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Abstract

Rapid urbanization places increased pressure on governments and cities to use economical, low-carbon energy
supply strategies. This manuscript details efforts to develop an integrated energy supply and demand analysis tool
to help urban planners and designers evaluate and compare schemes to satisfy the electric, heating, and cooling
demands of urban areas. Current simulation tools tend to focus on either the demand- or supply-side aspect of the
energy challenges cities face. Additionally, these tools are often overly simplistic or complex with steep learning
curves, rendering analyses directionally incorrect or inaccessible.

The developed framework integrates a 3D modeling platform, an industry-standard energy simulation engine, and
variable-efficiency supply models to increase the accessibility and usability of results. This will help
municipalities, developers, and urban planners make informed decisions related to energy supply schemes at the
neighborhood level regarding estimated energy consumption, carbon emissions, and energy costs.

The approach is applied to case studies from six mixed-use neighborhood designs in three cities: Boston, Lisbon,
and Kuwait City. The results illustrate the significance of using load- and temperature-dependent supply models
instead of constant COP models. The results underscore the influence that weather, equipment, and regional power
generation characteristics have on the optimal energy supply strategy for a given neighborhood design.

Thesis Supervisor: Christoph Reinhart
Title: Associate Professor of Building Technology
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1 INTRODUCTION

Cities are responsible for approximately 75% of energy
consumption and 80% of GHG emissions worldwide,
and the continuing trend of urbanization will place
increased pressure on cities to find creative approaches
for curbing building-related emissions and energy
consumption at competitive costs (UN, 2017).
According to a recent report by the UN, the urban
population is projected to grow by 2.5 billion from 2014
to 2050. Creutzig et al. estimate that this dramatic
urbanization will result in a staggering threefold
increase in energy consumption under a business-as-
usual scenario. Encouragingly, the authors also found
that urban planning and transport policies can limit this
increase by 25% (Creutzig et al., 2014).

In addition to deliberate energy-efficient designs,
energy use in the building sector can be reduced through
two primary means: (1) by decreasing building energy
demands through a combination of retrofits and
commissioning and (2) by increasing the efficiency of
the energy supply systems. Traditionally, individuals
have concentrated on either developing planning tools
focused on the building demand side or energy supply
aspect, but few have integrated both dimensions
(Keirstead et al., 2012). This bifurcation is largely the
result of differences between key stakeholders. Building
owners and tenants are responsible for purchasing
energy from utilities and are therefore directly
incentivized to minimize their consumption with little
concern or control over the performance of the energy
supply system.

Similarly, utilities focus on maximizing their profits,
which may motivate them to improve the energy supply
systems, but this often just involves the upkeep of
existing infrastructure. Utilities do have influence over
building energy demands, and they encourage energy
efficiency improvements with rebates. However, these
rebates neglect to improve the performance of the actual
supply systems.

Municipalities, energy policy makers, and large campus
administrators are well-positioned to encourage both
reductions in building energy demands and
improvements to the performance of energy supply
systems to meet sustainability goals. Unfortunately,
available simulation tools limit their ability to evaluate
urban energy supply strategies within the context of
building loads and impede the decision-making process.
Current simulation tools either provide an overly
simplistic analysis, or they are complex with steep
learning curves that require detailed systems- and
buildings- level modeling. A decision-making tool that

provides fast, accurate results will help key stakeholders
make more informed decisions.

In recent years, researchers have developed several
bottom-up urban building energy models (UBEM) to
address the need to provide an integrated method for
evaluating building energy demands with energy supply
strategies (Reinhart and Cerezo, 2016). Prominent
examples include the City Energy Analyst from ETH
Zurich, CitySim from Ecole Polytechnique Federale de
Lausanne (EPFL), and the Urban Modeling Interface
from the Massachusetts Institute of Technology.

The City Energy Analyst is an UBEM tool that allows
users to analyze and optimize energy systems in
neighborhoods and city districts. The tool integrates
several database and computation modules with ArcGIS
to allow users to compare urban design scenarios in
conjunction with energy systems with respect to energy,
carbon, and financial performance (Fonseca et al.,
2015).

CitySim is a tool focused on simulating urban energy
flows to help urban planners and stakeholders minimize
the use of non-renewable energy sources (CitySim,
2017). This tool integrates several modules that
approximate thermal and radiation loads, and couples
them to plant and HVAC equipment models through a
Java-based graphical user interface (GUI). These
models include boilers, chillers, solar thermal systems,
and energy conversion systems (Robinson et al., 2009).

