, (3.1)

where ln Eit is the log of national employment in industry i in year t, Slackt is our

national-level measure of slack in the economy, Durability Industryi measures the

durability of consumer goods produced by the industry, with the convention that in-

dustries that do not produce consumer goods are assigned a zero. Also, Manufacture

is a dummy for manufacturing industries, and ac and 6 t are a full set of industry and

year fixed effects, respectively. eit is the error term, which we assume is independent

across industries but may be serially correlated within each industry over time. When

1 4This period covers 3 recessions according to the NBER Business Cycle Dating Committee.
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estimating equation (3.1) we weight observations by the employment in each industry

in 1988 and report standard errors that are robust to heteroskedasticity and serial

correlation within industries.' 5

The coefficient 0' that multiplies Slackt x Durability Industryi captures the addi-

tional cyclicality of durable industries compared to nondurable ones." In the above

model this effect is identified solely from cyclical fluctuations in employment, and does

not confound the secular decline in manufacturing or any potential differential trend in

durables. These two forces are accounted for by the trends -y -t x Durability Industryi

and 01 - t x Manufacturei.

Table 3.2 presents estimates of equation (3.1) using the industry-level data from

1988 to 2014 and covering the 479 industries defined in our data. We multiply our

estimates by 100 so they can be interpreted in terms of log points. In panel A we

use the unemployment measure of slack. In column (1) we present an estimate that

excludes differential trends for durable and manufacturing industries. We estimate a

statistically significant coefficient for /3 of -1.787, which suggests that durable indus-

tries are more cyclical. However, because our measure of slack rises sharply during

the Great Recession, this estimate could confound cyclical movements in employment

in durable industries with any secular trend affecting manufacturing or durables. To

address this concern in column (2) we control for a time trend specific to durable

industries. As expected, we find that employment in durable industries is on a sta-

tistically significant secular decline of 0.48% fewer jobs per year for every additional

year of durability. Our estimate for the excess cyclicality of durable industries now

falls to a still highly statistically significant -0.453, which shows the importance of ac-

curately controlling for industry trends. This point estimate suggests that, when the

slack in the U.S. labor market rises by one percentage point, employment declines by

0.453% more for every additional year of durability among consumer goods produced

by a given industry. Compared to non-durable industries, employment in the average

durable industry thus falls by 3.4% more for every percentage point increase in the

aggregate unemployment slack. Our estimates for 01 remain essentially unchanged

"In addition, in all of our models we control for a full set of year effects interacted with con-
struction industry dummies, which leads to not considering construction in our industrial analysis.
Though housing is an important durable good, we only focus on manufacturing durables as we want
to abstract from the housing cycle and the impact of house prices on employment through net worth
effects (Mian and Sufi, 2014). Nonetheless, our results are robust to including construction industry
in the analysis.

16Notice that because recessions are measured through measures of positive slack, negative 31

will be associated with higher cyclicality.
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when we control for trends in the manufacturing sector in column (3) or industry-

specific trends in column (5)." Finally, in column (4) we explore the volatility of other

manufacturing industries, i.e. non-consumer durable manufacturing industries. The

coefficients from column (3) change very little, and we find that non-durable manu-

facturing is much less pro-cyclical than durable manufacturing. If anything, the sign

of the statistically insignificant point estimate suggests non-durable manufacturing

industries could exhibit less cyclicality than the remaining industries.

In panel B we use the measure of slack defined by the output gap. We find similar

results as above: when the slack in the U.S. labor market rises by one percentage point,

employment declines by a statistically significant 0.278% more for every additional

year of durability among consumer goods produced by a given industry. If we take

into account Okun's law, which states that an increase in the unemployment rate of

1 percentage point is associated with an increase in the output gap of 2 percentage

points, both sets of estimates yield similar quantitative implications. Using series of

HP-filtered industry employment and real GDP between 1990 and 2011, Bils et al.

(2013) find that the average durable industry is 1.79 times more volatile than GDP.

Our estimates are of the same order or somewhat higher, and suggest that a one-point

increase in GDP is associated with a 2.1% larger increase in the average durability.

Our results in this section support the view that the demand for durable goods is

more cyclical and declines sharply during recessions. Our findings suggest that firms

that produce consumer durables respond by reducing employment during downturns

and expanding it during booms more than firms in other industries.18 However,

the high cyclicality of employment in the durable sector need not affect aggregate

employment. As explained in the introduction, our industry-level estimates could

reflect reallocation of workers between industries, as other industries that are less

cyclical expand (or decline less) during downturns to absorb workers displaced from

durable industries. In the rest of the paper we explore whether the decline in the

demand for durable goods and the vast employment losses in this industry contribute

to the observed cyclicality of aggregate employment.

17 The changes in the coefficients are smaller than the rounding level in the tables.
1In future work, we plan to analyze the intensive versus extensive margin of this adjustment at

the establishment level. That is, do firms respond by closing down establishments, or by downsizing
them?
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3.4 Evidence from U.S. local labor markets

We now analyze the impact of the excess cyclicality of employment in durable indus-

tries on the local labor markets that host them. We estimate the following model

using data for 722 commuting zones in the contiguous U.S. covering the 1988-2014

period:

In Et =a, + 6 t + fC - Slackt x Average durability 1 9 88 + 7C - Slackt x Manufactureci 9 ss

+ 7 - t x Average durabilitye,9 88 + 9 C 't x Manufactureci 9 ss + Ect, (3.2)

where ln Et is the log of the share of employment in commuting zone c in year t

normalized by the the population in c at t, 9 Slackt is again our measure of slack

in the economy, and Average durabilityc 98 8 is the average durability of consumer

goods produced in the commuting zone in 1988, computed using the observed em-

ployment shares in that year and with the convention that industries that do not

produce consumer durables are assigned a zero. Also, Manufactureci 9 ss is the share

of employment in manufacturing industries measured in 1988 for commuting zone c,

ac and 6 t are a full set of commuting zone and year fixed effects, respectively, and

Ect is the error term, which we assume may be serially correlated over time for all

commuting zones in a given state. We use the durability and manufacturing shares

at the beginning of our sample (1988) instead of the contemporaneous values in order

to reduce endogeneity concerns of the local productive structure.2 0 When estimating

equation (3.2) we weight observations by the employment in each commuting zone

in 1988 and report standard errors that are robust to heteroskedasticity and serial

correlation within states. 21

Just as in the previous section, the coefficient #C that multiplies Slackt x Average

durabilityr,9 8 8 captures the additional cyclicality of employment in areas that host

durable industries. By including the two trends in the specification, we ensure that

19We also estimate all the specifications using non-normalized log of employment in commuting
zone c at year t as an outcome variable and find qualitatively the same results. Moreover, later on
in this section we investigate migration responses to durable cyclicality and find only economically
small impacts.

20The average durability and the manufacturing share at the commuting zone level are highly
persistent over time. The correlation between values in 1988 and 2007 are around 0.8.

2 1In addition, in all of our models we control for a full set of year effects interacted with the
share of workers employed in construction in 1988. As with our industry analysis, this allows us to

abstract from the housing cycle and the impact of house prices on employment through net worth

effects (Mian and Sufi, 2014). Our results are robust to foregoing these controls.
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the secular decline in manufacturing or any potential trend in durables that could

also affect employment in commuting zones is not confounded. The effect of interest

is identified solely from cyclical fluctuations in employment.

Our approach exploits differences in the productive structure across commuting

zones, in the extent to which they host consumer durable industries. Unlike our

previous estimates, which compared relative changes in employment by industry, the

impact of durables on the commuting zones that host them takes into account the

possibility for reallocation, which could mitigate the aggregate effect of the shock

to durables, or amplification mechanisms that could worsen the aggregate effects on

employment. To the extent that most of the reallocation and adjustment to labor

demand shocks takes place within a commuting zone, these estimates are informa-

tive about the equilibrium impact of the excess cyclicality of durables. To illustrate

the value of contrasting our these two estimates consider the following scenarios. 2 2

Suppose that workers displaced from durable industries reallocate immediately to

other manufacturing jobs in the same commuting zone. While we would still ob-

serve relative changes in employment by industry (#1 < 0), we would not observe

any impact on the overall employment level of the commuting zone (#3c = 0). If

instead, workers displaced from durable industries do not reallocate but remain un-

employed or out of the labor force, we would observe relative changes in employment

by industry that match the impact of the overall employment level of the commuting

zone (3C e /31 < 0). Finally, suppose that because of demand externalities or other

possible amplification mechanisms, the decline in demand for durables spills over to

other industries in the same commuting zone. In this case, we could have a larger

impact on the overall employment level of the commuting zone than in the durable

industries (0C < 3' < 0). These examples illustrate that the difference between

the industry and commuting-zone estimates, 0C and /3, reflects the extent to which

reallocation, demand externalities and other general equilibrium effects that operate

in a commuting zone mitigate or amplify the sectoral shock to durables.

Table 3.3 presents estimates of equation (3.2). As before, we multiply our esti-

mates by 100 so they can be interpreted in terms of log points. In panel A we use

the measure of slack defined by the difference between the national unemployment

22 Notice that the average durability of consumer durables is computed using employment shares
by industry in each commuting zone and d ln (Ei Eict) = Ei sict d In Eict, where sict is the share of
employment in industry i within commuting zone c and time t. As a result, the magnitudes of the
coefficients 3C and /1 are directly comparable.
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rate and the natural unemployment rate (in percentage points). In column (1) we

present an estimate that excludes the trends for commuting zones that host durable

and manufacturing industries. We estimate a statistically significant coefficient for

0C of -1.977, which suggests that employment in commuting zones that host more

durable industries behaves more cyclically than in other regions. However, because

our measure of slack rises sharply during the Great Recession, this estimate could

confound cyclical movements in employment in durable industries with any secular

trend in manufacturing or durables. To address this concern, in column (2) we control

for a time trend multiplied by the average durability of each commuting zone. As

expected from the fact that employment in durable industries is on a secular decline,

we find that employment in areas that host these industries is also on a decline over

time.2 3 Our estimate for the excess cyclicality of durable industries now falls to a still

significant -1.013, which shows the importance of accurately controlling for secular

trends. This point estimate suggests that the average commuting zone experiences

a decline in employment that is 0.46% larger than if it hosted no durable industries

when the U.S. labor market slack increases by one percentage point.

Our estimates for 0C remain largely unchanged2 4 when we control for trends in

the manufacturing sector in column (3), and remain largely unchanged when allowing

areas that host manufacturing industries to have different cyclicality in column (4).

Our estimates in columns (3) and (4) show that hosting non-durable manufacturing

industries does not make a commuting zone more cyclical, and that once we control for

the secular decline in manufacturing, commuting zones that host durables are not on

a significant further secular decline. These findings suggest that our estimates for 0C

do not confound the secular decline of employment in manufacturing or the possibility

that this decline may concentrate during downturns.2 5 Both results reassure us that

our estimates for 1C are capturing the specific impact of the excess cyclicality of

durables on local labor markets, and not trends that are common to all manufacturing

industries.

