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Abstract

Proliferation can be thought of as the sum of many biosynthetic processes. To proliferate, a cell must not
only physically divide but must also newly synthesize each of its components as it progresses through the
cell cycle. Metabolism allows a cell to meet these demands. Metabolic alterations associated with
proliferating cells have been characterized, and increasing research interest seeks to provide mechanistic
and teleological insight into these metabolic alterations. The following dissertation provides a framework
for understanding how proliferating mammalian cells use the nutrients available to them to synthesize
macromolecule precursors that are ultimately used to synthesize new cell mass. Substantial research
efforts have focussed on the abilities of glucose and glutamine to serve as sources of biosynthetic material
for cell growth, especially since proliferating cells avidly consume these nutrients. Many other nutrients
are consumed at much lower rates, and we have quantified how each contributes to biosynthesis,
demonstrating that amino acids are the primary contributors to mammalian cell mass. Although glucose
consumption does not directly relate to its contribution to cell mass, glycolytic flux is important to sustain
cell growth, and activation of this pathway is thought to promote biosynthesis. To better understand
regulation of this pathway, we have explored the biochemical properties of two glycolytic enzymes,
pyruvate kinase and enolase. Although pyruvate kinase isoform M2 (PKM2) expression enables
proliferation in some contexts, we demonstrate that this is not because of its putative activity as a protein
kinase. We additionally characterize a novel modification of enolase by its substrate,
phosphoenolpyruvate, which can covalently modify a catalytic residue and inhibit enzyme activity. These
studies collectively contribute to an understanding of how metabolism can support rapid proliferation in
mammalian cells, and lay the foundation for future studies to understand proliferative metabolism.

Thesis supervisor: Matthew G. Vander Heiden
Title: Associate Professor of Biology
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Chapter 1: The metabolic requirements of proliferating cells

Introduction to proliferative metabolism

Proliferation, the growth and division of cells, imposes a substantial biosynthetic requirement

upon them. In order to replicate, a cell must acquire or newly synthesize each of its components,

effectively doubling its mass throughout the cell cycle. All cells, whether they are proliferating or not,

require a source of energy and reducing power to maintain homeostasis and combat cellular stress.

Proliferating cells must also synthesize their macromolecular contents: DNA, RNA, proteins, and lipids.

To meet this demand, proliferating cells carry out diverse metabolic reactions to generate the precursors

for these molecules (Lunt and Vander Heiden, 2011). The reactions that compose the metabolic network

have been biochemically characterized and a large number of metabolites and enzymes are known.

Nevertheless, mammalian cells grow in complex environments and are exposed to many nutrients, so

which nutrients are used and how these contribute to macromolecule precursors cannot be discerned from

the metabolic network alone. Current studies seek to understand how metabolism supports proliferation in

diverse cell types with the goal of using this knowledge to alter proliferation.

The majority of cells in an adult individual are non-proliferating, but mammalian cells can

proliferate in a variety of contexts. For example, proliferation is regulated in developing embryos, stem

cells, and immune cells. By contrast, cancer is a disease of uncontrolled proliferation. These examples of

proliferating cells have many metabolic requirements in common but exhibit differences as well, and

there is growing interest in exploiting these differences for cancer therapy (Tennant et al., 2010; Vander

Heiden, 2011; Weinberg and Chandel, 2015). Several drugs currently used to treat diverse cancers have

metabolic targets and many metabolic enzymes are emerging as potential drug targets. Inhibition of

crucial metabolic processes has the potential to stop proliferation, and therefore an understanding of how

metabolism supports proliferation is required.
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In this chapter, I will describe the metabolic requirements of proliferating cells and give examples

of how they are met, discussing in particular which nutrients and which metabolic pathways support

macromolecule synthesis. This will provide a framework to understand how metabolism is altered to

support proliferation in a variety of contexts, including cancer.

The mammalian metabolic network

The metabolic network is composed of reactions that enable cells to derive energy, reducing

power, and biosynthetic precursors from the nutrients they consume. Many metabolic reactions are

important to mammalian physiology but are dispensable for the growth and proliferation of individual

cells. The following discussion pertains to those reactions required to synthesize macromolecule

precursors necessary for proliferation of individual cells. The core component of this metabolic network

is central carbon metabolism, composed of glycolysis and the tricarboxylic acid (TCA) cycle. Glycolytic

and TCA cycle intermediates serve as substrates for anabolic pathways that synthesize macromolecule

precursors (Figure 1). Both of these pathways, in particular the TCA cycle when it is coupled to oxidative

phosphorylation, also provide cells with energy in the form of adenosine triphosphate (ATP). Catabolic

reactions break down macromolecules to replenish glycolysis and the TCA cycle, allowing cells to derive

energy from the degradation of macromolecule precursors.

Glucose is a critical source of energy and biosynthetic material for many cell types, and it is

primarily catabolized by glycolysis to yield ATP and pyruvate. Pyruvate can undergo additional oxidation

to acetyl-CoA, which is ultimately oxidized to carbon dioxide in the TCA cycle, enabling cells to generate

substantial additional ATP via oxidative phosphorylation. The TCA cycle has two metabolic roles: to

oxidize acetyl-CoA and to supply four- and five-carbon molecules for biosynthesis. Importantly, these

molecules, which are depleted by biosynthesis, facilitate the oxidation of acetyl-CoA, and sustained TCA-

cycle activity therefore requires that they be replaced. Anaplerotic reactions replenish these intermediates

12
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Figure 1: The mammalian metabolic network synthesizes macromolecule precursors from glucose
and other sources.

Major metabolic pathways that enable synthesis of amino acids (blue), lipids (purple), and nucleotides

(green) are outlined, indicating the starting materials that supply carbon atoms to synthesize

macromolecule precursors. Central carbon metabolism (glycolysis and the TCA cycle) is highlighted in

orange. 3PG, 3-phosphoglycerate; aKG, alpha-ketoglutarate; CoA, co-enzyme A; DHAP,
dihydroxyacetone-phosphate; FBP, fructose-1,6-bisphosphate; GAP, glyceraldehyde-3-phosphate; P,
phosphate; PEP, phosphoenolpyruvate; PRPP, phosphoribosyl pyrophosphate.
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by amino acid catabolism or pyruvate carboxylation. Glutamine catabolism (glutaminolysis) is the

primary anaplerotic reaction for mammalian cells proliferating in vitro, and glutamine is the most

consumed amino acid by these cells (DeBerardinis et al., 2007; Jain et al., 2012). Glucose and glutamine

are the most consumed nutrients by cells in culture and are among the most abundant nutrients in human

plasma. While they do not supply the majority of biosynthetic material to cells (Hosios et al., 2016), they

are important sources of energy and biosynthetic material for cells, and substantial work has focussed on

how their metabolism supports proliferation.

Aerobic glycolysis

Pyruvate has two primary fates in mammals: it can be fermented to lactate and excreted or

oxidized to carbon dioxide in the TCA cycle. The latter process requires oxygen to serve as an electron

acceptor, and when oxygen is scarce, fermentation is favored. As a result, in many cell types the fate of

pyruvate is dependent on the presence of oxygen (Wheaton and Chandel, 2011). Proliferating cells,

however, carry out fermentation regardless of oxygen availability. This phenomenon, termed aerobic

glycolysis, was first described by Otto Warburg (Warburg, 1924; Warburg, 1956). Warburg studied

fermentation using tissue slices and observed that, unlike normal tissue, tumors fermented glucose to

lactate in the presence of oxygen. His finding was subsequently confirmed in vivo by Carl and Gerty Cori.

They studied blood that had passed through tumor-bearing tissue and noted a decrease in glucose and a

corresponding increase in lactate relative to normal blood (Cori and Cori, 1925). In his work, Warburg

noted that fermentation in the presence of oxygen is not unique to tumors. Proliferating yeast, for

example, ferment glucose to ethanol in the presence of oxygen and only oxidize ethanol when glucose is

exhausted (Lemoigne et al., 1954). Non-transformed mammalian cells also carry out aerobic glycolysis

when rapidly proliferating. Compared to their resting state, lymphocytes and thymocytes stimulated to

proliferate in vitro consume increased amounts of glucose and convert a greater portion to lactate (Brand,

1985; Brand et al., 1986; Hume et al., 1978). Similar findings were obtained in fibroblasts from several

species and in proliferating cells derived from chicken embryos (Steck et al., 1968; Wang et al., 1976).
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Transformation with Rous sarcoma virus did not enhance glycolytic rate in these embryonic cells,

indicating that aerobic glycolysis is a feature of proliferating cells independent of oncogenic

transformation. Warburg postulated that aerobic glycolysis was necessitated by mitochondrial defects, but

work since then has demonstrated intact mitochondrial metabolism in many tumor cells (Zu and Guppy,

2004). In fact, mitochondrial metabolism is thought to be essential for mammalian cell proliferation and

tumor formation (Sullivan et al., 2015; Tan et al., 2015), and the mitochondrial inhibitor metformin has

antitumor effects in some contexts (Luengo et al., 2014; Wheaton et al., 2014).

Aerobic glycolysis may be beneficial to cells. Fermentation is seemingly wasteful, as complete

oxidation of pyruvate generates more ATP, but producing lactate may allow cells to maximize their

glycolytic rate. Glycolysis converts NAD+ to NADH and cannot proceed without the regeneration of

NAD+. In the cytosol, this is accomplished by lactate dehydrogenase (LDH), a highly expressed and very

efficient enzyme (Wuntch et al., 1970). Oxidative phosphorylation in the mitochondria also serves to

regenerate NAD+; however, multiple enzymatic steps are required to transport cytosolic NADH into the

mitochondria. Notably, oxidative phosphorylation often does not proceed at its maximal rate and may be

limited by ATP turnover (Krebs, 1959). LDH could, therefore, provide an efficient means of regenerating

NAD+ when cells are not ATP-limited or when mitochondrial regeneration of NAD* is limiting (Sullivan

et al., 2015).

A high glycolytic rate can provide several advantages to proliferating cells. Glycolysis can be an

important source of energy for cells, generating two molecules of ATP per molecule of glucose.

Nonetheless, glycolysis supplies a minority of cellular ATP for a wide variety of cells in vitro (Fan et al.,

2013; Zu and Guppy, 2004), but may play a greater role when oxidative phosphorylation is impaired.

Furthermore, ATP generation is hypothesized to not be rate limiting for proliferation (Racker, 1976). An

alternative hypothesis is that high glycolytic flux is necessary to sustain the biosynthetic reactions

required for proliferation (Hsu and Sabatini, 2008; Hume and Weidemann, 1979; Pavlova and Thompson,

2016; Vander Heiden et al., 2009). Glycolytic intermediates serve as precursors for amino acids,

nucleotides, and lipids (Figure 1), linking glycolysis to macromolecule biosynthesis. Hume and
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Weidemann (1979) speculated that aerobic glycolysis maintains increased concentrations of glycolytic

intermediates necessary to drive synthesis of macromolecule precursors, and they observed that mitogen-

activated thymocytes increase incorporation of glucose carbon into macromolecules. Newsholme et al.

postulated that rapid glycolytic flux was important to the regulation of biosynthetic pathways that branch

from glycolysis (Newsholme et al., 1985b). In their model of metabolic control, low flux pathways

(biosynthesis) branch from a high flux pathway (glycolysis), and as a result, the cells can activate

biosynthetic pathways when needed. Since biosynthetic reactions are slow relative to glycolysis, they

cannot substantially deplete glycolytic intermediates, which would ultimately reduce biosynthesis.

Aerobic glycolysis is a feature of proliferative metabolism, but how rapid flux through this

pathway supports proliferation remains subject to debate. Understanding the effect of glycolytic rate on

the rates of biosynthesis, ATP production, and lactate excretion will be critical to provide a definitive

explanation.

Glutaminolysis

In addition to enhanced glycolysis, many proliferating cells catabolize glutamine. In the studies

described above, thymocytes and lymphocytes stimulated to proliferate in vitro also consume more

glutamine than non-proliferating cells (Brand, 1985; Brand et al., 1986; Newsholme et al., 1985b). These

proliferating cells displayed elevated activity of enzymes that facilitate entry of glutamine carbon into the

TCA cycle (glutaminolysis). Newsholme et al. hypothesized that high glutaminolytic flux is required for

the same purpose as high glycolytic flux, to supply material to low-flux biosynthetic pathways

(Newsholme et al., 1985a, b). Indeed, glutamine can be used to make several other amino acids, as well as

other macromolecule precursors (discussed in detail below). Glutamine can serve as a source of both

carbon and nitrogen for biosynthesis (Hosios et al., 2016), but its use exceeds the cellular demand for

nitrogen in culture, indicating its importance for anaplerosis and energy generation (Altman et al., 2016;

DeBerardinis and Cheng, 2010; DeBerardinis et al., 2007). Consistent with this, a large fraction of ATP is

generated by oxidation of glutamine (Fan et al., 2013). Importantly, anaplerosis must be balanced by
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cataplerosis (withdrawal of TCA cycle intermediates), and glutamine carbon leaves the TCA cycle

through amino acid biosynthesis and malic enzyme activity (Coloff et al., 2016; DeBerardinis et al.,

2007). Collectively, these findings underscore the importance of glutamine utilization for biosynthesis

and energy generation.

Glutaminolysis has consequently become an appealing pathway to target for cancer therapy

(Altman et al., 2016; Daye and Wellen, 2012; DeBerardinis and Cheng, 2010; Vander Heiden, 2011);

however, recent work has called into question how effective this may be in vivo. Glutamine can be

catabolized in some Myc-driven cancer models and inhibiting glutaminolysis in this context impairs

growth (Xiang et al., 2015; Yuneva et al., 2012). However, metabolic tracer studies of non-small cell lung

cancer (NSCLC) metabolism in vivo detected minimal glutamine entry into the TCA cycle, contrary to

what has been observed for cells in culture (Davidson et al., 2016). NSCLC in vivo and in some contexts

in vitro predominantly uses glucose a source of anaplerotic carbon, supplied by pyruvate carboxylase

(Hensley et al., 2016; Sellers et al., 2015), and similar results have been obtained in glioblastoma models

(Marin-Valencia et al., 2012; Mashimo et al., 2014; Tardito et al., 2015). A definitive explanation for the

discrepancy between glutamine metabolism in vivo and in vitro is lacking, although nutrient environment

is an intriguing possibility, given that lung cancer cell lines use glutamine differently if grown in vitro or

as tumors (Davidson et al., 2016).

Glutamine is a significant nutrient source at least in some contexts, and glutaminolysis can fuel

energetic reactions and supply carbon and nitrogen for biosynthesis. In addition to aerobic glycolysis, this

pathway can be another means by which proliferating cells meet their metabolic requirements. Although

in many contexts in vivo glutamine is not a major source of TCA cycle anaplerosis, studies of

glutaminolysis have revealed the importance of anaplerotic reactions to biosynthesis and proliferation.

Anaplerosis, therefore, appears to be a vulnerability of proliferating cells, and future studies should seek

to identify anaplerotic reactions used by cells that rely less on glutamine.
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Defining the macromolecular components of a cell

Cell composition

Regardless of which nutrient sources contribute to the mass acquired by proliferating cells, all

cells must synthesize DNA, RNA, protein, and lipids, duplicating each component as they grow. These

macromolecule classes are present in different quantities within a cell, and a cell's composition dictates

its biosynthetic demands. An assessment of the metabolic requirements of proliferation therefore requires

an understanding of cell composition.

Data regarding the composition of mammalian cells is minimal and has been calculated for only a

small number of cell lines. Two approaches have been used to determine mammalian cell composition. In

the first, cells are lysed and macromolecules are quantified using assays specific to each macromolecule

(for example, Biuret assay to quantify protein) (Bonarius et al., 1996; Xie and Wang, 1994).

Alternatively, cells are assayed by infrared spectroscopy and the relative contributions of macromolecule

classes to the spectrum is calculated (Mourant et al., 2005). While there is some variability among these

techniques, it is agreed that protein comprises the majority of cell mass, followed by lipids, RNA, and

DNA (Figure 2). In rat liver and in early mouse embryos, ribosomes were found to comprise 60-80% of

total cellular RNA, which is similar to what has been observed in E. coli (Blobel and Potter, 1967; Ecker

and Kokaisl, 1969; Piko and Clegg, 1982). Ribosome content partly determines protein synthesis rate, and

together these are major determinants of cell size.

Importantly, cell composition is not fixed and can vary across conditions and among cell types

(Dolfi et al., 2013). Cell composition and growth rate are critical determinants of the metabolic demands

of macromolecule synthesis. Although nutrient consumption rates correlate poorly with cell proliferation

rate alone (Jain et al., 2012), they correlate more closely with the acquisition of new cell mass when

composition is taken into account (Dolfi et al., 2013).

18



RNA Glycogen
DNA

Lipids

Protein

Figure 2: The composition of mammalian cell mass, adapted from Xie and Wang (1994).
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Coordinating growth and proliferation

As a cell proliferates, it must coordinate the acquisition of new cell mass with cell division, and

the mechanism by which these processes are linked has been the subject of extensive research. The ability

to sense size would be advantageous to a cell, preventing division until sufficient new mass is

accumulated. The cell cycle can be thought of as two distinct, but coordinated, cycles: the growth cycle

(acquisition of new cell mass) and the DNA division cycle (DNA replication and cell division). Hartwell

and colleagues provided evidence for this model by decoupling the cycles in the budding yeast

Saccharomyces cerevisiae (Johnston et al., 1977). They noted that abnormally small cells took longer to

initiate DNA replication and cell division, waiting until they reached a critical size. This suggests that a

mechanism exists to control cell size, and that growth, and not DNA replication or cell division, is rate

limiting for proliferation. Killander and Zetterberg (1965) obtained similar results with mouse fibroblasts,

where time to initiation of DNA replication was inversely related to size following division. Fibroblast

sizes were more variable immediately following cell division than by the time DNA replication began,

suggesting that DNA replication is initiated at a constant cell size. This implies that sensors exist to

couple growth to initiation of DNA replication; in other words, cells possess a mechanism to ensure that a

new cell cycle does not occur until they have acquired the components required to generate a new cell.

The existence of means for size control is intuitive. Small random asymmetry in cell division can create

variability in cell size throughout a population. If no mechanism for size control existed, over time

increasingly small and large cells would be generated by chance (i.e. the variance of cell sizes would

increase over time). However, this is not observed, suggesting that size is regulated.

Genetic studies in yeast have implicated several proteins in size sensing. In the fission yeast

Schizosaccharomycespombe, cell size is sensed physically. As the cell elongates, membrane bound Pomi

kinase is separated in space from its cytosolic substrates, resulting in the inhibition of Weel, a protein that

prevents the G2/M transition (Moseley et al., 2009). In S. cerevisiae, biosynthesis itself is sensed and cells

must acquire sufficient mass to pass Start in the cell cycle. One size-determining mechanism senses

protein synthesis rate (Turner et al., 2012); the short-lived cyclin Cln3 is synthesized at rates closely
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linked to cell size, allowing its synthesis to serve as a readout of cell size. Cln3 acts to relieve inhibition

of the G 1/S transition by Whi5, allowing cells to proceed with DNA replication and cell division once a

minimum size is reached. Recent work, however, has argued that the more relevant parameter is dilution

of Whi5 as cell size increases (Schmoller et at., 2015). Protein synthesis appears to be an important input

to cell size control in mammalian cells as well. The mammalian target of rapamycin complex 1

(mTORC I) has been shown to control cell size through its dual effects on protein synthesis rate (Fingar et

al., 2002).Ribosome biogenesis itself plays also a role in determining the size of both yeast and

mammalian cells (reviewed in Jorgensen and Tyers, 2004).

Whether mammalian cell size is sensed as strictly as in yeast has been the subject of intense

debate (Conlon and Raff, 2003; Cooper, 2004; Sveiczer et al., 2004; reviewed in Jorgensen and Tyers,

2004). Central to this debate is the question of whether the mass of a mammalian cell increases linearly or

exponentially with time. Exponential mass increase requires that larger cells gain mass more rapidly,

which might be expected if newly synthesized mass itself has the ability to produce new mass (i.e.

contains ribosomes). An understanding of size sensing in mammalian cells is complicated by the fact that

different cell types could acquire mass differently and that this can also be growth-factor controlled.

Hepatocytes in re-fed mice, for example, acquire mass at a linear rate independent of their size (Conlon

and Raff, 2003). Conversely, Dolznig et al. demonstrated that for chick erythroblasts and mouse

fibroblasts whose size could be genetically manipulated, larger cells synthesize protein more quickly and

spend less time in GJ (Dolznig et al., 2004). Any model to explain mammalian cell size control must also

account for differences in cell size, addressing why the size threshold differs between cell types.

Collectively, size control mechanisms allow proliferating cells to sense their composition by

providing a readout of macromolecule synthesis. This allows the macromolecular requirements for

proliferation to be met before a cell commits to dividing. Mammalian cells use a variety of biosynthetic

pathways to meet this demand by making use of the available nutrients, and regulatory mechanisms link

this biosynthesis to cues promoting growth and division.
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Nutrient sources contributing to macromolecule precursors

Nutrient environment, cell type, and growth signals can each influence how a cell generates the

macromolecule precursors it requires to proliferate. Both in vivo and in vitro, mammalian cells are

exposed to complex nutrient environments (Mayers and Vander Heiden, 2015), and multiple pathways

exist to generate amino acids, nucleotides, and lipids. As a result, the nutrients that contribute to synthesis

of a given macromolecule can vary substantially. The pathways proliferating cells commonly use to

generate these precursors are described below.

Amino acids

Protein represents the largest fraction of cell mass, and acquisition of amino acids is therefore the

primary biosynthetic requirement of cells. Cells can acquire amino acids through a variety of means, and

cell type, environment, and genetics determine which pathways are used. Mammalian cells can synthesize

non-essential amino acids de novo but must obtain essential amino acids from the extracellular

environment (Figure 3). In nutrient rich conditions, uptake of essential amino acids is correlated with

protein synthesis rates, indicating that these amino acids are not catabolized and only supply material for

protein synthesis (Dolfi et al., 2013; Hosios et al., 2016). Human plasma contains each of the twenty

amino acids at concentrations ranging from 10-600 tM (see Appendix A). Some amino acid

concentrations are much less in other bodily fluids, such as cerebrospinal fluid (McGale et al., 1977), and

the availability of essential amino acids may limit proliferation of cells in these contexts. Free amino

acids supplied by plasma can be derived from the diet as well as protein breakdown or synthesis in the

liver (Mayers et al., 2014), and cells in the tumor microenvironment can be exposed to free amino acids

generated by local protein breakdown (Hirayama et al., 2009; Kamphorst et al., 2015).

In some contexts, cells synthesize amino acids to fulfill their requirement for protein synthesis, and

glucose is the source for several of these non-essential amino acids (Figure 3). Mammalian cells with

high glycolytic flux excrete alanine in addition to lactate, albeit at lower rates (DeBerardinis et al., 2007;
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Figure 3: Selected de novo and scavenging pathways contributing amino acids for protein synthesis.
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Jain et al., 2012). Proliferating cells are therefore rarely limited for alanine, and most media formulations

exclude this amino acid. Alanine is not always synthesized in excess of a cell's needs, however, and

Chuang et al. (1990) observed enhanced lymphocyte proliferation when alanine was added to their

growth medium. Sousa et al. (2016) found that pancreatic cancer cells consume alanine produced by

pancreatic stellate cells when grown in a minimal medium in vitro, indicating the potential for a metabolic

interaction in vivo. Another pathway supported by rapid glycolytic flux is the serine biosynthesis

pathway. Serine is generated from glycolytic intermediates through several reactions, the first of which is

catalyzed by phosphoglycerate dehydrogenase (PHGDH). Even though serine can be acquired from

exogenous sources, de novo synthesis is advantageous in some contexts. For example, PHGDH

expression is elevated in some cancers (Locasale et al., 2011; Pollari et al., 2011; Possemato et al., 2011)

and this correlates with an increased rate of serine synthesis. Overexpression of this enzyme is growth

promoting, although the mechanism remains debated (DeNicola et al., 2015; Locasale et al., 2011;

Possemato et al., 2011). Intracellular serine is derived from both de novo synthesis and consumed serine,

and whether the source influences serine's fate is unclear. Serine can provide carbon for nucleotide

biosynthesis (discussed further below) and is catabolized to produce glycine. Glycine can also be derived

from exogenous sources, but many cells in culture rapidly consume serine to produce glycine and only

use exogenous glycine when their serine supply is exhausted (Labuschagne et al., 2014). Some cells are

sensitive to deprivation of serine and glycine (Maddocks et al., 2013), indicating that both amino acid

consumption and de novo synthesis are required to fulfill the biosynthetic requirement for these amino

acids and maximize proliferation.

Serine serves a further role in protein synthesis as it can also be used to synthesize cysteine via

the transsulfuration pathway. Cysteine can therefore be obtained exogenously or by de novo synthesis

from glucose or exogenous serine. The transsulfuration pathway combines serine with homocysteine to

produce cystathionine, which is cleaved by cystathionase to generate cysteine. Not all proliferating cells

are capable of de novo cysteine synthesis, and some are auxotrophic for this amino acid, requiring an

exogenous source. Cystathionase activity is not detected in fetal tissue, for example, and appears only
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after birth in mammals (Gaull et al., 1972). Cells in culture exhibit variable dependence on this pathway,

and in some cases cysteine deprivation can be rescued with cystathionine or homocysteine, depending on

which enzymes they express (Eagle et al., 1966). As a result, cell type and gene expression play

significant roles in determining how a cell obtains the cysteine it requires for protein synthesis.

When glutamine is used by proliferating cells, it can supply carbon and nitrogen for synthesis of

glutamate, aspartate, asparagine, and proline, fulfilling a substantial amino acid requirement in these cells

(Hosios et al., 2016). Glutaminolysis is sufficient to sustain biosynthesis of these amino acids, and they

are often excluded from culture media (DeBerardinis and Cheng, 2010; Eagle et al., 1956b). Glutaminase

activity produces glutamate, which can serve as a nitrogen donor for transamination reactions in the

biosynthesis of other amino acids, such as serine and alanine. In their study of pancreatic cancer cell

metabolism, Sousa et al. (2016) observed that providing cells with alanine promoted serine biosynthesis,

and this is likely because alanine production as a major fate of glutamate nitrogen was blocked. Amino

acid synthesis downstream of glutamine has other advantages as well. For example, proline synthesis

from glutamine is upregulated by oncogenic signalling to promote proliferation of lymphoma cells (Liu et

al., 2015).

Unlike other amino acids, which can be used by cells when supplied exogenously, aspartate is

necessarily synthesized de novo: most cells (except in the prostate and nervous system) lack high-affinity

transporters for aspartate, and plasma aspartate concentrations (typically 20 tM or less) are insufficient to

enable its consumption (Birsoy et al., 2015; Franklin et al., 2006). Supraphysiological concentrations of

aspartate are needed to rescue proliferation of cells incapable of synthesizing it de novo (Sullivan et al.,

2015). Aspartate can be synthesized from glutamine carbon, but as discussed above, glutaminolysis is not

observed in all proliferating cells. In cases where glutamine is not used, glucose provides carbon to the

TCA cycle via pyruvate carboxylase and pyruvate dehydrogenase (Davidson et al., 2016; Hensley et al.,

2016; Sellers et al., 2015). In this context, amino acids other than glutamine can provide nitrogen atoms to

glutamate to support transamination reactions (Mayers et al., 2016).
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While an exogenous supply of many non-essential amino acids is dispensable for proliferation,

proliferating cells can become auxotrophic for asparagine or arginine. In some contexts, cells are unable

to synthesize sufficient quantities of these amino acids to meet their biosynthetic demands, and depletion

of these amino acids can impair proliferation. Asparaginase is a bacterial enzyme used to treat patients

with acute lymphoblastic leukemia (Masetti and Pession, 2009). The enzyme hydrolyzes plasma

asparagine, thereby starving cells of this amino acid, arguing that cells sensitive to this treatment are

asparagine auxotrophs. Why cells have impaired asparagine synthesis is unclear, but this may help to

preserve intracellular aspartate pools. Studies have also identified a variety of tumors that are arginine

auxotrophs. This amino acid is non-essential for adult humans, but some cells are unable to synthesize

arginine de novo. As with cysteine, some cells auxotrophic for arginine can proliferate in its absence if

provided with either of its precursors, citrulline and omithine, which are present in plasma at levels

comparable to other amino acids (see Appendix A) (Morgan et al., 1958). Some cancers are unable to

synthesize arginine because they have lost expression of argininosuccinate synthase (ASS), an enzyme

required for arginine synthesis. ASS consumes aspartate, and loss of its expression may serve as a means

of preserving cellular aspartate pools (Rabinovich et al., 2015). Cancers lacking fumarate hydratase have

high levels of fumarate, which can drive ASS in reverse, consuming arginine and effectively making cells

arginine auxotrophs. Arginine deiminase, an enzyme that can deplete extracellular arginine, is being

tested for efficacy against these cancers (Phillips et al., 2013).

In addition to de novo synthesis and consumption of exogenous amino acids, proliferating cells

can consume and hydrolyze extracellular protein as a source of amino acids. Macropinocytosis, the non-

specific uptake of protein, provides a source of amino acids to cells and enables them to survive starvation

of individual essential amino acids when protein is abundant (Commisso et al., 2013; Kamphorst et al.,

2015). The lysosome degrades consumed protein to produce individual amino acids, which can then be

used by cells for biosynthesis. Although this process is non-specific, the high abundance of albumin in

plasma and interstitial fluid makes it a primary substrate of this pathway (Commisso et al., 2013).
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Proliferating cells have a considerable requirement for protein synthesis and as a result must

acquire amino acids necessary to meet this demand in order to grow and divide. Essential amino acids are

consumed from the extracellular environment or could be obtained by macropinocytosis, whereas non-

essential amino acids can also be acquired by de novo synthesis from glucose or glutamine. Cell type and

extracellular environment both influence how amino acids are acquired, and this can affect both protein

synthesis as well as other biosynthetic reactions requiring amino acids.

Lipids

Lipids are a diverse class of non-polar molecules, and their synthesis imposes a complex

biosynthetic demand for proliferating cells (Baenke et al., 2013). Lipids comprise 50% of membrane

mass, where they enable the separation of organelle contents and the intracellular and extracellular

environments, and they are also critical components of multiple signalling pathways. Synthesizing

membranes of the correct composition is critical for cell function (Simons and Sampaio, 2011; Thibault et

al., 2012). In mammalian cells, membrane lipids primarily comprise cholesterol, phospholipids, and

sphingolipids. Fatty acids are core components of these latter two classes and are also present in cells as

triglycerides. Each lipid species can be acquired exogenously or synthesized de novo, and nutrient supply

and growth conditions influence how cells meet this biosynthetic demand (Figure 4).

A large fraction of cellular lipids are derived from the extracellular environment (Hosios et al.,

2016; Yao et al., 2016). Early work with proliferating lymphocytes demonstrated that exogenously

supplied free fatty acids are incorporated into the lipid pool in these cells (Ardawi and Newsholme, 1984).

Circulating free fatty acid levels increase when esterified fatty acids stored in adipose tissue are

hydrolyzed (Duncan et al., 2007). Breast and ovarian cancer cells stimulate lipolysis in co-cultured

adipocytes and can consume the released fatty acids (Balaban et al., 2017; Nieman et al., 2011). In other

contexts, fatty acid transport promotes cancer cell proliferation, and recent work has shown that

expression of the fatty acid receptor (and transporter) CD36 facilitates metastasis (Pascual et al., 2017).

Free fatty acids are not the only source of exogenous fatty acids. Kamphorst et al. (2013) observed that
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Figure 4: De novo and scavenging pathways contributing to the cellular lipid pool.
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hypoxic cells and cells expressing activated Ras mutants utilize lysophospholipids present in serum as a

source of unsaturated fatty acids. Lipids are carried through plasma bound to albumin or in lipoproteins,

and cells can use free fatty acids and esterified lipids from these complexes as well. Lymphocytes and

fibroblasts express lipoprotein lipase, allowing them to consume and hydrolyze triglycerides as a source

of fatty acids for biosynthesis (Calder et al., 1994; Oram et al., 1980), and some cancers express other

lipases to utilize exogenous esterified lipids (Zaidi et al., 2013).

Although a large portion of cellular lipids originate from exogenous sources (Hosios et al., 2016;

Yao et al., 2016), lipids synthesized de novo are derived mainly from glucose carbon (Kamphorst et al.,

2013). Active lipogenesis was first observed in tumor tissue slices by Medes et al. (1953), who noted that

hepatomas incorporated more glucose into lipids than adjacent liver tissue. Pyruvate generated by

glycolysis is decarboxylated by pyruvate dehydrogenase (PDH) in the mitochondria to produce acetyl-

CoA, the basic component of lipids. Citrate synthase combines this acetyl-CoA with oxaloacetate to

produce citrate, which can be exported from the mitochondria and cleaved by ATP-citrate lyase (ACLY)

to generate cytosolic acetyl-CoA. In the cytosol, acetyl-CoA is used for de novo synthesis of palmitate (by

fatty acid synthase, FASN) and cholesterol. Acetyl-CoA is also used for fatty acid elongation, and cellular

fatty acids are diversified through elongation and desaturation reactions. Sterols can be esterified to fatty

acids, increasing their complexity as well. Many cancers upregulate enzymes required for de novo lipid

synthesis, and there is current interest in targeting these enzymes, in particular FASN, therapeutically

(reviewed in Svensson and Shaw, 2017).