The Urban Modeling Interface (UMI) is an urban
environmental performance and analysis simulation
platform (Reinhart et al., 2013). While the previously
mentioned tools exclusively focus on operational energy
use, UMI evaluates neighborhood performance across
several dimensions from operational and embodied
energy use to daylight access and neighborhood
walkability. UMI's specific focus is to facilitate the
design of holistic sustainability concepts for
neighborhoods containing several hundred buildings.

UMI uses the Windows-based NURBS modeler
Rhinoceros 3D as its geometric modeling platform. It
links these geometric models of the buildings to a library
containing building archetypes and an SQLite database
to store results. UMI uses a clustering algorithm called
the Shoeboxer (Dogan and Reinhart, 2017) that
abstracts buildings of the same archetype into a series of
perimeter and core models-or shoeboxes-for which
hourly heating, lighting, cooling, and equipment
simulations can be run using EnergyPlus's whole-
building simulation engine (EnergyPlus, 2017).
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The simplification of buildings into shoeboxes reduces
the simulation time by up to two orders of magnitude in
comparison to a full, multi-zone thermal simulation.
Despite the dramatic reduction in simulation time, the
results of using the Shoeboxer are comparable for
homogenous buildings without atria and non-standard
HVAC equipment. Since UMI was designed for use
during master planning when little is known about the
specifics of the buildings' interiors, the use of the
Shoeboxer algorithm is justified for estimating the
building load profiles.

Previous versions of UMI modeled building-level
energy supply systems through simplified, constant-
efficiency based equipment models. Given this
approach neglects the effect that load and temperature
have on equipment efficiency, the authors anticipated a
need for a more sophisticated energy supply systems
module that leverages hourly load data and allows for a
more granular estimation of the performance of energy
supply schemes. This presented an auspicious
integration opportunity between UMI and the
simulation framework presented in this manuscript.

This text details the modeling of four energy supply
strategies and compares the use of constant efficiency
models to dynamic ones whose efficiency is dependent
on load and temperature. The authors applied these
urban energy supply models to six neighborhood
designs in three cities: Boston, Lisbon, and Kuwait City.
The results illustrate the difference between the use of
static and dynamic energy supply system models, as
well as the importance weather, equipment, and regional
power generation characteristics have on the choice of
an optimal energy supply strategy with respect to energy
consumption, carbon emissions, and costs.

2 METHODOLOGY

The authors developed models of four distinct energy
supply systems and applied them to six neighborhood
designs in three cities. The four strategies are described
in Section 2.1. Sections 2.2, 2.3, and 2.4 review the
HVAC models, losses, and key metrics used in
simulating these four scenarios based on hourly cooling,
heating, and non-HVAC electric loads. 2.5 introduces
the six case studies and explains how the simulation
results will be compared in the results portion of this
text.

2.1 Energy Supply Strategies Introduction

The authors selected the following four energy supply
schemes for their broad coverage of common types of
urban energy supply systems in cities today. The key
outputs from each model are the annual input energy

required, associated carbon emissions, and the cost to
purchase electricity and natural gas. Simplified
diagrams illustrating the four scenarios are included
below in Figure 1, Figure 2, Figure 3, and Figure 4.

Strategy 1: All-electric Grid
The United Nations Sustainable Energy for All
Initiative-part of their 17 Sustainable Development
Goals-seeks to double the current share of renewable
energy sources by 2030 (UN, 2015). Additionally, the
Energy Roadmap 2050 (EU, 2012) outlines six
strategies for energy systems to reduce greenhouse gas
emissions by 80% by 2050 (from 1990 levels). These
strategies focus on the electrification of the heating
sector (Connolly et al., 2014), and the authors expect an
increase in the use of electric heat pumps to take
advantage of the resulting low-carbon electricity.

For example, the UK's Committee on Climate Change
has recommended a significant increase in the use of
heat pumps as part of their strategy to meet the UK's
2050 greenhouse gas reduction targets (CCC, 2015).
These policy goals provided the inspiration for
modeling an all-electric energy supply scenario, which
will likely gain wider adoption as other countries seek
to decarbonize their electric grids and heating sectors.

Electrlcity Electrbcety* I -
I I

lCaCng)
Electricity -

Hat Purnp
(eanHeating

Figure 1: Simplified illustration of the all-electric grid
scenario

Under this scenario, the electric grid supplies electricity
to satisfy cooling, heating, and non-HVAC electric
loads. The authors modeled this scenario such that the
cooling and heating loads are satisfied using electric,
air-source heat pumps located in each building. All
electricity is purchased from the local grid, where the
emissions factors, cost of generation, and 1st-law
thermal efficiency of the power generation plants are
dependent on the local utilities' energy supply mix.

