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Abstract

Design of complex engineering systems requires coupled analyses of the multiple dis-
ciplines affecting system performance. The coupling among disciplines typically con-
tributes significantly to the computational cost of analyzing a system, and can become
particularly burdensome when coupled analyses are embedded within a design or op-
timization loop. In many cases, disciplines may be weakly coupled, so that some of
the coupling or interaction terms can be neglected without significantly impacting
the accuracy of the system output. However, typical practice derives such approxi-
mations in an ad hoc manner using expert opinion and domain experience. In this
thesis, we propose a new approach that formulates an optimization problem to find
a model that optimally balances accuracy of the model outputs with the sparsity of
the discipline couplings. An adaptive sequential Monte Carlo sampling-based tech-
nique is used to efficiently search the combinatorial model space of different discipline
couplings. Finally, an algorithm for optimal model selection is presented and com-
bined with three tractable approaches to quantify the accuracy of the system outputs
with approximate couplings. These algorithms are applied to identify the important
discipline couplings in three engineering problems: a fire detection satellite model, a
turbine engine cycle analysis model, and a lifting surface aero-structural model.
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Chapter 1

Introduction

We begin this thesis by introducing the field of multidisciplinary modeling and the

computational challenges of working with coupled systems. After presenting our

motivation for this work, we describe our contributions in Section 1.2.

1.1 Coupling in Multidisciplinary Models

Multidisciplinary analysis and optimization (MDAO) couples multiple computational

models to represent complex interactions in the design of engineering systems. With

the increasing number of disciplines and improved fidelity in multidisciplinary mod-

els, the coupling among disciplines can contribute significantly to the computational

cost of analyzing these systems. This coupling may include both one-directional

(feed-forward) coupling, and bi-directional (feedback) coupling that requires iterative

numerical methods to compute a model solution. The coupled MDAO problem may

be formulated in a variety of different ways, and various MDAO architectures have

been developed to manage discipline coupling for large-scale problems (see Ref. [46j

for an overview). Monolithic architectures solve the system using a single optimiza-

tion problem, while distributed approaches partition the model into subproblems,

each involving a smaller number of variables [23, 10, 54, 57, 35]. Typical practice

derives these discipline couplings using expert opinion and domain experience. Given

the significant impact of couplings on the computational tractability of evaluating a
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model, it is of interest to systematically identify which disciplines should be coupled

in a model and where couplings may be neglected. This thesis addresses this open

challenge to yield optimal approximations to coupling in multidisciplinary models.

The application of MDAO originated in structural optimization and aircraft wing

design [26, 58]. It has since been extended to many different engineering systems,

such as the design of complete aircraft configurations 137, 43], internal combustion

engines [47], wind turbines [22], and spacecraft [12]. Multidisciplinary models of such

systems often demonstrate varying degrees of coupling. Couplings can be categorized

as being "strong" or "weak" based on the response of a discipline output to a change in

a coupling variable [34]. As a result, for certain quantities of interest (QoI) in a model,

neglecting weak interactions negligibly impacts the accuracy of the system outputs.

Simultaneously, decoupling discipline iterations reduces the number of feedback loops

and presents a substantial computational savings when using the model for design

optimization and/or uncertainty propagation. Therefore, an important challenge in

the field of MDAO has been to identify the decoupled model that best trades the

sparsity of the discipline couplings with the accuracy of the model in representing

the engineering system. One approach to do this uses weighted design structure

matrices to decompose the model and rearrange the disciplines to minimize feedback.

This method estimates the strength of couplings based on the discipline connectivity

[60] or the sensitivity of the model outputs to the coupling at each iteration of a

multidisciplinary optimization process [40]. However, existing methods leave open

the question of identifying which discipline couplings are most important in a model

for characterizing system outputs over a range of input variables.

In this thesis we consider optimal approximations to coupling in the context of

multidisciplinary models under uncertainty. Using these models for optimization or

uncertainty quantification (UQ) is challenging, as it requires accurately character-

izing the output of these nonlinear models. With complex coupling between the

disciplines, users often rely on traditional and computationally intensive approaches

for analyzing these models such as Monte Carlo sampling-based methods [33]. As

a result, identifying an approximate coupling that reduces the dimensionality of the
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information exchanged between disciplines and eliminates large feedback loops, while

minimizing information loss in the output uncertainty, presents an important source

of computational savings for MDAO. This thesis addresses this challenge and to the

best of our knowledge is the first attempt in the literature to identify a sequence of

optimal discipline couplings that trade-off the accuracy of the model outputs with

the sparsity of the discipline couplings.

1.2 Thesis Contributions

With the goal of identifying optimal couplings for multidisciplinary models under

uncertainty, the contributions of this thesis are:

1. Developing tractable methods for quantifying the information loss from neglect-

ing discipline couplings in nonlinear multidisciplinary models under uncertainty

with increasing degrees of accuracy

2. Formulating an optimization problem and providing an algorithm to efficiently

search over the combinatorial space of possible discipline couplings

3. Applying the decoupling methodology to engineering examples and showing

how the systematic approach mathematically identifies decoupling strategies

that reflect the underlying system physics

4. Analyzing the effect of decoupling on the output uncertainty by analytically

identifying the sources of error and requirements for the well-posedness of the

decoupled models

The rest of this thesis is organized as follows. In Chapter 2 we introduce the

mathematical background of multidisciplinary models and uncertainty quantification,

and formulate the problem of efficiently searching for an optimal approximation to a

model's coupling. In Chapter 3 we propose three numerical methods and algorithms

for identifying the model approximation(s), and in Chapter 4 we demonstrate the

application of these algorithms on three engineering examples. In Chapter 5 we
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analyze decoupling in the context of linear models. We provide conditions when it

is possible to decouple two disciplines, and quantify the resulting error in the model

outputs from this process by making connections to the field of probabilistic graphical

models. We conclude the thesis in Chapter 6 with some remarks and future research

directions.
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Chapter 2

Background and Problem Setup

In this chapter, we introduce the notation and definitions used for multidisciplinary

models. After presenting the notion of decoupling, we formulate the problem of

searching for an optimal model approximation in Section 2.3. In Section 2.4 we present

an algorithm based on sequential Monte Carlo for solving the resulting combinatorial

optimization problem.

2.1 Multidisciplinary Models

Numerical multidisciplinary models consist of a set of equations that capture the rela-

tionships between input and output variables, mediated by the internal state variables

of each discipline. While input variables are independent and defined externally by

a user, output variables are quantities of interest (QoI) that depend on the input

variables and the state variables of the model.

In this thesis, x = [xi,.. . , XM]T C X C R' is a vector of m input variables,

y = [y,... , y]T E Y C R is a vector representing the n state variables, and

f = fi,... . , f RT Ip is a vector of p output variables. Each state variable in the

model, yi, is defined implicitly by a governing residual equation

Ri(X, y) = 0, (2.1)
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where in most generality the function Ri depends on all input and state variables,

and consists of algebraic equations, differential equations, and/or other operations.

The function F: X x Y -+ RP computes the output variables explicitly as

f = F(x, y). (2.2)

Letting R = [R1,... , 1Z]T, a numerical model consists of the coupled system of

equations, R(x, y) = 0, where R: X -÷ Y. In a multidisciplinary problem, the n

residual equations of the form in equation (2.1) are partitioned into disjoint groups

representing each particular engineering discipline or subsystem of the model. These

disciplines also define a partitioning of the vector of state variables, y. This vector

consists of state variables that are local to each discipline, and coupling variables

that affect the residual equations in different disciplines. A graphical representation

of these coupling variables in a model with two disciplines is given in Figure 2-1.

We note that in the displayed model, only one residual function and state variable is

associated with each discipline.

Inputs x

Discipline 1 Y2 Discipline 2
R(x, y) R2(x, y)

Output.
y1 T(x, y) 'Y2

QoI f

Figure 2-1: Graphical representation of a multidisciplinary model

The dependence of the residual equations on coupling variables from other disci-

plines defines the overall discipline coupling in the model. This coupling can include

one-directional (feed-forward) coupling, or bi-directional (feedback) coupling between

any two disciplines. For instance, the dependence of disciplines 1 and 2 on state vari-
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ables y2 and yi, respectively, results in the feedback coupling loop for the model in

Figure 2-1. Solving these systems of feedback coupled residual equations requires us-

ing an iterative numerical method to determine the states and corresponding output

variables. Common iterative methods include fixed point iteration or algorithms for

solving nonlinear equations, such as Newton-based approaches.

2.2 Uncertainty Quantification for MDAO

In many multidisciplinary models, the input variables are not known exactly. As an

example, when analyzing a rocket during launch, it is common to consider wind gusts

as a source of uncertainty in the multidisciplinary model [13]. In such cases, the input

variables, x, are represented as random variables endowed with a probability density

function (PDF) 7rx: X -+ R+.

With uncertain inputs, the state and output variables of the model are also ran-

dom variables where the outputs, f, have an induced joint probability density func-

tion, lrf: RP -+ IR+. Forward uncertainty quantification (UQ) propagates the input

uncertainty through the coupled model to characterize the uncertainty in the output

variables, as defined by their distribution. For engineering applications, this typi-

cally includes determining the mean and variance of the output variables, although

sometimes other properties of the output distribution are also of interest, including

higher-order moments and the PDF itself.

For linear residual and output equations, the mean and variance in the output

variables can be quantified analytically in terms of the model equations and the mean

and variance of the inputs. However, for general nonlinear equations, forward UQ is

more challenging and is commonly performed with various probabilistic techniques

such as sampling-based methods, localized Taylor-series model expansions, functional

approximations (e.g., polynomial chaos expansions), etc [561.

One of the traditional and robust algorithms for quantifying uncertainty is based

on Monte Carlo simulation. This sampling-based method draws N realizations of

the input variables from irx. Each realization defines a sample, where x(i) denotes
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the j-th sample of x for j = 1, ... , N. For each sample, the algorithm solves the

coupled residual equations, R(x(j), y(i)) = 0 to determine the state y(i), and evaluates

fi) = F(xj), y(i)) to determine the output variables f U) for sample j. These samples

are used to estimate the mean, variance, or other statistics of the PDF for the output

variables, 7rf.

It is well known that the variance in Monte Carlo estimators converges at a rate

of 1 with an increasing number of samples, N [56]. As a result, for expensive sim-

ulations under limited computational resources, this motivates the use of alternative

techniques that reduce the computational cost of solving the multidisciplinary model.

One approach for efficiently propagating uncertainty in multidisciplinary systems is

a decomposition-based method that combines Monte Carlo sampling of each disci-

pline or domain with importance sampling to analyze the uncertainty in feed-forward

systems [2]. For multidisciplinary systems with feedback, recent methods include

a likelihood-based approach to decouple feedback loops and reduce the model to a

feed-forward system [511, dimension reduction techniques to represent certain cou-

pling variables with spectral expansions that depend on a small number of uncertain

parameters [3, 5, 4], 'and the use of adaptive surrogate models for individual disci-

plines [301 or to approximate the coupling variables and reduce the number of model

evaluations 1171.

In this thesis we focus on approximate coupling as a way to reduce the compu-

tational cost of finding a solution to the multidisciplinary model. We note that this

could also be combined with existing techniques to accelerate forward uncertainty

quantification and model coupled analyses.

2.3 Model Coupling Approximations

In this section we propose to approximate multidisciplinary models by decoupling dis-

cipline inputs, as described in Section 2.3.1. Using notions of the statistical distance

between distributions that are presented in Section 2.3.2, we formulate an optimiza-

tion problem to find approximate model couplings in Section 2.3.3.
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2.3.1 Decoupling Discipline Inputs

Our approach of approximate coupling is to minimize the number of coupling variables

between disciplines. In practice, many disciplines are often weakly coupled and the

residual equations in each discipline are most sensitive to only a subset of the coupling

variables [34]. Therefore, the coupling variables that have a minor effect on the state

variables computed by each discipline can be fixed to a nominal value, while incurring

a small effect on the discipline output. Furthermore, by removing the dependence of

a discipline on certain coupling variables, we decouple the corresponding disciplines.

Ultimately, this reduction in discipline coupling minimizes the number of iterations

required to find a converged solution to the system.

In a multidisciplinary model with K disciplines, we define Sk C {y,..., y,} as

the set of coupling variables that are arguments to the residual functions in the k-

th discipline. The set of discipline couplings in each model is then given by M =

(SI,... , SK), where the total number of discipline couplings is d(M) = E _ Ski and

Sk I denotes the cardinality of Sk. For a multidisciplinary model with a set of defined

discipline couplings, our goal in this work is to find the coupling variables (i.e. yj E Sk

for all k) that have a small effect on the overall model output. Each of these variables

are then fixed to a nominal value, such as their mean value, and removed from Sk,

thereby only coupling the corresponding disciplines through deterministic values for

the state variables. By fixing these random state variables, these discipline inputs are

no longer unknown and do not require iteration to find their converged values. In the

remainder of this thesis, we refer to this process as decoupling.

The operation of replacing the dependence of residual equation, R2 , on the cou-

pling variable, yi, with the fixed constant input, Vj, is seen graphically in Figures 2-2

and 2-3. By decoupling discipline 1 from 2, the original feedback coupled multidisci-

plinary model is converted into a feed-forward model. In this case, instead of having

to iteratively solve the coupled residual equations to find y, the state variables can

be more cheaply determined by solving the one-way coupled model.

For the remainder of this thesis, we denote the set of discipline couplings in our
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reference multidisciplinary model as Mo, and use M to represent a model that results

from decoupling one or more coupling variables.

F Inputs x II Inputs x

Discipline 1 Y2 Discipline 2 Discipline 1 Y2 Discipline 2

R,1(x, y) Z2(x, y) R 1(X, y) - 2 (X, y)

State yi State Y2 State yi State Y2

Figure 2-2: Feedback coupled two disci- Figure 2-3: One-way coupled two disci-

pline model, Mo pline model, M

In the context of forward UQ, the error introduced by decoupling discipline inputs

is defined as the accuracy of the PDF for the output variables in model M relative

to the reference model Mo. The next section will discuss methods for quantifying the

accuracy in the PDF.

2.3.2 Measures of Statistical Distance

In the field of information theory, various metrics and divergences have been defined

for measuring the statistical distance between probability distributions with PDFs, 7r

and ~r, over the same probability space, Q. One broad category of these functions is

the set of f-divergences that is defined as

Di(gir*) = jf dr, (2.3)

where f is a conVex function that satisfies f(1) = 0. For different choices of f,

we arrive at many common divergences including the Kullback-Leibler divergence

DKL(7r I|ir) for f(t) = t log(t), the total variational distance DTv(7rIr) for f = !|t-11,

and the Hellinger distance DH(7II|Fr) for f(t) = (V - 1)2. The reader is referred to

Ref. 125] for a summary of these probability measures and how they are all related

via different bounds and transformations.
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Given its widespread use, in this work we adopt the Kullback-Leibler (KL) diver-

gence to measure the accuracy of the PDF for the output variables in the decoupled

model, 7rfM, relative to PDF for the outputs in the reference model, 7rfMO. This KL

divergence, denoted by DKL(fF 1 7rf,), has the functional form given in (2.4). The

KL divergence provides an indication of the information lost when using 7rfM to ap-

proximate the distribution of the output variables with the discipline couplings, M.