One concern with our previous estimates is that areas that host durable industries

may differ in unobserved dimensions from the rest of the U.S., or from other areas

that also specialize in manufacturing but mostly produce nondurable goods. These

differences could explain why these areas experience more pronounced recessions and

"Chodorow-Reich and Wieland (2016) study the impact of these secular reallocations.
24The changes are smaller than the table's rounding.
25See Jaimovich and Siu (2014).
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booms. However, we find no significant geographic bunching of durable industries

in Figure 3-3, instead documenting extensive dispersion. Moreover, in most of our

empirical specifications we also control explicitly for the share of manufacturing em-

ployment in the commuting zone. That is, for a given share of local manufacturing,

we are exploiting variation in the differential industrial specialization in consumer

durables. In order to study whether commuting zones with a larger share of durables

differ from others along observable characteristics, we estimate a set of regression

specifications with 1990 Census covariates at the commuting zone-level as dependent

variable, and the average durability in 1988 as well as, depending on the specification,

the manufacturing share of employment in 1988 as independent variables. The coef-

ficients of interest on the average durability for each regression are shown in Table

3.1, as well as sample means of the covariates split by whether the durability of the

commuting zone is below or above median in columns (2) and (3). We find that,

although Census covariates vary significantly across commuting zones depending on

their average durability, commuting zones with a similar manufacturing share but

different within-mix of durability only vary significantly in their population size and

share of college graduates, with other demographic characteristics not statistically

different. They also differ significantly in their exposure to upstream linkages, which

we explore in more detail in subsection 3.5.1.

Nonetheless, we allay these concerns further in columns (5) to (7). Although the

distribution of durable industries across the contiguous U.S. shown in Figure 3-3 seems

not to be concentrated geographically, we control for eight Census division dummies

interacted with a full set of year effects in column (5). These dummies guarantee

that we identify 0C only by comparing areas that host durables with other areas

in the same division, which ensures that our estimates do not confound broad and

unobserved regional differences. Our estimates are somewhat reduced, but we still

find an economically and statistically meaningful estimate for 0C of -0.747. Besides

the division dummies, in column (6) we include a series of covariates measured for

each commuting zone using the 1990 Census interacted with a full set of year effects.

We control for the log of population, the log of the workforce, the share of people in

different age bins, the shares of people with high school and college degrees, and the

shares of Blacks and Hispanics. Though differences in these demographic character-

istics could make some commuting zones more sensitive to business cycles, we do not

find that their inclusion affects our estimates, as we find a coefficient for 0C of -0.649.
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Finally, in column (7) we include a full set of commuting zone trends, which control

flexibly for unobserved heterogeneity and the possibility that areas that host durables

are on a secular decline for reasons that are unrelated to the decline in manufacturing

employment. Our estimates in column (7) suggest that, when the slack in the U.S.

labor market rises by one percentage points, employment in the average commuting

zone declines 0.23% more than if it hosted no durables.

Panel B presents our findings when we measure the slack in the U.S. economy using

the output gap. Our point estimates in column (7) show that when the output gap

rises by one percentage point, employment in the average commuting zone declines

0.18% more than if it produced no consumer durables. This is again in line with the

results of Panel A, taking Okun's law into account.

Another potential concern with our estimates is that workers may respond to the

decline in the demand for durables by moving to other commuting zones. If this were

the case, our cross-sectional estimates would confound the (potential) reallocation

of workers across commuting zones with a decline in employment. Although the

existing evidence suggests that changes in migration are not an important response

to local shocks, 27 we can test directly if the decline in employment documented above

is driven by migration. Table 3.4 has the same structure as Table 3.3 but explores

whether the net migration rate (inflow minus outflow) is more cyclical in areas that

host durables. Our point estimates are quite small and precisely estimated. Moreover,

once we account for differences across commuting zones and trends in columns (6) and

(7), we do not find a significant effect of durables on the cyclicality of net migration.

Quantitatively, when the slack in the U.S. labor market rises by one percentage point,

the yearly net migration rate in the average commuting zone declines by only a

statistically insignificant 0.01% more than if it did not host durables. 2 8

To gauge the economic significance of the estimates in this section we compute

the counterfactual behavior of U.S. employment if it produced no durable goods.

26 The weighted average of the exposure to durables at the commuting zone is about 0.35.
27 Bartik (2017) finds large geographic moving costs that inhibit labor market adjustment. Like-

wise, Autor et al. (2013) and Notowidigdo (2013) find large persistence in local labor market shocks,
consistent with low geographic adjustment.

28 Besides migration, there is an additional concern when interpreting our estimates of 0C as the
equilibrium impact of the decline in the demand for durable goods. Because durables are traded
across commuting zones, non-durable industries in other regions may benefit from the low price of
durables and expand their employment. This reallocation of production through trade cannot be
captured in our data and could lead to our estimates for 3C overstating the negative consequences of
the decline in the demand for durables. However, in subsection 3.5.1 we find no evidence of benefits
for downstream industries that use durables as inputs.
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This counterfactual illustrates the behavior of employment in a scenario in which the

demand for consumer durables were not more cyclical than the demand for other

goods, or in which all durable consumer goods were imported from other countries.

To compute our counterfactual, we multiply our estimate for /C by the share of

employment in durables in each commuting zone and subtract these employment

losses or gains from the observed employment. This procedure gives us a series for

employment in each commuting zone absent the effect of hosting durable industries:

End = exp (ln Et - Slackt x Average Durabilityc1988) (3.3)

The observed and the counterfactual employment series coincide in areas that host

no durables or when the aggregate slack in the economy is zero. We aggregate both

series to compute their national average. For each average series we use the Holdrick-

Prescott filter to compute the log deviations from its trend. Figure 3-1 plots the

cyclical components of both series. As is evident from the figure, employment in the

U.S. would be less cyclical if business cycles did not involve vast changes in the demand

for durables. Quantitatively, the standard deviation of employment is 20% lower in

the counterfactual scenario, which suggests that the high cyclicality of durable goods

amplifies the impact of aggregate shocks by 20%.

3.5 Mechanisms that amplify the shock to durables

The evidence in the previous sections suggests that, when we look at local labor

markets, the impact of the decline in the demand for durable goods is roughly of

the same size as our industry estimates (/31 /3C < 0), or even larger. We now

explore three mechanisms that can explain why the sectoral shock to durables is not

mitigated, and if anything is amplified, at the local labor market level. We first explore

whether input-output linkages propagate the initial demand shock on durables across

industries. We then analyze whether local demand spillovers impact non-tradable

employment at the commuting zone level. Last, we analyze patterns of reallocation

of employment from durable industries to other tradable industries.
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3.5.1 Input-output linkages

We explore the possibility that the cyclical changes in the demand for durables propa-

gate through input-output linkages. In particular, we expect shocks to the demand for

durables to negatively affect upstream industries that supply inputs to durable good

producers -what we refer to as upstream propagation. On the other hand, changes

in the demand for durables have an ambiguous effect on downstream firms that use

durables -what we refer to as downstream propagation. Though downstream indus-

tries may benefit from having access to cheaper durable goods -the low demand by

consumers implies there are more durables to be used by downstream industries- the

shock to durables may also push some upstream firms out of business, thus affecting

downstream firms. 2 9

To assess the extent of upstream and downstream propagation at the industry

level, we augment equation (3.1) as follows:

In Et = ai + 6t + /3 -Slackt x Durability Industry

+ -Slackt x Upstream Propagationi + 0f - Slackt x Downstream Propagation

+ -t + Et. (3.4)

Here, the terms 0, - Slackt x Upstream Propagationi and A1 - Slackt x Downstream

Propagationi capture both potential sources of propagation. We also include industry

trends y[ - t, specific to each of the groups of industries analyzed to isolate the effect

of the secular decline in some industries from their cyclical responses.

Table 3.5 presents our industry-level estimates. Panel A uses the unemployment

rate to measure slack while Panel B uses the output gap as a measure for slack. In

column (1) we estimate the impact of upstream propagation controlling for indus-

try trends. In panel A we estimate a statistically significant coefficient for upstream

propagation of , - -1.338. This effect is large: our point estimate suggests that,

when slack in the U.S. labor market rises by one percentage points, employment in

the average non-durable industry declines by an additional 0.7% as a consequence

of upstream propagation.3 0 Meanwhile, employment in the average durable industry

29For example, it could be that existing customer-supplier relationships are more productive or
involve customized inputs. Barrot and Sauvagnat (2016) find that idiosyncratic supplier production
shocks impose large output losses on their customers, especially when suppliers produce specific
inputs.

30The average non-durable industry has an upstream exposure of 0.5.
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declines by an additional 3.9%. In column (2) we also estimate the impact of down-

stream propagation but find no evidence of downstream spillovers. In panel A we

estimate a coefficient for downstream propagation of #3 = -0.249. Though small

and not significant, our imprecise estimates do not allow us to rule out large effects

on downstream industries. However, since we are focusing on consumer durables,

it is reasonable that there will not be significant downstream effects; few industries

use consumer durables as intermediates while many act as suppliers to industries

producing consumer durables.

In column (3) we explore if non-durable manufacturing industries are more cycli-

cal once we take into account the upstream propagation of changes in the demand

for durables. Our estimates show that, once we control for these sources of propaga-

tion, employment in non-durable manufacturing is not significantly less cyclical than

employment in non-manufacturing industries. In contrast, employment in durable in-

dustries is considerably more cyclical. Column (4) goes one step further and restricts

our analysis to manufacturing industries. It shows that once we account for upstream

propagation, employment in durables is more cyclical than in other manufacturing

industries.

We now explore how input-output linkages affect our commuting zone estimates.

First, there is a high spatial correlation in the location of non-durable manufactur-

ing firms and the durable industries they sell to in our data." Because we cannot

identify the individual consumer-supplier relationships between production plants,

we use the BEA national input/output tables to obtain average supply relationships

between industries. We find that commuting zones with larger average durabilities

also host more industry that supply consumer durables. Because of agglomeration

gains, it is likely that these supply industries are also more connected to the local

durable manufacturing, and implies that, through input-output linkages, the decline

in employment can be amplified in commuting zones hosting large shares of durable

industries. In addition, the upstream propagation that we document implies that the

high cyclicality of durables may also affect commuting zones that do not host durable

industries but that do host their suppliers.

To explore both mechanisms empirically at the commuting zone-level, we augment
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equation (3.2) as follows:

In Et =c + 6t + OC - Slackt x Average durabilityc1 88

+ #8 - Slackt x Upstream Propagation 1 9 88 + Trends + ect, (3.5)

where Upstream Propagationc19 8 8 is the average upstream exposure to durables among

industries in commuting zone c measured using employment shares in 1988 to mitigate

endogeneity concerns.

We present the results from this exercise in columns (1) and (2) of Table 3.6. In

column (1) we report our baseline estimates from column (7) in Table 3.3 for com-

parison purposes. In column (2) we augment this regression by estimating whether

upstream propagation makes employment more cyclical in commuting zones that host

upstream suppliers to consumer durables. We find that in a commuting zone with

the average amount of upstream linkages to durables (0.5), employment declines by

0.55% more than in a region with no upstream linkages when labor market slack rises

by one percentage point. Moreover, our estimate for the impact of hosting durable

industries falls from -0.649 to -0.416. This is in line with the fact that part of the

effect of durables estimated in column (1) reflects propagation to upstream firms that

locate close to durable good producers. Quantitatively, this co-location of suppliers

close to their customers explains about a third of the effect of consumer durables on

local employment found in section 3.4.