Glucose is not always the primary source of lipogenic acetyl-CoA. When cells are subject to

mitochondrial inhibition, either as a result of hypoxia or genetic alterations, glutamine can serve as a

source of acetyl-CoA for de novo lipid synthesis (Metallo et al., 2012; Mullen et al., 2012; Wise et al.,

2011). Reductive carboxylation of glutamine-derived a-ketoglutarate by isocitrate dehydrogenase (IDH)

produces citrate, which can be cleaved by ACLY to generate acetyl-CoA. PDH flux is reduced in hypoxic

cells, decreasing the availability of glucose-derived acetyl-CoA (Kim et al., 2006). The hypoxia-sensing

pathway in mammals, requiring hypoxia inducible factor (HIF), contribute to this metabolic change, and
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constitutive HIF activation in some cancers allows them to derive lipids from glutamine when oxygen is

abundant (Gameiro et al., 2013; Metallo et al., 2012). Cells proliferating with ample oxygen can also

derive acetyl-CoA from glutamine, but it is not the primary contributor to lipid synthesis in this context.

Mammalian cells express three IDH isoforms, and reductive carboxylation can be carried out by IDHI

and IDH2, which localize to the cytosol and mitochondria respectively. Some controversy exists as to

which isoform primarily enables glutamine-derived lipogenesis; studies have argued for IDHI (Metallo et

al., 2012), IDH2 (Wise et al., 2011), or neither being predominant (Filipp et al., 2012; Mullen et al.,

2012). Of note, it remains unclear whether reductive carboxylation flux is enhanced when mitochondria

are impaired or if its relative contribution to lipogenesis increases due to a paucity of glucose-derived

acetyl-CoA, although some have argued that decreased citrate levels are a determining factor (Fendt et al.,

2013; Gameiro et al., 2013).

Free acetate can also serve as an additional lipogenic substrate for proliferating cells. Acetate can

contribute to lipogenic acetyl-CoA when oxygen is abundant, but its contribution is increased in low

oxygen (Comerford et al., 2014; Kamphorst et al., 2014; Schug et al., 2015). Similar to glutamine, it is

unknown if active upregulation causes this increase in relative contribution or if it is the result of the

lower relative contribution of glucose. Acetyl-CoA synthetases (ACSS) are required to convert acetate to

acetyl-CoA, and cytosolic ACSS2 is the primary enzyme that supplies acetate for lipid biosynthesis

(Comerford et al., 2014). Acetate concentration determines how much this substrate is used for

lipogenesis (Kamphorst et al., 2014), and it is present in human plasma at 50-200 tM (Hosios and Vander

Heiden, 2014; Schug et al., 2016), which is lower than concentrations often used experimentally. Free

acetate in cells is predominantly generated by protein deacetylation, and a major role of ACSS is to

salvage this acetate (Bulusu et al., 2017), raising the possibility that utilization of exogenous tracer acetate

for biosynthesis is, in part, a readout of exchange between extracellular and intracellular acetate pools.

Exchange explains labeling from tracer acetate when cells do not net consume acetate. Other nutrients,

such as ketogenic amino acids, can provide acetyl-CoA for lipid biosynthesis, but this is not often seen in

proliferating cells in vitro. Recent work, for example, demonstrated that 3T3-L1 cells begin to use branch
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chain amino acid carbon for fatty acid synthesis following in vitro differentiation into adipocytes (Green

et al., 2016). Ketone bodies have also been observed to contribute to lipid pools in some contexts, such as

in brains of neonatal rodents (Patel and Owen, 1976).

Cells can acquire fatty acids from different sources; however additional molecules are required to

synthesize the complex lipid species required by cells to proliferate. Fatty acids are esterified to glycerol-

3-phosphate (G3P) to produce phospholipids and triglycerides, for membrane biogenesis and lipid storage

respectively. G3P is generated by the phosphorylation of exogenous glycerol or by the reduction of the

glycolytic intermediate dihydroxyacetone-phosphate, and proliferating cells may obtain glycerol from

both sources (Harding et al., 1975). Phospholipids also contain polar head groups (choline, ethanolamine,

serine, and inositol), which can also be scavenged or synthesized de novo. The sources of serine can vary

(see above), and phosphatidylethanolamine (PE) can be synthesized from phosphatidylserine by

decarboxylation. Conversely, choline, the most common phospholipid head group, is typically essential

for cultured cells (van Meer et al., 2008; Yamamoto and Niwa, 1993). In the body, it is commonly

obtained from the diet or methylation of PE to phosphatidyicholine (PC), but this reaction is insufficient

to sustain cell-autonomous proliferation in culture. PC is readily produced by the liver, and choline may

therefore rarely be limiting for cells in tissues. Inositol can be synthesized from glucose, and proliferating

cells exhibit variable dependence on an exogenous supply of this nutrient (Eagle et al., 1956a).

A final important class of lipids derived from fatty acids is sphingolipids. Sphingolipids are

synthesized at a minimum from palmitate and serine but can gain additional complexity from the addition

of a second fatty acid, phosphate, and/or polar head groups. These molecules have important functions in

cell signalling (Merrill, 2002), and inability to synthesize these molecules can impair proliferation

through downstream signalling pathways (Lee et al., 2011).

Lipids can be obtained from both exogenous sources and de novo synthesis. For many cells

proliferating in culture, de novo lipid synthesis is sufficient to fully support proliferation, as these cells

can grow in lipid-free conditions. Conversely, lipids are abundant in the plasma, and proliferating cells

are thought to rarely be deficient for lipids in animals. Therefore, which sources contribute to cellular

31



lipid mass and how de novo synthesis supports proliferation is still an open question. Understanding the

interplay of consumed and synthesized lipids will provide insight into how cells acquire the mass they

need to proliferate.

Nucleic acids

Nucleic acids are another integral biosynthetic requirement of proliferating cells. DNA is

necessarily synthesized during the cell division cycle, and RNA, the majority of which is ribosomal, is

important for synthesis of protein required to complete the cell growth cycle. Nucleotides are the

precursors for nucleic acid synthesis but also serve as cofactors for many redox, energetic, and

biosynthetic reactions. As with amino acids and lipids, nucleotides can be derived from de novo synthesis

or an exogenous supply (Figure 5). Many extant cancer therapies target de novo nucleotide synthesis

pathways, and their ability to impair the proliferation of both cancer and normal cells underscores the

essentiality of de novo nucleotide synthesis (Martinez-Outschoom et al., 2017; Vander Heiden, 2011). All

nucleotides are composed of a purine or pyrimidine base joined to ribose (or deoxyribose), which is

derived from ribose-5-phosphate (R5P). Free ribose can be scavenged and phosphorylated by only a

minority of cell types, and R5P is therefore synthesized from glucose by most cells (Agranoff and Brady,

1956; Eagle et al., 1958). R5P can be generated through either the oxidative or non-oxidative pentose

phosphate pathways, and recent work has identified cues, such as increased p53 and mTORC 1 activity,

that can enhance flux through these pathways (Bensaad et al., 2006; Duvel et al., 2010). The oxidative

pathway is expected to be the primary source of R5P for biosynthesis in most proliferating cells (Lee et

al., 1998; Reitzer et al., 1980).

Nucleotide base biosynthesis is closely linked to amino acid metabolism, requiring both amino

acids themselves and one-carbon units generated by their catabolism (Figures 1,5). Purine bases

incorporate glycine, derive additional carbon atoms from carbon dioxide and the one-carbon pool, and

obtain their remaining nitrogen atoms from aspartate and glutamine. Pyrimidine bases are synthesized

from aspartate, with additional nitrogen atoms from glutamine and a carbon atom from carbon dioxide.
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Figure 5: De novo and salvage pathways that generate nucleotides for nucleic acid synthesis.
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Thymidine nucleotide synthesis requires another one-carbon unit. Consequently, the modes of acquiring

amino acids described above have a direct impact on nucleotide biosynthesis as well, dictating whether

purine and pyrimidine bases derive entirely from glucose or incorporate material from exogenous amino

acids.

One-carbon units, individual carbon atoms covalently linked to a folate cofactor, are required for

both purine and pyrimidine biosynthesis pathways. Proliferating cells primarily catabolize serine for one-

carbon units to sustain nucleotides synthesis (Labuschagne et al., 2014; Mattaini et al., 2016). As with

protein synthesis, this serine can be derived from glycolytic carbon or from an exogenous source

(Maddocks et al., 2013). Recent work has highlighted the importance of mitochondrial function in one-

carbon metabolism, and Lewis et al. (2014) demonstrated that serine is catabolized in the mitochondria to

yield one-carbon units for nucleotide synthesis. When mitochondria are inhibited, however, the cytosol

becomes the more important source of one-carbon units (Bao et al., 2016). Many cells use serine

catabolism as a source of glycine as well. Glycine catabolism may also serve as a source of one-carbon

units in some contexts, but this is likely not used to sustain nucleotide biosynthesis in most proliferating

cells (Fan et al., 2014; Jain et al., 2012). Jain et al. surveyed nutrient consumption across the NCI-60

panel of cell lines, and observed that glycine consumption was most strongly correlated with proliferation

rate. Importantly, they observed only direct incorporation of glycine into purines with no contribution to

the one-carbon pool. Subsequent work has argued that glycine consumption correlates best with DNA

synthesis rate rather than the acquisition of cell mass (Dolfi et al., 2013), underscoring the importance of

glycine metabolism to nucleotide synthesis.

Serine sits at the intersection of multiple biosynthetic pathways, and how proliferating cells

acquire this amino acid informs how they generate many macromolecule precursors. In addition to serine

and glycine, aspartate is also required for synthesis of both purines and pyrimidines. As discussed above,

aspartate must be synthesized de novo, and limitation for this amino acid impairs both nucleic acid and

protein biosynthesis. Aspartate synthesis critically depends upon sustained mitochondrial activity, and

cells are unable to proliferate due to aspartate auxotrophy when mitochondria are inhibited (Birsoy et al.,
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2015; Sullivan et al., 2015). Interestingly, Sullivan et al. observed that aspartate is limiting for nucleotide

synthesis sooner than for protein synthesis, and cells unable to synthesize aspartate take longer to arrest

growth when adenine and uracil are supplied exogenously.

This result demonstrates that although cells can generate nucleotides from de novo synthesis

pathways, they can use nucleosides or nucleobases provided in the extracellular environment. Indeed,

mammalian cells possess salvage pathways that can generate nucleotides to support proliferation in some

contexts. Tissues capable of salvage are resistant to nucleotide synthesis inhibitors, which can otherwise

hinder proliferation (DeLapp and Karasek, 1976). Nevertheless, the concentrations of nucleosides and

their bases in human plasma are rarely greater than -10 pM (reviewed in Traut, 1994), raising the

possibility that some cells in vivo cannot sustain proliferation through nucleotide salvage alone. This is

corroborated by the insufficiency of circulating nucleosides to rescue proliferation in many cases when

cells in vivo are treated with nucleotide synthesis inhibitors. Consequently, de novo biosynthesis is an

essential source of nucleotides for many proliferating cells. These synthetic pathways depend on a source

of ribose, amino acids, and one-carbon units, and different cell types in different contexts appear to meet

these requirements differently.

Nutrient consumption

Before nutrients can be used to synthesize macromolecule precursors, they must be taken up from

the extracellular environment. Mammalian cells express a wide number of solute carrier (SLC) proteins

that transport specific molecules or groups of related molecules across the plasma membrane.

Proliferating cells often upregulate specific SLC proteins, enhancing their ability to acquire the material

needed to synthesize new cell mass. Protein systems that enable transport of glucose, amino acids, and

other nutrients are described below.
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Glucose is transported into cells by GLUT (SLC2 family) proteins, which allow glucose to cross

the cell membrane but cannot concentrate it in cells. Glucose import is driven by abundant intracellular

hexokinase activity that phosphorylates consumed glucose, trapping it within cells. This ensures that the

glucose concentration is considerably lower inside cells than outside. Hexokinase activity is increased in

proliferating cells, such as mitogen-stimulated lymphocytes (Brand, 1985), to enable rapid glycolytic

flux. Similarly, elevated expression of hexokinase and glucose transporters is important for the rapid

proliferation of cancer cells (reviewed in Vander Heiden, 2011). GLUTI (SLC2A1) is a widely expressed

high-affinity glucose transporter that is expressed by many proliferating cells to obtain glucose for

glycolytic and biosynthetic metabolism. This transporter is commonly expressed in proliferating cells,

such as cancer and fetal cells (Mueckler and Thorens, 2013; Yamamoto et al., 1990), and its expression is

downstream of growth factor receptors and is induced in growth factor-stimulated lymphocytes (Rathmell

et al., 2000; Vander Heiden et al., 2001).

To obtain the amino acids required for biosynthesis of protein, nucleotides, and lipids, cells

express members of several SLC families. Within these families, a given transporter often acts on

multiple amino acid substrates, and multiple transporters can transport any given amino acid. Unlike

GLUT proteins, these transporters typically transport multiple molecules simultaneously. In cases where

amino acid import is coupled to ion transport, the process becomes energetically favourable, and amino

acids can be concentrated in cells. Many members of the amino acid transporter families SLC1, SLC7,

SLC36, and SLC38 co-transport sodium, potassium, or a proton to drive amino acid transport. Some

amino acid transporters (including both those that do and do not co-transport ions) are obligate amino acid

exchangers, importing one amino acid while concomitantly exporting another. These transporters cannot

net import amino acids and instead serve to equilibrate the amino acid pools inside and outside the

cell(Zerangue and Kavanaugh, 1996), which can ensure that all amino acids are available for protein

biosynthesis (Pochini et al., 2014). Proliferating cells employ a variety of amino acid transporters to meet

their biosynthetic requirements, and both cancer cells and dividing lymphocytes increase their capacity

for amino acid transport (Segel and Lichtman, 1981; reviewed in Bhutia et al., 2015).
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Other macromolecule precursors have specific transporters as well. Two classes of transporters

are responsible for nucleoside salvage: equilibrative nucleoside transporters (ENT, SLC29) and

concentrative nucleoside transporters (CNT, SLC28) (Young et al., 2013). Like GLUT proteins, ENT

proteins allow nucleosides and nucleobases to cross membranes but cannot concentrate them within cells.

CNT proteins typically have higher affinity for their substrates and couple nucleoside import to sodium

import, allowing them to concentrate nucleosides in cells. Many proliferating cells express ENT and CNT

proteins, and their expression can increase in cells exposed to proliferative stimuli (Pastor-Anglada et al.,

2007).

Pyruvate and lactate are transported by monocarboxylate transporters 1-4 (MCT, SLC16), which

co-transport a proton with their substrates (Halestrap, 2013). Whether these substrates are imported or

exported depends on their intracellular and extracellular concentrations as well as the pH of each

compartment. Consequently, MCT expression may support proliferation by allowing cells to consume

these molecules as nutrients or to excrete them as waste products. For example, MCT proteins export the

large amounts of lactate generated by aerobic glycolysis, enabling this growth-supporting pathway.

MCTI and 4 are upregulated in many cancers, and MCT inhibitors can have antiproliferative effects in

both cancer and normal cells (Halestrap, 2013; Murray et al., 2005). MCT1 may also transport acetate,

when it is available, to support proliferation (Schug et al., 2016).

Lipids are imported by a variety of mechanisms, either as single molecules or in bulk. Fatty acid

translocase (CD36) binds individual fatty acids, allowing cells to consume them from the extracellular

environment (Goldberg et al., 2009), and SLC27 family members have also been implicated in fatty acid

uptake (Anderson and Stahl, 2013). Plasma lipids are typically albumin-bound or contained within

lipoproteins (large complexes of triglycerides, cholesterol, and proteins), and lipases are required to

liberate lipoprotein lipids to enable transport of individual molecules by CD36 (Goldberg et al., 2009).

Alternatively, whole lipoproteins can bind to plasma membrane receptors and be taken up by receptor-

mediated endocytosis.
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Transporters play an important role in determining which nutrients proliferating cells use to

synthesize macromolecule precursors. These proteins have different substrates and varying affinities for

them, so which transporters are expressed can influence which nutrients are consumed. Additionally,

nutrients are present at different concentrations in the extracellular space, and both the relative affinities

of a given transporter for the available nutrients and the concentrations of those nutrients will dictate

which molecules are efficiently transported. Transporters collectively dictate which nutrients are available

to biosynthetic pathways and, therefore, influence how cells derive the macromolecule precursors needed

to synthesize new cell mass.

Regulation of biosynthesis and metabolism

The pathways a cell uses to generate new cell mass are not fixed, nor are they necessarily

constitutively active. Proliferating cells possess a variety of mechanisms to regulate their biosynthetic

pathways, whose flux can vary dependent on progress through the cell cycle, the activities of signal

transduction pathways, and the availability of macromolecule precursors.

Coordination with the cell cycle

Acquisition of new cell mass (growth) and cell division must both occur during the cell cycle for

cells to proliferate successfully. The cell cycle consists of two growth phases in which cell mass

accumulates (GI and G2), a DNA replication phase (S), and a phase of physical cell division (M). A

cell's metabolic requirements, as a result, are not necessarily constant throughout this cycle. This has been

best studied in S. cerevisiae (Cai and Tu, 2012; Futcher, 2006). When grown in nutrient-limited

conditions, yeast undergo a metabolic cycle that is coordinated with cell division (Tu et al., 2005). The

metabolic cycle consists of oxidative and reductive phases, defined respectively by periods of high and

low oxygen consumption and low and high fermentation. McKnight and colleagues demonstrated that
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DNA replication is confined to the reductive phase of the metabolic cycle possibly to reduce the risk of

oxidative DNA damage that is more likely to occur when oxygen consumption is high (Chen et al., 2007).

They subsequently observed that intracellular levels of metabolites peak at different points during the

metabolic cycle: glycolytic intermediates and nucleotides were more abundant during the reductive phase,

and TCA cycle intermediates were elevated during the oxidative phase (Tu et al., 2007). Yeast cells also

coordinate carbohydrate storage with their cell cycle. Cdkl activity, which controls cell cycle progression

in yeast, is required for liquidation of sugar stores to fuel biosynthesis at defined points in the cell cycle

(Ewald et al., 2016; Zhao et al., 2016).

Mammalian cells also coordinate metabolic pathway activities with cell cycle progression. As in

yeast, oxygen consumption can vary over the course of the mammalian cell cycle and was observed to

peak in late S phase in CHO cells (Lai et al., 1982). Synthesis of macromolecule precursors and of

macromolecules themselves is also not constant throughout the mammalian cell cycle (Kaplon et al.,

2015). E2F, for example, is activated prior to the GI/S transition to regulate transcription of cell cycle

genes, but its other targets include several metabolic enzymes. Metabolism can also be regulated non-

transcriptionally. Studying HeLa cells in vitro, Colombo et al. (2011) observed that levels of glutaminase

and phosphofructokinase peaked during G1, and this resulted in increased glutaminolysis and glycolysis,

respectively. Degradation of these proteins is subject to cell cycle control, ensuring that levels of these

enzymes and flux through their respective pathways decrease after cells exit G1. Many mammalian

studies have relied on metabolic perturbations to synchronize the cell cycle of a population; however,

these methods also alter metabolism to exert their effects on cell cycle progression. Alternative modes of

synchronization will be required to delineate how metabolism varies throughout the cell cycle.

Regulation that coordinates metabolism with the cell cycle could be important to provide cells

with the different macromolecule precursors required at specific times during the cell cycle. The yeast

metabolic cycle, for example, enhances amino acid biosynthesis and ribosome biogenesis for protein

synthesis during GI and produces nucleotides for DNA synthesis during S phase (Cai and Tu, 2012).
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Further work is needed to better understand regulation of metabolism through the mammalian cell cycle

and the advantages this can provide to proliferating cells.

Growth factors and signalling pathways

Many signal transduction pathways link metabolic regulation to proliferation. In mammalian

cells, these signalling pathways can be activated either by exogenous growth factors or by oncogenic

mutations, inducing cell proliferation and an associated metabolic program. This regulation ensures that

cells acquire the macromolecule precursors necessary to generate new mass to enable their proliferation.

Extensive research in cancer metabolism has characterized metabolic alterations associated with the

activation of specific signalling pathways, and this body of work is reviewed in detail elsewhere (Cairns

et al., 2011; Iurlaro et al., 2014; Lunt and Vander Heiden, 2011; Vander Heiden and DeBerardinis, 2017).

Signal transduction pathways can both enhance synthesis of macromolecule precursors and can also

influence how cells obtain nutrients to fuel biosynthesis. Several examples are discussed below.

The PI3K/AKT/mTOR pathway controls a variety of metabolic processes used by proliferating

cells. This pathway is regulated by growth factors in normal proliferating cells but is also activated by

mutations in numerous cancers. AKT activation is sufficient to enhance glycolytic flux in mammalian

cells, and this occurs both through increased expression of glucose transporters as well as post-

translational regulation of glycolytic enzymes (reviewed in Cairns et al., 2011). As discussed, glycolytic

flux itself may facilitate the synthesis of macromolecule precursors (Lunt and Vander Heiden, 2011;

Newsholme et al., 1985b; Vander Heiden et al., 2009). mTORC 1 activity downstream of AKT broadly

regulates protein synthesis and other anabolic processes, but also controls biosynthetic metabolic

pathways, such as de novo lipid and nucleotide synthesis (Duvel et al., 2010; Shimobayashi and Hall,

2014).

Activation of RAS signalling promotes proliferation as well as a variety of metabolic alterations.

Like AKT signalling, RAS promotes glycolytic flux by increasing GLUT1 expression (Chen et al., 2001).

Oncogenic RAS also increases the uptake of some extracellular lipids (Kamphorst et al., 2013) and may
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enhance the ability of cells to scavenge bulk protein from the extracellular environment (Commisso et al.,

2013; Pavlova and Thompson, 2016), potentially altering the sources of lipid and protein mass in cells.

MYC, a transcription factor downstream of RAS and AKT, promotes cell proliferation and is activated in

many cancers. MYC increases glutamine utilization in some contexts, allowing this nutrient to make a

greater contribution to biosynthesis of macromolecule precursors (Altman et al., 2016; Yuneva et al.,

2012).

These examples demonstrate that signalling pathways link proliferation and metabolism in

multiple ways. Their activation causes cells to proliferate and to activate metabolic pathways to

synthesize new cell mass. Additionally, specific signalling pathways can influence how cells synthesize

macromolecule precursors, determining which nutrients are consumed and used for energy and

biosynthesis.

Metabolite sensing

Signalling pathways allow cells to integrate extracellular signals and to produce intracellular

responses. These signals include growth factors that induce cells to proliferate, and aberrant activation of

cell signalling results in dysregulated proliferation in the context of cancer. Signalling pathways must also

be able to sense nutrients: when cells are deprived of essential nutrients, they cease to proliferate, and

when they are deprived of non-essential nutrients, they activate compensatory de novo synthesis

pathways. These responses are necessary to ensure that cells do not proliferate unless they are able to

obtain the macromolecule precursors necessary to synthesize new cell mass.

In mammalian cells, two systems are used to sense the presence of amino acids: mTORCI and

the amino acid response pathway (AAR). mTORCI senses amino acid sufficiency; when amino acids are

abundant, this kinase activates downstream biosynthetic pathways (such as protein synthesis) to generate

new cell mass. Importantly, mTORC I activity requires both adequate nutrients and upstream growth

factors, allowing it to sense when conditions are appropriate to support proliferation (Laplante and

Sabatini, 2012). Consequently, deprivation of amino acids in culture or fasting in vivo inhibits protein
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synthesis downstream of mTORC 1. Withdrawal of any single amino acid in vitro is sufficient to reduce

activity of this pathway; however, depletion of leucine or arginine is particularly potent (Hara et al.,

1998). Amino acid deprivation activates the AAR in both mammalian and yeast cells: uncharged tRNAs

stimulate the kinase GCN2, resulting in the translation of transcription factor ATF4 (Kilberg et al., 2009).

ATF4 has diverse transcriptional targets, which include amino acid transporters and enzymes involved in

de novo amino acid synthesis. Activation of the AAR, therefore, allows cells to adapt to amino acid-

depleted conditions and alter how they obtain this class of macromolecule precursors (Harding et al.,

2003).

Lipids are sensed by SREBP proteins, a well-characterized set of transcription factors that

enhance transcription of lipid biosynthesis genes when lipid abundance is reduced (Goldstein et al., 2006;

Ye and DeBose-Boyd, 2011). SREBP1 isoforms preferentially promote expression of fatty acid synthesis

genes and the mechanism of their activation is not fully understood; SREBP2, by contrast, senses

cholesterol, and it more strongly enhances expression of sterol synthesis genes. These transcription

factors are retained in the endoplasmic reticulum when lipids are abundant, but in conditions of lipid

starvation, proteolytic cleavage liberates the transcription-activating portion of the protein. This allows

cells to activate de novo lipid synthesis when extracellular lipids are not available.

Currently no detailed mechanisms have been described by which cells can sense nucleotide

sufficiency. Since nucleotides can be derived from salvage as well as de novo synthesis, it is possible that

there is crosstalk between these metabolic pathways. For example, inhibition of deoxyribonucleotide

(dNTP) biosynthesis (but not DNA synthesis) increases expression of nucleoside transporters, suggesting

that dNTP levels might be sensed by cells (Pressacco et al., 1995). Enzymes of de novo nucleotide

biosynthesis pathways are subject to end-product feedback inhibition (Lane and Fan, 2015), providing a

means of inhibiting synthesis when nucleotides are abundant.

To successfully grow and proliferate, a cell must acquire new protein, lipid, and nucleic acid

mass, requiring specific nutrients to synthesize macromolecule precursors. Signalling pathways that sense

these molecules allow cells to activate the appropriate de novo synthesis pathways and transporters when
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their levels are insufficient to support biosynthesis. The metabolism of proliferating cells, therefore, is

closely linked to proliferative cues themselves. Signalling pathways that stimulate proliferation also

induce biosynthesis to support the required acquisition of new cell mass, and nutrient sensing provides

feedback to ensure that biosynthesis keeps up with the demands of proliferation, allowing cells to grow

and proliferate in concert.

Pyruvate kinase M2

One mechanism by which proliferating cells control biosynthetic flux depends upon the activity

of the final step in glycolysis, catalyzed by pyruvate kinase. Pyruvate kinase is a highly regulated enzyme

that plays a critical role in cellular metabolism. Mammals express four isoforms of this enzyme: PKL,

PKR, PKM1, and PKM2. PKL and PKR are expressed from the PKLR gene, and their expression is

largely confined to the liver and erythrocytes, respectively. PKMl and PKM2 are encoded by PKM and

their differential expression is the result of a mutually exclusive splicing event. The region coded by the

alternately spliced exon confers unique biochemical properties to PKMI and PKM2 (Noguchi et al.,

1986), and which isoform is expressed profoundly influences cellular metabolism and proliferation

(Israelsen and Vander Heiden, 2015; Mazurek et al., 2002).

Biochemistry

Pyruvate kinase carries out the last reaction in glycolysis, transferring a phosphate group from

phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) to produce pyruvate and ATP (Figure 6).

Completion of this step allows a cell to net generate two molecules of ATP per molecule of glucose

metabolized. This reaction is highly energetically favourable and PEP dephosphorylation provides

sufficient energy to drive ADP phosphorylation, which is otherwise unfavourable (Mazurek et al., 2002).
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Figure 6: The reaction catalyzed by pyruvate kinase.

Pyruvate kinase transfers a phosphate from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP),
yielding pyruvate and adenosine triphosphate (ATP).
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Pyruvate kinases typically exist as monomers, dimers, and tetramers that are dimers of dimers,

although whether the dimer is biologically relevant has been questioned (Anastasiou et al., 2012).

Mammalian pyruvate kinases can form homo- and hetero-tetramers, and the distribution of complex

compositions depends on the relative expression of each pyruvate kinase isoform (Cardenas and Dyson,

1978). PKMI is a constitutive tetramer, but PKM2 can exist in different oligomeric states. PKM2 but not

PKM 1 tetramers exhibit positive cooperativity for PEP, allowing enzyme activity to be quite sensitive to

PEP levels (Sparmann et al., 1973). Importantly, tetrameric pyruvate kinase is more active than

monomeric pyruvate kinase (Ashizawa et al., 1991 a), and inputs that regulate pyruvate kinase activity

often enhance or weaken tetramer stability.

Most pyruvate kinases are allosterically activated by the upstream glycolytic intermediate

fructose-i ,6-bisphosphate (FBP) (Israelsen and Vander Heiden, 2015). This establishes feed-forward

regulation in which this later glycolytic enzyme is more active when early glycolytic metabolites

accumulate. In S. cerevisiae, for example, acute glucose starvation depletes cellular FBP, and this inhibits

Cdc19 (yeast pyruvate kinase), resulting in a dramatic spike in PEP levels (Xu et al., 2012). In mammals,

PKL, PKR, and PKM2 all bind to and are activated by FBP. Four molecules of FBP bind tetrameric

PKM2 and serve to strengthen interactions at the dimer-dimer interface, stabilizing the enzyme in its most

active oligomeric state (Anastasiou et al., 2012; Dombrauckas et al., 2005). When mammalian cells are

acutely starved of glucose, FBP levels drop, and PKM2 rapidly dissociates into monomers, similar to

what happens in yeast (Ashizawa et al., 1991b). By contrast, PKM1 is unable to bind FBP but is a

constitutive tetramer with high activity. FBP binds stably to PKM2 tetramers and very slowly dissociates

from this complex, but this dissociation is accelerated in the presence of phosphotyrosine-containing

peptides (Christofk et al., 2008b). Growth factor (and oncogenic) signalling often increases tyrosine

phosphorylation, and proliferative cues could, therefore, reduce pyruvate kinase activity in PKM2-

expressing cells. PKM2 is also able to bind other allosteric effectors. Each PKM2 monomer contains an

amino acid-binding pocket, which is distinct from the FBP binding site and exerts allosteric control on

enzyme activity (Israelsen and Vander Heiden, 2015). Serine binds this site to activate PKM2, and
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phenylalanine and alanine inhibit PKM2 by binding that site as well (Chaneton et al., 2012; Eigenbrodt et

al., 1983; Sparmann et al., 1973). Succinylaminoimidazolecarboxamide ribose-5'-phosphate (SAICAR), a

purine nucleotide precursor, is a recently identified allosteric activator of PKM2 (Keller et al., 2012),

although its binding site has yet to be characterized. SAICAR levels were reported to rise after cells were

starved of glucose, perhaps maintaining PKM2 activity when FBP is depleted. PKM2 can also be

regulated by post-translational modifications. Tetramer formation is directly inhibited by lysine-305

acetylation, and FBP binding is blocked by acetylation of lysine-433 or phosphorylation of tyrosine-105

(Hitosugi et al., 2009; Lv et al., 2013; Wang et al., 2015).

PKM2 is a highly regulated enzyme, while PKM 1 is less regulated and maintains constant high

activity. The allosteric effectors of PKM2 link the enzyme's activity to multiple inputs including glucose

availability, amino acid levels, nucleotide synthesis, and proliferative signalling. PKM2 activity is

therefore intimately linked to cellular metabolism, particularly in proliferating cells. PKM2 plays a

critical role in allowing cells to synthesize macromolecular precursors needed to proliferate, and the

enzyme's unique biochemical properties appear to link PKM2 activity to cellular biosynthesis.

Role in cellular metabolism

PKM2 is expressed in cells with proliferative potential: in embryonic tissues, in tumors, and in

cells proliferating in vitro. As a result, PKM2 is hypothesized to enable proliferative metabolism and

biosynthesis (Mazurek et al., 2002). PKM2 is expressed in a variety of non-proliferating adult tissues as

well and may promote glycolytic metabolism in these tissues (Dayton et al., 2016; Imamura and Tanaka,

1972). In either context, PKM isoform expression can influence cellular metabolism. Christofk et al.

(2008a), for example, observed that, despite having similar glycolytic rates, cell lines engineered to

exclusively express PKM2 produced more lactate and consumed less oxygen than those expressing only

PKMI. This indicates that PKM2 facilitates aerobic glycolysis by influencing the fate of pyruvate,

although how this occurs remains to be determined.
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Beyond its effect on aerobic glycolysis, PKM2 expression has been observed to favor

biosynthesis of new cell mass in proliferating cells, and this is dependent upon regulation of PKM2 by its

allosteric effectors. Manipulations that increase phosphotyrosine peptide levels suppress PKM2 activity

and increase the flux of glucose carbon to lipid synthesis (Christofk et al., 2008b). PKM2 inhibition can

also increase the production of serine from glycolytic intermediates (Chaneton et al., 2012), and chemical

activators of PKM2 reduce serine biosynthesis, rendering cells auxotrophic for serine (Kung et al., 2012).

Because serine is itself a PKM2 activator, PKM2 will be less active in conditions of serine deprivation,

leading to increased de novo synthesis of this amino acid. Changes in PKM2 activity may also alter the

availability of glycolytic intermediates that feed other biosynthetic pathways (Anastasiou et al., 2012;

Hitosugi et al., 2009; Lunt et al., 2015; Mazurek et al., 2002). Treatment with a PKM2 activator or

overexpression of PKMI reduces de novo nucleotide synthesis in primary MEFs, inhibiting their

proliferation (Lunt et al., 2015). An exogenous source of nucleosides rescues proliferation in these cells,

indicating that PKM2 plays a metabolic role to support proliferation. The mechanism connecting PKM2

to nucleotide auxotrophy remains unknown; however, allosteric regulation by SAICAR supports the link

between regulation of PKM2 activity and nucleotide biosynthesis.

