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Abstract

Cancer sequencing efforts have largely focused on profiling somatic variants in the

protein-coding genome and characterizing their functional impact. In this study,
we develop a computational pipeline to identify non-coding mutational drivers across

multiple tumor types. We describe the non-coding mutational profiles of 854 samples,
spread across 15 tumor types, in the context of their respective tissue type-specific

reference epigenomes, using recent pan-cancer whole-genome sequencing data. We

develop a novel method to detect significantly recurrent non-coding mutations by re-

estimating the background mutation density while adjusting for epigenomic covari-

ates. Existing databases on enhancer-gene links allow us to capture the convergence of

disparate mutations onto downstream target genes. We then systematically identify

key immunomodulatory and tumor-suppressive genes enriched for non-coding muta-

tions in their regulatory neighborhood and evaluate these in a pan-cancer context.

Taken together, we show that low-frequency alterations converge into high-frequency

recurrent events on downstream targets through tissue-specific regulatory interac-
tions.
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Title: Professor
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Chapter 1

Introduction

1.1 Background and Motivation

Large scale sequencing projects such as the The Cancer Genome Atlas (TCGA) [1]

and the International Cancer Genome Consortium (ICGC) [2] have performed molec-

ular characterization of thousands of tumor samples. These projects have primarily

focused on unravelling the genomic variation in protein coding sequences owing to

the reduced costs of exome sequencing as opposed to whole-genome sequencing. Our

understanding of somatic variation in coding regions and their associated functional

relevance has dramatically improved resulting in improved patient stratification in the

clinic as well as development of targeted therapies in certain cancer types. However,

the protein-coding component of the genome accounts for less than 2% of the total

sequence length [3]. Additionally, a number of well-studied cancer types contain sub-

populations where the observable protein-coding mutations are either nonfunctional

or affect genes unrelated to tumor development. These challenges have motivated

the exploration of the non-coding cancer genome whose impact on tumor growth and

progression is yet to be completely deciphered.

Unravelling the effect of sequence variants in non-coding regions requires func-

tional characterization of genomic regions with regulatory potential. Sequence con-

servation (similarity) across species is a popular approach to identify functionally

relevant genomic segments. More recently, rapid growth of the field of epigenomics
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has led to the detailed annotation of active and inactive regulatory elements across the

genome [4]. Histone modifications and associated chromatin states enable cell-type

specific control of gene expression and downstream biological processes.

Numerous experimental techniques have been developed to explore the epigenome.

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) assays allow iden-

tification of occupied transcription factor (TF) binding sites in addition to pinpointing

sites of histone modifications [5]. TFs bind DNA in regions of open (non-nucleosomal)

chromatin, which can be identified using DNase I hypersensitivity assays [6]. DNA

methylation is a crucial process that modulates activity of genomic segments [7].

DNA methylation can be profiled across the genome through methods such as the

450k array, where over 450,000 methylation sites are analyzed at single-nucleotide

resolution, or whole genome bisulfite sequencing, where DNA is treated with bisulfite

prior to sequencing [8]. Most of the experimental assays for profiling the epigenome

are capable of parallel sequencing of multiple samples and tissue types.

Recent disease association studies have implicated non-coding elements in disease

etiology and progression; we therefore expect that non-coding mutations in cancer

likewise have a regulatory effect on tumorigenesis [9, 101. Recurrent mutations in

non-coding regions linked to genes relevant for cancer growth support this notion.

For instance, a regulatory mutation was identified in the region upstream of the

TERT gene (encoding telomerase reverse transcriptase) creating binding motifs for

the ETS family of TFs [11, 12]. The ETS family has been previously associated

with prostate and breast cancer and is known to be involved in cellular proliferation,

differentiation and apoptosis [13]. A SNP in the MDM2 promoter is associated with

increased tumor growth across multiple tissue types [14]. SNPs discovered in a gene

desert on chromosome 8q24 were found to localize to regions that act as enhancers

for the MYC gene in a tissue specific manner [15]. MYC is dysfunctional across a set

of tumor types including lung, breast, and colon cancers.

Despite these promising discoveries, heterogeneity in the mutational landscape

within and across tumor types makes identifying genome-wide non-coding mutations

linked to oncogenesis challenging. Furthermore, the detection of putative driver mu-
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tations in cancer, defined as mutations that confer a fitness advantage to the cell, is in

itself a difficult task and an active area of research. There are two approaches to flag a

potentially oncogenic driver mutation [3, 16]. The first revolves around capturing sig-

nals of positive selection that manifest as recurrent mutations. The second technique

predicts the functional impact of variants by incorporating protein structural informa-

tion and evolutionary conservation. Detection of cancer drivers incorporating these

frameworks has been widely published. However, these techniques have primarily

been limited to discovering protein-coding mutations due to availability of large scale

exome sequencing datasets as well as ease of interpretability. Although pan-cancer

methods have improved the discovery and analysis of regulatory mutations while

avoiding the type I and type II errors made in several tissue-specific cancer projects,

the analysis of driver mutations in non-coding elements has not yet been perfected.

Long range regulatory links and the three-dimensional folding of the genome, which

play a crucial role in establishing the functional potential of a particular variant, add

additional complexity [17]. Multiple regulatory loci are found, using these methods,

to associate with the same target gene.

1.2 Thesis Overview

In this study, we develop a computational pipeline to identify non-coding mutational

drivers in various cancer types. By leveraging recent pan-cancer whole-genome se-

quencing efforts, we characterize the non-coding mutational profiles of 854 samples,

spread across 15 tumor types as described in Chapter 2. Despite widely different

mutational burden both within and across tissues, we observe shared patterns of

mutational signatures across tumor samples. Following this analysis, Chapter 3 fo-

cuses on annotating each sample with the appropriate tissue type-specific reference

epigenome which allows us to describe the mutational landscape along with its asso-

ciated regulatory context. In Chapter 4, we develop a novel framework for detecting

significantly recurrent non-coding mutations by re-estimating the background muta-

tion density, factoring in epigenomic covariates such as histone modifications, DNase
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hypersensitivity, and DNA replication timing. This improved paradigm, centered on

an epigenomically-adjusted mutational background, identifies existing as well as novel

recurrent non-coding mutations. Additionally, we expand on this model to define ac-

tive regulatory segments of the genome that harbor significant mutational burden in

a tissue-specific manner.

From previous studies and existing databases on enhancer-gene links [18], we

extend our framework to comprehensively characterize the impact of distal enhancer

regions carrying significant mutational burden on their downstream target genes.

This allows us to develop a robust and systematic framework to identify key cancer-

related networks enriched for non-coding mutations and evaluate these in a pan-

cancer context. Therefore, in Chapter 5, we show that low-frequency alterations

converge into high-frequency recurrent events on downstream targets through tissue-

specific regulatory interactions. Our proposed model presents an unbiased method to

characterize the impact of regulatory mutations on oncogenesis. We anticipate that

this approach will improve interpretation of future functional non-coding mutational

dissections in tumor-related studies.
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Chapter 2

Studying the pan-cancer whole

genome mutational landscape

Recent improvements in whole genome sequencing have enabled deep characteriza-

tion of the mutations in tumors obtained from both solid and liquid biopsies [19, 20].

