
Shear wall layout optimization for conceptual

design of tall buildings

by

Yu Zhang

B.Eng. in Civil Engineering, Southwest Jiaotong University (2014)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

Yu Zhang, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author Signature redacted
Department of Civil and Environmental Engineering

May 12, 2017

Certified by............................... Signature redacted
Caitlin Mueller

Assistant Professor of Architecture and Civil and Environmental
Engineering

, T~o,1s Supervisor

Accepted by Signature redacted
MASSACHUSETTS INSTITUTE / Jesse Kroll

O Professor of Civil and Environmental Engineering

JUN 1 4 2017 Chair, Graduate Program Committee

LIBRARIES
ARCHIVES

2

Shear wall layout optimization for conceptual design of tall

buildings

by

Yu Zhang

Submitted to the Department of Civil and Environmental Engineering
on May 12, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In the design of tall buildings, the lateral system that resists wind and seismic loading
usually dominates the structural engineering effort; therefore, optimal lateral system
design is important for material efficiency. In a shear-wall-based building, the con-
ventional design process starts with an architect generating a floor plan, which is
then passed to a structural engineer, who, based on knowledge and prior experience,
tries to place shear walls to balance conflicting requirements: minimum structural
weight, satisfactory structural strength and serviceability, conformity to architectural
layout. This design process can be slow and inefficient, requiring a trial-and-error
approach that is unlikely to lead to the best solution. The work presented in this the-
sis intends to accelerate the process with an optimization system involving a ground
structure program formulation, a modified evolutionary algorithm, and innovative
computational techniques. Unlike existing work that focuses either exclusively on
structural performance or architectural layout, this research integrates both. An
efficient computational design methodology for shear wall layout in plan is intro-
duced. The method minimizes structural weight with constraints on torsion, flexural
strength, shear strength, drift, and openings and accessibility. It can be applied from
the very beginning of floor plan design or after generating an architectural floor plan.
This thesis demonstrates the potential of this approach through a variety of case stud-
ies. Key contributions include a novel application of the ground structure method,
a fast and robust modified evolutionary algorithm, and a simplified auto-calculation
system for reinforced concrete design.

Thesis Supervisor: Caitlin Mueller
Title: Assistant Professor of Architecture and Civil and Environmental Engineering

3

4

To Professor Caitlin Mueller

6

Acknowledgments

I would first like to thank my thesis advisor Professor Caitlin Mueller, who has con-

sistently provided advice on my research as well as my life decisions. I was introduced

to the world of structral optimization by Prof. Mueller's class and I am grateful that

Professor Mueller provided me with this opportunity to work on structural optimiza-

tion for my thesis. Professor Mueller consistently allowed this thesis to be my own

work, but steered me in the right the direction and offered significantly useful advice

whenever she thought I needed it. I would also like to thank Ramon Gilsanz from

Gilsanz Murray Steficek, who originally and insightfully proposed this research topic

in July 2015.

Besides, I would like to thank the Department of Civil and Environmental Engi-

neering at M.I.T., especially Professor John Ochsendorf, for the valuable comments

on this thesis and support on my research. The M.Eng./S.M program offered me

the chance to come to this prestigious institute, where my horizion is broadened, my

research skill is improved, and my life is delighted with so many amazing people.

I would also like to thank all the staff involved in MIT-SUTD Fellowship Program,

especially Mr. Jonathan Griffith and Professor James Wan, who provided me with the

fellowship offer that enabled me to continue my research and to gain the invaluable

experience as an teaching assistant in Singapore University of Technology and Design.

This thesis would not have been accomplished without the financial support from the

MIT-SUTD Fellpwship Program.

Finally, I must express my very profound gratitude to my parents and to my

boyfriend Zhao Ma for providing me with unfailing support and continuous encour-

agement throughout my years of study and through the process of researching and

writing this thesis. This accomplishment would not have been possible without them.

Thank you.

7

8

Contents

1 Introduction 17

1.1 Background . 17

1.2 Related work . 18

1.3 Organization of thesis. 21

2 General methodology 23

2.1 Conceptual overview . 23

2.2 Setup . 24

2.2.1 Parameters . 24

2.2.2 Ground structure . 25

2.2.3 Reinforced concrete analysis 27

2.3 Modified evolutionary algorithm . 33

2.3.1 Description . 33

2.3.2 Objective function . 34

2.3.3 Selection and diversity filter 44

2.3.4 Crossover and mutation . 46

2.4 Parameter selection . 48

3 Evaluation of the methodology 51

4 Complex cases 55

4.1 Void space (Structures with plan irregularities) 55

4.2 Fixed floor plans . 58

9

5 Conclusion 61

5.1 Summary of contributions . 61

5.2 Future work . 62

A Scripts 65

A. 1 Script for generating concrete strength 65

A.2 Script for the fixed location extension case 85

10

List of Figures

1-1 Example of shear walls in a high-rise buidling. (Shivank Sharma, 2016) 18

1-2 Hybrid OC-GA method. (Chan and Wong, 2008) 19

1-3 Using performance-based design method to generate optimal structural

design by removing inefficient materials from a continuum design do-

m ain. (Liang et al., 2000) . 19

1-4 An integer programming-based approach to model corridors in a floor

plan. (Peng et al., 2016) . 20

1-5 AutoPLAN. (Terzidis, 2007-2008) . 20

1-6 Algorithm that takes connectivity into consideration. (Shekhawat, 2014) 21

1-7 Example of a desired final layout result. The solid lines represent

locations chosen for the shear walls. 22

2-1 Example of ground structure (P. Martinez, 2007). 26

2-2 Examples of the ground structure for a building footprint: (a) shows

every edge has a unique index numbered by its sequence, (b) illustrates

that the status of each edge is indicated by either "0" or "1", and (c)

shows three examples of 6 by 8 grids with activated and deactivated

w alls. 27

2-3 Example of a layout consisting of four shear wall groups. 28

2-4 Equivalent model for reinforcement, and the stain and stress diagrams

of the reinforced concrete under axial force and bending moment about

the horizontal axis. 30

11

2-5 Example of three different shear wall configurations for a certain GroupType.

Under the lateral load in the vertical direction, layouts in each row can

be classified with a same string of numbers, which is referred to as

G roupT ype. 31

2-6 Interaction diagram and the flexural strength checking process. The

process starts with searching for the smallest #P greater than Pu

(approximates #P, = Pu); then the corresponding OM is found based

on the diagram and then compared to Mu. 32

2-7 Flow chart of the modified evolutionary algorithm. The details of

crossover and mutation process are presented in Section 2.3.4. 34

2-8 Flow chart for flexural check. 41

2-9 Four examples of the pairing process during crossover 48

3-1 The top five individual layouts in the first generation, third genera-

tion, and last (sixth) generation. Beneath each layout, the objective

function score is given (Fit), along with the number of shear walls or

equivalently structural weight (N) and whether the strength checks are

satisfied (S). 52

3-2 Plots of the various metrics of structural performance of the top ten

designs across six generations of the evolutionary algorithm. 53

4-1 The top five individual layouts in the first generation, third generation,

and last (sixth) generation for an h-shaped footprint with corner wall-

free areas. Both fitness score and structural weight drop sharply along

the evolutions . 56

4-2 Result sample of layouts with different wall-free areas and the same

irregular contour. 57

4-3 Result sample of layouts with different wall-free areas and the different

irregular contours. The square in the center of the b-shaped footprint

indicates an atrium . 58

12

4-4 Example of the fixed floor plan and its corresponding model in the

system: (a) the floor plan which is designed by an architect before-

hand and delivered to the structural engineer, requiring placement of

shear walls; (b) the model interpreted by the system corresponds to

the original floor plan. 59

4-5 The top five individual layouts in the first generation, third generation,

and last (sixth) generation for a fixed floor plan. 60

13

14

List of Tables

2.1 Loading values used . 25

2.2 Parameters for the reinforced concrete by default. 28

2.3 Definitions, properties and corresponding spouse of each Modificationtype. 46

3.1 Parameters for the general case study 51

15

16

Chapter 1

Introduction

1.1 Background

In the design of tall buildings, the lateral system that resists wind and earthquake

loads often dominates. Reinforced concrete shear walls (example shown in Figure

1-1), a common type of the lateral system often arranged around elevators and other

vertically continuous building elements as shear cores, require special consideration

both structurally and architecturally because of their impact on spatial arrangement

in plan. The requirements from architects, engineers and clients are usually conflicting

and highly interconnected: for example, architects may focus on the spatial interac-

tion and arrangement, natural lighting, and accessibility; structural engineers would

like to place a sufficient amount of shear walls to satisfy the structural strength and

serviceability; clients, however, would prefer the cost of material and labor to be as

low as possible. A highly symmetric floor plan can address this issue, appearing orga-

nized to the architect and efficient to the structural engineer. However, for buildings

with irregularity (irregular shape in plan, or with atriums or spacious wall-free area),

which are very common contemporarily, the process becomes considerably more com-

plex and interdisciplinary. Traditionally, to design a floor plan with an asymmetrical

layout, architects and structural engineers, working separately, rely on a wide range

of inputs, including intuition, experience, rules of thumb, analytical modeling, and

simulation, all combined in an iterative design-and-test process. Although a valid

17

layout might be obtained consequently, there is no way to guarantee it is optimized

in terms of any particular goal.

sNaiw wan

Sheaf Wai

// 41' *A

Figure 1-1: Example of shear walls in a high-rise buidling. (Shivank Sharma, 2016)

1.2 Related work

Currently, there is limited research directly on this topic. Most existing literature

focuses on related topics either from an exclusively structural or architectural per-

spective. In the structural engineering field, most research looks at the optimization

of lateral systems in 2D elevation view, rather than the layout in plan. For example,

Chan and Wong used hybrid OC-GA method to generate both sizes and topologies

at the same time for braced frame structures (Figure 1-2) [3]. Liang et al. used

performance-based design method to generate optimal structural design by removing

inefficient materials from a continuum design domain (Figure 1-3) [11]. While this

type of research is important and useful, it does not address the organization of the

lateral system in plan and its inherent interactions with architectural decision-making.

In the architectural field, floor plan layout topology has been studied: Peng et al.

proposed an integer programming-based approach to model corridors in a floor plan,

where they defined a set of room templates and generated a subset of all possible po-

18

M

OC-GA Run OC-GA Run2 OCGA Run3

Figure 1-2: Hybrid OC-GA method. (Chan and Wong, 2008)

Figure 1-3: Using performance-based design method to generate optimal structural design
by removing inefficient materials from a continuum design domain. (Liang et al., 2000)

tential room placements such that no two overlap and together cover the area (Figure

1-4) [14]. Lai used graph theory for floor plan design where the rectangular dualiza-

tion problem was reduced to a matching problem on bipartite graphs [7]. Terzidis

developed software called AutoPLAN that generates architectural floor plans with the

boundary and adjacency matrix of a given site (Figure 1-5) [15]. Stiny proposed the

formulation of floor plans using a shape grammar, which is a rulebased procedure for

generating different geometric shapes [6]. Shekhawat developed an algorithm which

takes connectivity into consideration (Figure 1-6) [10]. Nevertheless, these floor plan

optimizations are more relevant to architectural design than structural engineering.

The lateral system is not adequately considered, which would affect the structural

19

performance of high-rise buildings and lead to laborious iterations due to the separa-

tion between architectural and structural approaches during the design process.

Aminnia et al. looked for the optimal patterns by locating the components of

shear wall lateral systems, but the configuration of shear walls was constrained to

be T-shaped, Z-shaped, U-shaped or L-shaped beforehand [2]. The broader general

topology optimization problem remains unaddressed and is thus one of the main

focuses of this thesis.

R44 4ilzif i H.

* Sinks
0 Obstacles (d)

Figure 1-4: An integer
(Peng et al., 2016)

programming-based approach to model corridors in a floor plan.

4 .8L

~i44. ErLU

Figure 1-5: AutoPLAN. (Terzidis, 2007-2008)

20

I

I a I M 1 3 1 a I ff I I 1 5 1 a 1 2 T a I I I a ; ff f 5 1

F I

F 4 T I 1A
I ALIEM7

W NNW
FM F-1
=3

F 2 7W, t 4

R j 1.1 1 1 1 1 1 1 1 1.1 1 1
111 1 "fill "I" it I

NNW:

BR BA

WC LR

KIT

Figure 1-6: Algorithm that takes connectivity into consideration. (Shekhawat, 2014)

1.3 Organization of thesis

The research presented in this thesis aims to develop a computational method for pro-

ducing architecture-compatible shear wall layouts with minimized structural weight

under basic structural analysis. A simple example of the desired result is shown in

Figure 1-7. Chapter 2 gives a detailed description of the general methodology: Section

2.2.2 introduces a novel ground structure method which discretizes a given building

footprint into a quadrilateral mesh with each edge modeled as a potential location of

a shear wall member. By activating and deactivating shear walls on these edges of

the mesh, different possible layouts can be generated. Section 2.2.3 proposes a sim-

plified method for reinforced concrete design regarding irregularly configured shear

walls. Due to the large number of possible layouts and a complex objective function

containing both linear and nonlinear constraints, a modified evolutionary algorithm

is introduced in Section 2.3. Since the optimal set of optimization parameters varies

with different buildings, effectively selecting parameters is essential and the method

is described in Section 2.4. Chapter 3 illustrates the results and evaluation of a sim-

ple case study. In Chapter 4, this thesis introduces more complex case studies with

different combinations of irregular contour and void spaces, or with fixed floor plans.

This illustrates applications in two design phases: (1) during the floor plan design

phase, which brings more flexibility and inspiration to architects and simultaneously

allows more usability (Section 4.1), and (2) after floor plan design phase, when ar-

chitects have already arranged the space and thus yielded a fixed floor plan to the

structural engineers who would like to know the optimal shear wall layout for this

21

specific case (Section 4.2). Finally, Chapter 5 summarizes the contributions of the

thesis and suggests areas for further research.

Figure 1-7: Example of a desired final layout result. The solid lines
chosen for the shear walls.

represent locations

22

rnl

OIMMO

~1IEg __ ___

ftLA

Chapter 2

General methodology

2.1 Conceptual overview

This research develops a system to optimize the layout of shear walls in terms of

structural weight, under structural and architectural constraints. To illustrate the

methodology simply and clearly, this thesis assumes that the default input prob-

lem domain is a 2D rectangular building footprint (more variations are discussed in

Chapter 4). The footprint is firstly discretized into a quadrilateral mesh with each

edge representing a potential shear wall location. This mesh is modeled as an un-

conventional ground structure, such as those seen in the topology optimization of

truss structures [4], allowing the shear wall on each edge to be either activated or

deactivated. For the purpose of optimization, a modified evolutionary algorithm is

introduced. The goal is to minimize structural weight with penalties on structural

requirements (torsion, flexural, shear, and drift) and on basic architectural require-

ments (accessibility and openings) to be detailed in later chapters. With algorithmic

parameters defined by users, this evolutionary algorithm mimics biological evolution

by iterating through several cycles of reproduction and selection. However, to ac-

celerate the evolving speed, biased and directional pairing and mutation is applied

in the reproduction process. The subset of best-performing individual layouts in the

last generation is considered the result of this optimization.

23

In this thesis, a twenty-story residential building in Boston, with dimensions of

80ft x 60ft x 240ft tall (24m x 18m x 70m tall), is set as a simple example to illus-

trate the method. With each shear wall element being 10ft (3m) long, the footprint

of this building is meshed into a 6 by 8 grid.

2.2 Setup

2.2.1 Parameters

Defined at the model initialization step and remaining unchanged during optimiza-

tion process, a parameter set consists of algorithmic parameters and structural pa-

rameters. Algorithmic parameters include evolutionary parameters determining the

optimization speed and diversity (such as mutation rate, generation size, and number

of generations), and objective function parameters adjusting the evaluation standard.

While algorithmic parameters are subjective and affect the general optimization ca-

pacity of the model, structural parameters (including building geometry parameters,

shear wall property parameters, and loading and deflection parameters) are more

objective and usually vary with different cases. Thus by making the parameters mod-

ifiable for users, a custom-built system can be obtained depending on specific needs.

A simplified method for parameter selection is demonstrated in Section 2.4.

In a specific site, given the purpose, dimensions (building geometry parameters),

and material of the building, the loading can be estimated (dead load, live load,

wind load, etc.). Under strength or ultimate limit state (ULS) design, buildings shall

be designed to resist the most critical effects resulting from various combinations of

factored loads. While serviceability design has several common parameters including

deflection, vibration, slenderness, and clearance, this thesis only takes drift constraints

into consideration which are determined and implemented in the objective function

of the evolutionary algorithm.

24

In the twenty-story building example, information of loading and load combina-

tions considered under ULS design and serviceability design [1] is presented as follows:

ULS: 1.2D + 1.6W + 1.0L; Serviceability: 1.0D + 1.0W + 1.0L, where D, W, and

L are dead load, wind load, and live load respectively. For loading values, see Table

2.1.

Table 2.1: Loading values used

Dead Load (D) Live Load (L) Wind Load (W)
170psf (8.14kPa) 45psf (2.15kPa) 30psf (1.44kPa)

2.2.2 Ground structure

The ground structure method (Figure 2-1), developed by Dorn et al., achieves the

optimal result by optimizing over a wide class of possible structures whose elements

are all selected from a prescribed admissible set [4]. This method is widely applied

in topology optimization, especially for trusses with finite nodes and bars. Hagishita

and Ohsaki (2009) improved the ground structure method by proposing adding and

removing bars and nodes based on some growing rules, which is called the growing

ground structure method [8]. Sok6 et al. modified the adaptive ground structure

approach, which can be used for multi-load truss topology optimization [5].

While the ground structure method mentioned above usually considers elements

connecting any two nodes, most of the shear wall layout domain can be covered by an

orthogonal grid, which is simple and efficient in terms of computational cost. Thus

this thesis utilizes a ground structure generated by discretizing a building footprint

into a quadrilateral mesh with each edge representing a potential reinforced concrete

shear wall. All of these edges are sequenced with indices (Figure 2-2a) and each pos-

sesses state as either activated or deactivated, indicating the presence or absence of

a shear wall respectively (Figure 2-2c). A shear wall layout is a subset of the edges

25

7- 77a

'."~-'. *\ ~ -A;

t 9

4. 41 * P P 1t- ..<S
..

.

Figure 2-1: Example of ground structure (P. Martinez, 2007).

in this quad mesh. Though these features can be achieved using object-oriented pro-

gramming, this representation method lacks efficiency in the forthcoming evolution

stage. For the convenience of computational modeling, the subset is recorded by a

binary string (v), resembling a chromosome. Like the function of chromosome, this

binary string carries and conveys topology information. Each digit of the binary

number represents an edge in the mesh and the number on each digit indicates status

of this specific edge ("0" indicates deactivated and 1 indicates activated, see Figure

2-2b).Thus every possible layout can be represented by a unique chromosome (exam-

ple shown in Figure 2-2b).

For unconventional floorplans where shear walls need to be placed in diagonal di-

26

b

.d

h

22 23 24 0 0 0
3 6 9 12 0 0 0 0

19 20 21 1 1 0
2 5 8 11 0 1 0 0

16 17 18 0 0 0
1 4 7 10 0 0 0 1

13 14 15 0 0 1

Chromosome: 000010000100001000110000

(a) (b)

I L

(C)

Figure 2-2: Examples of the ground structure for a building footprint: (a) shows every edge

has a unique index numbered by its sequence, (b) illustrates that the status of each edge is

indicated by either "0" or "1", and (c) shows three examples of 6 by 8 grids with activated

and deactivated walls.

rections, users can predefine the design domain to allow diagonal lines and extend the

binary string (v) accordingly. For simplicity, this thesis will not present this version

in detail in the following content.

2.2.3 Reinforced concrete analysis

The method presented in this thesis considers the strength and stiffness of reinforced

concrete shear wall layouts with a simplified design method that includes assump-

tions related to cracking. While additional objectives, including creep and shrinkage,

should be considered later in the detailing stage of the design process, these two

criteria are considered most critical for conceptual design. The parameters of wall

dimensions, reinforcement characteristics, and material properties should be decided

before optimization, where they are involved in a check against strength and drift

constraints, which are the main considerations for structural design in this thesis.

For the twenty-story building case, the selected values are shown in Table 2.2. For

27

programming implementation and economic reasons, reinforcement in this thesis is

assumed to possess uniform cross-section and distribution. However, this might be

subject to change or manual check if the building is in moderate or high seismic zones.