Expressing PKM2 alters cell metabolism and facilitates increased biosynthetic flux. Regulation of

this enzyme's activity by allosteric effectors is essential, and the ability of these effectors to reduce

pyruvate kinase activity enables biosynthesis of macromolecule precursors. Because PKM1 has

constitutive activity, it is unable to fulfill this role. This model is consistent with the fact that PKM2 is the

predominant isoform expressed in proliferating tissues and provides a framework to consider the role that

PKM2 may play in cancer.

Role in cancer

PKM2 is expressed universally in cancers, and its expression enhances the production of

macromolecular precursors, suggesting that PKM2 expression allows for enhanced proliferation. In

support of this notion, proliferative signalling promotes splicing of the PKM transcript to generate PKM2-
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encoding mRNA (David et al., 2010). Xenograft tumors derived from cell lines expressing exclusively

PKM 1 grow more slowly than those expressing PKM2, demonstrating that pyruvate kinase isoform can

influence proliferation (Christofk et al., 2008a). Importantly, suppression of PKMI, rather than

expression of PKM2, is growth-promoting: cells that express both PKM 1 and PKM2 exhibit the same

proliferation defect as those expressing exclusively PKMl, and PKM2 activators can also inhibit

proliferation (Anastasiou et al., 2012; Lunt et al., 2015).

PKM2 may not be essential for proliferation. Indeed, knockdown of PKM2 or both PKM 1 and

PKM2 does not impair the growth of xenograft tumors (Cortes-Cros et al., 2013). Genetic deletion of the

PKM2-specific exon similarly does not prevent or slow tumor growth in genetically engineered breast

cancer mouse models (Israelsen et al., 2013). In this mouse model, PKM2 deletion results in reduced

pyruvate kinase activity, and this residual activity stems from low levels of PKM1 expression that is

largely confined to non-proliferating regions within the tumor. In fact tumors appear to select for loss of

pyruvate kinase expression(Israelsen et al., 2013). These results are consistent with a model wherein

proliferating cells express PKM2 because it can be allosterically inhibited; the resulting low pyruvate

kinase activity promotes anabolic metabolism to enable rapid proliferation.

Some have argued that PKM2 instead is growth-promoting because of an essential non-metabolic

role as a protein kinase (see Chapter 3). We have failed to reproduce this activity in a biochemical assay

and do not expect it to be the primary function of PKM2 (Hosios et al., 2015). That PKM2 is essential

neither for tumor formation nor for viability and development of normal mice argues against an essential

role in proliferation (Dayton et al., 2016; Israelsen et al., 2013). Furthermore, when PKM2 loss is growth-

inhibiting, it can often be explained by the resulting metabolic alterations (Lunt et al., 2015; Wang et al.,

2014). The findings discussed above collectively imply that PKM2 plays an integral part in the metabolic

program that supports rapid proliferation in mammals. PKM2 is linked to both aerobic glycolysis and

anabolic pathways, and expression and regulation of this pyruvate kinase isoform enables cells to acquire

the macromolecule precursors they need to generate new cell mass.
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Energy and redox reactions impotant for biosynthesis

In addition the substrates used to generate cell mass, biosynthesis is also dependent on energy and

cofactor recycling to enable reduction-oxidation (redox) reactions. The nutrients that cells consume not

only provide biosynthetic material but must also fuel catabolic reactions that generate energy, collectively

enabling anabolism. Many of these biosynthetic reactions are energetically unfavourable and must be

driven by coupling them to ATP hydrolysis. Nucleic acid and protein synthesis, for example, both require

this energy to drive polymerization, and de novo synthesis of nucleotides, lipids, and some amino acids

also use ATP (Lunt and Vander Heiden, 2011). Cells can derive ATP from glycolysis and oxidative

phosphorylation, and there have been considerable efforts to quantify the relative contributions of these

pathways to ATP production in vitro (Fan et al., 2013; Zu and Guppy, 2004). Many cells derive a

majority of their ATP from oxidative phosphorylation. This is true even for cells cultured in low (1-2%)

oxygen, as this only partially reduces their oxygen consumption. In some contexts in vivo, oxygen tension

is even lower, and cells might depend more on glycolysis in this case. In addition to biosynthetic

reactions, ATP hydrolysis also drives homeostatic functions such as protein turnover and the maintenance

of ion gradients across membranes. These costs are thought to represent a major use of ATP, and the

proportion used for biosynthesis varies with proliferation rate (Kilburn et al., 1969).

Biosynthetic pathways also make use of redox reactions, and nicotinamide adenine dinucleotide

cofactors (NAD(H) and NADP(H)) provide or remove electrons for these reactions (Lunt and Vander

Heiden, 2011). NADPH is used in reduction reactions to synthesize lipids, deoxynucleotides, and proline.

NAD' is directly used to oxidize precursors of some nucleotides, serine, and aspartate (Birsoy et al.,

2015; Lunt and Vander Heiden, 2011; Sullivan et al., 2015). As discussed, LDH activity and oxidative

phosphorylation both sustain NAD+ levels in cells. Many reactions can generate NADPH, and both the

oxidative pentose phosphate pathway and mitochondrial reactions contribute to its synthesis (Fan et al.,

2014; Lewis et al., 2014).
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Reactions that provide energy and redox cofactors are critical to biosynthesis even though they do

not directly contribute new cell mass. Proliferating cells must abundantly re-generate these cofactors by

metabolizing products of consumed nutrients. Therefore proliferative metabolism enhances biosynthesis

both by providing the carbon and nitrogen for macromolecule precursors and by providing energy and by

recycling redox cofactors that enable synthesis reactions.

Summary

Synthesizing the components of a new cell is a complicated task. Proliferating cells meet the

requirement to double in mass by engaging a complex network of metabolic reactions that enable them to

synthesize the precursors of protein, lipids, and nucleic acids. High flux through glycolytic reactions is a

feature of this metabolic program, providing several advantages to proliferating cells: it is the source of

material for de novo synthesis of many macromolecule precursors and also generates energy to fuel

biosynthetic reactions. Differential expression of glucose transporters and glycolytic enzymes, such as

pyruvate kinase, downstream of proliferative cues mechanistically links the choice to proliferate to the

induction of aerobic glycolysis. A definitive explanation for the resulting high flux from glucose to lactate

is lacking. The preferential expression of PKM2 as opposed to PKM1 is one factor, influencing the

metabolic fate of pyruvate to enable aerobic glycolysis and biosynthesis. Loss of PKMI expression aids

proliferation in vivo, and further work is required to understand why high pyruvate kinase activity

suppresses growth.

Glycolytic regulation and its links to anabolism, in part, inform how a cell obtains a sufficient

amount of material to proliferate. Amino acids, lipids, and nucleotides can each be obtained from

different sources and myriad factors determine how cells obtain macromolecule precursors. Many of these

components are freely available to cells, although their abundance varies, and in some contexts, cells

degrade extracellular macromolecules to obtain amino acids and lipids. De novo biosynthetic pathways
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allow cells to synthesize complex precursors from the nutrients that are available to them. The source of

these precursors may be fixed, but often cells have multiple mechanisms to generate them. For example,

nucleotide ribose necessarily derives from glucose, but aspartate may be synthesized from glucose or

glutamine carbon, or potentially from other anaplerotic substrates. Many factors, among them nutrient

environment and gene expression, dictate which sources of cell mass are used. Interestingly, proliferating

cells often make use of both exogenously supplied material as well as de novo biosynthetic pathways.

Serine and lipids, for example, are both actively synthesized and scavenged by many proliferating cells

(Kamphorst et al., 2013; Mattaini et al., 2016; Possemato et al., 2011). The requirement for these

components could be met by either means, and why both pathways are engaged is unknown. This might

allow cells to generate these components more abundantly or could provide other advantages to

proliferating cells.

Further work is required to fully understand how the sources of macromolecule mass are

determined. Nutrient transporter expression is likely a major contributor as these proteins determine what

a cell can consume from the environment. Amino acid transporters, in particular, have been well

characterized in recombinant systems in vitro, but what they transport in physiological conditions is less

well understood. Extracellular environment also plays an important role as well. Glutamine, for example,

is universally catabolized by cells proliferating in culture, but this is often not the case in vivo. Nutrient

environment, genetics, and interactions with other cells in the body might account for this difference.

Which nutrients contribute to proliferating cell mass, how this is determined, and how this

enables proliferation is far from being completely understood; however, in recent years our knowledge of

which metabolic pathways critically support proliferation has greatly expanded. The work described in

the following chapters seeks to provide a framework to address how metabolism contributes to rapid

proliferation, both by broadly examining how new cell mass is acquired and by exploring the functions of

specific metabolic pathways.
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Abstract

Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major

nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients

contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different

nutrients and find that the majority of carbon mass in cells is derived from other amino acids, which are

consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates,

glutamine contributes most to protein, and this suggests that glutamine's ability to replenish TCA cycle

intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that

rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates

of glucoseand glutamine consumption support rapid cell proliferation beyond providing carbon for

biosynthesis.

Introduction

Rapidly proliferating cells have different metabolic needs from non-proliferating cells. During

each cell cycle, proliferating cells must synthesize all of the components needed to duplicate cell mass

(Lunt and Vander Heiden, 2011). One metabolic feature common to many proliferating cells is high

glycolytic flux to lactate in the presence of oxygen, a phenomenon referred to as aerobic glycolysis or the

Warburg effect. Why proliferating cells, including cancer cells, consume large quantities of glucose only

to excrete the majority of this carbon as lactate is a subject of debate (Brand, 1985; Brand et al., 1986;

DeBerardinis et al., 2008; Gatenby and Gillies, 2004; Hsu and Sabatini, 2008; Hume et al., 1978; Jiang

and Deberardinis, 2012; Koppenol et al., 2011; Lunt and Vander Heiden, 2011; Newsholme et al., 1985;

Vander Heiden et al., 2009; Vazquez et al., 2010). One widely held hypothesis is that high glycolytic flux

allows intermediates to be shunted into anabolic pathways to support biomass accumulation (Brand,

1985; Chaneton et al., 2012; Faubert et al., 2013; Hsu and Sabatini, 2008; Hume et al., 1978; Jiang and
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Deberardinis, 2012; Jiang et al., 2011; Lunt and Vander Heiden, 2011; Newsholme et al., 1985; Shestov

et al., 2014; Vander Heiden et al., 2009; Wang and Green, 2012). Many proliferating mammalian cells

also consume substantial quantities of glutamine, and glutamine is also hypothesized to provide material

for biosynthesis (Brand, 1985; Brand et al., 1986; Daye and Wellen, 2012; DeBerardinis et al., 2007; Hsu

and Sabatini, 2008; Wang and Green, 2012). Glutamine or other carbon sources can add new carbon to

the tri-carboxylic acid (TCA) cycle (anaplerosis) in order for TCA cycle intermediates to be removed

from the cycle and used for the production of new macromolecules in cells (Daye and Wellen, 2012;

DeBerardinis and Cheng, 2010; DeBerardinis et al., 2007; Lunt and Vander Heiden, 2011; Newsholme et

al., 1985; Wang and Green, 2012), although the extent to which glutamine or other nutrients contribute to

biomass has not been determined.

Implicit in these hypotheses is the notion that the most consumed nutrients are also the major

contributors to biosynthesis and, therefore, to cell mass. This hypothesis has not been rigorously tested,

yet it forms the basis for modeling efforts to understand cancer metabolism (Cascante et al., 2002;

Shestov et al., 2014; Shlomi et al., 2011). In Escherichia coli, the sources of cell mass and their fates have

been carefully quantified (Roberts et al., 1955), and for prototrophic strains grown in defined minimal

media, medium composition constrains the nutrients available to produce new biomass. This is not the

case for mammalian cells; in both tissues and in cell culture mammalian cells are exposed to diverse

metabolic substrates. While the relative uptake of various nutrients has been examined in several systems

(Jain et al., 2012; Paredes et al., 1998), the extent to which any contributes to biomass is unknown.

Various qualitative fates of glucose and glutamine in proliferating cells have been extensively

studied, and recent work has suggested that metabolism of other nutrients can be important for

proliferation, although net contribution of these alternate fuels to cell mass has not been quantified

(Comerford et al., 2014; Kamphorst et al., 2013; Labuschagne et al., 2014; Maddocks et al., 2013;

Schoors et al., 2015; Schug et al., 2015). In this study we quantitatively determined the sources of cell

mass in rapidly proliferating mammalian cells. Surprisingly, we found that glucose and glutamine, the

two nutrients with the highest consumption rates, are not the major contributors of carbon to cell mass.
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Instead, other amino acids, which are consumed at much lower rates, together account for the majority of

carbon in cells. Examining the biosynthetic fates of these nutrients for mass acquisition provides a

framework for considering how metabolism supports cell proliferation.

Results

The contribution of glucose to cell mass

To begin examining the contribution of nutrients to mammalian cell mass, we measured the

consumption and excretion rates of glucose, lactate, and amino acids in H 1299 and A549 non-small cell

lung cancer cell lines, cells that have been shown previously to rely on aerobic glycolysis for proliferation

(Christofk et al., 2008) (Figure 1). Similar to other mammalian cell lines (Figure 2A) (Jain et al., 2012),

glucose, followed by glutamine, was the most consumed nutrient, and consumption of both exceeded that

of serine, the third most consumed metabolite by several fold. Consistent with high aerobic glycolysis in

these cells, glucose was consumed at approximately half the rate that lactate was excreted. Most lactate is

derived from glucose (Figure 2B) (Brand, 1985; Hume et al., 1978), and two lactate molecules can be

derived from one glucose molecule. Since the difference between glucose uptake and lactate excretion

equals the maximum possible rate of glucose contribution to cell mass, the rate of new mass addition

from glucose must be small relative to the rate of glycolysis.

To determine how different nutrients contribute carbon to cell mass, H1299 and A549 cells were

grown in the presence of glucose uniformly labeled with carbon-14 ([U- 14C]-glucose, i.e. all carbon atoms

substituted with carbon-14) until >95% of cell mass had turned over, allowing the proportion of cell dry

mass derived from glucose carbon to be determined (Figure 4, see methods). Surprisingly, glucose

carbon only contributed to around 10% of cell mass even though cells are approximately 50% carbon by

dry weight (Figure 3A,B, 4B). To confirm that this method is capable of accounting for the contribution

of glucose to cell mass, the approach was repeated in prototrophic Saccharomyces cerevisiae strain SKI.

70



The dry mass of this strain is also approximately 50% carbon, and when SKI yeast were cultured in

minimal medium containing glucose as the sole carbon source, this carbon could be accounted for using

carbon-14 incorporation from [U-' 4C]-glucose (Figure 3C).

Glutamine is the most abundant amino acid in plasma (McMenamy et al., 1957), and, like

glucose, can be rapidly consumed by proliferating cells. To measure the contribution of glutamine to cell

mass, we assessed carbon-14 labeling from [U 14C]-glutamine (Figure 3A,B). Like glucose, glutamine

carbon did not contribute to more than 10% of cell mass, suggesting that the majority of cellular carbon is

not derived from glucose or glutamine. To ensure that low incorporation of glucose and glutamine carbon

was not influenced by base medium choice, carbon-14 labeling of cells cultured in RPMI 1640 and

DMEM were compared, with no differences observed (Figure 4C). We also confirmed that labeling was

saturated during these experiments; as subsequent passaging in medium with labeled glucose or glutamine

did not increase the fraction of cell mass labeled by these nutrients (Figure 4D,E).

To confirm these findings using an orthogonal approach, cells were grown in medium containing

[U- 13C]-glucose or glutamine, such that none of the carbon in either nutrient was unlabeled. After

culturing cells in this medium until >95% of cell mass was produced de novo, the fraction of cellular

carbon labeled by carbon- 13 was measured by isotope ratio mass spectrometry (IRMS), and the fractional

labeling observed was consistent with values derived from carbon-14 incorporation (Figure 4F).

Other cell lines representing different tissues of origin, oncogenic drivers, and species also

incorporated glucose and glutamine carbon to a similar extent as H1299 and A549 cells (Table 1, Figure

3D). This finding suggests that many immortalized cells derive substantial cell mass from a source other

than glucose and glutamine. To determine if cell mass is acquired similarly by normal proliferating

mammalian cells, we examined both primary embryonic fibroblasts (MEFs) and primary T cells derived

from mice. Both MEFS and activated proliferating T cells exhibited comparable levels of carbon

incorporation from glucose and glutamine, suggesting that a large proportion of cell mass is also derived

from other nutrients in these cells (Figure 3D,E).
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Figure 1: Rapidly proliferating mammalian cells in culture consume glucose and glutamine in
excess of other nutrients.

Consumption and excretion rates of glucose, lactate, and amino acids by H1299 and A549 cells. Nutrients
are ranked in descending order by absolute magnitude of their fluxes. Each bar represents the slope from a
linear fit of N=3 replicate, standard error. Standard three-letter abbreviations are used for amino acids;
Gic, glucose; Lac, lactate.
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Figure 2: Rapidly proliferating cells have common metabolic features, consuming large amounts of

glucose and glutamine and converting most glucose to lactate.

Rapidly proliferating cells have common metabolic features. (A) Consumption and excretion rates

(CORE) of glucose, lactate, and amino acids forthe NCI-60 cell lines as observed by Jain et al. (2012).

Boxes indicate the mean and middle two quartiles, and whiskers indicate the minimum and maximum

values. (B) Fractional labeling of lactate by H 1299 and A549 cells grown in medium containing [U-"C]-

glucose or glutamine. Each bar represents the average of N=3, IS.D. Standard three-letter abbreviations

are used for amino acids; Glc, glucose; Lac, lactate.
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Figure 3: Neither glucose nor glutamine contributes the majority of carbon present in proliferating
mammalian cells.

The fraction of cell dry mass consisting of carbon in (A) H 1299 and (B) A549 cancer cells exceeds the
fraction of cell mass labeled by glucose or glutamine. (C) In SKI prototrophic yeast, the fraction of cell
mass labeled by glucose as the sole carbon source is equal to the fraction of cell mass composed of
carbon. (D) The contributions of glucose and glutamine to cell mass are similar across mammalian cells.
(E) The fraction of cellular carbon derived from glucose or glutamine in activated primary mouse T cells.
Each bar represents the average of N=3 replicates, +S.D.
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cell mass.

(A) Cell dry mass of H1299, A549, A172, MDA-MB-468, FL5.12, and MEF cells as measured using a
suspended microchannel resonator (SMR) (Feijo Delgado et al., 2013). (B) Carbon and nitrogen

elemental composition of H1299 and A549 cell dry mass as determined by elemental analysis. (C)
Incorporation of glucose and glutamine carbon into dry mass of H1299 and A549 cells cultured in

DMEM with 10% FBS, or RPMI 1640 with 10% FBS. (D and E) Incorporation of carbon from glucose,
glutamine, serine, or valine into H 1299 and A549 cell mass after two and three passages in medium

containing carbon-14-labeled nutrients. (F) Percent of cell dry mass labeled by [U-' 4C]- or [U C]-

glucose or glutamine in H1299 and A549 cells. Carbon-14 incorporation was measured by scintillation

counting and normalized relative to culture mass. Carbon-13 incorporation was measured as a fraction of

total cellular carbon by EA-IRMS and was adjusted to percentage of cell mass by multiplying by the

fraction of cell dry mass consisting of carbon (see 4A). The dotted line represents equal labeling by
carbon-14 and carbon-13. In A, boxes indicate the mean and middle two quartiles, and whiskers indicate

the minimum and maximum values measured; single cell dry masses of 60-200 cells are presented for

each cell type assessed. In B-F, each point represents the average of N=3, S.D.
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Amino acids contribute the majority of mammalian cell mass

Mammalian cells are thought to consist largely of protein (Alberts et al., 2008; Bonarius et al.,

1996; Mourant et al., 2005), so we hypothesized that amino acids could be a major contributor to cell

mass. Mammalian cells cannot synthesize many amino acids, and often have access to both essential and

non-essential amino acids in their environment. For example, valine, an essential amino acid, must be

taken up from the environment, but serine, a non-essential amino acid, may be synthesized de novo.

Carbon from these amino acids, which have different fates in central carbon metabolism and a different

ability to contribute to non-protein biomass, each labeled 2-4% of cell mass (Figure 5A). To examine

how amino acids in general contribute to cell mass, several mammalian cell lines and primary MEFs were

grown in medium containing a pool of fifteen [U-C] -amino acids (which did not include glutamine).

This medium was modified from RPMI 1640 in a manner that supported normal cell proliferation in order

to facilitate quantitative determination of cell labeling by these amino acids (see methods, Figure 6A,B).

Together, amino acids were found to label the majority of carbon in cells and, together with the carbon

derived from glucose and glutamine, can account for most of the carbon mass in mammalian cells

(Figure 5B).

In addition to providing carbon, glutamine contains two nitrogen atoms and can be a nitrogen

source for cultured cells (DeBerardinis and Cheng, 2010). The amide nitrogen can be transferred to

asparagine and nucleotides, and the a- (amino) nitrogen can be transaminated to non-essential amino

acids. Both nitrogen atoms can also be incorporated into protein as glutamine, and hydrolysis reactions

allow either to be excreted as ammonia. To determine the extent to which glutamine contributes nitrogen

to biomass of H1299 and A549 cells, cells were cultured in the presence of either [amide-"N]- or [a-"N]-

glutamine, and the contribution of each to cellular nitrogen was measured by IRMS after labeling had

reached steady state (Figures 5C, 6C,D). The amide- and a-nitrogen atoms, respectively, accounted for

approximately 11% and 17% of cellular nitrogen. Interestingly, glutamine nitrogen altogether contributed

less than half of the nitrogen in each of the cell lines analyzed, suggesting that the rest is derived from

other sources such as amino acids.
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Cell mass partially turns over in non-proliferating mammalian cells

We next sought to determine the extent to which glucose and amino acids contribute carbon mass

to non-proliferating cells. These cells do not have the biosynthetic demand to duplicate cell mass, but are

not thought to be metabolically quiescent (Lemons et al., 2010) and likely turnover some proportion of

cell mass. To determine the mass contribution to quiescent cells, we examined non-transformed human

mammary epithelial cells (HMECs) that reversibly arrest when epidermal growth factor (EGF) is

withdrawn (Figure 7A) (Stampfer et al., 1993). Proliferating HMECs incorporate carbon from glucose,

glutamine, serine, and valine to an extent comparable to other proliferating cells, and interestingly,

labeling of non-proliferating HMECs approached similar steady state values, suggesting that most of their

cell mass turns over after several weeks (Figure 8A,B). We also determined the contributions of these

nutrients to carbon cell mass of post-mitotic cells: primary hepatocytes cultured ex vivo, as well as

myocytes and adipocytes differentiated in vitro from C2C 12 and 3T3-L 1 cells, respectively. Similar to

HMECs, hepatocytes, myocytes, and adipocytes were labeled by each of the tracers used, indicating some

cell mass turnover (Figures 8C-G, 7B-E). However, in most cases labeling approached steady state

values lower than those observed for proliferating cells. This suggests that, in contrast to the HMECs,

only a fraction of cell mass in these differentiated cells is turned over. Importantly, undifferentiated

C2C12 myoblasts and undifferentiated 3T3-LI pre-adipocytes incorporated glucose and amino acids to an

extent similar to other proliferating cells (Figure 8D,F). Like hepatocytes and myocytes, adipocytes

incorporated amino acids at levels lower than proliferating cells (Figure 8G). Glucose, however, labeled

a substantial portion of adipocyte cell mass, consistent with their role in lipid storage (Figure 7E). The

non-proliferating cells analyzed illustrate that different cell types use different metabolic programs.

Hepatocytes and myocytes partially turn over cell mass, using glucose and amino acids to similar extents.

Adipocytes are metabolically specialized, incorporating large amounts of glucose carbon, and HMECs

abundantly incorporate amino acids into cell mass regardless of their proliferation status.
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Figure 5: Amino acids contribute the majority of cell mass for proliferating mammalian cells.

(A) Serine and valine carbon each contribute 2-4% of cell dry mass in mammalian cells. (B) A pooled

mixture of fifteen amino acids can label the majority of cellular carbon in proliferating mammalian cells.

Amino acid mass contribution was determined by culturing cells in modified RPMI (Table 2, Figure 6A)

with [U-' 4 C]-amino acids. Mass contribution of glucose and glutamine as determined in D are also

presented for comparison. (C) The fraction of cellular nitrogen derived from glutamine a- and amide-

nitrogen atoms. (D) Acetate carbon is a minor contributor to cell mass, and the net contribution is

dependent on acetate concentration. (E) Contribution of serum palmitate to cell mass as determined by

incorporation of [U- 4C]-palmitate. Each bar represents the average of N=3 replicates, S.D.
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(A) Concentrations of glucose and amino acids in normal RPMI 1640 and modified medium used to
measure incorporation of amino acids into cell mass (see Table 2). (B) Growth of A549 cells in normal
RPMI 1640 medium and in medium with modified amino acid concentrations. Nitrogen-15 incorporation
into (C) H 1299 and (D) A549 cells from [amide-15N]- or [a-15N]-glutamine. Concentrations of (E)
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RPMI 1640 medium (without serum). (G) The fraction of H1299 and A549 cell dry mass derived from
serum palmitate and oleate. The amount of carbon labeled by [1-1 4C]-palmitate and [1- 14C]-oleate was
multiplied by 16 and 18, respectively, to estimate the contribution from the full-length fatty acid. This
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point represents the average of N=3, S.D.
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Figure 7: Validation of non-proliferating cell models.

(A) Human mammary epithelial cell (HMEC) proliferation is reversibly arrested when epidermal growth

factor (EGF) is withdrawn, as measured by 5-ethynyl-2-deoxyuridine (EdU) incorporation. N=3, S.D.

Representative phase contrast images of (B) proliferating C2C 12 myoblasts, (C) differentiated C2C 12

myocytes, (D) proliferating 3T3-LI fibroblasts, and (E) 3T3-LI differentiated into adipocytes. Cells in

(D) and (E) are stained with oil red 0.
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Figure 8: Carbon contribution to non-proliferating cell mass.

Using carbon-14 tracers, carbon from glucose (Glc), glutamine (Gln), serine (Ser), and valine (Val) was

traced into cell mass of: (A) proliferating human mammary epithelial cells (HMEC), (B) arrested HMEC,
(C) primary hepatocytes, (D) proliferating C2C 12 myoblasts, (E) differentiated C2C 12 myocytes, (F)

proliferating 3T3-LI fibroblasts, and (G) 3T3-LI differentiated into adipocytes. Carbon incorporation into
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cells. Each bar represents the average of N=3 replicates, S.D.
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Fatty acids and acetate are minor sources contributing to cell mass

The large contribution of amino acids to cell mass despite relatively low uptake suggests that

other nutrients consumed at low rates might contribute to cell mass. For instance, acetate can play a role

in fueling cell proliferation (Comerford et al., 2014; Schug et al., 2015). Acetate is absent from tissue

culture base media, so we measured acetate levels in fetal bovine serum (FBS) and in the dialyzed FBS

used in our labeling studies (Figure 6E). In bovine serum, acetate was approximately 400 pM, and in

tissue culture medium containing 10% FBS or 10% dialyzed FBS, acetate levels were approximately 40

pM or 4 pM, respectively. Carbon from acetate did not label cells appreciably when cultured in medium

with 10% serum, but began to approach 1% of cell dry mass when 400 pM acetate was present in the

medium (Figure 5D), a concentration higher than what is typically observed in human serum (Richards et

al., 1976; Tollinger et al., 1979).

Cells can also scavenge serum fatty acids as another potential source of mass (Bailey et al., 1972;

Kamphorst et al., 2013; Schoors et al., 2015). Quantitative assessment of total fatty acid contribution is

complicated by the fact that the fatty acid composition of serum is complex and cannot be recapitulated

using isotope labeled tracers. However, to assess the magnitude of individual fatty acid contribution, we

examined the incorporation of palmitate (C16:0) into cell mass. Palmitate is the most abundant fatty acid

in both serum and in cell membranes (Kilsdonk et al., 1992; Raatz et al., 2001; Vajreswari et al., 1990).

Palmitate is present at around 260 pM in FBS (Figure 6F), however this value includes both free fatty

acid and esterified palmitate in lipids. [U14 C]-palmitate provided as a free fatty acid labeled

approximately 5% of H1299 and A549 cell mass when considered in relation to total palmitate (free fatty

acid and esterified) in media (Figure 5E). These data indicate that exogenous lipids can also be a

contributor to mass; however this assessment may overestimate the contribution because most serum fatty

acids are esterified in lipids such as triglycerides (Raatz et al., 2001). Esterified fatty acids taken up by

cells are first hydrolyzed by lipases to generate free fatty acids that mix with free fatty acid pools in cells

(Walther and Farese, 2012). However, the amount of carbon incorporated from [1- 14C]-palmitate was one

sixteenth of that incorporated from [U-' 4 C]-palmitate (Figure 6G). Because the labeled carbon atom in
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[1- 14C]-palmitate is the first carbon lost during fatty acid oxidation, these data suggest that each molecule

of palmitate acquired by cells is either completely catabolized or completely incorporated into cell mass.

Based on similar assumptions, carbon from [l-' 4 C]-oleate (C 18:1), the second most abundant serum fatty

acid (Figure S3F) (Raatz et al., 2001), also could account for approximately 5% of cell mass (Figure

6G).

Serum provides the majority of cellular lipids

Lipids can be scavenged from the environment or synthesized de novo, with glucose and

glutamine serving as potential substrates for de novo biosynthesis (Kamphorst et al., 2013; Metallo et al.,

2012; Mullen et al., 2012). To understand the contributions of glucose and glutamine specifically to

lipids, we adapted a bi-phasic extraction protocol to separate and recover lipids (and other non-polar

compounds) as well as the other major macromolecule classes: RNA, DNA, protein, and polar

metabolites (Figure 9A). This approach can quantitatively recover these macromolecules from a cell

lysate with high purity, as validated using radioactive standards that were isolated by orthogonal means

(Figure 9B,C). Fractionation of radiolabeled cells using this approach also yields full recovery of input

radioactivity (Figure 10A). Consistent with previous studies (Kamphorst et al., 2013; Metallo et al.,

2012; Mullen et al., 2012), carbon-14 from both glucose and glutamine was recovered in the lipid fraction

of H 1299, A549, and A172 cells, with greater glucose contribution to lipids than glutamine (Figure 9D).

Substantial amounts of glucose carbon were recovered in each of the macromolecule fractions

investigated, but the largest proportion of glucose was diverted to the non-polar fraction suggesting that

glucose is a major source of material for de novo lipogenesis.

To assess the contribution of lipid biosynthesis from glucose relative to lipid scavenging from the

environment, we measured the increase in glucose incorporation into the lipid fraction when proliferating

cells were deprived of exogenous lipids. To do this, cells were cultured in serum stripped of lipids by

non-denaturing organic extraction (Figure 6F). Any increase in glucose contribution to fatty acids under

these conditions should reflect the contribution of exogenous lipids to mass when cells are cultured in
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lipid-replete conditions. Importantly, cell mass was not significantly changed when cells were cultured in

medium containing fatty-acid-stripped serum (Figure 12A). Substantially more glucose carbon was

incorporated into cell mass when cells were cultured without lipids, such that approximately half of

carbon from glucose was diverted to the non-polar fraction under these conditions (Figure 11A,B). These

data are consistent with cells obtaining substantial lipid mass from their environment when available

(Figures 9E, 10B). These data are also consistent with the observed equal contributions of [U- C]-

palmitate and [1-"C]-palmitate to cell mass (Figure 6G). No detectable change in net glutamine carbon

contribution to cell mass was observed when cells were cultured in the absence of lipids; however, the

relative incorporation of glutamine carbon into non-polar material approximately doubled in this

condition. Finally, the difference in the proportion of cell mass derived from glucose when cells are

grown with or without serum fatty acids corresponds well with the measured contribution of palmitate

and oleate carbon to cell mass when these fatty acids are present (Figures 5E, 6G). This corroborates the

notion that these two fatty acids are the predominant mass contributors from exogenous lipids and argues

that lipid mass in these cells is obtained from a combination of scavenging and de novo synthesis from

glucose. Assuming that cellular lipids are derived from only glucose, glutamine, and extracellular lipids,

the above data suggest that 60-70% of lipid carbon is derived from exogenous sources, while 20-30% is

derived from glucose and -5% from glutamine.

The fate of carbon incorporated into cell mass

Glucose carbon can enter many biosynthetic pathways (Hume et al., 1978; Lunt and Vander

Heiden, 2011), and glucose contributes to all macromolecular fractions (Figure 9D). One non-redundant

function of glucose is to provide ribose for nucleotide biosynthesis and a quarter of glucose carbon was

traced to RNA and DNA. Some amino acids might also contribute to pathways beyond protein synthesis.

To understand how cells utilize amino acids, we traced glutamine, serine, and valine carbon into

macromolecules (Figure 9D). Both glutamine and serine can be metabolized to other biosynthetic

precursors. Although glutamine anapleurosis for the TCA cycle is hypothesized to provide material that
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can satisfy biosynthetic demands beyond protein biosynthesis (Daye and Wellen, 2012; DeBerardinis and

Cheng, 2010; DeBerardinis et al., 2007; Lunt and Vander Heiden, 2011; Metallo et al., 2012; Mullen et

al., 2012), protein was by far the major fate of glutamine carbon. Apart from a small contribution to the

non-polar fraction, minor amounts of glutamine carbon were also recovered in nucleic acids. Glutamine

carbon incorporation was 3-4 times greater than serine or valine carbon incorporation (Figures 3,5), but

nonetheless most glutamine carbon was recovered with the protein fraction. Because glutamine is not

over-represented in cell protein (Bonarius et al., 1996), this finding suggests that glutamine anapleurosis

provides carbon for other TCA cycle-derived amino acids. Serine carbon exhibited similar relative

incorporation into cell mass as glutamine carbon. While the majority of serine carbon was found in

protein, serine carbon was also recovered in nucleic acids in agreement with the known role of serine in

providing both one-carbon units and glycine for nucleotide biosynthesis (Labuschagne et al., 2014; Lunt

and Vander Heiden, 2011). Valine carbon was traced exclusively into protein. If glucose, glutamine, and

serine are assumed to be the sole carbon sources for nucleic acids (glycine is likely a minor contributor as

it is excreted by these cells, see Figure 1), these data suggest that glucose supplies 60-80% of nucleotide

carbon, and glutamine and serine supply 10-20% and -15%, respectively.