The reader is referred to Ref. 141] for more properties on the KL divergence.

DKL(fII Ifm) = 7fmo log (7 d (2.4)
JRP \ fM

We also note that other measures besides the f-divergences can also be used

to measure the statistical distance between probability distributions. One particu-

lar example is the Wasserstein metric for computing the distance between empirical

distributions of observed data. This metric has gained attention recently with the

advances in optimal transport that have made its computation tractable 18].

2.3.3 Search for Optimal Coupling

To reduce the computational cost of finding solutions to the multidisciplinary model

equations in (2.1), we search for the maximum number of discipline inputs that can be

decoupled while minimizing the information lost from decoupling. These competing

objectives are used to formulate a combinatorial optimization problem to find an

optimal subset of discipline couplings by exploring the space of possible decoupled

models, which we denote by M. The optimally decoupled model, which we denote

by M*(A), is found by solving

M*(A) = arg min DKL (rfm II7fA,) - AP(M). (2.5)
MEM

The two parts of the objective function in (2.5) are the KL divergence that mea-

sures the accuracy of the output variable distribution in the decoupled model relative

to the reference model, and the function P: M -+ N that represent the sparsity of
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the model couplings. In this work, P(M) = d(Mo) - d(M), i.e., the function counts

the number of removed discipline couplings for each possible model, M. Finally, these

two parts are combined in the objective function by using a tuning parameter, A, that

controls the relative importance given to accuracy vs. sparsity.

We note that other metrics can also be used for the sparsity penalty, P(M), in

the optimization problem. For example, by using additional knowledge about the

contribution of each discipline coupling to the total cost of running the model, we

can assign a different weight to each coupling that favors removing computationally

expensive discipline couplings.

Finally, for a model with K disciplines and d discipline couplings, d can grow as

d = K2 - K for a fully coupled model with single connections between disciplines.

With each coupling being either active or inactive, the total size of the space of

possible models, M, grows exponentially with cardinality IMI = 2d. As a result, it is

not feasible to compare models with many disciplines by enumeration. Instead, the

next section discusses an approach based on a particle method to efficiently explore

the high-dimensional model space and find the optimal model, M*.

2.4 Combinatorial Optimization

In Section 2.4.1 we present the formulation and implementation details of the Se-

quential Monte Carlo algorithm for solving the combinatorial optimization problem

to optimally decouple a subset of the coupling variables. The complete algorithm for

solving the model selection problem in equation (2.5) is presented in Section 2.4.2.

2.4.1 Sequential Monte Carlo

To find an optimal decoupled model that best balances the accuracy and sparsity

of an approximate model coupling, we solve the combinatorial optimization problem

in equation (2.5) that was proposed in Section 2.3.3. With the increase in the car-

dinality of the model space, M, the complexity of finding an optimal solution to

this problem increases exponentially. As a result, common algorithms for combina-
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torial optimization problems find approximate solutions by using local neighborhood

searches, depth-first branch and bound searches, or randomized methods such as sim-

ulated annealing and genetic algorithms. For a comparison of these methods, the

reader is referred to Ref. [6].

To effectively explore the model space, there is growing numerical evidence that

global particle methods based on sequential Monte Carlo (SMC), which track a pop-

ulation of possible solutions, are robust and can often outperform heuristics and local

search methods for binary optimization problems [19, 52]. This is particularly evident

in strongly multi-modal objective functions where local search methods can become

trapped in certain modes of the model space. As a result, in this thesis we chose to

use SMC to perform the combinatorial optimization.

Sequential Monte Carlo is described in more detail below and summarized in

Algorithm 1-the main steps are:

1. Generate a set of weighted particles representing possible decoupled models

2. Update the weights based on the value of the objective function

3. Propose new particles to explore the space while converging to the optimum

4. Repeat steps 2-3

To find the optimal solution using SMC, we first define a sequence of probability

distributions on the model space, which we denote by Pt: M - [0,1] for each in-

dex t E N. These distributions progress from a distribution that is easy to sample

from, such as the uniform weighting over the set of all possible decoupled models

(i.e., Po(M) = U(M)), to the final target distribution of interest that concentrates

most mass over the models that minimize the objective function. To smoothly move

towards the target distribution, the goal of an efficient particle method is to learn the

correlations and properties of the model space in order to find the global minimizers

without enumerating all models.

Particle methods approximate the distribution at each step by a finite set of L E N

weighted particles that each represent a particular model. We denote particle 1 at step

t of the algorithm by M1 ) for = 1,... , L. Each of these particles is also associated
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with a weight that we denote by wtl. The collection of particles and weights at each

step is given by (Me, wt) = {M(, W(1}[ 1 . While the weights are set to 1/L when

initializing the system at t = 0, at each iteration of the algorithm the weights are

updated based on the subsequent distributions using the ratio

(1) Pt+1 ( M' (2.6)ut 1 := wt 
(t (M

followed by the normalization step, wV+ Uti/ E, u_+1 for 1 = 1,..., L. Here we

note that it is sufficient to evaluate the models at the unnormalized versions of Pt

and Pt+1 given that the weight only requires the ratios of these probability mass

functions. As described in a recent study by Schifer et al. [521, one common and

successful technique to construct these distributions over the model space is to use

a tempered family. This family of distributions assigns to each decoupled model,

M C M, the probability mass

P(M) c exp(-p(t)h(M)), (2.7)

where h: M -+ R is the value of the objective function for each model in the

combinatorial optimization problem, and p: N -+ R+ is a monotonically increas-

ing tempering parameter that depends on step t. For the combinatorial optimiza-

tion problem posed in equation (2.5), the objective function is given by h(M) =

DKL(7fmJ I IEfv) - AP(M). Therefore, as t and p(t) increase at each iteration, the

tempered family concentrates more mass on the set of models that minimize the

value for the objective function by assigning higher weights to these models. How-

ever, by just repeatedly re-weighing the initial set of particles using equation (2.6),

the weights will become uneven and eventually lead to particle degeneracy with a

poor sample approximation to each distribution.

As a result, the main ingredient that differentiates sequential Monte Carlo sam-

plers from classical importance sampling is the series of alternating re-weighting and

update steps that re-sample and move the particles in order to explore the space
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outside of the current set of models. By measuring a series of metrics including

the effective sample size and the particle diversity, that are denoted by ESS(wt)

and ((Mt, wt), respectively, SMC re-samples the particles from its current empirical

distribution and moves them by using an adapted proposal distribution that samples

new particles in the model space. This combination of steps ensures there is a smooth

transition between all distributions, Pt, and they converge to the target based on an

appropriate choice for the tempering parameter, p(t).

Following the study in Ref. [521, we use systematic re-sampling to generate more

samples corresponding to the particles with larger weights. Furthermore, we con-

struct an independent proposal for the move steps that is adapted by using maxi-

mum likelihood estimation with the set of samples and weights at each iteration. As

demonstrated in Ref. 153], this adaptive proposal results in faster exploration of the

model space by drawing particles with a higher rate of acceptance.

The re-sample and move steps are repeated until the sample diversity drops below

a threshold given by 6 > 0, indicating that most of the mass in Pt is concentrated on

a few decoupled models. At the end, the algorithm returns the maximizer of the final

distribution within this small set of particles as the optimally decoupled model. For

the purpose of completeness, a summary of the algorithm to find the optimal model

coupling is presented in Algorithm 1. Nevertheless, the reader is referred to Ref. [521

for more specific details and limitations on each function in the SMC algorithm for

solving combinatorial optimization problems.

In practice, the number of particles at each iteration of the SMC algorithm, L,

and the minimum particle diversity, 6, are chosen relative to the cardinality of the

model space. While the number of particles should be small enough to ensure that

the model selection is computationally feasible, it should also be large enough to

approximately represent the distributions, Pt. In our numerical examples we chose a

minimum particle diversity of 6 = 0.1L to terminate the algorithm and indicate that

most probability mass is concentrated on a small number of unique particles. Finally,

as empirically demonstrated in Ref. [52], this algorithm is scalable for optimization

on binary spaces with at least 250 dimensions. Thus, SMC is at least applicable for
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Algorithm 1: SMC for Optimal Model Coupling
Input: Model Objective Function: h(M), Minimum Particle Diversity: 6,

Number of Particles: L

1 Initialize counter: t = 0;

2 Sample models: M(1iid U(M) for 1 = 1, ... , L;

3 Initialize weights: w( = 1/L for I = 1, ... , L;

4 Compute particle diversity: (t = ((Mt, wt);

5 while (t > 6 do

6 Update counter: t <- t + 1;

7 Fit proposal: qt +- Fit-Proposal(Mt, wt);

8 Re-sample: Mt <- Re-sample(Mt, wt);

9 Move models: Mt +- Move(qt, Mt, wt);

10 Update p(t) to maintain a minimum ESS(wt);

11 Update weights: wt +- ImportanceWeights(h(M), p(t), Mt, wt);

12 Compute particle diversity: (t = ((Mt, wt);

13 end

14 Return M* = arg minmcm, h(M), h(M*)

combinatorial model selection in models that have up to 250 coupling variables.

2.4.2 Model Selection Procedure

Using the sequential Monte Carlo algorithm presented above, each value of A in the

objective function returns a new optimally decoupled model, M*(A). However, in an

engineering setting it is often of interest to select the model coupling approximation

based on accuracy requirements and the availability of computational resources.

To do so, we repeat the combinatorial optimization problem for different values

of A C A. This provides a set of candidate models that balance accuracy and'sparsity

differently in the optimally decoupled models. While a heavier weight is placed on

finding sparse models for larger values of A, a heavier weight is placed on finding

accurate models for smaller values of A. As a result, by increasing A, the optimal

model trades-off accuracy in the probability distributions of the output variables

relative to Mo with having a smaller number of discipline couplings. By finding
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the optimal model for each value of A using Algorithm 1, a user can select one of

these models for their application by comparing the accuracy of each model to the

computational cost of its sample evaluations. A summary of the complete algorithm

for optimal model selection is presented in Algorithm 2.

Algorithm 2: Optimal Model Selection
Input: Reference multidisciplinary model: M0 , Tuning parameters vector: A,

Model sparsity function: P(M)

i for A E A do

2 Setup objective function: h(M) = DKL (7fMoIM) - AP(M);

3 Determine M*(A) using Algorithm 1;

4 end

5 Select optimal model by comparing accuracy and sparsity of M*(A) for A E A;

6 Return decoupled model, M*;
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Chapter 3

Identifying Approximate Coupling

In this chapter we present three tractable approaches for efficiently evaluating model

output uncertainty and the overall objective in the optimal model coupling prob-

lem that was presented in Section 2.3.3. These approaches are model linearizations,

control variate corrections, and a Bayesian approach that have increasingly higher

accuracy and associated higher computational cost. The advantages, implementation

details, and complexity of each approach are discussed in the following sections.

3.1 Model-Linearization Approach

The KL divergence term in equation (2.5) represents the accuracy of the output dis-

tributions for a possible model M relative to the reference model, Mo. One approach

to evaluate this term is to generate samples for the output variables and use them

to approximate the empirical distribution for the model outputs and the KL diver-

gence using kernel density estimation (KDE) techniques [55]. However, for large-scale

multidisciplinary models it is typically not feasible to generate many samples from

multiple models via Monte Carlo simulations that require repeatedly solving coupled

systems of equations. As a result, in Sections 3.1.1 and 3.1.2 we propose to address

this problem by using a linear approximation for each model to efficiently estimate

the KL divergence between the probability distributions of the output variables.
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3.1.1 Output Uncertainty in Linearized Model

The linearization of a multidisciplinary model is given by the first order Taylor series

approximation of the model outputs in equation (2.2). This linearization is found by

evaluating the partial derivatives of the function F with respect to input and state

variables, which are denoted by ,.F and ay.F, respectively. Both of these derivatives

are evaluated at a specific linearization point for the input and state variables.

One natural linearization point is based on the mean of the state variables, y.

However, finding the mean requires characterizing the distribution for these variables

a-priori. Instead, an approximation commonly employed in the literature is to lin-

earize the models around the state variables corresponding to the mean values of the

input variables [51]. The mean value of x is denoted by p. = E[x] where E is the ex-

pectation operator with respect to the probability distribution with density 7r.. The

state variables corresponding to p, satisfy the residual equations, R(P,, y(px)) = 0,

and these states are referred to as a first-order mean for y [421.

Using the Taylor series expansion about the first-order mean, the linearized ap-

proximation of the output variables is given by

f = F(x, y) F(P, Y(ptx)) + &xF|-Y(l" (x- ix)+ OyFImY() (Y - (Yx)). (3.1)

Similarly, the linearized approximation of the coupled residual equations for the model

around the same linearization point is given by

R(x, y) 1 R(Px, y(/'x)) + OxRI,,y(, (x - px) + ay1ZI,.xy(,x) (y - y(px)), (3.2)

where xR and ay7Z denote the partial derivatives of the residuals with respect to the

input and state variables, respectively. Rearranging the approximation in equation

(3.2) for the state variables, and noting that R(p., y(px)) = 0, a linear approximation

to the state variables with respect to x is given by

Y = Y(Px) - (&y )' DX1 y() (x - IpX). (3.3)
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Here we note that the matrix of partial derivatives, (ayR)- 1&,R in equation (3.3),

contains the sensitivity of the state variables to perturbations in the inputs. These

sensitivities to the input variables are often computed as part of an adjoint analysis

for single or multiple discipline models [28, 44]. Furthermore, the sensitivities are

typically found without assembling and inverting the full matrix of partial derivatives

for the residual equations with respect to the state variables. Instead, the values in

the matrix are determined by solving a linear system using an iterative numerical

method (i.e., the Jacobi or Gauss-Seidel method) that takes advantage of the sparse

structure in the Jacobian matrices [45].