In that case, concentration of reinforcement at the extreme ends of a wall is usually

helpful [13].

Table 2.2: Parameters for the reinforced concrete by default.

Strength Dimension
Concrete 5ksi (35MPa) 10ft x 1ft (305cm x 30.5cm)
Vertical Steel 60ksi (414MPa) #8 (2.54cm dia.) 10in (25.4cm) x 2 layers

Since the ground structure method may produce some layouts with connected

shear wall groups, as shown in Figure 2-3, it is important to analyze each groups

structural performance and contribution to the overall behavior and performance of

the lateral system. The research presented in this thesis assumes that lateral loads

are distributed to each shear wall group, according to its relative rigidity, by in-plane

action of the rigid floor plate diaphragm.

Group 2

Gro pp 4

Group 3

Group 3

Figure 2-3: Example of a layout consisting of four shear wall groups.

Provided with the information above as well as the factored load for one specific

28

shear wall group (discussed in Section 2.3.2), the nominal strength of each shear wall

group in the layout shall satisfy the following equations [13]:

Mu 5 OXs (2.1)

PU 0 #Pn (2.2)

Vu O#Vn (2.3)

where the subscripts u denote the factored load, Mu, Ps, and V, are bending

moment, axial load, and shear, respectively; and the subscripts n denote the nominal

strength for bending moment, axial load and shear; # is the reduction factor depend-

ing on the type of strength calculated.

Since the shape of each group is usually irregular, the standard formulas for rein-

forced concrete strength checks are no longer applicable. Reinforced concrete strength

analysis must be developed starting with these assumptions, also illustrated in Figure

2-4:

. The strain in an embedded rebar is the same as that of the concrete around it.

There should be no slip between these two materials.

. Plane cross sections will remain plane after loadings applied.

. The analysis is based on the stress-strain relationship and is subject to strength

properties of these two materials whenever applicable.

. For computational simplicity, rebar set is deemed as one single uniformed plate

with total area equals to that of the actual rebar set.

. Reinforced concrete members should be conservatively deemed as cracked mem-

bers and an equivalent rectangular stress distribution is applied in the flexural

strength calculation.

29

. The criterion for concrete compression failure is reaching maximum strain of

0.003.

11'-0"(3350mm)

E
0 E

4 -

Orig inal

0.16"(4mm) steel plate

Neutral Axis

Equivalent Model

Ec = 0.003

'By.

Strain

0.85fk'

a c

-- -1

fy

Stress

Figure 2-4: Equivalent model for reinforcement, and the stain and stress diagrams of the

reinforced concrete under axial force and bending moment about the horizontal axis.

In the calculation of the strength of geometrically irregular concrete wall designs,

failure shall fall into one of the following three situations, depending on the location

of its neutral axis c under cracking:

. When c is close to the edge of compression side, the most exterior compression

steel is below yield stress while the most exterior tension steel is at yield stress.

. When c is moderate, both the exterior compression steels are at yield stress.

" When c is close to the edge of tension side, the most exterior compression steel

is at yield stress while the most exterior tension steel is below yield stress.

Based on the assumptions, the area of yielded sub-section either in tension or in

compression can be calculated depending on c. Thus if c is given, the equations for

force and moment equilibrium can be derived based on its yield situation:

Sf - dcen) + E A'f(d' - dcen)+(Af8 (d8 -den) + M = 0

EA' '+EA' f+(Asfs+P=0

(2.4)

(2.5)

30

where A', A', A, are the section areas of steel in compression, concrete in com-

pression and steel in tension, respectively; f', f', f, are the stresses of steel in com-

pression, concrete in compression and steel in tension, respectively. When rebar is

in the yielding section, though its strain may vary, the stress remains at the yield

stress f' = f', fs = fy. And (d - dcen) is the distance between the centroid of this

sub-section and the cross sections centroid.

Whether a sub-section is in tension or compression depends on c. But since c is

not knowable a priori, structural engineers, given P, usually obtain c from solving Eq.

2.5. For this case, however, shear wall designs with millions or billions of possible

configurations make it difficult to derive a fixed form of these equations without

knowing c.

Group Type: 0121012

Group Type: 12111

Group Type: 112

Figure 2-5: Example of three different shear wall configurations for a certain GroupType.
Under the lateral load in the vertical direction, layouts in each row can be classified with a
same string of numbers, which is referred to as GroupType.

Fortunately, this dilemma can be handled by simplifying the topological diver-

sity of potential layouts and predefining and precomputing possible scenarios for c.

Because of the plane-section assumption and strain-stress relationship (as shown in

31

Figure 2-4), the sub-sections at the same distance from the neutral axis have the same

stress, regardless of their positions on the other direction.

For illustration, when considering lateral load in the vertical direction about a

horizontal neutral axis, layouts in each row in Figure 2-5 can be classified with a

same string of numbers, which is referred to as GroupType. Each digit represents

the location of sub-section (s) and the value at this digit represents the number of

sub-section (s) at this location.

Pn

P0

Smallest #Pn
greater than Pu

Start searching

Mo Corresponding 5Mn Mn
(Check OMn a Mu)

Figure 2-6: Interaction diagram and the flexural strength checking process. The process
starts with searching for the smallest OP greater than P (approximates OP = P); then
the corresponding OM, is found based on the diagram and then compared to Mu.

For each GroupType, every possible c falls into one of these subsection locations,

and the M, and P, corresponding to this c can be calculated. Then Ps, with its

corresponding M., constitutes an interaction diagram for this GroupType (Figure

2-6). Any data point on the left of this curve is considered a flexural failure. Com-

putationally, while assuming OP, = P., the flexural strength check can be achieved

by comparing the OM, corresponding to #P, on this diagram to Mu. Either failing

32

to find #P, = Ps, or failing to satisfy #M, > M, results in a failure in the flexural

check. Implementation of this method is presented in Section 2.3.2.

2.3 Modified evolutionary algorithm

2.3.1 Description

In the twenty-story building example, a 6 by 8 grid has 110 edges. With each edge

either activated or deactivated, the total number of all the possible shear wall layouts

is 2110 (1.29 x 1033). Optimizing through all the possibilities leads to a tremendous

computational cost even with the help with the conventional evolutionary algorithm,

which initiates with a random sample [12]. Due to the large number of possible lay-

outs, a modified evolutionary algorithm is proposed in this thesis, which inherits the

theory of natural selection propounded by Charles Darwin, but makes use of some

biased and directional mutation and pairing methods to bias the evolution towards

desired results.

Since the major goal is to minimize the structural weight, which, in this thesis,

is evaluated by the number of shear wall members in the layout, optimized results

will have fewer shear wall members. To further reduce the number of poorly scored

layouts that are far from optimized and to increase the number of promising ones,

this thesis forms a subset of all possible layouts in the 6 by 8 grid by constraining

the maximum number of shear wall members (nma,) for the first generation. With

algorithmic parameters customized by users, the system starts with a first generation

randomly selected from the constrained subset and evaluates their performance both

structurally and architecturally with a fitness or objective score (Fit). Then it ranks

the layouts in the subset by their fitness scores, selects the individuals with highest

fitness scores as parents and pairs these parents based on their properties. A group of

offspring designs with the same size of the next generation (Ngen) shall be produced

as a result of the breeding process (including crossover and mutation, described in

33

Section 2.3.4). Then those with the highest scores will be selected and become parents

of the next generation. These steps will be repeated until it reaches either the last

generation or the satisfying results, depends on the user. Figure 2-7 shows the flow

chart of this process.

Modified
Evolutionary

Algorithm

Start

Crossover

Start

Mutation

Start

Initialize the 1st generation

Yes
Satisfied? End

No

Selecton

Crossover

Mutation

Read Ngmn

Randomly select
Parent A

Select Parent B
based on Parent A

(Section 2.3.4)

Generate 2 individuals

No
Satisfied Ngew?

Yes

Read rmut

Randomly select
an individual

Mutate based on
its properties (Section 2.3.4)

No
Satisfied rmue?

Yes

End

New generation End

Figure 2-7: Flow chart of the modified evolutionary algorithm. The details of crossover and
mutation process are presented in Section 2.3.4.

2.3.2 Objective function

The goal of this system is to minimize structural weight W(v), which is a function of

the shear wall layout (v), subject to constraints on structural requirement (torsion,

flexural, shear, and drift) and on basic architectural requirement (accessibility and

necessary openings).

34

Minimize : W(v)

s.t. : Dem_cs < Dprefer

0 Vn >_ V

OXn > Mu

0 Pn ;> Pu

u < Hlk

Nclosed-of5f = 0

Dcm, is the distance between center of mass and center of stiffness, Dprefer is the

maximally permitted distance. M., Ps, V denote factored load moment, axial load

and shear, while Mn, Pn, Vn denote nominal strength in flexural, axial load and shear,

and # is the reduction factor depending on the type of strength calculated. u is the

horizontal drift, k is a factor for the drift limit and is usually taken as 500. H is the

height of the building considered. Nclosed_off is the number of closed-off shear wall

groups (i.e. that contain architectural spaces that cannot be accessed) in this layout.

For implementation in an evolutionary algorithm, which cannot easily incorpo-

rate constraints, an unconstrained, penalizing objective function f(v) is introduced to

evaluate the layouts performance:

f(V) = (W(V) + Ctotal))(Sweight + Ctrsion + Cf lexure + Cshear + Cdrift + Copening) ' (2.6)

where Ctorsion, Cftexure, Cshear, Cdrfit, Copening are the constraint functions for

torsional effect, flexural strength, shear strength, drift requirement, and openings,

respectively (these are described in detail in the following paragraphs). Sweight is

a special constraint function for structural weight. E is the empirical factor and is

35

usually taken as 2. Ctotal is a threshold constraint given by the following equation:

Ctotal = 10000 if Ctorsion + Cf exure + Cshear + Cdrift + Copening > 1 (2.7)
0 if Ctorsion + Cflexure + Cshear + Cdrift + Copening < 1

The value of f(v) with respect to a certain layout v is the fitness score Fit of this

layout. A smaller fitness score indicates a better performance.

Based on the performance of the aspect examined, one of these three cases are

applied to the unconstrained objective function f(v):

" When the performance of layout v falls into the most preferable range (in terms

of each individual constraint function), a zero value is assigned as the value

of all penalty functions, and f(v) reduces to being the weight of the structural

layout.

" When the performance falls out of the most preferable range, but within the

acceptable range (in terms of each individual constraint function), the penalty

function value usually follows a linear function, allowing its corresponding layout

v to survive the selection but negatively affecting its performance evaluation

results.

. When it violates a constraint and falls out of the acceptable range(in terms

of each individual constraint function), the value of f(v) is considerably large,

making its corresponding layout v impossible to survive the following selection

process. For threshold constraints, theres no linear penalty function in the

middle and the value of the penalty function is either 0 or very large.

The individual components of the objective function f(v) are defined as follows:

* Sweight: Special constraint function for structural weight

Since this thesis focuses on the optimization of shear wall layout and there has

to be a minimum amount of shear walls for lateral resistance, f(v) can never be

36

0. Although W(v) already serves as a measurement of structural weight, there

is no hierarchy between different numbers of shear wall members. Thus to

further discourage exceeding a certain structural weight, this thesis introduces

a special constraint that serves like a penalty factor, Sweight, which is benevolent

to a certain range of structural weight (usually smaller than the preferred weight

Wprefer) but aggressive to larger structural weight. Sweight can be calculated by

the following equation:

Sweight 110 X (W(V) - Wprefer) if W(v) ;> Wprefer (2.8)
0 if W(v) < Wprejer

Ctorsion: Constraint function for torsional effect

Under lateral loadings such as wind loading or seismic loading, the torsional

effect can be substantial, especially for tall buildings, and can cause severe

failure in the structure. When a layout is no longer symmetric, the torsional

effect can be mitigated by designing its center of stiffness to coincide with its

center of mass [9]. Center of stiffness (xeS, Ycs) and center of mass (xcm, Ycm) are

calculated by the following equations:

(XcS, Ycs) (k ,k) (2.9)
1: ky kx

EAx EAy (2.10)
(Xcm Ycm) (ZA,)(.1

E A)E A

where kx and ky are the lateral stiffness of each shear wall in the x and y

direction, respectively; A is the area of each shear wall member; (x, y) are

the coordinates of the center of each shear wall member measured from the

origin. With the distance between center of stiffness and center of mass D,__cm

calculated by the following equation:

Dcs-cm = /(X. - Xcm) 2 + (ycs - ycm) 2 (2.11)

37

the constraint function for torsional effect Ctorsion is given by:

0 torsion J St x Dcs cm if Dcscm <Dprefer (2.12)
1 if Dcscm > Dprefer

where st is the objective function parameter indicating gradient for torsional ef-

fect, and is chosen by users; usually, st x Dc8 _cm is set to be in the range of [0, 1];

Dprefer is the preferred distance which is adjustable but is set as Ift(30.5cm)

by default. Dcs_cm > Dprefer will result in a large value of Ctotal (shown in Eq.

2.7), making Fit extremely large.

Cf1exure: Constraint function for flexural strength Since the computational

method discussed in this thesis is only for the conceptual design phase, the

load path for vertical loads and lateral loads is set as a parameter and is mod-

ifiable to users. By default, shear walls are assumed to resist the total lateral

loads and half of the vertical loads. The bending moment and axial load re-

sisted by a shear wall group is assumed to be proportional to its relative stiffness

and relative area, respectively. Therefore, in one specific layout, the bending

moment and axial load distributed to every shear wall group can be obtained

with the following equations:

Msg MtotalIj (2.13)
E Ii

P,. PtotaAj (2.14)
E Aj

where Muj is the overturning moment distributed to a shear wall group, Mtotai

is the factored overturning moment on a layout, Ij is the moment of inertia of

this shear wall group; Pu, is the axial force distributed to a shear wall group,

Ptotal is the factored axial force on a layout, A3 is the area of this shear wall

group; and the subscripts j denotes a shear wall group.

38

Generally, shear walls subjected to combination of axial load and flexure should

be designed as compression members [9]. The flexural strength check in shear

walls of tall buildings is critical and its calculation is very complex, especially

for the irregularly shaped shear wall groups in this thesis. For one specific irreg-

ularly shaped shear wall group, its neutral axis varies with the load applied on

the shear wall group. And the load is a variable depending on the relevant stiff-

ness. The steps for flexural check, given Ps3 and Ma3 , have been presented in

Section 2.2.3 so the following content is mainly focused on the implementation

of the flexural check. Considering the efficiency of the system, this thesis pro-

poses to pre-calculate every possible neutral axis c and its corresponding M",

Pn, and I, for every possible GroupType smaller than a 3 by 3 grid, and store

these data in a spreadsheet. The 3 by 3 grid is chosen because it already has

more than 10,000 possibilities, close to but under the maximum storage capac-

ity of the spreadsheet. With these data calculated in advance, the optimization

system can search for the results and consequently it is less time-consuming.

Those GroupTypes not included in the spreadsheet (larger than 3 by 3 grids)

are calculated in real time along the optimization process. This thesis uses

Icr, the moment of inertia under cracking, in the calculation of drift. For each

shear wall group, according to Section 2.2.3, if the position of neutral axis (c)

is determined, the corresponding Icr can be calculated and then stored as one

of the properties under this c.

More specifically, in the work presented in this thesis, the spreadsheet is trans-

formed to a hash map (dictionary) in Python with GroupType being the key.

During optimization, every newly-generated shear wall group is assigned four

GroupTypes in four different directions respectively. Thus, from the hash map,

a list of every possible neutral axis location c under cracking and its corre-

sponding moment and axial load is located based on the GroupType in each

direction. According to Section 2.2.3, the process starts from picking one direc-

tion, locating the GroupType corresponding to this direction in the hash map,

39

and searching for the smallest OP greater than P (approximates OP = Pa).

This P, if successfully found, would serve as a key for retrieving correspond-

ing c, Ma, and Ic,. Flexural strength check for this shear wall group in this

direction passes if OM, > M. Otherwise, either failing to find OP" = P" (axial

failure) or OM, < M, (bending failure) results in a failure in flexural check in

this direction.

Since the geometry of each shear wall group is not necessarily symmetric, flex-

ural strength check should be conducted for every possible direction (for a

rectangular building, there are usually four directions). If and only if all the

shear wall groups in one layout pass the flexural check in every direction, shall

this layout be deemed as satisfactory in terms of flexural strength. Thus the

constraint function for flexural strength Cj exure can be obtained by:

Cfiexure = 0 if pass (2.15)
1 if fail

A flow chart for flexural check is presented in Figure 2-8.

Cshear: Constraint function for shear strength

Structural failure due to shear may be less dominant for shear walls in this

example building for its large height-to-length ratio. Out of general considera-

tion on other possible dimensions and height that could be designed by users in

future, this thesis still conducts a simplified method for a basic shear strength

check. Shear walls are assumed to resist the total lateral loads, and shear forces

in one direction are only resisted by shear wall members in this direction. Since

shear taken by a shear wall member is based on its relevant area in its direc-

tion, it would be sufficient to check shear strength of one shear wall member

with a rectangular geometry. Shear distributed to a shear wall member can be

obtained by:
Vtotai Aj

V A = (2.16)
E Aj

40

Flexural Check

Start

Read hash map

Choose an unchecked
direction

Classify layout by
its group type

Search for group type

No
Found? --

Yes

Search for smallest OPn
greater than Pu

No
Found? No

Yes

Compare corresponding
*Mn with Mu

n !A ?

Yes

Calculate in
real time instead

Axial failure End

No
S-~ ending failure --- ~ End

Pass flexural check
in this direction

Record lr

No hcked four
directions?

Yes

Pass flexural check

End

Figure 2-8: Flow chart for flexural check.

41

where Votai is the factored total shear force in one direction (the one at the

base building is critical, also called base shear), Veg is the factored shear force

in this direction and Aj is the area in this direction of one specific shear wall

group.

According to ACI [1], given Veg as well as the dimension of concrete and the

reinforcement, shear strength provided by concrete is calculated by:

$V = 02r hO.81w (2.17)

The shear strength provided by horizontal reinforcement is calculated by:

#V = A S2 (2.18)

And their factored sum should be no larger than to Vuj [9]:

OVn = OKe + OVs ;> Vu (2.19)

where A, is the total area of the horizontal shear reinforcement within a dis-

tance s2, 0 = 0.75, fy = 60ksi(414MPa) and d is the effective horizontal length

of shear wall.

Since the geometry of each shear wall group is not always symmetric, a shear

strength check should be conducted for every possible direction (for a rectangu-

lar building, there are usually two directions). If and only if all the shear wall

groups in one layout pass the shear check in each direction, shall this layout be

deemed as satisfactory in terms of shear strength. This constraint is given by

the following equation:

Cshear = 0 if pass (2.20)
1 if fail

42

. Cdrift: Constraint function for wind drift

For tall buildings, inter-story and overall lateral deflections are expected to re-

main within acceptable range. Thus in serviceability design, wind drift limit

is adopted to relieve motion perceptibility, to reduce damage to the structural

and non-structural members, and to alleviate P-Delta effects caused by the dis-

placed gravity load.

There are two major contributions to the drift of a building: bending and shear.

The total drift is the sum of drift due to bending (Ubending) and drift due to shear

(U8 hear):

U Ubending + Ushear (2.21)

And since a tall building is modeled as a cantilever, Ubending and Ushear in each

direction shall be calculated as follows:

QUH3 (.2
Ubending = -3 (2.22)

3EIcr

Ubending -- QH (2.23)
6GAtotal

where E is the elastic modulus of concrete and H is the total height of this

building, I, is considered for bending rigidity in the examined direction under

cracking, G is the shear modulus of concrete, Atotal is the total shear wall area

of this building, 5/6 is the shear factor [9].

Since there is no fixed criterion for wind drift limit, users are expected to define

their criterion in advance (e.g. u < H/500). However, only if the flexural check

is satisfied by every shear wall group in the layout shall this layout proceed to

check for serviceability. Like the shear strength check and the flexural strength

check, the wind drift check should also be conducted for every possible direction.