Nutrient deprivation increases the contribution of glucose to cell mass

It is possible that under some conditions glucose and/or glutamine carbon contribute more to cell

mass. Several amino acids are non-essential for cells, and cells cultured without those amino acids may

become more dependent on glucose, glutamine, or other nutrients. To identify which amino acids or

combinations of amino acids are non-essential for cells in culture, H1299 and A549 cells were cultivated

in media lacking combinations of non-essential amino acids (Figure 12B,C). Two amino acids that can

be derived from glycolysis, serine and glycine, and four amino acids that can be derived from the TCA

cycle, asparagine, aspartate, glutamate, and proline can be removed from medium without stopping

proliferation of these cells. Removal of glycine or the TCA-cycle amino acids had minimal effect on

doubling times of the cells tested (Figure 12B,C), and removal of either the TCA-cycle amino acids or
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and analysis of nutrient

(A) Relative cell dry masses of H1299 and A549 cells cultured in RPMI 1640 with 10% dialyzed FBS
(replete), medium lacking serine and glycine, medium lacking asparagine, aspartate, glutamate, and
proline, or medium supplemented with 10% lipid-stripped FBS. Boxes indicate the mean and middle two
quartiles, and whiskers indicate the minimum and maximum values measured; each represents single cell

dry masses of 60-200 cells. Average cell mass in each condition did not differ significantly from that in
replete medium according to a two-tailed Student's t-test (p > 0.05). Proliferation rates of (B) H 1299 and

(C) A549 cells in RPMI 1640 lacking all non-essential amino acids (NEAA), or specific non-essential
amino acids (standard one-letter abbreviations are used). N=3, S.D. Carbon incorporation into
proliferating (D) H 1299 and (E) A549 cells cultured in 1% 02. (F) Immunoblot for HIFI a in cells

cultured in 21% oxygen with or without deferoxamine (DFO, a chemical inhibitor of HIF degradation), or
1% oxygen for 4 hours. A p-actin immunoblot is shown as a loading control.
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both serine and glycine did not significantly alter cell mass (Figure 12A). In the absence of serine and

glycine cells incorporate more glucose carbon (Figure 11C), and the increase in incorporation is

approximately two times greater than the amount of carbon incorporated from serine. More glucose

carbon also contributes to protein in this condition (Figure 11D), but the relative fate of glucose carbon

does not differ much from serine/glycine-replete conditions, most likely because serine and glycine also

contribute to nucleotides and lipids (Lunt and Vander Heiden, 2011). Since serine and glycine are

synthesized from glycolytic intermediates, glutamine incorporation and utilization are not changed when

cells are cultured in the absence of these amino acids (Figure 12D).

Without the TCA-cycle amino acids asparagine, aspartate, glutamate, and proline, neither glucose

nor glutamine carbon incorporation into cell mass changes (Figure 11E), and their relative biosynthetic

fates are not altered (Figure 11F). This suggests that independent of the presence or absence of these four

TCA-derived amino acids, glutamine provides much of the carbon for these amino acids even when they

are available in the medium. Because glutamine carbon mostly contributes to protein and because its

incorporation into cell mass is 3-4 times greater than that of serine or valine, these data are consistent with

TCA cycle anapleurosis from glutamine producing these amino acids in greater quantities than other

macromolecular precursors. Consistent with this hypothesis, based on known pathways, the contribution

of glutamine carbon to RNA and DNA only occurs via glutamine-generated aspartate.

Glucose and glutamine utilization is altered in hypoxia: glucose contributes less carbon and

glutamine contributes more carbon to lipogenic acetyl-CoA, and cells become increasingly dependent on

scavenged lipids (Kamphorst et al., 2013; Metallo et al., 2012). In H1299 cells, glucose and glutamine

incorporation was not altered when cells were cultured in 1% oxygen, whereas incorporation of both was

decreased in A549 cells while serine and valine incorporation were relatively unchanged in hypoxia

(Figure 12D,E). Importantly, HIFla was stabilized in cells cultured in 1% oxygen confirming a normal

response to low oxygen (Figure 12F), These results suggest that, although metabolic specific pathways

are regulated by hypoxia, the incorporation of glucose and glutamine carbon into cell mass is not grossly

altered.
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Discussion

The finding that mammalian cells derive the majority of their mass from exogenously supplied

amino acids provides a model for efficient cell growth. By utilizing biosynthetic end products available in

the environment rather than synthesizing them de'novo, cells will require less ATP, redox equivalents,

and carbon to support cell proliferation. Consistent with this hypothesis, carbon from available fatty acids

is used exclusively to generate non-polar material, and any fatty acid oxidation does not appear to provide

carbon to non-lipid biomass. In some cell types, fatty acid carbon has been traced into dNTPs, but the net

contribution of this carbon source has not been quantified (Schoors et al., 2015). In this study, valine

carbon was only found in protein, with no evidence that catabolism of this amino acid provides carbon for

non-protein biomass. Whole protein can also be scavenged as an alternative source of amino acids for

cells (Commisso et al., 2013). Because we can account for protein mass in the cells from the uptake of

free amino acids, protein scavenging does not appear to be a major contributor to cell carbon under the

conditions tested. Nevertheless, in conditions where free amino acids are limiting, mobilizing amino acids

from bulk protein may be important (Commisso et al., 2013), particularly if minimizing de novo amino

acid biosynthesis is favored in proliferating cells.

The finding that amino acids together contribute the majority of cell mass is in agreement with

the notion that cells are composed primarily of protein (Alberts et al., 2008; Dolfi et al., 2013; Mourant et

al., 2005) and is consistent with genomic models of mammalian metabolism (Thiele et al., 2013). The

nutrients used to support the growth of other organisms also argues that direct use of amino acids

nutrients is a common means to support cell proliferation. Both fertilized bird eggs and germinating plant

seeds are examples of closed systems comprised primarily of protein, amino acid, and lipid stores that

support rapid gains in organismal mass in the absence of other exogenous nutrients (Boulter and Barber,

1963; Moran, 2007; Willems et al., 2014). Rapid cell proliferation in these systems is also consistent with

the notion that proliferating cells avoid de novo biosynthesis where possible. Glycolytic flux is also

crucial to development, but it may be more important for ATP and redox balance than for direct
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production of biosynthetic carbon (Ku'era et al., 1984), and the sugar reserves found in seeds contribute

primarily to polysaccharides in seedlings (Abdul-Baki, 1969).

The observation that glucose incorporation can be increased to compensate for the absence of

some nutrients implies that there is a degree of modularity in macromolecular biosynthesis. Cells are

known to have increased dependence on glucose-derived serine when serine is limiting (Chaneton et al.,

2012; Labuschagne et al., 2014), and when cells are grown without serine and glycine, the increase in

glucose incorporation is roughly twice the amount of carbon derived from serine. Similarly, the increase

in glucose incorporation in the absence of lipids corresponded closely to the contributions of palmitate

and oleate to cell mass. These findings argue that cell composition and the biosynthetic components

required for proliferation do not change across these conditions.

Modeling efforts have sought to explain rapid glucose and glutamine consumption by maximizing

the efficiency of consumed carbon incorporation into biomass (Cascante et al., 2002; Shestov et al., 2014;

Shlomi et al., 2011). However, rapid consumption of a particular nutrient need not correlate with cell

mass incorporation and it appears that the large fluxes through glycolysis and glutaminolysis support

proliferation in ways other than supplying carbon. Although the contribution of glucose carbon to cell

mass is small, both glucose carbon and glucose metabolism are still important for proliferation. For

instance, duplication of nucleic acids is needed for cell proliferation and this requires ribose from glucose

or another bioavailable carbohydrate. Glucose and glutamine metabolism also have important roles in

contributing non-carbon material to biosynthesis, including energy and reducing equivalents, as well as

nitrogen. In many cell lines and in some tumors, glutamine is a major source of nitrogen and can provide

anapleurotic TCA cycle carbon. Both glutamine nitrogen atoms contributed abundantly to cellular

nitrogen, with the a-nitrogen contributing slightly more. Because the a-nitrogen is used for de novo amino

acid synthesis that contribute to both protein and nucleic acids, while the amide-nitrogen contributes

primarily to nucleic acids, the increased abundance of proteins in cells likely accounts for this difference.

The primary contribution of glutamine to biomass production in proliferating cells is to the

protein fraction. Although non-glutamine amino acids are the dominant source of protein carbon mass, the
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contribution of glutamine is in excess of that expected of glutamine salvage alone because glutamine

atoms are incorporated into other amino acids and TCA cycle intermediates. Indeed, while glutamine may

not be utilized as a TCA cycle substrate in all cells in vivo (Davidson et al., 2016; Marin-Valencia et al.,

2012; Tardito et al., 2015; Yuneva et al., 2012), our data suggests important incorporation of glutamine-

derived carbon in TCA cycle intermediates regardless of whether they are freely available in the media.

Aspartate, for example, is poorly transported by cells outside of the prostate and the nervous system (Lao

et al., 1993; Storck et al., 1992) and therefore must be synthesized. Glutamine is by far the most abundant

amino acid in tissue culture media; facile transport of this amino acid and high glutaminase activity

observed in cultured cells (DeBerardinis and Cheng, 2010) yield a rapid influx of glutamine carbon to

generate glutamate and proline, which are both excreted by the cells studied. High concentrations of

glutamate can enable cell growth in the absence of glutamine, indicating that, relative to glutamine,

glutamate import is limited (Eagle et al., 1956). Alternatively, de novo synthesis of TCA-cycle amino

acids may provide some benefit to proliferating mammalian cells that exceeds the cost of their synthesis.

Collectively, our data argue that the importance of rapid glycolysis and glutaminolysis for proliferating

cells lies in an ability to generate metabolic products beyond biomass carbon.

Materials and Methods

Cell Culture: Cells were maintained in RPMI 1640 or DMEM (without pyruvate) supplemented with

10% heat-inactivated fetal bovine serum (FBS), penicillin (100 U/mL), and streptomycin (100 pg/mL)

using standard tissue culture techniques. FL5.12 cultures were always supplemented with 0.35 ng/mL IL-

3 (Chemicon International). When cells were grown in the absence of specific amino acids, RPMI 1640

lacking these amino acids was supplemented with 10% heat-inactivated dialyzed FBS and all other

medium components did not differ relative to normal RPM! 1640. RPMI containing modified amino acids

was prepared by dissolving glucose and amino acids into RPMI 1640 base. The composition of this
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medium is detailed in Table 2 and Figure 6A. Medium lacking lipids was RPMI 1640 supplemented with

10% lipid-stripped heat-inactivated FBS (see below). Sodium acetate was added to RPMI 1640 at various

concentrations where indicated. Hypoxic cells were cultured in 1% 02, 5% CO 2 , and 94% N2.

Prototrophic SKI S. cerevisiae were maintained on YEPD (1% yeast extract, 2% peptone, 1% glucose)

agar plates and grown in liquid cultures of synthetic dextrose minimal medium (0.67% yeast nitrogen

base without amino acids, 2% glucose) containing glucose as the sole carbon source.

Table 1: Characteristics of the cell lines used in this study.

Cell Type Species Known mutations*
H1299 Human N-RasQ 6 1K, p53-null

A549 Human K-Ras 1 2S

A172 Human PTEN- and p16/p19-null
MDA-MB-468 Human p53R273H/ R273H; pRB-, PTEN-

, and SMAD4-null
HMEC, 184A1 Human p16-null

FL5.12 Mouse

L1210 Mouse p53 M4
0/A, p16/p19-null

C2C12 Mouse n/a

3T3-L1 Mouse

MEF Mouse n/a
T Cell Mouse n/a

Hepatocyte Mouse n/a

* Source: American Type Culture Collection, and (Bhadury

Table 2: Concentrations
acids, and DMEM.

Component
Glucose
Alanine
Arginine
Asparagine
Aspartate
Cystine

Notes*
Non-small cell lung cancer,
lymph-node metastasis
Lung adenocarcinoma
Glioblastoma
Breast adenocarcinoma
metastasis
Human mammary epithelial
cells, immortalized in culture
Pro-B cells immortalized in
culture, IL-3 dependent
Lymphocytic leukemia
Myoblast, differentiates into
myocytes
Fibroblast, differentiates into
adipocytes
Primary fibroblasts
Primary lymphocytes
activated ex vivo
Primary hepatocytes, non-
proliferating

et al., 2013; McKearn et al., 1985).

(in mM) of glucose and amino acids in RPMI 1640, RPMI with modified amino

RPMI 1640*
11.11

1.149
0.379
0.150
0.208

Modified RPMI
11.11
0.534
0.234
0.379
0.401
0.208

DMEM*
25

.398

.201
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Glutamate 0.136 0.501
Glutamine 2.055 2.055 4
Glycine 0.133 0.401 .4
Histidine 0.097 0.050 .2
Hydroxyproline 0.153
Isoleucine 0.382 0.167 .802
Leucine 0.382 0.467 .802
Lysine 0.219 0.200 .798
Methionine 0.101 0.101 .201
Phenylalanine 0.091 0.178 .4
Proline 0.174 0.200
Serine 0.286 0.267 .4
Threonine 0.168 0.250 .798
Tryptophan 0.025 0.025 .078
Tyrosine 0.111 0.089 .398
Valine 0.171 0.321 .803
* Source: Life Technologies.

Primary Cell Culture: Mouse embryonic fibroblasts (MEFs) were derived from C57BL/6J embryos at

day E14.5. Embryos were dissected and digested in 0.25% trypsin/EDTA, and cells were passed through

an 18-gauge needle and then incubated in HBSS with 5 pg/mL DNase at 37 'C. Cells were plated in

DMEM with 10% heat-inactivated FBS, and non-adherent cells were washed away with PBS, leaving

adherent proliferating cells referred to as MEFs in this study. Primary T cells were derived from the

spleens of 6-week old C57BL/6 mice, and pan T cells were isolated using the mouse Pan T cell Isolation

Kit 11 (Miltenyi Biotec) according to the manufacturer's protocol. Cells were resuspended in RPMI 1640

with 10% FBS and activated in CD3/CD28-coated 24-well culture plates and cultured for 48 hours before

analysis. Primary hepatocytes were isolated from adult female C57BL/6J mice using the Hepatocyte

Isolation System (Worthington Biochemical) according to the manufacturer's instructions. Briefly, livers

were perfused with HBSS followed by collagenase, elastase, and DNase I, and hepatocytes were released

by dissecting the digested livers. Cells were filtered through a 100 ptm filter, washed and plated in

hepatocyte adherence medium (Medium 199 with 0.1% BSA, 2% FBS, 100 nM dexamethasone, and 100

nM insulin) on plates coated with type I collagen. The following day, medium was changed to hepatocyte
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basal medium (Medium 199 with 2% dialyzed FBS, 100 nM dexamethasone, and 1 nM insulin) for

carbon-14 labeling.

Differentiation Models: Proliferating C2C12 and 3T3-Ll cells were maintained in DMEM with 10%

FBS. Confluent C2C12 cells were differentiated for six days in DMEM with 2% horse serum refreshed

daily before initiating carbon-14 labeling in that medium. Confluent 3T3-L1 cells were differentiated by

incubating for two days in DMEM with 10% FBS, 0.5 mM IBMX, 4 pg/mL insulin, 2 pM rosiglitazone,

and 100 nM dexamethasone, followed by two days in DMEM with 10% FBS and 4 pg/mL insulin. The

resulting adipocytes were returned to DMEM with 10% FBS for one day prior to carbon-14 labeling in

that medium. Adipocyte differentiation was confirmed by oil red 0 staining: cells were fixed with 4%

formalin, washed with 60% isopropanol, air dried, and stained for 10 min in 60% isopropanol containing

0.3% oil red 0. Cells were washed multiple times with water prior to imaging.

HMEC Culture and Proliferation: Human mammary epithelial cell (HMEC) line 184A1 (Stampfer et

al., 1993) was maintained in RPMI 1640 supplemented with 5 ptg/mL insulin, 0.5% (v/v) bovine pituitary

extract, 5 ig/mL transferrin, 0.5 pg/mL hydrocortisone, 10 pM isoproterenol, and 5 ng/mL EGF. Cells

were arrested by incubating in this medium lacking EGF for three days prior to carbon-14 labeling in the

absence of EGF. Proliferation was assessed by incorporation of 5-ethynyl-2-deoxyuridine (EdU), a

nucleotide analogue, using the Click-iT EdU Flow Cytometry Kit (Life Technologies). Cells were pulsed

with 10 pM EdU for 2 hours and fixed and stained according to the manufacturer's instructions. The

proportion of cells incorporating EdU was analyzed using a BD FACSCanto II using FACS Diva

Software.

Measurement of nutrient consumption and excretion: Cells number was monitored and medium

collected from cultures of exponentially proliferating cells. Glucose, glutamine, and lactate concentrations

were measured on a YSI-7100 MBS (Yellow Springs Instruments). Medium amino acids were quantified
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by gas chromatography-mass spectrometry (GC-MS, see below) by comparison to isotopically labeled

internal standards of known concentrations. To calculate consumption rate per cell for a given nutrient, its

concentration over time was plot relative to the area under the curve (units: cells - time) of an exponential

function fit to the number of cells. Linear regression analysis was performed, and the calculated slope is

the consumption rate.

Mass Spectrometry Analysis: Samples were analyzed by gas-chromatography coupled to mass

spectrometry (GC-MS) as described previously (Lewis et al., 2014). Polar metabolites were extracted

from medium with 15 volumes of cold acetone containing norvaline and isotopically labeled amino acid

standards (Cambridge Isotopes MSK-A2-1.2) and dried under nitrogen gas. Samples were derivitized

with MOX reagent (Thermo Scientific) and K-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with

1% tert-butyldimethylchlorosilane (Sigma Aldrich). Fatty acids were extracted from serum with 9

volumes of 4:5 methanol:chloroform, dried under nitrogen gas, and derivitized to fatty acid methyl esters

in methanol with 2% sulphuric acid. After derivitization, samples were analyzed by GC-MS, using a DB-

35MS column (Agilent Technologies) in an Agilent 7890A gas chromatograph coupled to an Agilent

5975C mass spectrometer. Data were analyzed using in-house software described previously (Lewis et al.,

2014).

Carbon-14 labeling studies: Unless otherwise indicated, mammalian cells were grown in RPMI 1640

containing 10% dialyzed heat-inactivated FBS supplemented with carbon-14 tracer. Media were

supplemented with one of the following tracers: 0.2 [tCi/mL [U-' 4 C]-glucose, 0.05 ptCi/mL [U- 4 C]-

glutamine, 0.05 tCi/mL sodium [1,2-' 4 C]-acetate, 0.05 piCi/mL [U- 4 C]-palmitic acid, or 0.05 ptCi/mL L-

[U-' 4C]-amino acid mixture (all from American Radiolabeled Chemicals); or 0.05 ptCi/mL [U-'4 C]-serine,

0.05 ptCi/mL [U-' 4 C]-valine, 0.05 iCi/mL [1- 4C]-palmitic acid, or 0.05 ptCi/mL [1-' 4C]-oleic acid (all

from Perkin Elmer). Before addition to the medium, fatty acids were first conjugated to serum proteins by

mixing 0.55 p.Ci/mL of tracer with dialyzed FBS overnight at 37 'C. To ensure labeling steady state was
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reached, cells were grown in the presence of carbon-14 until >95% of cellular material had turned over.

Cells were washed three times with phosphate-buffered saline (PBS) to remove unincorporated carbon-

14, collected by trypsinization, and counted. Cells were lysed in >10 volumes Emulsifier-Safe liquid

scintillation cocktail (Perkin Elmer), and incorporated carbon-14 was quantified by liquid scintillation

counting by comparison to a carbon-14 standard curve. Overnight cultures of SKI yeast grown in SD (2%

glucose) with 0.2 pCi/mL [U-1 4C]-glucose were diluted into the same medium and grown to mid-log

phase. Approximately 20 million cells were washed three times with cold deionized water and lysed with

cold trichloroacetic acid on ice. Incorporated carbon-14 was quantified by scintillation counting as above.

To determine the fraction of cell dry mass derived from a specific nutrient, the ratio of concentrations of

carbon-14 tracer (14 Cedium) to carbon-12 nutrient (12 Cmedium) in the medium was first calculated. The

amount of carbon-14 present in the medium was verified by scintillation counting. The amount of carbon-

14 incorporated into cells (14Cces) was divided by this ratio to determine the total amount of carbon

incorporated from the nutrient, and this was converted to mass by multiplying by 12 g/mol. Finally, this

number was normalized to cell mass by dividing by the number of cells in the culture (N) and the average

mass of a single cell (m) (see below). The reported fraction of cell mass derived from a given nutrient is

therefore equal to: 14 Cceils( 12Cmediim/14Cmedium)(12 g/mol)(Nm)~ .

Measurement of cell dry mass: Dry mass of individual cells was determined by a method described

previously (Feijo Delgado et al., 2013). Cells were trypsinized and resuspended in PBS at a concentration

of 200,000 cells/mL. The cells were then loaded into a 25 x 25 ptm cross-section suspended microchannel

resonator (SMR), and the buoyant mass of single cells was measured first in PBS and then in D20-PBS.

Each experiment lasted around 60 min at room temperature. Dry mass values for cells grown in different

conditions were compared using an unpaired Student's t-test, assuming unequal variances. Where cell dry

mass was not significantly different between conditions, average cell dry mass was taken to be equal

among these conditions for the calculations in the carbon-14 labeling studies.
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Stable isotope labeling studies: Cells were cultured in RPMI 1640 supplemented with 10% heat-

inactivated dialyzed FBS and containing either [U 13C]-glucose or [U- 13 C]-glutamine (Cambridge

Isotopes Laboratories) in place of the corresponding unlabeled nutrient. After cells were cultured in this

medium for 24 hours, polar metabolites were obtained by 80% methanol extraction, dried under nitrogen

gas, and analyzed by GC-MS to determine lactate labeling (see above). Contribution of glucose or

glutamine to total cellular carbon was measured after multiple passages in medium containing carbon-13.

Contribution of glutamine to total cellular nitrogen was measured at the times indicated for cells grown in

RPMI 1640 supplemented as above but containing [amide-"N]- or [a-"N]-glutamine (supplemented at

4% of totral glutamine). In either case, approximately ten million cells per replicate were trypsinized,

washed three times with cold PBS, and dried. Carbon-13 and nitrogen-I5 enrichment (i.e. 3C: "C and

5N:14N) were measured by isotope ratio mass spectrometry (IRMS) (see below).

Elemental analysis and IRMS: To determine the elemental composition of mammalian cells,

approximately ten million cells per replicate were trypsinized and washed twice with cold PBS and once

with 154 mM ammonium bicarbonate. Approximately 100 million SKI yeast cells were washed three

times with cold deionized water. After washing, cells were flash frozen and lyophilized. Samples of

known mass (determined by analytical balance) were wrapped in tin capsules, and total carbon and

nitrogen content were determined by continuous-flow direct combustion mass spectrometry on a Europa

20/20 IRMS (Sercon Limited) at the Utah State University Stable Isotope Laboratory (as in Herron et al.

(2009)). This mass spectrometer was calibrated with glucose and ammonium sulfate standards.

Mammalian cells labeled with carbon-13 were analyzed by this method.

For nitrogen-15 labeled cells, IRMS was conducted as previously described (Kim et al., 2014).

Approximately 10 million cells for each replicate were dried and aliquoted to tin cups prior to analysis.

Samples were analyzed using an elemental analyzer (Vario Pyrocube, Elementar) coupled to an IRMS
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(Isoprime 100, Elementar). Prior to analysis, instrumental tuning was confirmed using urea standards and

standard replicates were analyzed at regular intervals to confirm absence of instrumental drift.

Cell fractionation: Cells were lysed using the TRIzol reagent (Life Technologies) and RNA, DNA, and

protein were extracted and purified by bi-phasic extraction according to the manufacturer's instructions

(Chomczynski, 1993). Briefly, following initial lysis, insoluble material was considered to be DNA; RNA

was precipitated from the aqueous phase, and the remaining soluble material was termed the "polar

fraction"; protein was precipitated from the organic phase, and the remaining soluble material was termed

the "non-polar fraction". Radioactivity in each fraction was quantified by liquid scintillation counting.

To evaluate the efficacy of this purification scheme, radioactive molecules of a defined macromolecular

class were spiked into a TRIzol lysate of unlabeled HEK293 cells prior to fractionation, and radioactivity

in the resulting fractions measured. For this analysis, radioactive lipids were obtained from HEK293 cells

grown in medium containing [U- C]-glucose or [32 P]-orthophosphate (Perkin Elmer) with 2:1

chloroform:methanol extraction. Non-lipid contaminants were removed by further extracting with 0.2

volumes of saline. Radioactive protein was obtained by extensively dialyzing a RIPA lysate of HEK293

cells grown in medium containing [35S]-methionine (Perkin Elmer). Radioactive DNA and RNA were

respectively purified with the PureLink Genomic DNA Mini Kit (Life Technologies) and the RNeasy

Mini Kit (Qiagen) from HEK293 cells grown in medium containing [methyl- 3H]-thymidine (Perkin

Elmer) or [32 P]-orthophosphate. Radioactive small molecule metabolites were obtained by 80% methanol

extraction of HEK293 cells grown with various carbon-14 nutrients. Yield from fractionation was

assessed by comparing the sums of the quantities of radioactivity in each fraction to the amount of input

radioactive tracer (Figure 9B,C) or to a culture grown in parallel (Figure 10).

Cell proliferation. One day after cells were sparsely seeded, they were washed extensively with PBS and

changed into different media prior to cell counting over time. To calculate proliferation rate, cells were
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counted over a period of 96 hours, and cell counts fit to the function N(t)= No - 2 to determine k, the

proliferation rate (in units of doublings per time).

Generation of lipid-stripped serum: Lipids were extracted from FBS without denaturing serum protein

according to a previously established method (Chain and Knowles, 1976). Briefly, a 5:4:2 mixture of

serum:diisopropyl-ether:n-butanol was stirred at room temperature for 30 min. Phases were separated by

centrifugation, and the aqueous phase was re-extracted with an equal volume of diisopropyl ether. The

resulting aqueous phase was dialyzed three times against saline at 4 'C and filter sterilized prior to use.

Control (not stripped) serum was prepared by dialyzing FBS in this manner without organic extraction.

Serum fatty acids were quantified by GC-MS (see above).

Measurement of acetate concentration: Polar metabolites were extracted from serum by adding four

volumes of cold methanol to precipitate protein. Following centrifugation, the supernatant was dried

under nitrogen gas and resuspended in ultrapure water. Acetate concentration in this extract was

determined using the Acetate Colorimetric Assay Kit (Sigma Aldrich).

Immunoblot Analysis: H1299 and A549 cells were incubated for 4 hrs in hypoxia (1% 02) or in

normoxia with or without the addition of 100 pM deferoxamine (DFO) to chemically inhibit HIF Ia

degradation. Cells were lysed in RIPA buffer containing cOmplete Mini Protease Inhibitors (Roche) and

100 ptM DFO. Samples were analyzed by SDS-PAGE and proteins were detected by immunoblot and

ECL assay. Antibodies used: HIFIa (BD Biosciences, 610958) and P-actin (Abcam, 8227).
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Abstract

The role of pyruvate kinase M2 (PKM2) in cell proliferation is controversial. A unique function

of PKM2 proposed to be important for the proliferation of some cancer cells involves the direct activity of

this enzyme as a protein kinase; however, a detailed biochemical characterization of this activity is

lacking. Using [ 32P]-phosphoenolpyruvate (PEP) we examine the direct substrates of PKM2 using

recombinant enzyme and in vitro systems where PKM2 is genetically deleted. Labeling of some protein

species from [32 P]-PEP can be observed, however most were dependent on the presence of ADP, and

none were dependent on the presence of PKM2. In addition, we also failed to observe PKM2-dependent

transfer of phosphate from ATP directly to protein. These findings argue against a role for PKM2 as a

protein kinase.

Introduction

The M2 isoform of pyruvate kinase (PKM2) is expressed in cancer cells and many normal cells

with proliferative capacity and/or anabolic functions. Several lines of evidence argue that PKM2 is

important for cancer cell proliferation in some contexts. PKM2 is expressed in cancers and cell lines, and

regulation of PKM2 enzymatic activity can influence cell proliferation (Anastasiou et al., 2012; Chaneton

et al., 2012; Israelsen et al., 2013; Lunt et al.). Two models, which are not mutually exclusive, seek to

explain the importance of PKM2 expression in cancer (McKnight, 2014). One proposes that PKM2 exerts

its effects through its canonical activity, which is regulated to control cell metabolism and

macromolecular synthesis. The other proposes that PKM2 is a protein kinase involved in signaling and

regulating gene expression.

Pyruvate kinase catalyzes the final step in glycolysis, transferring a phosphate group from

phosphoenolpyruvate (PEP) to ADP to produce pyruvate and ATP. There are four mammalian isoforms,
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and alternative splicing of the PKM gene produces the isoforms PKM I and PKM2. The exon unique to

PKM2 is reported to confer protein kinase activity as well as regulatory properties that are lacking in

PKM 1. For example, PKM2 requires its allosteric activator fructose-1,6-bisphosphate (FBP) to be fully

active, while PKM1 activity is constitutively high (Dombrauckas et al., 2005; Morgan et al., 2013). In

support of a metabolic role for pyruvate kinase in proliferation the glycolytic enzyme activity of PKM2,

but not PKM 1, can be inhibited by growth signaling in rapidly proliferating cells, and the resulting low

levels of enzyme activity facilitate tumor growth (Christofk et al., 2008; Hitosugi et al., 2009). PKM2 is

also allosterically activated by the metabolites serine and SAICAR, enabling regulation of this enzyme by

nutrient conditions and coordination with metabolic pathways outside of glycolysis (Chaneton et al.,

2012; Keller et al., 2012; Kung et al., 2012). Synthetic activators of PKM2 impair tumor growth by

raising PKM2 activity to PKMI levels (Anastasiou et al., 2012), and high pyruvate kinase activity impairs

mouse embryonic fibroblast (MEF) proliferation by limiting precursors for DNA replication (Lunt et al.).

Deletion of PKM2 does not prevent tumor growth, and results in compensatory PKM1 expression in non-

proliferating cells in the tumor, arguing that the ability of PKM2 to be active or inactive allows this

isoform to support different metabolic cell states in tissues (Israelsen et al., 2013).

The protein kinase activity reported for PKM2 is distinct from its role in glycolysis. Transfer of a

phosphate from PEP to proteins, which also generates pyruvate, has been reported to occur as a result of a

kinase activity that is unique to PKM2 among pyruvate kinase isoforms. PEP-dependent phosphorylation

is uncommon in cells, but has been observed in both bacterial and mammalian systems (Deutscher et al.,

2006; Vander Heiden et al., 2010). In both cases, phosphate is transferred from PEP is to a histidine

residue on a protein, and the bacterial PEP-dependent histidine kinases have no homology to PKM2 or

other enzymes in glycolysis. PKM2 has been reported to function as a dual-specificity kinase, transferring

phosphate to serine/threonine and tyrosine residues on different proteins (Gao et al., 2012; Yang et al.,

2012a). When studied, PKM2 protein kinase activity is catalyzed by dimeric PKM2, a state with much

lower glycolytic enzyme activity when compared with fully active tetrameric PKM2. In particular,

dimeric PKM2 localizes to the nucleus where it acts as a Stat3 kinase with an R399E mutant reported to
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be an obligate dimer with elevated protein kinase activity (Gao et al., 2012). Subsequent work suggested

that PKM2 also phosphorylates histone H3. EGFR signaling to ERK1/2 can result in nuclear translocation

of PKM2, where PKM2 protein kinase activity leads to c-Myc and cyclin DI expression to drive cell

cycle progression beyond the GI/S checkpoint (Yang et al., 2012a; Yang et al., 2012b). PKM2 is also

reported to be a kinase of spindle assembly checkpoint protein Bub3, playing an important role in

ensuring faithful chromosome segregation (Jiang et al., 2014). Finally, SAICAR, the allosteric activator

of canonical PKM2 activity, was reported to synergize with ERK2 to stimulate protein kinase activity of

PKM2, enabling it to phosphorylate a large number of proteins (Keller et al., 2014).

Although tumors express PKM2 this enzyme is not essential for growth of all tumors. PKM2

deletion does not prevent tumorigenesis in a mouse model of breast cancer and loss of PKM2 can

promote tumor progression (Israelsen et al., 2013). PKM2 is also not required for hematopoietic stem cell

or leukemia cell proliferation, but PKM2 expression enhances transplantation of hematopoietic stem cells

(Wang et al., 2014). Finally, knockdown of PKM2 using RNA interference does not alter formation or

maintenance of xenograft tumors, although it partially obstructs proliferation in vitro (Cortes-Cros et al.,

2013). These data argue against any model where PKM2 is essential for regulating cell cycle mediators or

other events that are important for eukaryotic cell proliferation.