To gauge the economic significance of the estimates in this subsection we compute

the counterfactual behavior of overall U.S. employment if it produced no durable

goods and absent the upstream propagation. To compute our counterfactuals, we

multiply our estimate for #C by the share of employment in durables in each com-

muting zone and subtract these employment losses or gains from the observed em-

ployment. This procedure gives us a series for employment in each commuting zone

absent the effect of hosting durable industries, as in equation (3.3). The observed

and the counterfactual employment series coincide in areas that host no durables or

when the aggregate slack in the economy is zero. We then compute an additional

counterfactual in which we also subtract the role of upstream propagation:

ECtd exp(In Et - /3 - Slackt x Average durabilityc,988

- #^u - Slackt x Upstream Propagation, 9g 8 ). (3.6)
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We aggregate both counterfactual series to compute their national average. Figure

3-4 plots these counterfactual series (normalizing their level to 0 in 2007). As is

evident from the figure, employment in the U.S. would be less cyclical if business

cycles did not involve vast changes in the demand for durables. For each series we

use the Holdrick-Prescott filter to compute log deviations from trend. Quantitatively,

the cyclicality of industries that produce durable goods explains 13% of aggregate

employment cyclicality. This is below our initial estimate because it does not take

into account the propagation to suppliers that co-locate close to industries that pro-

duce consumer durables. Upstream propagation explains an additional 27% of the

cyclicality of aggregate employment, of which 7% is due to propagation in areas that

also host industries that produce consumer durables, and the rest is due to upstream

propagation to other regions.

3.5.2 Demand spillovers affecting non-tradables

Another potential source of propagation is through demand spillovers. If unemployed

workers consume less,3 2 the demand for non-tradable goods produced and consumed

locally in recessions may decline by more in areas more affected by the cyclicality

of durable industries. If that is the case, non-tradables will not expand in relative

terms to pick up the extra slack in the labor market caused by downsizing in durable

industries.

To assess the extent of negative spillovers on non-tradables, we estimate equation

(3.5) but use the log of commuting zone share of employment in non-tradable services

as our dependent variable. 3 We present the results from this exercise in columns (3)

and (4) of Table 3.6. In column (3) we report our estimates without controlling for

the upstream exposure of non-tradable industries, and in column (4) we include the

upstream exposure of retail and service industries to durables. We find that employ-

ment in non-tradable services is highly cyclical in commuting zones that host durable

industries. In the absence of demand spillovers, and because non-tradables do not

include consumer durable goods, we would expect employment in these industries to

expand during recessions in commuting zones that host durable industries relative to

32Ganong and Jaeger (2016) find that spending on non-durable goods and services drops by
6% at the onset of unemployment and continues to fall during the unemployment period. When
unemployment insurance is exhausted, spending falls by an additional 11%.

3 3Non-tradable services include retail and other services, but exclude professional services, as in
Autor and Dorn (2013).
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other regions, as displaced workers laid off from durable industries reallocate to the

non-tradable sector. That is, absent demand spillovers, employment in non-tradables

should be comparatively less cyclical in commuting zones with larger durable indus-

tries. We thus attribute our opposite results to local demand spillovers.34 We find a

similar effect when we control for the upstream linkages of non-tradables to durables,

and find no strong upstream linkages between these two types of industries.

In both columns we find that, when slack in the U.S. labor market rises by one

percentage point, non-tradable employment in the average commuting zone declines

by 0.234% more than if it did not host any durables. Quantitatively, the negative

spillover on non-tradable industries explains about a fifth of the decline in overall

local employment associated with durable goods.35

Because of our empirical strategy, this spillover is a differential effect, measured by

comparing different commuting zones with different shares of durable industries. Just

as the high cyclicality of durable employment at the industry level found in section

3.3 could be mitigated through reallocation, spillovers due to local aggregate demand

externalities need not be present at the national level. Whether they are still present

depends in part on the monetary and fiscal policy adjustments used to stimulate

aggregate demand. However, if fiscal stimuli are in part geographically directed,

they are likely to target differentially those commuting zones particularly affected by

a recession.3 6 That is, we find evidence of more pro-cyclical demand externalities

in areas that are likely to already be benefiting more from counter-cyclical fiscal

transfers.

On the other hand, a loosening of monetary policy as a result of worsening eco-

nomic conditions may neutralize our negative spillover results in the aggregate. How-

ever, if nominal interest rates are already close to zero, as in the Great Recession,

monetary policy may not have room to adjust. Moreover, if the demand channel is

driven by complementarities between durable goods and non-tradable consumption,

monetary policy will be ineffective against the increased cyclicality of non-tradable

consumption. Furthermore, even if the demand spillovers are neutralized in aggre-

34The fall in demand for non-tradables driving these results can be due to local aggregate demand
externalities. However, we cannot rule out the possibility that it is driven by income effects due to
strong complementarities between durable good consumption and consumption of non-tradables.

35The estimates need to be scaled down by the share of non-tradable employment at the com-
muting zone to obtain effects on total employment.

36Automatic fiscal stabilizers in the form of unemployment insurance, for example, are likely to
flow differentially more to areas with larger drops in employment.
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gate, our evidence still suggests large distributional impacts of durable consumer

goods across commuting zones. Summarizing, durable industries amplify the cycli-

cality of U.S. employment due to TFP or demand shocks by between 32% and 40%,

depending on whether demand spillovers are present in the aggregate.

3.5.3 Lack of reallocation

Abstracting from the contribution of upstream propagation and demand externalities,

we find that for every additional year of durability in the consumer goods produced

in a commuting zone, its employment declines by 0.32% more when the slack in

the economy rises by one percentage point. Starting from an estimate for 0C of -

0.649, we have that one third of the effect is explained by the co-location of upstream

suppliers in the same commuting zones that host durables and one fifth is explained

by demand externalities. Our residual estimate with these adjustments is now below

the comparable industry-level /', but still close.

These computations suggest that workers laid-off from durable industries are not

reallocating to other tradable industries that are less cyclical and that are not affected

by the upstream propagation. To test this idea we estimate equation (3.5) but use the

log of employment in non-durable manufacturing industries as our dependent vari-

able. We present the results from this exercise in columns (5) and (6) of Table 3.6. In

column (5) we report our estimates without controlling for the upstream exposure of

these nondurable industries, and in column (6) we include the upstream exposure of

non-durable industries to durables at the commuting zone-level. In both columns, we

estimate a positive impact of durable cyclicality on non-durable employment, but the

estimated effect is economically small and not statistically significant. Notice that in

order to compare the coefficient with the impact on aggregate employment, we need

to scale it down by the average employment share of non-durable manufacturing,

about 8.5% in 1988. In line with our previous findings, we estimate that one of the

factors that keep these industries from expanding when durable industries shrink is

their input-output linkages to durables and the upstream propagation these generate.

However, even when we control for these linkages, we still find that even non-durable

industries that are not affected by demand externalities nor input-output linkages

fail to expand significantly when employment in durables, suppliers to durables, and

non-tradable services shrinks. Our point estimate in column (6) suggests that unaf-

fected nondurable industries only expand by about a tenth of the overall decline in
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employment, and this effect is not statistically significant. The lack of reallocation

explains why the decline in the demand for durables has a negative effect on overall

local employment comparable to our industry estimates, even after we control for

other sources of propagation.

These findings raise the question of why workers are not fully reallocating from

highly cyclical industries to less cyclical ones. One possibility is that, anticipating

that the shocks to durables and their suppliers are only temporary, workers do not

reallocate but remain "rest unemployed" until conditions improve. This is a hypothesis

that we are currently investigating using other sources of data.

3.6 Quantitative implications and remarks

Consumer demand for durable goods is highly pro-cyclical. We find that this cyclical-

ity has large implications for the volatility of U.S. aggregate employment. Consumer

durables, and the propagation mechanisms highlighted above, explain between 32%

and 40% of the business cycle volatility of aggregate employment. This effect can

be decomposed into: a direct increase in volatility due to the cyclicality of durable

industries of 10%, a subsequent effect through input-output linkages on suppliers to

durable industries of 22%, and a spillover effect through aggregate demand external-

ities of 8% that may or may not be present nationally depending on the room for

adjustment in monetary policy.

Much works remains to be done. We are currently analyzing the effect of consumer

durables on measures of payroll and establishment counts, to decompose the intensive

versus extensive margin of adjustment by firms. Moreover, the lack of reallocation of

workers to less cyclical tradable sectors is surprising. We find that reallocation forces

only mitigate up to 10% of the cyclicality of consumer durable employment, and plan

to investigate this further.
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Figure 3-1: Cyclical component of U.S. employment and its counterfactual behavior
if no U.S. region produced durables, nor supplied durable industries.
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Notes: This figure shows the cyclical component of U.S. non-farm private employment (in black cir-

cles), the cyclical component of the counterfactual employment absent industries producing consumer
durables (in blue hollow diamonds), and the cyclical component of the counterfactual employment
absent industries producing consumer durables and their upstream suppliers (in red squares) be-
tween 1988 and 2014. Series are expressed as log deviations from their trends, computed with the
Holdrick-Prescott filter. More details of the calculations of the counterfactuals in sections 3.4 and
3.5.1.
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Figure 3-2: Unemployment slack and output gap in the U.S over time.
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Notes: This figure plots yearly values between 1988 and 2015 for the unemployment slack in dark
blue and output gap in light red. The unemployment slack is defined as the difference between the
observed U.S. unemployment rate and the long-term NAIRU, and the output gap is defined as 100
x the difference between log of potential output and log of realized GDP. All data series are taken
from the Federal Reserve Bank of St. Louis Economic Data. Also plotted are business cycle peaks
(in dashed black) and troughs (in dashed blue) according to the NBER.

Figure 3-3: Average durability of goods and
by commuting zone in 1988.
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Notes: The map on the left shows the average durability of goods produced in each commuting
zone in 1988, with the convention that industries that do not produce consumer durables have a
durability of zero. The map on the right shows the upstream exposure of suppliers to consumer
durables by commuting zone in 1988. This is calculated using the Leontief inverse of the 1992 BEA
input-output table and the durability measure.
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Figure 3-4: Employment and its counterfactual behavior if no U.S. region produced
durables, there were no upstream propagation to industries in affected regions, or
there were no upstream propagation to industries in other regions. All series are
expressed in percent deviations from their 2007 level.
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Notes: This figure shows the observed U.S. non-farm private employment (in black circles), the
counterfactual employment absent industries producing consumer durables (in yellow triangles), the
counterfactual employment absent industries producing consumer durables and their upstream sup-
pliers in the same commuting zones (in blue hollow diamonds), and the counterfactual employment
absent industries producing consumer durables and all their upstream suppliers (in red squares)
between 1988 and 2014. More details of the calculations of the counterfactuals in sections 3.4 and
3.5.1.
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Table 3.1: Descriptive statistics of covariates at the commuting zone level.