And if the drift check fails for a layout in any direction, this layout is assumed

failing the drift check. Thus the constraint function for wind drift is defined as

43

follows:

Cdrift {0 if u < H/500 (2.24)
1 if u > H/500

.Copening: Constraint function for accessibility and openings

A practical shear wall group should provide proper accessibility and necessary

openings. Thus spaces closed off on all sides should be avoided for the shear

wall groups. This thesis introduces a constraint function Copening which provides

this limit by controlling the ratio of number of different coordinates (ndifcoord)

and number of members (nmem) in a shear wall group, rcoord:

rcoord = ndifcoord (2.25)
nmem

Thus the constraint function for accessibility and openings is defined by the

following equation. There would be no penalty added to the objective function

if there is no enclosed shear wall group in the layout.

0 if rcoord >
Copening = (2.26)

1 if rcoord 1

2.3.3 Selection and diversity filter

Once all the individuals in one generation are evaluated in terms of performance,

they are given a fitness score property Fit. The selection stage imitates the natural

selection by allowing only the best performing individuals to survive and thus become

the "parents"of the next generation. The number of parents (Np) in each generation

(Ngen) can be calculated as follows:

Np =Ngen X rp (2.27)

where parent ratio (rp) is defined by users and a smaller ratio gives a harsher

survival challenge to the current generation.

44

These parents, which are relatively a small portion of the prior generation, are

responsible for generating all the individuals as many as one generation. This breeding

procedure, including crossover and mutation, aims to help inherit the advantages of

parents while increasing the diversity of the offspring (see Section 2.3.5). Thus it is

imperative that each pair of mating parents is very likely to produce some individuals

that have similar topologies, and thus similar scores. Some of these similar individuals

might have low scores and thus cannot be selected as parents for the next generation,

but some of them can rank among the best and thus reduce the diversity of the next

generation. In nature, best performing individuals, despite their similarity, should

survive without bias; however, since the size of domain (all the possible layouts) in this

system far exceeds the size of generations, the proposed method encourages diversity

so that a wider range of good solutions are more likely to be found. Therefore, a

technique called a diversity filter is introduced, which filters out the similar layouts

during selection based on the threshold value of diversity ratio (rdivthreshold) set by

users. Two layouts are deemed as similar when their actual diversity ratio (rdiv) is

larger than rdio__threshold. Diversity ratio (rdiv) is defined by the following equation:

rdiv = noverlap (2.28)
naVer

where noverlap is the number of members existing in both layouts; naver is the

average number of members in two layouts.

During computational implementation of this method, after ranking all the indi-

viduals in the current generation by their performance and saving them in a "candi-

date list", a "survivor list" initiated with the best individuals is created. For every

individual in the candidate list, compare it with the individual(s) in the survivor list

until one candidate, different enough (based on rdiv) from every individual in the

survivor list, appears. This candidate is added to the survivor list and thus deleted

from the candidate list.

45

2.3.4 Crossover and mutation

Conventional evolutionary algorithms, which use randomness during the crossover

and mutation procedure, introduce both beneficial and detrimental changes to the

offspring. Thus these algorithms usually move around the domain in every direction.

Consequently, optimized results cannot be guaranteed without considerably large

number of generations. Unlike conventional evolutionary algorithms, the proposed

method in this thesis moves towards the optimum by allowing the algorithm to pair

parents and guide the crossover and mutation process based on Locationtype and

Modificationtype.

Table 2.3: Definitions, properties and corresponding spouse of each Modificationtype.

Modif.type Structural Structural Properties Spouse's
Perfor- Weight Modif.type
mance W(v)
S

Major Fail > Wprefer Has too many walls, Minor
still fails structural per-
formance; Need: major
modification in both as-
pects

Major+ Fail < Wprefer Although layout has few Major-
walls, Fails structural per-
formance; Need: more walls
to pass the strength check.

Major- Pass > Wprefer Although layout passes Major+
structural performance,
Has too many walls; Need:
reduce walls to achieve the
goal

Minor Pass Wprefer Passes structural perfor- Minor
mance; Has few walls; Need:
preserve its good features

Every layout, based on the number

can be classified as one of the following

structural performance (S) of this layout

of shear walls and structural performance,

Modificationtypes defined in Table 3. The

can be either "Pass' if all the strength checks

46

and drift check are passed, or "Fail" if there exists failure in drift check or at least

one strength check failing in at least one direction; Wprefer is the preferred structural

weight, which is a prediction of the optimal structural weight and can be selected

with the method described in Section 2.4.

And according to the relevant location of center of stiffness and center of mass, it

can be classified as one of the following Locationtypes:

1st quadrant if xes > xcm and ycs > ycm

2nd quadrant if Xes < x.m and ycs > ycm

Location type 3rd quadrant if xes < xcm and ycs YCM (2.29)

4th quadrant if xeS > xcm and ycs < yem

Centered if xcs = xcm and ycs = YCM

Once selection based on fitness score is conducted, the "survivors" after selection

will become parents for the next generation. The general process starts with ran-

domly picking one individual from these "survivors" and pairing it with another indi-

vidual layout with diagonal location (diagonal quadrant) and corresponding spouses

Modificationtype. Four examples are shown in Figure 2-9.

Next, the binary string chromosome of each parent is split at the same random

point and recombined. The reassembled chromosome becomes the chromosome of

a newly-generated individual. It is worth noting that the Modificationtype and

Locationtype are calculated whenever a new individual is generated. Then another

pair of parents is picked and goes through the same procedure until the number of

individuals generated reaches the size of generation.

Mutation is encouraged to introduce potentially beneficial changes to the upcom-

ing generation. Mutation rate (rmut) is set by users and is the ratio between number

of mutated individuals (Nmut) and number of all the individuals (Ngen) in the genera-

tion. Individuals are randomly selected from a new generation as mutation candidate.

Since each newly-generated individual has Modificationtype and Locationtype, each

47

Example 2 Example 3

r-
N: 12 S: Pass

MadOf. type: Minor
Loc. type: 1st quadrant

N: 9 S: Pass
Modff. type: Minor

Loc. type: 3rd quadrant

- Building Contour

~ F I
N: 19 S: Pass

Modff. type: Major-
Loc. type: 3rd quadrant

r -

N: 11 S: Fail
Modff. type: Major+

Loc. type: 1st quadrant

- Shear Wall

- J --

N: 18 S: Fail
MAodif. type: Major

Loc. type: 2nd quadrant

N: 11 S: Pass
Modif. type: Minor

Loc. type: 4th quadrant

x Center of Mass

_ I - -

N: 11 S: Fail
ModWf type: Major+

Loc. type: 4th quadrant

N: 17 S: Pass
Modif. type: Major-

Loc. type: 2nd quadrant

* Center of Stiffness

Figure 2-9: Four examples of the pairing process during crossover.

mutation candidate is mutated by either adding shear wall members or reducing shear

wall members based on the its Modificationtype. To better reduce the torsional ef-

fect, the system selects the shear wall members with the same quadrant to be turned

off, and those with the diagonal quadrant to be turned on.

2.4 Parameter selection

Apart from the evolutionary parameters (such as mutation rate, generation size, and

number of evolutions), the quality of the results also varies significantly with algo-

rithmic parameters related to objective function, especially when there are multiple

variables in this function. Since the significances of these variables are considerably

correlated with each other, the result of one specific parameter set is less predictable

without tedious experiments and complex analyses. To improve the performance and

efficiency of this optimization system, a simplified method for parameter selection is

proposed and can be implemented either before or during the optimization process.

48

First Parent

Second Parent

Legend

E xample 4Example 1

Since the objective is to minimize the structural weight, the most significant pa-

rameters are the preferred structural weight Wprejer and the maximum number of

shear wall members for the first generation nma*. Thus adjusting these two parame-

ters is sufficient for the optimization in this research. The general process of selection

is: after setting up the case, run the system several times and each time slightly

reduce Wprefer and nmax (Wpref er< nmax) until a failure in the strength check occurs

in the top five individuals of the first generation. For example, initialize Wprefer to be

0.5nmem and nmax to be 0. 3 nmem. And each time deduct 0. 0 5nmem from both param-

eters until the failure occurs. If reduction continues, an increasing number of failures

in the strength check will appear in the top five individuals of every generation. Thus

the occurrence of first failure is the critical point. This indicates that the system is

trying excessively to optimize the structural weight by placing too much significance

on this factor that it fails to filter out a lighter structure with unacceptable structural

strength. The values of Wprefer and nmax at this critical point shall be deemed as the

optimal values, which are most likely to yield the optimum structural weight.

49

50

Chapter 3

Evaluation of the methodology

The 6 by 8 grid example is used in this chapter to evaluate the effectiveness of the

methodology presented in this thesis. Although parameter values of the algorithm

should be set in advanced by users based on the objectives and requirement, in this

example, the parameter setup is shown in Table 3.1.

Table 3.1: Parameters for the general case study.

Size of Num. Mutation Parent Max Preferred Preferred dis-
gener- of gen- rate ratio rp num. weight tance Dprefer

ation erations rmut of walls Wprefer

N Ngen nmax
2000 6 0.3 0.1 0.3nmem 0.fnmem ift (30.5cm)

For a problem with the parameters mentioned above, one complete optimization

process takes around two minutes on a standard laptop. Figure 3-1 illustrates the

top five individual layouts in the first generation, the third generation and the last

(sixth) generation. Obviously, the algorithm does improve the performance along

each generation. To prove this conclusion in a more objective and quantitative way,

Figure 3-2 plots the mean, median, maximum, minimum of (a) the fitness scores; (b)

number of shear walls (evaluating structural weight); (c) distance between center of

stiffness and center of mass for the top ten layouts in each generation. According to

the figure, across the generations that minimize the value of unconstrained objective

51

function f(v), structural weight gradually decreases and is about to converge after 4

generations. The distance between center of stiffness and center of mass Dc8__cm, after

a drastic drop in the first evolution, converges quickly and remains within ift, which

is the preferred distance Dprefer,. indicating the high efficiency of this algorithm.

F- _ I - - J -
GEN - 1 xf

Fit: 141378, N: 21, S: Pass Fit: 142232, N: 19, S: Pass Fit: 151827, N: 17, S: Pass Fit: 162090, N: 23, S: Pass Fit: 174006, N: 24, S: Pass

GEN - 3 L
i _ N: 1 S Fit

Fit: 1213, N: 16, S: Pass Fit: 1507, N: 17, S: Pass FRt: 1651, N: 19, S: Pass FR: 1696, N: 18, S: Pass Fit 2226, N: 20, S: Pass

GEN - 6

Fit: 253, N: 9, S: Pass

Legend - Building Contour

Fit: 347, N: 11, S: Pass

[5 :I
Fit: 350, N: 10. S: Pass

- Shear Wall

Fit: 383, N: 11, S: Pass

x Center of Mass

Fit: 545, N: 12, S: Pass

* Center of Stiffness

Figure 3-1: The top five individual layouts in the first generation, third generation, and
last (sixth) generation. Beneath each layout, the objective function score is given (Fit),
along with the number of shear walls or equivalently structural weight (N) and whether the
strength checks are satisfied (S).

52

Fitness Score Fit = f(v)

1 2 3 -4

1 2 3 4
Generation

(a)

Structural Weight W(v)
35

30

25

20

15

10
5 6 1 2 3 4

Generation

Distance between center of
(f) stiffness and center of mass Dcacm

6.0

5.0

4.0

3.0

2.0

1.0

0.0
5 6 1 2 3 4

Generation

(b) (c)

= Range of all values

Figure 3-2: Plots of the various metrics of structural performance

across six generations of the evolutionary algorithm.
of the top ten designs

53

106

105

104

10

102

Legend Max / Min - Mean

5 6

- - Median

54

Chapter 4

Complex cases

4.1 Void space (Structures with plan irregulari-

ties)

Footprints of buildings considered in this system were by default rectangular, as stud-

ied above. However, if the building of interest has an irregular contour (such as L

shape or Y shape) or atriums, or if the program requires some spacious area without

any walls, an extending concept of void space can be applied.

In the proposed method, every layout is transformed to a binary number with

each digit representing a line segment in the grid and each line segment has features

of coordinates. Thus by introducing void space which contains the location informa-

tion of these void areas (irregular contour, atriums, or wall-free areas), the system

always deactivates those line segments that fall within these void spaces and thus

eliminating shear walls from these areas. One thing worth-noting is that for irregular

contour and atriums, the areas of void spaces should be considered non-existing and

shall never be involved in loading calculations as well as penalty on torsional effect.

For wall-free areas, nevertheless, the areas of void spaces are wall-free areas on the

slab that have volume and are able to bear load.

55

This thesis illustrates the evolution of the structures with void spaces in Figure 4-

1. Wall-free areas at three corners of this hshaped footprint encourage concentrating

the shear walls in the center. The significant improvement in terms of structural

weight is suggested by a variety of layouts in each generation.

GEN - 1 * Lti

Fit: 27098, N: 19, S: Pass Fit: 33522, N: 20, S: Pass Fit: 40241, N: 21, S: Pass Fit: 48753, N: 22, S: Pass Fit: 56190, N: 23, S: Pass

GEN - 3

Fit: 6834, N: 14, S: Pass Fit: 7184, N: 14, S: Pass Fit: 10385, N: 15, S: Pass Fit: 13421, N: 16, S: Pass Fit: 13850, N: 16, S: Pass

GEN - 6

Fit: 238, N: 9, S: Pass Fit: 312, N: 11, S: Pass Fit: 329, N: 10, S: Pass Fit: 332, N: 11, S: Pass Fit: 482, N: 11, S: Pass

Legend - Building Contour - Shear Wall Void Space x Center of Mass * Center of Stiffness

Figure 4-1: The top five individual layouts in the first generation, third generation, and last
(sixth) generation for an h-shaped footprint with corner wall-free areas. Both fitness score
and structural weight drop sharply along the evolutions.

In Figure 4-2, different wall-free areas with the same irregular contour demon-

strate the application, with or without a conventional structural core, under different

programmatic requirement (such as the main usage of the building). For example, an

exterior void encourages the formation of a structural core and thus is more preferable

for an office building, while interior void, such as Hshaped void encourages spread-out

shear wall placement and is thus more suitable for a residential building. As is sug-

gested in Figure 4-2, minimum structural weight varies with the configuration of void

spaces. Thus choosing unreasonable void spaces can result in a waste of material.

56

Corner Void

Fit: 374, N: 11, S: Pass

Exterior Void

Fit: 110, N: 7, S: Pass

H-shaped Void

Fit: 305, N: 11, S: Pass

Legend - Building Contour

Fit: 429, N: 12, S: Pass

Fit: 256, N: 9, S: Pass

4 L

Fit: 482, N: 13, S: Pass

- Shear Wall

__
Fit: 433, N: 12, S: Pass

iI

Fit: 281, N: 9, S: Pass

Fit: 486, N: 13, S: Pass

Void Space

Fit: 452, N: 12, S: Pass

Fit: 287, N 9 S: Pass

Fit: 533, N: 14, S: Pass

Fit: 508, N: 13, S: Pass

Fit: 315, N: 9, S: Pass

Fit: 535, N: 14, S: Pass

x Center of Mass * Center of Stiffness

Figure 4-2: Result sample of layouts with different wall-free areas and the same irregular
contour.

To show the diversity and potential of this system, Figure 4-3 introduces three

types of layouts with distinct contours as well as void spaces. This figure also shows

that different initial footprints (including contour and void spaces) are likely to end

up with distinct optimal shear wall layouts.

57

L - shaped

Fit: 261, N: 10, S: Pass

b - shaped

Fit: 569, N 16, S: Pass

Y - shaped

Fit: 301, N: 10, S: Pass

Legend - Building Contour

Fit: 280 N: 10, S: Pass

Fit: 639, N: 17, S Pass

Fit: 303, N: 10, S: Pass

- Shear Wall

Fit: 331, N: 10, S: Pass

[: 4N

Fit: 654, N: 17, S: Pass

Fit: 330, N: 11, S: Pass

Fit: 332, N 10, S: Pass

Fit: 677, N: 18, S: Pass

Fit: 434, N: 12, S: Pass

Fit: 347 N: 10, S: Pass

Fit: 781 N: 18, S: Pass

Fit: 471, N: 13, S: Pass

Void Space x Center of Mass * Center of Stiffness

Figure 4-3: Result sample of layouts with different wall-free areas and the different irregular
contours. The square in the center of the b-shaped footprint indicates an atrium.

4.2 Fixed floor plans

Although the basic method described in Section 2.3 can provide various types of lay-

outs for a flexible conceptual design, an architect sometimes already has a floor plan

in mind and thus only needs help arranging the placement of shear walls within it

(Figure 4-4a). This section gives a brief introduction on how the basic method can

be easily transformed to apply to this special case.

While the basic method models initiate the ground structure as rectangular grids,

the transformed version can still use the ground structure concept but changes the

original quad mesh containing all the orthogonal edges to a subset of these edges

which lie along a wall (structural or non-structural) existing on the floor plan (Figure

4-4b). The binary number can still be used and each digit represents a line segment

58

in the subset. The following evolutionary algorithm procedures remain the same as

those described in Section 2.3.

120'-0" (36.5m)

E
Cf)

L L

(a) (b)

Legend - Building Contour - Potential Shear Wall Location -.. Preferred Shear Wall Location

Figure 4-4: Example of the fixed floor plan and its corresponding model in the system:
(a) the floor plan which is designed by an architect beforehand and delivered to the struc-
tural engineer, requiring placement of shear walls; (b) the model interpreted by the system
corresponds to the original floor plan.

In practice, elevator cores and walls around the staircases are often ideal places

for placing shear walls not only because of their vertical continuity throughout the

building but also for providing fireproof structure around emergency egress. Thus

in the fixed floor plan extension, users can pick several walls as preferred shear wall

locations. In the mutation process, if any of these selected walls are inactive, the sys-

tem will show preference on activating it. A simple way to manage this is: first, set

a threshold zO within [0,1], where 0 corresponds to no preference and 1 corresponds

to a highly desired shear wall location. Then before mutation, randomly pick a real

number z from 0 to 1, if z is smaller than zA , then activate an inactive shear wall

member (if any) randomly selected from the preferred shear wall locations. Do this

only one time for each mutation process.

Figure 4-5 illustrates the optimization process for the floor plan proposed in Fig-

59

ure 4-4. While reduction on the structural weight is less significant, it is effective in

minimizing the torsional effect. However, the methodology has an impressive advan-

tage in computational cost. On a standard laptop, it takes three to five minutes to

go through the evolution and generate one set of diverse, highperforming results for

layouts with the dimension 36m by 30m.

If building codes require egresses (e.g. elevators or stairs) to be at a certain places

or within a certain distance from each other or from a center location, some shear

wall members can be prelocated; in implementation, the edges of these shear walls

members will always be activated in every layout.

GEN - 1 3 -

Fit: 3447, N: 58, S: Pass

. -- I N

GEN - 3

L _E
Fit: 1773, N: 58, S: Pass

GEN-6

Fit: 1066, N: 41, S: Pass

Legend Building Contour

17' T

17-] -]

Fit: 3965, N: 55, S: Pass

LL I
Fit: 1953, N: 52, S: Pass

LFI: N 1

Fit: 1201.N: 41, S Pass

- Shear Wall

r- -

Ft: 4345, N: 62, S: Pass

- 3
Fit: 2103, N: 54, S: Pass

Fit: 1243, N: 46, S: Pass

I~r f_ TI

FK: 5160, N: 61, S: Pass

_L J
Fit: 2161, N: 53, S: Pass

i E F

Fit: 1301. N: 42. S: Pass

Non-shear Wall x Center of Mass

KEI ~
~ j ii

Fit: 5580, N: 60, S: Pass

X

Fit: 2736, N: 53, S: Pass

Fit: 1445, N: 43, S: Pass

* Center of Stiffness

Figure 4-5: The top five individual layouts in the first generation, third generation, and last
(sixth) generation for a fixed floor plan.

60

Chapter 5

Conclusion

5.1 Summary of contributions

This thesis has proposed a new methodology produces diverse, high-performing shear

wall layout designs for tall buildings that can respond to both structural and archi-

tectural design goals. The method is compatible with a large variety of buildings,

from low-rise to high-rise, from wide to tall (aspect ratio), from office to residential,

and from box to irregularly-shaped. Furthermore, it can be incorporated flexibly ei-

ther before or after the design of architectural floor plan, sparking new inspiration

or conforming to an agreed upon system. Integrating structural performance and

architectural design, the diverse optimized results not only provide designers with a

wide range of distinct layouts to choose from, but also pre-calculated the structural

performance, ensuring that any layouts selected from this subset are among the best-

performing ones. Once a conceptual design for the shear wall layout is selected, it

can be analyzed and detailed much more precisely by the structural engineer later in

the design process.