The cancer genome comprises germline variants that define susceptibility to cancer,

as well as somatic mutations that drive cancer growth and proliferation. A genetic

predisposition to cancer caused by a germ-line variant exists in an estimated 5-10%

of all tumor patients. A well-known example of clinically relevant cancer suscepti-

bility syndrome is the case of breast / ovarian carcinoma caused by alterations in

the BRCA1/2 genes [211. However, identifying similar robust patterns of germ-line

predisposition across different tumor types remains challenging. Somatic mutations

occur due to spontaneously occurring mutations that accumulate in somatic cells

over a person's lifetime. Although these alterations are typically non-functional, a

fraction of them can give rise to preferential growth or survival of a cell eventually

resulting in a malignant cellular state. The transformation of this cellular clone into

a disseminated disease is an intricate process whose complexity is linked to the het-

erogeneity of the mutational landscape. Recent sequencing studies have revealed that

somatic mutations commonly occur in oncogenes and therefore have a direct impact

on tumorigenesis [221.

Somatic mutations can arise from DNA damage, incorrectly or incompletely re-
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paired DNA, or from errors in the DNA replication process [23]. DNA damage is

commonly caused by external factors such as ultraviolet (UV) light, ionizing radi-

ation, chemicals or reactive oxygen species. Enzymatic action within cells can also

result in modification of DNA. Additionally, viruses and endogenous retrotransposons

can give rise to insertions in the DNA sequence. These mutational processes occur in

a cell type-specific manner and impact regional mutation density to eventually result

in unique mutational signatures. Each process will cause a specific type of somatic

mutation; for instance, UV light causes C>T mutations at TpC or CpC dinucleotides

while the chemical carcinogen aristolochic acid causes A>T substitutions [24, 25].

However, the extent to which a tumor is affected by mutational processes depends on

variables such as the age and physiology of the patient, and the existence of germ-line

predispositions.

2.1 Characterization of overall mutational burden

across 854 samples

We first systematically evaluate the mutational landscapes of 854 tumor samples

across 15 tissue types obtained from two independent cohorts (identified as the TCGA

cohort and the Alexandrov cohort, see Supplementary Table B.1). Breast cancer and

lung adenocarcinoma samples were available from both datasets and were processed

independently for our analysis enabling us to use them as separate discovery and

validation sets. Therefore, 17 groups of tumor samples were considered for our study

(Fig. 2-la).

Whole-genome somatic mutation burden is highly variable within and between

cancer types (Fig. 2-1b). We observe that the cancer types carrying high mutational

burden correspond to tissues that originate from surface epithelia with high rates of

turnover such as colorectal cancer, cutaneous melanoma, and lung adenocarcinoma.

These tissue types are also commonly subject to exposure by numerous exogenous

factors, such as UV rays in the case of melanoma and tobacco in the case of lung can-
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cer. This manifests as a large intra-tissue variance in mutational frequency. Both the

colorectal cancer and melanoma cohorts contain a number of hypermutated samples

(~ 600,000 mutations per sample as compared to a mean mutation count of 117,896

and 94,655 respectively), where increased mutation rates could potentially be due to

large-scale dysfunction in repair pathways or loss of chromosome integrity [261. The

other end of the spectrum, corresponding to samples with low mutational burden

(100-2000 mutations per sample), is represented by a set of brain tumors: pilocytic

astrocytoma, medulloblastoma, and lower grade glioma. Additionally, we observe

that the breast cancer cohorts obtained from the two studies closely represented each

other in mutational burden. However, the lung adenocarcinoma samples from TCGA

display significantly higher variance than the samples from the Alexandrov cohort.

Mean mutation count and within-tissue standard deviations are reported in Supple-

mentary Table B.2.

2.2 Mutation context analysis and hierarchical clus-

tering

We use whole-genome sequencing data to examine the similarity in mutational sig-

natures across the entire dataset. As described previously [231, all types of base

substitution were referred to by the pyrimidine of the mutated Watson-Crick base

pair, resulting in six classes of substitution: C>A, C>G, C>T, T>A, T>C, T>G

- which together define the mutational spectrum of each sample. We look at the

context of each mutation represented by the frequency of A, T, C, and G nucleotides

2 bp 5' and 3' to each variant. The pairwise correlation of mutation context was

computed followed by hierarchical clustering across each individual sample for the six

mutational categories. We observe that the context analysis around the C>T substi-

tutions results in samples of the same tumor. type grouping together despite widely

different overall mutational burden (Fig. 2-2). In particular, breast and lung cancers

co-cluster with liver and pancreatic cancers while kidney and blood cancers group
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together. Additionally, samples from colorectal carcinoma fall in the same cluster

despite a large variance in mutational burden. Context analysis around the C>G

mutation results in robust clustering for some tumor types while samples from other

types are dispersed. Analyzing mutational context for the remaining four mutational

categories did not yield robust clustering of samples (see Supplementary Figure B-1).

In summary, strong intra- and inter-tissue mutational heterogeneity creates vari-

ability in mutational burden that differ by orders of magnitude. Therefore, charac-

terization of genome-wide somatic variants based on overall mutational load alone is

a challenging task. Tissue type-specific mutational processes result in unique muta-

tional signatures that enables robust clustering of samples of the same tumor despite

diverse mutational burden. To further explore the selective pressure inherent in these

mutational processes, functional annotation of the genome would be required, and

this forms the subject of the following chapter.
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Figure 2-1: Description of pan-cancer dataset and overall mutation burden: (a) Tu-
mor types (number of samples) included in this study. (b) Intra- and inter-tissue vari-

ability in genome-wide somatic mutation burden observed across 15 distinct tumor

types. Tumors are ordered by median mutation burden. Tumor types from TCGA
are identified by the '_ TCGA' suffix. Expansion of abbreviations are provided in

Supplementary Table B.1.
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Figure 2-2: Analysis of mutation context: Sequence context analysis for C>T and
C>G substitutions across 854 samples. C>T context clustering (left) captures dis-
tinct clusters represented by (1) Pilocytic Astrocytoma, Medulloblastoma and Lower
grade glioma, (2) Pancreatic, Liver, Breast and Lung cancers, (3) Kidney and blood
cell cancers and (4) Melanoma and Colorectal cancers. The C>G clustering (right)
reveals (1) Breast and Lung cancers as the only robust group. Color bars along the
axis correspond to the same coloring scheme illustrated in 2-1b.
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Chapter 3

Pan-cancer epigenomic annotation

and relationship with regional

mutational burden

The conventional theory of evolution assumes a uniform distribution of mutations

across the genome. The longevity of a genomic alteration is determined through

natural selection. While selective pressure remains a factor in structuring the genomic

landscape, the notion that DNA variants occur uniformly and randomly has become

outdated. Mutation density across the genome is highly heterogeneous [27, 28]. Local

nucleotide context, chromatin architecture and replication timing have been shown

to influence the influence of single nucleotide changes. Of these covariates, chromatin

organization is the dominant factor in determining regional variation in mutational

density [29, 30]. For instance, regions in open chromatin can show dramatically lower

mutational background due to higher accessibility to DNA repair machinery.

Given the non-uniform regional distribution of mutational occurrence, a number

of functional regulatory sites across the genome have been found to harbor mutations

subject to positive selection. Evidence for this observation arises from the identifica-

tion of mutations in the TERT promoter region and in the linked regulatory regions

of PLEKHS1, WDR74 and SDHD [11, 31]. Additionally, recurrent germline muta-

tions have been reported in the CCND1 enhancer [32]. Recently, GNAS, BCL11B,

25
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ANKRD11 and NEDD4L, also cancer-associated genes, were found to harbor muta-

tions in their regulatory loci [33].

3.1 Chromatin state-specific sample-specific muta-

tional enrichment

Characterizing the genome-wide incidence of somatic mutations is a challenging task.