Substituting the linearization for the state variables in equation (3.1), a linear

approximation to the output QoIs in the multidisciplinary model with respect to the

input parameters, x, is given by

f f(x) = F(pX, y(0x)) + d.- (x - px), (3.4)
dx ,Y(/x

where f(x) represents the linear approximation and d denotes the matrix of total

derivatives of F with respect to the input variables, given by

d.F
= &xFIYxRyPx) - & YFI 1) () 1ZIPY(PY))1  (35)

With this linear relationship in the inputs, x, the mean and variance of the lin-

earized outputs are propagated analytically from the mean and variance of the input

variables. In particular, if the input variables are normally distributed with covari-

ance matrix, EX, the linearized output variables are also normally distributed with

mean, pLtt = Ei[f], and covariance, Ef = E[(f - p)(i - [pt)T], where

Pf = _F(pX, 7y Ux)),1 (3.6)

-T

EL - x . (3.7)dx J P dx /ULx )

To compute the KL divergence for the output variables of each decoupled model,
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M C M, relative to the reference model, Mo, we compute the mean and covariance of

the linearized model outputs using (3.6) and (3.7). The mean and covariance for the

linearized output variables of model Mo are denoted by PkM0 and EkNM , respectively.

Similarly, the mean and covariance for the decoupled model M are denoted by ptkm and

Ekm, respectively. Using the closed form expression for the KL divergence between

two Gaussian distributions, we estimate the KL divergence between the probability

distributions for the outputs of models Mo and M with the equation

DKL Al 2 7rk*i + -ItlMo
2 kr 4 

)M(3.8)

-p - In | kMO

where Tr(-) denotes the matrix trace operator, and ln(j -1) is the log-determinant of

a matrix. We note that the derivatives in equation (3.4) are typically available when

computing system outputs or performing design optimization. This leads to a small

incremental cost for evaluating the KL divergence in equation (3.8).

For numerically stability when computing the KL divergence with equation (3.8),

we require that the covariance matrices of the reference and decoupled model are

invertible and are well-conditioned. One required condition for the covariance to

be full-rank and invertible is that the dimension of the random inputs, m, should

be greater than the dimension of the output variables, p. Otherwise, the Gaussian

distribution will be supported along a lower-dimensional space (at most m < p) and

will be rank-deficient. Although non-invertibility of the covariance is typically not

encountered for models that have large m and small p, adding Gaussian noise with

small variance to the output QoIs is one approach to ensure the PDF of the outputs

is fully supported for certain models and the covariance is invertible.

In practice, it is also important to ensure that the selected QoIs have a similar

order of magnitude so the covariance matrix is numerically well-conditioned and the

objective function weights the closeness of the QoIs equally. One common approach is

to select common variables with similar orders of magnitude (i.e., lift and drag coeffi-

cients for an aircraft design problem) or normalized physical variables (i.e., fuelburn
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to gross weight ratio as compared to absolute fuelburn).

Finally, we note that decoupling disciplines results in additional sparsity in the

oyR matrix when the corresponding residual equations no longer depend on cer-

tain coupling variables from other disciplines. We can take advantage of this sparse

structure in the OyR matrix when computing the output sensitivities in the model

linearization and when computing the KL divergence with equation (3.8).

3.1.2 Computational Complexity

Each decoupled model, M E M, results in a different first-order mean for the state

variables. As a result, to compute the mean and covariance for the distribution of

the output variables, it is necessary to solve the nonlinear residual equations once for

each model M at the mean input variables. The resulting first-order mean of y is

used as the linearization point to evaluate the partial derivatives of the residual and

output functions in the model linearization.

Therefore, the computational cost of evaluating the model linearization is propor-

tional to the cost of computing the first-order mean and total derivatives in equation

(3.4). As noted in [451, these derivatives can be evaluated using an adjoint method

whose cost is independent of the number of input variables, m, and instead propor-

tional to the number of output QoIs, which is typically smaller than m. Denoting

this cost of solving the nonlinear model once by c, the cost of identifying the opti-

mal model with the SMC algorithm for each value of A scales as O(cLT) for T total

iterations and L particles (i.e., decoupled models) evaluated at each iteration. We

note that the cost of solving the coupled residual equations and evaluating the total

derivatives of many multidisciplinary models will be the overall limiting step at each

iteration. Therefore, in this analysis we assume that the cost of sampling over the

model space and updating the proposal in the SMC algorithm are negligible.

Nevertheless, with a judicious choice for the values used as the decoupled inputs to

each discipline, we can significantly reduce the cost for the model selection algorithm.

In particular, if the first-order mean of state variable, yi E Sj, is also used as the fixed
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input, ij = yi(px), the residual equation for discipline j is given by

Rj (-x, 7Y1, .... , y _1, 71i, Iyi+1, ... -. u ) = Ri (X, Y1, ... - Yi-1, Yi (Px), Yi+1, ... - Yn).- (3.9)

Given that RZ(p, y(px)) = 0, the unknown state variables that solve a perturbed

system of this form are given by the first-order mean values for the reference model.

Therefore, in this case it is not necessary to re-evaluate the system's outputs after

decoupling certain connections. Furthermore, with the linearization point for the

derivative evaluations also remaining the same for a decoupled model, M, only the

dependence of the residual equations on the state variables changes. To account for

this change in variable dependence, it is sufficient to mask the effect of the decoupled

inputs in the &yR. matrix (i.e., mask Q,,R for the example above) and re-compute

the total derivatives for model M using the updated matrix in equation (3.5).

We note that by not solving the derived nonlinear system for decoupled model

M, we are not guaranteed of the existence of a solution to the corresponding set of

coupled residual equations. In addition, when decoupling a subset of the inputs for

this model by masking the Jacobian matrix, 3y7, Zit is also necessary to check that

this matrix remains invertible so that the linearization of model M exists. We refer

the reader to Section 5.4 for sufficient conditions to guarantee the invertibility of this

matrix. We note that these condition serve as a good empirical heuristic for the

convergence of the decoupled nonlinear model and the existence of a solution when

using an iterative numerical method to compute the decoupled model's state variables

and output QoIs.

By not requiring a model evaluation and replacing the cost of evaluating the

decoupled model's output uncertainty by matrix operations, the computation of the

KL divergence is negligible for a decoupled model after evaluating the first-order mean

and derivatives for the reference model, Mo. Therefore, the complexity of the model

selection algorithm in this case reduces to the cost of performing one evaluation of

the reference model outputs and derivatives and the total cost of running SMC with

a linear-time model, resulting in a total complexity of O(c + LT).
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We note that the solution of this reduced cost method will defer from the solution

of algorithms that use more accurate representations for the fixed coupling variables,

and account for the discrepancy in the output of the decoupled nonlinear model.

Nonetheless, this method present a cost-effective method to identify near-optimal

decoupled models in a computationally-limited setting.

3.2 Improvements to Model Output Uncertainty

For multidisciplinary models with highly nonlinear relationships between the input

and output variables, the linearization presented in Section 3.1 introduces a bias in the

estimates for the mean and covariance of the output QoIs. This leads to a discrepancy

between the Gaussian distribution for the linearized outputs and the actual Gaussian

approximation for the output QoIs. In this section we explore two methods to improve

the linear-based estimates for the mean and variance of the output variables.

3.2.1 Higher-Order Approximations

One natural approach for increasing the approximation accuracy of the model lin-

earization is to include the second-order terms in the Taylor series approximation to

the model outputs

d 1 d2 F
f (X) = J7(pZ, y(/x) dx7 2 xi d2 (X - x, (3.10)

where the second-order derivatives depend on the Hessian information of the coupled

residual equations, and all derivatives are evaluated at the mean point, (PXI, y(Px)).

Using the higher-order expansion, the mean and covariance of the quadratic approx-

imation to the model outputs is given by

1 d2y
lit = (Px I Y(Px)) + -Tr dx2 X (3.11)

[d [dlT 1 (d2 F d2y
E - ] EX + -- Tr yEd2 EX (3.12)dx dx 2 dx 2 xdx2
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In comparison to the mean and covariance in (3.6) and (3.7) based on the linearized

approximations, the higher-order derivative information can be used to correct the

estimates for these moments and better approach the optimal Gaussian approximation

to the output QoIs.

On a computational note, in cases when directly computing the traces involving

the Hessian matrix are prohibitively expensive, users may take advantage of recent

advances in randomized trace estimation methods that only require the application of

the Hessian on random vectors (e.g., standard Gaussian vectors). For an application

of these randomized methods in the context of PDE-constrained optimization, the

reader is referred to [1].

3.2.2 Control Variate Corrections

A second approach for increasing the estimation accuracy for the mean and covariance

of the output QoIs is based on using control variates as a variance reduction strategy.

To estimate the expectation of a random variable, f E RP, control variates take

advantage of an auxiliary variable, g E RP, with an analytically known expectation,

to construct the new random variable

f + C(g - E[g]), (3.13)

where C E RP is a set of tuning parameters. Given that E[f] = E[f] from linearity, f

is an unbiased estimator for f and its variance is given by

V[f] = V[f] + C2V[g] + 2C -Cov[f, g], (3.14)

. where V[.] and Cov[., -] are vectors that denote the elementwise variance and covari-

ance of their respective arguments. Minimizing the quadratic function for the variance

with respect to each entry of C, the optimal tuning parameters, C*, are given by

C* - Cov[fg] (3.15)
V~g]'
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where the ratios are computed elementwise. This results in an unbiased estimator for

E[f] with variance

V[f] = V[f] - (Cov[fg]) 2 /V[g] = (1 - p[f g] 2 )V[f], (3.16)

where p[f, g] E RP is a vector containing the elementwise correlation coefficients of

the random variables and 1 E RP is a vector of ones. We note that if f and g are

uncorrelated, the estimator recovers the original variance of f. Otherwise, if the

correlation of the statistics is positive, the variance of the mean estimate for the new

random variable is strictly reduced. Using N Monte-Carlo samples to estimate the

expectation of f, the unbiased estimator for the mean is given by

N

JE~f] ~ fN = > [f U) + C*(g(i) - E[g])] , (3.17)
j=1

where in practice C* is based on the empirical correlation between f and g from the

collected samples. This estimator has variance V[fN] =V1 ] (1 - p[f, g] 2)V[f]

as compared to the standard Monte Carlo estimator variance of 1V[f]. We note that

to determine the number of samples required to meet a desired threshold, a user may

monitor the root mean squared error given by RMSE =VV[fN] where the variance

is computed empirically from the collected samples.

Given that the first-order Taylor series approximation is correlated with the re-

sponse of the output QoI by construction, we can use the first order linearizations as

a control-variate (i.e., g = f) to approximate both the mean and covariance of the

QoIs. These control variates take advantage of both the linearization and a sample-

based approach to produce low-variance and unbiased estimators for the statistics of

the output variables of each model using a small number of additional samples.

In particular, we note that while estimating the mean of the output QoIs follows

from the above discussion, computing the covariance using control variates requires

the variance of these variance estimators in order to determine the optimal tuning

parameter. These higher order moments can also be determined approximately from
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the collected samples, given that the control variate estimators still perform well when

the elements of C are perturbed from their optimal values. The reader is referred

to Ref. [48] for a thorough discussion and aualysis of control variate estimators for

mean and variance in the context of optimization under uncertainty.

Finally, we conclude this section with a comparison of the computational complex-

ity of the control variates approach to the model linearization approach discussed in

Section 3.1. While a model linearization allows for efficient uncertainty propagation

with only a single evaluation of the nonlinear model, its accuracy is limited by the bias

introduced from the linear approximation and the locality of the linearization point.

On the other hand, with an increasing number of samples, the control variates provide

reduced variance estimators for the statistics of each model's outputs. However, to

cheaply determine the optimal coupling for performing uncertainty quantification, it

is necessary that the algorithm does not incur a greater computational expense that

quantifying the uncertainty in the reference multidisciplinary model, Mo. When using

the control variate estimators with N samples in the SMC algorithm with L particles

and T iterations, the algorithm complexity scales as O(NcLT), where c is the cost

of solving the nonlinear model. Therefore it is necessary to trade-off the accuracy of

the model output approximations with this algorithm complexity for identifying the

optimal models when selecting the number of samples, N, to use in these estimators.

3.3 Extension to Bayesian Approach

In the previous section we addressed how to exploit the model structure via Taylor

series approximations and control variates to cheaply estimate the KL divergence for

the output QoIs of different model structures. These methods are combined with the

combinatorial optimization algorithm based on SMC that was presented in Section

2.4 to determine a set of decoupled models that accurately characterize the mean and

covariance of the system outputs.

However, in many applications where the model outputs follow complex distri-

butions that are not accurately described by their first two moments (i.e., random
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variables with multi-modal or heavily skewed distributions), we need an alternative

approach to assess the accuracy of a decoupled model for describing data from the

output distribution of the reference model. For algorithmic completeness, in Sections

3.3.1 and 3.3.2 we explore one approach to do so that is inspired by reformulating the

model selection problem using a Bayesian approach.

3.3.1 Posterior over Model Space

Given samples for the output QoIs of the reference model, D = {f) }_ 1, the mini-

mization of the KL divergence term in equation (2.5) may be written as

mi DKL(7rfM 117fM) mi Erf [log(7rfM0 ) - log(7rfM)]

= Mm IEfM [log(rf,)] (3.18)

ma log(7rfr (f ()))
=1

where in the second equality we have used that the first term is constant with respect

to M, and in the third line we approximated the expectation with a Monte Carlo

estimate. Noticing that the evaluation of the samples from model MO under the log-

density is representative of the likelihood of the reference model data coming from

the decoupled model, we can define the Monte Carlo estimate in line (3.18) as the

log-likelihood of data D given model M,

N+ log(7rfm (f(j))) log(L (DIM)). (3.19)
j=1

This measure for the accuracy of decoupled model M can then be combined with the

sparsity penalty term, P(M), that is representative of a model prior to arrive at the

equivalent optimization problem,

min DKL(7rfmo 1IlfM) - AP(M) max log(L(DIM) exp(-AP(M)))
MEM MEM (3.20)

M max L(DIM) exp(-AP(M)).
MEM
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As a result, we can formulate the process of finding the optimal decoupled model

of a multidisciplinary problem as identifying the model M E M that maximizes the

posterior probability over models, as given by

P(MID) oc L(D|M)Q(M), (3.21)

where Q(M) is the prior on each model. With this Bayesian formulation, a single

optimal model can be identified from the maximum a posteriori (MAP) point of the

distribution, M* = arg maxMEM P(MID). Alternatively, we can also characterize the

distribution over possible models that can represent the data weighted by a prior that

favors sparse model couplings.

To characterize the posterior, we can using various numerical algorithms includ-

ing Markov Chain Monte Carlo (MCMC) or by adapting the sequential Monte Carlo

algorithm presented in Section 2.4 for model sampling. We refer the reader to Ref.

[24] for a comprehensive overview of numerical methods for Bayesian analysis. Nev-

ertheless, to use these algorithms we need to efficiently estimate the likelihood of the

data under the true log-density without having direct access to this density, lrfmo.

One approach that has gained popularity in the inference community for perform-

ing model selection with intractable likelihoods, as commonly encountered in model

selection problems, is Approximate Bayesian Computation (ABC).

3.3.2 Approximate Bayesian Computation

ABC first emerged in the context of rejection sampling for inferring model parameters.