This thesis also proposes general solutions for unaddressed problems. With re-

spect to structural performance, a simplified auto-calculation system for reinforced

concrete design has been established and applied in this research, which saves com-

putational time and memory for the optimization process, and addresses the blank

61

in the design codes regarding irregularly configured shear walls.

Moreover, in terms of the optimization algorithm, this thesis presents customiza-

tions of the conventional ground structure as well as the evolutionary algorithm. Since

the population containing all possible layouts is extremely large, which requires huge

computational cost under the conventional evolutionary algorithm, the modified ver-

sion encourages inheriting advantageous features and triggers beneficial changes to

each generation. It sharply reduces the computation time to be less than one-tenth

of that for an average calculation without these modifications.

Lastly, this thesis aims to fill the gap between engineers and architects, and reduce

the trial-and-error design process for buildings so that better and more integrated

solutions can be found.

5.2 Future work

The work presented in this thesis focuses on optimization in terms of architectural

design and structural performance. However, with the complexity of architectural

considerations, the non-fixed versions may not yield plausible layout in terms of, for

example, space arrangement. For instance, the optimized results may indicate an

elevator well in an apartment or a living room right beside the door of the apartment.

Further, this thesis only considers shear wall layout in plan-view, which ignores the

variation in dimension for sections along the height of the building. Algorithm-wise,

the objective function contains many variables which should be analyzed and gener-

alized.

Thus, future improvements include the spatial arrangement and connectivity to

consider human usability and convenience, exploration in three dimensions to widen

the application of this research, and analysis and improvement on the evaluation cri-

teria to make this algorithm more general, comprehensible, and compatible.

62

Moreover, since some engineers cannot easily access the Python-based computa-

tional system proposed in this thesis, further development of a computational tool or

software with a graphical user interface is suggested as part of the future work.

63

64

Appendix A

Scripts

There are mainly two types of scripts involved in this thesis: one type is for generating

the hashmap to store the interaction diagram for all the configuration within a 3 by

3 grid; and another type of script is the main loop for the modified evolutionary algo-

rithm. This appendix will show 2 scripts: A.1 Script or generating concrete strength,

and A.2 Script for the fixed floorplan extension case. If the user are considering the

unfixed cases, just deactivate the pre-select function, activate the quardrant function,

and input the altrim/wall-free area, if any. The scripts are writing for Python 2.7.

A.1 Script for generating concrete strength

This script is writen by Yu Zhang at MIT in July 2016
and is designed for generating the cracking depth and cracked inertia
for all the possible shear wall configuration in a 3 by 3 grid

import xlsxwriter
import math
import csv
import xlsxwriter
from pyDOE import *
import copy
import pickle

#####PARAMETERS

###algorithm parameters

dict-all = {}

n-gridx = 3
n_gridy = 3 #grid size: n-grid x by n-grid-y
numzone = n-grid-y*2+1

concretestrength = 5 #ksi

65

steelstrength = 60#ksi

thickwall = 12 #in
protection = thickwall/2.0 #6in
len-singlewall = 10*12 #in

area-singlebar = 0.79 #in-2 #8
spacing = 10#in
layer = 2
thicksteel = (1.0*area-single-bar)/spacing*layer #in
h = n-grid-y*len-single-wall + thickwall #372in
d = h-protection

count = 0
coordzone = []
for i in range(num-zone):

coordzone.append(i*len-single-wall/2.0+protection)

class Concrete-zone:
def __init__(self, direction, numele,top_ extend = None ,bot_extend = None , coord =None):

self.num = numele
self.direction = direction

if self.direction == 'x':
self.height = thick_wall
self.top = coord-thick-wall/2.0
self.bot = coord+thick-wall/2.0

if self.direction == 'y':
if top-extend =='False':

self.top = coord-(len-single-wall-thick-wall)/2
if top-extend == 'True':

self.top = coord-(len-singleywall)/2
if botextend == 'False':

self.bot = coord +(len-single-wall-thickwall)/2
if botextend =='True':

self.bot = coord +(len-single-wall)/2
self.height = self.bot - self.top

self.area = self.num*(self.height)*thick-wall
self.location = (self.top+self.bot)/2.0

class Steel-zone:
def __init__(self, c,direction, num_ele, location 0,top = 0,bot = 0,stress = 0,
^Itop_stress = 0, botstress = 0):

self .numele = numele
self.direction = direction
if self.direction ==x':

self.location = location
self.stress = stress
self.length = len-single-wall

if self.direction == :
self.top = top
self.bot = bot
self.length = self.bot-self.top
self.topstress =top-stress
self.botstress = bot_stress
self.stress = (self.top-stress + self.botstress)/2.0
self.location = self.top+(self.top-stress+2.0*self.botstress)
(self.bot-self.top)/(3.0(self.top-stress+self.bot-stress))

self.Pni = self.stress*self.numele*self.length*thicksteel
self.Mni = self.Pn_i*(centermass-self.location)
self.Icri = 7*self.numele*self.length*thick-steel*(self .location-c)**2.0

Create an new Excel file and add four worksheet.
workbook_3by3 = xlsxwriter.Workbook('3by3(7)_4sheets_2.xlsx')
worksheet_c_3by3 = workbook_3by3.addworksheet('c')
worksheetPn_3by3 = workbook_3by3.addworksheet('Pn')
worksheetMn_3by3 = workbook_3by3.addworksheet('Mn')
worksheetIcr_3by3 = workbook_3by3.add-worksheet('Icr')

66

worksheet_c_3by3.write('A', 'Key')
worksheet_Pn_3by3.write('A1', 'Key')
worksheetMn_3by3.write('A1', 'Key')
worksheet_Icr_3by3.write('A1', 'Key')
numpossible-c = (n-grid-y*120+12)/6
for i in range(nuimpossible-c):

worksheet_c_3by3.write(0,i+1, 'c (in)')
worksheetPn_3by3.write(0,i+1,'Pn (kips)')
worksheetMn_3by3.write(0,i+1, 'Mn (kip.ft)')
worksheetIcr_3by3.write(0,i+1,'Icr (ft^4)')

listcountnum = []
row = 0
for i_1 in range(n-grid-x+1):

num_1 = i_1
for i_2 in range(n-grid-x+1):

num_2 = i_2+1
for i_3 in range(n-grid-x+1):

num_3 = i_3
for i_4 in range(n-grid-x+1):

num_4 = i_4+1
for i_5 in range(n-grid-x+1):

num_5 = i_5
for i_6 in range(n-grid-x+1):

num_6 = i_6+1
for i_7 in range(n-grid-x+1):

num_7 = i_7

countnum = []
countnum. append (num_ 1)
countnum. append(num_2)
countnum. append(nuim_3)
countnum.append(nuim_4)
countnum. append(nuim_5)
count-num. append(num_6)
count_num. append(nunm_7)
row += 1
listcount_num.append(count-nu'm)
worksheetsc_3by3.write(row,0, str(count.num))
worksheetPn_3by3.write(row,0, str(countnum))
worksheetMn_3by3.write(row,0, str(countnum))
worksheetIcr_3by3.write(row,0, str(countnum))

list = count num
numtimescoord = 0
nun'_area = 0
for i in range(len(count.num)):

numtimescoord += countnum[i]*coordzone[i]
numarea += count nu'm[i]

centermass = num_times_coord/num_area

listPn = []
list_c = []
list_Mn = []
listIcr =[]
listall = []

for j in range(nun.mpossible-c):
c = j*6+3
a = 0.8*c

#concrete
Pnc = 0
Mnc = 0
Icrc = 0
for i in range(len(list)):

if i%2 == 0:
direction = 'x'

67

newconcretezone = Concrete zone(direction = 'x',
^Inum_ele = list[i], coord = coord-zone[i])

if i%2 == 1:
direction ='y
if list[i-1] == 0:

if list[i+1]==0:
newconcretezone = Concrete zone(direction =y',
^Inumele = list[i], topextend = 'True',
^^Ibot extend = 'True', coord = coord-zone[i])

else:
newconcretezone = Concrete zone(direction =

^Inum_ele = list[i], top-extend = 'True',
^^Ibotextend = 'False', coord = coordzone[i])

if list[i-1] != 0:
if list[i+1]==0:

newconcretezone = Concrete zone(direction =Y,

^^Inum ele = list[i], top-extend = 'False',
^Ibotextend = 'True', coord = coord-zone[i])

else:
newconcretezone = Concrete zone(direction =

^Inum_ele = list[i], top-extend = 'False',
^^Ibotextend = 'False', coord = coord-zone[i])

if newconcretezone.bot<= a:
Pnc += 0.85*concrete strength*newconcretezone.area #kips
Mnc += 0.85*concretestrength*new concretezone.area
*(centermass-newconcretezone.location)
Icrc += newconcretezone.area*newconcretezone.height
**2.0/12.0+newconcretezone.area*
(new concrete_zone.location-c)**2

else:
Pnc += 0.85*concretestrength*new concretezone.area
*(a-newconcrete zone.top)/new-concretezone.height
Mnc += 0.85*concretestrength*new concretezone.area
*(a-newconcrete zone.top)/new-concretezone.height
*(center-mass-(a+newconcretezone.top)/2.0)
Icrc += (new concrete zone.area/newconcrete-zone.height)
*((a-newconcretezone.top)**3)/12.0+newconcretezone.area
/new concretezone.height*(a-new-concretezone.top)
*(((a+newconcrete-zone.top)/2.0-c)**2.0)

break

#steel
Pns = 0
Mns = 0
Icrs 0
if c <=3*protection:

###Top (compression) not yield, Bottom. (tension) yield
listzonestrain = [c,2/3.0*c,d-5/3.0*c]
for i in range(len(list)):

if i%2 == 0:
direction 'x'
locationx = i*lensingle-wall/2.0+protection
if location-x <= (c*5/3.0):

stressx = (c-location x)/c*0.003/0.002*60
if location-x >(c*5/3.0):

stressx = -60
newsteelzone = Steel zone(c =c, direction = 'x',
^Inum_ele = list[i], location = locationx,
^^Istress = stress-x)
Pn s += new steel zone.Pn i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-1)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot-y <= (5/3.0*c):

68

botstress-y = (c-bot-y)/c*0.003/0.002*60
top-stress-y = (c-top-y)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = topy,bot = boty,
^^Itopstress = top-stressy,

Ibotstress = botstress.y)
Pns += newsteelzone.Pni
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y >= (5/3.0*c):
botstress-y = -60
top-stress-y = -60
new steelzone = Steelzone(c=c,direction =
^Inumnele = list[i], top = topy,bot = bot-y,
^Itopstress = top-stressy,
Ibotstress = botstress-y)

Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y < (5/3.0*c) and bot-y >(5/3.0*c):
topiy = topy
boty = 5/3.0*c
topi-stress-y = (c-topy)/c*0.003/0.002*60
botistress_y = (c-botiy)/c*0.003/0.002*60
newsteelzonel = Steelzone(c=c,direction =
^Inum_ele = list[i], top = topiy,bot = boti_y,
^^Itopstress = topistress-y,
^Ibotstress = botistress-y)
Pns += newsteelzonei.Pn_i
Mn s += new steel zonei.Mn i
Icrs += newsteelzone.Icr_i
top2_y = 5/3.0*c
bot2_y = bot-y
top2_stress-y = -60
bot2_stress-y = -60
newsteelzone2 = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = top2_y,bot = bot2_y,
^Itopstress = top2_stress-y,
^^Ibotstress = bot2_stress-y)
Pns += newsteelzone2.Pn_i
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > 3*protection and c <= 3/5.0*d:
###Top (compression) yield, Bottom (tension) yield

listzonestrain = [1/3*c,2/3*c,2/3*c,d-5/3*c]
for i in range(len(list)):

if i%2 == 0:
direction = 'x'
locationx = i*lensingle-wall/2.0+protection
if location x <= (1/3.0*c):

stressx = 60
if location-x > (1/3.0*c) and locationx <= (c*5/3.0):

stressx = (c-locationx)/c*0.003/0.002*60
if locationx >(c*5/3.0):

stressx = -60
newsteelzone = Steel zone(c=c,direction = 'x',
^Inum_ele = list[i], location = locationx,
-Istress stressx)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot -y <= (1/3.0*c):

botstress-y = 60
top-stress-y = 60
newsteelzone= Steelzone(c=c,direction

69

^^Inumele = list[i], top = topy,bot = boty,
^Itopstress = topstressy,
^^Ibotstress = botstressy)
Pns += newsteelzonei.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i

if bot-y > (1/3.0*c) and top-y <= (1/3.0*c):
topy = topy
botiy = 1/3.0*c
topistress-y = 60
botistress-y = 60
newsteelzonel = Steelzone(c=c,direction =
^Inum-ele = list[i], top = topy,bot = botiy,
^Itop-stress = topstressy,
^Ibotstress = botistress-y)
Pns += newsteelzonei.Pn_i
Mns += newsteelzonel.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 1/3.0*c
bot2_y = bot-y
topi-stress-y = (c-top2_y)/c*0.003/0.002*60
botistress-y = (c-bot2_y)/c*0.003/0.002*60
newsteelzone2 = Steelzone(c=c,direction =Y,
^Inumele = list[i], top = top2_y,bot = bot2_y,
^^Itop-stress = top2_stress-y,
^Ibotstress = bot2_stress-y)
Pns += newsteelzone2.Pni
Mns += newsteelzone2.Mn_i
Icr-s += new steel zone.Icr i

if bot.y <= (5/3.0*c) and top-y > (1/3.0*c):
botstressy = (c-bot-y)/c*0.003/0.002*60
top-stress-y = (c-topy)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = top-y,bot = bot-y,
^Itop-stress = top-stress-y,

^^Ibot stress = botstress_y)
Pns += newsteelzone.Pn_i
Mn s += new steel zone.Mn i
Icrs += newsteelzone.Icri

if topy > (5/3.0*c):
botstress-y = -60
top-stress-y = -60
newsteelzone = Steelzone(c=c,direction = 'y',
^Inum_ele = list[i], top = top-y,bot = bot-y,
^^Itop-stress = top-stress-y,
^Ibot stress = botstressy)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icr-s += new steelzone.Icr_i

if top-y <= (5/3.0*c) and bot-y >(5/3.0*c):
topiy = topy
botl-y = 5/3.0*c
topi.stress-y = (c-topi-y)/c*0.003/0.002*60
botistressy = (c-botl_y)/c*0.003/0.002*60
newsteelzonel = Steel_zone(c=c,direction =y',
^Inumele = list[i], top = toply,bot = botly,
^Itop-stress = topilstressy,
^^Ibotstress = botistressy)
Pns += newsteelzonei.Pn_i
Mn s += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 5/3.0*c
bot2y = bot-y
top2_stress-y = -60
bot2_stress-y = -60
new-steelzone2 = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = top2_y,bot = bot2_y,
^^Itopstress = top2_stress-y,
^Ibotstress = bot2_stressy)
Pns += newsteelzone2.Pn_i

70

Mn s += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > (3.0/5*d):
listzonestrain = [1/3*c,2/3.0*c,d-c]
for i in range(len(list)):

if i%2 == 0:
direction ='x
locationx = i*lensingle-wall/2.0+protection
if location x <= (c*1/3.0):

stressix = 60
if location-x > (c*1/3.0):

stress-x = (c-location-x)/c*0.003/0.002*60
newsteelzone = Steel zone(c=c,direction = 'x',
^Inumele = list[i], location = locationx,
^^Istress = stressx)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot y <= (1/3.0*c):

botstress-y = 60
top-stress-y = 60
newsteelzone = Steelzone(c=c,direction ='y',
^Inumele = list[i], top = topy,bot = bot-y,
^Itopstress = top-stressy,
^^Ibotstress = botstress_y)
Pn s += new steel zone.Pn i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y >= (1/3.0*c):
bot-stressy = (c-bot-y)/c*0.003/0.002*60
top-stress-y = (c-top-y)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction =Y,
^Inumele = list[i], top = topy,bot = bot-y,
^Itopstress = top-stress-y,

Ibotstress = botstress-y)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y < (1/3.0*c) and bot-y >(1/3.0*c):
topiy = topy
botiy = 1/3.0*c
toplstress-y = 60
boti_stress-y = 60
newsteelzonel = Steel_zone(c=c,direction =
^Inumele = list[i], top = topiy,bot = botiy,
^Itopstress = topistress-y,
^Ibotstress = botistress-y)
Pns += newsteelzonel.Pni
Mns += newsteelzonel.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 1/3.0*c
bot2_y = bot-y
top2_stress-y = (c-top2_y)/c*0.003/0.002*60
bot2_stress-y = (c-bot2_y)/c*0.003/0.002*60
newsteel zone2 = Steelzone(c=c,direction =Y,
^Inumele = list[i], top = top2_y,bot = bot2_y,
^^Itop-stress = top2_stress-y,

Ibotstress = bot2_stress-y)
Pns += newsteelzone2.Pn_i
Mns += newsteelzone2.Mn_i
Icrs += newsteel zone.Icr_i

Pn = round(0.9*(Pn_s+ Pn-c))
Mn = round(0.9*(Mn_s + Mnc)/12)
Icr = (Icr-s+ Icr c)/(12**4)

71

listMn.append(Mn)
listPn.append(Pn)
listIcr.append(Icr)
list-c.append(c)
list-all.append(c)
list-all.append(Pn)
list-all.append(Mn)
list-all.append(Icr)

dictall [str (count-num)] =[list-all]

for i in range(len(listc)):
worksheet_c_3by3.write(row,i+1,list-c[i])
worksheetPn_3by3.write(row,i+1,listPn[i])
worksheetMn_3by3.write(row,i+1,listMn[i])
worksheetIcr_3by3.write(row,i+1,list_Icr[i])

workbook-3by3.close()

######3by2
###algorithm parameters
n-gridx = 3
n-grid-y = 2 #grid size: n-gridx by ngrid-y
numzone = n-grid-y*2+1

h = n-grid-y*len-single-wall + thickwall #372in
d = h-protection

coord zone =

for i in range(num-zone):
coordzone.append(i*len-single-wall/2.0+protection)

Create an new Excel file and add four worksheet.
workbook_3by2 = xlsxwriter.Workbook('3by2(5)_4sheets_2.xlsx')
worksheet.c_3by2 = workbook_3by2.addworksheet('c')
worksheetPn_3by2 = workbook_3by2.addworksheet('Pn')
worksheetMn_3by2 = workbook_3by2.addworksheet('Mn')
worksheetIcr_3by2 = workbook_3by2.addworksheet('I.cr')

worksheet-c_3by2.write('A1', 'Key')
worksheetPn_3by2.write('Ai', 'Key')
worksheetMn_3by2.write('Ai', 'Key')
worksheetIcr_3by2.write('A', 'Key')
num-possible_c = (n-grid-y*120+12)/6

for i in range(num_possiblec):
worksheet_c_3by2.write(O,i+1,'c (in)')
worksheetPn_3by2.write(0,i+1,'Pn (kips)')
worksheetMn_3by2.write(0,i+1, 'Mn (kip.ft)')
worksheetIcr_3by2.write(0,i+1,'Icr (ft^4)')

listcountnum = []
row = 0
for i_1 in range(n-grid-x+1):

nuM_1 = i_1
for i_2 in range(n-grid-x+1):

num_2 = i_2+1
for i_3 in range(n-grid-x+1):

num_3 = i_3
for i_4 in range(n-grid-x+1):

num_4 = i_4+1
for i_5 in range(n-grid-x+1):

num_5 = i_5

count num =]
count-num. append(num_1)
countnum. append(num_2)
countnum. append(num_3)
countnum. append(num_4)
count-num.append(num_5)