The chromatin organization of each cell type is distinct, thereby resulting in unique

mutational landscapes and specific patterns of gene expression. The Roadmap Epige-

nomics Consortium has produced reference epigenomes that reveal key insights on

active functional elements that control gene expression and cellular identity in 127

human tissues and cell types including adult and embryonic tissues in both diseased

and healthy individuals [4]. In addition to deeply profiled epigenomic marks, the

Roadmap project includes chromatin state annotations for each cell type character-

ized by the ChromHMM method [34]. The ChromHMM framework is a multivariate

Hidden Markov Model that integrates multiple ChiP-seq datasets to model the oc-

currence of each chromatin mark. Additionally, the Roadmap study highlighted that

different histone marks show distinct levels of DNA methylation and accessibility, and

were predictive of gene expression changes. The dynamic nature of the histone marks

across multiple chromatin states presented an opportunity for a data-driven approach

to infer biologically meaningful relationships specific to each cell type. Therefore, the

Roadmap project has comprehensively characterized the epigenomic landscape and

its associated heterogeneity across multiple cell types and significantly improves our

understanding of the regulatory genome.

Epigenomic architecture has been known to impact the mutational landscape of

different tumor types [35]. Megabase scale variation in mutation density across the

genome is strongly associated with regional variation in chromatin organization [30].

In particular, repressive chromatin features are indicative of regions harboring high

mutational burden while epigenomic features linked to transcription and active chro-

26



matin are associated with low mutation density. A recent study has determined that

epigenomic features derived from the cell type of origin are the strongest determinants

of cancer mutations and display higher predictive accuracy than matched cancer cell

lines 129]. There are two possible explanations for this observation. First, somatic mu-

tations may arise before the epigenetic landscape changes. Second, over the course

of development, the epigenome of individual tumors may transform uniquely thus

separating them from other tumors of the same tissue type.

For this study, we select the most closely matching primary cell type of origin for

each tumor type from the Roadmap epigenomics project (see Supplementary Table

B.1) [4]. The 15 chromatin state model as described previously is utilized. This

model encompasses 8 active states and 7 inactive states (see Supplementary Table

B.3). Mutational enrichment per megabase normalized by the overall mutation bur-

den per sample is computed for the 15 states across each of the 854 samples (Fig. 3-1).

Hierarchical clustering on the enrichment profiles reveals tissue type-specific cluster-

ing and dispersion patterns. In particular, we notice that hypermutated samples of

melanoma or colorectal cancer (Fig. 3-1, indicated by 'a') showed strong similarities

in their chromatin state-specific mutational enrichment. Samples with a low mutation

rate corresponding to pilocytic astrocytoma or lower grade glioma (Fig. 3-1, indicated

by 'b') also display highly correlated enrichment profiles. The TxFlnk (transcription

at gene 5' and 3'), BivFlnk (flanking bivalent transcription start site / Enhancer) and

TssBiv (Bivalent / poised transcription start site) chromatin states on average harbor

the least mutational burden across tumor types whereas the Het (Heterochromatin)

and the ZNF/Rpts (ZNF genes, repeats) states show higher enrichment for mutations

on average.
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Figure 3-1: Chromatin state-specific sample-specific mutational enrichment. Muta-
tion enrichment is calculated for each chromatin state (columns) as defined by the
Roadmap Epigenomics project and for each tumor sample (rows) as the number of so-
matic mutations localizing to a specific chromatin state in that sample normalized by
(1) the overall sequence length of that chromatin state, and (2) the overall mutational
burden of that sample.

3.2 Correlation of regional mutation density with

replication timing

The temporal control of the DNA replication is referred to as the replication-timing

program. There is increasing evidence that sequential changes in replication timing of-

ten accompany cancer growth and progression potentially acting in positive feedback

to direct the cell away from its normal state [36]. Although DNA replication is a highly

regulated and stable process in normal cells, cancer cells exhibit asynchronous repli-

cation. Additionally, this asynchrony in replication has been described for multiple
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oncogenes across the genome, indicating genome-wide dysregulation. The effects of

aberrant replication timing are multi-fold. In addition to alterations in the epigenome

or downstream gene expression, distinct genomic events have been observed. For in-

stance, localized changes in replication timing near translocation breakpoints lead to

localized mutagenesis, termed 'kataegis' in that region. A number of recent stud-

ies have verified this correlation between regional mutation densities and replication

timing [27, 30, 37]. In particular, later-replicating regions have been found to har-

bor increased mutational burden [38]. Therefore, the correlation between regionally

stratified replication timing profile and the local mutation density is of value when

exploring the mutational landscape across tumor types.

Repli-Seq is a genome-scale method that maps temporally ordered replicating

DNA and enables analysis of replication timing patterns specific to cell-cycle time and

genomic position. In this study, Repli-Seq data from 9 ENCODE cell lines are used to

determine if significant changes in regional mutation rate across the 15 tumor types

were associated with replication timing. However, since Repli-Seq profiles are not

available for each tumor type, we choose a single representative cell type to define the

genome-wide variation in replication timing. We observe that genome-wide replication

timing for the ENCODE cell lines display on average good correlation (with a Pearson

correlation mean of 0.46 and variance of 0.05) with each other (Fig 3-2a). The mean

correlation of the Repli-Seq signal of GM12801 (Lymphoblastoid cell line) with the

tumor type-specific 1Mb mutation densities is higher than that for other ENCODE

cell lines (Fig 3-2b). Therefore, for further analysis we utilize the Repli-Seq profile

from GM12801 as a proxy for replication timing across cancer types.

3.3 Feature importance analysis of epigenomic pro-

files through Random Forest regression

The availability of diverse epigenomic features (histone marks, DNase hypersensitiv-

ity, and replication timing) allows us to determine which features capture the most
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variation in regional mutational burden in a tissue type-specific manner. We employ

Random Forest regression, a non-parametric framework that integrates the result

of an ensemble of regression trees to infer the value of a continuous response vari-

able. Tree-based models have been shown to approximate functions with any shape,

whereas linear models can only fit combinations of linear functions [39, 40]. Multiple

regression trees make the model robust to outliers and noise in the input data. A sub-

set of the observations used for training is drawn from the dataset, with replacement,

for each regression tree. The remaining data corresponds to the test set and are used

to calculate the mean squared prediction error of the tree, which is then averaged

over all trees to provide the error for each observation. The difference between the

mean squared error computed on the test set and the mean squared error computed

upon random permutation of each of the predictor variables is averaged over all trees

and normalized by the standard error. This represents the raw importance score for

each feature, indicating in this case how closely the particular feature is associated

with mutational density across the genome.

The importance scores for available epigenomic features are computed for each tis-

sue type (Fig 3-3). These features are constructed by counting the number of peaks in

the NarrowPeak profile over discrete 1Mb bins. H3K9me3 and the replication timing

are found to be the most explanatory across tumor types. Lysine 9 in histone H3

plays an activating as well as repressive role by switching on genes when acetylated

and silencing them when methylated. H3K9me3 is known to cause binding of het-

erochromatin protein 1 (HP1) to constitutive heterochromatin [41]. HP1 has been

functionally linked to transcriptional repression. Therefore, association of H3K9me3

with mutational density in select tumor types implies a larger incidence of muta-

tions in inactive regions. These mutations could potentially result in de-repression of

normally silenced genes. Similar mechanisms revolving around epigenetic activation

of oncogenes have been previously reported in literature [35, 42]. We also observe

that, for most tumor types, either H3K9me3 or replication timing are strongly ex-

planatory. In the case of breast cancers from either cohort, H3K9me3 possesses high

importance score whereas other histone profiles have low contribution. This could in-
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dicate potentially distinct mechanisms of action for cancer growth or progression. Of

particular interest is the case of lung adenocarcinoma, where the TCGA cohort shows

greater explanatory capacity by H3K9me3 whereas the Alexandrov cohort shows a

higher importance score for replication timing despite the tumor type as well as the

cell-of-origin epigenome (E096) being identical.