For each parameter drawn from the prior distribution, ABC collects several samples

from the associated model and accepts the parameter if these data samples lie close

to the data collected from a reference model. Due to the random nature of the

model evaluations, the measure of closeness is relaxed by comparing a low-dimensional

summary statistic for the data given by r7 (i.e., such as mean, variance and higher

order moments), and using a distance function, v, to determine if the statistic for the

data from the approximate model lies close to data from the reference model.
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Using s batches of data from the approximate model, Dj, the closeness of each

batch to data collected from the reference model, D, is computed and used as a

measure for the posterior distribution of model, M, as given by

P(MID) oc 1 E v((D), (Dj))<Q(M). (3.22)
j=1

In the context of Bayesian model selection, ABC naturally merges with the SMC

algorithm for sampling over the model space, M. Following a similar adaptive SMC-

ABC algorithm that was proposed in [201 for continuous random variables, we modify

Algorithm 1 by sampling models from the prior, Q(M), and using the posterior in

(3.22) instead of (2.7) to assign probability mass to each model.

The probability mass for each model also depends on the tolerance parameter,

ct. This parameter is decreased adaptively at each iteration of the algorithm, t, by

measuring the effective sample size, analogously to the tempering parameter in the

SMC algorithm for combinatorial optimization. When beginning the algorithm at

t = 0 with a large co, most decoupled models generate outputs that lie within the

accepted tolerance which results in uniform weighting. As the algorithm progresses

and c is decreased, the collection of models slowly converge to those drawn from the

posterior distribution that corresponds to c -+ 0, while avoiding particle degeneracy.

As a result, by using the posterior in (3.22) to re-weight the models in the SMC-ABC

algorithm, the final models with the largest weights will have QoIs that lie close to

the outputs of the reference model according to the specified distance metric and

summary statistics.

The summary of the combined SMC-ABC algorithm for sampling and character-

izing the model posterior values given a set of data from the reference model-, D, is

described in Algorithm 3.

We note that while the user of the algorithm may design the summary statistics to

match the moments of all output variables of the model, a goal-oriented statistic could

also be chosen to ensure that the specified QoIs of the selected decoupled model lie

close in distribution to those in the reference model. Therefore, when using the SMC
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Algorithm 3: SMC-ABC for Decoupled Model Posterior
Input: Data from the reference model: D, Model Prior: Q(M), Initial and

final tolerance: co, 6 min, Distance and summary statistics: v and 7,

Number of Particles: L

1 Set tolerance c = eo;

2 Sample models: M(1) id Q(M) for 1 = 1,... , L;

3 Initialize weights: w4) = 1/L for 1 = 1,... , L;

4 while c > 6min do

5 Fit proposal: qt +- Fit.Proposal(Mt, wt);

6 Re-sample: Mt <- Re-sample(Mt, wt);

7 Move models: Mt <- Move(qt, Mt, wt);

8 Update E to maintain a minimum ESS(wt);

9 Update weights: wt <- Import anceWeights((, v, 71, D, Mt, wt);

10 end

11 Return Mt

algorithm together with ABC to evaluate the posterior probability of each decoupled

model with a goal-oriented statistic, q, the algorithm will efficiently explore the model

space to find the set of discipline couplings that trade-off the complexity of the model

with the closeness of the specific QoIs.

We also comment on approaches that have been recently proposed to accelerate

ABC algorithms and can be combined with Algorithm 3 for model selection. These

include generating more data by re-sampling from the estimated cumulative distribu-

tion function for the outputs of each model [15], evaluating the models at the same

values of the input variables, and collecting batches of data with different sizes from

each model depending on their estimated closeness to the true model data in order

to reduce the computational cost of evaluating infeasible models [501. Finally, recent

theoretical results have shown that under certain assumptions one data sample per

model is sufficient for ABC combined with MCMC and this will not affect the asymp-

totic behavior of the algorithm [111. Together with Algorithm 3, these results could

reduce the number of model evaluations and the overall computational complexity of

the Bayesian approach to optimal model selection.
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Chapter 4

Numerical Results

In this chapter, we present results from applying the model selection algorithms from

Chapter 3 to three aerospace engineering examples. These are a three-discipline

model of a satellite used to detect forest fires in Section 4.1 that was presented in an

uncertainty quantification context by Sankararaman et al. 1511, a model for turbine

engine cycle analysis in Section 4.2 that was developed by Hearn et al. [27], and an

aero-structural model of a lifting surface in Section 4.3 that was developed by the

MDOLab at the University of Michigan [291.

4.1 Fire Detection Satellite Model

In this section we begin by studying the satellite model with a nominal set of param-

eters for the input uncertainty distribution in Section 4.1.1. The effect of different

input uncertainty and the use of control variates for improving the uncertainty esti-

mates are also analyzed in Sections 4.1.2 and 4.1.3, respectively.

4.1.1 Nominal Input Uncertainty

To analyze the performance of a fire detection satellite under uncertain operating

conditions, we consider a simplified model that comprises three disciplines: orbit

analysis, attitude control, and power analysis. As seen in Figure 4-1, the model
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features both feed-forward and feedback coupling variables to exchange information

between the disciplines.

H Pother

F8 , 9, Attitude P"0 ' Asa

Ttot

Figure 4-1: Fire detection satellite

model from Ref. [511
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Figure 4-2: Joint distribution of the
reference model

To represent the uncertain conditions, the model includes nine Gaussian random

variables that are described by their mean and standard deviation parameters in

Table 4.1. After propagating the input uncertainty through the disciplines, the seven

state variables connecting the disciplines are also uncertain and are distributed with

potentially non-Gaussian probability distributions. These state variables are: the

orbit period (Atrit), eclipse period (Atecipse) , satellite velocity (v), maximum slewing

angle (sew), the power of the attitude control system (PAcs), and the moments of

inertia (Imax, and Imm). In addition, the orbit period is an input to two disciplines

(orbit analysis and attitude control) resulting in a total of d = 8 coupling variables

for this satellite model as seen in Figure 4-1. These coupling variables are used to

compute the three output QoIs: total torque (rtt), total power (Ptot), and the area

of the solar array (Asa). The joint probability distribution of these output variables,

1rf, is displayed in Figure 4-2.

By defining the model displayed in Figure 4-1 as the reference model, M0 , our algo-

rithm for optimal model selection considers possible decoupled models, M, that have

a smaller number of discipline couplings by fixing a subset of the coupling variables of

each discipline to their first-order mean value. In order to empirically validate the use
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Table 4.1: Random variable parameters in the satellite model from Ref. [51]

Random Variable Symbol Mean Standard Deviation

Altitude H 18.0 x 106 m 1.0 x 106 m

Power other than attitude control Pother 1.0 X 103 W 50.0 W

Average solar flux F, 1.4 x 103 W/m 2  20.0 W/m 2

Deviation of moment axis 0 15.00 1.00

moment arm for radiation torque LSP 2.0 m 0.4 m

Reflectance factor q 0.5 1.0

Residual dipole of spacecraft RD 5.0 Am 2  1.0 Am2

Moment arm for aerodynamic torque La 2.0 m 0.4 m

Drag coefficient Cd 1.0 0.3

of model linearizations to estimate the KL divergence of the decoupled models, we

compare the Gaussian distribution for the linearized outputs of the reference model

to the uncertainty in the output variables of the nonlinear coupled system based on

104 Monte Carlo samples. As seen in Figure 4-3, the joint empirical distribution

for the output variables, 7rf, is closely approximated by the multivariate Gaussian

distribution resulting from the linearized equations in equation (3.4).

100
*Monte Carlo Samples

50 -_Gaussian Approximation

0

1200

1000

14.

12

10_________

0.01 0.02 0.03 1000 1200 10 12 14

tot P Asa

Figure 4-3: Comparison of Gaussian approximation and Monte Carlo samples

Using these linearizations for the output variables, the SMC algorithm explores
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the model space using L = 100 particles to determine the optimal decoupled model,

M*(A), that solves the combinatorial optimization problem posed in equation (2.5).

For each value of A, the algorithm identifies a subset of discipline couplings that best

trade-off the accuracy of the output distributions, that is estimated from the KL

divergence, DKL(7g911 M*), and the added sparsity in the discipline couplings, as

measured by P(M*).

With increasing values for A, the objective in the optimization problem adds a

greater penalty to models with less sparsity in the discipline couplings. This results

in a set of increasingly sparser models that remove additional couplings at the expense

of accuracy in the output distribution. These decoupled models for 4 different values

of A in A = [10', 10-, 101, 100] are presented in Figures 4-4 to 4-11 with the

decoupled connections indicated by dashed lines. The joint distribution for the output

variables, 7rfm,, of the optimal model corresponding to each value of A is also plotted

in the figures below.

For the fire detection satellite model, the algorithm identifies that the feedback

coupling variable between the attitude control and power disciplines for the moment

of inertia (Imax, and Imm) could be fixed to their mean value while having a small

effect on the accuracy of the joint output distribution, as seen in Figures 4-4 and 4-5.

With increasing values for A, the slewing angle, the satellite velocity, and the orbit

period are also found to weakly contribute to the total torque and the overall power

requirement for the attitude control subsystem, as seen in Figures 4-6 and 4-7. The

subsequent sparser model for A = 10' fixes these discipline coupling variables along

with the state inputs to the power discipline for the orbit and eclipse period. Finally,

we note that for A = 100, the optimal model has fully decoupled disciplines and the

joint distribution for its output variables is given in Figure 4-11.

In Table 4.2 we present the values for the KL divergence between the Gaussian

distribution for the linearized outputs of the reference model, MO, and the optimally

decoupled models, M*, that we denote as the linearized KL divergence. The number

of active coupling variables, representing the increasing sparsity of each decoupled

model with larger values of A, is also presented in the table below.
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for A = 1.0 x 10-4
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Figure 4-5: Joint distribution for A =

1.0 x 10-4
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Figure 4-6: Optimal model coupling
for A = 1.0 x 10-3
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Figure 4-8: Optimal model coupling
for A = 1.0 x 10-1
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1.0 x 10-1
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Figure 4-10: Optimal model coupling
for A = 1.0 x 100

Table 4.2: Linearized KL divergence for

inputs
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Figure 4-11: Joint distribution for A =

1.0 x 100

decoupled satellite models with nominal

A = 1 x 10-4 A = 1 x 10-3 1A= 1 x 10-1 A = 1 x 100

Linearized KL Divergence 7.30 x 10-16 7.43 x 10-4 4.20 x 10-3 1.33 x 10-1

Active Coupling Variables 4/8. 3/8 1/8 0/8

From the table and figures above, we observe that the optimal models identified by

the model selection algorithm corresponding to A E [10-4, 10-1] result in very similar

distributions for the model outputs as the reference model based on the linearized

KL divergence. Furthermore, while the final optimal model for A = 100 approxi-

mately captures the marginal uncertainty in the outputs, this fully decoupled model

does not represent, as accurately, the correlations between the output variables, as

seen in the joint marginal distribution for Ptot and ttot in Figure 4-11. Nevertheless,

given that all decoupled models feature only feed-forward connections, these models

with approximate coupling can be used to cheaply propagate the uncertainty in the

multidisciplinary model without having to iteratively solve for the outputs that cor-

respond to each set of input variables. This results in a substantial computational

savings for performing forward UQ. In particular, if low accuracy is sufficient in the
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output uncertainty, the disciplines can be analyzed independently using the model

corresponding to A = 100.

Finally, we analyze the pointwise errors of the three model outputs in each de-

coupled model, M*, relative to the reference model, Mo. The pointwise error is given

by the difference in the values of the output variables in the decoupled and reference

models for the same input sample. The errors for 104 input samples are displayed

in Figures 4-12 to 4-15. With an increase in A, the sparser models result in progres-

sively greater pointwise errors, which are seen in the greater spread of the output

values between both models. Although the set of discipline couplings corresponding

to A = 10-1, and 100 have relatively accurate joint distributions for the model output

uncertainty, their larger pointwise errors makes them less adequate for computations

that require accurate pointwise approximations, such as multidisciplinary optimiza-

tion. Nevertheless, the models associated with A = 104, and 10- (Figures 4-4 and

4-6) have accurate distributions for the output variables and low pointwise errors

relative to the reference model, MO.
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Figure 4-12: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-4
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Figure 4-13: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-3
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Figure 4-14: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-1
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Figure 4-15: Comparison of QoI with optimally decoupled model for A = 1.0 x 100

4.1.2 Different Input Uncertainty

In comparison to methods that only partition and reorder disciplines to reduce feed-

back loops based on the graphical structure of the model [141, the algorithms presented

in this thesis account for the system's physics to identify an optimal approximation

of the system coupling. In particular, this coupling is dependent on the sensitivities

of the outputs to each input variable and the scaling by the input uncertainty (e.g.,

the covariance matrix, EX, for normally distributed input variables). Therefore, when

changing the parameters describing the uncertainty in the input variables, the optimal

decoupled model should be re-assessed to minimize the discrepancy in the estimates

for the output uncertainty.

For the satellite model, we consider the impact of different input uncertainty by

introducing uncertainty in the input for the satellite's slewing time period (Atslew),

that was previously fixed in the above analysis. This variable is an input to the

attitude control discipline and affects the slewing torque and the resulting total torque
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on the satellite. With the previous input parameters, the effect of slew is relatively

negligible, and so its effect is accurately represented by the value for the mean slew

angle, 9 slew.