Mean low Mean high Correlation Partial correlation
Mean durability durability durability durability

(1) (2) (3) (4) (5)

Share < 25 0.387 0.389 0.385 -0.005 -0.003
(0.005) (0.005)

Share 25-44 0.297 0.297 0.298 -0.002 0.004
(0.003) (0.003)

Share 45-64 0.189 0.186 0.191 0.008*** 0.001
(0.003) (0.003)

Share college 0.151 0.154 0.147 -0.019*** 0.011**
(0.006) (0.004)

Share high school 0.553 0.534 0.572 0.055*** -0.010
(0.014) (0.011)

Share hispanic 0.0583 0.0839 0.0327 -0.060** -0.007
(0.024) (0.007)

Share black 0.0730 0.0405 0.105 0.047*** -0.020
(0.018) (0.020)

Log population 11.48 10.89 12.08 0.803*** 0.410*
(0.251) (0.238)

Upstream exposure 0.464 0.368 0.560 0.257*** 0.065**
(0.018) (0.027)

Construction share 0.0465 0.0461 0.0469 -0.005** 0.001
(0.003) (0.003)

Commuting zones 722 361 361 722 722

Notes: Column (1) shows the mean of 1990 Census covariates at the commuting zone level, while columns (2) and (3) split the sample
between below- and above-median average durability. In column (4), each cell shows the coefficient, and standard error in parentheses
clustered at the state level, of a regression involving the 1990 census covariate on the average durability of each commuting zone in
1988. Cells in column (5) are defined as in column (4), but with each specification including a control for the share of manufacturing
industry employment in each commuting zone in 1988. *, and * denote statistical significance at the 1%, 5% and 10%
respectively.
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Table 3.2: Estimates at the industry level of the different response of durable indus-

tries to economic fluctuations.

INDUSTRY ESTIMATES FROM 1988 TO 2014

(1) (2) (3) (4) (5)

Panel A. Slack measured using unemployment.

-1.787*** -0.453*** -0.453*** -0.436*** -0.453***
Industry that produces durables x Slack in year (0.166) (0.093) (0.093) (0.095) (0.095)

Industry that produces durables x Yearly trend (0.060) (0.058) (0.057)

-3.976** -4.060
Industry in manufacture x Yearly trend-396* -40 -

(0.289) (0.318)

Manufacturing industry that produces nondurables 0.843

x Slack in year t (0.752)
Observations 12906 12906 12906 12906 12906

Number of industries 479 479 479 479 479

Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014
Panel B. Slack measured using output gap.

-1.048*** -0.278*** -0.278*** -0.274*** -0.278***
Industry that produces durables x Slack in year (0.096) (0.062) (0.062) (0.063) (0.063)

Industry that, produces durables x Yearly trend (0.059) (0.056) (0.056)

-3.976* -3.995*
Industry in manufacture x Yearly trend (3.9) (.302)

(0.289) (0.302)
Manufacturing industry that produces nondurables 0.200

x Slack in year t (0.430)

Observations 12906 12906 12906 12906 12906

Number of industries 479 479 479 479 470

Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014

Unreported covariates:
Industry and year effects / V I/

Construction x year effects V/ V V

Industry trends /

Notes: Dependent variable is log employment at the industry and year level. All specifications include a full set of industry and year fixad effects, as well a set of contruction

dummy-times-year fixed effects. Column (5) includes industry-specific time trends. In panel A slack is measured as the observed U.S. unemployment rate minus the natural

unemployment rate, whereas it is defined as the U.S. output gap in panel B. Robust standard errors in brackets are clustered at the industry level. and * denote

statistical significance at the 1%, 5% and 10% respectively.
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Table 3.3: Estimates at the commuting zone level of the different response of regions
that host durable industries to economic fluctuations.

COMMUTING ZONE ESTIMATES FROM 1988 TO 2014

(1) (2) (3) (4) (5) (6) (7)

Panel A. Slack measured using unemployment.

-1.977*** -1.013*** -1.013*** -0.870** -0.747*** -0.649*** -0.649***
Baseline share of durables x Slack in year 1 (0.416) (0.218) (0.218) (0.339) (0.185) (0.144) (0.147)

-0.439*** -0.116 -0.131 -0.121 0.063
Baseline share of durable x Yearly trend (0.092) (0.121) (0.118) (0.108) (0.081)
Baseline share of manufacture x Slack in -0.777

year t (1.154)
Baseline share of manufacture x Yearly -1.765- -1.683*** -1.696** -2.798***

trend (0.578) (0.589) (0.670) (0.447)
Observations 19494 19494 19494 19494 19494 19494 19494
Number of regions 722 722 722 722 722 722 722
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014

Panel B. Slack measured using output gap.

Baseline share of durables x Slack in year t -1.148*** -0.623-* -0.623*** -0.577*** -0.460*** -0.397*** -0.397***
(0.245) (0.147) (0.147) (0.214) (0.121) (0.093) (0.094)

-0.484*** -0.160 -0.165 -0.154 0.034
Baseline share of durables x Yearly trend (0.091) (0.120) (0.120) (0.107) (0.079)
Baseline share of manufacture x Slack in -0.250

year t (0.646)
Baseline share of manufacture x Yearly -1.765*** -1.740*** -1.696** -2.798***

trend (0.578) (0.585) (0.670) (0.447)
Observations 19494 19494 19494 19494 19494 19494 19494
Number of regions 722 722 722 722 722 722 722
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014
Unreported covariates:
Commuting zone and year effects
Share of construction x year effects V V
Census division x year effects V
Demographics x year effects
Commuting zone trends

Notes: Dependent variable is log employment at the commuting zone and year level. All specifications include a full set of commuting zone and year fixed effects, and columns (2) to
(7) include contruction share-times-year fixed effects. Columns (5) to (7) include fixed effects for the eight Census divisions interacted with year dummies, columns (6) and (7) include
commuting zone-level demographic controls interacted with year fixed effects, and column (7) adds controls for commuting zone-specific time trends. In panel A slack is measured as
the observed U.S. unemployment rate minus the natural unemployment rate, whereas it is defined as the U.S. output gap in panel B. Robust standard errors in brackets are clustered
at the state level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 3.4: Estimates at the commuting zone level of the different response of net

migration in regions that host durable industries to economic fluctuations.

NET MIGRATION RATE AT THE COMMUTING ZONE FROM 1988 TO 2014

(1) (2) (3) (4) (5) (6) (7)

Panel A. Slack measured using unmcnploynent.

-0.020 -0.082* -0.082* -0.074* -0.090... -0.033 -0.033
Baaeline share of durables x Slack in year (0.040) (0.041) (0.041) (0.040) (0.032) (0.029) (0.029)

-0.009 -0.007 -0.008 0.002 -0.002
Baseline sare of durables x Yearly trend (0.007) (0.008) (0.010) (0.007) (0.006)

Baseline share of manufacture x Slack in -0.042

year t (0.166)
Baseline share of manufacture x Yearly -0.010 -0.006 -0.012 0.020

trend (0.045) (0.055) (0.043) (0.039)

Observations 18050 18050 18050 18050 18050 18050 18050

Number of regions 722 722 722 722 722 722 722

Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014
Panel B. Slack neasured using output gap.

-0.013 -0.057* -0.057* -0.051* -0.062*** -0.026 -0.026
Baaeline share of durables x Slack in year (0.028) (0.029) (0.029) (0.027) (0.022) (0.021) (0.022)

-0.013* -0.011 -0.012 -0.002 -0.003
Baaeline sare of durables x Yearly trend (0.007) (0.009) (0.009) (0.007) (0.006)

Baseline share of manufacture x Slack in -0.031
year t (0.117)
Baseline share of manufacture x Yearly -0.010 -0.007 -0.012 0.020

trend (0.045) (0.050) (0.043) (0.039)

Observations 18050 18050 18050 18050 18050 18050 18050

Number of regions 722 722 722 722 722 722 722

Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014

Unreported covariates:
Commuting zone and year effects V

Share of construction x year effects V V V V

Census division x year effects
Demographics x year effects
Commuting zone trends

Notes: Dependent variable is log of net migration (population inflows minus outflows) at the commuting zone and year level. All specifications include a full set of conunuting zone
and year fixed effects, and columns (2) to (7) include contruction share-times-year fixed effects. Columns (5) to (7) include fixed effects for the eight Census divisions interacted with

year dummies, columns (6) and (7) include commuting zone-level demographic controls interacted with year fixed effects, and column (7) adds controls for commuting zone-specific time

trends. In panel A slack is measured as the observed U.S. unemployment rate minus the natural unemployment rate, whereas it is defined as the U.S. output gap in panel B. Robust

standard errors in brackets are clustered at the state level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Table 3.5: Estimates at the industry level of the different response of durable indus-
tries and their suppliers to economic fluctuations.

INDUSTRY ESTIMATES FROM 1988 TO 2014

(1) (2) (3) (4)

Panel A. Slack measured using unemployment.

Industry that produces durables x Slack in -0.521*** -0.524*** -0.521*** -0.490***
year t (0.096) (0.101) (0.102) (0.104)
Upstream propagation of durables x Slack -1.338*** -1.333*** -1.417*** -1.109***

in year t (0.177) (0.186) (0.262) (0.193)
Downstream propagation of durables x -0.249 -0.219

Slack in year t (1.823) (1.820)
Manufacturing industry that produces 0.367

nondurables x Slack in year t (0.632)
Observations 12906 12906 12906 10584
Number of industries 479 479 479 392
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014

Panel B. Slack measured using output gap.

Industry that produces durables x Slack in -0.320*** -0.324*** -0.323*** -0.302***
year t (0.064) (0.067) (0.068) (0.068)
Upstream propagation of durables x Slack -0.832*** -0.826*** -0.869*** -0.686***

in year t (0.121) (0.127) (0.168) (0.122)
Downstream propagation of durables x -0.307 -0.291

Slack in year t (1.148) (1.151)
Manufacturing industry that produces 0.187

nondurables x Slack in year t (0.402)
Observations 12906 12906 12906 10584
Number of industries 479 479 479 392
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014
Unreported covariates and sample:
Industry and year effects V/
Construction x year effects
Industry trends / //
Only manufacturing /

Notes: Dependent variable is log employment at the industry and year level. All specifications include a full set of industry and year
fixed effects, a set of construction dummies-times-year fixed effects, and industry-specific time trends. Column(4) restricts the analysis to
manufacturing industries. In panel A slack is measured as the observed U.S. unemployment rate minus the natural unemployment, rate,
whereas it is defined as the U.S. output gap in panel B. Robust standard errors in brackets are clustered at the industry level. * ** and
denote statistical significance at the 1%, 5% and 10% respectively.
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Table 3.6: Estimates at the commuting zone level of the negative spillovers created
by the decline in employment in the durable industry on other sectors.

COMMUTING ZONE ESTIMATES FROM 1988 TO 2014

TOTAL EMPLOYMENT NON-TRADABLE SERVICES NON-DURABLE MANUFACTURE

(1) (2) (3) (4) (5) (6)

Panel A. Slack measured using unemployment.