To date, studies examining PKM2 functions in cancer have not resolved differential roles for

PKM2 in signaling and regulation of metabolism. We investigated the protein kinase activity of PKM2;

however, we were unable to demonstrate PKM2-dependent phosphorylation of any proteins in vitro using

either PEP or ATP as a phosphate donor. Instead, all PKM2-dependent phosphotransfer events observed

involved regeneration of ATP from ADP and PEP, the known function of PKM2 in glycolysis. This

study also establishes methods to track PEP-dependent protein phosphorylation in cells.
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Results

PEP-dependent phosphorylation events in cell lysates are independent of PKM2

PEP-dependent phosphorylation events are well described as part of two-component signaling in

bacteria (Deutscher et al., 2006). Transfer of phosphate from [ 32P]-PEP to phosphoglycerate mutase

(PGAM) has been shown in eukaryotic cell lysates, but this activity is not dependent on PKM2 (Vander

Heiden et al., 2010). To identify other PEP-dependent phosphorylation events in mammalian cells, we

tracked [3 2P]-phosphate transfer to proteins as a sensitive measure of protein phosphorylation. The

phosphorylation reaction was performed in the presence of vanadate to inhibit phosphatase activity, and

also to minimize PGAMI labeling as vanadate promotes PGAM1-Hisl I dephosphorylation (Carreras et

al., 1982). PGAMI labeled from PEP is the dominant species generated in this reaction (Vander Heiden et

al., 2010), and we sought to minimize this to avoid masking phosphorylation events involving less

abundant proteins. Vanadate was included as a phosphatase inhibitor in past studies of PKM2 protein

kinase activity and thus is not expected to inhibit this enzyme activity of PKM2 (Gao et al., 2012; Yang et

al., 2012a). [3P]-PEP was added to hypotonic cell lysates prepared to minimize disruption of endogenous

protein complexes and protein phosphorylation was visualized by SDS-PAGE and autoradiography

(Figure 1). PGAM1 labeling was observed when phosphatase inhibitors were not included (Figure 2A).

To determine whether the phosphotransfer events were dependent on ATP or PEP as a phosphate donor, I

mM unlabeled PEP or ATP was added as a competitor for the reaction, a control lacking from published

demonstrations of PKM2 protein kinase activity that rely heavily on antibodies to detect phosphorylation

events. Most protein labeling events observed are competed by non-radioactive ATP and not non-

radioactive PEP regardless of whether vanadate is included in the reaction (Figures 1, 2B). This finding

is consistent with ATP serving as the direct phosphate donor for most phosphorylation events and is

consistent with previous reports (Vander Heiden et al., 2010). Interestingly, diffuse bands of variable

intensity that migrated on SDS-PAGE with the 15-20 kDa and 100-120 kDa molecular weight markers

were labeled from [3 2P]-PEP that were sensitive to competition by non-radioactive PEP but not non-
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Figure 1: Assessment of phosphoenolpyruvate (PEP) as a phosphate donor for protein
phosphorylation.

Hypotonic lysates and nuclear extracts from (A) H1299, (B) PKM2-null MEF, (C) U87, and (D) U87
EGFR-VIII cells were incubated for I h with impure [32P]-PEP, and phosphorylated proteins analyzed by
SDS-PAGE and autoradiography. Reactions were carried out with the addition of no enzyme,
recombinant wild type (WT) or mutant (R399E) his-tagged PKM2 (each at 10 pg/mL) as indicated. In
addition, no competitor or excess (1 mM) non-radioactive competitor PEP or ATP was also included
where indicated.
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radioactive ATP. A previous study had observed non-enzymatic labeling of proteins upon boiling

(Schieven and Martin, 1988), so to determine whether these bands were dependent on transfer to protein

in cell lysates, ["P]-PEP or [y- 3"P]-ATP were added to loading buffer in the absence of added protein

(Figure 2C). The same bands were observed when [ 32P]-PEP, but not [y- 32P]-ATP, was subjected to

SDS-PAGE, and were sensitive to the addition of non-radioactive PEP to the loading dye. The same

bands are observed when [ 32P]-PEP is loaded with glycerol alone, arguing that these events reflect an

artifact and are not protein phosphorylation events.

Consistent with PEP-dependent phosphorylation being uncommon, most other phosphorylation

events from [ 32P]-PEP were competed by 1 mM ATP and not 1 mM PEP; however phosphorylation of a

species migrating at ~45 kDa that was not blocked by excess ATP was observed in both H 1299 (human

non-small cell lung carcinoma) (Figure 1A) and mouse embryonic fibroblast (MEF) (Figure 1B) cell

lysates. No reported substrates of PKM2-dependent protein phosphorylation are consistent with this

molecular weight, suggesting that this event is a previously uncharacterized target of PEP-dependent

phosphorylation.

To determine whether addition of PKM2 would result in additional phosphorylation events, we

included recombinant PKM2 (rPKM2) in the reaction. rPKM2 has been used previously to show PKM2-

dependent phosphorylation (Gao et al., 2012; Keller et al., 2014; Yang et al., 2012a); however, we did not

observe any PEP-dependent phosphorylation events upon addition of either wild type (WT) rPKM2 or a

mutant PKM2 (R399E) that is reported to have higher protein kinase activity (Gao et al., 2012) (Figure

1A). Both WT- and R399E-rPKM2 enzymes exhibit pyruvate kinase activity as a glycolytic enzyme as

both can support synthesis of [y- 32P]-ATP from [ 32P]-PEP and cold ADP; although consistent with reports

that the R399E mutant favors a less active form of the enzyme, this protein is less efficient than WT

PKM2 in transferring [ 32 P]-phosphate from PEP to ADP (Figure 2D). Importantly, the WT PKM2

generated for these studies had a similar specific activity for conversion of PEP and ADP to pyruvate and

ATP as reported previously (Figure 2E) (Dombrauckas et al., 2005). Because most substrates of PKM2-

dependent phosphorylation are nuclear, we also tested the ability of PKM2 to phosphorylate proteins in a
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Figure 2: Validation of the assay for PEP- and PKM2-dependent protein phosphorylation.

(A) Phosphoglycerate mutase 1 (PGAMI) labeling from [ 3 2 P]-PEP is inhibited by orthovanadate. H1299
hypotonic lysates were incubated for 8 min or 1 h with [32P]-PEP and 1 mM cold competitor ATP. The
reaction was carried out without added phosphatase inhibitors or with the addition of 1 mM sodium
orthovanadate (vanadate) or PhosSTOP (Roche), and proteins were resolved by SDS-PAGE and
visualized by autoradiography. (B) Orthovanadate (vanadate, 1 mM) does not inhibit PEP-dependent
phosphorylation. H1299 cell hypotonic lysate and nuclear extract were incubated with [ 32P]-PEP and cold
competitor PEP or ATP with or without the addition of 1 mM sodium orthovanadate. PGAM1 is indicated
with an arrow. (C) [3 2P]-PEP can label a polyacrylamide gel in the absence of added protein. [y- 3 2P]-ATP
(lane 1) and [32P]-PEP (lanes 2-6) were analyzed by SDS-PAGE and autoradiography. These molecules
migrate with the salt front of the gel as assessed by Geiger counting. This salt front is cut off before
autoradiography, but [32P]-PEP also labels what appears as two bands by autoradiography. Impure [32P]-
PEP was electrophoresed in the presence of no (lane 2), 100 pM (lane 3), or 1000 pM (lane 4) cold
competitor PEP. HPLC-purified [3P]-PEP (lane 5) and [32 P]-PEP loaded in ~7% (v/v) glycerol (as
opposed to Lamelli sample buffer) (lane 6) produced a similar pattern. (D) Recombinant wild type and
R399E mutant PKM2 display glycolytic pyruvate kinase activity. Lane 1: [y- 32 P]-ATP standard. Lanes 2-
4: [ 32P]-PEP and 0.5 mM ADP were incubated for 45 min with no enzyme or 10 [ig/mL recombinant wild
type or mutant (R399E) PKM2. PEP and ATP were resolved by TLC and visualized by autoradiography.
(E) Specific activity of wild type rPKM2 with respect to substrate concentration determined by a linked
assay to lactate dehydrogenase (Vander Heiden et al., 2010). In each case the substrate whose
concentration was not varied was kept fixed at 5 mM. Data are the mean of N=3 t S.D. (F) Protein levels
of 6-tubulin, lamin A/C, histone H3, and PKM2 were determined in cell extract fractions by western
blotting. H1299 hypotonic lysate (HL) was prepared in buffer containing 10 mM KCl. The remaining
material was washed three times with this buffer, and a nuclear extract (NE) was prepared from the
resulting material using 500 mM NaCl. A high-salt (HS) extraction, containing histones, was then
obtained by extraction with 2.5 M NaCl. (G) PKM2 can be deleted from MEFs. Cre-ER expressing MEFs
homozygous for a PKM allele where exon 10 (specific to PKM2) is flanked by two loxP sites
(PKM2OX flOX) were treated with .1% (v/v) ethanol or 500 nM 4-hydroxytamoxifen (4-OHT) and .1%
ethanol. Deletion of PKM exon 10 was confirmed by PCR using primers described previously (Israelsen
et al., 2013). (H) PKM2 expression was analyzed by western blot analysis of cell lysates.
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nuclear extract and again failed to observe any PEP-dependent phosphorylation events with or without

rPKM2 included in the reaction (Figure 1).

Because PKM2 is an abundant protein (Beck et al., 2011), we considered the possibility that

endogenous PKM2 present in the H1299 hypotonic and nuclear lysates (Figure 2F) could be sufficient to

catalyze PKM2-dependent phosphorylation, and that this might explain why addition of rPKM2 did not

produce any additional phosphorylated species. To definitively assess a requirement for PKM2 in any

PEP-dependent phosphotransfer events, we utilized PKM2-deleted MEFs (Lunt et al.) and confirmed that

PKM2-specific exon 10 was deleted from the genome and that PKM2 protein is absent from these cells

(Figure 2G,H). Upon deletion of this exon, PKMI is expressed and the cells continue to possess pyruvate

kinase activity (Lunt et al., 2015). Phosphotransfer from PEP was similar to that in H1299 cells, and we

did not observe phosphorylation events dependent on the addition of rPKM2 to PKM2' lysates (Figure

1B). PKM2 protein kinase activity is reported to be important specifically for glioblastoma development

downstream of EGFR activation (Gao et al., 2012; Keller et al., 2014; Yang et al., 2012a; Yang et al.,

2012b), however, we also failed to observe PEP-dependent phosphorylation events in hypotonic and

nuclear lysates of U87 glioblastoma multiforme cells and U87 cells expressing constitutively active

EGFR-VIII except for the species at 45 kDa, and this was not dependent on PKM2 addition (Figure 1C,

D).

PKM2-dependent regeneration of ATP can account for PEP-dependent phosphorylation

Most labeling from [ 32P]-PEP was eliminated by addition of excess cold ATP, suggesting that [,y-

3P]-ATP was either generated from [32P]-PEP, or present as a contaminant in the reaction to serve as the

phosphate group donor for most of the observed phosphorylation events. Indeed, [32P]-PEP is synthesized

from commercial [32 P]-ATP using pyruvate kinase (Mattoo and Waygood, 1983; Vander Heiden et al.,

2010), and despite a step to enrich for [3 2P]-PEP, these preparations are contaminated by small quantities

of [7- 32 P]-ATP (Figure 3A). Preparative HPLC of [32P]-PEP allowed for quantitative separation from the

contaminating [y- 3 2 P]-ATP. To test the contribution of each phosphate donor to protein phosphorylation
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in a cell lystate, we incubated cells with crude [32 P]-PEP, HPLC purified [3 2P]-PEP, and the HPLC

fraction containing [ 32P]-ATP present as a contaminant in crude [32P]-PEP. Most proteins phosphorylated

by the impure [32P]-PEP were phosphorylated by the contaminating [y- 3 2P]-ATP fraction but not the

purified [ 32P]-PEP fraction (Figure 3B). Consistent with competition by cold ATP and PEP allowing

determination of direct phosphate donors, the -45 kDa protein identified previously was labeled from

purified [ 32 P]-PEP. Addition of ADP to purified [ 32 P]-PEP restored phosphorylation of many proteins, and

the resulting phosphorylation events could be competed by both cold ATP and cold PEP. These data

argue that pyruvate kinase activity present in these reactions is sufficient to allow [y- 32 P]-ATP synthesis

from ADP and [ 32P]-PEP (Figure 3B, lanes 10-12). Since [y- 32P]-ATP is the phosphate donor for most

protein kinase activity in cells, these data suggest that the known role of PKM2 as a glycolytic enzyme

might explain PKM2-dependent phosphorylation whereby PKM2 transfers phosphate from [3 2 P]-PEP to

ADP present in cell lysate to synthesize [y- 3 2 P]-ATP and result in phosphorylation seemingly dependent

on PEP and the addition of PKM2. Consistent with this possibility, a hypotonic cell lysate contains

sufficient ADP to enable synthesis of [,y- 32P]-ATP from [ 32 P]-PEP when added to the lystate, and this

ability is diminished if size exclusion chromatography is used to deplete metabolites in the lysate (Figure

4).

We next considered the possibility that our failure to observe protein phosphorylation dependent

on both [32P]-PEP and PKM2 in hypotonic or nuclear lysates may have been due to the absence of

relevant protein kinase substrates. For instance, histones, a putative target of PEP-dependent PKM2

protein kinase activity (Yang et al., 2012a), are not efficiently extracted by many protocols used to

prepare nuclear extracts (Figure 2F) (Shechter et al., 2007). To determine whether PKM2 can

phosphorylate histones in our assay, we incubated WT- or R399E-rPKM2 and commercially prepared

histones from calf thymus with impure [3 2P]-PEP. Although we failed to observe any phosphorylation

upon addition of either rPKM2 or PKM2 (R399E), a nuclear extract of H1299 cells incubated with

impure [32P]-PEP was able to phosphorylate proteins that run at the expected size of histones when

histones are added (Figure 5A), suggesting that the presence of PKM2 in a nuclear extract could enable

119



, , B

ATP

ATP PEP ATP PEP
Pure

Hot Substrate:

Cold Competitor:
250
150

100
75

50

37

25

20

15

Impure Pure
["P]-PEP Pure [ 2P-PEP [y-32P]-ATP

- PEP ATP - PEP ATP - PEP ATP

III
Figure 3: Contaminating [Y-_P]-ATP is the predominant phosphoryl donor when using crude [32P]-
PEP.

(A) [32 P]-PEP synthesized from [y- 2P]-ATP is contaminated by small amounts of [y- 32 P]-ATP, which can

be separated by preparative HPLC. The purity of each fraction was analyzed by thin-layer
chromatography and autoradiography. (B) The contaminating [y- 32 P]-ATP component of impure [32P]-

PEP is the phosphoryl donor for the majority of proteins phosphorylated by impure [32P]-PEP. An H 1299
hypotonic lysate was incubated for I h with recombinant PKM2 and different 32P-containing metabolites
as well as no competitor or excess (1 mM) non-radioactive competitor PEP or ATP as indicated.
Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography.
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H1299 hypotonic lysates were incubated for the indicated times with rPKM2 and [ 2P]-PEP. Labeled ATP
produced by this reaction was measured by TLC and autoradiography.
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indirect transfer of phosphate from PEP to histones. The inability of PKM2 to do this directly confirms

that any dependence on PKM2 is to transfer the phosphate to generate ATP rather than PKM2 acting

directly as a protein kinase. We also conducted the assay in a purely recombinant system using two

putative protein substrates of PKM2 using antibodies to detect protein phosphorylation and did not

observe direct PKM2 protein kinase activity (Figure 6A,B).

The purine precursor SAICAR may be an activator of PKM2 protein kinase activity (Keller et al.,

2014). In particular, it has been suggested that absence of SAICAR from in vitro phosphorylation

reactions could account for an apparent disparity in protein kinase activity between rPKM2 produced in

E. coli and PKM2 obtained from mammalian cell nuclear extracts. To determine if the absence of

SAICAR explained why we failed to observe PKM2-mediated protein kinase activity in cell and nuclear

extracts, we tested if addition of SAICAR to a reaction with rPKM2 and cell lysate, nuclear extract, or

purified histones and other substrates could reconstitute PKM2-depedent protein kinase activity (Figures

5B, 6A-C). In no case was SAICAR addition sufficient to cause protein phosphorylation that was

competed by PEP addition but not ATP addition, or that was dependent on the presence of PKM2. These

data suggest that any increase in PEP-dependent protein phosphorylation following SAICAR addition that

involves PKM2 is likely explained by the ability of SAICAR to activate the glycolytic enzyme function

of PKM2 (Keller et al., 2012), and promote generation of ATP as a phosphate donor for other protein

kinases.

Because ATP is present at millimolar concentrations in cells (Marcussen and Larsen, 1996), it is

unlikely that addition of 1 mM cold competitor ATP is sufficient to inhibit physiologically relevant

PKM2-dependent phosphorylation. However, we considered the possibility that addition of cold ATP

might inhibit apparent PKM2 protein kinase activity in vitro. To test this possibility, we incubated cell

lysates with 5'-(4-fluorosulfonobenzoyl)-adenosine (FSBA) to covalently inhibit endogenous ATP-

dependent kinases aid identification of PEP-dependent phosphorylation event without adding cold ATP.

FSBA was confirmed to be a partial inhibitor of ATP-dependent kinases in cell lysates and nuclear
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Figure 5: An improved assay for PEP-dependent phosphorylation.

(A) Calf thymus histones were incubated for I h with impure [ 32P]-PEP and no enzyme, recombinant wild
type (WT) or mutant (R399E) PKM2 (each at 10 jig/mL) as indicated. An H1299 nuclear extract was also
incubated with impure [ 32P]-PEP with and without calf thymus histones added. Phosphorylated proteins
were analyzed by SDS-PAGE and autoradiography. Arrows indicate phosphorylated proteins with
apparent molecular weights similar to histones (core histones, 11-17 kDa, many histone HI isoforms 25-
35 kDa) (Shechter et al., 2007). (B) H1299 cell hypotonic lysates and nuclear extracts and calf thymus
histones were incubated for I h with [32P]-PEP and 10 ptg/mL rPKM2 with or without 0.5 mM SAICAR
as well as no competitor or excess (1 mM) cold competitor PEP or ATP. (C) Hypotonic lysates and
nuclear extracts from H 1299 cells and PKM2-expressing (flox/flox) or PKM2-null (-/-) MEFs were
desalted and incubated for 1 h with HPLC-purified [32P]-PEP with no additional enzymes or with added
recombinant wild type or mutant (R399E) rPKM2 (each at 10 pg/mL).
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Figure 6: Lack of evidence for PKM2 PEP-dependent protein kinase activity.

Recombinant PKM2 and (A) Stat3 or (B) histone H3 were incubated for 1 hr at 30 *C with or without PEP
and SAICAR as indicated. As a control, the same assay was repeated with recombinant protein kinases
known to phosphorylate these proteins, (A) Chkl and (B) Src, with the addition of cold ATP. (C) PKM2--
MEF cell hypotonic lysate and nuclear extract were incubated for I h with [ 32P]-PEP and rPKM2 with or
without 0.5 mM SAICAR, and in the absence of competitor or in the presence of cold competitor PEP (1
mM) or ATP (1 mM) as indicated. (D) H 1299 cell hypotonic lysate and nuclear extract were incubated
with DMSO or 1 mM FSBA (5'-(4-fluorosulfonobenzoyl)adenosine) to inhibit ATP-dependent kinases.
Protein phosphorylation events observed in lysates containing [y- 3 2 P]-ATP with or without FSBA are
shown. (E) DMSO- or FSBA-treated cell extracts were incubated with [32 P]-PEP with or without the
addition of PKM2 and cold competitor PEP to monitor PKM2 and PEP-dependent phosphorylation.
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extracts (Figure 6D), however when the same lysates and nuclear extracts were assayed with only PEP as

a phosphate donor, we failed to observe any FSBA insensitive protein phosphorylation (Figure 6E).

To further search for PEP-dependent phosphorylation events that require PKM2 functions other

than its known action in generating ATP, we tested HPLC purified [ 32 P]-PEP in a reaction with protein

extracts that were first desalted to remove contaminating ADP, and with or without the addition of

rPKM2 or rPKM2-R399E. These reactions were performed with whole cell hypotonic lysates and nuclear

extracts prepared from PKM2-expressing H1299 cells and MEFs as well as PKM2-null MEFs (Figure

5C). Using this approach, we observed several phosphorylated species, including the -45 kDa species

noted previously (Figure 1A); however no events were dependent on the addition of WT- or R399E-

rPKM2, including events in extracts prepared from PKM2-null MEFs. These data argue that a PKM2-

dependent protein phosphorylation activity is not present in these cells.

Lack of evidence for an ATP-dependent PKM2 protein kinase activity

Failure to observe PEP-dependent protein phosphorylation that is dependent on PKM2 does not

rule out the possibility that PKM2 possesses an ATP-dependent protein kinase activity. Both PEP and

ATP can act as phosphate donors for normal PKM2 enzymatic activity, so an alternative explanation for

reports of PKM2 protein kinase activity might involve PKM2 as an ATP-dependent protein kinase. The

ability to detect ATP-dependent phosphorylation events dependent on the addition of rPKM2 to a cell

lysate is complicated by the fact that many proteins undergo ATP-dependent phosphorylation. To mitigate

this complication, and to control for the presence or absence of PKM2 in the lysates, we fractionated

hypotonic and nuclear extracts from H1299 cells and from PKM2-expressing and PKM2-null MEFs by

anion exchange chromatography. We assayed each fraction for phosphorylation dependent on the addition

of rPKM2 (Figure 7, 8A). One phosphorylated species (Figure 7A, H 1299 hypotonic lysate fractions I -

2, MW -60 kDa) showed dependence on the addition of rPKM2. rPKM2 also has a MW of -60 kDa,

raising the possibility that phosphorylation of rPKM2 by kinases present in the lysate rather than

production of a PKM2-phosphorylated species explains this result. Prior work has suggested that PKM2
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Figure 7: Lack of evidence for an ATP-dependent protein kinase activity for PKM2.

(A) H 1299 and (B) PKM2-null MEF hypotonic lysates and nuclear extracts were used to identify
substrates for PKM2 kinase activity. Lysates were fractionated on a 1 mL Q Sepharose HP column (Inp.,
1:10 dilution of column input; FT, flow through; 1-10, fractions 1-10), and incubated for 1 h with [y- 32P]-

ATP with or without the addition of 10 ig/mL rPKM2. Phosphorylated proteins were analyzed by SDS-

PAGE and autoradiography.
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Figure 8: Lack of evidence for an ATP-dependent protein kinase activity for PKM2.

(A) rPKM2 was added to a fractionated hypotonic lysate and nuclear extract prepared from
PKM2-expressing (PKM20 ") MEFs to identify potential PKM2 protein kinase activity using
ATP as a substrate. (B) In Figure 4A, one protein (predominantly contained within H1299-
hypotonic-lysate fractions 1 and 2) exhibited phosphorylation dependent on PKM2 addition. This
phosphorylated protein co-purifies with PKM2 by nickel-affinity chromatography (Inp., Q
column input; FT, nickel-affinity column flow through).
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can be a substrate for phosphorylation (Hitosugi et al., 2009). In support of rPKM2 being phosphorylated

by a kinase in the lysate, we were able to purify this species by Ni-NTA affinity chromatography (Figure

8B), indicating that this represents phosphorylated rPKM2 rather than a protein phosphorylated by

PKM2. Taken together, these data argue against PKM2 having direct protein kinase activity.

Discussion

We were unable to find evidence for PKM2 activity as a protein kinase utilizing either [3P]-PEP

or [y- 32P]-ATP as a substrate. While negative results cannot be definitive, sensitive 32P-labeling failed to

identify any proteins phosphorylated in a PKM2-dependent manner. Our findings demonstrate the

importance of depleting contaminating adenine nucleotides from cell lystates and purification of

enzymatically synthesized [ 3 2 P]-PEP to reduce [y- 32P]-ATP generation in situ, which might otherwise lead

to ATP-dependent phosphorylation events being misinterpreted as PEP-dependent. Omitting these steps

can result in pyruvate kinase mediated regeneration of ATP and produce data that appear to be PEP-

dependent phosphorylation events.

To have activity as a protein kinase, PKM2 would have to adopt a conformation in which both

PEP and its protein substrate are simultaneously bound. To allow phosphotransfer reactions, water must

be excluded from the enzyme active site or hydrolysis of high-energy phosphate anhydrides would be

favored over the phosphate transfer reaction. To accommodate a large protein substrate in place of the

much smaller ADP, the active site would need to be dramatically altered to exclude water and allow

transfer of phosphate to a residue on the target protein. An alternative mechanism for phosphotransfer

could involve a covalent phospho-enzyme intermediate; however, the known mechanism of the pyruvate

kinase reaction involves direct phosphate transfer (Dombrauckas et al., 2005), and we did not observe

labeling of PKM2 from [32P]-PEP alone.
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It has been suggested that protein substrates of PKM2 bind to the ADP binding site of this

enzyme, supported by the apparent competitive inhibition of PKM2 protein kinase activity by ADP (Gao

et al., 2012; Keller et al., 2014). This observation could also be explained by end-product inhibition of a

contaminating ATP-dependent kinase by ADP. The ability of protein substrates to occupy the ADP-

binding site of PKM2 is particularly surprising given that PKM2 has been reported to phosphorylate 149

protein substrates lacking a clear phosphorylation motif, suggesting degenerate specificity of the active

site (Keller et al., 2014). By contrast, nucleotide binding is highly specific as PKM2 is unable to

efficiently phosphorylate diverse nucleotide substrates, instead showing strong selectivity for ADP

(Mazurek et al., 1998). In addition, PKM1 has the same binding site for ADP as PKM2, and shows

similar selectivity for ADP (Morgan et al., 2013; Plowman and Krall, 1965). In fact, PKM2 and PKM1

have identical active sites. These isoforms differ by the alternative inclusion of one exon, which encodes

only regulatory components of the protein further arguing against a specific kinase function for PKM2. A

more plausible explanation is that PKM2 serves to regenerate ATP from PEP for other kinases as an

explanation for reports of PKM2 protein kinase activity.

Although we did not detect protein kinase activity by PKM2, several protein species were labeled

by [32 P]-PEP independent of the presence of PKM2: an unknown 45 kDa protein as well as PGAM, which

has been previously identified as a target of PEP-dependent phosphorylation. While PGAM is labeled by

the phosphate from PEP, it is important to note that PEP may be transferring more than just a phosphate

to the unknown 45 kDa protein. Interestingly, another glycolytic intermediate, 1,3-bisphosphoglycerate,

can post-translationally modify proteins on lysine to produce 3-phosphoglyceryl-lysine via a non-

enzymatic mechanism (Moellering and Cravatt, 2013). Depletion of enolase from the reaction would

distinguish between PEP-dependent and 2-PG-dependent phosphorylation, and will help clarify whether

PEP-dependent labeling of the -45 kDa protein is mediated by PEP or an enzymatic product of PEP other

than ATP. Nevertheless, it appears that PEP-dependent phosphorylation is rare in mammalian cells and

that PKM2 is not required for any of the events observed in this study. The methods to separate PEP-
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dependent phosphorylation in mammalian cells from ATP-dependent events with high sensitivity will

allow identification of both the targets and enzymes involved.

Materials and Methods

Cell Culture. H1299 cells, MEFs, U87 cells, and U87 EGFR-VIII cells were cultured in RPMI 1640 or

DMEM, supplemented with 10% heat-inactivated fetal bovine serum, penicillin (100 U/mL), and

streptomycin (100 ptg/mL). MEFs expressing Cre-ER and homozygous for a PKM2 conditional allele

were generated from mice as described previously (Lunt et al., 2015) and immortalized by knockdown of

p53. To delete PKM2, the MEFs were treated with 1 pM 4-hydroxytamoxifen for at least 3 days.

Protein Extraction and Purification. To prepare hypotonic lysates and nuclear extracts, cells were

washed with ice cold PBS, collected by centrifugation at 650 x g, and incubated in three volumes of

hypotonic lysis buffer (10 mM HEPES/KOH pH 7.6, 10 mM KCl, 1.5 mM MgC 2, 1 mM EDTA, 1 mM

EGTA, .5 mM DTT, I x cOmplete mini protease inhibitor (Roche)) for 10 min on ice. Lysis was

accomplished by passing cells through a 22.5-gauge needle fifteen times. Nuclei were pelleted for 10 min

at 855 x g, and washed five times with four volumes of hypotonic lysis buffer. They were next

resuspended in one volume of nuclear extraction buffer (20 mM HEPES/KOH pH 7.6, 500 mM NaCl, 1.5

mM MgCl 2 , 1 mM EDTA, 1 mM EGTA, .5 mM DTT, 25% (v/v) glycerol, Ix cOmplete mini protease

inhibitor (Roche)) and incubated for 30 min on ice with occasional mixing. Lysates were clarified for 10

min at 20 000 x g, and a high-salt extraction was accomplished by incubating the resulting pellet in high-

salt solubilization buffer (Shechter et al., 2007) for 30 min. Proteins were desalted into hypotonic lysis

buffer by passing samples through a Sephadex G-25 Fine (GE Healthcare) gravity column. For Q-column

fractionation, samples were first concentrated to I mL on Pierce Concentrators with a 9 kDa molecular

weight cutoff (Thermo Scientific). Samples were then desalted into buffer A (20 mM bis-tris-propane-
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HCl pH 8.7, 5 mM KCl, 1 mM MgCl 2) on a 5 mL HiTrap Desalting column (GE Healthcare) and then

loaded onto a I mL HiTrap Q HP column (GE Healthcare). Proteins were eluted in a linear gradient from

buffer A to buffer A with 1 M KCI, and 1 mL fractions were collected. Protein concentration was

determined by standard Bradford assay.

Expression and Purification of Recombinant PKM2. N-terminally 6xHis-tagged recombinant PKM2

and PKM2-R399E were expressed from the pET28a(+) vector in E. coli and batch purified using Ni-NTA

agarose beads (Qiagen) as described previously (Anastasiou et al., 2012).

Site-Directed Mutagenesis. The R399E mutation was introduced using the QuikChange II XL Site

Directed Mutagenesis Kit (Agilent Technologies) and the following primers: 5'-

CAATTATTTGAGGAACTCGAGCGCCTGGCGCCCATTACC-3' and 5'-

GGTAATGGGCGCCAGGCGCTCGAGTTCCTCAAATAATTG-3'.

[3 P-PEP Synthesis and Purification. [32 P]-PEP was synthesized as described previously (Mattoo and

Waygood, 1983; Vander Heiden et al., 2010). Briefly, commercial rabbit muscle pyruvate kinase (Sigma)

catalyzed synthesis from pyruvate and [y- 32P]-ATP (Perkin Elmer) at 37 *C for 45-60 min, followed by

crude separation of PEP from ATP using a Vivapure Q Mini H columns (Satorius) with sequential elution

in 0.3 and 0.6 M triethylammonium bicarbonate pH 8.5 (Sigma).

Further purification was accomplished by reverse-phase ion-pairing high performance liquid

chromatography. [ 32 P]-PEP (containing contaminating [I- 32 P]-ATP) was mixed with 100 ptM of each of

cold PEP and ATP. This mixture was loaded on to a ZORBAX SB-C 18 Analytical column (Agilent), and

eluted in a linear gradient from 5% (v/v) methanol, 15 mM acetic acid, and 10 mM tributylamine to 100%

methanol. 500 ptL fractions were collected. Three fractions containing the highest amount of PEP or ATP
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(as determined by TLC and autoradiography) were pooled and dried under nitrogen gas. Samples were

resuspended in water for use in in vitro reactions.

In Vitro Phosphorylation Reactions. Unless stated otherwise, reactions were carried out at 30 'C for I h

in previously published buffer (50 mM Tris-HCl pH 7.5, 100 mM KCI, 50 mM MgC 2, 1 mM DTT) with

Ix PhosSTOP (Roche) (Gao et al., 2012; Yang et al., 2012a). Protein extracts prepared as described above

or calf thymus histones (Worthington Biochemical) were included at 100 pg/mL. Recombinant PKM2

was included in the reaction at 10 pg/mL. Where indicated, 1 mM Na3 VO4 , 0.5 mM SAICAR, or 1 mM

cold competitor ATP or PEP were included in the reaction. Radioactive phosphate group donor substrates

were ~6 nM (~20 ptCi/mL) [y- 3 P]-ATP (Perkin Elmer) or ~4.5 nM (~13 pCi/mL) impure [ 3 2 P]-PEP, or

-3.5 nM (~10 pfi/mL) pure [ 32 P]-PEP or -. 31 nM (-.9 ptCi/mL) pure [y- 32 P]-ATP. Reactions were

quenched with addition of Lamelli sample buffer, and phosphorylated proteins were analyzed by 10%

SDS-PAGE followed by autoradiography. Nickel-affinity purification was accomplished by incubating

phosphorylation reactions with Ni-NTA Beads (Qiagen) for 30 min. Beads were then washed with

reaction buffer supplemented with 30 mM imidazole, and proteins were eluted by boiling in Lamelli

sample buffer. Where indicated, lysates were incubated with 1% (v/v) DMSO or 1 mM (final) 5'-(4-

fluorosulfonobenzoyl)-adenosine (FSBA, Sigma) with 1% (v/v) DMSO at 30 'C to inhibit endogenous

ATP-dependent kinases. FSBA was removed by desalting in an Amicon Ultra centrifugal filter prior to

phosphorylation assay and addition of PKM2. For in vitro phosphorylation detected by western blot,

recombinant PKM2, Src, or Chkl was present at I ng/tL and histone H3 or Stat3 was present at 3 ng/ptL.