However, by shifting the mean and describing the slewing time-period as a normal

random variable, Atsew ~ A(5, 0.52), the joint distribution for the output variables

based on 10' Monte Carlo samples is displayed in Figure 4-16. Using the model lin-

earization approach, the optimal decoupled models identified by the model selection

algorithm for A = 104 and 10- with these different input parameters are presented

in Figures 4-17 and 4-19, respectively. The joint distributions of the outputs for these

models are given in Figures 4-18 and 4-20. These models differ from the optimal

models identified in Section 4.1 due to the necessity of maintaining the 0,1,w coupling

variable in this case to accurately compute the total satellite torque. We note that

the models for A = 10-1 and 100 match the earlier optimal models due to the greater

weight on having sparse discipline couplings in the objective function with these val-

ues for the tuning parameters.
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Figure 4-16: Gaussian approximation and Monte Carlo samples with different inputs

Furthermore, we also present the values for the linearized KL divergence between
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Figure 4-20: Joint distribution for A =

1.0 x 10-3

the Gaussian distribution for the outputs of the reference model, M0 , and these'

optimally decoupled models, M* in Table 4.3. These values are also compared with

the linearized KL divergence from using the optimal decoupled models identified in

the first section to represent the outputs with the different input uncertainty in Table

4.4. The discrepancy, particularly for A = 10-4, highlights the importance of taking

the input uncertainty into account when identifying an optimal decoupled model.
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Table 4.3: Linearized KL divergence for decoupled satellite models with different

inputs

A = 1 x 10-4 A = I x 10-3 A = 1 x 10-2 A = 1 x 100

Linearized KL Divergence 0 2.80 x 10-4 1.04 x 10-2 7.75 x 10-2

Active Coupling Variables 5/8 4/8 1/8 0/8

Table 4.4: Linearized KL divergence with sub-optimal decoupled models

A = 1 x 10-4 A = 1 x 10- 3 A = 1 x 10-2 A = 1 x 100

Linearized KL Divergence 68.5 x 10-4 68.5 x 10-4 1.04 x 10-2 7.75 x 10-2

Active Coupling Variables 5/8 4/8 1/8 0/8

Finally, we note that by further decreasing the time period to At,,ew ~ (1, 0.012),

the importance of the 0,1e, coupling variable becomes more pronounced. In particular,

the optimal decoupled models for A = 104 to 10-1 and A = 100 to 101 with this input

uncertainty are displayed in Figures 4-21 and 4-22, respectively.
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Figure 4-21: Optimal model coupling
for A = 10-4 to 10-1

Asa
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Figure 4-22: Optimal model coupling

for A.= 100 to 101
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4.1.3 Control Variate Corrections

To improve the approximation of the objective in the model selection algorithm, we

use a limited number of samples of each nonlinear model and the linearized model as

a control variate to more accurately estimate the moments of the output variables.

By using samples from each nonlinear model, we are comparing closer Gaussian ap-

proximations to the model outputs.

We note that using samples introduces randomness in the computed KL divergence

and the overall objective, that is also a random variable in this case. However, by

drawing a new sample estimate for the KL divergence at each iteration of the SMC

algorithm for a given model, the randomness of this estimator is in principle averaged.

and the algorithm should still converge to the optimal model asymptotically. This

provides one additional advantage of using SMC to a combinatorial optimization

algorithm with deterministic steps (i.e., branch-and-bound) or a greedy approach that

can make incorrect decisions when observing noisy values of the objective function

and may not allow them to be corrected in future iterations.

In this section, we first consider the application of control variates to correct

the estimates for the mean of the three output variables of the satellite model with

the different input uncertainty conditions presented in Section 4.1.2. From the high

correlation observed between Monte Carlo outputs of the nonlinear model and its

linearization, as seen for the Pt, output variable in Figure 4-23, the linearization

is used as a cheap-to-evaluate control variate in this study. The convergence of the

control variate estimator for the mean of the Ptrt output with a 95% standard error

interval is seen in Figure 4-24. In the figure, we also observe the bias in the mean of

the Gaussian output derived from the linear model approximation in comparison to

the unbiased control variate estimator, and the slow convergence of a standard Monte

Carlo estimator.

For this study, we use 102 samples to correct the Gaussian approximation for the

output means of each model. A comparison of the control variate estimates to the

Gaussian approximation of the linearized model and 104 Monte Carlo samples of the
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Figure 4-24: Control variate estimates
with increasing sample size

outputs is given in Figure 4-25. The figure also demonstrates the effect of the control

variates in correcting the bias in the mean introduced by the linear-based Gaussian

approximation for the reference model, Mo. This is particularly evident for the Trot

output that has a skewed distribution.
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Figure 4-25: Linearized Gaussian approximation and control variate estimates in
comparison to Monte Carlo samples

When using the control variate estimators to compute the KL divergence, the

model selection algorithm identifies the same optimal models as those presented above

for larger values of A, where sparsity of the discipline couplings has a greater effect

than model accuracy, while a more refined set of models is found for lower values
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of A. In particular for A = 10-5 and A = 10-6, the optimal models identified the

discrepancy in the mean calculation of the models selected in the previous study and

chose denser models to more accurately represent the outputs. These two models

along with their joint PDFs are displayed in Figures 4-26 to 4-29. We note that while

the solution for the optimal model, M*, for A = 10-6 includes the feedback coupling

between the power analysis and attitude control disciplines, the models for A > 10-5

are still entirely feed-forward.
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Figure 4-26: Optimal model coupling
for A = 1.0 x 10-6
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Figure 4-28: Optimal model coupling
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Figure 4-29: Joint distribution for A=
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In the second application of control variates, we use 10' samples of each nonlinear
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model to correct both the mean and variance estimates for the satellite model outputs

with the original input uncertainty that was explored in Section 4.1. The convergence

trends of the control variate estimators for the variance of the Trtt and Pt output

variables are displayed in comparison to standard Monte Carlo variance estimators

in Figures 4-30 and 4-31, respectively. We note that although 10' samples of each

model provide a relatively accurate representation of the first two moments, it may

be sufficient in certain problems to use a smaller number of samples to determine the

mean and variance within a 95% standard error interval.
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Figure 4-30: Control variate estimates Figure 4-31: Control variate estimates
for variance of rtt for variance of Po0

Similarly to the application of control variates above, we observe similar models

as the initial study in Section 4.1 for A = 100 and 10-1, and models with a denser set

of couplings for smaller values of A when including more accurate estimates for the

output mean and variance. The set of optimal models identified by the model selection

algorithm for A = 10-6, 10-5 are plotted in Figures 4-32 and 4-33, respectively. We

note that these models approach the reference model for increasingly small A to

accurately reconstruct the distribution of the reference model outputs.

Finally, we evaluate the estimates of the KL divergence between the Gaussian

approximation to the outputs of each model with mean and variance given by the

control variate estimators with 101 samples. The mean of 250 samples for the KL

divergence of each decoupled model's outputs along with a 95% confidence interval

is given in Table 4.5. We note that by using samples to correct and define the mean
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Figure 4-33: Optimal model coupling
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and covariance of the reference model output distribution, the optimization algorithm

is identifying a model that closely matches the uncertainty in these output samples.

Therefore, the results for the KL divergence in Table 4.5 are biased in comparison

to the true values based on the exact reference distribution. With the closeness of

the outputs for all models in this problem as seen above, this bias leads to locally

optimal model choices that may change when using a different set of output samples.

Nevertheless, this effect is reduced by using a larger number of samples, and we

suppose that in most problems this bias will be negligible in comparison to the error

from the approximation of the model coupling.

Table 4.5: KL divergence estimates

variate estimators for the mean and

for decoupled satellite models based on control

variance

A =1 x 10- 6  A= 1 x 10- 5  A= 1 x 10-1

KL Divergence Estimate 3.26 0.61 x 10-3 3.84 + 0.74 x 10-3 1.08 + 0.18 x 10-2

Active Coupling Variables 8/8 5/8 1/8
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4.2 Turbine Engine Model

A model for turbine engine cycle analysis was presented in Ref. [27J. The reference

model for the system, MO, is displayed in Figure 4-34 and consists of 13 disciplines

for the 12 engine components and a performance function, which are connected by 22

coupling variables. These disciplines model the engine with a core air-stream pass-

ing through a fan, compressor, burner and turbine as well as a second stream of air

that bypasses the engine core. For each set of inputs that include the fan pressure

ratio (FPR), compressor pressure ratio (CPR), bypass ratio (BPR), and mass-flow

rate (W), the system's disciplines iteratively solve for 4 output quantities of inter-

est: thrust-specific fuel consumption (TSFC), net thrust (F,), overall pressure ratio

(OPR), and engine burner temperature (T4).

~Perf

E+ TSFC,
Bypass Duct, Fn,

W Line T4 Nozzle OPR

T Flght Inlet Fan Splitter Comp Burner Turbine Turbine

BPR Shaft
CPRP

Figure 4-34: Turbine engine cycle model from Ref. [27]

To analyze various operating conditions, the model inputs are represented with

Gaussian distributed random variables whose parameters are listed in Table 4.6.

By propagating 10' Monte Carlo samples of these inputs through the nonlinear

system, the non-Gaussian distribution of the output variables, 7rf, is empirically char-

acterized for the selected QoI in Figure 4-35. In the optimal model selection algorithm,

we use the linearizations of these output variables with respect to the inputs when

fixing different subsets of the discipline couplings to their estimated mean values. We
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Table 4.6: Random variable parameters in the turbine engine cycle model

Random Variable Symbol Mean Standard Deviation

Fan pressure ratio FPR 1.5 0.01

Compressor pressure ratio CPR 15.0 0.10

Bypass ratio . BPR 2.0 0.10

Mass-flow rate W 1000.0 VfI .0

then compare the resulting multivariate Gaussian approximation for the outputs of

each linearized decoupled model, irim, to the output distribution of the linearized

reference model, 7r M.
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Figure 4-35: Joint distribution of the reference model

Applying the model selection procedure described above with L = 1000 parti-

cles, the SMC algorithm identifies decoupled models for four different values of A in

A = [10-1, 100, 101, 10']. These models are presented in Figures 4-36 to 4-39 with the

decoupled connections indicated by dashed lines. Similarly to the satellite model, we

observe that with an increase in A, the optimal solutions to the combinatorial opti-

mization problem have greater sparsity in the number of discipline couplings. This

results in a set of models that sequentially remove weak connections to increase the

sparsity of couplings in exchange for accuracy in the output distributions. For this
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turbine engine case study with A = 101, and A = 100, this results in neglecting the

effect of the feedback from the low-pressure turbine on the fan and the variability of

inlet ram drag on system performance.

Perf
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Bypass Duct, F,,
Wigr 4Line T4c g No. 0 OPR

Flght Inlet Fan Splitter Comp Burner Turbine Turb

BPR Shaft
CPR H--P

Shaft--------------------- LP

Figure 4-36: Optimal model coupling for A = 1.0 x 100
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Figure 4-37: Optimal model coupling for A = 1.0 x 100

With a further increase in A and a greater penalty on low sparsity models, the

effect of the bypass line and the feedback from the high-pressure turbine are also ne-

glected in the optimal models presented below. The accuracy of the system outputs

corresponding to the decoupled model for each value of A is displayed in the joint

distributions of the output Qol in Figures 4-40 to 4-43. We observe that while the
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Figure 4-38: Optimal model coupling for A = 1.0 x 101
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Figure 4-39: Optimal model coupling for A = 1.0 x 103

distribution for the output TSFC variable is closely captured with the decoupled

models for A = 10-1, and 100, the correlations of this variable are not as accurately'

represented when decoupling connections from the bypass line and feedback from the

high-pressure turbine. This effect on the correlation is expected given the tight bal-

ance between the bypass flow and the core flow through the high pressure turbine,

that together produce most of the engine's thrust.
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Figure 4-43: Joint distribution for A =

1.0 x 103

Furthermore, while the first three models accurately capture the net thrust, Fn,

the uncertainty in this variable is poorly represented with the last model when ne-

glecting the contribution of the nozzle. Finally, all four models accurately represent

the uncertainty in the overall pressure ratio, OPR, and engine burner temperature,

T4 . As a result, depending on the application and available computational resources,

users may select an appropriate set of discipline couplings for. the turbine engine to

model the uncertainty in the system's output variables.

To quantitatively compare the decoupled models, we also present the linearized

KL divergence between the approximating Gaussian distributions for the reference

and optimally decoupled models of the turbine engine in Table 4.7. These results are
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presented along with the number of active coupling variables in each model (i.e., solid

lines in the model diagrams above) that demonstrates the increasing sparsity in the

decoupled models for larger values of A.

Table 4.7: Linearized KL divergence for decoupled turbine engine models

A = 1 x 10- 1  A = 1 x 100  A = I x 101 A = 1 x 103

Linearized KL Divergence 6.95 x 10-10 1.15 x 100 1.25 x 101 3.73 x 103

Active Coupling Variables 19/22 16/22 14/22 7/22

To further compare the models, the pointwise errors of the three outputs from

the performance discipline (TSFC, F,, and OPR) for the decoupled models corre-

sponding to A = 10-1, 100, and 101 are plotted in Figures 4-44 to 4-46. These figures

demonstrate the increasing errors in the outputs of the decoupled models relative to

the reference model at the same inputs for 103 samples with the reduction in the

number of discipline couplings. With the exception of the TSFC output variable in

the final model (Figure 4-46), the trends for the output variables are closely captured

by the decoupled models associated with A = 10-1, and 100. Nevertheless, users with

different requirements may still trade-off model sparsity and accuracy for performing

computations, such as multidisciplinary optimization, with these two decoupled mod-

els. While the optimal model for A = 100 eliminates one feedback loop from the low

pressure turbine leading to lower computational costs than the model for A = 10-1,

there is a trade-off with accuracy, as seen with the larger spread in the pointwise

errors of the TSFC variable.

Furthermore, these results for the pointwise error highlight the importance of the

bypass line to accurately estimate the TSFC when computing the turbine's per-

formance. We note that this coupling is included in the models corresponding to

A = 10-1, and 100.
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Figure 4-44: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-1
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Figure 4-46: Comparison of QoI with optimally decoupled model for A = 1.0 x 101

Finally, in addition to producing a sequence of sparsely coupled models with a

reduced number of discipline couplings relative to MO, the model selection algorithm

efficiently found all of the optimally decoupled models by visiting less than 5.7% of the

model space. This is contrasted with the otherwise intractable process of enumerating

all possible models to find the optimum of the combinatorial optimization problem

posed in equation (2.5).

4.3 Aero-Structural Lifting Surface Model

The OpenAeroStruct model was developed by the University of Michigan's MDOLab

129] to perform low-fidelity coupled aerodynamic and structural analyses for optimiza-

tion of a wing, such as the one displayed in Figure 4-47. While the aerodynamics

model uses a vortex lattice method to output the loads acting on the lifting surface,

the structural analysis uses a finite element model of a truss and beam element to

output the wing deflections at a set of spatial locations based on the aerodynamic
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loads acting on the surface.

Figure 4-47: Wing planform from Ref. [29]

The reference model for the coupled aero-structural analysis is seen in Figure 4-48,

where the output discipline computes the global quantities of interest: lift coefficient

(CL), failure criteria metric (Fc) based on a Kreisselmeier-Steinhauser function, and

weight-normalized fuelburn (Fuel). These outputs are computed for each set of the

input conditions as defined by: the span (span), Mach number (Ma), angle of attack

(a), and the air density (p) and speed of sound (a) that define the wing's altitude.

span,
Ma, a, Aerodynamics

p, a
Deflections Loads

Structures

Outputs F CL
Y*Fuel, CD

Figure 4-48: Aero-structural lifting surface model from Ref. [29]

In this study, we represent the input parameters as independent Gaussian distributed

random variables with the mean and variance parameters in Table 4.8.

To propagate the uncertainty through the feedback coupled model to the global

76



Table 4.8: Random variable parameters in the aero-structural lifting surface model

QoIs, the aerodynamics and structures disciplines iterate until convergence of the cou-

pling variables, up to a specified relative tolerance of 10-7 for the residual equations.