The number of heat pumps for each building is based on
the annual peak heating and cooling demands. For each
hour, the fewest number ofheat pumps required to meet
the load are enabled, and all heat pumps evenly share
the load. Because the size of the heat pumps is fixed, all
enabled heat pumps will have the same PLR. For
example, if the cooling load is 10 kW for a particular
hour, and each heat pump has a maximum capacity of 3
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kW, four heat pumps will be enabled, each providing an
equal, 2.5kW contribution to satisfying the load.

Strategy 2: Electric + Natural Gas Grid
The next scenario represents a common method of
providing space heating and cooling where the electric
grid supplies electricity to satisfy cooling and non-
HVAC electricity demands, and natural gas-fueled
hydronic boilers provide heating for each individual
building. Examples of this method of space heating and
cooling can be found across the globe in cities like
Chicago, New York, London, and Tokyo.

Elactrdty El. ihy

(CColiiggElectricity -001

Natural Gas Heating

--------------- --...

Figure 2: Illustration of the electric and natural gas grid
scenario

The authors used the same heat pumps from the
previous, all-electric grid strategy to provide cooling.
Similar to the previous strategy, all electricity is
purchased from the local grid and the number of heat
pumps and boilers is based on annual peak cooling and
heating demands. Again, the fewest number of
equipment is enabled each hour, and the equipment
evenly shares the load.

Strategy 3: Electric Grid + District Heating and
Cooling Plant (DHC)
A recent United Nations Environment report noted that
a 2013 survey of low-carbon cities worldwide revealed
that district energy systems are a best-practice strategy
for providing a low-carbon and affordable energy
supply system (UNEP, 2016).

While district heating networks have been used in
Europe as early as the 141h century (Rezai and Rosen,
2011), the first commercially viable district heating
system appeared in Lockport, New York in 1877.
Today, district heating accounts for -13% of the EU's
space heating needs (Connolly et al., 2014) and satisfies
approximately 50% of the heating demands in a handful
of countries, including Denmark, Finland, Sweden,
Estonia, Latvia, Lithuania, Poland, Russia, and Iceland
(Werner, 2017).

One of the first large district cooling networks was built
to serve the Rockefeller Center in New York City, and
by 1996, about 20 cities and towns used district cooling
systems in the U.S. Europe's first district cooling

systems did not appear until the 1960s in Paris, after
which Finland, Germany, Italy, and Sweden adopted
similar systems. Japan began using district cooling in
the 1970s, and by 2005, there were over 154 networks
within the country. More recently, the Middle East has
begun using district cooling to serve densely populated
areas with high cooling loads (Gang et al., 2016).

Electicity \ Electdcity
* Id

Electricity - -- Ci

Natural Gas Heatig

Figure 3: Simplified illustration of two major components in
a district heating and cooling plant

Again, electricity from the grid satisfies non-HVAC
electric demands, but now, a district cooling and heating
(DHC) plant produces hot and chilled water to meet the
cooling and heating loads. The DHC plant uses natural
gas boilers to produce hot water and electricity from the
grid to power centrifugal chillers and cooling towers to
produce chilled water. Electric pumps distribute the hot
and chilled water to the individual buildings.

The number of chillers and boilers is determined by the
peak demands of the urban area, and the fewest number
needed to meet the hourly heating and cooling demand
is enabled.

Strategy 4: Combined Cooling, Heat, and Power
District Heating and Cooling is often paired with
electricity generation, which is referred to as Combined
Cooling, Heat, and Power (CCHP), or trigeneration.
This centralized production of electricity, hot
water/steam, and chilled water takes advantage of heat
from the power generation process-or some other
industrial process-that would be otherwise wasted
(Chicco and Mancarella, 2008). These sorts of systems
are often found on campuses in North America (IDEA,
2005) or at industrial sites that produce significant
excess heat like paper mills or waste incinerators.

While the European Union is focused on promoting all-
electric grids, the International Energy Agency (IEA)
notes that CCHP technologies can play a fundamental
role in a low-carbon economy (IEA, 2014).
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Figure 4: Major components of the modeled CCHP plant

The CCHP plant operates to satisfy all cooling, heating,
and electric loads for the urban area, and the simplified
model consists of a gas turbine, electric generator (not
pictured), and the HVAC equipment needed to produce
and distribute hot and chilled water. Waste heat from the
gas turbine is diverted to an absorption chiller and heat
recovery steam generator (HRSG) to provide heating
and cooling. Natural gas boilers and electric centrifugal
chillers provide supplemental heating and cooling when
the waste heat is insufficient to meet the heating and
cooling loads of the urban area.

The gas turbine and generator are sized to meet peak
electrical demand, and they follow the electrical load.
Waste heat from the turbine first satisfies the urban area
heating load, and then cooling demands.