Thin-Layer Chromatography. 0.5 tL of each reaction or compound were spotted on to PEI-cellulose F

(EMD Millipore), and metabolites were resolved with 0.25 M NH4HCO 3. Plates were dried and then

visualized by autoradiography.
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SAICAR Synthesis and Purification. SAICAR was synthesized enzymatically using adenosuccinate

lyase (ADSL) purified by a previously described approach (Lee and Colman, 2007). ADSL (50 pg/mL)

catalyzed the reaction between 13.5 mg/mL AICAR (Toronto Research Chemicals) and 50 mM fumarate

at 37'C overnight in a buffer containing 20 mM HEPES pH 7.4, 50 mM ammonium acetate, 50 mM KCl,

2 mM EDTA, and 1 mM DTT (Keller et al., 2012). The reaction was loaded on to a 5 mL HiTrap Q HP

column and eluted in a linear gradient from water to 3 M ammonium acetate. Peak fractions were pooled

and lyophilized. SAICAR was resuspended in 10 mM HEPES-KOH pH 7.5 prior to use in in vitro

reactions.

Enzyme-Linked Pyruvate Kinase Assay. Pyruvate kinase activity was measured as previously

described (Anastasiou et al., 2012). Briefly, rPKM2 (0.5 ptg/mL) was mixed with various concentrations

of PEP and ADP in a reaction buffer containing 50 mM HEPES-KOH (pH 7.5), 20 mM KCl, 2 mM

MgCl 2, 1 mM DTT, 180 pM NADH, and 11 U lactate dehydrogenase (LDH, Sigma Aldrich). LDH

activity was verified to be in excess of pyruvate kinase activity in these conditions, enabling

disappearance of NADH (absorbance at 340 nm) to be used as a measure of pyruvate kinase activity.

Western Blotting. Total protein extracts were prepared by incubating cells for 15 min in ice-cold RIPA

buffer followed by clarification for 10 min at 20 000 x g. To confirm absence of PKM2 in MEFs, 15 pg

of protein were resolved by 8% SDS-PAGE. To determine contents of cell extracts, volumes

proportionate to the extraction buffer volumes were resolved by 8 or 10% SDS-PAGE. Proteins were

transferred to a PVDF membrane and, following immunoblotting, were visualized by ECL assay.

Antibodies used: PKM2, histone 3, lamin A/C, histone H3, H3 phospho-TI 1, Stat3, Stat3 phospho-Y705

(Cell Signaling Technologies: 4053, 4499, 4777, 4499, 9764, 9132, 9145, respectively), 8-tubulin

(Abcam: 21058).
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DNA Extraction and Genotyping. Genomic DNA was extracted using the PureLink Genomic DNA

Mini Kit (Life Technologies). PKMexon 10 was amplified by polymerase chain reaction as described

previously (Israelsen et al., 2013), and reaction products were resolved on a 2% agarose gel.
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Abstract

Although most phosphorylation reactions involve transfer of phosphate from ATP, the ability of

other metabolites to serve as phosphoryl-group donors has been described. Phosphoenolpyruvate (PEP), a

high-energy glycolytic intermediate, has been speculated to serve as a substrate for protein kinases, and

we sought to identify novel proteins modified by PEP. Past work suggests that such modifications are

rare, suggesting that PEP likely does not modify proteins through a non-enzymatic mechanism. We

identified a 47 kDa protein in mammalian cytosolic extracts that was labeled by a [3 2P]-PEP tracer but not

by [y- P]-ATP. The modified protein was identified as mammalian enolase 1 (ENOl) following

biochemical purification. Surprisingly, we observed covalent linkage of the entire PEP molecule to an

active site lysine, which results in the inactivation of enzyme catalytic activity. Future work will clarify

the extent to which enolase is modified in cells, how nutrient conditions affect this modification, and

whether this serves as a mechanism to regulate enzyme activity.

Introduction

Phosphoenolpyruvate (PEP) sits at a critical node in glycolytic metabolism. It is the substrate for

pyruvate kinase, an enzyme whose activity helps to define the metabolic program and proliferative

capacity of mammalian cells. PEP is a high-energy compound, and the conversion of PEP to pyruvate is

consequently energetically favourable (Mazurek et al., 2002). Pyruvate kinase harnesses this energy to

transfer the phosphate from PEP to ADP to generate ATP, and there has been speculation that PEP might

transfer this phosphate group to other molecules. There are numerous molecules other than ATP can serve

as phosphoryl-group donors for phosphorylation reactions in eukaryotic cells. Cytosine triphosphate

(CTP) and guanosine triphosphate (GTP) are respectively substrates for S. cerevisiae Dgkl and

mammalian P15P4K$, kinases that phosphorylate lipid head groups (Han et al., 2008; Sumita et al., 2016).

GTP also provides phosphate used to synthesize PEP during mammalian gluconeogenesis. Some proteins
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may be phosphorylated using 1,3-bisphosphoglycerate (1,3-BPG) (Morino et al., 1991). Like PEP, this

glycolytic intermediate contains a high-energy phosphate group that is canonically transferred to ADP to

produce ATP but could potentially be transferred to another molecule. Reactive lysine residues in many

proteins were recently demonstrated to undergo a non-enzymatic reaction with 1,3-BPG, resulting in

displacement of the 1-phosphate and covalent linkage of a 3-phosphoglyceryl group to the proteins

(Moellering and Cravatt, 2013). Inositol pyrophosphates are proposed to non-enzymatically

phosphorylate serine residues in diverse eukaryotic proteins (Saiardi et al., 2004). Several other

metabolites react non-enzymatically to modify proteins, raising the possibility that PEP, a high energy

intermediate, could act similarly (Sullivan et al., 2016).

Pyruvate kinase isoform M2 (PKM2) was proposed to phosphorylate proteins using PEP as a

phosphoryl-group donor, but we have been unable to recapitulate this activity (see Chapter 3) (Hosios et

al., 2015). PEP phosphate may also label proteins independent of PKM2. A PEP-dependent protein kinase

has been postulated to exist in mammalian muscle, for example (Khandelwal et al., 1983). Although the

source of this activity was never identified, prior work did resolve the kinase and its substrate by

chromatography, indicating that a PEP-dependent kinase and substrate pair may exist in mammals. The

PEP phosphate group can also be traced to an active site histidine in phosphoglycerate mutase I

(PGAM1) (Vander Heiden et al., 2010), although the mechanism by which this occurs remains unknown.

Protein kinases that use PEP would be expected to produce pyruvate, allowing glycolysis to bypass

pyruvate kinase. The best-described contexts in which this occurs are bacterial phosphotransferase

systems (Deutscher et al., 2006). These systems comprise multiple proteins that ultimately transfer

phosphate from PEP to a sugar, producing pyruvate and a phospho-sugar. The first enzyme in this cascade

autophosphorylates using PEP and subsequently transfers this phosphoryl-group to another protein.

Previously, we identified a protein that was consistently labeled by [3 2P]-PEP in cell lysates (see

Chapter 3) (Hosios et al., 2015). In a stringent assay for PEP-dependent phosphorylation, where

contaminating sources of ATP were eliminated, this protein was still labeled in a manner that was

inconsistent with non-specific modification by PEP. To understand the functional significance of this
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phosphorylation, we undertook a classical biochemical purification to identify the cytosolic protein

labeled by PEP.

Results

[32 P-Phosphoenolpyruvate covalently labels a 47 kDa protein

Phosphoenolpyruvate (PEP) might serve as the phosphoryl-group donor in protein

phosphorylation reactions. In our previous study investigating whether PKM2 was able to catalyze these

reactions, we observed a 47 kDa protein that was consistently labeled with [32 P]-PEP in vitro. This

activity was localized to the cytosolic fraction of cell extracts (Chapter 3, Figures 1 and 5B,C). Labeling

of this protein did not depend on PKM2 and occurred in lysates prepared from mouse embryonic

fibroblasts (MEFs) where PKM2 was genetically deleted. Importantly, labeling of this protein by [32P]-

PEP was undetectable when 1 mM non-radioactive competitor PEP was included in the reaction but was

not altered when 1 mM ATP was included. This indicates the protein is subject to a PEP-dependent

modification independent of ATP. PEP-dependent labeling of this 47 kDa protein was detected in

hypotonic lysates derived from a variety of human cell lines and from primary MEFs, but it was not

detected in human mammary epithelial cell (HMEC) lysates (Figure 1A).

Phosphoglycerate mutase 1 (PGAM 1) is the species predominantly labeled by [3 2P]-PEP in cell

extracts (Hosios et al., 2015; Vander Heiden et al., 2010), but this phosphorylation has been previously

shown to be inhibited by vanadate, a commonly used phosphatase inhibitor. Vanadate had no effect on

phosphorylation of the 47 kDa protein; however, when vanadate was not included, we observed strong

PEP-dependent labeling of PGAM 1 in a tissue homogenate (Figure 1B, -28 kDa protein). This lysate

was subject to successive rounds of precipitation with increasing ammonium sulphate concentrations.

PGAMI labeling was detectable in each fraction; however, the 47 kDa protein was detected only in two

fractions. Interestingly, PGAM1 labeling was reduced in fractions where the 47 kDa protein was detected
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Cell Line: HMEC H1299 A549 FL5.12 MEF
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Figure 1: A 47 kDa protein is covalently modified by phosphoenolpyruvate.

Protein samples were labeled with [3P]-PEP in the presence of 1 mM non-radioactive (cold) ATP to

prevent visualization of ATP-dependent phosphorylation. Proteins were analyzed by SDS-PAGE and

autoradiography. (A) Activity assay in cell line hypotonic lysates, with or without added 1 mM cold

competitor PEP. (B) Assay of activity in calf thymus homogenate (input) or fractions following

ammonium sulphate precipitation. The ranges specify the ammonium sulphate concentration as a percent

of saturation. (C) Cell lysates pre-labeled with [3 P]-PEP were incubated with 1 mM cold PEP, k protein

phosphatase, or calf intestinal (CI) phosphatase for the indicated times.
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relative to fractions precipitated with more or less ammonium sulphate. This might suggest that PGAMI

and the 47 kDa protein might compete for the available [ 32P]-PEP, although we did not observe

substantial depletion of PEP by thin layer chromatography (data not shown).

PEP was expected to covalently modify the 47 kDa protein, as the label was preserved when the

phosphorylated protein was subject to denaturing conditions. To further characterize the modification, we

labeled the protein in hypotonic lysates and monitored how the modification changed when excess non-

radioactive PEP or phosphatases were added to the reaction after phosphorylation occurred (Figure 1C).

No loss of label was observed when cold PEP was added, suggesting that the covalent modification is

effectively irreversible as loss of the 32P-label could not be driven by cold PEP. Treatment with either calf

intestinal phosphatase or lambda protein phosphatase resulted in a slight reduction in the intensity of

labeling of the 47 kDa protein. This implied that the modification was not easily accessed by either

phosphatase enzyme.

Identification of enolase as the protein modified by PEP

To identify the 47 kDa protein, we undertook a conventional biochemical purification of the

activity from calf thymus homogenates. The peak ammonium sulphate fractions (Figure 1B) were subject

to successive rounds of fractionation by ion exchange chromatography (Figure 2A-E). This did not result

in a loss of activity, which suggested that only one protein was required for this activity (rather than a

kinase and substrate pair). Although labeling of this protein was dependent on PEP, it was possible that

PEP was not directly used to label the protein. The activity was not competed by ATP (Figure IA), but

PEP can be converted to other high-energy glycolytic intermediates that can potentially serve as

phosphate donors. We therefore investigated whether the 47 kDa protein could be chromatographically

resolved from the activities of PGAM1 and enolase, two glycolytic enzymes upstream of PEP (Figure

2C). After two rounds of fractionation, minimal PGAMI activity was retained (Figure 2F), but enolase

activity co-purified with the 47 kDa protein (Figure 2B,E). Following size exclusion chromatography,
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Calf thymus lysate was fractionated by ion exchange chromatography. (A) Q column chromatogram
displaying absorbance at 280 nm (A280) and enolase and PGAM1 activities in selected fractions. (B)

Expanded Q column chromatogram. An assay of [32P]-PEP-dependent labeling in the presence of 1 mM

cold ATP is shown in the lower panel. (C) Enzymes and intermediates of lower glycolysis. (D) SP
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column chromatogram with [ 32P]-PEP-dependent labeling assayed in the lower panel. (F) Relative
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Q column (Q), and SP column (SP). (G) S-200 size exclusion (SEC) chromatogram displaying A280 and

[32 P]-PEP-dependent labeling assayed in the lower panel. Elution times of protein standards are indicated.
(G) Bovine proteins identified by mass spectrometry in the peak S-200 fraction.
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the protein was digested and analyzed by proteomics mass spectrometry (Figure 2G,H). Of the bovine

proteins identified, only a-enolase matched the molecular weight predicted by SDS-PAGE, indicating that

it was likely the protein covalently modified by PEP.

Enolase is inhibited by PEP-ylation

Enolase is the glycolytic enzyme that produces PEP; however, this does not occur via a covalent

mechanism (Figure 3A) (Lebioda and Stec, 1991). We therefore sought to confirm that PEP did, in fact,

covalently modify enolase. Mammals express three isoforms of enolase, encoded by three distinct genes:

ENO], ENO2, and ENO3, which respectively encode a-, y-, and P-enolase. Each isoform was expressed

in 293-F cells and FLAG-immunopurified, and both hypotonic lysates and purified enolase isoforms were

incubated with [ 32P]-PEP (Figure 3B). Each enolase isoform was labeled by 32P in this reaction. These

proteins had a higher molecular weight than the endogenous enolase because they are linked to a FLAG-

peptide. The PEP-dependent protein labeling activity was retained in the immunopurified material,

confirming that enolase is the modified protein we had identified in our previous study (Chapter 3).

Although we were unable to observe turnover of the label in a crude lysate, we made an

additional attempt to determine whether this modification was irreversible using the fractions with

maximal activity following ion exchange chromatography (Figure 2E). This fraction was labeled with

[32P]-PEP as before, followed by addition of thymus lysate, HMEC lysate, or phosphatase (Figure 3C). In

no instance was the modification lost, confirming our previous result. HMEC lysate was unable to remove

the modification, indicating that our failure to detect this modification in HMEC lysates likely did not

result from an additional activity that reversed the modification.

Modification by PEP is not confined to mammalian enolases: enolase from Saccharomyces

cerevisiae yeast could also be labeled with [32 P]-PEP (Figure 4A). We labeled this protein with PEP and

analyzed its tryptic peptides by mass spectrometry to identify the modified residue. Surprisingly, we did

not observe transfer of phosphate from PEP to enolase. Rather, the entire PEP molecule had reacted with

K346 (corresponding to K343 in human ENOl) (Figure 4B). Modification by PEP-ylation corresponds to
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an increase in the mass of lysine by approximately 168 Da (Figure 4C). As noted above, enolase does not

produce PEP by a covalent mechanism, and the detection of this modification was unexpected. K346 is

located in the enzyme active-site and is required to deprotonate 2-phospholgycerate during catalysis;

mutating this residue greatly reduces the enzyme's kat (Reed et al., 1996). We therefore hypothesized that

PEP-ylated enolase might have reduced catalytic activity. Enolase was incubated overnight with PEP to

modify the protein, and unreacted PEP was removed by desalting. In a linked enzyme assay, we found

that compared to enolase incubated in buffer, enolase pre-treated with PEP exhibited significantly reduced

catalytic activity (Figure 4D). Enolase similarly pre-treated with pyruvate was not affected.

Based on these findings, we conclude that PEP can react with an active site lysine to inhibit

enolase, the enzyme that produces it. This modification involves a covalent adduct that contains the entire

PEP molecule, and may proceed via a Michael addition (Figure 4C) to PEP-ylate the active site.

Discussion

In our attempt to isolate proteins subject to PEP-dependent phosphorylation, we identified

enolase as a target of PEP-ylation, a reaction that covalently links the entire PEP molecule to lysine. PEP-

ylation appears to be irreversible, as we have been unable to identify an activity in cell extracts that

reverses the modification. Because PEP modifies an active site lysine, it could inhibit enolase activity in

two ways: its presence likely occludes the active site and prevents additional substrates from binding, and

it reacts with a catalytic lysine residue, rendering this amino acid incapable of general acid-base catalysis

required for enolase activity (Lebioda and Stec, 1991; Reed et al., 1996). We next aim to quantify the

extent to which endogenous enolase is modified in whole cells and whether this reduces total cellular

enolase activity. Although we have been unable to demonstrate turnover of PEP-ylated enolase in cell

extracts, the cytosolic PEP concentration and the rates of enolase synthesis and degradation are at least
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(A) Enolase carries out the dehydration of 2-phosphoglycerate (2PG) to produce phosphoenolpyruvate
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lysates were analyzed by immunoblot. (C) Purified calf thymus enolase was labeled with [32 P]-PEP and
then incubated with no added enzyme or the addition of thymus lysate, human mammary epithelial cell
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two factors that will determine the extent to which enolase is modified in cells and whether this affects

glycolysis.

Our findings imply that PEP can selectively function as a reactive metabolite. Reactive

metabolites can non-enzymatically modify proteins and exert either regulatory or deleterious effects on

their targets (Sullivan et al., 2016). The paucity of PEP-ylated proteins (see Chapter 3) suggests that PEP

is not a broadly reactive metabolite, but rather must be concentrated within the right environment, such as

the active site of enolase. Despite being weakly reactive, PEP can be bound by enolase and will often be

in proximity to the active site lysine; this would increase the number of opportunities for the PEP-ylation

reaction to occur. Alternatively, the chemical environment of the enolase active site may enhance the

reactivity of PEP, allowing it to participate in a reaction that would otherwise not occur. Whether this

property was selected for to regulate enolase activity or is merely a side reaction tolerated by nature

remains to be determined; however, our data argue that the property is conserved from yeast to mammals.

The data presented in this study clarify an earlier proposal by Moellering and Cravatt (2013) that

mammalian ENOl is non-enzymatically modified by 1,3-BPG. They initially observed that a lysine

residue on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) could react in vitro with this metabolite

to form 3-phosphoglyceryl- (3PG) lysine. Using a proteomics approach, they sought additional lysine

residues bearing this modification in cells and identified human ENOI-K343. 3PG-lysine and PEP-lysine

have different structures, but they have identical mass values (M+168) and therefore cannot be readily

distinguished by proteomic mass spectrometry. In our system, PEP-lysine was formed using enolase

purified from upstream glycolytic enzymes, which precludes the formation of 1,3-BPG and allows us to

rule out the possibility that we produced 3PG-lysine. Because K343 is located within the enolase active

site, we propose that 1,3-BPG would not easily access this residue, implying that Moellering and Cravatt

may have observed PEP-ylated enolase in their study. They detected more modified ENO1-K343 and

reduced ENOI catalytic activity in cells cultured in 25 mM glucose as opposed to 10 mM glucose,

implying that growth conditions could influence enolase activity through this modification.
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Although these glucose concentrations are both supraphysiological, glycolytic rate does differ

between them, and it is possible that this influences the degree of ENOI-K343 PEP-ylation. In future

work, we aim to characterize the fraction of enolase that is PEP-ylated in mammalian cells cultured in

different conditions and to understand the extent to which enolase activity is reduced in these conditions.

Intracellular PEP concentrations are expected to vary in other instances where glycolytic rate changes,

particularly when PKM2 activity is reduced (Cortes-Cros et al., 2013; Vander Heiden et al., 2010) or

when cells are acutely starved of glucose (Brauer et al., 2006; Xu et al., 2012). If PEP-ylation increases in

these conditions, enolase activity would be lowered, perhaps augmenting glycolytic inhibition. In some

contexts, this might favour proliferative metabolism that depends upon reduced pyruvate kinase activity

(see Chapter 1). To support this hypothesis, additional experiments will clarify both the extent of PEP-

ylation and the kinetics of formation in different contexts.

Future work should also seek to clarify how enolase PEP-ylation and PGAMI phosphorylation

are related. During ammonium sulphate precipitation, we observed the fractions containing enolase

exhibit a reduction in the PEP-dependent phosphorylation of PGAM 1 (Figure 1B). In this condition, we

did not observe a significant depletion of [3 2P]-PEP in the reaction mixture, indicating that these

modifications are not simply competing for a limited amount of PEP. Alternatively, another protein

present in the tissue homogenate but not in the assayed fractions could influence the relative labeling of

these proteins.

PEP has been implicated as an inhibitor of other proteins as well. Recent work has suggested that

PEP can inhibit the calcium transporter SERCA, coupling glycolysis to intracellular calcium signaling in

T cells (Ho et al., 2015). Active glycolysis is expected to raise PEP levels, especially when PKM2 is less

active, to exert this effect. PEP can also inhibit triose-phosphate isomerase, an upstream glycolytic

enzyme, and this could provide an additional way for PEP to inhibit glycolysis (Gruning et al., 2014). Our

findings add enolase to this list of enzymes inhibited by PEP. This modification may not be subject to

regulation but nevertheless has the potential to reduce intracellular enolase activity to exert an effect on

cellular metabolism.
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Materials and Methods

Cell culture and preparation of cell extracts: Cell lines were cultured in DMEM supplemented with

10% heat-inactivated fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 tg/mL) using

standard tissue culture techniques. FL5.12 cell cultures were further supplemented with 0.35 ng/mL IL-3

(Chemicon International). Human mammary epithelial cells (HMECs) were cultured in MCDB 170

medium containing 5 pg/mL insulin, 0.5% (v/v) bovine pituitary extract, 5 ptg/mL transferrin, 0.5 pg/mL

hydrocortisone, 10 pM isoproterenol, and 5 ng/mL epidermal growth factor. FreeStyle 293-F cells were

cultured in FreeStyle 293 Expression Medium (Life Technologies) in suspension, rotating at 125 rpm.

Cytosolic extracts were prepared by resuspending cells in 3 volumes of hypotonic lysis buffer (10 mM

HEPES-KOH pH 7.6, 10 mM KCl, 1.5 mM MgCI2, 1 mM EDTA, 1 mM EGTA, .5 mM DTT, Ix

cOmplete mini protease inhibitor (Roche)) and incubating for 10 min on ice. Cells were mechanically

lysed by passing them through a 22.5-gauge needle fifteen times. Lysates were clarified for 10 min at 20

000 x g, and protein concentration was determined by Bradford assay using a bovine serum albumin

standard.

Enzymatic synthesis of [P]-PEP: [3P]-phosphoenolpyruvate was synthesized and purified as described

previously from pyruvate and [y- 3 2p]-ATP using rabbit muscle pyruvate kinase (Sigma-Aldrich) (Hosios

et al., 2015; Mattoo and Waygood, 1983; Vander Heiden et al., 2010). Synthesized PEP was resolved

from residual ATP on a Vivapure Q Mini H column (Satorius) with sequential elution in 0.3 and 0.6 M

triethylammonium bicarbonate pH 8.5 (Sigma).

Protein labeling with [ 3 P]-PEP: All reactions were carried out in a buffer containing 50 mM Tris-HCl

pH 7.5, 100 mM KCl, 5 mM MgC 2, 1 mM DTT, and lx PhosSTOP phosphatase inhibitors (Roche).

Unless otherwise stated, 1 mM ATP was included in the reaction as well. [3 2P]-PEP synthesized as

described above was included at a concentration of-4.5 nM (-13 pCi/mL). Reactions were allowed to
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proceed at 30 *C for 1 hour and were quenched by addition of Lamelli Sample Buffer, and phosphorylated

proteins were resolved by SDS-PAGE and visualized by autoradiography.

Purification of enolase from tissue lysates: Calf thymus was homogenized in buffer A (20 mM HEPES-

KOH pH 7.0, 5 mM KC1, 1 mM MgC 2 , 5 mM DTT, I mM benzamidine, and 1 mM PMSF). The lysate

was centrifuged two times for 1 hour each at 4 *C for 13000 x g, and the supernatant was filtered through

Whatman grade 4 filter paper to remove particulate matter. The lysate was clarified at 25000 x g for 20

hours at 4 0C. Ammonium sulphate was added to 55% saturation, and the lysate was stirred one ice for I

hour and then centrifuged at 16 000 x g for 1 hour at 0 'C. Ammonium sulphate was added the

supernatant to increase its concentration to 65% saturation, and this precipitation was repeated. The

precipitated material was resuspended in buffer A and desalted into buffer B (20 mM Bis-Tris propane-

HCl pH 8.7, 5 mM KCl, 1 mM MgCl 2 ) on a column packed with Sephadex G-25 Fine (GE Healthcare

Life Sciences). Protein was then loaded on to a Q Sepharose HP column (GE Healthcare) pre-equilibrated

with buffer B and eluted in a linear gradient from buffer B to buffer B with I M KCl. The fractions with

maximal activity were pooled and desalted into buffer C (20 mM MES-KOH pH 5.5, 5 mM KCI, 1 mM

MgCl 2 ). The sample was then loaded on to a HiTrap SP HP column (GE Healthcare) pre-equilibrated

with buffer C and eluted in a linear gradient from buffer C to buffer C with I M KCI. Fractions with

maximal activity were pooled, concentrated, and fractionated on a HiPrep 16/60 Sephacryl S-200 column

(GE Healthcare) pre-equilibrated with either buffer C (for subsequent activity assays) or 150 mM

ammonium acetate (for subsequent analysis by mass spectrometry).

Immunoprecipitation of FLAG-tagged enolase: FreeStyle 293-F cells were transiently transfected with

p3xFLAG-CMV14 (Sigma-Aldrich), either empty vector or containing the coding sequence of enolase I

(Eno I), Eno2, or Eno3 with a C-terminal FLAG-tag. Four days later, cells were lysed as described above,

and lysates were incubated with Anti-FLAG M2 Affinity Gel (Sigma-Aldrich) for 30 min at 4 'C. Beads

were washed extensively with lysis buffer and eluted in lysis buffer containing 150 ptg/mL 3x FLAG
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Peptide (Sigma-Aldrich). Eluates were used directly in activity assays. To confirm construct expression,

samples were analyzed by SDS-PAGE, and proteins were detected by immunoblot and ECL assay.

Antibodies used: DYKDDDDK and GAPDH (Cell Signalling Technologies: 2368 and 2118,

respectively).

Glycolytic enzyme activity assays: Enolase and phosphoglycerate mutase I (PGAM1) activities were

quantified by a linked enzymatic assay. Each reaction was carried out at room temperature in a 100 pL

volume, containing buffer D (50 mM Tris-HCl pH 7.5, 100 mM KCl, 5 mM MgCl 2 , .5 mM DTT), 180

pM NADH, 600 ptM ADP, 16 U lactic dehydrogenase (Sigma-Aldrich), and 2 U rabbit muscle pyruvate

kinase (Sigma-Aldrich). The enolase activity assay also contained 500 pM 2-phosphoglycerate, and the

PGAM1 activity assay contained 500 ptM 3-phosphoglycerate, 10 iM 2,3-bisphosphoglycerate, and .08 U

enolase from baker's yeast (Sigma-Aldrich). Reactions were monitored by the loss of NADH

fluorescence (excitation: 340 nm, emission: 460 nm). To understand the effect of PEP-ylation on enzyme

activity, enolase from baker's yeast (Sigma-Aldrich) was incubated overnight in the presence of buffer D,

PEP, or pyruvate and desalted using a HiTrap Desalting Column pre-equilibrated with buffer D. Enolase

activity was assayed as above.

Mass spectrometry: The S-200 fraction with peak activity was prepared for mass spectrometry in

solution, and yeast enolase pre-incubated with or without cold PEP were resolved by SDS-PAGE and

prepared from Coomassie-stained gel fragments. Samples in solution were reduced with 5 mM DTT (20

mM for gel fragments) and then alkylated with 25 mM iodoacetimide (60 mM for gel fragments),

followed by overnight digestion with Sequencing Grade Modified Trypsin (Promega). For samples

digested in solution, the resulting peptides were desalted using C-18 pipette tips and eluted into a solution

of 80% acetonitrile and 0.1% acetic acid. For samples digested in gel fragments, peptides were eluted

with each of 100 mM ammonium bicarbonate, 50% acetonitrile with 5% formic acid, and 100%

acetonitrile, and eluates were pooled. Samples were dried under vacuum and resuspended in 0.1% formic

154



acid prior to analysis with a Q Exactive Mass Spectrometer (Thermo). Data were analyzed with Proteome

Discoverer (Thermo) using the Mascot database.
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Chapter 5: Discussion and future directions

Summary

Proliferation requires the synthesis of new cell mass, and proliferating cells rely on specific

metabolic pathways to generate this cell mass. Cell composition is relatively invariant, and in a general

sense, proliferating cells share a common set of biosynthetic demands despite employing different

pathways to meet them. Previous studies investigated specific metabolic pathways cells use to generate

macromolecule precursors but lacked a general framework to account for the sources of cell mass. To

ascertain what nutrients contribute to new cell mass, I used labeled nutrients to quantify the incorporation

of glucose, amino acid, and lipid carbon into cell mass. Although glucose and glutamine are consumed in

vast excess to any other nutrient, they do not make a similarly large contribution to cell mass. These

findings imply that high glycolytic and glutaminolytic fluxes observed in many proliferating cells do not

directly drive biosynthesis. Nonetheless, these processes are important to enable biosynthesis, and their

high flux may provide other advantages to cells. Although a cell's biosynthetic requirements may be

rigid, there is great plasticity in how these requirements are met, and it is of interest to understand how a

cell decides which pathways it uses to acquire new mass.

I have also explored the biochemistry of two glycolytic enzymes, pyruvate kinase and enolase.

Expression of pyruvate kinase M2 (PKM2), as opposed to its other isoforms, enables cellular proliferation

both in normal and disease states. While some have argued that this is because PKM2 can act as a

phosphoenolpyruvate (PEP)-dependent protein kinase to drive growth and cell division, I have been

unable to biochemically support this hypothesis. PKM2 expression is a contributing factor to aerobic

glycolysis and enables enhanced biosynthesis, and PKM2 most likely supports proliferation through these

effects. Although PKM2 does not use PEP to modify proteins, I have identified enolase as a protein that

can be specifically labeled by PEP. This modification inactivates a catalytic lysine residue, but further
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work will be required to understand whether this modification is present in sufficient quantities to affect

glucose metabolism and whether it contributes to glycolytic regulation in different contexts.

These studies collectively explore how different nutrients are able to contribute to mammalian

cell mass. I have directly assessed which nutrients are consumed and utilized by proliferating cells, and I

have also examined specific biochemical steps that are important to proliferative metabolism. The

findings presented provide a basis for future investigations of both nutrient acquisition and utilization by

cells as well as the biochemical role of pyruvate kinase in enabling rapid proliferation.

Discussion

Many major questions remain unresolved in our understanding of cellular metabolism, and

several are discussed below. There is great interest in therapeutically targeting the metabolism of

proliferating cells, and a holistic understanding of how the metabolic network supports proliferation is

required to do so. Future research should explore these questions to gain insight into the metabolic

pathways essential to proliferating cells.

How does the in vivo environment influence cellular metabolism?

To date, most mechanistic and tracer studies of cellular metabolism have been conducted in vitro,

using well-established cell culture systems; however, it is becoming increasingly clear that the

extracellular environment is an integral factor contributing to a cell's metabolic phenotype and that the

tissue culture environment is often a poor recapitulation of the in vivo extracellular environment. Lessons

learned about metabolism of cells in culture have been invaluable to our understanding of proliferative

metabolism but can be insufficient to completely explain metabolism of cells in tissues. Consequently,

there has been great interest in tracing the fate of nutrients in vivo as well as in developing in vitro

systems that more faithfully mimic conditions in the body.
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Extracellular metabolite levels, the concentration of plasma (or serum) components, and oxygen

tension are all known to be different in the body, and culture systems typically lack the matrix proteins

and heterogeneous cell types that comprise the extracellular milieu for many cells in the body. As a result,

several metabolic phenotypes are known to differ in vivo, and recent work has begun to identify factors in

tissue culture media that can explain some of these differences (Gui et al., 2016; Tardito et al., 2015).

Some drugs that target metabolic enzymes, such as metformin, are more potent in vivo, yet others, such as

glutaminase inhibitors, are less effective than they are in vitro (Davidson et al., 2016; Gui et al., 2016).

Nutrient environment is one variable that contributes to these differences because the same cells have

differential sensitivity to inhibition of specific pathways when cultured in media compared to when they

form tumors in mice.

Despite the importance of characterizing metabolism in vivo, cell culture systems will remain

instrumental to the study of cellular metabolism. The power to study in vivo metabolism has increased

greatly in recent years, but although they can better recapitulate what happens in humans, studies in whole

animals lack the control and experimental power that cell culture systems offer. The very factors that

make in vivo systems more powerful also weaken their utility for metabolic studies. Current approaches

analyse tissue metabolites together, preventing an analysis of the different metabolic programs that exist

in heterogeneous cell types within one tissue. Additionally, interpreting the fate of many metabolic tracers

is difficult in animals when delivered for lengthy periods of time because metabolites are interconverted

by whole body metabolism.

The study described in Chapter 2 could be extended to proliferating cells growing in mice, using

multi-isotope imaging mass spectrometry (MIMS) to circumvent some of these issues (Steinhauser et al.,

2012). To quantify the contribution of different nutrients to cell mass, I allowed cell lines to proliferate in

vitro in the presence of tracers until the entire mass of the culture had turned over, but this is not feasible

in vivo for the reasons described above. MIMS measures the isotopic enrichment of carbon (i.e.

proportion of carbon- 12 and carbon- 13) and nitrogen in individual cells in tissue sections, and this

technique can quantify the extent to which a single cell is labeled by a given nutrient without
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contamination from neighbouring non-proliferating cells. By studying mass turnover in rapidly

proliferating stem cells, a reliable assessment of cell mass labeling from glucose, glutamine, or other

metabolites could be obtained in vivo.