Baseline share of durables x Slack in -0.649*** -0.416*** -0.519* -0.520* 0.365 0.676
year t (0.147) (0.131) (0.265) (0.266) (0.773) (0.766)
Upstream propagation for all -1.089***

industries x Slack in year t (0.307)
Upstream propagation for -1.679***

non-durables x Slack in year t (0.494)
Upstream propagation for retail and -0.489

services x Slack in year t (2.761)
Observations 19494 19494 19494 19494 19494 19467
Number of regions 722 722 722 722 720 720
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014

Panel B. Slack measured using output gap.

Baseline share of durables x Slack in -0.397*** -0.280*** -0.387** -0.387** 0.427 0.619
year t (0.094) (0.088) (0.172) (0.173) (0.533) (0.533)
Upstream propagation for all -0.547***

industries x Slack in year t (0.202)
Upstream propagation for -1.033***

non-durables x Slack in year t (0.356)
Upstream propagation for retail and 0.555

services x Slack in year t (1.781)
Observations 19494 19494 19494 19494 19494 19467
Number of regions 722 722 722 722 720 720
Years in panel 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014 1988-2014
Unreported covariates:
Commuting zone and year effects
Share of construction x year effects V I V V /
Census division x year effects I V V
Demographics x year effects / I/
Connuting zone trends V $ V

Notes: Dependent variable is log of total employment at the commuting zone and year level in columns (1) and (2), log of employment in non-tradable
services at the commuting zone and year level in columns (3) and (4), and log of employment in non-durable manufacturing industries in columns (5) and
(6). All specifications include a full set of commuting zone and year fixed effects, a set of construction share-times-year fixed effects, census division as well as
commuting zone demographic controls interacted with year dummies, and commuting zone-specific time trends. In panel A slack is measured as the observed
U.S. unemployment rate minus the natural unemployment rate, whereas it is defined as the U.S. output gap in panel B. Robust standard errors in brackets are
clustered at the state level. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.
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Appendix A

Appendices for Chapter 1

A.1 Variable construction

In this section I discuss the construction of variables and the data used in more detail.

I follow the past literature closely in constructing the static spillover variables, in order

to keep my estimates comparable.

A.1.1 Static spillovers

In subsection 1.2.4 I explain how to construct the CitSpill and SicSpill spillover

measures. I discuss the construction of these variables in more detail here, and define

other static spillover measures introduced by Schnitzer and Watzinger (2015), Jaffe

(1986) and Bloom et al. (2013). I start with the basic static spillover measures and

then define more sophisticated extensions..

All the static spillover measures share the same underlying construction logic.

They correspond to a pool, or weighted sum of other firms' contemporaneous R&D

stocks. That is, the spillovers for firm i at time t is defined as Spilli = joi wijGjt,

where Gt is the R&D stock of firm j at time t and wij is a measure of proximity

between firms i and j representing the likelihood that firm j's R&D activity spills

over unto firm i's innovative activity. The difference between each spillover measure

lies thus in the weighting or proximity matrix used to construct it.

One measure used to quantify static knowledge spillovers is CitSpill, in which the

proximity between firm i and j is defined according to equation 1.7. The idea for this

proximity matrix is that patents citing other patents directly build upon them. As

a result, the degree to which firm i's innovation is inspired by firm j's will increase
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with its share of citations to j's patents. This follows Azoulay et al. (2015) and

Schnitzer and Watzinger (2015). This matrix is however different from Schnitzer and

Watzinger (2015)'s citation proximity matrix in that I normalize by the total amount

of outcitations rather than by the patent count. In line with the construction of the

dynamic knowledge proximity matrix, I believe it is important to use citation shares

per patent rather than citation counts in order to keep the innovation production

function with constant returns to scale in terms of its cumulative nature.

In order to build CitSpill, I use the linked patent-firm data and consider all

patents filed between 1984 and 2001. The regression analysis is carried out between

1990 and 2001, and I restrict the analysis with patent data to end in 2001 to avoid

attrition concerns. In order to set the starting date, I consider the average time it

takes for a patent to be granted after application (2.14 years in the raw patent data)

and leave up to 3 years for citations to accrue. I thus start considering patent citations

since 1984. The analysis is however robust to modifications in the starting date.

For this citation proximity measure, I also construct an instrument to account for

the endogeneity in the citation decision. For the 340 firms in my sample, I calculate

the average citation propensity between 1976 and 1984. I then regress the citation

proximity between 1984 and 2001 on the 1976-1984 propensity together with citing

and cited firm fixed effects. I use the resulting predicted proximity PredCit as in-

strument for the actual proximity CIT, and combine it with the tax-predicted R&D

to construct an instrument for the static knowledge spillovers CitSpill.

I also use the technological proximity in order to build static knowledge spillovers

TechSpill. It uses the positioning of each firm in the "technology space", and calcu-

lates the correlation between firms' position. The position of a given firm in terms

of technology is given by a 426x1 vector T indicating the share of patents filed by

that firm in each of 426 technology classes between 1970 and 1999. The technological

proximity between firms i and j is then defined as

TT'
TECHij = I 1 . (A.1)

(T i') '1(T j) 1

This proximity measure was first introduced in Jaffe (1986), and defines a sym-

metric proximity measure. Companies active in very different technologies will have

a proximity close to 0, while firms working in similar fields will see their proximity

increase.

158

P FIRM M111111111 1111111 , ___-111fl.-- "I, ."W"I"P,



In terms of static business stealing spillovers, I use the measure proposed by Bloom

et al. (2013). Similar to Jaffe (1986)'s technological proximity, they use the position

of a given firm in the product market space to define its proximity to other firms.

That position is defined by the 597x1 vector Si indicating the average share of sales

of firm i in each of four digit SIC-code industry. The breakdown of sales by four digit

industry is available for firms in the Compustat Business Segments database from

1993 onward, and so the average over 1993-2001 is used. Once the product market

position vectors are defined, the proximity between firm i and j is calculated as in

equation 1.9 as the uncentered correlation between the vectors. Or in other words,

the cosine of the angle between the vectors.

One drawback of the Tech and Sic distance measures is that they assume that

spillovers only occur within narrowly defined technological classes or industries, and

they rule out spillovers between classes or industries. In order to relax this assump-

tion, Bloom et al. (2013) introduce a Mahalanobis distance. This distance takes

into account how often different technology classes (respectively, industries) coincide

within a given firm's technological (product market) vector in order to define dis-

tances between classes (industries). These distances are then used to further weight

the correlation between technological (product market) vectors. A detailed derivation

can be found in Bloom et al. (2013). In order to ensure comparability of my esti-

mates with previous literature, I use the Tech, Sic, MahTech and MahSic proximity

matrices calculated by Bloom et al. (2013).1

A final extension to Jaffe (1986)'s technological proximity measure is proposed

by Schnitzer and Watzinger (2015) and He (2015). It is similar to the Mahalanobis

distance defined above in relaxing the assumption of spillovers occurring only within

technology classes. It relaxes this assumption by defining an asymmetric, non-binary

distance measure based on the citation flow between classes. That is, the proximity

between technological classes A and B is defined as

#CitationsA->B (A.2)
mAB =- -2

#OutcitationsA

The (426,426) weighting matrix M is then used the same way as the Mahalanobis

distance to construct an augmented proximity CitTech. That is, defining a normal-

ized (426, N) matrix t = [TN/(T1Tj)1 /2 , Tj/(T2Tj)1/2 , ... , TJ/(TNTK) 1/ 21, we have

1I would like to thank the authors for sharing their data.
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the (N, N) matrix

CitTech = T'Mi. (A.3)

Figures A-1, A-2 and A-3 plot the pairwise values of three different proximity

measures (Sic, Tec, and Cit) for the firms in my sample. They show that there is

ample variation in all three spaces to separate different spillover types. They also show

that firms are less likely to be classified as close in the citation space. Within directed

pairs of firms2 with a strictly positive TEC proximity, about 90% have Cit = 0. As a

result, Cit is a much more restricted measure of the pool of R&D likely to spill over.

A.1.2 Dynamic spillovers

The construction of the dynamic spillover measure DynSpill is discussed in subsec-

tion 1.2.3. The main differences between the dynamic measure and the static ones

pertain to the increased complexity of the proximity matrix, and the use of R&D

intensity instead of R&D stocks.3 The proximity matrix for the dynamic measure is

extensively discussed in subsection 1.2.3. Here, I discuss the convenience of combining

the proximity weights with R&D intensity to construct spillover metrics.

Static spillover measures represent complementarities or business stealing effects

between the R&D efforts of different firms. In the case of static knowledge spillovers

for example, the spillovers accrue with the direct inclusion of firm j's R&D effort in

firm i idea production function, as marked in the system of equations 1.1. However,

dynamic spillovers of R&D accrue through the initial production of knowledge. That

is, past R&D creates ideas that get codified as patents. This codified knowledge then

is diffused to subsequent innovators, who use it to produce new ideas. Therefore,

in order to measure dynamic R&D spillovers, they have to originate through initial

innovation production. That is, larger R&D efforts in the past should result in the

production of higher-quality ideas. 4 Building upon these originally higher-quality

ideas then results in increased subsequent idea production (either in terms of quantity

or quality).

Thus, in order for R&D to result in dynamic spillovers, it must first have an effect

2 Cit is asymmetric, whereas Tec is symmetric.
3 R&D intensity is R&D stock normalized by a measure of firm size, usually total assets.
4Where quality of ideas is understood as "the magnitude of inventive output associated with

them" (Griliches, 1990).
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on initial idea production. In Table A.1, I estimate OLS regressions of innovative

output on innovation production function inputs such as R&D, at the firm-year level.

I find that R&D stock is positively associated to the average citation count per patent

granted only when controlling also for the size of the firm. That is, higher R&D in-

tensive firm-years are associated to higher quality of innovative output, whereas the

relationship with R&D stock is tenuous when not controlling for firm size. Because of

this relation, and dynamic spillovers conceptially accruing through the initial produc-

tion of higher-quality innovation, I use R&D intensity rather than stock to construct

spillover measures.

Moreover, in unreported regressions I also find that other normalized measures

of R&D spending, such as R&D stock by patent filed, do not correlate with average

patent quality after controlling for firm and year fixed effects. This could be consistent

with research-intensive firms working on a number of research lines, with the amount

of lines in each firm increasing with firm size. Within each research line, higher R&D

effort leads to both more and better innovations. As a result, higher R&D intensity

in terms of R&D over assets (firm size) will lead to higher R&D spending within each

research line, and thus to higher innovation output. Meanwhile, measures such as

R&D over patents will not be indicative of the quantity and quality of innovative

output.

A.2 Instruments

In this section, I discuss the instrumental variable identification strategy, with par-

ticular emphasis on the construction of the instrumental variables, and the necessary

assumptions for the exclusion restriction to hold.

A.2.1 Tax instrument

In order to instrument endogenous R&D spending decisions, I use tax-induced shocks

to the supply-side user cost of corporate R&D. This discussion follows Bloom et al.