The number of absorption chillers equals the minimum
number of chillers needed to utilize the peak amount of
recoverable heat minus the amount of heat used for
satisfying heating loads. Similarly, the number of
electric centrifugal chillers equals the minimum number
of chillers needed to satisfy the peak supplementary
cooling demand. As in the last three scenarios, the
fewest number of devices are enabled to meet the hourly
loads, and all equipment evenly shares the load.

2.2 Equipment Models Overview

Each of the four energy supply strategies rely on the use
of models to approximate the efficiency of the
equipment needed to meet the cooling, heating, and
electrical demands. This approximation influences the
estimated annual input energy, emissions, and cost
associated to each scenario. Table 1 includes the energy
supply strategies and the corresponding equipment
models used.

Table 1: Equipment Models Used for Each Supply Strategy

Equipment Electri Grid + Grid + CCHP
Model e Grid NG DHC Plant

Heat Pump X X -
(Cooling Mode)

Equipment Electri Grid + Grid + CCHP
Model c Grid NG DHC Plant

Heat Pump X - - -
(Heating Mode)

Natural Gas - X X X
Boiler _____ ____

Electric
Centrifugal - - X X
Chiller

Absorption X
Chiller

Cooling Tower - - X X

Gas Turbine - - - X

2.2.1 Constant-efficiency Equipment Models
The authors first implemented the constant-efficiency
variants the four energy supply strategies. The use of
these types of models simplifies the calculations needed
to estimate annual energy consumption, emissions, and
operational costs. See Table 2 for a listing of the
constant efficiency values and coefficients of
performance (COP) used.

Table 2: Constant Efficiency Values Used

Equipment Model Efficiency

Heat Pump (Cooling Mode) 3.81 COP

Heat Pump (Heating Mode) 3.90 COP

Natural Gas Boiler 80%

Electric Centrifugal Chiller 8.11 COP

Absorption Chiller 139 COP

Natural Gas Turbine 40%

The selected constant efficiency values are based on the
corresponding temperature- and load-dependent
models' nominal efficiency as presented in section
2.2.2.

2.2.2 Variable-efficiency Equipment Models
The authors also implemented dynamic, load- and/or
temperature-dependent equipment models. This section
details the selected models previously outlined in Table
1.

Heat Pump (Cooling Mode)

The researchers selected a first-principles model based
on the work of (Zakula, 2013) to approximate the COP
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of a heat pump in cooling mode. Zakula performed a
static optimization' of a steady-state model with cooling
load, zone drybulb temperature, and outside air drybulb
temperature as optimization input parameters.

The following equation approximates COP as a function
of part load ratio and outside air drybulb temperature:

Equation 1: Heat Pump (Cooling Mode) COP

COP = (3.02 E- 3 - 3.23 E- 1pIr + 1.23 E -2db +
4.76 E-1pr2 - 2.38 E-'plr * db -
2.86 E-4 db 2 - 2.02 E'pr 3 + 6.77 E-4 plr2 * db +
3.71 E-splr * (db 2 + 4.25 E-6db 3)-1

Where

pir is the part load ratio

db is the outside air drybulb temperature in Celsius

Refer to Appendix 6.1, Table 9 for the specifications of
the heat pump.

Heat Pump (Heating Mode)

The authors selected a regression-based model to
approximate the performance of a variable-speed,
ductless heat pump in heating mode. The Purdue
researchers who published this model found that the
heating capacity and heat pump power input were both
linear functions of the outdoor drybulb temperature
(Cheung and Braun, 2010).

Although this model was developed across a range of
outdoor air drybulb temperatures, the final, published
model is solely dependent on part load ratio. The authors
used this model to estimate the heat pump's COP under
varying load conditions.

Equation 2: Heat Pump (Heating Mode) Work

W = Wmax CO + C1 * p1r + C 2 * plr 2 + C 3 *

pir + C4 * plr' + C5 V + C6 * V- )]

Where

pir is the part load ratio

V is the ratio of the evaporator fan's speed to max
Vmax
speed and is assumed to be 1

The authors calculated the COP of the heat pump using
Equation 3, below.

Equation 3: COP Calculation for Heat Pump, Heating Mode

= HeatingLoad

Table 9 and Table 10 of the appendix list the coefficients
the authors used in Equation 2, and it includes
specifications for the heat pump.

Natural Gas Boiler
The authors selected the new style, low-temperature
boiler from EnergyPlus. This model approximates boiler
efficiency using a cubic equation with part load ratio as
an input. The nominal efficiency is 80%, regardless of
boiler size, and the minimum part load ratio is 10%.
Additionally, the model does not specify a low-
temperature limit on the boiler.