These couplings variables include an array of force and moment loads on the wing

that are computed by the aerodynamics discipline, and the wing deflections computed

by the structure discipline. To describe these fields we use a coarse discretization of

the wing surface that is displayed in Figure 4-49, where the blue nodes represent a

set of 7 span-wise points at 0.35 of the local chord where the loads are computed,

and the black nodes represent a total of 14 points on the leading and trailing edges

where the mesh deflections are computed. These 7 node locations for the loads and

14 node locations for the mesh deflections define a total of 21 coupling variables that

we analyze with the model selection algorithms described in Chapter 3.

0 Deflections
SLoads

Figure 4-49: Spatial locations for coupling variables in the aero-structural model

By propagating 10' Monte Carlo samples of the input variables through the non-

linear system, the non-Gaussian distribution of the output variables is empirically

characterized for the selected QoI in Figure 4-50.

Applying the optimal model selection algorithm based on the linearizations of
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Random Variable Symbol IMean IJStandard Deviation

Span span 59.0 m 1.0 m

Mach number Ma 0.84 0.1

Angle of attack a 3.00

Air density p 0.38 0.1

Speed of sound a 295.4 1
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Figure 4-50: Joint distribution of the reference model

these output variables, the SMC algorithm with L = 1000 particles identifies decou-

pled models for four different values of A in A = [10-6, 10-3, 10-1, 101] by visiting less

than 3.4% of the model space. The optimal models along with the joint distributions

of their output QoIs are presented in Figures 4-51 to 4-58, with the decoupled con-

nections indicated by lighter nodes in each figure. The neglected coupling variables

use.the first-order mean as fixed input values for the loads and mesh displacements

in the structures and aerodynamics disciplines, respectively.

In Table 4.9, we present the values for the linearized KL divergence between the

reference model outputs, and each optimally decoupled model, M*. Similarly to the
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Figure 4-51: Optimal model coupling.
for A = 1.0 x 10-6

Figure 4-52: Joint distribution for A =

1.0 x 10-6
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Figure 4-57: Optimal model coupling
for A = 1.0 x 101
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previous test cases, the number of active coupling variables is also presented for each

decoupled model in the table below.

Table 4.9: Linearized KL divergence for decoupled aero-structural models

A = 1 x 10 6  A = 1 x 10 3  A = 1 x 10 1  A = I x 101

Linearized KL Divergence 8.04 x 10- 2.28 x 10-4 2.54 x 10-2 1.81 x 100

Active Coupling Variables 11/21 6/21 4/21 2/21

For the aero-structural model with the specified global QoIs, the resulting optimal

model for A = 10-6 neglects the effect of most mesh deflections as inputs to the

aerodynamics discipline, particularly near the root of the wing, given their small

values with the specified wing material properties. As a result, for this model it is

sufficient to only couple the mesh deflections on both ends of the wing, the leading

edge of the starboard wing tip and the trailing edge of the port-side wing tip. With an

increase in A values and a greater penalty on finding sparse models, it is sufficient to

consider the effect of all first-order mean mesh deflections to characterize the output

uncertainty. This transforms the feedback coupled model into a feed-forward model

that computes the aerodynamic loads based on the fixed deflections and uses only

the updated loads to assess the deflections when computing the global QoIs. This

allows a user to cheaply propagate the uncertain inputs through the system (i.e.,

using only one iteration for the feed-forward system) with varying accuracy, based on

the number of coupling variables that are not fixed to their first order mean values

for the aerodynamic loads.

Finally, we compare the pointwise errors of the three output QoIs in the optimally

decoupled models corresponding to A = 10-6, 10-3, 101, and 101. Figures 4-59 to

4-62 display these errors and increasing bias in the QoIs of each decoupled model in

comparison to the reference model (particularly with regards to the failure criteria),

by evaluating the models at the same inputs for 104 samples.
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Figure 4-59: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-6
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Figure 4-60: Comparison of Qol with optimally decoupled model for A = 1.0 x 10-3
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Figure 4-61: Comparison of QoI with optimally decoupled model for A = 1.0 x 10-1
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Figure 4-62: Comparison of QoI with optimally decoupled model for A = 1.0 x 101

82

0.9

0.8

0.7

9 0.6

0.5

0.4

0.3

0.5

-0.2

- -0.3

-0.4

-0.5

-0.6

-0.7

0.9

0.8

79 0.7
04

0.6

0.5

0.4

0.3

0.5

-0.2
0

-0.3

-0.4

-0.5

-0.6

9-0.7



We note that while the feed-forward model corresponding to A = 10-3 accurately

captures the outputs with relatively small variability, a bias is observed in the failure

criteria of the decoupled models for A = 10-1 and 101 when fixing the coupling vari-

ables for both the feedback in the mesh displacements and a subset of the loads. This

effect is a result of most converged samples having lower absolute values for the forces

and moments than their first-order mean (that are used as the fixed nominal values

for these coupling variables), as seen in Figures 4-63 and 4-64 for the forces in the

spanwise and chordwise directions at one point along the 0.35 -chord line of the wing.

By using greater absolute values for the loads, the beam's stress is over-predicted

and under-predicted for different input conditions, leading to the observed shift in

the failure criteria and poor predictive performance of this QoI in these decoupled

models.

X 10-4 X1-
2.5 x10 4

1.5 -inMonte Carlo Samples iMonte Carlo Samples
-First-Order Mean -First-Order Mean

1 1.5-

1

0.5-
0.5-
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01 -5-5000 0 5000 10000 15000 20000
-3 -2 -1 0 1Fat=

F at x2 x10
4  FV at x=2

Figure 4-63: Probability distribution Figure 4-64: Probability distribution

of chordwise loads of spanwise loads

As in the satellite model, we suppose that the optimal coupling will also change

under different input uncertainties. In particular, under different material properties

(i.e., a less stiff material for the wing with lower Young's modulus and shear mod-

ulus values), the feedback coupling may be necessary even for larger values of A to

accurately describe the load distributions as a function of the mesh displacements.
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Chapter 5

Analysis of Approximate Coupling

In this chapter, we motivate the error analysis for decoupling linear multidisciplinary

models in Sections 5.1 and 5.2. We present the pointwise error and the error in the

uncertainty of the output variables for both feed-forward and feedback systems in

Sections 5.3 and 5.4, respectively. Section 5.5 discusses the connections between de-

coupling in multidisciplinary models and results for the sparsification of probabilistic

graphical models.

5.1 Linear Systems

For a coupled nonlinear problem, R(x, y) = 0 and f = F(x, y), as described in

Section 3.1, the linearization of the coupled model at px, yGpx) is given by Z(x, y) ~

(x - 1x) + '(y - y(px)) = 0, and can be written as Ay = b where A = ' and

b = %Ry(px) - 2(x - px). We note that this formulation is exact in the case when

the system is linear (i.e., the outputs are linear functions of the input variables, x).

Decoupling disciplines in the model reduces the inputs of each nonlinear equation

by fixing a subset of the coupling variables. This reduction in the dependencies of

each discipline leads to added sparsity in components of the Jacobian matrix, A, and

adds an extra term to b. As a result, it is of interest to first analyze decoupling by

understanding these perturbations on linear systems.
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5.2 Solution Uncertainty

In this section, we consider the simplified linear system, Ay = b, where A C Rl",

b E R" is a random input, and y E R' is the solution vector. If b is normally

distributed (i.e., b ~ (p, E)), the solution has the distribution

y ~ K (A-sy, A-EA-T). (5.1)

A quantity of interest (QoI) in a linear system is typically specified by f = Cy for

C E RPX" and f E RP. In this case, f also has a normal distribution with mean and

covariance that are scaled by C.

Each row i in the linear system corresponds to a discipline equation that computes

one output, yi, as a function of the remaining variables. Decoupling one input, yj,

from this equation is given by fixing this input in the equation Ajjyj = bi-ZEk AikYk

to a nominal value, yj. In doing so, we modify the original system of equations by

setting the off-diagonal entry Aij to zero and adding the contribution of the fixed

value, Aijyj, to the vector b.

The perturbed system of equations when decoupling input j from discipline i is

given by y =bwith A - AijEij andb = b - Aijyjei, where Eij = eieT is a

rank-one matrix from the outer product of two unit vectors. This constant change to

the right hand side shifts the mean of the random vector to b - K(p - Aejyjej, E).

As a result, the distribution of the solution to the perturbed system is given by

Kr (A 1(/ - AiyZe)), . (5.2)

In the next section we analyze the error in the mean and covariance of the solution

uncertainty with the approximate model. We will consider both feed-forward and

feedback coupled problems separately.
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5.3 Feed-forward Systems

If the model is feed-forward, all equations only depend on previously computed out-

puts, and so the linear system of equations has a lower-triangular matrix, A. In

this case, the solution is computed by forward-substitution where yi = bi/All, and

Yk = (bk - i<k Akiyi)/Akk for k > 1.

When fixing input j in row i for j < i, the previous computations for variables

k < i are unaffected. Therefore Yk - yk = 0 for k < i, and in particular yj = 37. The

solution of the remaining variables in the perturbed system in this case is given by

(A - AtjEij) y = b - Aijyje, (5.3)
Ay - AijEijy = Ay - Aijyjej.

Rearranging the terms in the equation above, the error is given by the linear system,

Ay - Ay = AiEiy - Aiye (54)

A(y - y) = Aij (y ej - y ej).

Noting that yj = yj, the error of each entry in the solution for k > i is given by

yk - Yk = (A 1 )k,iAij(yj - ys). (5.5)

Therefore, the error in variable k in the perturbed system is proportional to the

deviation in the fixed value, yi, from the true value for variable j in the original

system, the coefficient Aij and the effect of the ith input on the solution (based on

entry (k, i) in the inverse of matrix A).

We can also analyze the error in the QoI, that is given by f-f = C(A-1).,jAjj (yj -

y). If f = y, for some m > i, then i - f = (A- 1)m,iAgj(yj - yj). Finally, for

triangular matrices, the eigenvalues of the matrix are given by its diagonal entries.

Therefore, under perturbations to the off-diagonal elements of A, the system remains

invertible (i.e., the diagonal entries and eigenvalues of A remain constant) and so a

solution exists after decoupling.
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We now analyze the effect of decoupling on the distribution of the solution vari-

ables, y. The shift to the mean of the solution uncertainty is given by (A- 1).,iAij (yj -

yj). By using the Sherman-Woodbury matrix identity, A- 1 = [A - A=E-1

A- 1 - B/a where B = (A- 1 ).,j(A- 1),. and a = -1/AI 3 + (A- 1)j. The change in

the covariance of the solution uncertainty is then given by

A- E-T - A-EA-T = BEBT/a 2 - BEA-T/a - A-EBT/a. (5.6)

This results in a dense update to all entries in the covariance matrix related to

variables k > i (i.e., the covariances between variables Yk for k < i are unaffected

in a feed-forward model). On the other hand, the update to the inverse covariance

matrix is the low-rank correction given by

ATE-1 - AE-1A = A 2 E TE-E - AjjE E- 1A - ATE-A Eij
ij ij ii(5.7)

= A (E-')i,iEjj - Aijej(E- 1),.A - AijA T(E-1).,iej,

which updates row j, column j and the diagonal element (j, j) of the inverse co-

variance matrix. Therefore, only the partial correlations associated with variable j

are updated. Furthermore, this indicates that any sparsity in the inverse covariance

matrix associated with variable yj that is present in the original model is lost in the

perturbed model, while the sparsity in this matrix between the remaining variables

is preserved in the perturbed model. In Section 5.5, we expand on these changes to

the sparsity of the inverse covariance matrix by making connections between sparsity

and conditional independence.

5.4 Feedback Systems

In models with feedback, the linear system of equations has a potentially dense matrix,

A. For a single perturbation to element (i, j) in A, the perturbed linear system is

also given by: Ay = b where A = A - AjjEjj and b = b - Aijyjej = b - AijEijy.
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The error is then given by

A(y - y) = AjjEj - (5.8)

= AjjEjj (y - y + y -y)

Rearranging the terms and solving for the error term, y - y, we have

(A - As3Ej)(y - y) = Aij Ei (y - Y) (59)

y - y = (A - Aij Ejj) -'Aij Ei(y -y)

Using the Sherman-Woodbury identity to compute the inverse of A plus a low-rank

perturbation, the simplified expression for the error is given by

-y = (A-1 ).,i ( A ) (y - y). (5.10)
(1 -- Aij(A- )ji)

Therefore, the error for variable k is proportional to (A-l)kiAij/(1 - Aij(Al)ji)

and the difference in the fixed nominal value, y,, from the true value for variable

j. We note that in comparison to the result in equation (5.5) for the error in. the

feed-forward case, the pointwise error of the solution vector in this case contains the

additional term (1 - Aij(A-')ji) in the denominator that accounts for the feedback

effect of the perturbed variable y, on the computation of y3 and its propagation

throughout the system. If (A-1)jj = 0, then variable yj does not affect equation j
and so we reduce to the feed-forward error calculation.

For the feedback case, the error in the covariance and inverse covariance matrices

of the solution uncertainty are also given by equations (5.6) and (5.7), respectively.

We note that unlike the feed-forward case, the covariances of all solution variables are

updated given the dense inverse of the perturbed matrix A for A that has nonzero

entries on both the upper and lower triangular parts of the matrix. On the other

hand, the update to the inverse covariance matrix is still local to row j and column

j,like the feed-forward case.

In the case of a feedback model, it is also important to quantify when it is possi-
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ble to decouple discipline inputs (i.e., under what conditions does the linear system

remain invertible after the perturbation caused by decoupling). One necessary con-

dition for A = A - AjjEjj to remain invertible is det(A) # 0. Using the matrix

determinant lemma for a rank-1 update, det(A) = det(A)det(1 - Ajj(A- 1)jj). As-

suming that the original system was invertible (i.e., det(A) $ 0), then det(A) $ 0 if

and only if 1 # Ajj(A-1)jj.

Finally, we consider the case of decoupling multiple discipline couplings by adding

several perturbations to the linear system. When decoupling the discipline couplings

for every pair of entries in the set J (where pair (i, j) E J denotes the coupling

of variable y3 as an input to discipline i), the error in the solution using the same

approach as in equation (5.9), is given by

-1

y-y = A - E Ass Ejj Asy Ejj (y - y. (5.11)
(ij)E i (,iAJ

Here we note that the vector Y E R" contains the values for all fixed inputs (assuming

that a common input to multiple disciplines is fixed to the same value). Furthermore,

we require that det(A) = det (A - E(ij)Ej AjjEjj) 4 0 for the system to remain

invertible after the perturbations. Using the matrix determinant lemma, we can

interpret this condition as

det(A) = det(A) 1 - ej A - AkEk) e] , (5.12)
t=1 (k,l)E ft

(i,j)Ej

where Y' denotes the remaining set of discipline couplings after having decoupled the

first t connections in J (i.e., Jt = J'-t \ (i, j) and J 0 = J). This indicates that

for the system to be invertible, each term in the product in equation (5.12) must be

non-zero, which holds true if the system is invertible after incrementally removing

each discipline coupling. Therefore, by testing that the system is invertible after

decoupling each pair (i, j), we can guarantee that a solution will exist for the model

after removing all connections in J.
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5.5 Connections to Probabilistic Graphical Models

In this section we analyze the error in the output uncertainty from the perspective

of sparsifying probabilistic graphical models. After relating decoupling to conditional

independence in graphical models in Section 5.5.1, we present results on sparsifying

graphical models for Gaussian, exponential family and more general distributions in

Sections 5.5.2, 5.5.3, and 5.5.4, respectively.