A generalization of this analysis would be to infer the reference epigenome and its

associated cell type instead of imposing a cell-of-origin specificity for the epigenome.

This framework could potentially be useful in identifying the tissue of origin of can-

cers whose biopsies have been obtained from a metastatic site. The method considers

a unified feature set of all histone marks, DNase hypersensitivity, and replication

timing, and selects a cell type based on its representation in the overall ranked cor-

relation list of each of the epigenomic features. As before, the target variable is the

binned mutation density. We observe that the performance of this framework was not

consistent across all tumor types and in particular was poor in cases of low overall

mutational burden. This dependence of the regression fit on genome-wide mutational

load has been reported earlier [29]. In particular, the decline in model performance

in a highly sparse mutational landscape also made the interrogation of feature impor-

tances and cell-of-origin resemblance on a sample-specific basis challenging. Random

forest regression has enabled the prioritization of epigenomic profiles that are more

strongly linked to mutation incidence. However, we do not utilize regression coeffi-

cients or feature importances in our model for computing the epigenomically adjusted

mutational background described in the following chapter.
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Figure 3-2: Analysis of replication timing profiles (Repli-Seq) from 9 cell types from

ENCODE. (a) Correlation of 1Mb binned genome-wide replication timing for 9 cell
lines. (b) 1Mb binned genome-wide correlation between replication timing and tumor-

specific mutation density.
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PilocyticAstrocytoma

LGGFredriksson

Medulloblastoma
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Figure 3-3: Contribution of different epigenomic features towards mutation density
across tumor types: H3K9me3 and GM12801 replication timing (Repli-Seq) are most
explanatory of the 1Mb binned mutational background across tumors. We also ob-
serve tumor specific features of high importance such as H3K4me1 in the case of
liver cancer or DNase hypersensitivity in the case of Melanoma or Medulloblastoma.
A blank cell indicates unavailability of the epigenomic profile corresponding to the
particular cell type
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Chapter 4

Mutational driver detection

framework

Although the mutational landscape of tumors is diverse and varies from one sample

to another, not all mutations contribute to tumorigenesis [43, 44]. Comprehensive

genomic and clinical characterization of different tumor types have motivated the

development of computational methods to identify molecular alterations that are ad-

vantageous to the fitness of the cell. These variants or abnormalities are known as

cancer drivers. Bioinformatics tools have been developed to evaluate genes or ge-

nomic regions that have driver potential by harboring a higher number of somatic

mutations than expected by chance. This is equivalent to a higher mutation density

than the background mutation density. Accounting for the mutational background is

important since it is likely that mutations occurring in regions of high density are sim-

ply a consequence of genomic instability and do not possess functional implications.

However, mutations observed in a section of the genome with low overall mutational

density are likely to have been positively selected and are hence functionally relevant.

4.1 Background to driver detection methods

Numerous methods have been developed to detect driver genes or mutations and

distinguish them from non-functional counterparts [16, 45]. However, limited genomic
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alterations have been confidently established to confer selective advantage. In the

absence of a comprehensive gold stafidard, comparison of existing predictive methods

and subsequent selection becomes a difficult process. A few of the most commonly

employed driver detection frameworks are detailed below.

The MuSiC pipeline aims to incorporate standardized sequence-based inputs along

with multiple clinical characteristics to infer correlations between sites of mutations

and associated genes and pathways [46]. ActiveDriver is gene-centric framework built

on a generalized linear regression model that incorporates information about a given

gene and its phosphosite region [47]. TUSON is a computational pipeline that charac-

terizes the patterns of mutational signatures across tumor types to determine whether

a particular gene is likely to be an oncogene or a tumor suppressor [48]. MutSigCV

uses genome- or exome-wide variant calls from multiple samples, with coverage and

covariate information to identify genes that are harbor more mutational burden than

expected by chance 1221.

Multiple driver detection tools have been developed to determine the functional

impact of missense mutations. These methods typically incorporate information

about the site of the mutation by evaluating existing knowledge from evolutionary

conservation, sequence context, or physiochemical properties of the resultant proteins.

For example, SIFT and MutationAssessor utilize features derived from evolutionary

stability of different segments of the genome [49, 50]. Similarly, CHASM is a random

forest classifier that includes evolutionary aspects and protein domain information, as

well as tissue-type specific factors, to prioritize missense mutations whose resultant

functional alterations are linked to tumor progression [51]. Other methods include

SSA-ME and ParsSNP. SSA-ME is a network-based method to identify potential

cancer drivers through scoring small subnetworks for mutual exclusivity using a re-

inforced learning approach [52]. ParsSNP, on the other hand, is an unsupervised

predictor of functional impact that employs an expectation-maximization framework

to find mutational drivers [53].

Amongst the described techniques for mutational driver detection, the MutsigCV

method is most closely linked to the notion of identifying drivers through recurrence
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and the necessary adjustment of the background mutation density. MutsigCV has

shown that identification of significantly mutated genes in cancer is improved by

accounting for patient-specific attributes of mutation frequency and signatures, and

gene-specific background mutation densities incorporating genomic covariates such as

expression level and replication time. This is a consequence of the fact that while it

is possible to accurately compute the background mutation density for larger regions

and genes, it is relatively difficult to do so for shorter regions or for tumor types

with low mutational burden. MutsigCV incorporates a technique based on binning

where genes are grouped based on expression level and the average mutation rate is

calculated for each bin individually.

4.2 Method description

In this study, we develop a novel driver detection framework by factoring in genome-

wide variation in tissue-specific epigenomes (Fig. 4-1). In particular, the availability

of cell type-specific reference profiles of diverse epigenomic marks from the Roadmap

Epigenomics Consortium allows us to uniquely model the mutational landscape and

distinguish driver alterations from non-functional passengers for each tumor type.

We leverage the various histone profiles as well as DNase hypersensitivity tracks as

covariates in correcting the mutational background in a robust manner across tumor

- types with varying mutational burden. We incorporate the genome-wide Repli-Seq

profile for GM12801 as an additional covariate. Altogether, this allows us to effectively

re-estimate the local background mutation density uniformly across the genome for

coding as well as non-coding regions.

In this framework, we first establish the set of unique mutations for the 17 tumor

types considered. A 1kb genomic window is constructed around each mutation, for

which we compute mean signal enrichment for every corresponding histone mark,

DNase hypersensitivity track, and replication timing profile. This allows us to project

each mutation as a point in an N-dimensional epigenomic covariate space (where

N is defined by the number of available features for the cell type in question as
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indicated in Fig. 3-3). This representation of the mutational landscape enables the

identification of mutations that share epigenomic context unique to each tissue. We

re-estimate the mutational density in the 1kb window around a particular mutation of

interest by averaging over the background mutation rates of proximal mutations. This

method inherently corrects for epigenomic covariates in calculating the mutational

background. The local neighborhood is defined as the 50 nearest neighbors of a

mutation of interest, where distance between two mutations is computed by Euclidean

distance in the N-dimensional space. Our motivation for considering only mutated

segments of the genome and not the unaltered regions is two-fold. First, our method

should be uniformly applicable across tumor types. The mutational burden and the

number of regions lacking mutation vary across cancers from different tissue types.