The authors used the following equation to approximate
the efficiency of the boiler:

Equation 4: Boiler Efficiency

nboiler = nboier,nom * Xb

Where

noiler is the calculated efficiency of the boiler

nboiler,nom is the nominal efficiency of the boiler (80%)

Xb is the boiler efficiency modifier given by
following equation:

Equation 5: Boiler Efficiency Modifier

Xb = ci + c2 * pIrb + c3 * plrb + c4 * pIrb

the

Where

W is the heat pump's energy input

Wmax is the max energy input to the heat pump

1 Matching of compressor, fan, and pump speeds to
needed heat pump capacity (ASHRAE, 2011, Chapter
42).

plrb is the part load ratio of the boiler

10



Refer to Appendix 6.1, Table 12 for the coefficients
used in Equation 5.

Electric Centrifugal Chiller
The authors selected the ReformulatedEIR EnergyPlus
electric chiller model to approximate chiller efficiency
under varying load and temperature conditions. This
model was developed by (Hydeman et al., 2002), and it
is based on chiller performance data at reference
conditions in conjunction with three curve fits. The three
performance curves are as follows:

1. CapFunT: Cooling capacity as a function of
temperature

2. EIRFunT: Energy input to cooling output ratio
as a function of temperature

3. EIRFunPLR:
ratio as a
(EnergyPlus
14.3.10.2)

Energy input to cooling output
function of part load ratio

Engineering Reference,

Equation 6: CapFunT, Centrifugal Chiller

CapFunT = a + b(Tevap,i) + C(Tevap,i) +

d(Tcond,l) + e(Tcond,l) 2 + f(Tevap,l)(Tcond,l)

Equation 7: EIRFunT, Centrifugal Chiller

EIRFunT = a + b(Tevapi) + C(Tevap,i) 2 +

d(Tonfd,l) + e(Tond,l) 2 + f (Tevap, ) (Tcond,l)

Equation 8: EIRFunPLR, Centrifugal Chiller

EIRFunPLR = a + b(Tcondl) + c(Tcond,) 2+

d(plrcc) + e(plrcc) 2 + f (Tondl)( plrcc) +

g(Tcond ) 3 + h * (plrcc)3 + i * (Tcond,l) 2 (plrCC) +

j * (Tcond,l)(plrCC)
2

Where

Tevap,i is the temperature of the water leaving the

chiller's evaporator and sent to the buildings

Tcondl is the temperature of the water leaving the

chiller's condenser and returned to the cooling towers

plrcc is the part load ratio of the centrifugal chillers

Performance curves can be produced for specific

chillers by fitting either a chiller's manufacturer's data
or by using measured data from the chiller. EnergyPlus

includes a library of over 100 centrifugal, screw, and
scroll chiller models and their associated coefficients for
the three performance curves. The authors selected a
McQuay PEH series chiller for use in the case studies
presented in this paper. This centrifugal chiller has a
high COP, broad leaving condenser water temperature
range, and modest size, which are characteristics the
authors anticipated would contribute to good
performance of this chiller under a variety of scenarios.

Refer to Appendix 6.1, Table 13 for the coefficients
used in Equation 6, Equation 7, and Equation 8. See
Table 14 for the centrifugal chiller specifications.

This centrifugal chiller model uses the leaving
evaporator and leaving condenser water temperatures as
inputs. The leaving evaporator temperature is assumed
to be constant at 4.44 IC (40 IF), and the leaving
condenser water temperature is based on the outside air
drybulb temperature and chiller PLR.

The researchers used Equation 9 to approximate the
leaving condenser water temperature, commonly
referred to as the condenser water return temperature.
Explicitly, this is the temperature of the water leaving
the chiller's condenser and returned to the cooling
towers.

Equation 9: Condenser Leaving Water Temperature

Tcond,1 = C1 + C2 * db 2 + C3 * db * PLRcc

Where

db is the outside air drybulb temperature in Celsius

PLRcc is the part load ratio of the centrifugal chillers

Equation 9 was found by creating a linear regression
model using temperature and load data from the central
plant chillers at the Massachusetts Institute of
Technology in Cambridge, Massachusetts. The
researchers selected a second-order polynomial fit with
an R2 error of 0.55.

Refer to Appendix 6.1, Table 15 for the coefficients
used in Equation 9.

The authors used the following equations to estimate the
hourly energy consumption of the chiller (Hydeman et
al., 2002).