5.5.1 Decoupling and Conditional Independence

As alluded to in the previous section, when decoupling connections in linear systems,

the perturbation creates a local effect on the inverse covariance matrix of the out-

put distribution. For linear systems with Gaussian distributed output variables, the

sparsity of the inverse covariance matrix is directly related to the conditional inde-

pendence properties of the distribution. This sparsity is often represented with a

probabilistic graphical model g = (V, 8) where the nodes, V, represent random vari-

ables and the edges, E, represent dependence between the corresponding variables. In

this context, the lack of edges has the important meaning that the two corresponding

variables are independent conditioned on the remaining variables, and we abbreviate

this equivalence as (i, j) V S * yj HL yjIyv\(i,j). For Gaussian distributions with

inverse covariance F, this conditional independence between variables y, and y3 is

also equivalent to Fij= F=i = 0.

As a result, given the connection between decoupling and the local effects to con-

ditional independence properties, we can also analyze decoupling from the perspective.

of conditional independence and probabilistic graphical models. As a motivating ex-

ample, we consider a linear system Ay = b composed of two disciplines that are

feedback coupled by two variables. This type of system can arise from the discretiza-

tion of a differential equation with two solution domains that are coupled by their
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boundary nodes. The matrix associated with this system is given by

0-
A l)]

A= - -,- (5.13)
b

0 A2

where A1 E R"'" and A 2 E RnX" represent the linear operators within each domain,

and a and b are tunable parameters that control the degree of feedback and feed-

forward coupling, respectively, between the solution at the boundary nodes. In this

case, if the inputs are standard normal random variables (i.e., b ~ AF(0, I)), the

inverse covariance matrix for the solution, F = ATA, has the structure

oAlA 1  |a(Af).,n 0

a Tb -a(A),.- +a2--

0 A J A2
0 b(A2)., 1  A A 2

(5.14)

If we perturb the linear system by neglecting the feedback coupling (i.e., a = 0), we

decouple the input to the first discipline. The resulting system's output uncertainty

has the inverse covariance matrix, F = , with the structure

0 ATA1  0
AT 0- A, 02

~b [ 0 +b2  -b(A2),.-= --- - ---- --- - -- -0 -.(5.15)

S 0 A2 | A
--- 0. b(A T).,1| A TA2

The elements of the solution vector from the first discipline, Y1, ... , Yn-,1 are now

conditionally independent of Yn+1 from the second discipline when conditioned on

the remaining variables, which includes the other boundary node yn. Intuitively,

this demonstrates that in a feed-forward system, the first discipline will be statisti-
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cally independent of the outputs in the second-discipline when fixing the value of the

boundary node yn, given that there is no other interaction between the two sets of

variables. As a result, the perturbed system has additional conditional independence

properties (i.e., a graph 9 with a sparser set of edges S C S).

By introducing these assumptions in our model, we can measure the effect they

cause in the distribution of the system's output variables using different metrics or

divergences, as discussed in Section 2.3.2. Similarly to the approaches in Chapter 3,

one possible distance measure is the KL divergence, DKL(IrlI*), between the densities

of two distributions when enforcing additional conditional independence properties or

removing edges in the graph associated with w (i.e., the non-zero entries corresponding

to the feedback coupling in (5.14)). By quantifying the effect of removing these

edges, we can ultimately determine how to optimally approximate the conditional

independence properties of the distribution for our original system and use these to

find corresponding weak connections that can be decoupled.

Previous work has explored the effect of sparsifying probabilistic graphical models

for applications in inference by showing that the distance, DKL(in li), for r E Hi,

a set of distributions that satisfies the conditional independence property yi IL

yyyV\(ij), that is not satisfied by -x, is bounded from below by

min DKL(wIIZ) I(yi,Y jIYv\(iJ)), (5.16)

where I(yi, yj yv\(i,j)) denotes the conditional mutual information for variables y, and

yj [32, 31]. When the variables are jointly Gaussian, the conditional mutual informa-

tion is cheaply computed from the inverse covariance matrix, I'. Although this can

be used to quantify the minimum error from using a misspecified model to represent

the original distribution, it does not provide a guarantee on the approximation error

from using the sparser graph to closely represent the outputs of the original model.

As a result, the next sections will present results based on derived upper bounds for

the KL divergence in an effort to provide rigorous guarantees on the distance when

introducing conditional independence properties in a distribution.
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5.5.2 Gaussian Distributions

In this section, we derive an upper bound for the distance, DKL(7r [T), after removing

one edge from the graph of a Gaussian distribution. Without loss of generality, we

will consider zero-mean Gaussians, 7r and 1i, that have covariance matrices, E and Z,

and inverse covariance matrices, F and F, respectively.

To bound the effect of removing one edge, we consider a Gaussian, 7r, with in-

verse covariance given by f = F - Fji(eieT + eie[). This inverse covariance matrix

preserves the existing conditional independencies properties of 7r (i.e., sparsity of F)

and adds the constraint yi _LL y yv\(ij). We note that while this is not the optimal

7r* = arg min*En DKL(7r [r), it is a feasible point to this optimization problem and so

Lemma 1 provides an upper bound to the value of this objective at optimality.

Lemma 1. Let E >- 0 be a covariance matrix in R nx, and F be the associated

inverse covariance matrix. For the perturbed matrix, F = F - Fi3(eieT + eje[) where

2|Fij{l (Eii j)12 < 1, then F > 0 and the KL divergence, DKL, is bounded by

DKL (7X fI) < 1 2 - log (1 - 2 JFijI(iijj)1/2)} . (5.17)

Proof. The KL divergence between zero-mean Gaussian densities 7r and ~r is given by

DKL(7I f) = - lo( - n + Tr(-E)}. (5.18)

Using the selected parameterization for the Gaussian distributions, the effect of

the perturbed inverse covariance matrix on the trace and log-determinant are

Tr(FE) = Tr(FE - rjj(eiej+eje )E) = Tr(I) -Fri(Eij+Eji) = n- 21ijEj, (5.19)

log =log( = -log(E - Fij(eiej + ejeT)E|)
I ) )(5.20)

= -log (1 + (Fi)2 E - 2FijEZj - (1ij)2

where we have used the matrix determinant lemma to compute the determinant of
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the matrix with a low-rank correction. Combining these expressions, the exact KL

divergence is given by

1
DKLI( ) -- log (1 + (Fij) 2  - ij~ij 23Eg ) - (Fij)2 Ez3) 2]FjEi} . (5.21)

Using the logarithmic inequality I log(1 + x)l - log(1 - lxi) for lxi < 1, and the

Cauchy-Schwarz inequality for the elements in the covariance matrix matrix, Eij K

(E,,Ejj)1/2, we have that

DKL iIi) < 1 {21 i EijF I - log (1 - (Fij)2 E2 - 2Fij~kj - (Fij) 2 j~ii I) }
1 (5.22)

< {21Fijl(Eiirjj)1/2 - log (1 - 2 lFiI (EiEj)1 /2)

Furthermore, a sufficient condition to ensure the sparse inverse covariance matrix

remains positive definite (i.e., E, F > 0) and for the bound on the KL divergence to

be defined is given by

0 < 2|Ipil(EiiEjj)1/2 < 1. (5.23)

Remark. A different quantity for comparing the two Gaussian distributions is the

F~rstner metric, the natural Riemannian metric over the manifold of symmetric pos-

itive definite matrices [211. For the two covariance matrices, E and t, their distance

as measured by the Fdrstner metric is defined by

F (Og
2

E k), (5.24)
k=1

where Ok are the eigenvalues of the matrix pencil (E, ). Given that the F~rstner

metric is invariant under inversion (i.e., dF(E, ) = dF(F,f)), the change in the

generalized eigenvalues of the corresponding inverse covariance matrices under the

rank-2 perturbation to F can be used to derive the upper bound for the F6rstner metric

dF(ZZ) log (1 - 2lL'l (EZjj)1/2 . (5.25)
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We note that the result in equation (5.25) demonstrates a similar dependence on the

product term, 2|F 3I (EiX i Ej ) )1/ 2 as the bound for the KL divergence in equation (5.17).

These indicate that entries of small magnitude in r do not necessarily correspond to

weak conditional independencies. Instead, the product of the inverse covariance and

covariance entries for the variables must be small to have small KL divergence or

F6rstner metric between the distributions when adding an additional conditional in-

dependence constraint.

To generalize the result of Lemma 1 to the removal of multiple edges or addition

of multiple conditional independence properties, we consider the Gaussian r defined

by the inverse covariance f = F + A, where A is chosen to ensure that the sparsity

of f corresponds to the edge set 8. Analogously to the choice of f used in the lemma

above, one parameterization for A could be Aij = -Fij for the edges (i, j) E 8 \ 4 to

be removed, Aii = Ek:(i,k)EE\e FijI to ensure that the matrix is diagonally dominant,

and 0 otherwise. We note that a similar construction for A was used in [39] in the

context of sampling Gaussian Markov random fields using different subgraphs. The

bound on the KL divergence for the addition of multiple conditional independence

properties is given by Lemma 2 below.

Lemma 2. Let E >- 0 be a covariance matrix in Rrxn, and F be the associated inverse

covariance matrix. For the perturbed matrix, F = F + A >- 0 with positive definite

matrix A, the KL divergence is bounded by

1
DKLr(7rIir) <; -_k A E2, (5.26)

where 11 -|IF denotes the matrix Frobenius norm.

Proof. Starting from the KL divergence between two Gaussian densities in (5.18),
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and using the definition of the perturbed inverse covariance matrix, F,

DKL(7rf) = {log )- n + Tr(fZ)
2 t EIF-

= log 1 - + Tr(FE) + Tr(AE) (5.27)
2 |og |} J

= -{- log(jI + AE) + Tr(AE)} ,2

where we have used that Tr(FE) = Tr(I) = n. Noting that log(JI+AJ) = El log(1+

Ai(A)) where Ai(A) denotes the eigenvalues of A, and using the logarithmic inequality,

log(1+Ai) Ai- 1 > Ai-A for Ai > 0, we have that log(JI+AJ) > Tr(A)-Tr(A2 ),

and this holds for any positive-semidefinite matrix A. Combining this with the result

in (5.27) and using that AE is positive-semidefinite, we have

1

2 (5.28)
=I Tr((AE)2) _ E12

2 2 F

The upper bounds in Lemmas 1 and 2 can now be used in a combinatorial search

over sparse edge sets, 8, prior to minimizing DKL (7rI r) to find the closest distribution,

7r* that satisfies the additional imposed conditional independence properties.

5.5.3 Exponential Family Distributions

In this section, we generalize the results of the previous section for sparsifying Gaus-

sian graphical models to distributions in the linear exponential family. The density

for a member of the linear exponential family has the general form

7r(y) = exp{ (0, #(y)) - <b(0)}, (5.29)

where 0 E R' are natural parameters for the distribution, 0(y) represent sufficient

statistics, and <1(0) is a log-partition function to ensure the density is normalized. The
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valid parameters for the distribution lie in the convex set given by Q = {01() < 001.

We refer the reader to Ref. [9] for more properties of exponential family distributions.

In the same spirit as for Gaussian graphical models, we consider the set of expo-

nential family distributions that are specified by setting a subset of parameters, 02, to

zero that correspond to the removed edges in E. Keeping the remaining parameters

fixed in the new distribution, we compute an upper bound on the distance between

7r and the density specified by these parameters in the Lemma below.

Lemma 3. Let 7r, 7r be the densities of two distributions in the exponential family

with the same set of sufficient statistics and parameters 9.= (01,92) and = (01, 0),

respectively. For small 92, the KL divergence between the distributions is bounded by

DKL(X7rI I f < ZOkOj Cov(#k(y), #j (y)). (5.30)
kE0 2 jE 2

Proof. Using the exponential family form for the two densities, the KL divergence

between 7r and r is given by

DKL (7r Iir) = E, [log r(y) - log Fr(y)]

S- +(5.31)
= E-7 1: k~k(y) - (O) + 4CD) ,

_kCE02 .

where we have used that the 01 parameters in both distributions have the same values

and the 92 parameters are zero in -r.

It is well-known that the log-partition function is a convex function (i.e., @(D) -

4)(0) ( -0, Vb())). Using this property with the relation of the mean parameters

to the gradient of the log-partition function (i.e., V1(O) = Ej[#(y)]), the difference

of the log-partition functions is bounded from above by

)(0) - <b(9) ; -(9 - , E, [#(y)]). (5.32)

The non-zero terms of the inner product in equation (5.32) correspond to the

parameters in 92, that were set to zero in -r. These parameters are also weighted by
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the expectation of their sufficient statistics with respect to iC. Combining this with

the equation in (5.31), we arrive at the upper bound

DKL (7) E Z k (E, [#k(Y)] - Ei [k(Y)). (5.33)
kE02

For small values of 02, the asymptotic expansion for the log-partition function,

1(9) 1 4(0) + (9 - 9, E,[#(y)]), is a good approximation. Using this linearization,

the expectations of the sufficient statistics with respect to fC are given by

EjR[Ok(Y)] = exp ((, A (y)) - 4(D))#Ok(y)dY

Jexp ((0, 0(y)) - 4(6)) exp ( - (02,0#2 (y)) + (02, Er[002 (y)]) k (y)dy

- E exp ( 0- (2, 002 (y) - Ell[#0 2 (Y)]) )k(Y)] -

(5.34)

Substituting the expectations in expression (5.33) and using the Taylor series expan-

sion, 1 - exp(x) ? x for small x, we arrive at the asymptotic upper bound

DKL (7F I) 9kE [k(Y) - qk(y) exp ( 0- (2, #0 2 (y) - E-[002(Y)

~ OkEO E [#k (y) - (92, #0 2 (y) - E[4 2 (y)])] (5.35)

= E 03 9>9 (E,[#k(y)#j(y)] - Er[k(y)]E,[4j(y)]).
k602 j3E2

Remark. This expansion also has the same behavior as the upper bounds derived

in Lemmas 1 and 2 for the Gaussian distribution where the KL divergence scales

with the product of the distribution's parameters and its corresponding moments (i.e.,

the entries in the inverse covariance and covariance matrices, respectively, for the

Gaussian setting).