Secondly, our representation of the mutational landscape is based on the assumption

that the samples in the cohort capture the entire space of possible mutations for each

tumor type. Therefore, accounting for non-mutated regions would only have the effect

of decreasing the mutation density.

4.3 Mutations identified based on site-specific recur-

rence

The calculated background mutation density specified at the location of a given muta-

tion defines the position-specific probability of mutation for each tumor type. Given

this probability p and the total number of samples n, the binomial distribution B(n,p)

represents the number of samples in which the given site is mutated. Since we know

the actual number of samples harboring that mutation (observed), we can define a p-

value to capture the statistical significance of mutational occurrence at the concerned

site. We then perform false discovery rate (FDR) correction to obtain a ranked list

of recurrent mutations for each tumor type.

Significance analysis of recurrent mutations reveals unique patterns of mutational

incidence in a tissue-specific context. For instance, the most significant recurrent
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mutations in breast cancer across both TCGA and Alexandrov cohorts are found

to localize in the quiescent chromatin state. This was indicated earlier through the

strong explanatory potential of H3K9me3 in the both breast cancer datasets (Fig.

3-3), thereby suggesting de-repression may promote oncogenesis. In addition to the

quiescent state, other highly recurrent mutations localize to the weak transcription

(5_TxWk) chromatin state and upon closer inspection are found to be located in

intronic regions. In contrast to breast cancer, the significant mutations in liver can-

cer are present in diverse chromatin states. In particular, liver-specific enhancers are

found to harbor three of the top twenty identified recurrent mutations. Chr5:1295228

lies within a cancer susceptibility locus (5p15.33) and is immediately downstream of

the TERT gene. Additionally, the enhancer is immediately upstream of the CRR9p

gene, whose over-expression is known to confer resistance to apoptosis caused by

genotoxic agents. A recurrent promoter mutation is found in B-cell lymphoma up-

stream of the IGLL5 gene, an immune-related gene known to be involved in the B-cell

receptor signalling pathway. In addition to identifying potential regulatory drivers,

our model also reveals recurrent exonic mutations. For instance, B-cell lymphomas

harbors a mutation in the RHOA gene, member of the Ras superfamily, consisting

of proteins involved in cell cycle regulation. Additionally, a protein-coding mutation

in the IDH1 gene is the top ranked hit in the lower grade glioma (LGG) cohort from

TCGA. Disruption of IDH1 function is known to cause widespread changes in histone

and methylation landscapes that potentially promote oncogenesis.

4.4 Recovery of potential drivers and identification

of false positives

Previous studies on non-coding mutations in cancer have reported that limited sample

size presents a challenge to characterizing functional drivers [311. In particular, site-

specific mutational recurrence in the regulatory genome, as illustrated in the previous

section, may correspond to only a small number of downstream target genes, espe-
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cially when the overall cohort size is limited [171. This is primarily because non-coding

mutations occurring at the same site are typically rare. Our analysis pipeline is ca-

pable of recovering mutations normally classified as non-significant when considering

the local mutational background, but with potential functional implications. This is

enabled by comparing the statistical significance of mutational recurrence computed

using the local mutational background with the recurrence using the epigenomically-

adjusted mutational background. Mutations that are identified as significant in the

latter case but not the former can be considered as 'recovered' mutations. Such in-

stances typically arise when the adjusted mutation density is lower than the original,

and when the actual number of occurrences of the mutation is less. While it is pos-

sible that such discoveries do not carry true functional value, it is likely that these

mutations will be identified as recurrent upon augmenting the cohort with additional

samples [17]. Alternatively, a mutation identified as recurrent using the local muta-

tional background could potentially be a false positive when validated with the model

using the adjusted background mutation density.

Recurrence-based driver detection methods that return a p-value or similar mea-

sure of statistical significance usually involve defining a significance threshold to sep-

arate functional drivers (associated with low p-values) from non-functional passenger

mutations (with high p-values). However, a common challenge faced when segregating

groups based on statistical significance is defining an appropriate cutoff. In particular,

diverse mutational landscapes across tumor types make it difficult to choose a uniform

threshold without mis-classified mutations. To characterize the effect of different sig-

nificance thresholds, we plot the variation in the number of mutations with p-value

lower than the threshold as a function of the cutoff value for both the local muta-

tion density framework and the adjusted mutation density framework for two tumor

types as an example (Lower-grade glioma and Renal clear cell carcinoma, Fig 4-2).

We observe that across all tumor types, the number of mutations classified as poten-

tial drivers was lower when using the epigenomically-adjusted mutational background

than with the local mutational background. This reduction is more prominent in can-

cers with overall low mutational burden. This indicates our method for re-estimating
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the mutation density has the effect of restricting the space of potentially functional

mutations. As verification, we explore the distribution of chromatin states harboring

mutations crossing the significance threshold. With more stringent thresholds, we no-

tice a reduction in unique chromatin states across multiple tumor types, suggesting

preferential state-specific incidence of recurrent mutations.

4.5 Active epigenomic regions

Variants in the regulatory genome functionally impact downstream gene expression

to promote oncogenesis through a wide range of mechanisms such as disrupting TF

binding sites or non-coding RNA function. In particular, mutations that localize to

promoter or enhancer elements can create altered motifs and loss-of-function events

that affect the binding affinity of TFs [3, 541. For all mutations occurring in a particu-

lar tumor type, we can use the position-specific significance of mutational recurrence

to derive a test statistic that yields information regarding the driver potential of the

region of interest. For this study, we focus on enhancer and promoter elements defined

in a tissue-specific manner by the Roadmap project.

Convolving the effective recurrence potential of individual variants across genomic

segments reveals multiple novel active non-coding regions with driver potential that

are linked in their regulatory context with genes impacting tumor progression. For

instance, a 2kb enhancer region in Medulloblastoma was the most significant in terms

of mutational burden and recurrence and governs the expression of the EIFA4A2

gene. EIF4A2 has been studied in the context of breast cancer, non-small cell lung

cancer, and melanoma and is linked to translational repression and miRNA-mediated

gene regulation [55]. Among the breast cancer samples from the Alexandrov cohort,

the top-ranking enhancer region was in the 17p13.1 locus. This enhancer has been

linked to a number of genes including SOX15, POLR2A, PLSCR2. SOX15 has been

well characterized as a tumor suppressor, PLSCR2 has been linked to apoptosis,

and POLR2A is known to experience co-deletion with TP53, a well-known tumor

suppressor [56, 57].
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Although this framework allows us to perform preliminary prioritization of regu-

latory regions that harbor recurrent mutations, characterizing the functional impact

of each variant will require computational or experimental follow-up and is necessary

for a complete understanding of the dysregulated pre-transcriptional machinery in

cancer. An example of a computational technique developed with this goal is the

Intragenomic Replicates (IGR) method, [581. IGR describes the binding affinity of

a given TF for both reference and variant alleles of the mutation of interest while

accounting for the local nucleotide context around the variant.
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Figure 4-1: Computational framework for identifying recurrent non-coding mutations.
In Step 1, we compute enrichment of different histone marks, DNase hypersensitivity
tracks, and replication timing (N unique features) in a 1kb window around a somatic
mutation to derive a vector of averaged epigenomic signal for each mutation. In Step
2, mutations are localized in the N-dimensional epigenomic space (N=2 in figure), the
neighborhood of each mutation is computed, and the background mutation density is
updated. In Step 3, we identify statistically significant recurrent mutations (asterisks)
using both the original and the adjusted mutational background. In Step 4, we
aggregate significance measures for mutations present in the same active chromatin
state to derive the 'recurrence potential' of a regulatory locus.
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Figure 4-2: Analysis of recurrent mutations with varying significance threshold: Top

plots indicate the number of recurrent mutations that meet the significance threshold