72

row += 1
listcountnum.append(countnum)
worksheet_c_3by2.write(row,O, str(countnum))
worksheetPn_3by2.write(row,0, str(countnum))
worksheetMn_3by2.write(row,O, str(count_num))
worksheetIcr_3by2.write(row,0, str(countnum))

list = countnum
numtimescoord = 0
numarea = 0

for i in range(len(count-num)):
numtimescoord += count-num[i]*coordzone[i]
numarea += countnum[i]

centermass = num_times_coord/num-area

listPn = []
list-c = []
listMn = []
listIcr =[]
list-all = []

for j in range(numnpossible-c):
c = j*6+3
a = 0.8*c

#concrete
Pnc = 0
Mnc = 0
Icrc = 0
for i in range(len(list)):

if i%2 == 0:
direction = 'x'
newconcrete_zone = Concretezone(direction ='x',
^Inum-ele = list[i], coord = coord-zone[i])

if i%2 == 1:
direction =Y
if list[i-1] == 0:

if list[i+1]==0:
newconcrete_zone = Concrete-zone(direction =Y,
^Inum-ele = list[i], top-extend = 'True',
^^Ibotextend = 'True', coord = coord-zone[i])

else:
newconcrete_zone = Concrete-zone(direction =
^Inumele = list[i], top-extend = 'True',
^^Ibotextend = 'False', coord = coordzone[i])

if list[i-1] != 0:
if list[i+i]==0:

new.concrete_zone = Concrete-zone(direction =
^Inumele = list[i], top-extend = 'False',
^Ibotextend = 'True', coord = coord-zone[i])

else:
newconcrete_zone = Concrete-zone(direction =
^Inumele = list[i], top-extend = 'False',
^^Ibotextend = 'False', coord = coordzone[i])

if newconcretezone.bot<= a:
Pnc += 0.85*concretestrength*new-concretezone.area #kips
Mn-c += 0.85*concrete-strength*new-concretezone.area
*(centermass-newconcretezone.location)
Icrc += newconcretezone.area*newconcrete-zone.height**2.0
/12.0+newconcrete-zone.area*(newconcrete_zone.location-c)**2

else:
Pnc += 0.85*concretestrength*new-concretezone.area
*(a-new-concretezone.top)/new-concretezone.height
Mnc += 0.85*concretestrength*new-concretezone.area
*(a-newconcretezone.top)/new-concretezone.height
*(centermass-(a+newconcrete_zone.top)/2.0)

73

Icr-c += (new-concretezone.area/newconcretezone.height)
*((a-new-concretezone.top)**3)/12.0+new concretezone.area
/newconcrete-zone.height*(a-newsconcretezone.top)
*(((a+new-concretezone.top)/2.0-c)**2.0)
break

#steel
Pns = 0
Mns = 0
Icrs = 0
if c <=3*protection:
###Top (compression) not yield, Bottom (tension) yield

listzonestrain = [c,2/3.0*c,d-5/3.0*c]
for i in range(len(list)):

if i%2 == 0:
direction =x'
locationx = i*lensingle-wall/2.0+protection
if location x <= (c*5/3.0):

stress-x = (c-location-x)/c*0.003/0.002*60
if locationx >(c*5/3.0):

stressx = -60
newsteelzone = Steel-zone(c =c, direction = 'x',
^^Inumele = list[i], location = location x,stress = stressx)
Pn s += newsteelzone.Pn_i
Mn s += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot -y <= (5/3.0*c):

botstress -y = (c-boty)/c*0.003/0.002*60
topstress-y = (c-top-y)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction ='y',
^Inumele = list[i], top = topy,bot = bot-y,
^Itopstress = top-stress-y, bot-stress = botstress-y)
Pns += newsteelzone.Pn_i
Mn s += new steel zone.Mn i
Icrs += newsteel zone.Icr_i

if top-y >= (5/3.0*c):
botstress-y = -60
top-stress-y = -60
new-steelzone = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = top_y,bot = boty,
^Itopstress = top-stressy, bot-stress = bot-stressy)
Pns += newsteelzone.Pn_i
Mns += newsteel zone.Mn_i
Icrs += new steel zone.Icr i

if top-y < (5/3.0*c) and boty >(5/3.0*c):
topiy = top-y
boti_y = 5/3.0*c
topi-stress-y = (c-toply)/c*0.003/0.002*60
botistress-y = (c-boti_y)/c*0.003/0.002*60
newsteelzonel = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = topiy,bot = botly,
^^Itop stress = topistress-y,
^Ibot stress = botistress-y)
Pns += newsteelzonei.Pn_i
Mn s += newsteelzonei.Mn_i
Icrs += newsteel zone.Icr_i
top2_y = 5/3.0*c
bot2_y = bot-y
top2_stress-y = -60
bot2_stress-y = -60
newsteelzone2 = Steel_zone(c=c,direction = 'y',
^Inumele = list[i], top = top2_y,bot = bot2_y,
^^Itop stress = top2_stress-y,
^^Ibotstress = bot2_stress-y)
Pns += newsteelzone2.Pn_i

74

Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > 3*protection and c <= 3/5.0*d:
###Top (compression) yield, Bottom (tension) yield

listzonestrain = [1/3*c,2/3*c,2/3*c,d-5/3*c]
for i in range(len(list)):

if i%2 == 0:
direction ='x
locationx i*len-single-wall/2.0+protection
if location x <= (1/3.0*c):

stressx = 60
if location x > (1/3.0*c) and location-x <= (c*5/3.0):

stress x = (c-locationx)/c*0.003/0.002*60
if location-x >(c*5/3.0):

stressx = -60
newsteelzone = Steel zone(c=c,direction = 'x',
^Inum_ele = list[i], location = locationx,stress = stressx)
Pn s += newsteelzone.Pn_i
Mn s += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot-y <= (1/3.0*c):

botstressy = 60
top-stress-y = 60
newsteelzone= Steelzone(c=c,direction ='y',
^Inumele = list[i], top = topy,bot = boty,
^^Itop-stress = top-stressy,
^^Ibotstress = botstress-y)
Pns += newsteelzonel.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i

if bot-y > (1/3.0*c) and top-y <= (1/3.0*c):
toply = topy
botiy = 1/3.0*c
topstress-y = 60
botistress-y = 60
newsteelzonel = Steelzone(c=c,direction =Y,
^Inum-ele = list[i], top = topiy,bot = botiy,

^^Itop-stress = topistress-y,
^Ibotstress = boti_stress-y)
Pn-s += newsteel zonei.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 1/3.0*c
bot2_y = bot-y
topi-stress-y = (c-top2y)/c*0.003/0.002*60
bot._.stress-y = (c-bot2_y)/c*0.003/0.002*60
newsteelzone2 = Steelzone(c=c,direction =
^Inum-ele = list[i], top = top2_y,bot = bot2_y,

^Itop-stress = top2_stress-y,
^Ibot-stress = bot2_stress-y)
Pns += new steelzone2.Pn_i
Mn-s += new steelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if bot-y <= (5/3.0*c) and top-y > (1/3.0*c):
bot -stressy = (c-bot-y)/c*0.003/0.002*60
top- stress -y = (c-topy)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = topy,bot = bot_y,
^^Itop-stress = top-stress-y,
^Ibotstress = botstressy)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr i

if top-y > (5/3.0*c):
botstressy = -60

75

top-stress-y = -60
newsteelzone = Steelzone(c=c,direction
^Inumele = list[i], top = top-y,bot = bot-y,
^Itop-stress = top-stress-y,
Ibotstress = botstressy)

Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y <= (5/3.0*c) and boty >(5/3.0*c):
topily = top-y
botiy = 5/3.0*c
topistress-y = (c-topiy)/c*0.003/0.002*60
boti_stress.y (c-boti_y)/c*0.003/0.002*60
newsteel zonei = Steelzone(c=c,direction ='y',
^Inumele = list[i], top = topy,bot = botily,
^^Itop stress = topstress-y,
^Ibotstress = botistress-y)
Pns += newsteelzonei.Pn_i
Mns += newsteelzonei.Mn i
Icrs += newsteelzone.Icr_i
top2_y = 5/3.0*c
bot2_y = bot-y
top2_stress-y = -60
bot2_stress-y = -60
newsteelzone2 = Steelzone(c=c,direction =Y,
^Inumele = list[i], top = top2_y,bot = bot2_y,
^Itop.stress = top2_stress_y,
^^Ibotstress = bot2_stressy)
Pn s += newsteelzone2.Pn_i
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > (3.0/5*d):

#break

listzonestrain = [1/3*c,2/3.0*c,d-c]
for i in range(len(list)):

if i%2 == 0:
direction ='x

locationx i*lensingle-wall/2.0+protection
if location x <= (c*1/3.0):

stressx = 60
if location-x > (c*1/3.0):

stressx = (c-locationx)/c*0.003/0.002*60
newsteelzone = Steel-zone(c=c,direction = 'x',
^Inumele = list[i], location = locationx,
^^Istress = stressx)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+i)*len-single-wall/2.0+protection
if bot.y <= (1/3.0*c):

botstress-y = 60
top-stress-y = 60
newsteelzone = Steelzone(c=c,direction ='y',
^Inumele = list[i], top = topy,bot = bot-y,
^^Itop stress = top-stress_y,

Ibotstress = botstress-y)
Pns += newsteelzone.Pn_i
Mns += newsteel zone.Mn_i
Icr-s += newsteelzone.Icr_i

if top-y >= (1/3.0*c):
botstress-y = (c-bot-y)/c*0.003/0.002*60
top-stress-y = (c-topy)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction =

^Inumele = list[i], top = topy,bot = bot-y,
^^Itopstress = top-stress_y,

76

^^Ibot.stress = botstress-y)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top.y < (1/3.0*c) and bot.y >(1/3.0*c):
topiy = top-y
boty = 1/3.0*c
topistress-y = 60
botistress-y = 60
newsteel-zonei = Steelzone(c=c,direction =
^Inum-ele = list[i], top = topiy,bot = botiy,
^Itop-stress = topistress-y,
^Ibotstress = boti_stress-y)
Pns += newsteelzonei.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 1/3.0*c
bot2_y = bot-y
top2_stress-y = (c-top2_y)/c*0.003/0.002*60
bot2_stress-y = (c-bot2_y)/c*0.003/0.002*60
newsteelzone2 = Steel_zone(c=c,direction =
^Inumele = list[i], top = top2_y,bot = bot2_y,
^Itop-stress = top2_stress-y,
Ibotstress = bot2_stress-y)

Pn-s += newsteelzone2.Pn_i
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

Pn = round(0.9*(Pn s+ Pn c))
Mn = round(0.9*(Mn-s + Mnc)/12)
Icr = (Icrs+ Icr_c)/(12**4)

listMn.append(Mn)
listPn.append(Pn)
listIcr.append(Icr)
list c.append(c)
list all.append(c)
listall.append(Pn)
listall.append(Mn)
listall.append(Icr)

for i in range(len(list_c)):
worksheet_c_3by2.write(row,i+1,list-c[i])
worksheetPn_3by2.write(row,i+1,listPn[i])
worksheetMn_3by2.write(row,i+1,listMn[i])
worksheetIcr3by2.write(row,i+1,listIcr[i])

dict-all[str(count-num)]=[list-all]
workbook_3by2.close()

######3byl
###algorithm parameters
n.gridx = 3
n-grid-y = 1 #grid size: n-grid-x by ngrid-y
numzone = n-grid-y*2+1

h = n-grid-y*len-single-wall + thickwall #372in
d = h-protection

coord zone =]
for i in range(num-zone):

coordzone.append(i*len-singlewall/2.0+protection)

Create an new Excel file and add four worksheet.
workbook_3byl = xlsxwriter.Workbook('3byi(3)_4sheets_2.xlsx')
worksheet_c_3byi = workbook_3byl.addworksheet('c')
worksheetPn_3byi = workbook_3by.addworksheet('Pn')
worksheetMn_3byi = workbook_3byl.addworksheet('Mn')
worksheetIcr_3by= workbook_3by1.addworksheet('Icr')

77

worksheet c_3by.write('A', 'Key')
worksheetPn_3byl.write('A', 'Key')
worksheetMn_3byl.write('A1', 'Key')
worksheetIcr_3byi.write('Ai', 'Key')
numpossiblec = (n-grid-y*120+12)/6

for i in range(num-possible_c):
worksheet_c_3byl.write(0,i+1, 'c (in)')
worksheetPn_3by.write(0,i+1, 'Pn (kips)')
worksheetMn_3by.write(0,i+1,'Mn (kip.ft)')
worksheetIcr_3by.write(0,i+1,'Icr (ft^4)')

listcountnum = []
row = 0
for i_1 in range(n-grid-x+):

num_1 = i_1
for i_2 in range(n-grid-x+):

num_2 = i_2+1
for i_3 in range(n-grid-x+):

num_3 = i_3
count num = []
count-num. append(num_1)
count-num.append(num_2)
countnum. append (num_3)

row += 1
listcount _num.append(countnum)
worksheet_c_3by.write(row,O, str(countnum))
worksheetPn_3byl.write(row,O, str(countnum))
worksheetMn_3byi.write(row,O, str(countnum))
worksheetIcr_3byi.write(row,0, str(countnum))

list = countnum
numtimescoord = 0
numarea = 0

for i in range(len(countnum)):
numtimescoord += count num[i]*coord-zone[i]
numarea += countnum[i]

centermass = numtimescoord/numarea

listPn = []
list-c = []
listMn = []
listIcr =[]
list-all = []
for j in range(nunmpossible-c):

c = j*6+3
a = 0.8*c

#concrete
Pnc = 0
Mnc = 0
Icrc = 0
for i in range(len(list)):

if i%2 == 0:
direction = 'x'
newconcretezone = Concretezone(direction ='x,
^Inunele = list[i], coord = coord-zone[il)

if i%2 == 1:
direction ='y'
if list[i-1] == 0:

if list[i+1]==0:
newconcretezone = Concretezone(direction =
^Inulmele = list[i], topextend = 'True',
^^Ibot-extend = 'True', coord = coord-zone[i])

else:
newconcretezone = Concrete.zone(direction = 'y',

78

^^Inumele = list[i], top-extend = 'True',
^Ibot-extend = 'False', coord = coordzone[i])

if list[i-1] != 0:
if list[i+1]==0:

newconcrete_zone = Concretezone(direction 'y',
^Inumele = list[i], top-extend = 'False',
^Ibotextend = 'True', coord = coordzone[i])

else:
newconcretezone = Concretezone(direction =

^Inum-ele = list[i], top-extend = 'False',
^^Ibot-extend = 'False', coord = coordzone[i])

if newconcretezone.bot<= a:
Pnc += 0.85*concrete-strength*new-concretezone.area #kips
Mnc += 0.85*concrete-strength*new-concretezone.area
*(centermass-newconcretezone.location)
Icrc += newconcretezone.area*newconcretezone.height**2.0
/12.0+newconcretezone.area*(newconcretezone.location-c)**2

else:
Pnc += 0.85*concrete-strength*new-concretezone.area
*(a-new-concretezone.top)/new-concretezone.height
Mnc += 0.85*concrete-strength*new-concretezone.area
*(a-new-concretezone.top)/newconcretezone.height
*(center-mass-(a+new_concretezone.top)/2.0)
Icr-c += (newconcretezone.area/newconcretezone.height)
*((a-new-concrete-zone.top)**3)/12.0+new_concretezone.area
/new-concrete_zone.height*(a-newconcrete-zone.top)
*(((a+new-concretezone.top)/2.0-c)**2.0)
break

#steel
Pns = 0
Mns = 0
Icrs = 0
if c <=3*protection: ###Top (compression) not yield, Bottom (tension) yield

listzonestrain = [c,2/3.0*c,d-5/3.0*c]
for i in range(len(list)):

if i%2 == 0:
direction ='x'
locationx = i*len-single-wall/2.0+protection
if location_x <= (c*5/3.0):

stressx = (c-locationx)/c*0.003/0.002*60
if location-x >(c*5/3.0):

stress-x = -60
newsteelzone = Steelzone(c =c, direction = 'x',
^Inumele = list[i], location = locationx,
^^Istress = stress-x)
Pns += newsteelzone.Pn_i
Mn-s += newsteelzone.Mn_i
Icr-s += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+1)*len-single-wall/2.0+protection
if bot-y <= (5/3.0*c):

bot-stressy = (c-boty)/c*0.003/0.002*60
top-stress-y = (c-topy)/c*0.003/0.002*60
newsteelzone = Steel-zone(c=c,direction =Y,
^Inum-ele = list[i], top = top-y,bot = bot-y,
^^Itop-stress = top-stress-y, botstress = botstress-y)
Pns += newsteel-zone.Pn_i
Mns += newsteel-zone.Mn_i
Icrs += newsteelzone.Icr-i

if top-y >= (5/3.0*c):
bot-stress-y = -60
top-stress-y = -60
newsteelzone = Steel-zone(c=c,direction =

^Inum-ele = list[i], top = topy,bot = boty,
^Itop-stress = topstress_y, bot_stress = bot_stress_y)
Pns += newsteelzone.Pn_i
Mns += newsteel-zone.Mn-i

79

Icrs += newsteelzone.Icr_i

if top-y < (5/3.0*c) and boty >(5/3.0*c):
topiy = top-y
boti-y = 5/3.0*c
topistress-y = (c-topiy)/c*0.003/0.002*60
botilstress-y = (c-boti_y)/c*0.003/0.002*60
newsteelzonel = Steelzone(c=c,direction =y',
^Inumele = list[i],top = topiy,bot = botiy,
^^Itop-stress = topistressy, botstress = botistress-y)
Pns += newsteelzone.Pn-i
Mns += newsteel zonei.Mni
Icrs += newsteelzone.Icr_i
top2_y = 5/3.0*c
bot2_y = bot-y
top2_stress-y = -60
bot2_stress-y = -60
newsteelzone2 = Steel-zone(c=c,direction =
^Inumele = list[i], top = top2_y,bot = bot2_y,
^Itop-stress = top2_stress-y, botstress = bot2_stress.y)
Pns += newsteelzone2.Pn_i
Mns += newsteel zone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > 3*protection and c <= 3/5.0*d:
###Top (compression) yield, Bottom (tension) yield

listzonestrain = [1/3*c,2/3*c,2/3*c,d-5/3*c]
for i in range(len(list)):

if i%2 == 0:
direction ='x'
locationx = i*len-single-wall/2.0+protection
if location x <= (1/3.0*c):

stressx = 60
if location x > (1/3.0*c) and location-x <= (c*5/3.0):

stress-x = (c-locationx)/c*0.003/0.002*60
if location x >(c*5/3.0):

stressx = -60
newsteelzone = Steelzone(c=c,direction = 'x', num-ele = list[i],
^Ilocation = location x,stress = stress-x)
Pns += new steel zone.Pn i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if iM2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot-y = (i+i)*len-single-wall/2.0+protection
if bot_y <= (1/3.0*c):

bot-stress-y = 60
top-stress-y = 60
new steel zone= Steelzone(c=c,direction =
^Inumele = list[i], top = topy,bot = bot-y,

^^Itop-stress = top-stressy, botstress = botstress-y)
Pn-s += newsteelzonel.Pn_i
Mn-s += new steel zonei.Mn_i
Icrs += newsteelzone.Icr_i

if bot_y > (1/3.0*c) and top-y <= (1/3.0*c):
topi-y = top-y
botIy = 1/3.0*c
topistress-y = 60
botistress-y = 60
newsteelzonel = Steelzone(c=c,direction = 'y',
^Inumele = list[i], top = topiy,bot = botly,
^^Itop-stress = topistressy, botstress = botistressy)
Pns += newsteelzonei.Pn_i
Mns += newsteelzonei.Mn_i
Icr s += new steel zone.Icr i
top2_y = 1/3.0*c
bot2_y = bot-y
topi-stress-y = (c-top2_y)/c*0.003/0.002*60
boti.stress-y = (c-bot2_y)/c*0.003/0.002*60
newsteelzone2 = Steel-zone(c=c,direction

80

^Inum-ele = list[i], top = top2_y,bot = bot2_y,
^Itop-stress = top2_stress-y, bot_stress = bot2_stressy)
Pns += newsteelzone2.Pn_i
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if boty <= (5/3.0*c) and top-y > (1/3.0*c):
botstress-y = (c-bot-y)/c*0.003/0.002*60
top-stress-y = (c-topy)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction
^Inum-ele = list[i], top = topy,bot = bot-y,
^^Itop-stress = top-stress-y, bot_stress = bot_stress-y)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y > (5/3.0*c):
bot-stress-y = -60
top-stress-y = -60
newsteelzone = Steel-zone(c=c,direction =
~Inum-ele = list[i], top = topy,bot = boty,