Equation 10: Centrifugal Chiller Modifier

Xcc = CapFunT * EIRFunT * EIRFunPLR

11



Equation 11: Centrifugal Chiller Energy

Energy,, = X,, * Powerccnom

Where

Xcc is the centrifugal chiller modifier that results from
multiplying the three performance curves together

Energycc is the energy consumed by the centrifugal
chiller

Powercc,nom is the rated, nominal power of the chiller
specified in Table 14

Absorption Chiller
The absorption model selected is included in
EnergyPlus' library of DataSets within the file labeled
ExhaustFiredChiller.idf. It is a direct-fired, two-stage
absorption chiller which is based on the ABSORG-
CHLR model from DOE-2.1 (EnergyPlus Engineering
Reference, 14.3.10.2)

Similar to the centrifugal chiller, the absorption chiller
model uses performance information at design
conditions in conjunction with three performance
curves. The three performance curves are as follows:

1. AbsCapFunT: Cooling capacity as a function
of temperature

2. TeFIRFunT: Thermal energy input to cooling
output ratio as a function of temperature

3. TeFIRFunPLR: Thermal energy input to
cooling output ratio as a function of part load
ratio

Equation 12: CapFunT, Absorption Chiller

AbsCapFunT = a + b(Tevap,l) + C(Tevap,i)2 +

d(Tcond,e) + e(Tcond,e) 2 + f(Tevap,1)(Tcond,e)

Equation 13: TeFIRFunT, Absorption Chiller

TeFIRFunT = a + b(Tevap,i) + C(Tevap,i) 2 +

d(Tcond,e) + e(Tcond,e) 2 + f(Tevap,) (Tcond,e)

Equation 14: TeFIRFunPLR, Absorption Chiller

TeFIRFunPLR = a + b(PLRac) + c(PLRcc) 2

Where

Tevap,l is the temperature of the water leaving the
chiller's evaporator

Tconde is the temperature of the water entering the
chiller's condenser and is estimated based on a constant
offset from the previously calculated Tcond,l-
Specifically,

Equation 15: Entering Condenser Water Temperature

Tcond,e = Tcond, - Acond

Acond is the difference between the entering and leaving
condenser water temperature-assumed to be a constant
I1 OC.

PLRac is the part load ratio of the absorption chiller

Refer to Appendix 6.1, Table 16 and Table 17 for the
coefficients used in Equation 12, Equation 13, and
Equation 14, as well as for the absorption chiller
specifications.

The following set of equations compute the energy
consumed by the absorption chiller.

Equation 16: Absorption Chiller Modifier

Xac = AbsCapFunT * TeFIRFunT * TeFIRFunPLR

Equation 17: Absorption Chiller Energy

Energyac = Xac * Capacityac,nom

Where

Xac is the absorption chiller modifier

Energyac is the energy consumed by the absorption
chiller

Capacityac,nom is the nominal, rated capacity of the
absorption chiller

Cooling Tower
The authors selected a cooling tower model used by
(Fonseca et al., 2016) in their City Energy Analyst
Paper. The model is based on the work done by
(Bertagnolio, 2012) who modified an epsilon-NTU
method from (Lebrun et al., 2002). This epsilon-NTU
method was combined with cooling tower data collected
from a market survey to estimate the fan and pump
energy associated to the cooling towers.
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The following equation relates the estimated cooling
tower energy consumption to chiller part load and the
nominal power consumption of the cooling tower.

Equation 18: Cooling Tower Energy

CTEE = (0.8603 * PLR3C + 0.2045 * PLR 2
- 0.0623 * PLRcc + 0.00626)
* CTEE,NOm

Where

CTEE,NOm is the nominal energy concumption of the
cooling towers, or specifically,

Equation 19: Cooling Tower Nominal Energy Consumption

CTEE,NOm = 0-011 * CCcapacity,Nom

Where

CCCapacityNom is the nominal capacity of the centrifugal
chillers

Natural Gas Turbine

The authors selected a gas turbine model presented in a
2011 entry in the Journal of Engineering for Gas
Turbines and Power. This model is the result of
performing a curve fit on three sets of operational data
from an actual gas turbine (Meybodi and Behnia, 2011).
Equation 20 was presented by Meybodi and Behnia and
relates the part load efficiency of the gas turbine to part
load ratio and nominal efficiency.

Equation 20: Ratio of Gas Turbine Part-load and Rated,
Nominal Efficiencies

'7thPL - -6.343E 5 * plr2 + 0.0137 * pir
77th,Nom

+ 0.2626

Where

flth,PL is the part load efficiency of the gas turbine

1
thNom is the rated, nominal efficiency of the gas

turbine

pir is the part load ratio of the gas turbine

While Meybodi and Behnia did not specify a minimum
part load ratio, the authors assumed a 40% PLR for the
gas turbine model. This minimum PLR is between the
rated minimum value for common gas turbines (GE,

2016). In addition, the gas turbine was assumed to be of
the single-shaft variety with stoichiometric combustion
under full-load conditions. Heat recovery was assumed
to be 80% of the waste heat (Pilavachi, 2000) and no
losses were assumed for the electric generator because
of the high efficiency -99% of modem electric
generators (Siemens, 2017).