(Y axis) for decreasing p-value cutoff (X axis) for the two models for background

mutation density - the local mutational background (blue) and the epigenomically
adjusted mutational background (red). The stacked bars at the bottom represent the

variation in chromatin state distribution of recurrent mutations for different p-value

cutoffs - weak repressed Polycomb state 14_ReprPCWk, lime green), transcribed

state (4_Tx, violet), quiescent state15_Quies, dark pink).
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Chapter 5

Regulatory convergence of genomic

regions carrying mutational burden

onto common target genes

Multiple distinct regulatory regions often impact the same downstream target gene

and can exhibit diverse patterns of mutational burden in a sample-specific manner

(Fig. 5-1). Additionally, the regulatory loci linked with a particular gene vary from

one tissue to another and this linking exhibits added complexity in cancer by virtue

of genomic instability and copy number variation. Modeling the regulatory neighbor-

hood of each gene and identifying recurrent non-coding mutations will enhance our

understanding of regulatory drivers. In this chapter, we describe a statistical model of

regulatory convergence that characterizes the cumulative effect of genomic alterations

aggregated across regulatory regions linked to a common target gene. Epigenomic in-

teraction data, in tandem with carefully curated databases on enhancer-gene links,

allow for comprehensive identification of distal enhancer regions and their targets.

This in turn enables integration of individual low-frequency alterations into high-

frequency recurrent events across different tumor types.
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Figure 5-1: Framework of convergence analysis: The regulatory neighborhood of a
gene of interest can contain proximal and distal regulatory elements corresponding
to different chromatin states. Mutational incidence across these regulatory loci is
heterogeneous and disparate. The idea of convergence implies that individual low-
frequency non-coding mutations can result in the same functional consequence when
aggregated across the regulatory neighborhood of a target gene.
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5.1 Defining a tissue-specific regulatory neighborhood

for each gene

Regulatory loci often lie far from their downstream target along the one dimensional

genome. However, three dimensional chromatin conformation results in active regula-

tory sites and target genes in physical proximity [59]. Therefore, accurate and robust

methods integrating epigenomic context and chromatin organization, among other

features, are necessary to describe the pre-transcriptional regulatory interactome.

For this study, we leverage an existing database of enhancer-gene links defined in

a tissue-specific manner to construct tissue-specific reference interactomes for each

gene [18]. The framework for mapping enhancers to genes is based on correlations in

activity profiles defined for each enhancer, where distance-based information and asso-

ciation between gene expression and genome-wide histone signal intensity tracks were

combined. The active regulatory landscape was complemented with gene expression

maps of potential downstream targets, sequence motif enrichment, and expression of

transcription factors binding each motif. This enabled probabilistic interpretation

of the pre-transcriptional regulatory linking surrounding each enhancer. A classifier

based on logistic regression was implemented to distinguish real enhancer gene links

from control groups where expression values were randomly permuted across the gene

set. This framework, developed originally for ENCODE cell lines, was then extended

to encompass all the 127 cell types from the Roadmap project.

Enhancer-gene databases generated based on epigenomic correlations tend to re-

sult in a smaller number of regulatory links than HiC or other chromatin interaction-

based approaches that consider extended segments of the genome to be in physical

proximity. However, there are some challenges with using HiC databases to inform

the regulatory neighborhood in the context of this study. First, HiC profiling has not

yet been performed uniformly across multiple tissue types. Second, HiC databases

are available in different contact resolutions and the choice of resolution defines the

domain of regulatory linking. To address the challenge of under-representation of the

regulatory neighborhood from enhancer-gene databases, we present a novel method
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toward augmenting the set of loci associated to a target gene in the following section.

5.2 Expanding regulatory neighborhood by factor-

ing epigenomic plasticity

Previous studies have selected reference interactomes based on the closest matched

epigenomes for each tumor type. In this setting, mutations that disrupt chromatin

interactions are inherently accounted for. However, genomic alterations that create

de novo tumor-specific regulatory links will not be captured as relevant. Here, we

describe a novel framework to identify mutations with regulatory potential that oc-

cur in inactive regions of the genome in the matched reference cell type (from the

Roadmap Epigenomics Project).

We leverage chromatin state annotations from the Roadmap project across 127

cell types. The genome is binned into segments of 200 bp and each segment can

belong to one of 15 distinct chromatin states, defined using the ChromHMM method.

Information concerning the genomic location of various histone modifications is used

to estimate the distribution of the 15 chromatin states across 127 distinct cell types.

For each 200 bp segment we compute the Shannon entropy of the state distribution,

which enables us to quantify the uncertainty of the distribution and acts as a proxy

for chromatin state plasticity at that region. We also define a Repressive Index for

each 200 bp segment, which is the probability of occurrence of a repressive state

at that location considering independence in the occurrence of different chromatin

states across cell types. Therefore, this functions as an empirical estimation of the

chromatin state distribution.

To capture out-of-context de-repression of genomic segments as a result of somatic

mutations, this analysis focusses on the repressed or quiescent states across the ref-

erence epigenomes for each tumor type (Fig. 5-2a). Genomic segments of primary

interest are those that are repressed in the reference cell type but active to some degree

in other cell types. In other words, the manifestation of the phenotypic impact of a
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variant can be masked by repressed state in original normal cell while that repressive

state becomes active in cancer. We define the search space as non-overlapping 200 bp

segments repressed in the cell type of interest, but not repressed across all cell types.

To characterize the effect of repressive index in a segment of the genome on the local

mutational density we plot the corresponding mutational enrichment for each tumor

type (Fig. 5-2b). To compute mutational enrichment, we determine the number of

mutations across all samples of a tumor type, in 200 bp windows with a given value

of repressive index. The mutation count is normalized first by the total number of

genomic segments with that repressive index, then by the overall average mutational

burden for that tumor type. We observe an increase in mutational enrichment with

repressive index, along with a decrease in variance. We hypothesize that this pattern

is due to the effect of DNA repair machinery which is likely to be more active at

regions with low repressive index thereby resulting in lesser mutational incidence.

5.3 Identifying genes with regulatory burden for each

cancer type as well as genes shared across cancer

types

We discover genes harboring non-coding mutations in their regulatory neighborhood

by exploring their linked regulatory regions and aggregating over statistically sig-

nificant recurrent mutations. The enhancer-gene interaction set is augmented by

de-repressed regions characterized by low repressive index in a tissue-specific manner

as described in the previous section. The includes de-repressed segments that do not

contain linking information in the tissue of interest. However, we can assign a tar-

get gene for these regions using our enhancer-gene database in the event that these

regions function as active enhancers in other tissues. Upon ranking genes in decreas-

ing order of the significance of recurrent mutations in their regulatory neighborhood,

we find that the top genes represent convergence events in lung adenocarcinoma,

melanoma and colorectal carcinoma. Many of these genes are linked with oncogenic
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or immunomodulatory biological processes. For instance, the genes DUSP22 and

IRF4 identified in lung adenocarcinoma are both known to impact immune path-

ways. DUSP22 is a JNK pathway-associated phosphatase known to inhibit T-cell

receptor signalling and autoimmunity by inactivating Lck [60]. IRF4 has been linked

to cellular signalling leading to differentiation of dendritic cells in lung tissue [61]. In

melanoma, our framework for regulatory convergence reveals a number of significant

genes linked with immune signalling. SPSB1 was the top hit in this case and is known

to down-regulate the TGF-beta signaling pathway targeting the type II receptor [62].