^^Itop-stress = top-stress-y, bot_stress = bot_stressy)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y <= (5/3.0*c) and bot-y >(5/3.0*c):
topiy = top-y
botiy = 5/3.0*c
topstress-y = (c-topiy)/c*0.003/0.002*60
botistressy = (c-botiy)/c*0.003/0.002*60
newsteelzonel = Steel-zone(c=c,direction = 'y',
^Inum_ele = list[i], top = topiy,bot = botiy,
^Itop-stress = topistress-y, bot_stress = botistress-y)
Pns += newsteelzoneI.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 5/3.0*c
bot2_y = bot-y
top2_stress-y = -60
bot2_stressy = -60
newsteelzone2 = Steel zone(c=c,direction =
^Inum_ele = list[i], top = top2_y,bot = bot2_y,
^^Itop-stress = top2_stress-y, botstress = bot2_stress-y)
Pns += newsteelzone2.Pni
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

if c > (3.0/5*d):

listzonestrain = [1/3*c,2/3.0*c,d-c]
for i in range(len(list)):

if i%2 == 0:
direction =x'
locationx = i*lensingle-wall/2.0+protection
if locationx <= (c*1/3.0):

stressx = 60
if location.x > (c*1/3.0):

stressx = (c-locationx)/c*0.003/0.002*60
newsteel zone = Steelzone(c=c,direction = 'x', num-ele = list[i],
^Ilocation = locationx,stress = stressx)
Pns += newsteelzone.Pn_i
Mn s += newsteelzone.Mn_i
Icr s += newsteelzone.Icr_i

if i%2 == 1:
direction = 'y'
top-y = (i-i)*len-single-wall/2.0+protection
bot -y = (i+i)*len-single-wall/2.0+protection
if boty <= (1/3.0*c):

bot-stress-y = 60
topstressy = 60
newsteelzone = Steel-zone(c=c,direction =Y,
^Inum_ele = list[i], top = topy,bot = bot-y,
^Itop-stress = topstressy, bot_stress = bot_stressy)

81

Pns += newsteelzone.Pn_i
Mns += newsteel_zone.Mn_i
Icrs += newsteelzone.Icr_i

if topy >= (1/3.0*c):
bot.stressy = (c-bot-y)/c*0.003/0.002*60
top- stress -y = (c-top_y)/c*0.003/0.002*60
newsteelzone = Steelzone(c=c,direction =y',
^Inum-ele = list[i], top = top-y,bot = bot-y,
^^Itop-stress = top-stressy, botstress = botstressy)
Pns += newsteelzone.Pn_i
Mns += newsteelzone.Mn_i
Icrs += newsteelzone.Icr_i

if top-y < (1/3.0*c) and bot-y >(1/3.0*c):
topiy = topy
boty = 1/3.0*c
topstress-y = 60
botistressy = 60
newsteelzonel = Steel zone(c=c,direction = 'y',
^Inum-ele = list[i], top = topy,bot = botiy,
^Itop-stress = topistress-y, botstress = botistressy)
Pns += new steelzonei.Pn_i
Mns += newsteelzonei.Mn_i
Icrs += newsteelzone.Icr_i
top2_y = 1/3.0*c
bot2_y = bot-y
top2_stress-y = (c-top2_y)/c*0.003/0.002*60
bot2_- stress-y = (c-bot2_y)/c*0.003/0.002*60
newsteelzone2 = Steel-zone(c=c,direction = 'y',
^Inum-ele = list[i], top = top2_y,bot = bot2_y,
-Itop-stress = top2_stress-y, botstress = bot2_stress-y)
Pns += newsteelzone2.Pn-i
Mns += newsteelzone2.Mn_i
Icrs += newsteelzone.Icr_i

Pn = round(0.9*(Pn_s+ Pnc))
Mn = round(0.9*(Mn s + Mn c)/12)
Icr = (Icr_s+ Icrc)/(12**4)

listMn.append(Mn)
listPn.append(Pn)
listIcr.append(Icr)
list c.append(c)
listall.append(c)
listall.append(Pn)
listall.append(Mn)
list-all.append(Icr)

for i in range(len(listc)):
worksheet-c_3byi.write(row,i+1,list_c[i])
worksheetPn_3byi.write(row,i+l,listPn[i])
worksheetMn_3by1.write(row,i+1,listMn[i])
worksheetIcr_3byi.write(row,i+1,listIcr[i])

dict-all[str(countnum)]=[list-all]
workbook_3byi.close()

######just a line (10byO)
###algorithm parameters
n-gridx = 10
n-grid-y = 0 #grid size: n-grid-x by ngrid-y
nuM_zone = ngrid-y*2+1

h = n-grid-y*len-single-wall + thickwall #372in
d = h-protection

coord-zone = []
for i in range(numnzone):

coord.zone.append(i*len-single-wall/2.0+protection)

Create an new Excel file and add four worksheet.

82

workbook_3by0 = xlsxwriter.Workbook('lObyO(1)-4sheets_2.xlsx')
worksheet_c_3byO workbook_3byO.addworksheet('c')
worksheetPn_3byO = workbook_3by.addworksheet('Pn')
worksheetMn_3byO = workbook_3by.addworksheet('Mn')
worksheetIcr_3byO = workbook_3byO.add-worksheet('Icr')

worksheet_c_3byO.write('A1', 'Key')
worksheetPn_3byO.write('A1', 'Key')
worksheetMn_3byO.write('A1', 'Key')
worksheetIcr_3byO.write('A1', 'Key')
num_possible-c = 12

for i in range(num-possible-c):
worksheet_c_3byO.write(O,i+1,'c (in)')
worksheetPn_3by.write(O,i+1,'Pn (kips)')
worksheetMn_3byO.write(0,i+1,'Mn (kip.ft)')
worksheetIcr_3byO.write(0,i+1, 'Icr (ft^4)')

listcountnum = []
row = 0
for i_1 in range(n-grid-x):

num_1 = i_1+1
countnum = [num_1]

row += 1
listcount-num.append(count-num)
worksheet_c_3by0. write (row, 0, str(countnum))
worksheetPn_3byO. write (row, 0, str(countnum))
worksheetMn_3by0.write(row,0, str(countnum))
worksheetIcr_3byO. write (row, 0, str (countnum))

list = countnum

listPn = []
list c = [
listMn = []
listIcr =[]
listall = []

for j in range(num-possiblesc):
c = j*1+0.5
a = 0.8*c

#concrete
newconcretezone = Concrete zone(direction = 'x', num-ele = count-num[0]/2.0,
^Icoord = coord-zone[0])
Pnc = 0.85*concretestrength*new-concrete zone.area*(a-newconcretezone.top)
/new concretezone.height
Mnc = 0.85*concretestrength*new-concrete zone.area*(a-newconcretezone.top)
/new.concrete zone.height*(h/2.0-(a+newconcretezone.top)/2.0)
Icrc = (new-concretezone.area/newconcretezone.height)*((a-new-concretezone.top)**3)
/12.0+newconcretezone.area/new-concretezone.height*(a-newconcretezone.top)
*(((a+newconcretezone.top)/2.0-c)**2.0)

#steel
Pn_s = 0
Mns = 0
Icrs = 0

location = [2.5,h-2.51
if c <=3*protection: ###Top (compression) not yield, Bottom (tension) yield

listzonestrain = [c,2/3.0*c,d-5/3.0*c]

for i in range(2):
locationx = location[i]
if locationx <= (c*5/3.0):

stress x = (c-locationx)/c*0.003/0.002*60
if location-x >(c*5/3.0):

stress x = -60
newsteelzone = Steelzone(c =c, direction = 'x', numele = list[0]/2.0,

83

^^Ilocation = locationx,stress = stressx)
Pn_s += newsteelzone.Pn_i
Mn_s += newsteelzone.Mn_i
Icrs += (new-steelzone.numele*newsteelzone.length*thick-steel)
*(newsteelzone.location-c)**2

if c > 3*protection and c <= 3/5.0*d:
###Top (compression) yield, Bottom (tension) yield

listzonestrain = [1/3*c,2/3*c,2/3*c,d-5/3*c]
for i in range(2):

locationx = location[i]
if location-x <= (1/3.0*c):

stressx = 60
if location x > (1/3.0*c) and locationx <= (c*5/3.0):

stress-x = (c-location x)/c*0.003/0.002*60
if location-x >(c*5/3.0):

stressx = -60
newsteelzone = Steel-zone(c=c,direction = 'x', numele = list[0]/2.0,
^Ilocation = locationx,stress = stressx)
Pns += newsteelzone.Pn_i
Mns += newsteelzoae.Mn_i
Icrs += (new-steelzone.numele*newsteelzone.length*thick-steel)
*(new-steelzone.location-c)**2

if c > (3.0/5*d):

#break

listzonestrain = [1/3*c,2/3.0*c,d-c]
for i in range(2):

locationx = location[i]
if locationx <= (c*1/3.0):

stressx = 60
if locationx > (c*1/3.0):

stress-x = (c-location-x)/c*0.003/0.002*60
newsteelzone = Steel-zone(c=c,direction = 'x', numele = list[0]/2.0,
^Ilocation = locationx,stress = stressx)
Pns += newsteelzone.Pn_i
Mn s += new steel zone.Mn i
Icrs += (new steelzone.numele*newsteel_zone.length*thick-steel)
*(new-steelzone.location-c)**2

Pn = round(0.9*(Pn-s+ Pn-c))
Mn = round(0.9*(Mn_s + Mn_c)/12)
Icr = (Icr-s+ Icr-c)/(12**4)

listMn.append(Mn)
listPn.append(Pn)
listIcr.append(Icr)
listc.append(c)
listall.append(c)
listall.append(Pn)
listall.append(Mn)
listall.append(Icr)

for i in range(len(list-c)):
worksheet-c_3by0 . write (row, i+1, list_c [i])
worksheet_- Pn_- 3byO.write(row,i+1,list_Pn[i])
worksheetMn_- 3byO.write(row,i+1,list_Mn[ii)
worksheet_- Icr_3by0.write(row,i+1,listIcr[i])

dict-all [str (count num)] =[list-all]

workbook_3byO.close()
pickle.dump(dict-all, open("layout-data_8atiOby2.p", "wb"))

84

A.2 Script for the fixed location extension case

This script is writen by Yu Zhang at MIT in July 2016,
for the fixed location extension case.

import math
import pylab as plt
import random
import numpy
import xlsxwriter
from pyDOE import *
import pickle

#####PARAMETERS

N = 5 #number of runs

Algorithm parameters

n-pop = 2000 #population size
n-gen = 5 #generation size
ratemut = 0.5 #mutation rate
rateparents = 0.1 #parent individuals selected in the population
n_winner = 6 #number of winners displayed graphically
thirty-percent = int (round(n-pop*0.3))
rate max intersect = 0.8
raterestricted = 0.5
rateinitialoptimal = 0.6
n-parents = int(n-pop*rate-parents)
n_mut = int(ratemut*n-pop)

#Property of Shearwall
w_ele = 12.0/12 #width of a wall (ft)
1_netele = 10.0 #length of a net wall (ft)
1_ele = 1_netele
h_ele = 12.0 #height of a wall(ft)
areaele = wele*lele
E = 3600*144 # Modulus of Elasticity (ksf)
G = 3000*144 # Shear Modulus (ksf)
elementA = wele*lele

#Property of Structure
n-gridx = 12
n-grid-y = 10 #grid size: ngridx by ngrid-y
n_floor = 15
marginx = 0#2*1-ele
margin-y = 0#2*l_ele
x_load = 1_net-ele*ngridx/2.0 + margin x #center of load/mass
yjload = 1_net-ele*n-grid-y/2.0 + margin-y
n_line x = n-grid-x*(ngrid-y+1)
n_line-y = n-gridy*(n-grid-x+1)
n-var = nlinex+nline_y
n_dots = (n-grid-x+1)*(n-grid-y+1)
dimensionx = n-grid-x*l ele+2*margin-x #ft
dimension-y = n-grid-y*lele+2*margin-y #ft
aspectratio = nfloor*h-ele/max(dimensionx,dimensiony)

initial-optimal = round(rate_initial_optimal*njvar)
list-irregularcontour = [[[51,91],[59,100]],[[61,0],[120,19]]]

listwallfree area = [1 #Ajustable based on user's needs
listatrium = [] #Ajustable based on user's needs

#Property of RC concrete design
thickwall = w-ele*12 #(in)12in
protection = thick-wall/2.0 #6in
lensingle-wall = 10*12 #in
area-single-bar = 0.79 #in'2 #6
spacing = 10#in
layer = 2

85

thick steel = (1.0*areasingle-bar)/spacing*layer #in
h = n-grid-y*len-single-wall + thickwall #372in
d = h-protection

#Load
#1.2D + 1.6W + L+ 0.5S
#Dead Load
dlfacul = 1.2
dlfacservice = 1.0

P_dlstress = 175#psf
P_dl = dlfacul*Pdlstress*(nfloor-1)*(120*100-60*20-1*100)/1000 #kips
P_dlservice = P_dl/dlfacul*dlfacservice

#Live Load
11_facul = 1.0
11_facservice = 1.0
wlfacul = 1.6
wlfacservice = 1.0

P_11_stress = 40 #psf
P_11 = 11_facul*P_11_stress*(n-floor-1)*(120*100-60*20-1*100)/100

0 #kips
P_11_service = P_11/11_facul*llfacservice

P_total = (P-dl+P11)/2
P_totalservice = (P-dl service+P_llservice)/2

wlstress = 30 #psf
Q_x = wl_facul*wlstress*120*nfloor*h_ele/1000 #kips
Q_y = wl_ facul*wlstress*200*nfloor*h ele/1000 #Maximum base shear in y direction (kips)
Q_x-service = Q-x/wl-fac ul*wlfacservice
Q_y_service = Qy/wlfac-ul*wl facservice
Mux = Q-x*n-floor*h-ele/2
Mu-y = Q-y*n-floor*h-ele/2
Mu_x_service = Q_x_service*nfloor*hele/2
Mu-y-service = Q_y_service*n floor*h_ele/2

n_xwallshear = Q-x/(10.9*en-single-wall/12+19.2*2*en-single-wall/12)
n-y-wallshear = Q-y/(10.9*len-single_wall/12+19.2*2*len-single-wall/12)

list_ fail-type = ['Larger than 3 columns', 'Larger than 7 rows',
-^ I 'Service Pu Fail','Service Mu Fail','UL Pu Fail','UL Mu Fail']

##data loading

dictcrackeddata = pickle.load(open("layout _data_8at10by2.p", "rb"))

##dictionary to store the eLements' coordinates:
dictelement coordall = {}
for i in range(n-var):

index = i
#get the coordinates if line is in y direction
if index in range(n-line-y): #index from 0 to n_ liney is in y direction

xi = 1_net ele*(index/n-gridjy)+margin-x # the x coordinate of the starting point i
yi = l.1net -ele*(indexn_grid_y)+margin_y # the y coordinate of the first point i
xj = xi # the x coordinate of the ending point j
yj = lnet-ele*((indexn-grid-y)+)+margin-y # the y coordinate of the ending point j

#get the
if index

xi =

yi =
xj =

yj =

coordinates if line is in x direction
in range(njline-y,n line x+n_liney):
1_net ele*((index-nline-y)%ngridcx)+margin_x
1_net ele*((index-nliney)/ngridx)+margin_y
1_net-ele*(((index-n-line-y)%n-grid-x)+1)+margin-x
yi

coordi = [xi,yi]
coordj = [xj ,yj]

dictelementcoordall[str(index)] = [coordi,coordj]

listelementfixed = [0,2,3,5,7,8,20,21,27,29,33,37,39,43,44,56,57,58,59,60,61,62,63,

86

II^I^II 64,66,67,68,69,82,83,84,96,97,98,99,102,103,104,122,123,127,129,
^^I^I^I^^^^I130,131,132,135,147,159,161,162,165,166,167,168,169,170,182,186,

II^I^I I 189,194,198,201,202,203,204,212,213,225,226,227,228,251,254,256,
II^I^I^I 258,259,261,243] #These are picked according to the fixed floorplan

dictelementcoord = {}
for i in range(len(list elementfixed)):

dictelement coord[str(i)]= dictelementcoordall[str(list _elementfixed[i])]
n_var = len(listelement-fixed)

CLASS

class VoidBlock:
def __init__(self, list_coord = None): ######remember to consider EI

self.listcoord = listcoord
if len(list-coord) == 3:

self.shape = 'Triangle'
if len(list-coord) == 2:

self.shape = 'Rectangle'
self.coordbl = listcoord[0]
self.coordtr = listcoord[1]
self.coordbr = [list-coord[1][0],listcoord[0][1]]
self.coordtl = [list-coordOl[0],listcoord[l][1]]
self.dimx = self.coord-tr[0]-self.coordbl[0]
self.dimy = self.coord~tr[1]-self.coord_bl[1]
self.centerx = (self.coord tr[0]+self.coord bl[0])/2
self.centery = (self.coord-tr[1]+self.coordbl[1])/2
self.plot-x = [self. coord bl[0],self. coordbr[0] ,self. coord_tr[0] ,self. coord_tl[0],
Iself.coordbl[0]]

self.plot.y = [self. coord bl[1] ,self. coordbr[1] ,self. coord_tr[1] ,self. coordtl[1],
^Iself.coord-bl[1]]

self.area = self.dimx*self.dimy
self.list-index = []
for element in listelements:

if element.xi in range(self.coord bl[0],self.coordtr[0]+1)
or element.xj in range(self.coordbl[0],self.coord-tr[0]+1):

if element.yi in range(self.coordbl[1],self.coordtr[1]+1)
or element.yj in range(self.coordbl[1],self.coordtr[1]+1):

self.listindex.append(element.index)

self.numelements = len(self.list index)

#each line in ground structure is an element of lateral system
class Element:

def __init__(self, index):
self.index = index ##index is something like 3,6,19,37...
self.xi = dictelementcoord[str(index)][0][0] # the x coordinate of the starting point i
self.yi = dictelementcoord[str(index)][0][1] # the y coordinate of the first point i
self.xj = dict -elementcoord[str(index)][1][0] # the x coordinate of the ending point j
self.yj = dict.elementcoord[str(index)][1][1] # the y coordinate of the ending point j
#get the coordinates if line is in y direction
if self.xi == self.xj: #index from 0 to nline-y is in y direction

self.direction = 'y'
self.dimx = w_ele #dimension in x direction
self.dimy = 1_netele

#get the coordinates if line is in x direction
if self.yi == self.yj:

self.direction = 'x'
self.dimx = 1_netele
self.dimy = w_ele

self.ix = (self.dimx*(self.dimy**3))/12 #inertia about the x axis
self.iy = (self.dimy*(self.dimx**3))/12 #inertia about the y axis

#make its coordinates to a property
self.coordi = [self.xi,self.yi]
self.coordj = [self.xj,self.yj]
self.centerx = (self.xi + self.xj)/2.0
self.centery = (self.yi + self.yj)/2.0

87

def classify-quadrant(self, x-mass, ymass):
if self.centerx > xmass and self.centery >= y-mass:

self .quadrant = '1'
list-ele-quadrant_1.append(index)

elif self.centerx <= xmass and self.centery > y-mass:
self .quadrant = '2'
list-ele-quadrant_2.append(index)

elif self.centerx < xmass and self.centery <= y-mass:
self .quadrant = '3'
list-ele-quadrant_3.append(index)

elif self.centerx >= xmass and self.centery < y-mass:
self .quadrant = '4'
list-ele-quadrant_4.append(index)

elif self.centerx == x_mass and self.centery == ymass:
self.quadrant 'center'
list-ele-quadrantcen.append(index)

listelements = D]
listele-quadrant_1 = []
listele-quadrant_2 = []
listele-quadrant_3 =[
listele-quadrant_4 = []
listele-quadrant-cen = []
for i in range(n-var):

element = Element(i)
listelements.append(element)

listvoidblockclasses = []
listvoidindex = []
areatimescoord-x = (dimensionx*dimension-y)*xjload
areatimescoord-y = (dimension_x*dimension-y)*yjload
area = dimension_x*dimension-y

listvoidblock = listirregular-contour +listwallfreearea + listatrium

for block in listvoidblock:
newvoidblock = VoidBlock(block)
listvoidblockclasses.append(newvoidblock)
if block not in listwallfreearea:

areatimescoordx -= newvoid-block.area*newvoidblock.centerx
areatimescoordy -= new-voidblock.area*newvoidblock.centery
area -= newvoidblock.area

x_mass = 1.0*areatimescoord-x/area
y-mass = 1.0*area_times_coord-y/area

class Part:
def __init__(self, indexlist):

self.indexlist = index-list #the indexes in this part
#self.cmx = 0
#self.cmy = 0
self.Iy = 0
self.Ix = 0
self.stressx = 0
self.stress-y = 0
self.Icr = 0]
self.A = len(index-list)*areaele

def findcenter_of_mass(self,dictel):
centerx-all = 0
centeryall = 0
for i in range(len(self.index-list)):

element = dict-el[str(self.index_list[il)]
centerxall += element.centerx
centery-all += element.centery

self.cmx = centerx-all/len(self.indexlist)
self.cmy = centery-all/len(self.indexlist)