A major obstacle to understanding a cell's metabolic phenotype in vivo is that this is, in large

part, a function of what nutrients the cell consumes in this context. In culture, nutrient consumption rates

can be reliably calculated, but this is difficult to directly measure in vivo. Metabolic tracers are

increasingly employed to study in vivo metabolism, but tracers studies can fail to accurately capture net

flux of reactions, both in vivo and in vitro, limiting the extent to which utilization of some nutrients can be

carefully studied in vivo (discussed at length in Appendix E). Where the utility of tracers is diminished,

studies have successfully assessed nutrient consumption in vivo by sampling blood entering and exiting a

proliferating tissue. This has been done for both tumor and fetal tissues, providing case studies in the

careful assessment of consumption rates in the body. Both of these tissues are highly proliferative, and

can have few blood vessels connecting them to the circulatory system. By sampling blood entering and

exiting tumors or fetuses, researchers have successfully quantified consumption and excretion of glucose,

lactate, and amino acids.

Seminal studies by Otto Warburg and Carl and Gerty Cori demonstrated the net production of

lactate by rat and chicken tumors, providing in vivo evidence for rapid glycolytic flux in tumors (Cori and

Cori, 1925; Warburg et al., 1927). Warburg also demonstrated that normal tissue, in contrast, consumes

both glucose and lactate. A later study by Gullino et al. (1964) quantified additional nutrients in blood

entering and exiting rat tumors. Glucose was reproducibly consumed and lactate excreted by these

tumors; however, total amino acid levels were not greatly changed between blood entering and exiting the

tumor. This corroborates my observations that amino acid consumption rates are negligible relative to

glycolytic flux in vitro. Substantial work has examined nutrient consumption by ovine fetuses because

afferent and efferent umbilical cord blood can be easily sampled in sheep. In contrast to many other

proliferating tissues, ovine fetuses appreciably consume both lactate and amino acids (Lemons et al.,

1976; Sparks et al., 1982). Interestingly, lactate and amino acids are consumed in excess of the
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biosynthetic demands of the developing fetus, indicating that both are oxidized for energy. This stands in

contrast to tumor tissues, which are typically less oxidative, and this discrepancy may be in part be

explained by metabolic specialization and heterogeneity between fetal tissues. The fetus also produces a

substantial amount of lactate from glucose, confirming that some of its tissues are more glycolytic while

others are more oxidative. Although the techniques used to study tumor and fetal nutrient consumption

may not be easily applied in a typical in vivo study of proliferative metabolism, they do highlight how an

understanding of net flux can be informative in vivo.

Evaluating consumption and excretion by proliferating tissues is often not feasible, and an

understanding of in vivo metabolism can also benefit from a careful analysis of the metabolic components

of the extracellular environment. The concentration of many metabolites in plasma and in tissue/tumor

interstitial fluid differ greatly from those in standard culture media, and some metabolites present in vivo

are not included in media. Tissue culture media were formulated to optimize cell grown in vitro and not to

recapitulate conditions in vivo (Eagle, 1955), and efforts to produce culture media that more accurately

reflect in vivo conditions will allow the experimental power of cell culture systems to explain metabolism

of cells proliferating in the body.

Beyond the nutrient environment, other factors dictate which nutrients and metabolic pathways a

cell uses, and recent work has explored the roles of genetics and lineage on cellular metabolism in vivo. In

the case of cancer cells, genetic mutations in oncogenes and tumor suppressors can produce particular

metabolic phenotypes (Cairns et al., 2011; lurlaro et al., 2014; Pavlova and Thompson, 2016). Many

normal proliferating cells rely upon growth factor signalling to activate the same signalling pathways, and

the downstream metabolic effects are expected to be similar in many cases. The role of cell lineage,

independent of intracellular signalling, has also been the subject of research interest. Several studies have

investigated the differences in metabolic phenotypes that exist between tumors induced by the same

driver mutations in different tissues of origin, focussing on both glucose and amino acid metabolism

(Mayers et al., 2016; Yuneva et al., 2012). Other studies have demonstrated that vascular endothelial cells
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and cells derived from them depend upon fatty acid oxidation to proliferate, indicating a lineage-specific

metabolic phenotype (Schoors et al., 2015; Wong et al., 2016).

An understanding of how extracellular environment and cell-intrinsic factors converge on cellular

metabolism in vivo may help to explain why cells consume some nutrients but synthesize others. Many

nutrients are non-essential to proliferating cells and can be obtained both by de novo synthesis and by

consumption from the extracellular environment. For example, serine is abundant in plasma (see

Appendix A), but many cancers overexpress enzymes of the serine synthesis pathway (DeNicola et al.,

2015; Locasale et al., 2011). Fatty acids are similarly abundant, but their de novo synthesis is commonly

increased in cancers as well (Svensson and Shaw, 2017). This raises the question of what factors

determine the relative importance of each mechanism for generating these and other macromolecule

precursors, and ultimately a variety of factors are likely at play. Due to their lineages and activities of

signal transduction pathways, cells may engage in specific growth programs. Extracellular environment

and the local availability of different nutrients are important factors as well, as the relative abundances of

different nutrient sources can influence how much they are used. Amino acid transporters, for example,

can transport many substrates with differing affinities, and how these affinities compare to the

concentrations of amino acids observed in vivo is currently not well-understood (Hyde et al., 2003).

What is limiting for proliferating cells?

A full understanding of the metabolic nodes crucial for proliferation raises the question of which

metabolic process limits growth. The doubling of cell mass that occurs over the cell cycle can be thought

of as an intricate, large-scale chemical reaction. This reaction would subsume nutrient consumption,

production of macromolecule precursors, and synthesis of macromolecules themselves. In this

framework, there might be nutrients or activities of metabolic enzymes that are rate limiting for the

acquisition of new cell mass. By definition, increasing the amount of a rate-limiting metabolite or

enzymatic activity should enhance proliferation rate, but the converse could apply to a wider set of

metabolic components. ATP is often proposed to be the rate-limiting substrate for proliferation, and this
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has in part been used to explain the high glycolytic flux observed in many proliferating cells. However,

others have argued against ATP production limiting proliferation, and alternative rate-limiting

metabolites, such as NADPH, have been proposed (Lunt et al., 2015b; Racker, 1976; Ward and

Thompson, 2012). Metabolic perturbations are often pleiotropic, complicating studies that seek to identify

rate-limiting metabolic processes.

In recent years, several groups have provided evidence that the regeneration of NAD+ might be

rate-limiting to proliferating cells (Birsoy et al., 2015; Sullivan et al., 2015; Titov et al., 2016). NAD+ is

converted to NADH by reactions that oxidize metabolic substrates, and several biosynthetic reactions

essential for proliferation use this cofactor. NAD+ is regenerated by the activity of lactate dehydrogenase

(LDH) and by mitochondrial electron transport. LDH activity consumes pyruvate and other a-keto-acids,

and supplying either of these exogenously to some cells can slightly accelerate their growth in culture,

consistent with NAD+ regeneration limiting proliferation in this context (Sullivan et al., 2015). In vivo,

oxygen tension is expected to be much lower than it is in culture, limiting mitochondrial electron

transport and implying that NAD+ regeneration could limit proliferation in the body as well (Bertout et

al., 2008). Several studies have proposed that NAD+ regeneration is most immediately limiting for

aspartate biosynthesis, and it is possible that production of this amino acid, which is necessarily acquired

by de novo synthesis, limits proliferation in vivo (Birsoy et al., 2015; Sullivan et al., 2015).

Importantly, other metabolic processes and substrates may limit proliferation under different

conditions. Theories of metabolic control analysis suggest that, in a metabolic pathways, no single

enzyme limits pathway flux (Fell, 2005; Lane and Fan, 2015). Rather, several enzymes catalyze reactions

that are partially rate limiting and enhancing the activity of each is sufficient to raise pathway flux. In this

light, multiple reactions or substrates within the metabolic network might be limiting for macromolecule

synthesis and proliferation. Inhibition of any essential metabolic pathway could make it limiting, but

proliferation will be most sensitive to inhibition of pathways that are rate limiting in basal conditions.

Accordingly, identifying these rate-limiting steps could inform development of inhibitors to effectively

block proliferation.
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Why do cells have high glycolytic flux?

This question is central to many studies of proliferative metabolism and has been an outstanding

question since Warburg first observed aerobic glycolysis in tumor slices. Many explanations have been

proposed to account for the abundant conversion of glucose to lactate by proliferating cells, but the

multiple, complex effects of glycolytic inhibition have made a definitive answer hard to prove. One

commonly invoked theory holds that rapid glycolytic flux promotes anabolic metabolism (Hsu and

Sabatini, 2008; Hume and Weidemann, 1979; Pavlova and Thompson, 2016; Vander Heiden et al., 2009).

Recent work demonstrating that expression of PKM 1 is sufficient to reduce lactate production and

anabolism in vitro support this association (Christofk et al., 2008a; Christofk et al., 2008b; Lunt et al.,

2015a). Opinions differ, however, on how these two processes are connected. Some have proposed that

rapid glycolytic flux ensures higher concentrations of glycolytic intermediates that can be used

biosynthetically (Hume and Weidemann, 1979), but glycolytic intermediates are not consistently elevated

in proliferating cells (Lunt et al., 2015a; Williamson et al., 1970). I have also observed that the vast

majority of glucose carbon is not incorporated, arguing against glycolysis allowing mass action to drive

biosynthesis (see Chapter 2). Newsholme and Crabtree proposed that high glycolytic flux ensures precise

regulation of low flux biosynthetic pathways branching from glycolysis (Newsholme et al., 1985).

However, only synthesis of nucleotides (partially), several amino acids, and glycerol-3-phosphate derive

from glycolysis and it is unclear whether their synthesis limits proliferation. Finally, glycolysis has been

proposed to be a primary source of ATP for proliferating cells, but there is no evidence that cells are

limited for ATP production. In fact, neither glycolysis nor oxidative phosphorylation proceeds at its

maximal possible rate, at least where measured in culture.

To better understand the link between glycolytic flux and proliferation, I have cultured cells in

varying concentrations of glucose and calculated glucose uptake rate and proliferation rate in each

condition (Figure 1). Surprisingly, at glucose concentrations above 1 mM, proliferation rate is insensitive

to glucose concentration but glycolytic rate still increases. These results decouple glycolytic rate from

proliferation rate, arguing against a strict link between the two. Both rates show a linear relationship when
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Figure 1: Glucose consumption rate and proliferation rate can be decoupled in mammalian cells.

(A) Glucose consumption and (B) proliferation rates of A549 cells cultured in medium containing varied
concentrations of glucose. (C) Glucose consumption rates and their respective proliferation rates for each
concentration of glucose assayed. Each point represents the average of N=3 replicates, +S.D.
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glucose is low, and glucose uptake rate is half maximal around 390 ptM (Figure 1A), a concentration

below what is typical for human plasma. In this regime, glycolytic flux could directly limit biosynthesis

or energy production. Oncogenic and normal signals that stimulate proliferation also induce glucose

uptake, and upregulation of glucose transporters and glycolytic enzymes may allow cells to proliferate in

a manner insensitive to fluctuating glucose concentrations in the body. It follows then that rapid

glycolytic flux is a consequence of this proliferative signalling, and allows cells to efficiently and robustly

proliferate in vivo. Concomitant expression of PKM2 and LDH both enhance lactate production and

provide cells with a means to dispose of unneeded glycolytic material and to regenerate NAD+. In support

of this hypothesis, transgenic expression of proteins that enhance NAD+ regeneration can alter the

glycolytic outputs of both yeast and mammalian cells (Titov et al., 2016; Vemuri et al., 2007).

A definitive explanation for rapid glycolytic flux in proliferating cells will likely be hard to

demonstrate. Any perturbation to probe the pathway can alter many fluxes, macromolecule biosynthesis,

proliferation, and signalling pathway activity, and most results from such experiments are at best

correlative. Nevertheless, current research interest in cellular metabolism holds the potential to further

explore and understand glycolytic activity in proliferating cells, and each paradigm provides a different

framework through which metabolic pathways beyond glycolysis can be explored and understood.

Is pyruvate kinase an essential enzyme?

Work in recent years has enhanced our understanding of how pyruvate kinase isoform expression

contributes to aerobic glycolysis and proliferation of both normal and transformed mammalian cells

(reviewed in Israelsen and Vander Heiden, 2015). A common finding of these studies is that proliferation

relies upon low cellular pyruvate kinase activity, and increasing pyruvate kinase activity with chemical

activators or by overexpressing constitutively active PKMI can impair proliferation both in vitro and in

vivo. Deletion of the PKM2-specific exon does not completely eliminate PKM gene expression and

results in variable PKM1 expression. In some contexts, this expression is growth-inhibitory, but in several

in vivo studies, PKM1 expression is not high enough to suppress proliferation (Dayton et al., 2016;
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Israelsen et al., 2013; Lunt et al., 2015a). In a genetically engineered model of breast cancer, genetic loss

of PKM2 resulted in spatially heterogeneous PKM I expression, and interestingly, some proliferative

tumor regions lacked PKMl expression detectable by immunohistochemistry (Israelsen et al., 2013). This

led us to question whether cells could, in fact, proliferate without any pyruvate kinase expression.

Using CRISPR-Cas9 technology, we generated a clone with pyruvate kinase expression

undetectable by immunoblot (see Appendix D). Trace pyruvate kinase enzyme activity was detected in

this clone, indicating incomplete loss of pyruvate kinase; however, this clone had a glycolytic rate that

was only slightly partially reduced relative to the parental cell line. This discrepancy between pyruvate

kinase activity and glycolytic rate in these cells suggests that an alternative activity could sustain

glycolytic flux independent of pyruvate kinase. Importantly, pyruvate kinase is essential for S. cerevisiae

yeast to proliferate on glucose, but stains deficient for both isoforms can grow on ethanol, suggesting that

they are unable to bypass pyruvate kinase in glycolysis (Boles et al., 1998; Boles et al., 1997). Future

work will generate mammalian cell lines where both pyruvate kinase genes, PKMand PKLR, are ablated

to carefully understand whether this enzyme is essential for cell-autonomous proliferation. One intriguing

possibility is that glycolysis independent of pyruvate kinase does not generate ATP, ensuring rapid

pathway flux even when ATP consumption is limiting.

Conclusion

An understanding of the contributors to mammalian cell mass is far from complete. Although

significant progress has been made in characterizing nutrients and metabolic pathways that contribute to

rapid proliferation, most work to date has examined cancer cell metabolism. This has been, in part,

motivated by interest in cancer therapy as well as the ease of culturing and manipulating transformed

cells. Many lessons from cancer cell metabolism can be applied to normal proliferating cells, but

differences exist as well, and understanding these differences will be critical to the careful development of
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new therapies. Furthermore, the metabolic differences that exist between cells grown in culture and cells

grown in the body are becoming increasingly clear, and future work should seek to understand the factors

that contribute to these differences.

Subsequent studies of cancer cell metabolism should focus both on whole-cell metabolism as well

as the regulation and functions of specific metabolic pathways and enzymes. In the studies described in

this dissertation, I have characterized both the nutrient sources that contribute to proliferating cell mass

and the biochemical properties of glycolytic enzymes. I have quantified the contributions of glucose,

amino acids, and lipids to cell mass, and future studies will clarify how and why cells balance de novo

synthesis and consumption of exogenous macromolecule precursors to support maximal proliferation.

Considering the fate and utilization of glycolytic material, I have shown that phosphoenolpyruvate is not

a PKM2 protein-kinase substrate but can modify enolase to inhibit its function. How PKM2 expression

supports anabolism and proliferation is an outstanding question, but findings in recent years hold the

potential to begin to provide an answer.

Perspectives gained in recent years have offered new insight into how cells produce the

macromolecule precursors they need to synthesize new cell mass, and my graduate work has contributed

to a framework of how metabolism supports proliferation. Our understanding of proliferating metabolism

has grown considerably since Warburg's original findings, and the coming years hold the promise of

major insights into how metabolism sustains proliferation and how this can be taken advantage of

clinically.
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Appendix A: Concentrations of key metabolites in the body

Table 1: Average concentrations of selected free metabolites in human plasma (in sM).

Canepa et aballero McMenam Stein and NIH Pitkanen et Wuu et al.
Source al. (2002) et a . et a57) M5r Medline al. (2003) (1988)

Alanine 320 383 200-510 347-418 243.7
Arginine 45.1 68 87 13-120 99-131 25.5
Asparagine 32.9 43.9 15-130 53-68 77
Aspartate 1.8 2.25 <26 13-29 9.1
Citrulline 18.5 28.53 16-55 35-48 27.3
Cysteine 2-16
Cystine 19-65 23.2
Glutamate 59.4 <20 48 18-140 41-67 19.5
Glutamine 411 450 567.95 390-730 515-611 261.8
Glycine 168 235 205 110-330 244-315 168.7
Histidine 67.8 88 74 26-120 81-112 65.5
Isoleucine 52.4 54-75 57 68 37-140 51-79 95.1
Leucine 103.4 109-142 79 129 66-170 103-166 121.8
Lysine 148.3 143 186 120-290 181-232 182.9
Methionine 35.7 28 25 13-30 21-33 17.1
Ornithine 34.3 58 55 27-90 64-80 72.5
Phenylalanine 38.2 54-61 56 51 26-86 58-76 55.5
Proline 142 205 110-360 131.1
Serine 97 85 107 56-150- 127-167 117.9
Threonine 82.3 135 117 67-240 128-200 97.1
Tryptophan 52-63 21 54.35 54.35 46-65 126.4
Tyrosine 35.3 52-63 70 57 26-110 58-80 54.2
Valine 184.3 192-238 174 246 150-350 186-267 176.4

Johnson and Kelsay et al. Tsuchiya et
Source Edwards (1972) al. (2003)

(1937)
Pyruvate 110-180 93 62-64
Lactate 800-2200 683.5 830-860
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Table 2: Average concentrations of selected free metabolites in human bodily fluids (in AM).

Source Gutierrez et al. (1999) Maggs et al. (1995) (McGale et al., 1977)

Bodily Fluid Plasma Muscle IF Plasma Adipose IF Muscle IF Plasma CSF

Alanine 284 35 341 36 244 27 248 22 233 35
Arginine 76 9 88 9 80.9 22.4
Asparagine 52 5 58 7 45 3 52 3 56 4 111.7 13.5
Aspartate 9 1 62 6 43 4
Citrulline 33 3 47 6 28 1 51 5 48 11
Cysteine 49 2 34 4 34 4
Cystine 123.7
Glutamate 40 5 55 6 42 4 43 8 66 9 61.3 26.1
Glutamine 619 45 729 67 506 30 529 56 672 80 641 552
Glycine 229 25 256 23 194 15 565 92 400 48 282.7 5.9
Histidine 80 10 103 14 79.8 12.3
Isoleucine 59 5 69 8 53 5 65 7 70 10 76.7 6.2
Leucine 132 9 167 29 128 6 149 12 165 19 155.3 14.8
Lysine 168 16 187 17 170.7 20.8
Methionine 27 3 36 3 20 2 18 3 14 2 27.7 2.5
Ornithine 55 8 46 4 73.5 3.8
Phenylalanine 53 2 64 5 50 2 58 3 72 7 64 9.9
Proline 323.7
Serine 106 5 117 15 98 7 195 19 125 9 139.7 29.5
Threonine 130 15 130 21 165.5 35.5
Tryptophan 41 2 16 1 124 9 163 6 185 17
Tyrosine 50 6 66 5 53 3 54 4 62 15 73 9.5
Valine 231 22 240 29 216 10 222 14 492 53 308.6 19.9
Glucose I 1 4200 3300

IF, interstitial fluid; CSF, cerebrospinal fluid
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Table 3: Average concentrations of selected free amino acids in canine plasma and lymph (in AM).

Source Braun et al. (1956)

Bodily Fluid Plasma Lymph

Arginine 40-92 46-109
Aspartate 15-45 15-45
Cystine 25-88 21-67
Glutamine 259-599 218-544
Glycine 107-267 80-187
Histidine 45-77 26-97
Isoleucine 99-183 107-229
Leucine
Lysine 48-110 27-130
Phenylalanine 36-73 36-127
Proline 148-191 104-174
Serine 57-114 48-133
Threonine 76-235 101-261
Tryptophan 29-64 54-83
Tyrosine 44-83 39-99
Valine 85-154 77-188
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Appendix B: Proliferating cells are sensitive to cystine deprivation

Abstract

Cysteine is necessary both for protein synthesis and to combat oxidative stress. Many

proliferating cells are unable to synthesize sufficient cysteine and die from oxidative damage when

starved for this amino acid. We observed that cell viability in the absence of cysteine could be rescued

when additional amino acids were removed. Without individual essential amino acids, cells cannot divide

but cystine (cysteine dimer) deprivation is less toxic to cells, implicating proliferation as a factor in cell

death following cystine starvation. Indeed, other inhibitors of proliferation can reduce toxicity of cystine

depletion as well. Future work can expand upon these results to better understand the distinct roles that

cysteine plays to support viability and proliferation.

Introduction

The amino acid cysteine plays several critical roles in proliferating cells. Like all amino acids,

cysteine is used to synthesize protein, but it can also be incorporated into glutathione, an important

cellular antioxidant. Cysteine contains a reactive sulfhydryl (-SH) group that allows glutathione to be

oxidized to its disulfide form (-SS-) while toxic or oxidized intracellular components are eliminated or

reduced. Cysteine itself can exist as a disulfide dimer, cystine, which predominates in plasma and is

commonly supplied in vitro (Brigham et al., 1960). The system xc~ transporter (xCT, a heterodimer of

SLC7AI I and SLC3A2) is an antiporter for cystine and glutamate, serving as the primary means by

which cells consume cystine. This system plays a critical role in proliferation for some cell types, and

genetic loss of the transporter causes intracellular cystine and glutathione levels to fall and is lethal to

fibroblasts (Sato et al., 2005).
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Recent work has characterized the mechanisms of cell death induced by cystine deprivation,

resulting either from xCT inhibition or cystine starvation in vitro. Ferroptosis, an iron-dependent form of

cell death, is induced in these conditions and can be rescued by antioxidants (Dixon et al., 2012; Xie et

al., 2016; Yang and Stockwell, 2016). This mode of cell death is thought to be distinct from apoptosis, but

there have been reports of cells undergoing apoptosis following xCT inhibition as well (Liu et al., 2011).

Ferroptosis occurs when cells have an insufficient glutathione supply. In this context, cells are unable to

reduce lipid peroxide species, and inhibitors of lipid peroxide reduction are sufficient to induce cell death.

Interestingly, glutamine metabolism appears to be necessary for induction of ferroptosis, although the link

between glutaminolysis and ferroptosis remains unknown (Gao et al., 2015). Other forms of cell death

may also result from cystine starvation; both necrosis and apoptosis have been reported to occur in cells

treated with oxidizing agents and sensitivity to these forms of oxidative death is glutathione dependent.

We had previously assayed proliferation of A549 and H1299 non-small cell lung cancer cell lines

in media lacking non-essential amino acids (NEAA), including cystine (Chapter 2, Figure 12B,C). Each

of these amino acids is not required for the growth and survival of adult humans but may be required by

cell lines in culture. Unlike any other NEAA, deprivation of cystine alone was toxic to both cell lines.

Surprisingly, cells cultured in the absence of all NEAA (including cystine) were viable, indicating that

deprivation of one or more NEAA protected cells from the effects of cystine deprivation. The following

study aims to understand the protective function of NEAA starvation to better understand cellular

dependence on cystine.

Results

We first sought to characterize the cell death we observed in culture following cystine

deprivation. Ferroptosis is a recently proposed cell death mechanism that is independent of classic

apoptosis and occurs when cells are unable to consume cystine (Yang and Stockwell, 2016). This form of
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cell death is characterized by iron dependence and the ability to be rescued by reducing agents (Dixon et

al., 2012). We assessed viability of A549 cells and 143B osteosarcoma cells cultured in medium lacking

cystine and observed that they died at different rates, with -75% of cells being inviable after one and

three days, respectively (Figure 1A,B). Viability was assayed by exclusion of the dye propidium iodide,

which can only stain cells with compromised plasma membrane integrity and, therefore, does not stain

early apoptotic cells (Darzynkiewicz et al., 1992). Viability was rescued by addition of deferoximine

(DFO), an iron chelator, indicating that cell death in this condition was iron dependent. Cells were also

rescued by addition of N-acetyl-cysteine (NAC) and P-mercaptoethanol (PME), which can both function

as reducing agents. NAC can also be hydrolyzed in cells to yield cysteine and is therefore less informative

as a cystine starvation, contrary to what has been previously described (Dixon et al., 2012). Consistent

with this explanation, addition of NAC to cystine-free media not only restored cell viability but was also

able to completely rescue proliferation (data not shown). These observations demonstrate that NAC can

serve as a substitute for cystine. 3ME cannot be metabolized and only serves as a reducing agent;

however, it was able to partially restore the proliferation of A549 cells (Figure 1C), suggesting that they

might be able to synthesize some cysteine de novo under these conditions.

Cell death following cystine deprivation was rescued in a manner consistent with ferroptosis,

which can be induced by high extracellular glutamate concentrations (typically > 5 mM) that prevent

cystine uptake by xCT. Since depletion of NEAA (including glutamate, present at 136 ptM in our media)

rescued death induced by cystine deprivation (Chapter 2, Figure 12B,C), we hypothesized that removal

of glutamate might be sufficient to mediate this rescue. Removal of glutamate from the medium did not

rescue viability in the absence of cystine (data not shown), indicating that removal of other NEAA

contributed to our original observations. Some NEAA are non-essential for adult humans but are

conditionally essential for cells in culture, such as arginine and tyrosine. Interestingly, when A549 and

143B cells were deprived of either of these amino acids in addition to cystine, viability was completely

restored to levels observed in cystine-containing media (Figure 2). Removal of leucine, which is an
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Figure 1: Cystine deprivation induces iron-dependent, oxidative cell death.

Fraction of cells staining positive for propidium iodide, a marker of inviable cells with compromised
membrane integrity. (A) A549 cells were cultured for three days in the presence or absence of cystine,
and (B) 143B cells were cultured for one day in this condition. Deferoxamine (DFO, 100 ptM), N-acetyl-
cysteine (NAC, 1 mM), or p-mercaptoethanol (PME, 50 pM) were added to cystine-free medium. (C)
Proliferation of A549 cells in medium containing or lacking cystine with or without 50 PM PME

supplemented. Each bar or point represents the average of N=3 replicates, S.D.
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Figure 2: Depletion of essential amino acids rescues the viability of cells starved of cystine.

(A) A549 and (B) 143B cells were cultured for three or one day in medium containing or lacking cystine
as well as arginine, leucine, or tyrosine. Viability was assessed by propidium iodide dye exclusion, and
cells incorporating the dye are considered inviable. Each bar represents the average of N=3 replicates,

S.D.
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essential amino acid, produced the same effect in A549 cells but only partially rescued viability of 143B

cells.

Each of these amino acids has distinct metabolic fates and effects on amino acid-sensing

pathways, but they are all related in that starvation for each individually causes a proliferation arrest. To

investigate whether proliferation itself might sensitize cells to cystine deprivation, we used orthogonal

approaches to inhibit cell division. Thymidine induces cells to arrest at the GI/S transition, and addition

of this nucleoside to A549 cells partially restored viability in the absence of cystine (Figure 3A).

Viability of H1299 cells was completely rescued with thymidine supplementation (Figure 3B). 143B

cells do not respond to thymidine block because they lack thymidylate kinase and are unable to salvage

this nucleoside (Bacchetti and Graham, 1977).

Since thymidine block reduced the toxicity of cystine starvation, we examined whether other

means of arresting proliferation affected viability of cystine-starved cells. A human mammary epithelial

cell (HMEC) line that requires epidermal growth factor (EGF) to proliferate (see Chapter 2, Figure 7A)

was cultured with or without EGF before being starved of cystine. Cells arrested by EGF depletion were

completely viable when deprived of cystine, although HMECs were comparatively less sensitive to

cystine starvation (Figure 3C). We finally attempted to block proliferation by using small molecule

inhibitors of cell cycle progression. These can be toxic to cells, and we therefore chose to assay viability

of 143B cells, which die rapidly following cystine starvation. Hydroxyurea is a nucleotide synthesis

inhibitor and SU-9516 is a CDK2 inhibitor that both cause cell cycle arrest. Each was partially toxic to

143B cells in basal conditions but was able to slow the death of these cells when starved of cystine

(Figure 3D). These results collectively imply that proliferating cells are particularly sensitive to cystine

deprivation, as multiple means of inhibiting proliferation increase the viability of cystine-starved cells.
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Figure 3: Proliferating cells are sensitive to cystine depletion.

The viability of (A) A549 and (B) H1299 cells cultured for three days in medium with or without cystine

and thymidine (2 mM). (C) Human mammary epithelial cell (HMEC) viability when deprived of cystine

in medium containing or lacking epidermal growth factor (EGF), which is essential for their proliferation.

(D) Viability of 143B cells was assessed after one day in medium lacking cystine with hydroxyurea (2

mM) or SU-9516 (5 tM) added. Each bar in represents the average of N=3 replicates, tS.D. in (A-C), and

N=1 replicate in (D).
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Discussion and Future Directions

For many cells in culture, cystine consumption is essential for both proliferation as well as

viability. The data presented here implicate proliferation as a significant determinant of whether cells die

in the absence of cystine. We confirmed that cell death following cystine starvation is dependent on both

iron and oxidation, consistent with previous reports, but argue that NAC rescues this condition by

functionally substituting for cystine. Treatments that prevent cell proliferation are protective during

cystine starvation, preventing or reducing cell death. Essential amino acid starvation, thymidine block,

growth factor withdrawal, and cell cycle inhibitors are all able to mediate this effect to varying degrees.

These treatments have in common their ability to arrest cell proliferation, and together our data suggest

that proliferating cells are more susceptible to cystine starvation. This result may, in part, explain why

glutamine is required for ferroptosis. Gao et al. (2015) observed that ferroptosis following cystine

deprivation is rescued when glutamine is omitted from culture media, and this is perhaps because

glutamine is essential for proliferation of many cells in culture.

We were able to partially decouple the requirements of cysteine for cell viability and

proliferation. Culturing A549 cells without cystine led to cell death, but addition of PME completely

restored viability while only marginally rescuing proliferation. Cysteine is necessary for protein synthesis

and to produce glutathione to combat reactive molecules, and pME can only fulfill the latter function.

Therefore, cellular glutathione might determine viability while protein synthesis enables proliferation. It

is also possible that PME provides reducing power to partially restore proliferation but that this cannot

fully substitute for glutathione synthesis. Future work aimed at more directly inhibiting glutathione

synthesis is needed to better decouple the functions of cysteine. That A549 cells can proliferate slowly in

the absence of cystine and presence of pME suggests that they are capable of de novo cysteine

biosynthesis albeit at rates insufficient to sustain full proliferation. Alternatively, slow proliferation might

have been facilitated by accessing cellular cysteine stores. If autophagy were involved, , we would not

expect cells to proliferate indefinitely in cystine-free media supplemented with pME. Alternatively
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macropinocytosis of extracellular protein has been shown to compensate for starvation of individual

amino acids and may be a source of cysteine in our study (Commisso et al., 2013). Additional work is

required to determine whether de novo cysteine biosynthesis occurs in these cells.

The question still remains as to what sensitizes proliferating cells to cystine starvation.

Withdrawal of individual essential amino acids reduces mTORC 1 activity, ultimately resulting in arrested

proliferation. mTORCl is not equally sensitive to all amino acids, however, and cystine depletion does

not significantly alter pathway activity (Hara et al., 1998). In that case, proliferating cells deprived of

cystine may fail to arrest due to sustained mTORCl signalling, and their continued growth and division

could dilute the intracellular cysteine and glutathione pools, ultimately depleting them. Non-proliferating

cells do not dilute their cytoplasms, potentially making them resistant to cystine starvation. To address

this point, we plan to explore how the activity of signalling pathways (in particular those that sense amino

acid levels) depends upon cysteine.

Unlike other amino acids, cysteine plays two essential roles: in protein biosynthesis to sustain

proliferation and in glutathione to keep cells viable. Further work is required to better dissect the different

fates of cysteine, especially from a quantitative perspective and how this amino acid interacts with

signalling pathways that control both viability and proliferation.

Materials and Methods

Cell Culture: Cells were maintained in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine

serum (FBS), penicillin (100 U/mL), and streptomycin (100 tg/mL) using standard tissue culture

techniques. Cells were washed three times with phosphate buffered saline (PBS) before changing to

RPMI 1640 lacking specific amino acids, which contained 10% heat-inactivated dialyzed FBS. Other

additives to the medium included: thymidine (2 mM), deferoxamine mesylate (100 PM), N-acetyl-

cysteine (1 mM), p-mercaptoethanol (50 pM, refreshed daily), and hydroxyurea (2 mM) all from Sigma-
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Aldrich; and SU-9516 (5 iM) from Tocris Bioscience. Human mammary epithelial cells (HMEC) were

maintained in media described in Chapter 2 but were changed to RPMI 1640 containing the same growth

factors for amino acid deprivation experiments.

Viability Assays: One day after plating, cells were washed twice with PBS and changed into the media to

be assayed. HMEC were first cultured in medium lacking epidermal growth factor (EGF) for two days

before being changed to the corresponding assay media. Cells were then incubated for either one day (for

143B) or three days (for A549, H1299, and HMEC). To assay viability, detached cells were collected and

pooled with adherent cells harvested by trypsinization. These cells were washed once with PBS and

resuspended in PBS containing 1% bovine serum albumin and 2 pg/mL propidium iodide (PI). A BD

FACSCanto 1I and FACS Diva Software were used to determine the fraction of cells that stained PI-

positive, and these cells were considered to be inviable.