(2013) closely. The Hall-Jorgenson formula for the user cost of R&D induced by

corporate income taxes and tax credits is

Pit = I-Dit [+6 - Apt], (A.4)
1 - 'Tit IPt-1 _
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where Dit is the discounted value of R&D tax credits, Tsit is the corporate income

tax rate that includes a federal as well as a state si component, It is the real interest

rate, J is the depreciation rate of R&D capital, and pt is the R&D price. Since the

terms in the bracket do not vary at the firm level, I focus on the first ratio, or the

tax component of the cost of R&D capital p = _-D.

The variation in pT is decomposed in two components. The first one, pF, uses

federal variation in corporate income taxes and R&D tax credits. The second, p8 , uses

state-level variation in tax incentives. The first component is constructed following

Hall (1992) and uses time series variation in the corporate income tax as well as in the

"Research and Experimentation Tax Credit". This tax credit was introduced in 1981

and, after expiring in 1985, has been extended fifteen times. It provides a tax credit

for 20% of qualified R&D expenses above a firm-specific base.5 The definition of this

base has varied across time. Between 1981 and 1990, the base was the maximum

of the previous three years' R&D expenses (with a minimum of 50% of the current

R&D level). From 1990 onward, the base was set as the average of the R&D to

sales ratio between 1984 and 1988 (with a maximum of 16%) multiplied by current

sales. Firms incorporating after 1983, or with less than three years of qualified R&D

expenditures and revenue between 1984 and 1988, have a 3% base ratio for the first

five years and modified subsequently. On top of the firm-specific R&D bases, the tax

credit interacts with firm-specific income taxes. If the credit exceeds taxes, it must

be carried forward. With discounting, this reduces its value for firms with small tax

bills. The tax credit rates and bases therefore also interact with corporate income

tax rates and deductions, leading to firm-specific variation.

The second component uses state-level tax credits, recapture rules, and corporate

income tax rates. State-level R&D tax credits exhibit large variation both in the

time-series and in the cross-section, with the first tax credit being introduced by

Minnesota in 1982 and 28 other states introducing credits by 2001. Tax credit rates

vary from 2.5% in Minnesota in 1992 to 20% in Arizona and Hawaii in 2000, and

there are multiple changes in credit rates per state (e.g., California changed their rate

four times between 1986 and 2000). Firms will be differentially affected by state-level

R&D tax incentives depending on the state in which their R&D activity is located,

as state-level credits are meant for R&D carried out in a given state, and can be

used to offset state corporation taxes. Since state tax liabilities on total firm profits

5The rate was 25% between 1981 and 1985, and 0 in 1995 when the tax credit lapsed.
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are apportioned using combinations of the distribution of firm sales, employment and

property, any firm with R&D labs in a given state is also likely to be liable for state

income taxes. Therefore, patenting firms' inventor location appears to provide a good

proxy for eligibility for state tax credits. Using the address of each patent's inventor,

each patent is allocated to a state. Oits, the exposure of firm i at time t to state s, is

then the 10-year moving average of the yearly share of patents filed by firm i in state

s. The state component of the tax price of R&D is then ps = ES Oitsp S

The endogenous R&D expenses are logged and projected on the two components

of the tax instrument for the 340 firms in the final sample between 1980 and 2001,

and the results are shown in Table 1.3. Column (1) shows the basic results, column

(2) adds year fixed effects, column (3) additionally includes firm fixed effects, and

column (4) adds industry-times-year fixed effects. The instruments have considerable

power in all specifications, with all the F-statistics above 28. Specification (3) is used

to construct a predicted R&D variable which is stocked into RDS ax using perpetual

inventory methods as in the true R&D case. This predicted R&D stock is then used

to instrument for endogenous R&D stocks and to construct the spillover instrumental

variables.

The predictive power of the tax-induced supply-side cost of R&D is strongly rooted

in the empirical literature. Surveys of the literature such as Hall and Van Reenen

(2000), or more recently Becker (2015), find that elasticities of R&D to their tax-

induced price are estimated to be broadly around unity. Wilson (2009), from which

the state tax data originates, estimates in-state elasticity of aggregate R&D to be

between -1.2 and -2.2, whereas the elasticity of in-state R&D to neighboring states'

tax-induced prices is even larger in magnitude, reaching 4.4 in the long-run. In more

recent work using a regression-discontinuity design in the UK, Dechezlepretre et al.

(2016) find an elasticity of about -2.6. The estimates in Table 1.3 are therefore well

within the range found in the prior literature.

One concern is that changes in R&D tax credits might be endogenous, with states

responding to falls in R&D levels or economic activity by increasing tax credits. Alle-

viating this concern are the four following checks. First, I experiment with lagging and

leading the tax prices one period. I find that lagged tax prices affect R&D expenses

in qualitatively similar ways as current tax prices, but lead tax prices lose predictive

power, with the coefficient on federal tax prices becoming insignificant. This is in-
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dicative of R&D expenses responding to taxes and not vice-versa. Second, the state

tax prices exhibit significant variation both in the time-series and in the cross-section.

States have become more generous over time in terms of their tax credits, with Min-

nesota introducing the first credit in 1982 and 28 other state introducing a credit by

2001. The cross-sectional variation in rates is large relative to their mean and average

growth rate, with state tax credits ranging between 2.5% and 20%. Moreover, there

is also within-state variation in rates after introduction, with for example California

changing their rate three additional times after its introduction in 1986. Third, the

level and timing of state tax credits do not seem to be correlated with state-level

observables after controlling for state and year fixed effects. Chirinko and Wilson

(2008, 2013) find that aggregate variables such as the federal tax credit rate have

explanatory power on state corporate tax credits,' but not local economic or political

observables. Likewise, Bloom et al. (2013) do not find any predictive power of lagged

state-level R&D expenditures or GDP per capita on current tax credits. This may

reflect the delays in passing regulation changes through state legislatures, and the

fact that the costs of corporate tax credits are largely small so that their adoption

and levels does not seem driven by budget concerns.

A.2.2 Network instrument

I also take into account the endogenous network formation, that may be driven by

better researchers both producing knowledge more efficiently and identifying and cit-

ing higher-quality prior art. As a result, both the dynamic spillover measure and the

static citation spillover measure will be endogenous. I instrument the current citation

network between firm-year nodes using the past network structure. In particular, I

use the past 1976-1984 network to predict the subsequent 1987-2001 network. Within

the 715 firms originally present in the full network for which the business stealing

proximity measures can also be constructed, 340 of them are found to be originating

citations (and thus at the receiving end of knowledge flows) in both past and subse-

quent network. In terms of chosing the cut-off years 1984 and 1987, three forces are

at play. First, I want to include as many years as possible in the subsequent network

in order to carry out the empirical analysis on a panel with a long time dimension, as

well as leave some time for patents to accumulate citations. Second, I want to include

6The possible influence of aggregate variables or shocks is controlled for in the regressions using
the year fixed effects, and the more flexible industry-times-year dummies.
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as many years as possible in the past network to obtain a more precise estimate of

the citation propensity between firms to predict the subsequent network structure.

Third, I want to leave a large enough gap between the pre-period network and the

current network, to ensure that the exclusion restriction holds.

The logic for using this past network structure as an instrument is as follows. The

structure of the subsequent network, in terms of citations between firms i and j and

the gap between years t - t', that is predicted by the past network citation propen-

sity will most likely be a reflexion of an underlying firm-specific culture or strategy

in terms of its absorptive capacity of outside knowledge. Because it is predicted by

citation patterns up to 25 years in the past, it is likely to reflect constancy in institu-

tional, structural, or cultural aspects affecting the absorptive capacity of firms. For

a particular example, Lim (2009)'s analysis of the copper interconnect technology for

semiconductor chips exposes clearly that the firms involved in the development and

diffusion of this technology had very different and clearly-defined strategies in place

to produce and absorb knowledge, involving different ways to manage internal R&D

and external links. IBM's disciplinary strategy involved carrying out very early stage

exploratory R&D in-house by hiring scientists and developing ties with the academic

community. Meanwhile, Motorola's domain specific strategy was to seek solutions to

specific technical problems with focused R&D, including by funding external R&D

in specific areas. As a result of these firm-specific strategies, Motorola will have a

tendency to build on technology created by IBM, albeit with a lag, and its cita-

tion patterns incorporate that information. In order to account for the heterogeneity

across firms, that .is the firm-specific time-invariant culture or strategy, I use firm

fixed effects in all specifications. Conditional on firm fixed effects, I therefore expect

the exclusion restriction to hold: the past network instrument will be uncorrelated

with the error term.

A.3 Analytical framework

In the first subsection of this appendix, I examine the consequences of a model of

competition and innovation production between firms, in order to extract predictions

for the empirical results on the R&D spillovers. In the second subsection, I derive

the expressions for the private and the social returns to R&D as a function of the

parameters of interest in the empirical section. Finally, I derive the implications of
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the private and social returns regarding the optimal provision of R&D relative to the

decentralized level.

A.3.1 Cumulative innovation production model

I study the implications for a given firm of an innovation production function in

which the production of new ideas results from three inputs, R&D effort by the firm

itself, R&D effort by technological neighbors and past innovation on which to build.

I consider a dynamic game of two periods, each consisting of two stages. In each

period, firms decide on the level of their R&D effort in order to produce knowledge

in the first stage. In the second stage, with a given knowledge stock, firms compete

in the product market and I assume a pure strategy Nash equilibrium exists. Firms

decide on a variable x in the second stage, where x can represent prices or quantities,

conditional on their knowledge level k. In the first stage, k is produced using own and

spillover R&D r, as well as existing foundational innovation stock S. In the second

period, the previous two-stage game is repeated with an updated stock of foundational

innovation on which to build S'. In order to keep the model simple and tractable, I

consider three firms labeled 0, r and m: firms 0 and T are technological neighbors,

whereas firms 0 and m compete in the product market. Likewise, I only consider

dynamic linkages between periods through the stock of foundational innovation S,

which accrues with each new quantum of knowledge created. This model is based

on Bloom et al. (2013), but deviates in two main respects. First, it adds a dynamic

dimension to account for dynamic linkages in the firms' R&D decisions across time.

Second, it considers a more complex innovation production function incorporating

past innovations as an input. The timing of the model is shown in Figure A-4.

In each of the second stages, and for a given level of knowledge k, the deci-

sion variables x only affect profits for that given period. The second stages of

the game can thus be solved as in a static game, and we can abstract from the

period subscripts for now. Let firm O's profit function in each second stage be

7r0 (x0 , xm, k0 ), with ro concave and increasing in k0 . The interpretation for this

profit function is that firms 0 and m compete in x in the product market, and

firm 0 has a knowledge level k0 that affects its profits positively through e.g. in-

creased productivity (i.e. decreased production costs), or increased market power,

or reduced elasticity of residual demand. The derivative with respect to x 0 is am-

biguous (depending for example on whether x represents prices or quantities), but
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we have sign(7r1 ) = -sign(7r 2 ), where the subscripts refer to the partial derivatives

with respect to each argument. That is, sign (5) = sign ( If the firms

are symmetric in their profit function, the best response for firms 0 and m is given

by x0 * = argmaxxoir(x 0, Xm, k0 ) and xm* = argmaxxmir(xm, xO, kin). Solving for the

Nash equilibrium yields x0* = f0 (ko, km) and xm * = fm (k m , k0 ). We can thus write

10 (k0 , km) = 7r(xo*, xm*, k0 ), with 110 increasing in k0 . If there is no strategic inter-

action in the product market between 0 and m, then H1 will not depend on km. I

assume that HO is non-increasing in km, and concave. 7

In each of the first stages, let the knowledge production function be k0 = #(r', rT, S),

where r0 is the R&D spending of firm 0, r' is R&D spending by its technological

neighbor i, and S is the stock of existing knowledge. I assume that the innovation

production function # is common to all firms and is non-decreasing and concave in its

arguments. Therefore, knowledge spillovers, both static and dynamic, are positive.