The occulocutaneous albinism 2 (OCA2) gene is involved in small molecule trans-

port of tyrosine and is known to influence melanoma susceptibility [63]. The most

significant convergence events in colorectal carcinoma are genes also related with im-

mune function. SMAD3 plays a crucial role in TGF-beta signalling and is important

for cell fate and differentiation [64]. NFATC2 is a member of the nuclear factors of

the activated T cells transcription complex and is known to enhance cell motility for

metastasis in breast and colon cancers [65].

Tumor types with intermediate and low mutational load are also found to pos-

sess genes experiencing significant regulatory burden. The EHF gene, discovered

in pancreatic cancer, functions as a tumor-suppressor and plays an important role

in carcinogenesis through changes in subcellular localization [66]. Also significant

for regulatory convergence in pancreatic cancer is ZBTB16, known to influence the

unique characteristics of NKT cells such as antigen response [67]. In the breast can-

cer cohort from the TCGA study, we identify the FGFBP1 gene, which is known to

contribute to miRNA induced angiogenesis, and the TRIM33 gene, which acts as a

tumor suppressor and regulates the TGF-beta receptor [68, 69]. In chronic lympho-

cytic leukemia (CLL), IKZF3, which is a hematopoietic-specific transcription factor,

is found to harbor regulatory mutations and is known to be over-expressed in CLL

[70].

In addition to evaluating downstream gene targets of regulatory loci for each

tumor type, our model allows us to examine tissue-specific uniqueness of non-coding

mutational burden as well as shared features of dysregulation across tumor types.
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For instance, the IGLL5 gene was found to harbor regulatory mutations uniquely in

B-cell lymphoma. IGLL5 encodes an immunoglobulin lambda-like polypeptide and

is homologous to IGLL1, which is critical for B-cell development [711. Similarly, we

capture potential dysregulation of ARF6 in breast cancer, whose overexpression is

linked to invasion and metastasis [721. Our framework also uncovers genes exhibiting

regulatory burden across multiple tumor types. In this case, the most significant hit

is the MYH9 gene, which is an established tumor suppressor and is known to regulate

TP53, and exhibits a recurrently mutated regulatory neighborhood across 11 distinct

tumor types [731. Additionally, dysregulation in EGFR and AMOTL2 is revealed

across 10 tumor types. While EGFR is a well-characterized oncogene, AMOTL2

promotes angiogenesis and is linked to invasiveness of tumors [741.

5.4 Correlation with gene expression for TCGA tis-

sues

For genes with significant regulatory burden, we partition the set of samples from each

tissue type into two categories: those possessing at least one mutation in the regu-

latory neighborhood of the gene of interest, and those with zero mutations. We find

that aggregating somatic variants across regulatory loci accounts for dysregulation of

the downstream target gene in a larger fraction of samples than that observed by con-

sidering regulatory loci independently. Additionally, we validate pre-transcriptional

dysregulation on a gene-by-gene basis by comparing gene expression profiles across

the two partitions of samples.

We identify tissue-specific relationships between the presence of a regulatory mu-

tation and subsequent gene expression patterns for the same gene across tissue types.

For instance, although AMOTL2 harbors mutations in its regulatory neighborhood

across 10 tumor types, a significant correlation between mutational incidence and

expression profiles is seen only in lung squamous cell carcinoma (LUSC). Similarly,

regulatory mutations in SPSB1 cause differential expression in lung adenocarcinoma

51



(Fig. 5-3).

Although a number of genes relevant to cancer growth and progression are discov-

ered to have statistically significant regulatory burden, we observe that only a fraction

of those non-coding mutations aggregated over regulatory loci result in distinct dif-

ferential gene expression patterns. This can be attributed to low overall expression

(in both mutated and unmutated samples) resulting in weaker comparisons. Tissue-

specific expression and activity of transcription factors can also explain the varying

impact regulatory burden has on gene expression across different tissue types.
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Figure 5-2: Analysis of chromatin state plasticity and mutation burden: (a) Compu-
tational framework for measuring chromatin state plasticity across the genome. The
entropy and repressive index for the distribution over 15 chromatin states and 127
cell types are calculated. Genome-wide entropy and repressive index (RI) vectors are
derived for cell type-specific repressed regions (b) Mutational enrichment variation
for 200 bp repressed segments of the genome for each tumor type.
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Figure 5-3: Differential gene expression between sets of tumor samples with and
without at least one regulatory mutation for the gene of interest: Differential gene
expression is quantified through the normalized RSEM (RNA-Seq by Expectation
Maximization) measure. (a) AMOLT2 expression in lung squamous carcinoma (T-
test p-value: 8.39e-5). (b) SPSB1 expression in lung adenocarcinoma (T-test p-value:
0.02)
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Chapter 6

Conclusions and future work

The diverse mutational landscape across the cancer genome makes it challenging to

characterize the functional potential of each variant. Here, we present a framework to

establish recurrence of non-coding mutations augmented by tissue-specific epigenomic

context. We leverage existing databases on tissue-specific enhancer-gene interactions

to aggregate variants that are individually rare across cancer cohorts into high-order

statistically significant recurrent events. Additionally, the proposed methodology for

non-coding mutational driver discovery was found to be applicable across tumor types

of diverse mutational burden. Novel convergence events shed light on tumor type-

specific cancer driver genes that were previously uncharacterized in the tissue(s) of

interest. We also discover genes with patterns of regulatory burden shared across

multiple tumor types. The identified genes take part in tumor suppression, angio-

genesis and immune evasion. While recurrent protein-coding mutations are known to

activate oncogenes or silence tumor suppressors, the functional convergence of non-

coding mutations towards multiple hallmarks of cancer highlights their relevance to

cancer growth and progression.

We recognize the limitations of our model. The assumption of the cell-type-of-

origin epigenome as the closest reference epigenome may restrict our ability to capture

histone modification or methylation changes brought about due to genomic instability

of the tumor sample. Similarly, we approximate the regulatory neighborhood of each

gene in a tumor cell to be the same as that in a normal cell. Therefore, tumor-induced
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formation and silencing of regulatory interactions have not been accounted for. We

also considered a cell type-agnostic approach toward characterizing replication timing

primarily due to a limitation in the number of Repli-Seq profiles available.

We envision a number of potential avenues of expansion for this work. In addi-

tion to more rigorously incorporating reference epigenomes and interactomes that are

representative of tumor-specific chromatin organization, overlaying three dimensional

interaction data from HiC or ChiA-PET experiments could be insightful. Addition-

ally, the functional impact of individual non-coding variants and TF-binding affinity

can be rigorously characterized through sequence motif-based methods such as IGR.