99



5.5.4 More General Distributions

In this section, we propose an approach to find similar upper bounds on the distance

of a general distribution of interest, 7r, to the closest distribution whose conditional

independencies properties correspond to a sparser graph, g C g. Given that it is

difficult to parameterize the conditional independence properties in arbitrary proba-

bility distributions that are not members of a specific class (i.e., exponential family),

we will instead compute these distance by restricting ir to lie in a tractable family,

such as a set of constrained Gaussian distributions. The distance is then given by

computing DKL(7rIir) for r E Il ={(A, t) It- = f i = 0 V(i,) }.

Given the covariance and inverse covariance matrix of 7r, a coarse estimate for

this distance is given by selecting a Gaussian described by r that is the inverse

covariance matrix of 7r perturbed by a matrix, A, as in Section 5.5.2. This will

ensure that f satisfies the imposed conditional independence properties in JI and

DKL(7rIIIr) = E,[log(7r) - log(r)] is tractable to compute up to the entropy of 7r.

Remark. A tighter upper bound can be computed by finding the closest Gaussian

distribution that satisfies the conditional independence properties imposed in Hg. To

do so, we solve the optimization problem: argminfrj DKL(7rIiFr). By noting that

DKL(7ri) =E,[log(7r) - log(Tr)] and the first term in the expectation, the entropy of

ir, is independent of R, this optimization problem reduces to maximizing E,[log(*)].

Using the Gaussian parameterization for *r, we have that

E,[log(-r)] = E, log((27r)nlIy) - ( - #)T ( - ]3
1 1 (5.36)

= - log((27r )"2) - E Tr (f(y - A)(y - A)T).

From performing the optimization to find the closest Gaussian within the set,

fl, the moment matching optimality conditions are given by A = E,[y] and Z =

- E(jjyg'Y(ij)(eieT + eje[) where E = E,[(y - p)(y - p)T] and -y(ij are Lagrange

100



multipliers. Using these conditions,

E,[log(-r)] =I log((27r)n|I|) - 1Tr (
1 1 -~

= 2 log((2-r)njtj) 2 1Tr 7
11 1
2 (

I 

-- og((27r)fljZj) _-

22 2

' + y(i,j) (eie T + ejeT) (.7

7(ij) Tr(f i + fi).
(ij)Wg

With the edge constraints on the inverse covariance matrix, F., =F ]i = 0 for all

(i, j) Z 8. Therefore, the last trace term in (5.37) is zero and the distance reduces to

DKL(7r Iir) = E,[log(7r)] - ( log(27re) - - log(1X) , (5.38)

where the covariance of the closest Gaussian distribution to 7r under the conditional

independence constraints on the matrix inverse is typically computed by solving a log-

determinant maximization problem [181. We note that for chordal graph structures

for U, which include chain and tree graphs, the covariance of the closest Gaussian,

can be computed in closed form without requiring optimization.

As a result, up to the entropy of r, the distance DKL(7rI I) where i is the closest

Gaussian that satisfies the additional constraints is computable. In principle, this dis-

tance can be used to cheaply estimate the effect of removing multiple edges in arbitrary

distributions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the present thesis, we have studied how to identify important discipline couplings

in the context of multidisciplinary models under uncertainty. From the perspective

of optimal model selection, we developed a set of algorithms based on a combination

of model linearizations, control variates, and model data, together with sequential

Monte Carlo for exploring the combinatorial model space. These algorithms trade-

off increasing accuracy in the characterization of the model output uncertainty with

increasing computational cost to identify the optimal models. These algorithms were

applied and validated with three engineering problems: a fire detection satellite model,

a turbine engine cycle analysis model, and an aero-structural lifting surface model.

For each of these problems, the algorithms returned a set of optimal models with a

reduced number of discipline couplings relative to the reference model while having

accurate distributions for the specified quantities of interest.

There are four main conclusions that we can draw from the numerical results and,

theoretical analysis developed in this work. First, to identify an approximation to

the model coupling it is necessary to solve a combinatorial optimization problem,

due to binary nature of selecting different discipline connections to retain in a de-

coupled model. To do so, we must use an optimization algorithm that is scalable to

increasing dimension or the total number of discipline couplings, works with noisy

103



objective functions due to sample-based estimates for the statistical distance between

distributions, and is amenable to return a distribution of possible models to use. One

algorithm that satisfies these criteria and we recommend for future analyses is the

sequential Monte Carlo algorithm that was presented in Section 2.4, in the context

of model selection.

Second, while methods with increasing fidelity are more accurate for identifying

the true global optimum when searching for a model with reduced coupling, lineariza-

tions are an inexpensive approach to arrive at a near-optimal solution. We note that

the Bayesian approach, which is based entirely on model data, and the control variates

may be necessary in highly nonlinear models with different localized output responses.

However, for many engineering applications such as the turbine and aero-structural

models tested in Chapter 4, the linearizations capture a coarse approximation to the

uncertainty that is often sufficient for performing model optimization without per-

fectly estimating a high-dimensional distribution, which is not our goal in this work.

This low computational cost for the model selection process is particularly important

in this work and in future applications of decoupled models that are described below

in Section 6.2.

Third, from the numerical results for the tested applications, we conclude that us-

ing a reduced number of discipline couplings can provide a close approximation to the

model outputs while yielding a significant reduction in the computational cost for each

model evaluation. This reduction in cost is most evident when neglecting feedback

couplings, as seen in the optimally decoupled aero-structural models. Nevertheless,

the optimal coupling found in all problems is dependent on the input uncertainty, as

observed when changing the random inputs to the fire-detection satellite model. As

a result, we recommend re-assessing the accuracy of the decoupled model whenever

changing the input variable uncertainty. If necessary, a user.should re-process the

optimal model coupling by re-running the optimization algorithm to identify these

model changes.

Lastly, our theoretical analysis highlights the factors that contribute to the point-

wise error and changes in the output uncertainty when approximating the discipline
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coupling. These include the discrepancy between the true and fixed input values for

a coupling variable, and the sensitivities of the model outputs to the coupling vari-

ables. Although the current analysis is limited to linear models, the results in Chapter

5 provide sufficient conditions for linear models being well-posed under decoupling.

We affirm that these requirements should be checked when introducing a model ap-

proximation, particularly in the case of feedback systems, to ensure a solution will

exist to these new decoupled models. Under these conditions, the local changes to

the conditional independence structure of the output uncertainty from decoupling

can be analyzed by using the connections developed between multidisciplinary model

coupling and probabilistic graphical models.

6.2 Future Work

To the best of our knowledge this is the first work that has addressed the selection

of optimal discipline couplings in multidisciplinary models with uncertain inputs. In

addition to the continued application of the algorithm to reveal the natural structure

of other complex engineering systems under different input uncertainties, there are

several methodological and theoretical questions that are interesting to pursue.

6.2.1 Improved Optimization Objective

To identify an optimal decoupled model, we formulated an optimization problem that

balances a measure of information loss in the distribution based on the KL divergence

with a measure for the complexity of each model. While higher-order derivative in-

formation or control variates improve the estimate for the KL divergence between the

output distributions of two models, one area of future work is to perform a more de-

tailed study of these approaches and the use of other distance metrics. In particular,

it will be interesting to characterize when sample-based corrections are necessary and

to automatically adapt the model selection algorithm by using an computed number

of necessary samples to improve the estimates for the mean, variance and/or other

higher-order moments of the model outputs. We suppose that to do this it will be
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necessary to quantify the degree of nonlinearity and non-Gaussianity of the model

outputs to determine if a low-order Taylor-Series approximation around a specified

point may be sufficient to capture the local relationship of the input-output mapping.

It may also be possible to combine multiple approximations evaluated at different

points or different partitions of the input space to more accurately capture the be-

havior of non-monotonic output functions over the range of input values.

Future research may also address improvements to the measure of complexity

of different decoupled models, that we denoted by 'P(M). In practice, discipline

couplings are not all equal and will contribute differently to the total computational

cost of evaluating a given model. Therefore, instead of only measuring the number of

discipline couplings we propose to use a metric that adds a greater weight to discipline

couplings that will reduce model runtime or memory requirements when neglected.

One approach will be to first favor the removal of large feedback loops in the model

in order to approach a feed-forward model that can be evaluated for the most part

sequentially with only small local feedback loops involving fewer discipline, as seen in

Figure 6-1. If it is not possible to achieve a feed-forward model, the algorithm may also

favor parallelism across different disciplines, as seen in Figure 6-2. We note that the

search for feed-forward models is analogous to the problem of finding subgraphs with

low tree-width for performing exact inference efficiently [361, and so it may be possible
iDiscipline 

13

Discipline 2 D

Discipline 3 .

---------------- Discipline 4

Figure 6-1: Model with only feed-
forward connections and local feed-
back loop after decoupling disciplines
1 and 4

DisciplDie 3

Disciphnl

-,Discipline 3

f Discipline 4

Figure 6-2: Decoupled model with
parallel structure-disciplines 2, 3 and

4 compute feedback to discipline 1 in-

dependently and run in parallel

106



to borrow additional ideas from the literature on probabilistic graphical models in this

work. Finally, the metric for model complexity may also include estimated runtime

for individual disciplines and the memory required to transfer information across

discipline couplings.

6.2.2 Preconditioning with Decoupled Models

Decoupling nonlinear systems introduces a transformation to the coupled nonlinear

system of equations, JZ(x, y) = 0, that shifts the solution for the state variables and

the corresponding distribution of the output QoIs. In engineering systems where

it is of interest to remain faithful to the solution of the original system, optimally

decoupled models can instead be used to accelerate algorithms for solving coupled

nonlinear root finding problems.

For each x E Rm, one common method for finding a solution to parameterized

system of equations, R(x, y) = 0, is to use a Newton's method. The standard Newton

algorithm chooses an initial guess, y(O), and iteratively updates the solution by solving

the linear system Vy(R(x, y(k)))Ay(k) - -1z(xyk)) for all k where Ay(k) - y(k+l)

y(k), until the residual error falls below a specified relative tolerance.

In practice solving the linear system is the most computationally expensive step

of these algorithms. As a result, for many problems it is common to find precon-

ditioners, M, that are cheap to apply and closely approximate (VyR)~1 to reduce

the problem's condition number and improve its rate of convergence when solving

the transformed system, M(VYR(x, y(k))Ay(k) + R(X, y(k))) = 0. While it is com-

monplace to use well-developed preconditioners for certain physical problem (i.e.,

computational fluid dynamics, solid mechanics, etc.), the typical approach for other

problems is to implement standard block-Jacobi or Gauss-Seidel preconditioners.

. However, for a model with multiple sets of disciplines that are locally feedback

coupled (as in Figure 6-1), common upper-triangular preconditioners will not closely

approximate the action of the inverse Jacobian. Instead, the model selection algorithm

presented in this thesis provides a method to identify optimally decoupled models

whose outputs are close to the true model outputs over the range of input variables.
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Therefore, the Jacobian of these lower complexity models can be interpreted and

used as preconditioners for the linear systems of equations arising at each iteration

of Newton's method or to even directly approximate the Jacobian (by allowing for

inexact Newton directions). In future work it will be interesting to compare the

performance of these preconditioners to other algorithms that use offline computation

to construct improved preconditioners, such as ILU-based methods, or the Sparse

Approximate Inverse preconditioners [7].

Recent research has also addressed preconditioning parameterized nonlinear sys-

tems of equations by directly composing transformations, M,: R' -+ R", with the

nonlinear system. Analogous to the setting of linear equations, some desirable prop-

erties for these preconditioners are:

1. M,(y) ~ 7Z(x, y)- 1 for each x and is well-defined

2. M.(y) and its derivatives are cheap to compute and compose with 1Z(x, y)

3. More robust nonlinear convergence requiring fewer global Newton iterations

4. Wider basin of attraction for initial condition

While the optimal preconditioner for the nonlinear system of equations is M,(y) =

7Z(x, y)- 1 so that R.(x, y)-1 o R(x, y) = y = R(x, y)-(0), in most cases the system

is not invertible and we must search for a preconditioner within a tractable class of

functions that best meet the desired properties above. One such class is the set of

nonlinear functions with lower triangular variable dependence, that has been explored

in the current nonlinear preconditioning and domain decomposition literature [16, 38].

In the context of decoupled models, these lower-triangular functions correspond to

feed-forward models. Given that these models satisfy the first and second proper-

ties above, this makes them potential candidates for physically motivated nonlinear

preconditioners that are optimal over the range of input variables.

Future work may explore the convergence of the transformed systems given by the

composition of the decoupled and original nonlinear systems. Their sensitivity to the

initial condition and robustness to being outside the region of quadratic convergence

in Newton's method may be investigated. Furthermore, by identifying a sequence of
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decoupled models of increasing accuracy, an optimal allocation of the different models

as preconditioners for different iterations of Newton's method based on the accuracy

tolerance at each step may be explored. We suppose that it may be sufficient to

apply an inexact model at the initial iterations, while a model with more coupling

may be required closer to the converged solution. These ideas of optimally allocating

a sequence of models to reduce computational cost may also borrow ideas from recent

work in the use of multi-fidelity reduced order models for uncertainty quantification

149]. Finally, we note that these sequences of models can also be used for reducing

the overall cost of optimizing a set of design variables in a model.

6.2.3 Further Connections to Probabilistic Graphical Models

As discussed in Chapter 5, multidisciplinary models can be analyzed from the per-

spective of probabilistic graphical models that represent the conditional independence

properties of a distribution. In particular, decoupling weak discipline connections is

related to adding conditional independence properties to distributions of the system

outputs. In the probabilistic inference community, finding these weak conditional in-

dependence properties is important to accelerate the cost of inference algorithms on

graphs (i.e., belief propagation & variable elimination) that scale with the tree-width

and other properties of the graph structure.

Previous studies have addressed this problem for inference in the context of Gaus-

sian distributions, by evaluating lower bounds on the KL divergence between a dis-

tribution and one that has additional conditional independence properties. However,

these lower bounds do not have guarantees on the accuracy of the approximation,

and so it is of interest to develop algorithms that identify optimally sparse graphs

with guarantees on the closeness to the distribution of interest. This question is im-

portant both for sparsifying existing graphs in order to reduce the parameterizations

for models of the output distributions (i.e., transport maps, see [591), and also for the

question of learning sparse graphs and the corresponding physical model structures

(i.e., discipline connections and approximations to the model physics) from data. The

results in Section 5.5 are the beginning of an effort to address some of these ques-
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tions. Future work will expand upon this work in order to further understand the

relationships between multidisciplinary models and probabilistic graphical models.
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