Let us assume that the existing innovation stock S evolves as new research creates new

ideas. Therefore, the innovation stock in period two will be given by S' = /(r0 , rr, ),

where 4 is increasing and concave in all its arguments. In the second period, firm 0

thus solves

maxoV = H (#(r0, rT, S'), k") - ro. (A.5)

The FOC that pins down the optimal level of R&D for firm 0 in the second period

is thus H11 = 1 at the equilibrium levels. In the first period, the maximization

problem for firm 0 is more complex, as it includes both the influence of R&D on

immediate profits and on future profits through its effect on S':

maxo V1
0 + 6V1 = H ((rI , r, ), k") - r [ + [1 (#(ro, r', b(r, r7, S)), km) - r].

(A.6)

The FOC with respect to ro is now H11 + H 1# 301 = 1 at the equilibrium levels

There is now an extra term taking into account the added benefit of carrying

out research in period 1 because of it increasing the foundational knowledge base S'

available for period 2. In order to analyze how exogenous shifts in the R&D spending

by neighbors (T and m) affect outcomes for firm 0 we draw comparative statics in

7This assumption is reasonable unless innovation by m yields such large value creation through
market expansion that it actually helps competitors. Bloom et al. (2013) show that this assumption
is reasonable empirically.
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period two. Regarding firm O's stock of knowledge and its value, we find that

akk0
akT = # 2 > 0, (A.7)

Oak
Or2 =0 , (A.8)
Orm

akO= 0302 > 0, (A.9)

k= #301 0, (A.10)
aro

= 

2 H102 >- 0, (A. 11)

aV0*
r2

2=f 12#1 <0. (A.12)
arm

012*

= 11 05 30 2 > 0, (A.13)
Orl

Or0 = 111 0301 -> 0, (A.14)

As shown above, the predictions of the baseline model with respect to knowledge

spillovers are qualitatively similar irrespective of the dynamic or static nature of those

spillovers. Both spillovers accruing from own past R&D and those from technological

neighbors' past R&D should have a positive in both firm knowledge and profit levels.

Likewise, the ratio between the effect of own and others' dynamic spillovers will

be equal to 01/02 for both sets of outcomes. The predictions of the model are

summarized in Table 1.2, under the assumptions of positive technology spillovers and

strategic complementarity between the product market competitors' knowledge stock

ko and km. The only difference in predictions on the effect of spillovers on knowledge

stock and market value occurs for the business stealing spillovers, that are supposed

to affect market value but not knowledge capital. As I discuss in section 1.4, in my

empirical analysis I can unfortunately not cleanly separate effects of spillovers through

prices and through "physical quantity" productivity.8 I therefore do not attempt to

8See Syverson (2011) for an extensive discussion on physical quantity productivity measures and
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test this differential prediction in my empirical specifications.

A.3.2 Computing private and social returns without amplifi-

cation

In this appendix, I show how to derive the equations for the private and the social

returns to R&D, abstracting for now from R&D amplification mechanisms.' I define

the marginal social returns to R&D of firm i at time t (MSRt) as the marginal

increase in aggregate output due to a marginal increase in the R&D stock of firm i

at time t. Likewise, the marginal private returns to R&D of firm i at time t (MPRjt)

are defined as the marginal increase in firm i's output due to a marginal increase in

its R&D stock at time t. Because of the inherent dynamism of the spillovers involved,

I will consider as a measure of output the net present value of all current and future

output (that is, at times t' > t), discounted at rate r. Therefore, we have

d Y,+r()
MPRit = (A.15)

dRDSu '

d 0Y?
MSRj= dRDS (A.16)

where Yt = j Yt is aggregate output at time t and RDS is R&D stock. From my

empirical specification, I take the following output equation:

In Yit = ,qrs In RDSit + q5dyn In E Dynjtjt1RDSgt

injtt i(A.17)
+ Ot In EZCitij RDSjt + Osic InE Sicij RDSj + 55XX.

Let us define the N*T vectors Y and RDS of all the Yjt and RDSjt terms. In order

to have a linear relationship between log-output and log-R&D stock, I take a first-

order expansion of the three spillover terms In E.,,< Di 3 RDSjt, in terms of In RDS

around a point In RDS. That is, for a function fit(RDS) = In Ej,< DijRDSj,,

we have

revenue-based productivity.
9These amplification mechanisms would occur through the effect of the spillover terms on the

R&D investment decisions of the firms, as in equation 1.16.
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fuRD )= i + E bij, In RDSj, , ( A.18 )
j,t' t

where b' D=tj lRDSOt,
it =ZE 3,t <tt"<t k~tRS

and a D = In DZ1 ,RD<S -DI,,t Ds, I n RDS00.

Therefore, and denoting At = #dynadyn + itact + #$ica"', we can write the rela-

tionship between output and R&D stock as

In Yit = A + rds in RDSit + pdyn Z b Dyn In RDSj,itjt'
jtt(A.19)

+ 4ci E bS * In RDS t + Osic E b in RDSjt + $5X,.
i~jhi

In fact, we can even separate the dynamic knowledge spillover term into intra and

between spillovers, as in subsection 1.7.1. In that case, the marginal private returns

of R&D are then

d [ Yit(1+r) Y di n
MPRit = dRDS - (1 +r)- RDS d In RDS' (A.20)

where we have d InYt+- = Or, if r= 0 and d - = bintrabna for T > 0. Let usd In RDSit d dIn RDSit it+-r 0 etu
define = E=0  1 bintr If we assume that all firm-years have the same citation

patterns with each other and their past selves,10 then 6i = 6' does not depend on the

firm nor time considered. Moreover, if we assume that all firms are also symmetric

and equal in terms of their baseline output Y and R&D stock levels RDS, we then

have that b inl, is just the share of citations within firm i and between times t + r

and t, over the share of intra-citations (within i) from it + T. The term 6' is therefore

the discounted, weighted by the within-firm citation shares for each time gap T, of

the unitary constant. We then have

Y
MPRt =RD (#rds + J'intra). (A.21)

RDS
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As for the marginal social returns, the process is similar but now considering the

output of all the firms involved

00 00

MSRjt = d [7?=o Zj 1it T I1=r E _ - Yjt. dlnYjt . (A.22)
dRDSit ZO(1 + r)y . RDSit d In RDSt

If we assume again that all proximities between firms are the same,11 and that the

firms are of the same size in terms of baseline output and R&D stock levels, we have

Y
MSRit = R (qrds + /cit + Osic + 60dyn), (A.23)

RDS

where 6 is similar to 3' above, but using all the dynamic (intra and between) citation

patterns Dyn.

In terms of elasticities, we have that the percentage increase in firm i's own output

relative to a percentage increase in own R&D stock is qrd + f'#intra. Assuming

symmetric firms, the elasticity of aggregate output to firm i's R&D is -(#rds + #cit +
#sic + 6

0dyn). Finally, if we are instead interested in how output changes with a

marginal change in R&D expenditures, rather than stock, we have to take into account

the durable impact of investment on R&D stock. Therefore, if we assume that R&D

depreciates at a 15% rate and using a discount rate of 6%, we should multiply the

previous expressions by about 5.

A.3.3 Optimal provision of R&D

Once we have estimates for the marginal private and social returns to R&D, the

question we move to is what the implications are with respect to the optimal provision

of corporate R&D investment in the economy. For this, let us assume that firms

can invest in R&D r at a constant marginal cost c, which represents the user cost

of R&D investment." R&D increases profits in the product market ir(r), through

for example reductions in the costs of production. In this case, the firm solves for

Maxr7r(r) - cr. As discussed in appendix A.2.1 and section 1.7.2, we find that in

general the relationship between corporate R&D expenditures r and the tax-induced

"That is, Sicij = Sic, Citij = Cit, and Dynit = Dynt/-t.
12 Remember that the user cost of R&D investment is affected among others by the corporate

income taxes and R&D tax credits, but also by the real interest rate and the depreciation rate of

R&D capital.
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user cost of capital c is unitary iso-elastic, that is In r = In a - In c. This relationship

can be rationalized in the framework above with a profit function ir(r) = a In r + b.

If we abstract for now from consumer surplus, the difference between the socially

optimal level of R&D investment by firm i and the private optimum is that the social

optimum also takes into account the effect of ri on all the other firms' profits. That is,

the social optimum solves Ej (re) = c while the private optimum solves ( (r*) =

c. If we assume that the relationship between 7ri and all the R&D investments rj

is given by ri(r) = X, aij lnrj + bi, inspired by the relationship in the previous

paragraph, and we also assume that the marginal increases in profits are proportional

to the marginal increases in output,1 3 then we would have that

(r) _MPR a
r - M - (A.24)
21-(r) MS11, Ej aji

However, at the private and social optimal levels r* and rs we have >jE j (re) -

(r*) = c." That is, = . Therefore, the ratio between the socially optimal

level of R&D and the privately optimal will be equal to the ratio between the MSRr!

and the MPR.

This analysis does not fully take into account that the social planner also cares

about consumer surplus, rather than only about profits. Accounting for consumer

surplus would increase the under-provision of R&D in the decentralized economy. Let

us assume that the marginal increases in consumer surplus across product markets

are proportional to the increases in output, and that we have an estimate of the ratio

7 in a given market between the privately optimal level of R&D (only accounting

for profits) and the socially optimal level, accounting for total surplus. In that case,

the ratio between the socially optimal level of R&D accounting for total surplus and

spillovers to the private equilibrium level will be equal to Y M , proportional to the

ratio between MSR and MPR.

13 This assumption would hold, for example, if the mark-ups are constant and equal for all firms.
1
4 This assumes that the user cost of capital c is the same for the social and the private returns

calculation. This is likely to be the case for the decentralized economy without distortionary taxes,
that is if c is not affected by taxes. Since the tax treatment does affect the user cost c, the observed
level of R&D is likely to be different than the decentralized optimum.
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A.4 Using alternative proximity measures

In section 1.4 1 analyze the effect of including both dynamic and static knowledge

spillovers, as well as business stealing, in the empirical analysis. I run here an ex-

tended amount of specifications to account for the various possibilities in constructing

static knowledge and business stealing spillover measures. Results are shown in Ta-

bles A.2 and A.3, for the productivity and market value equations respectively. For

the productivity equation in Table A.2, the coefficients on dynamic spillovers are

remarkably robust across all specifications. Columns (1), (2) and (7) use CitSpill

as a measure of static knowledge spillovers and SicSpill for static business stealing

spillovers. These regressions are the same as those reported in Table 1.5, which are

discussed in subsection 1.4.2.