We believe that the current framework can be strengthened significantly with the

availability of larger tissue cohorts allowing better capture of regional variation in the

mutational background. Accounting for the inherent instability of the cancer genome

from copy number variations, gene fusions, or chromosomal translocations and inte-

grating these distinct modalities would enable more accurate modelling of the regu-

latory interactome. Additionally, as non-coding variants are not immunogenic, their

accumulation in the tumor cell would be masked from immune surveillance. Our

model can be expanded to characterize this period of divergent evolution thereby

providing functional insight on the distinct clonal populations of tumor cells that

emerge. Finally, empowering our framework to incorporate clinical characteristics for

each tumor sample coupled with longitudinal profiling over the course of treatment

can potentially bring about translational discoveries. Ultimately, this could drive

progress towards improved patient stratification and accelerate the development of

personalized therapeutics.
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Appendix A

Data download and analysis

Whole genome variant calls for the TCGA cohort for 9 tumor types based on the study

by Fredriksson et al. are downloaded from Synapse (SYN2882201). Colon and rectal

carcinomas were considered together as one tumor type. SAMtools and VarScan were

used to call somatic mutations. A minimum variant frequency of 0.2 is imposed. The

whole genome variant calls for the Alexandrov cohort are obtained from f tp: //f tp.

sanger. ac. uk/pub/cancer/AlexandrovEtAl. We download the raw mutations text

file for each of 8 tumor types. Somatic mutational prevalence across the genome are

calculated based on all identified mutations with the assumption that the average

whole genome has sufficient coverage over 2.8 gigabases. Both the TCGA and the

Alexandrov cohort contain samples of breast cancer and lung adenocarcinoma.

Reference epigenomes for each of the tumor types are obtained from the Roadmap

Epigenomics dataset. We download the 11 reference epigenomes (E031, E033, E059,

E066, E081, E086, E096, E098, E101, E119, E125) from the Washington University

web portal - http: //egg2.wustl. edu/roadmap/web-portal/. For each cell or tissue

type, we obtain the BigWig signal (p-value) files as well as the peak calling results as

NarrowPeak BED files for all histone modifications and DNase hypersensitivity tracks

available. Additionally, we also download the 15-state chromatin state annotation for

each of the cell and tissue types.

BigWig enrichment files based on the Repli-Seq assay are downloaded for four cell-

cycle fractions (GIB, S1, S4, G2) from ENCODE (https://www.encodeproject.
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org/). We utilize the bigWigToBedGraph tools from the UCSC binary utilities

directory (http://hgdownload.soe.ucsc.edu/admin/exe/) to convert the BigWig

signal files to the BedGraph format. This is followed by peak calling using the Model-

based analysis of ChiP-seq (MACS) algorithm (https: //github. com/taoliu/MACS)

to identify NarrowPeaks. We then aggregate the number of NarrowPeaks over the

genomic segment of interest for each cell cycle fraction. Replication timing is then

represented by an early-to-late ratio given by (G1B+S1)/(S4+G2).

For the Random Forest regression framework, the predictor variables are the Nar-

rowPeak counts over 1Mb bins across the entire genome (giving rise to 3,113 bins).

The target variable is the 1Mb binned count of total mutations over all samples of

each tumor type. To compute the epigenomically-adjusted mutation density, each

unique mutation for a tumor type is annotated with its local epigenomic context. For

this analysis, the average of the BigWig waveform for every available histone mark,

DNase hypersensitivity track and Repli-Seq cell cycle profile is considered around a

1kb window of each mutation. Replication timing in the local context of the mutation

is calculated as described above.

Gene expression profiles for 20,530 genes across the 9 tumor types from TCGA are

obtained from the Broad Institute Firehose project (http: //gdac . broadinstitute.

org/). Samples from colon adenocarcinoma and rectum adenocarcinoma are collapsed

into the CRC cohort. All of the analyses described in this study are performed in the

cluster computing environment at the Broad Institute and in local Linux workstations

(Intel i7-6900K A 3.2GHz) of the Computational Biology group at MIT.
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Appendix B

Supplementary Tables and Figures
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Table B.1: Description of
tissue ID.

tumor cohorts, individual tumor types, corresponding matched reference epigenomes, and TCGA

Tumor Abbr. Dataset Cancer Type Matched Cell-of-origin TCGA

Breast Alexandrov Breast cancer E119 - HMEC BRCA

PilocyticAstrocytoma Alexandrov Pilocytic astrocytoma E125 - NH-A Astrocyte N/A

Medulloblastoma Alexandrov Medulloblastoma E081 - Fetal Brain N/A

BRCA Fredriksson Breast cancer E119 - HMEC BRCA

Liver Alexandrov Hepatocellular carcinoma E066 - Liver LIHC

LUAD Fredriksson Lung adenocarcinoma E096 - Lung LUAD
LUSC Fredriksson Lung squamous cell carcinoma E096 - Lung LUSC

CRC Fredriksson Colorectal carcinoma E101 - Rectal Mucosa COAD+READ

SKCM Fredriksson Melanoma E059 - Foreskin Melanocyte SKCM

KIRC Fredriksson Kidney clear cell renal cell carcinoma E086 - Fetal Kidney KIRC

CLL Alexandrov Chronic lymphocytic leukemia E033 - T cells cord blood N/A

GBM Fredriksson Glioblastoma E125 - NH-A Astrocyte GBM

LungAdeno Alexandrov Lung adenocarcinoma E096 - Lung LUAD

Lymphoma B-cell Alexandrov B-cell Lymphoma E031 - Primary B-cells DBLC

LGG Fredriksson Low-grade glioma E125 - NH-A Astrocyte LGG

KICH Fredriksson Kidney chromophobe E086 - Fetal Kidney KICH

Pancreas Alexandrov Pancreatic cancer E098 - Pancreas PAAD



Table B.2: Number of samples with whole-genome mutation calls, mean and standard deviation of overall mutational count per
sample, and number of unique variants for each tumor type.

Tumor Abbr. # WGS Mean Mut. Count Standard Deviation Mut. Count Unique SNV Count
Breast 119 5679.81 7269.79 659093
PilocyticAstrocytoma 101 105.21 113.85 10556
Medulloblastoma 100 1253.33 1190.04 124865
BRCA 96 6651.33 5337.09 600155
Liver 88 10012.97 5491.45 870110
LUAD 46 28114.17 31570.63 1202789
LUSC 45 36402.53 15941.42 1578870
CRC 42 117896.33 219933.91 4152409
SKCM 38 94655.24 117199.79 3529151
KIRC 29 4848.41 1612.62 116240
CLL 28 2080.57 874.87 51749
GBM 27 7056.26 1847.3 174164
Lung_ Adeno 24 66494.83 61637.33 1531734
Lymphoma B-cell 24 5329 7254.75 127407
LGG 18 2090.11 1242.65 33315
KICH 15 1919.53 557.68 21954
Pancreas 15 7471.2 3993.39 112018
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Table B.3: Chromatin state abbreviations, definition
from the Roadmap Epigenomics project.

and active/inactive potential

Abbreviation Chromatin State Active / Inactive
1_TssA Active TSS Active
2_TssAFlnk Flanking active TSS Active
3_TxFlnk Transcr. at gene 5' and 3' Active
4_Tx Strong Transcription Active
5_TxWk Weak Transcription Active
6_EnhG Genic enhancers Active
7_Enh Enhancers Active
8_ZNF/Rpts ZNF genes + repeats Active
9_Het Heterochromatin Inactive
10_TssBiv Bivalent/poised TSS Inactive
11_BivFlnk Flanking bivalent TSS/Enh Inactive
12_EnhBiv Bivalent enhancer Inactive
13_ReprPC Repressed Polycomb Inactive
14_ReprPCWk Weak repressed Polycomb Inactive
15_Quies Quiescent Inactive
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Figure B-1: Sequence context analysis for C>A, T>A, T>C, and T>G mutational
categories.
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