88

def calculate_I(self, dictel):
self.findcenter of mass(dict-el)
for index in self.indexlist:

element = dict-el[str(index)]
self.Ix += element.ix + wele*lele*((element.centery - self.cmy)**2)
self.Iy += element.iy + wele*lele*((element.centerx - self.cmx)**2)

def count_num(self, dictel):
if len(self.index-list) == 1:

element = dict-el[str(self.indexlist[0])]
self.dimx = element.dimx
self.dimy = element.dimy
self.centerx = element.centerx
self.centery = element.centery
if self.dimx >self.dimy:

self.num-zoney = 1
self.countnumy = [1]
self.num_zonex = 3
self.countnumx = [0,1,0]

else:
self.num_zonex = 1
self.countnumx = [1]
self.num-zone-y = 3
self.count-num-y = [0,1,01

else:
list-x = []
listy = []
listcenterx = [
listscentery = []
for index in self.indexlist:

element = dict el[str(index)]
listx.append(element.xi)
listx.append(element.xj)
list-y.append(element.yi)
list-y.append(element.yj)
listcenterx.append(element.centerx)
listcentery.append(element.centery)

self.dimx = max(listx)- min(listx)
self.dimy = max(list-y)- min(listy)
self.numzone x = int((self.dimx/l ele)*2+1)
self.nunzone-y = int((self.dimy/l_ele)*2+1)
self.countnumnx = []
self.count_nunmy = []
for i in range(self.num.zone-x):

countnumi = 0
for centerx in listcenterx:

if centerx == min(list-x)+i*lele/2:
countnumi +=1

self.count _num_x. append(count _nujmi)
for i in range(self.numzone-y):

count_nuni = 0
for centery in list-centery:

if centery == min(list-y)+i*lele/2:
countnumi +=1

self .count-numy .append(count-numi)

def strength-andIcr(self,count-num,Pu,Mu,Puservice, Mu service):
if len(count-num) <= 7:

for j in range(len(countnum)):
if count.num[j]>(j2+3):

strength-check = 'Larger than 3 columns'
break

else:
strength-check = 'Continue'

if strength-check == 'Continue':
###in x/y direction:
crackeddata = dictcrackeddata[str(count-num)][0]
for i in range(len(cracked-data)/4-1):

if min(cracked-data[i*4+1],cracked data[i*4+5])<= Pu
and max(cracked-data[i*4+1],crackeddata[i*4+5]) > Pu:

89

if Mu <= (crackeddata[i*4+2]+cracked_data[i*4+6])/2:
strengthcheck = 'Continue'
break

else:
strengthcheck = 'UL Mu Fail'

else:
strength-check = 'UL Pu Fail'

if strength-check == 'Continue':
for i in range(len(cracked-data)/4-1):

if min(cracked data[i*4+1],cracked data[i*4+5])<= Pu-service
and max(cracked data[i*4+1],cracked-data[i*4+5]) > Pu-service:

if Muservice <= (cracked-data[i*4+2]+cracked-data[i*4+6])/2:
strength-check = 'Pass'
self.Icr.append((crackeddata[i*4+3]+cracked-data[i*4+7])/2.0)
#self.c = (crackeddata-x[i*4J+crackeddata x[i*4+4J)/2
break

else:
strength-check = 'Service Mu Fail'

else:
strengthcheck = 'Service Pu Fail'

else:
strength-check = 'Larger than 7 rows'

return strength-check

class Layout:
def __init__(self, string): #gpop_i is a binary string which representing one layout

self.listindexel = [] #List of indeces for the elements that are active
self.list el = [] #list of elements(these are classes) that are active
self.dict el ={}
self.list-parts =[]
self.list coord =]
self.listcoordindex = []
self.list..parts-all = [
self.listoverlap_coord-set = []
self.string = string
self.adjust = 'Major'
self.materialfactor = 1## was "material-factor"

for j in range(len(self.string)): #self.string is a binary string which representing one layout
if j in [13,14,16,17,25,26,55,56,59]:

self.string = self.string[:j]+'i'+self.string[j+:]
if self.string[j] =='I': #to see if the element at the position is avtive
#if active, add its position index to the active list of this Layout

self.list indexel.append(j)
newelement = Element(j) #generate a new element with the index j
newelement.classify-quadrant(x-mass,ymass)
#add the element to the List of active elements of this layout
self.list-el.append(newelement)
self .dict-el[str(j)] = new-element #also a dictionary

self.lenlistel = len(self.listel)

self.formconnected.parts()
self.calculatecenterofstiffness()

self.generate-materialslop() # get the structural weight and its slop
self.pi = self.penalty-on-torsion() # generate p1
#penalty on distribution,disabled for the fixed floorplan case
#self.p6 = penaltydis(self. ListeL)

self.p6 = 0
self.checkstrength-and-drift()
if self.strengthchecktotal == 'Fail':

self.p4 = 1 #was 100000
self.p5 = 0.5 #was -1

if self.strength check_total == 'Pass':
self.p4 = 0

90

if self.driftcheck == 'Pass':
self.p5 = 0

if self.driftcheck 'Fail':
self.p5 = 1 #was 50000

self.p2 = 0 # shear simplified

self.p3 = self.penalty-overlapo #penalty on overlap coords
if self.p2 + self.p3 +self.p6 > 1:

self.constraint = 10000#constraint
else:

self.constraint = 0

if self.p4 == 1:
self.constraint += 10000
self.p4 = 10

self.fitness (self .weight+self constraint)*((5*self.materialfactor+self.p1
I^^I^^I^I+self.p2+ self.p3 +self.p4 +self.p5 +1*self.p6 +self.p7)**2)

def generate.material-slop(self):
#preferred_ num = rate min-ele*n-var
#maxnum = rate-max-ele*n-var
n _active = len(self.listindex el)
self.weight = n-active

if self.weight < 0.3*nvar:
self.materialfactor = 1

###test
if 1.0*nactive > initialoptimal:

self.materialfactor = 1+ 50*(1.0*nactive/n-var - rateinitial-optimal)
def penalty-on-torsion(self):

self.distancecscm = math.sqrt((self.center stiffx-x_mass)**2
^III^II III+(self.centerstiff-y-y-mass)**2) #ft

penalty = 1.0*self.distance-cs-cm/preferreddistance
return penalty

def checkshearstrength(self):
n-y-shear = sum(i < n_line-y for i in self.list indexel)
n_x_shear = sum(i >= n_line-y for i in self.listindexel)
if n_x_shear <= n_x_wallshear or n_y-shear <= ny-wallshear:

self.shearstrength-check = 'Fail'
else:

self.shearstrength-check = 'Pass'

#method that can plot the layout
def plotlayout(self, subfigure, fitness = None, figure = 1, csO = [0,0], cl = [xmass,ymass]):

fig =plt.figure(figure, figsize = (20,20))
plt.subplot(6, 5, subfigure)
plt.scatter(csO[0],csO[1], c = "k",marker ='*', s=100)
plt.scatter(cl[0],cl[1], c = "k",marker = 'x', s=100)

for element in listelements:
x = [element.xi,element.xj]
y = [element.yi,element.yj]
fig =plt.figure(figure, figsize = (20,20))
plt.plot(x,y,'#D3D3D3',linewidth = 2)

for element in self.list-el:
x = [element.xi,element.xj]
y = [element.yi,element.yj]
fig =plt.figure(figure, figsize = (20,20))

plt.plot(x,y,'k',linewidth=2)

for block in listvoidblockclasses:
if block.listcoord in listatrium:

plt.subplot(6, 5, subfigure)
plt.plot(block.plot-x,block.plot-y,'k')
plt. plot ([block. list-coord [0] [0] ,block. listcoord [1][0]],
^^I^^I [block.listcoord[0][1],block.list_coord[1] [1]],'k)
pit. plot ([block. list-coord [0] [0] ,block. list-coord [1] [0]1,

91

^^I^^I [block. list-coord[1] [1],block. list_coord[0] [1]], 'k')

plt.plot([0,0,50,50,60,60,120,120,60,60,0], [O,100,100,90,90,100,100,20,20,0,0],
I'#D3D3D3',linewidth=1)

plt.xlim(-10,dimension_x+10)
plt.ylim(-10,dimension-y+10)

plt.title("Fit:"+str(round(fitness*10)/10.0)+', N: '+str(self.weight)+', S: '+str(self. check))
framel = plt.gca()

frame1. axes. get.xaxis) . set-visible (False)
framel. axes. get-yaxis) . set-visible (False)
framel.setframeon(False)

plt.savefig('figure'+str(figure)+' .svg')

def gettotalIandA (self):
self.Atotal = 0
self.Ax = 0
self.Ay = 0
self.Itotalx = 0
self.Itotal-y = 0

for part in self.list-parts:

self.Atotal += part.A
self.Itotalx += part.Ix
self.Itotaly += part.Iy

for element in self.listel:
if element.direction == 'x':

self.Ax += element_A
if element.direction == 'y':

self.A-y += elementA

def formlistcoordinates(self):
for element in self.listel:

self.listcoordindex.append([element.coordi,element.index])
self.listcoordindex.append([element.coordj,element.index])
self.listcoord.append(str(element.coordi))
self.listcoord.append(str(element.coordj))

def formoverlap-coord-set(self):
self.listcoordset = list(set(self.listcoord))
self.list overlap_coordset = []

for coord in self.list-coord-set:
if self.listcoord.count(coord)>:

self.list overlapcoord-set.append(coord) ##could be used to find conncetion

def formoverlap-coord(self):
self .listcoordset = list(set(self.listcoord))
self.list-overlapcoord = []

for coord in self.listcoordset:
if self.listcoord.count(coord)>1:

for i in range(self.listcoord.count(coord)):
self.listoverlapcoord.append(coord) #find the overlapped times of a coord

####penalty 3 is for overlap

def penalty-overlap(self):
numoverlap = 0
for part in self.list-parts:

list-part-transformedcoord = [1
for index in part.indexlist:

transformednum_1 = dictelementcoord[str(index)] [0] [0]
^I*1000+dict_element-coord[str(index)][0][1]

transformednum_2 = dictelementcoord[str(index)] [1] [0]
I*1000+dict-element-coord[str(index)][1][1]

list-part-transformedcoord.append(transformednum_1)

92

list-part transformedcoord.append(transformednum_2)
differece = len(part.indexjlist) - len(list(set(list-part-transformedcoord)))
if differece < 0:

penalty = 0
if differece >=0:

penalty = 1 #
return penalty

def form connected .parts(self):
self .formlistcoordinates()
self .formoverlap-coord-set()
listconnected = []
listconnectedall = []
listnotconnected =[]
for j in range(len(self.listoverlapcoordset)):

listonecoordconnect = []
for element in self.listel:

if str(element.coordi) == self.listoverlapscoord-set[j]
or str(element.coordj) == self.listoverlap-coord-set[j]:
^I#record only the index instead of coordinates

listconnected-all.append(element.index)
listonecoordconnect.append(element.index)

listconnected.append(list-onecoordconnect)

listconnectedallset = list(set(listconnected all))
for j in self.listindexel:

if j not in listconnectedallset:
list-j = [j]
listnotconnected.append(list-j)

while len(list connectedall) > len(listconnectedallset):
for item in listconnectedallset:

if listconnectedall.count(item)>1: #this element index has showed up twice
I^I^IIIII I^I #-> should be connected
listconnecting-parts = []
listindexdelete = []

list connected_1 = list-connected
listconnectedall_1 = listconnectedall

for j in range(len(listconnected)):

if item in listconnected[j]:

list index-delete.append(j)
for k in range(len(listconnected[j])):

listconnecting-parts.append(listconnected[j][k])

listindexdelete.sort(reverse = True)
for index in listindexdelete:

listconnected.remove(list-connected[index])
if listconnectedall.count(item)>1:

listconnected all.remove(item)

listconnecting-parts_1 = list(set(listconnectingparts))
if listconnecting-parts_1 != [1:

listconnected.append(listsconnecting-parts-1)

else:
print 'overlap set_2',len(listconnected-all)
print 'set', len(listconnected allset)
print item
print 'C_1',listconnected_1
print 'Call',list connectedall_1

self.list-parts-all = listconnected + listnotconnected
self.list-parts =[I

for partindex in self.list-partsall:

93

new-part = Part(part-index)
new-part.calculateI(self.dict-el)
new-part.count-num(self.dict el)
self.list-parts.append(new-part)

def calculatecenterofstiffness(self):
sum_Ix_y = 0
sumIyx = 0
sum_Iy = 0
sumIx = 0
for part in self.list-parts:

sumIx-y += part.Ix*part.cmy
sumIy-x += part.Iy*part.cmx
sumIy += part.Iy
sum-Ix += part.Ix

if sum_Iy == 0 or sumIx == 0:
self.centerstiff x = 0
print "I = 0"
self.centerstiff-y = 0

else:
self.centerstiffx = sumIy-x/sumIy
self.centerstiff-y = sumIx-y/sumIx

Now we add the property of quadrant
if self.centerstiffx > xmass and self.center-stiff-y >= y-mass:

self .quadrant = 'l'
elif self.centerstiffx <= xmass and self.centerstiffy > ymass:

self .quadrant = '2'
elif self.centerstiffx < xmass and self.centerstiff_y <= ymass:

self .quadrant = '3'
elif self.centerstiffx >= xmass and self.centerstiff_y < y.mass:

self .quadrant = '4'
elif self.centerstiffx == xmass and self.centerstiff_y == ymass:

self.quadrant = 'center'

###classify element in quadrant

self.listelequadrant_1 = []
self.list.ele-quadrant_2 = []
self.list-ele-quadrant_3 = []
self.list ele-quadrant_4 = []
self.list-elequadrantcen = []

for element in self.listel:
if element.quadrant == 'l':

self.list-ele-quadrant_ .append(element.index)
elif element.quadrant == '2':

self.list-ele-quadrant_2.append(element.index)
elif element.quadrant == '3':

self.list-ele-quadrant_3.append(element.index)
elif element.quadrant == '4':

self.list-ele-quadrant_4.append(element.index)
elif element.quadrant == 'center':

self.list-ele-quadrantscen.append(element.index)

def checkstrength and drift(self):
self.gettotalIandA()
if self.Itotalx == 0:

print len(self.list -parts)
liststrength-check =[]
for part in self.list-parts:

mu_x_i = Mux*part.Iy/self.I-total-y
mu_y-i = Mu-y*part.Ix/self.Itotal_x
mu_x_servicei = Mu_x_service*part.Iy/self.I-total_y
mu_y-serviceji = Mu-y-service*part.Ix/self.Itotal_x
puji = Ptotal*part.A/self.Atotal
puservicei = P_totalservice*part.A/self.Atotal

countnumx = part.countnumx

94

countnum-y = part .count.numny
strength-check_1 = part.strengthandIcr(

I countnum_x,pui,muxi,puservicei, mu_x_servicei)
strength-check_2 = part-strength-andIcr(

I count-num-y,pu-i,muy-i,puservicei, mu_y_servicei)
strength-check_3 = part.strength-and-Icr(
I^I^II list(reversed(count_num_x)),pui,mu_x_i,puservicei, mux_service_i)

strength-check_4 = part.strength-andIcr(
I list(reversed(count_num_x)),pui,mu_y_i,puservicei, mu_y_servicei)

list-strength-check.append(strength-check_1)
list-strength-check.append(strength-check_2)
list-strength-check.append(strength-check_3)
list-strength-check.append(strength-check_4)

numfail = len(liststrength-check) - liststrength-check.count('Pass')

self.num_ULPu = liststrength-check.count('UL Pu Fail')
self .num_ULMu = list_strength-check.count('UL Mu Fail')
self.numSVSPu = liststrength-check.count('Service Pu Fail')
self.numSVS_Mu = liststrength-check.count('Service Mu Fail')
self.strength-fail = numfail

4##
self.dimensionfail = list-strength-check.count('Larger than 3 columns')
II^I^I^I +list_strength-check.count('Larger than 7 rows')

if self.dimensionfail > 0:
self.p7 = 1

else:
self.p7 = 0

if numfail == 0:
self.strengthchecktotal =

else:
'Pass'

self.strengthchecktotal = 'Fail'

if self.strengthchecktotal ==
Icr_1 = 0
Icr_2 = 0
Icr_3 = 0
Icr_4 = 0

'Pass':

for part in self.listparts:
Icr_1 += part.Icr[0]
Icr_2 += part.Icr[l]
Icr_3 += part.Icr[2]
Icr_4 += part.Icr[3]

self.Icrx = min(Icr_1,Icr_3)
self.Icr-y = min(Icr_2,Icr_4)
u_b_x = drift-bending(self.Icr_x,Q_x_service)
ub-y = drift-bending(self.Icry,Q-y-service)
u_s_x = drift-shear(self.Ax,Q_x_service)
u_s-y = drift-shear(self.A_y,Q.y_service)
self.ux = u_b_x+u_s_x
self.u-y = u-b-y+u-s-y
self.driftx = round(h-ele/self.u-x)
self.drift-y = round(h_ele/self.u-y)
if self.driftx <= 400 or self.drift-y <=400:

self.driftcheck = 'Fail'
self.check = 'Fail'

else:
self.driftcheck = 'Pass'
self.check = 'Pass'

else:
self.check = 'Fail'
self.driftcheck = 'N/A'
self.Icrx = 0
self.Icr-y = 0
self.driftx = 'N/A'
self.drift-y = 'N/A'

self.ratio_I_x = round(100*(1.0*self.Icr-x/self.Itotalx))/100.0
self.ratioI-y = round(100*(1.0*self.Icr-y/self.I-total-y))/100.0

95

FUNCTIONS

#function that makes the number binary
and get rid of the 'Ob' at the beginning
def binary(x):

x = bin(x)
x = x[2:]
x = x.zfill(n-var)
return x

Drift
#Drift due to bending U(bh) = Qh^3/3EI
def driftbending (I,Q):

if I == 0:
u_b = 1000

else:
u b = Q*(n-floor*h-ele**3)/(3*E*I) #(ft)

return u_b

#Drift due to shear
def driftshear (A,Q):

if A == 0:
Us = 1000

else:
u-s = Q*(n-floor*h-ele)/(G*(5/6.0)*A) #(ft) A -> 5/6A

return us

#####Penalty
#penaltyl is for the total number of elements (material limit)
#penalty2 is for the distribution of elements
def penalty-dis(list-el):

penalty = 0
for element in list el:

if abs(element.centerx-xmass) <= acceptable-distributionx:
penalty += 0

else:
penalty += (abs(element.centerx-x-mass) - acceptable-distribution-x)