I also use TechSpill and MahTechSpill as measures of static knowledge spillovers.15

These measures yield large and significant coefficients in the first OLS specification,

which are robust to including three digit industry-times-year dummies. The 2SLS

specification, which takes into account the endogeneity in the R&D decisions due

for example to correlated shocks, yields insignificant coefficients for these two mea-

sures however. Among the firms in my sample, it thus seems that the Jaffe (1986)

and extended Mahalanobis technology measures may not be appropriate to measure

knowledge spillovers. As discussed in subsection A.1.1, and particularly compared to

CitSpill, technological space proximities may be too lax in their definition of which

R&D is likely to spill over.

In terms of business stealing, the evidence is not strong. Although all of the point

estimates in the table are negative, only specification (7) leads to a statistically sig-

nificant coefficient. In the market value equation in Table A.3, the coefficients on

dynamic spillovers are again robust and statistically significant across specifications.

As for the static spillover coefficients, only CitSpill together with SicSpill seem to

pick up statistically significant spillovers. Nonetheless, it is important to remark that

in general I cannot reject the significant results in Bloom et al. (2013) for the static

spillovers in my sample.

There are a number of reasons for the departures between the results in Bloom

et al. (2013) and those discussed here. First, I only analyze about half of their firms in

my sample -generally larger and longer-lived ones- as I restrict my analysis to firms

"Columns (5), (6) and (9) include MahSicSpill rather than SicSpill.
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also observed in the pre-period network. I also consider only years starting in 1990

rather than 1985 as they do. These two factors drive most of the change in the loss

of significance in business stealing effects. Second, I use different definitions of the

market-to-book value than they do. I base myself on most of the finance literature

in doing so1 6 and I believe my measures to be more relevant for the task at hand.

In order to ensure that my market value results are robust and not driven solely by

the definition of the market-to-book ratio, I carry out robustness exercises using an

alternative definition. In particular, I also follow Barrot et al. (2016), Rauh and Sufi

(2012), Rhodes-Kropf et al. (2005), and Warusawitharana and Whited (2016) among

others, in defining market value as AT + (PRCCF * CSHO) - CEQ - TXDB and

dividing it by total assets AT to obtain the market-to-book ratio. Dynamic spillovers

are robust across all three definitions of the market-to-book ratio. Third, I allow

for more flexible correlation in the error terms, both cross-sectionally and serially. I

cluster two-way at the firm and at the year level in all my specifications. Fourth, I

include a flexible set of two digit SIC-code industry-times-year dummies to account

for common or correlated shocks. Fifth, there a number of small variable construction

details that vary between both our papers. Although each of these decisions is not

likely to be significant, it can lead to larger effects in the end. Examples include the

fact that I winsorize all my data at the 1" and 9 9th percentile to ensure that results

are not driven by outliers; or that I separate ln(R&D stock/AT) into ln(R&D stock)

and ln(AT) in the value equations in order to avoid biasing estimators due to dividing

the RHS and LHS by the same variable.

A.5 Additional results

I show here more detailed results on the heterogeneity of dynamic spillovers within

and across industrial sectors and technology classes.

A.5.1 Dynamic spillovers within and between industries

In section 1.5, I examine the heterogeneity in dynamic spillovers across industries.

Here I show how spillovers vary depending on whether they accrue within or between

industries. That is, whether the emitting and the receiving firm are in the same

16 See Davis, Fama, and French (2000), or Kenneth French's website for details on variable con-
struction.
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industry or not. 58% of weighted edges in the patent citation network underpinning

the dynamic spillover measure occur between firms belonging to the same 2-digit SIC

code industry, so dynamic spillovers occur majoritarily within industries.

I separate dynamic spillover measures depending on whether they accrue within or

between industries, and estimate OLS and 2SLS specifications of the baseline produc-

tivity equation including both measures of dynamic spillovers. I show the resulting

estimates in the left panels of Figure A-5. The elasticities on dynamic spillovers

are positive and generally statistically significant regardless of whether they accrue

within or between industries. The point estimates are larger within than between,

consistent with them constituting a larger share of citations, but the difference is not

statistically significant.

A.5.2 Dynamic spillovers within and between technologies

I then examine a similar heterogeneity across technology types, depending on whether

the originating patent and the receiving patent belong to the same Hall et al. (2001)

technology class. A large majority, 77%, of weighted citations in the patent citation

network accrue within the same technology class.

I separate dynamic spillover measures depending on whether they accrue within

or between technology class, and again estimate the OLS and 2SLS specifications

of the baseline productivity equation including both measures of dynamic spillovers.

The resulting estimates are shown in Figure A-5, in the right panels. The elasticity

estimates on dynamic spillovers are positive and statistically significant for within-

class spillovers in both specifications, but not for spillovers between classes.
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Figure A-1: Correlation between CIT and SIC proximity measures
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Notes: This figure plots the pairwise values of the proximity in citation space CIT and proximity in
product market space SIC for all pairs of firms in my sample. In order to make the figure clearer,
CIT values are topped at 0.5.

Figure A-2: Correlation between CIT and TEC proximity measures
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Notes: This figure plots the pairwise values of the proximity in citation space CIT and proximity
in technological space TEC for all pairs of firms in my sample. In order to make the figure clearer,
CIT values are topped at 0.5.
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Figure A-3: Correlation between SIC and TEC proximity measures
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Notes: This figure plots the pairwise values of the proximity in technological
imity in product market space SIC for all pairs of firms in my sample.
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Figure A-4: Timing of analytical model

Period 1 Period 2

1.1:
- Firms choose R&D

spending r.
- Knowledge level k

is realized.

1.2:
- Firms choose x.
- Profits are realized.
- Aggregate knowledge

S updated.

2.1:
- Firms choose R&D

spending r.
- Knowledge level k

is realized.

2.2:
- Firms choose x.
- Profits are realized.
- Aggregate knowledge S

updated.
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A-5: Dynamic spillovers between and within industries and technology cate-
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Notes: This figure plots the values and confidence intervals of the coefficient on dynamic spillovers,
separated by whether they accrue across or within industries of the originating and receiving firm,
and Hall et al. (2001) technology classes of the citing and cited patent, for the productivity equation,
and OLS and 2SLS specifications. The regressions run are the same as in the baseline regressions
in Table 1.5, albeit incorporating both types of dynamic spillovers. Standard errors are clustered
two-way at the year and firm level, and confidence intervals are set at the 90% level.
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Table A.1: Effect of R&D intensity on average patent citations

log Average Average Standardized
patent count citation count citation count

OLS OLS OLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7)

log (R&D stock) 0.356*** 0.009 0.037*
(0.047) (0.018) (0.020)

log (employees) -0.054**
(0.022)

log (R&D stock/Assets) 0.036** 0.232* 0.061*** 0.349*
(0.015) (0.136) (0.022) (0.194)

F-statistic 32.34549 32.34549
Observations 10757 10757 10401 10757 10757 10757 10757
R-squared .87 .6 .6 .6 .59 .53 .51

Firm FE Yes Yes Yes Yes Yes Yes Yes
Industry x year FE Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variable is log of patent count in column (1), log of average citation count per patent in columns (2) to (5), and average of the standardized citation
count per patent, where citations are standardized to mean zero and unitary variance within each technological subcategory and application year. Regressions
include firm and 3-digit SIC-code industry-times-year fixed effects. Standard errors in brackets are clustered two-way at the year and firm level. * ** and *
denote statistical significance at the 1%, 5% and 10% respectively.
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Table A.2: Alternative static spillover measures, sales

OLS IV

Citation Jaffe tech. Mah. tech. Cit. Jaffe Mah.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(R&D stock) 0.036 0.029 0.035 0.029 0.036 0.027 0.092* 0.129*** 0.132***
(0.027) (0.026) (0.028) (0.027) (0.027) (0.026) (0.049) (0.050) (0.049)

Static spill. 0.193** 0.122** 0.324* 0.343* 0.610** 0.693** 0.280** 0.035 0.016
(0.076) (0.062) (0.170) (0.200) (0.246) (0.287) (0.130) (0.269) (0.392)

Business steal. -0.040 -0.026 -0.018 -0.024 -0.069 -0.073 -0.087** -0.032 -0.058
(0.032) (0.030) (0.031) (0.030) (0.076) (0.083) (0.038) (0.025) (0.164)

Dynamic spill. 0.023*** 0.025*** 0.022*** 0.025*** 0.022*** 0.025*** 0.107** 0.098** 0.097**
(0.008) (0.009) (0.008) (0.009) (0.008) (0.009) (0.047) (0.047) (0.047)

First stage F-test 13.68 13.642 11.719
Observations 3631 3631 3631 3631 3631 3631 3631 3631 3631

Firm and year FE / $/ / / / /
Industry x year FE / $ /

Notes: Dependent variable is lead ln(Sales). Regressions include the log of an industry-specific price deflator; industry-wide log-sales and lagged log-sales; log counts of patents
filed; dummies for no R&D, for no dynamic spillover and for no patents filed, as well as a full set of firm and year FEs. Columns (2), (4) and (6) also include 2-digit SIC-code
industry-times-year FEs. Standard errors in brackets are clustered two-way at the year and firm level. * ** and * denote statistical significance at the 1%, 5% and 10%
respectively.
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Table A.3: Alternative static spillover measures, MTB

OLS IV

Citation Jaffe tech. Mah. tech. Cit. Jaffe Mah.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(R&D stock) 0.024 0.012 0.026 0.017 0.027 0.011 0.144 0.189 0.177
(0.050) (0.049) (0.050) (0.049) (0.051) (0.049) (0.142) (0.130) (0.133)

Static spill. 0.019 -0.044 -0.084 -0.283 -0.189 -0.100 0.277** -0.357 0.419
(0.162) (0.198) (0.517) (0.490) (0.644) (0.638) (0.133) (0.956) (1.235)

Business steal. 0.116 0.055 0.127 0.065 0.280 0.115 -0.112* -0.042 -0.421
(0.103) (0.087) (0.094) (0.072) (0.268) (0.267) (0.067) (0.067) (0.470)

Dynamic spill. 0.050*** 0.051** 0.050*** 0.051** 0.050*** 0.051** 0.171* 0.160* 0.156*
(0.019) (0.022) (0.019) (0.022) (0.019) (0.022) (0.089) (0.089) (0.092)

First stage F-test 11.275 11.239 9.9082
Observations 3561 3561 3561 3561 3561 3561 3561 3561 3561

Firm and year FE
Ind. x year FE

Notes: Dependent variable is ln(MTB). Regressions include a sixth-order polynomial in ln(R&D intensity), only the first term is shown for brevity; industry-wide
log-sales and lagged log-sales; log counts of patents filed; dummies for no R&D, for no dynamic spillover and for no patents filed, as well as a full set of firm and year
FEs. Columns (2), (4) and (6) also include 2-digit SIC-code industry-times-year FEs. Standard errors in brackets are clustered two-way at the year and firm level.

** and * denote statistical significance at the 1%, 5% and 10% respectively.
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