Proliferation Assays: Cells seeded at low density (20 000 cells/well) one day prior to the experiment.

The next day, cells were washed twice with PBS and changed to the assay media. On each day of the

experiment, media were refreshed, and cells from each condition were trypsinized and counted.

References

Bacchetti, S., and Graham, F.L. (1977). Transfer of the gene for thymidine kinase to thymidine kinase-
deficient human cells by purified herpes simplex viral DNA. Proceedings of the National Academy of
Sciences of the United States of America 74, 1590-1594.

Brigham, M.P., Stein, W.H., and Moore, S. (1960). The Concentrations of Cysteine and Cystine in
Human Blood Plasma. The Journal of clinical investigation 39, 1633-1638.

Commisso, C., Davidson, S.M., Soydaner-Azeloglu, R.G., Parker, S.J., Kamphorst, J.J., Hackett, S.,
Grabocka, E., Nofal, M., Drebin, J.A., Thompson, C.B., et al. (2013). Macropinocytosis of protein is an
amino acid supply route in Ras-transformed cells. Nature 497, 633-637.

Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M.A., Lassota, P., and Traganos, F.
(1992). Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795-808.

186



Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N.,
Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of
nonapoptotic cell death. Cell 149, 1060-1072.

Gao, M., Monian, P., Quadri, N., Ramasamy, R., and Jiang, X. (2015). Glutaminolysis and Transferrin
Regulate Ferroptosis. Molecular cell 59, 298-308.

Hara, K., Yonezawa, K., Weng, Q.P., Kozlowski, M.T., Belham, C., and Avruch, J. (1998). Amino acid
sufficiency and mTOR regulate p70 S6 kinase and elF-4E BPI through a common effector mechanism. J
Biol Chem 273, 14484-14494.

Liu, X.X., Li, X.J., Zhang, B., Liang, Y.J., Zhou, C.X., Cao, D.X., He, M., Chen, G.Q., He, J.R., and
Zhao, Q. (2011). MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by
targeting SLC7A1 1. FEBS Lett 585, 1363-1367.

Sato, H., Shiiya, A., Kimata, M., Maebara, K., Tamba, M., Sakakura, Y., Makino, N., Sugiyama, F.,
Yagami, K., Moriguchi, T., et al. (2005). Redox imbalance in cystine/glutamate transporter-deficient
mice. J Biol Chem 280, 37423-37429.

Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., and Tang, D. (2016). Ferroptosis:
process and function. Cell Death Differ 23, 369-379.

Yang, W.S., and Stockwell, B.R. (2016). Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26,
165-176.

187



188



Appendix C: Biochemical properties of phosphoserine phosphatase

Introduction

Serine can be obtained from the environment or from de novo synthesis. The serine synthesis

pathway produces serine from glucose via the oxidation, transamination, and dephosphorylation of 3-

phosphoglycerate. The enzymes of this pathway are upregulated when cells are starved of serine, and the

first enzyme in this pathway, phosphoglycerate dehydrogenase, is amplified in some cancers (Locasale et

al., 2011). Elevated flux through this pathway is growth-promoting in some contexts, and there has been

interest in studying this pathway and its regulation (Mattaini et al., 2016; Possemato et al., 2011).

Phosphoserine phosphatase (PSPH) catalyzes the final step of serine biosynthesis and is reported to

possess two activities (Figure 1A) (Borkenhagen and Kennedy, 1958; Neuhaus and Byrne, 1958):

1. When serine is scarce, PSPH acts as a phosphatase to generate serine from phosphoserine

2. When serine is abundant, PSPH acts as a phosphotransferase to move phosphate between

phosphoserine and serine, without the net generation of a new serine molecule

We previously observed that phosphoserine becomes isotopically labeled in cells supplied with

universally carbon-13 labeled ([U- 13C]) serine (Figure 1B). The mass isotopomer distributions of serine

and phosphoserine were identical, indicating that the intracellular pools of these metabolites are in

isotopic equilibrium. This observation could be explained by synthesis of phosphoserine from serine by

PSPH. Alternatively, PSPH phosphotransferase activity could be sufficient to allow isotopically labeled

serine supplied to cells to label phosphoserine without net synthesis of the latter, particularly if the

phosphotransferase and phosphatase activities are comparable (see Appendix E). We therefore sought to

investigate which of these hypotheses could better explain the generation of isotopically labeled

phosphoserine from serine.
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Figure 1: Intracellular serine and phosphoserine are isotopically equilibrated.

(A) The two catalytic functions of PSPH. When the intracellular serine concentration is low, PSPH acts as
a phosphatase, cleaving 3-phosphoserine to generate serine. When serine is abundant, PSPH can act as a
phosphotransferase to move a phosphate between 3-phosphoserine and serine. (B) T.T and MDA-MB-468
cells were labeled with [U-' 3C]-serine for 24 hours. The mass isotopomer distribution of serine (Ser) and
phosphoserine (pSer) are shown. Each bar is the average of N=3 S.E.M. M+0 represents the isotopomer
of serine containing only carbon- 12, and each higher value results from incorporation of an additional
carbon- 13 atom, increasing the mass by one. Although the labeled serine provided to cells is entirely
M+3, intracellular serine hydroxymethyltransferase activity cleaves and re-generates serine, producing
M+1 and M+2 species.

The data shown are courtesy of Caroline Lewis.
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Results

To understand how serine alters the function of PSPH, we studied the activity of affinity-purified,

recombinant human PSPH in a cell-free system. Phosphoserine alone is stable in solution, but is

hydrolyzed by PSPH to produce serine (Figure 2A). When a higher concentration of PSPH was examined

(Figure 2B, left), we observed near complete conversion of phosphoserine into serine, consistent with

specific activity values reported elsewhere (Neuhaus and Byrne, 1958). When we added 5 mM serine to

this reaction, phosphoserine hydrolysis was markedly slowed, even at this higher concentration of PSPH

(Figure 2B, right). Serine may slow the net reaction through several mechanisms: serine could inhibit

PSPH by binding to its active site, it could participate in the reverse reaction to produce phosphoserine, or

it could cause the enzyme to favor phosphotransferase activity over hydrolysis.

Phosphoserine hydrolysis is energetically favourable, so we did not expect that the reverse

reaction to occur at a substantial rate. When the reaction included 5 mM serine and 50 mM phosphate as

substrates, PSPH was unable to synthesize phosphoserine (Figure 2C). It is possible that at higher

concentrations, these substrates could drive the reaction. Intracellular free phosphate, however, is

estimated to be close to 5 mM (Traut, 1994), and we therefore concluded that net synthesis of

phosphoserine could not explain our initial observations that isotopically labeled phosphoserine was

produced from [U- 3 C]-serine in cells. To assay for phosphotransferase activity, we incubated PSPH with

[U- 14C]-serine and varying concentrations of non-radioactive phosphoserine and monitored the

production of [U- 14C]-phosphoserine. Radioactive phosphoserine was generated in proportion to the

amount of non-radioactive phosphoserine included in the reaction (Figure 2D). This suggests that PSPH

possesses sufficient phosphotransferase activity to enable high turnover of phosphoserine, explaining the

labeling observed in cells.
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Figure 2: PSPH can isotopically equilibrate serine and phosphoserine without net synthesis of the

latter.

Serine (Ser) and phosphoserine (pSer) can be resolved by thin layer chromatography (TLC), enabling
PSPH activity to be monitored in vitro. (A) PSPH acts as a phosphatase, hydrolyzing phosphoserine to
produce serine. Phosphoserine (5 mM) was incubated for the indicated times in the presence or absence of

10 pg/mL recombinant PSPH. (B) Phosphatase activity is inhibited by serine. Phosphoserine (5 mM) and

PSPH (100 pg/mL) were incubated in the presence or absence of serine (5 mM) for the specified times.
(C) PSPH cannot synthesize phosphoserine from serine (5 mM) and phosphate (50 mM). (D) PSPH
enables phosphate exchange between serine and phosphoserine. PSPH was incubated for 40 min with
serine (5 mM, including 1 gCi/mL [U-'4C]-serine) and the indicated concentrations of phosphoserine. The

TLC plate was visualized by autoradiography (left) and ninhydrin stain (right). Radioactive
phosphoserine is detected, demonstrating production of phosphoserine from serine.
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Discussion

We propose that the phosphotransferase activity of PSPH is sufficient to account for the

observation of carbon-I 3 labeled phosphoserine with the same mass isotopomer distribution as serine.

Hydrolysis of phosphoserine is expected to be energetically favourable, and supraphysiological

concentrations of serine and phosphate would be required to drive the reverse reaction (Guynn et al.,

1986). The intracellular serine concentration is expected to be in the low millimolar range, sufficient to

greatly reduce PSPH phosphatase activity. We show that this is not due to inactivation of the enzyme but

rather because serine allows the enzyme to catalyze a phosphotransferase reaction. For the lower

concentrations of phosphoserine assayed in the exchange reaction, we observed that the relative

intensities of the radioactive phosphoserine and serine spots was qualitatively comparable to the relative

intensities of ninhydrin stained material. This suggests near complete turnover of phosphoserine, resulting

in a specific activity similar to serine. We conclude that PSPH has the ability to synthesize new

(isotopically labeled) phosphoserine but that this does not represent net synthesis. In cell culture,

phosphoserine is de novo synthesized from glucose, and this has the potential to reduce its labeling

relative to [U 13C]-serine. Because we observed identical phosphoserine and serine labeling, we expect

the exchange catalyzed by PSPH to be fast relative to the rate of de novo synthesis. Our observations

represent a specific case where an exchange reaction results in isotopic labeling without net synthesis.

Where this is the case, production of an isotopically labeled metabolite from a labeled nutrient does not

imply its net synthesis and metabolic tracers fail to identify the direction of a reaction's flux. These

implications are discussed in further detail in Appendix E.

Together, these data argue that PSPH activity can equilibrate the intracellular phosphoserine and

serine pools, even when both serine synthesized de novo and extracellular serine are available to cells.,

When serine is scarce, however, PSPH will rapidly hydrolyze phosphoserine to produce serine.

Phosphoserine levels thus could provide cells with a readout of both serine synthesis flux and

extracellular serine levels, but whether phosphoserine is sensed in cells remains a topic for further study.
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Materials and Methods

Purification of N-terminally tagged 6xHis-tagged human PSPH: Recombinant PSPH was produced in

BL21 (DE3) pLysS bacteria transformed with pET28a-PSPH. During exponential growth, PSPH

expression was induced with 0.5 mM IPTG for 6 hours at 37 'C. PSPH was purified by nickel affinity

chromatography using Ni-NTA agarose beads (Qiagen) using the same approach we had previously used

to purified recombinant PKM2 (Hosios et al., 2015). Protein concentration was determined by Bradford

assay using bovine serum albumin as a standard.

PSPH activity assay: Enzyme activity was monitored using the specified concentrations of PSPH in a

buffer containing 25 mM HEPES (pH 7.0), 50 mM KC1, 5 mM MgCl 2, and 1 mM DTT. Serine (5 mM),

3-phosphoserine (5 mM unless otherwise specified), and sodium phosphate (50 mM, pH 7.1) were added

where specified. Reactions were allowed to proceed at room temperature for 40 min or the indicated

times, and I pL was then spotted on to cellulose thin layer chromatography (TLC) plates and dried

immediately to halt the reaction. Plates were developed with a solution of 80% isopropanol and 4%

formic acid until the solvent front was 8 cm beyond the origin, and amino acids were visualized by

ninhydrin staining. Where indicated, [U-' 4C]-serine (1 pCi/mL final concentration) was included in the

reaction, and the TLC plate was additionally visualized by autoradiography.
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Appendix D: Evidence for pyruvate kinase-independent glycolysis

Introduction

Pyruvate kinase catalyzes the final reaction in glycolysis, the production of pyruvate and ATP

from phosphoenolpyruvate (PEP) and ADP. Mammals express four isoforms of pyruvate kinase that

differ in their tissue localization. PKR and PKL are expressed from the PKLR gene, and they are

expressed respectively in erythrocytes and the liver. The PKM gene encodes two isoforms that are

expressed in all other adult tissues, PKM1 and PKM2 (Dayton et al., 2016). PKM2 is also ubiquitously

expressed in embryonic tissues and is the predominant isoform expressed in cancerous tissue (Mazurek et

al., 2002). Expression of PKM2 rather than PKM1 allows cells to engage in a unique metabolic program

that favors aerobic glycolysis and anabolic metabolism, allowing cells to proliferate (Israelsen and Vander

Heiden, 2015).

In spite of extensive evidence for preferential PKM2 expression in proliferating cells, PKM2 is

not essential for these cells, and in some cases loss of PKM2 can promote proliferation. A previously

generated mouse model allows for conditional deletion of PKM2 (Dayton et al., 2016; Israelsen et al.,

2013). Which PKM isoform is expressed is determined by a mutually exclusive splicing event, and

deletion of the PKM2-specific exon (PKMexon 10) uniquely prevents expression of this isoform. Upon

PKM2 deletion, low levels of PKM I expression are observed both in tissue culture and in mice; however,

glycolytic rate is not changed. Since production of lactate from glucose is minimally altered in this

context, we wondered if cells express an enzyme that allows them to bypass pyruvate kinase. This

enzyme could sustain glycolytic rate when pyruvate kinase activity is dramatically reduced. PKM2

activity is also lowered in a variety of biological contexts without a corresponding decrease in glycolytic

rate, further implying that cells might be able to circumvent this reaction (Christofk et al., 2008; Israelsen
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and Vander Heiden, 2015). Previous work had postulated that glycolysis can bypass pyruvate kinase, but

no enzyme with this function has been identified to date (Vander Heiden et al., 2010).

If this activity exists, we reasoned that cells should be able to proliferate without pyruvate kinase

expression, and genetic approaches that reduce but do not eliminate pyruvate kinase activity are not

sufficient to address this question. We therefore employed CRISPR-Cas9-mediated deletion to

completely eliminate pyruvate kinase expression to understand whether pyruvate kinase activity is

essential for proliferating cells.

Results and Future Directions

We introduced Cas9 and a small guide RNA targeting PKMexon 2 (sgPKM), an exon common

to both PKM1 and PKM2, into 3553-T3 cells (cells previously derived from a mouse lung tumor deleted

for p53 and expressing Kras GI21). After single-cell cloning, one clone was obtained in which PKM2 was

undetectable by protein immunoblot (Figure 1A). We confirmed that PKM 1 was also not expressed and

that there was no compensatory expression of PKL or PKR. Similar results were obtained by analyzing

messenger RNA from parental cells and the clone by quantitative PCR (data not shown). The sgPKM

clone displayed reduced proliferation compared to the parental cells (Figure 1B). This might be due to

impaired glycolysis but may also be a consequence of the phenotypic variability necessarily resulting

from single cell cloning. To assay glycolytic rate in these cells, we measured glucose consumption and

lactate production (Figure 1C). Both of these rates were partially reduced in the sgPKM cells compared

to the parental line; however, loss of pyruvate kinase expression did not eliminate glycolytic flux. Cells

might therefore be capable of glycolysis even without pyruvate kinase expression, providing evidence for

an alternative activity. We assayed pyruvate kinase activity in hypotonic lysates using a linked enzyme

assay (Figure 1D) in which each reaction contained either PEP alone or PEP and ADP. When PEP alone

was added, no activity was observed. The parental cell lysate demonstrated robust activity when PEP and
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Figure 1: CRISPR-Cas9-mediated deletion of PKM partially impairs growth and glycolytic rate.

(A) Immunoblot for pyruvate kinase isoform M2 (PKM2), isoform MI (PKM 1), and isoforms L and R

(PKL & PKR) in cell extracts from 3553-T3 cells (parental) or a clone generated following expression of

Cas9 and a small guide RNA targeting PKMexon 2 (sgPKM). Analysis of (B) proliferation rate and (C)

glucose consumption and lactate production rates of the parental cells and the sgPKM clone. (D) Pyruvate

kinase activity was assayed in hypotonic lysates by a linked assay to lactate dehydrogenase to monitor

pyruvate production. Reactions contained either PEP alone or PEP and ADP. Each bar or point represents

the average of N=3 replicates, S.D.

The data presented in figures (A) and (C) were generously provided by Alba Luengo.
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ADP were included, and we were also able to detect residual pyruvate kinase activity in the sgPKM clone

lysate. Of note, the activity assay monitors consumption of NADH by lactic dehydrogenase downstream

of pyruvate kinase, so we directly confirmed pyruvate production from PEP and ADP by mass

spectrometry as well (data not shown). These results suggested that although no pyruvate kinase protein

was detected in the sgPKM clone, residual low levels of pyruvate kinase activity remained, perhaps due to

expression of PKL or PKR below the limit of detection by immunoblot. Nevertheless, these cells

displayed a roughly 2-fold reduction in glycolytic rate but a 200-fold decrease in pyruvate kinase activity,

suggesting that they may not depend exclusively on pyruvate kinase to enable glycolytic flux.

We next sought to generate a system where both pyruvate kinase isoforms could be efficiently

deleted. Recently, complex CRISPR-Cas9 systems that express multiple guide RNAs have been

developed, allowing allow multiple genes to be targeted simultaneously (Kabadi et al., 2014). We

designed guides that target intronic regions flanking PKM exons 9 and 10 and PKLR exons 7 and 8

(Figure 2A,B). These PKMexons are specific to PKMI and PKM2, respectively, and no PKM product

can be produced when they are both excluded (Israelsen et al., 2013). Because two guides target each

gene, Cas9 activity can excise a small portion of DNA. Non-homologous end joining to repair this lesion

may result in three possible effects: (1) re-insertion of the excised region to regenerate the wild type

allele, (2) loss of the excised region resulting in a deletion, or (3) re-insertion of the excised region

resulting in its inversion. Each of these results can be monitored by PCR of genomic DNA. When the

vectors expressing the guide RNAs were transiently transfected into HEK293T cells, we observed

substantial formation of both deletion and inversion alleles not detectable when the sgRNAs were not

present. This suggests that we can efficiently target PKM and PKLR for simultaneous deletion (Figure

2C,D). Future work includes deriving single-cell clones from cells targeted with these sgRNAs to discern

whether cells can proliferate when all pyruvate kinase isoforms are genetically lost. If clones are obtained,

we will seek to characterize them and identify the source of their glycolytic activity.
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Figure 2: Deletion of PKM and PKLR using a multiplexed CRISPR-Cas9 approach.

PKM exons 9 and 10 encode regions specific to PKM 1 and PKM2, respectively, and PKLR exons 7 and 8
encode a region common to PKL and PKR. We designed two small guide RNAs (sgRNAs) that target
sites flanking these regions in (A) PKM and (B) PKLR. If both sites are cut by Cas9, the region could be
excised, allowing PKM or PKLR to be deleted. Primers F, I, and R can be used to genotype the resulting
loci. HEK293T cells were transiently transfected with Cas9 alone or in addition to vectors expressing the
sgRNAs targeting (C) PKM or (D) PKLR. After 24 hours, genomic DNA was isolated and amplified with
primers F and R to detect the wild type (WT) allele or a deletion (del) resulting from excision the targeted
exons. Primers I and R amplify an inversion (inv) that can form when exons excised and re-ligated.
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Materials and Methods

Cell culture: All cells were cultured in DMEM supplemented with 10% heat-inactivated fetal bovine

serum (FBS), penicillin (100 U/mL), and streptomycin (100 pg/mL) using standard tissue culture

techniques.

Immunoblot: Cells were lysed in cold RIPA buffer containing Ix cOmplete Mini Protease Inhbitors

(Roche), and lysates were clarified for 10 min at 4 0C. Protein concentration was determined by Bradford

assay, and samples were analyzed by SDS-PAGE followed by immunoblotting using the following

antibodies: PKM2 and PKM1 (4053 and 7067, respectively, from Cell Signaling Technologies); and

PKLR (D- 10 from Santa Cruz Biotechnology).

Proliferation assay: Cells were sparsely seeded, and allowed to adhere overnight. The next day, cells

were washed extensively with PBS and changed into fresh medium. Cells were trypsinized and counted at

the indicated time points.

Measurement of nutrient consumption and excretion: One day prior to the experiment, cells were

seeded in 6-well plates at a sufficiently low density to ensure their exponential proliferation over the

duration of the experiment. The following day, the cells were washed with PBS and changed into fresh

medium. Over the following 48-hour period, medium was collected and cell counts were determined from
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the corresponding wells. Media were centrifuged at 3000 x g for 5 minutes to remove any cell debris and

then stored at -20 'C. Glucose and lactate concentrations were later measured by enzymatic assay using a

YSI-7100 MBS (Yellow Springs Instruments). To calculate consumption rates, we performed a linear

regression of a nutrient's concentration relative to the integrated area under the curve (units: cells - time)

of an exponential function fit to the growth curve.

Pyruvate kinase assay: To prepare hypotonic lysates, cells were washed twice with cold PBS, detached,

and pelleted. The cell pellet was resuspended in a hypotonic buffer containing 20 mM HEPES-KOH pH

7.0, 5 mM KCI, 1 mM MgCl2 , 0.5 mM DTT, and Ix cOmplete mini protease inhibitor (Roche). Cells

were incubated for 10 min on ice and lysed by passing them through a 22.5-gauge needle fifteen times.

The resulting lysates were clarified for 10 min at 20 000 x g, and protein concentration was determined

by Bradford assay using a bovine serum albumin standard. Pyruvate kinase activity was determined by an

assay linked to lactic dehydrogenase (LDH). Reactions were carried out at room temperature in a 100 pL

volume containing lysate, buffer (50 mM Tris-HCI pH 7.5, 100 mM KCl, 5 mM MgCl 2 , .5 mM DTT),

180 pM NADH, 500 pM PEP, and 16 U LDH (Sigma-Aldrich). Where indicated, 600 pM ADP was also

included. Activity was monitored by loss of NADH fluorescence (excitation at 340 nm; emission at 460

nm). The measured initial reaction rates were adjusted to account for the amount of lysate included in

each reaction. To assay for the production of pyruvate by mass spectrometry, we excluded LDH and

NADH from the reactions and quenched them after 15 minutes with excess cold acetone containing a

norvaline standard (1 pg/reaction). The reactions were clarified for 10 min at 4 'C, and the soluble

material was dried under nitrogen gas and analyzed by gas chromatography-mass spectrometry as

described previously (Lewis et al., 2014).

Design and validation of sgRNAs: Guide RNA sequences (Table 1) were selected using crispr.mit.edu,

and cloned into the vector system described previously by Kabadi et al. (2014). We followed the the

authors' protocols using enzymes purchased from New England Biolabs and validated the resulting
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vectors by Sanger sequencing. HEK293T cells were transiently transfected with pLV-hUbC-Cas9-T2A-

GFP alone or in addition to the vectors encoding each sgRNA using Lipofectamine 3000 (Life

Technologies). After 24 hours, genomic DNA was extracted from cells using the PureLink Genomic

DNA Mini Kit (Life Technologies). DNA was amplified with Phusion polymerase (New England

Biolabs) according to the manufacturer's instructions, using the primers listed below (Table 2). The

reactions were analyzed by gel electrophoresis. Multiple guide RNAs were tested, and the pairs that

resulted in the best genomic deletion are listed (Table 1).

Table 1: Sequences targeted by guide RNAs used in this study (see Figure 2A,B).

sgRNA Recognition Sequence Vector *

PKM Guide 1 GCCAATTTCCCCTGTATTGG pmU6-gRNA

PKM Guide 2 GAGTGCTACCTAGAGTCCTT phU6-gRNA

PKLR Guide I TGAGCGCAGAGTCTACACGC ph7SK-gRNA

PKLR Guide 2 CTTGAGGTTCGGCACTCTGT phHl-gRNA
* Kabadi et al. (2014)

Table 2: Primers used in this study (see Figure 2A,B).

Primer Name Sequence

PKMF GCCTAATCAACCAGCCATGT

PKMR TGGAGGCACAGTAAACAGCA

PKM_I ACGAGAGGGGGACAGAGC

PKLRF GTGGGTGGACTACCCCAATA

PKLRR GGTCACCTGTAATCCCCACTA

PKLRI CAAGCCTCACCTCTTCACG
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Appendix E: Metabolic exchange and its implications

The recent resurgence of work in the field of molecular metabolism has lead to increased interest

in understanding the rate, or flux, of metabolic pathways that catabolize nutrients and synthesize

molecules crucial for proliferation and other cellular functions. Flux analysis commonly relies on the use

of isotopically labeled (tracer) nutrients (Buescher et al., 2015). These tracers are chemically identical to

their corresponding nutrients but contain a heavy isotope atom in place of one or more light atoms. In a

typical experiment, a tracer is administered to cells or delivered into a whole organism. Metabolites are

subsequently extracted and analyzed to determine if they contain heavy atoms as well. The abundance of

a heavy metabolite relative to the total abundance of that metabolite (enrichment) is then used to infer the

contribution of the tracer nutrient to that molecule. For example, if 95% of lactate has a mass M+3 (three

daltons greater than its unlabeled mass) when a glucose tracer is used, we conclude that glycolysis

produces the vast majority of cellular lactate. While this approach is powerful in its ability to quantify the

metabolic fates of different nutrients, this analysis can fail to accurately determine flux when reversible

reactions are being studied. These reactions have the potential to confound tracer studies by introducing

metabolic exchange, which is described in detail below.

Consider a typical enzymatic reaction in which substrates A and B are interconverted (Figure

1A). In the example shown, the reaction has a forward fluxfj and a reverse fluxf2. Where an

understanding of metabolic pathway flux is concerned, the net flux (fne =fl -f2) is the relevant parameter.

This value is a measure of the net production of B from A. This value is more biologically relevant than

each of the forward and reverse fluxes as it is the rate at which anabolic and catabolic processes occur. An

enzyme's substrates can be interconverted rapidly or slowly and still have the same net flux. In cases

where the forward and reverse fluxes are large relative to the net flux (met <<fi andf2 ), A and B might

exchange much more rapidly than they are produced and degraded. If tracers were administered in this

case, the relative enrichments of A and B might be equal, and enrichments provide minimal information
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Figure 1: Reversible reactions can dilute isotopic labeling of metabolite pools

(A) A reversible enzymatic reaction interconverting metabolites A and B that has forward fluxfi and
reverse fluxf2. (B) Biosynthesis of product C from precursor A through intermediate B is subject to
metabolic exchange if there are two pools of B that are differentially used by biosynthetic pathways. For
example B1 could be intracellular and B 2 could be extracellular. (C) Alternatively, B may interconvert
readily with metabolite D, and D could exist as one or multiple pools.
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concerning the net flux through this reaction. The activity of phosphoserine phosphatase (PSPH) provides

an example of such a reaction (see Appendix C). This enzyme can either net produce serine or exchange

phosphate between serine and phosphoserine, but it can never net synthesize phosphoserine (Mattaini et

al., 2016). Nevertheless, PSPH catalyzes exchange flux that is high relative to the rates of adjacent

reactions. When a carbon-13 serine tracer is administered to cells, its isotopic enrichment perfectly

matches that of phosphoserine, despite no net synthesis of phosphoserine. Therefore, exchange reactions

can isotopically label metabolites without net synthesis. In these cases, the application of tracers is

uninformative (or less informative) for discerning net fluxes that synthesize or degrade a given

metabolite, and these tracers instead reveal the existence of reactions with high exchange.

Where a metabolite can derive from multiple sources or can exist in distinct pools (for example,

in separate cellular compartments), metabolic exchange is an important consideration in tracer studies.

Consider the linear metabolic pathway containing unidirectional reactions from metabolite A to B to C

where B exists in two distinct but exchanging pools, B1 and B 2 (Figure 1B). If tracer A is administered,

the enrichment of B and C might be significantly lower than that of A until all pools have been turned

over. This is seen when glucose is traced to serine (Figure 2A). Serine exists in intracellular and

extracellular pools that are in rapid exchange due to bidirectional amino acid transport (see Chapter 1).

When the fate of glucose is traced, the intracellular serine pool will have low enrichment relative to

glucose even if there is no net consumption of serine. In culture and in vivo, the extracellular pool of

serine is large and cannot be completely exchanged during a typical tracing experiment, and it therefore

acts as a 'sink' for serine synthesized de novo. Examining the enrichment of intracellular serine could,

therefore, underestimate the contribution of glucose to this pool (discussed at length in DeNicola et al.,

2015).

In addition to transport, many metabolic reactions are readily reversible and therefore introduce

the possibility of exchange flux. Isomerase, transaminase, and some dehydrogenase reactions are often

highly reversible. In the metabolic pathway from A to B to C, if B is rapidly interconverted with

metabolite D (which could also exist in multiple pools), D may appear to make a larger contribution to the
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synthesis of B than is actually the case (Figure 1C). There is substantial interest, for example, in

understanding whether lactate can be used in biosynthesis by proliferating cells. Proliferating mammalian

cells in culture net produce lactate; however, if isotopically labeled lactate were administered to cells,

facile transport of this metabolite would enable it to label the intracellular lactate pool (Figure 2B).

Extremely rapid exchange through lactate dehydrogenase would then label the pyruvate pool, which could

be used in downstream biosynthesis. Therefore, in cells that empirically produce lactate, a tracer study

could seemingly show that lactate is used for biosynthesis. This could also be the case if lactate tracers

were used in vivo, and caution should be used in such studies. Misinterpretation of exchange flux as net

flux can be avoided by assessment of net excretion or consumption of a nutrient.

Some cases where metabolic exchange could be a confounding factor are subtler. As discussed in

Chapter 1, rapid glutaminolysis is observed in culture, and as a result glutamine makes a large

contribution to anaplerosis reactions in the TCA cycle. For some cell lines, up to -50% of glutamine

consumed is excreted as glutamate and therefore the net contribution of glutamine to the TCA cycle is

lower. Glutamine and glutamate (and proline derived from them) are also.used in protein biosynthesis,

and any glutamine carbon that does not enter the TCA cycle cannot be anaplerotic. Oxaloacetate can be

derived from glucose via pyruvate carboxylase (PC), but tracer studies might underestimate this

contribution (Figure 2C). This is because there is high exchange between glutamate and a-ketoglutarate

catalyzed by aminotransferases, which could dilute the enrichment of TCA cycle metabolites. Recent

tracer studies have indicated that in vivo glucose makes a larger contribution to TCA cycle anaplerosis

compared to in vitro. One explanation is that PC activity is higher in animals, but an alternative

explanation is that reduced glutamine metabolism also observed in vivo unmasks PC flux that could not

be appropriately traced in vitro. Further work is required to better understand whether PC flux is truly

altered between these conditions.

A final example where metabolic exchange is confounding concerns utilization of acetyl-CoA in

the TCA cycle (Figure 2D). With each turn of the TCA cycle, two carbon atoms enter in the form of

acetyl-CoA, and two are lost as carbon dioxide. Therefore, acetyl-CoA cannot make a net contribution to
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Figure 2: Examples of biosynthetic pathways potentially subject to exchange reactions

Isotopic tracing can be confounded by metabolic exchange reactions that dilute one pool of a metabolite
against another pool or a parallel metabolic pathway. (A) Intracellular serine (Seri) is derived from de
novo synthesis from glucose or extracellular sources (Sere) and is used to make downstream products X.
The intracellular and extracellular serine pools are rapidly exchanged in many cell types. (B) Pyruvate
generated by glycolysis is rapidly interconverted with lactate (Laci), and this pool may exchange with
extracellular lactate (Lace) when it is present. (C) High flux from glutamine to glutamate creates an
intracellular pool of material that can exchange with TCA-cycle intermediates derived from glucose. (D)
TCA-cycle turning adds and removes two-carbon units from oxaloacetate, altering its labeling from
precursor X.

aKG, a-ketoglutarate; Ac-CoA, acetyl-CoA; Cit, citrate; Gln, glutamine; Glu, glutamate; e, extracellular;
i, intracellular; Lac, lactate; OAA, oxaloacetate; Pyr, pyruvate; Ser, serine.
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the TCA cycle pool (i.e. it cannot serve as an anaplerotic source). The particular chemistry of the TCA

cycle ensures that carbon from a specific acetyl-CoA molecule is not released in its first turn but only

upon subsequent cycling, and therefore isotopically labeled acetyl-CoA can be traced around the cycle to

oxaloacetate. Importantly, the transfer of carbon atoms from acetyl-CoA to oxaloacetate (or its

downstream biosynthetic products, Y) does not imply that acetyl-CoA makes a net contribution to their

synthesis. Here, TCA cycle carbon atoms are exchanged due to rapid flux from acetyl-CoA to carbon

dioxide, which is at least comparable to the net flux of anaplerotic and cataplerotic reactions that generate

and consume TCA cycle intermediates.

Not all reactions are subject to confounding metabolic exchange. Where a reaction is highly

energetically favourable, it is effectively irreversible, and exchange cannot occur. Additionally, linear

pathways cannot be influenced by exchange against other nutrients, and only where a branch point exists

can this occur. Finally, many enzymes or transporters catalyze exchange at rates much slower than the net

flux of the reactions they catalyze. Nevertheless, the possibility of metabolic exchange should always be

considered when isotopic tracers are employed (reviewed in Buescher et al., 2015). The ability to trace

the fates of metabolic reactions holds the potential to precisely discern the contribution of different

nutrients to biosynthesis, and this promise will be best fulfilled when these considerations are

incorporated into the analysis of metabolic flux and interpretation of tracer studies.
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