/(dimensionx/2 - acceptable-distributionx)
if abs(element.centery-y-mass) <= acceptable-distribution-y:

penalty += 0
else:

penalty += (abs(element.centery-y-mass) - acceptable-distributiony)
I^^I^^I/(dimension-y/2 - acceptable-distributiony)

if len(list-el)== 0:
penalty = 100000

else:
penalty = 3*penalty/(len(list-el))

return penalty

def diversityjfilter (listcandidate,number-selected):
listselected = [
list -selected.append(listcandidate[0])
listcandidate = listcandidate[1:]
for i in list-candidate:

if len(listselected) >= number-selected:
break

count = 0
j = len(list-selected)
for jj in range(j):

if (len(set(list_selected[jj].listindexel).intersection(
^Iset(i.list index el)))*1.0/len(i.listindexel) < ratemaxintersect)
^^Iand (len(listselected) < numberselected):

count += 1
if count == j:

listselected.append(i)

return listselected

96

#select the parents from top Layouts
def form-parents(list-layout):

g-parents = diversity-filter(list-layout ,n-parents)
return g-parents

#breeding and evolve through generation

def breeding(g-parents) :
classify parents by their quadrants and adjust type:
list-parent-quadrant_1 = []
list-parent-quadrant_2 = []
list-parent-quadrant_3 = []
list-parent-quadrant_4 =]
list-parent-quadrantscen = []
for parent in g-parents:

if parent.quadrant == '1':
list-parent-quadrant_1.append(parent)

elif parent.quadrant == '2':
list-parent-quadrant_2.append(parent)

elif parent.quadrant == '3':
list-parent-quadrant_3.append(parent)-

elif parent.quadrant == '4':
list-parent-quadrant_4.append(parent)

elif parent.quadrant == 'center':
list-parent-quadrant-cen.append(parent)

lists-parent-quadrant = [list-parent-quadrant_cen,list-parent-quadrant_1,
I-^I^^I^^I^^I^ Ilist-parent-parent_q2,listparentquadrant_3,list -parent-quadrant_4]

g-child=[]
#breeding
for ii in range(int(n-pop/2)):

children =produce 2_children(g-parents,lists-parent-quadrant)
g-child.append(children[0])
g-child.append(children[1])

g-children =]
for ii in range(len(g-child)):

g-children.append(g-child[ii])

return g-children

def produce_2-children(g-parents,lists-parent-quadrant):

first-parent = random.choice(g-parents)
second-parent = random.choice(g-parents)

parents = [first -parent,second_parent]

split-point = random. randint (0,nvar-1)

childistring= parents [0] .string [: split-point] +parents [1. string [split-point:]
child2string =parents [1] .string [: split-point] +parents [0] .string [split-point:]

if '1' not in childistring:
add-point = random.randint (O,n-var-2)
childistring = childistring[:add-point] +'1 '+childistring[add-point+1:]

if '1' not in child2string:
add-point = random. randint (0,nvar-2)
child2string = child2string [: addpoint] +'1'+child2string [add-point+1:]

childi = Layout(childistring)

#childl.form connected-parts()
child2 = Layout(child2string)
children = [childi, child2]

return children

#mutation:
def mute(x,quadrant):

position-mut = [random.randint (O,n-var-1) for - in range(random.randint(i,n-var))]

97

for indexmutpoint in position-mut:
if x.string[index-mutpoint] =='1':

x.string = x. string[:index-mutpoint]+'0 '+x. string[index-mutpoint+:]
else:

x.string = x. string[:index-mutpoint]+'1'+x. string[index-mutpoint+1:]
x-update = Layout(x.string)
return x.update

if quadrant == '1':
listposition deactivate = x.list_ ele.quadrant_1
iistposition activate = list (set(list- ele- quadrant_3)
I^I^ I I .diff erence(set (x. list_e le quadrant_3)))

elif quadrant == '2':
List_position- deactivate = x. List- ele.quadrant_2
list-position_ activate = list (set(list- ele- quadrant_4)
^I^I^I^II^Idifference (set (x. list- ele. .quadrant _4)))

elif quadrant == '3':
listposition.deactivate = x. list_ elequadrant_3
List-position- activate = list (set(list- ele- quadrant_ 1)
I^^I^^I^I^I difference (set (x. List_ e lequadrant1)))

elif quadrant == '4':
list-position..deactivate = x. List- elequadrant_4
iistposition activate = list (set(list- ele- quadrant_2)
I^III^II . difference (set (x. ist-e le-quadrant_2)))

elif quadrant == 'center':
List-position_ deactivate = range(1,n-var)
List_position- activate = range(1,nvar)

position mut activate = random.sample(list-position_ activate,
II^III ^Irandom.randint (1, en(list_position_ activate)))

#min(max (5,int (0.1*1en(iistposition activate))), ten(listposition_ activate))))

if len(listposition -deactivate) == 0:
deactivate = 'No'

else:
deactivate = 'Yes'
positionmut_ deactivate = random.sample(listposition_ deactivate,
II^IIII random.randint(1,Len(list-position deactivate)))

#positionmut = [random.randint (0,n var-1) for - in range (random. randint(1,n-var))j
if deactivate == 'Yes':

for indexmutpoint in position-mut deactivate:

if index -mutpoint < n-var-1:
x.string = x.string[:indexamutpointJ+'0'+x.string [indexmutpoint+1:J

for indexjmutpoint in positionjmut-activate:

if indexjmutpoint < n-var-1:
x.string = x.string[:indexmutpointJ+'1'+x.string[index-mutpoint+1:J

if '1' not in w.string:
add point = random. randint (0,n var-2)
x.string = x.string[:add-pointj+'1 '+x.string[add-point+1:J

x-update = Layout(z.string)
return x-update

#if len(list-position deactivate) == 0:
deactivate = 'No'
#eLse:
deactivate = 'Yes'

#positionmut = [random.randint(0,n var-1) for _ in range(random.randint(1,n-var))J
#if deactivate == 'Yes':

for index-mutpoint in posit ionmut deactivate:
if indexjmutpoint < n.var-1:

x.string = x.string[:index-mutpointJ+'O'+x.string[index-mutpoint+1:J

98

for indexmmutpoint in positionrmut-activate:

if index-mutpoint < nvar-1:
x.string = x.string[:indexjmutpointj+'1 '+x.string[index-mutpoint+1:J

x = Layout(x.string)
return x

def mutation(g-children):

indexselmut = [random.randint(0,len(g_children)-1) for - in range(n-mut)]
for indexmut in indexselmut:

g-children [index-mut] = mute (g-children [index-mut] , gchildren [index-mut] quadrant)

return g-children

Main program Loop:

def mainjloop(figurei,constraint,weightsig,torsionsig,distribution-sig):
listallwinner = []

for generationnum in range(n-gen):
print generationnum

####Initialize the list for layouts

if generationnum == 0:
list-layout = [] #For the first iteration
#randomly select n.pop individuals
n_restrictedvar = round(rate restricted*nvar)
for individual index in range(10*n-pop):

n_shearwall = random.randint(int(0.6*n-var),n-var)
listindexshearwall = random.sample(range(nvar), nshearwall)
string = ''
for digit in range(n-var):

if digit in listindexshearwall:
string += '1'

else:
string += '0'

new-layout = Layout(string)
list layout.append(new-layout)

#Sort the layouts by their fitness (The lower, the better, the former)
list-layout.sort(key=lambda x: x.fitness, reverse=False)

####record the fitness of toplO/top30Z/all
top_10_fitlist = []
top_30_fitlist = []
allfitlist = []
fitlist = []
top_10_matlist = [1
top_30_mat-list = []
allmatlist = []
material-list = []
top_5_mat-list = []
top-5_mat-list_2 = []
for layout in list-layout:

fitlist.append(layout.fitness)
material-list.append(layout.len_list_el)

top_10_fit-list.append(numpy.mean(fit-list[:100]))
top_30_fit-list. append(numpy. mean(fit-list [: 10*thirty-percent]))
allfitlist.append(numpy.mean(fitjlist))

top_10_mat-list. append(numpy. mean(material-list :100]))

top_30_mat-list. append(numpy.mean (material-list :1O*thirty-percent]))
allmatlist.append(numpy.mean(materiallist))

list-layout = listjlayout[:n-pop]

99

winners = diversity-filter(listlayout,5)
materialcount =0
materialcount_2 =0
for winner in winners:

listall_winner.append(winner)
materialcount += winner.lenlistel/5.0
materialcount_2 += winner.weight/5.o

top_5_matlist.append(materialcount)
top_5_matlist_2.append(materialscount_2)

#choose parents
g-parents = formparents(list-layout)

#breeding and evolve through generation
g-children = breeding(g-parents)

#mutation:
g-children = mutation(g-children)

#Sort the layouts by their fitness (The lower, the better, the former)

listlayout = gchildren +g-parents
listlayout.sort(key=lambda x: x.fitness, reverse=False)
listlayout = list_layout[:n-pop]
fitlist = [
materiallist = []
for layout in list-layout:

fit-list.append(layout.fitness)
materiallist.append(layout.lenjlist-el)

top_10 fitlist.append(numpy.mean(fit_list[:10]))
top_30_fitlist.append(numpy.mean(fitjlist[:thirtypercent]))
all_fit-list.append(numpy.mean(fit_list))

top_10_matlist.append(numpy.mean(materiallist[:5]))
top_30_matlist.append(numpy.mean(materiallist[:thirty-percent]))
allmat-list.append(numpy.mean(material-list))

winners = diversity-filter(listlayout,5)
materialcount =0
materialcount_2 += 0
string = '1'*119

for winner in winners:
listallwinner.append(winner)
materialcount += winner.lenlist el/5.0
materialcount_2 += winner.weight/5.0

top_5_matlist.append(materialscount)
top_5_mat list_2.append(material count_2)

###plot the 6 winners

listcol = ['0','P','Q','R','S','T']
winner = listallwinner
for i in range(len(listallwinner)):

winner[i] .plotlayout(i+1, fitness = winner[i]. fitness, figure = figure-i,
^^I^^I^^I^^IcsO = [winner[il.center-stiff x, winner[i] .centerstiff-y])
###newly added end
if winner[i].p5 >= 1:

print i ,' p5 ', winner[i].p5
if winner[i].p4 >= 1:

print i ,' p4 ', winner[i].numUL_Pu

worksheet.write('B'+str (row),winner [25].string) #sig-cs
worksheet.write('C'+str (row) ,winner [25] .material_factor)
worksheet.write('L'+str (row) ,winner [25] . Itotal-x)
worksheet.write('M'+str (row) ,winner [25] .Icr-x)
worksheet.write('N' +str(row) ,winner[25].ratioI-x)
worksheet.write('O'+str (row) ,winner [25] . I_totaly)
worksheet.write('P'+str (row) ,winner [25] . Icr-y)

100

worksheet.write('Q'+str(row) ,winner[25] .ratioIy)
worksheet.write('R'+str (row) ,winner [25] .strength-fail)
worksheet write ('' +str (row) ,winner [25] .strength check total)
worksheet.write('T'+str (row) ,winner [25] .drift_x)
worksheet.write('U'+str (row),winner [25].drift-y)
worksheet.write('V '+str(row) ,winner[25] .drift_check)
worksheet.write('W'+str (row) ,winner [25] weight)
worksheet.write('X'+str(row),winner[25] .p)
worksheet.write('Y'+str (row),winner [25].p2)
worksheet. write ('Z '+str (row) ,winner [25] .p3)
worksheet.write('AA'+str(row) ,winner[25] .p 4)
worksheet.write('AB'+str(row) ,winner[25] .p 5)
worksheet.write('AC' +str(row) ,winner[25] .p 6)
worksheet.write('AD'+str(row),winner[25].constraint)
worksheet. write ('AD '+str (row) ,winner [25] .numULPu)
worksheet. write ('AE'+str (row) ,winner [25] .numULMu)
worksheet.write('AF'+str(row) ,winner [25] .numSVSPu)
worksheet.write('AG'+str(row) ,winner[25] .numSVSMu)
print winner [25] .num_ULPu, winner [25]. num_ULMu, winner [25] .numSVSPu, winner [25] .num_SVSMu

evolutionpoint = 0
for number in range(len(winner)/5):

if number == 0:
previousfit = winner[O].fitness

elif winner[number*5].fitness < previousfit:
evolution-point += 1

previousfit = winner[number*5].fitness

worksheet.write('AJ'+str(row),
worksheet.write('AK'+str(row),
worksheet.write('AL'+str(row),
worksheet.write('AM'+str(row),
worksheet.write('AN'+str(row),
worksheet.write('AO'+str(row),
worksheet.write('AP'+str(row),

worksheet.write('AR'+str(row),
worksheet.write('AS'+str(row),
worksheet.write('AT'+str(row),
worksheet.write('AU'+str(row),
worksheet.write('AV'+str(row),
worksheet.write('AW'+str(row),

worksheet.write('AY'+str(row),
worksheet.write('AZ'+str(row),
worksheet.write('BA'+str(row),
worksheet.write('BB'+str(row),
worksheet.write('BC'+str(row),
worksheet.write('BD'+str(row),

worksheet.write('BF'+str(row),
worksheet.write('BG'+str(row),
worksheet.write('BH'+str(row),
worksheet.write('BI'+str(row),
worksheet.write('BJ'+str(row),
worksheet.write('BK'+str(row),

worksheet.write('BM'+str(row),
worksheet.write('BN'+str(row),
worksheet.write('BO'+str(row),
worksheet.write('BP'+str(row),
worksheet.write('BQ'+str(row),
worksheet.write('BR'+str(row),

worksheet.write('BT'+str(row),
worksheet.write('BU'+str(row),
worksheet.write('BV'+str(row),
worksheet.write('BW'+str(row),
worksheet.write('BX'+str(row),
worksheet.write('BY'+str(row),

evolutionpoint)
top_10_fitjlist[0])
top_10_fitjlist[1])
top_10_fitjlist[2])
top_10_fitjlist[3])
top-10_fitjlist[4])
top1_fitjlist[5])

top-30_fit-list [0])
top.30fitjlist[1])
top_30_fitjlist[2])
top_30_fitjlist[3])
top_30_fitjlist[4])
top_30_fitjlist[5])

all-fit-list[0])
all_fitlist[1])
all-fit-list[2])
all_fitlist[3])
all_fitlist[4])
all_fitlist[5])

top_10_matlist[0])
top_10_matjlist[1])
top_10_matjlist[2])
top_10_mat-list[3])
top_10_matjlist[4])
top_10_matlist[5])

top_30_matlist[0])
top_30_matjlist[i])
top_30Omatjlist[2])
top_30_matjlist[3])
top-30_matjlist[4])
top_30_matjlist [5])

top_5_mat-list[0])
top_5_mat-list[1])
top_5_mat-list[2])
top_5-mat-list [3])
top_5_mat-list[4])
top_5_mat-list[5])

101

worksheet.write('CA'+str(row),
worksheet.write('CB'+str(row),
worksheet.write('CC'+str(row),
worksheet.write('CD'+str(row),
worksheet.write('CE'+str(row),
worksheet.write('CF'+str(row),

allmatlist[0])
allmatlist[i])
allmatlist[2])
allmatlist[3])
allmatlist[4])
all-mat-list [5])

plt.close()

Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook('0919_8ati0by2.xlsx')
worksheet = workbook.addworksheet()

Widen the first column to make the text clearer.
#worksheet.setcolumn('A:A', 20)

Add a bold format to use to highlight cells.
bold = workbook.addformat({'bold': True})

Write some simple text.

#for the diversity filer
worksheet.write('Bi', 'Layout', bold) #sigcs 1-3
worksheet.write('Ci', 'Materialfactor', bold) #sigcs 1-3
worksheet.write('Di', 'Rate_minele', bold) #rate_minele
worksheet.write('El', 'Ratemin _ele', bold) #rate_ lowerbound-ele
worksheet.write('Fi', 'Max-distance', bold) #rate_minele
worksheet.write('Gi', 'Slop-torsion', bold) #rate_ lowerbound ele
worksheet.write('Hi', 'Preferreddistance', bold) #rate lowerbound ele
worksheet.write('Ii', 'Slop-distr', bold) #rate lowerbound-ele
worksheet.write('J1', 'Ratemaxdistr', bold) #ratelowerboundeLe
worksheet.write('Li', 'I totalx for layl', bold)
worksheet.write('Mi', 'Icrx for layl', bold)
worksheet.write('Ni', 'Icr_x/Itotalx', bold)
worksheet.write('01', 'I.total-y for layl', bold)
worksheet.write('Pi', 'Icr-y for layl', bold)
worksheet.write('Qi', 'Icr-y/Itotal-y', bold)
worksheet.write('Ri', 'Times of strength failure', bold)
worksheet.write('Si', 'Strength check', bold)
worksheet.write('Ti'; 'Drift x', bold)
worksheet.write('Ui', 'Drift-y', bold)
worksheet.write('Vi', 'Drift check', bold)
worksheet.write('Wi', 'Material', bold)
worksheet.write('Xi', 'CTorsion', bold)
worksheet.write('Yi', 'CShear', bold)
worksheet.write('Zi', 'COpening', bold)
worksheet.write('AAi', 'CFlexure', bold)
worksheet.write('ABi', 'CDrfit', bold)
worksheet.write('AC1', 'CDistribution', bold)
worksheet.write('AD1', 'UL Pu Fail', bold)
worksheet.write('AE', 'UL Mu Fail', bold)
worksheet.write('AF1', 'Service Pu Fail', bold)
worksheet.write('AGI', 'Service Mu Fail', bold)
worksheet.write('AHi', 'Distance-cm-cf', bold)

Give a matrix from Latin-Hypercube
#ihs matrix = lhs(9, samples=N, criterion='center')
dictlhsmatrix = lhs(4, samples=N, criterion='center')

the change of parameters:

for figure-i in range(N):

if dictlhs-matrix[figure-i] [0]< 1.0/3:
constraint = 1000

if dictlhs-matrix[figure-i][0]>= 1.0/3 and dictlhsmatrix[figure.i][0]<= 2.0/3:
constraint = 10000

if dictlhs-matrix[figure-i] [0] > 2.0/3:
constraint = 100000

102

weight-sig = round((1+dict_lhs_matrix[figurei] [11*2)) ###1 -3
torsion sig = round((1+dict -lhsnmatrix[figurei] [2]*1)) ###1-2
distribution-sig = round((1+dictlhsmatrix[figurei][3]*2)) ### 1-3
preferreddistance = 5 #round((0.5+dict_ ihs_matrix[figureii[4i*2.5)*10)/10.0 #0.5-3 ft
rate_maxdistribution = 0.667 #round((0.5+dict Ihs matrix[figurei][7*0.5)*10)/10.0 #0.5-1.0
acceptable-distributionx = rate_maxdistribution*dimensionx/2
acceptable-distribution-y = ratemaxdistribution*dimension-y/2
Write the parameters in each row.
row = figurei+2
main-loop(figure-i+1, constraint,weight-sig,torsion-sig,distributionsig)

workbook.close()

end of the code

103

104

Bibliography

[1] ACI 318-14 Building Code Requirements for Structural Concrete and Commen-
tary. American Concrete Institute.

[2] Hosseini Mahmood Aminnia Mohammad. The effects of placement and crosssec-
tion shape of shear walls in multistory rc buildings with plan irregularity on their
seismic behavior by using nonlinear time history analyses. Int J Civil Environ
Struct Constr Archit Eng, 9:1293300, 2015.

[3] Wong Kin-Ming Chan Chun-Man. Structural topology and element sizing de-
sign optimisation of tall steel frameworks using a hybrid ocga method. Struct
Multidiscip Optim, 35:47388, May 2008.

[4] Greenberg H Dorn W, Gomory R. Automatic design of optimal structures. J
Mec, 3:25-51, 1964.

[5] Sok6 et al. On the adaptive ground structure approach for multi-load truss topol-
ogy optimization. In: 10th World Congress on Structural and Multidisciplinary
Optimization, Orlando, Florida, USA, 2013.

[6] Stiny George. Shape: Talking about seeing and doing. The MIT Press, 2013.

[7] Lai H-J. Contactions and hamiltonian line graphs. J Graph Theory, 12:115,
1988.

[8] Ohsaki M Hagishita T. Topology optimization of trusses by growing ground
structure method. Struct Multidisc Optim, 37:377-93, 2009.

[9] Lawrence C Kamara Mohmoud E. Simplified Design of Reinforced Concrete
Buildings. Portland Cement Association, 2011.

[10] Shekhawat Krishnendra. Algorithm for constructing an optimally connected
redtangular floor plan. Front Archit Res, 3:32430, 2014.

[11] Steven Grant P Liang Qing-Quan, Xie Yi-Min. Optimal topology design of
bracing systems for multistory steel frames. J Struct Eng, 126(7), 2000.

[12] Mitchell Melanie. An Introduction to Genetic Algorithms. The MIT Press, Cam-
bridge, Massachusetts; London, England, 1998.

105

[13] Charles W Nilson Arthur H, Darwin David. Design of concrete structures. Dolan:
McGraw Hill Higher Education, 2003.

[14] Bao Fan Fink Daniel Yan Dong-Ming Wonka Peter et al Peng Chi-Han, Yang
Yong-Liang. Computational network design from functional specifications. ACM
Trans Graphics, 2016.

[15] Kostas Terzidis. Autoplan: a stochastic generator of architectural plans from a
building program. Digital Media and the Creative Process, 2007.

106