2.3 Distribution Losses + Auxiliary Equipment
Energy

The authors approximated transmission losses and
energy consumption from auxiliary equipment for each
of the four energy supply schemes. Table 3 below
summarizes which category of losses and auxiliary
energy were included by scenario.

Table 3: Losses and Auxiliary Equipment Energy Associated
to the Energy Supply Strategies

Electric Grid + Grid + CCHPModel Grid NG DHC Plant
Electrical X X X XTransmission Losses

Heat Losses - - X X

Pumping Energy - - X X

Cooling Towers - - X X

2.3.1 Electrical Transmission and Distribution Losses
Energy is lost due to heat dissipation during
transmission from the generating station to the urban
areas where the electricity is consumed. The average
transmission and distribution losses for each of the three
locations was found and is summarized in Table 4.

While the authors applied transmission and distribution
losses to electricity purchased from the grid in the
CCI-P scenario, they assumed electricity produced by
the CCHP plant to have negligible losses due to its close
proximity to the modeled urban area.

2.3.2 Heat Losses
As hot or chilled water is distributed via pipes to the
buildings of an urban area, heat exchange with the
environment results in losses. The authors assumed
losses of 10% of the total heat delivered from hot or
chilled water for the DHC and CCHP scenarios
(Mancarella, 2012). They did not consider heat losses
for the all-electric grid and electric grid and natural gas
scenarios where the HVAC equipment is located in each
building.
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2.3.3 Pumping Energy
The authors estimated constant pumping energy
requirements as 0.5% of the heat delivered for heating
and 2.0% of the heat removed for cooling for the DHC
and CCHP scenarios (Frederiksen and Werner, 2013).

2.4 Description of Key Metrics

Annual input energy, carbon emissions, and energy
costs are the primary metrics the authors selected to
compare the four energy supply strategies. This portion
of the text details the approach the authors used to
calculate these metrics, as well as a few others that are
used in the results section.

Annual Input Energy
This represents the total amount of source energy
required to satisfy the non-HVAC, heating, and cooling
loads of the urban area. This metric accounts for all
equipment energy, losses, and the efficiency of
electricity generation.

Annual Carbon Emissions
This value represents the amount of carbon emissions
produced in satisfying an urban area's loads. It includes
the emissions tied to electricity production and the
combustion of natural gas in boilers and gas turbines.

Annual Energy Cost
This figure represents the total cost of electricity and
natural gas needed to meet an urban area's demands.
The authors used the prices listed in Table 4 in
conjunction with the input energy needed to calculate
this metric.

Heating and Cooling System Efficiency
These metrics denote the overall efficiency of the
heating and cooling systems employed. More
specifically, the authors calculated these values by
dividing the heating or cooling load by the input or
source energy needed to satisfy that demand.

Coefficient of Performance (COP)
The authors calculated the annual efficiency of each of
the pieces of equipment used in the energy supply
strategies and compared them to the nominal, rated
efficiency. COP is simply the annual sum of the heat
moved or generated divided by the total input energy to
the device.

2.5 Case Studies
The authors applied both the constant- and variable-
efficiency sets of four energy supply scenarios to six

neighborhood designs in Boston, Lisbon, and Kuwait
City. Students in a graduate-level course at MIT
designed and modeled these neighborhoods with Rhino
and UMI, with the intent to develop a sustainable design
for a mixed-use neighborhood. See Figure 5 for an
example neighborhood design from one of the
neighborhoods located in Kuwait City.

Figure 5: Mixed-use neighborhood in Kuwait City with
commercial, office, and residential spaces. Yellow represents
mixed use buildings, and the light blue structures are single-
family residences.

The authors needed several key input parameters for
each of the cities to apply their proposed framework.
See Table 4 for a summary of these inputs.

Table 4: Region-specific parameters2

Input Parameters Boston Lisbon Kuwait
________ city

Price of Electricity $0.17 $0.25 $0.01
(USD/kWh)

Price of Natural Gas $0.038 $0.1 $0.0098
(USD/kWh)

Electrical Generation 33.4% 48.2% 26.9%
Efficiency (%)_____

Electrical Transmission 5.0% 10.6% 11.7%
Losses (%)

Emissions Factor (Metric
Tons CO2/kWh generated) 4.45E-4 2.81E-4 7.27E-4

After applying the framework to the six case studies,
the authors recorded the key model outputs which are
referenced in Section 2.4.

Electrical Grid Generation Efficiency
The authors estimated efficiency factors for the
electrical generation mix for Boston, Lisbon, and
Kuwait City based on published data from the U.S.
Energy Information Administration on the typical
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efficiencies of electrical generation methods in
conjunction with the mix of electrical generation types
for Massachusetts, Portugal, and Kuwait.

The authors used 2015 data from U.S.-based power
plants to estimate the efficiency for both fossil-fueled
and nuclear generating stations (EIA, 2015), as well as
for renewables (EIA, 2011).

Table 18 and Table 19 of Appendix 6.2 include a
summary of the reported values for the efficiency of
various electrical generation sources and the power
generation mix for Boston, Lisbon, and Kuwait City.
For Boston, the authors assumed the same generation
mix as for Massachusetts, and for Lisbon and Kuwait
City, the authors used the average power generation mix
for their respective countries.

2.6 UMI and Rhino Integration

The authors collaborated with a colleague to integrate
their Python code into UMI to allow greater
accessibility of the tool and its results. With this
integration, users can quickly compare supply strategies
for different urban areas by modeling a neighborhood in
Rhino, running UMI's energy simulation, and choosing
to run the energy supply tool. The tool displays results
in the Rhino command line, and it automatically saves
several .CSV files with detailed results to the users'
neighborhood's working directory.

3 RESULTS

3.1 Constant vs. Variable-efficiency Results

The authors applied both the constant- and variable-
efficiency models to the six neighborhood designs to (1)
compare the difference in predicted energy
consumption, carbon emissions, and energy cost, and,
more interestingly, to (2) determine whether the selected
model type materially changes the results.

Of the 72 comparisons (6 neighborhoods x 4 energy
supply strategies x 3 metrics) between the constant- and
variable-efficiency models, the constant-efficiency
models under predicted the results approximately 89%
of the time relative to the variable models. In only 8 of
the comparisons did the constant-efficiency models over
predict, and this was by a small margin of -1% or less.

Table 5 shows the calculated percent difference between
the average COP for the variable efficiency equipment
models and the nominal values. Except for the heat
pump in cooling mode, using the constant-efficiency
models under-predicts the efficiency of the equipment

models-and, therefore, the energy consumption,
emissions, and cost as well.

Not surprisingly, the difference in average COPs for the
pairs of neighborhoods in the same city was minimal.
Even looking between cities, the difference in the
calculated COPs do not vary dramatically by equipment
model, particularly for the boilers, absorption chiller,
and gas turbine.

Table 5: List of average COPs for each equipment model by
case study and a percent difference between the average
variable COPs and the nominal ones

Model B1 B2 Li L2 Ki K2 Avg Nom % Diff
HP, Cool
HP, Heat
Gas Boiler
Cen Chiller
Abs Chiller
GasTurbine

7.4
2.3
0.7
7.2
1.0
0.3

7.6
2.4
0.7
5.6
1.0
0.3

6.5
3.2
0.7
7.1
1.0
0.3

7.0
2.3
0.7
7.3
1.0
0.3

6.3
2.4
0.7
7.6
1.0
0.3

6.1
3.0
0.7
7.7
1.0
0.3

6.8
2.6
0.7
7.1
1.0
0.3

3.8
3.9
0.8
8.1
1.4
0.4

79%
-33%
-14%
-13%
-31%
-19%

B = Boston, L= Lisbon, and K = Kuwait City

Figure 6 shows the average difference for Boston and
Lisbon is around 11% and 12%, whereas for Kuwait
City, the difference is about 5% lower for energy and
emissions.

Difference in Constant vs. Variable Estimates by City

16.0%

12.7%
12.1%

12.0% 10.9%

8.0%

4.0%

0.0%

Boston

I104%

Lisbon

9.4%

6.3% 5.8%

Kuwait

U Energy E Emissions Energy Cost

Figure 6: Graph illustrating the difference in predicted
energy consumption, emissions, and energy cost by city.

A comparison by energy supply strategy highlights a
dramatic difference in the predicted metrics for the
CCHP plant of2l.7% and a minimal difference between
the Grid + NG strategy of just 1.9%. The larger
difference for the CCHP plant is likely because this
strategy relies on the greatest number of models, which
introduces additional opportunities for the results to
diverge.

The difference between the predicted results for the All-
electric Grid and District Heating and Cooling strategies
were on average 11.5% and 5.1%, respectively. Note
that the difference for energy, emissions, and cost are
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identical for the all-electric scenario-and not the other
three-because the differences are solely attributable to
the parameters associated to the electric grid. See Figure
7-

Table 6: Comparison of constant- and variable-efficiency
models'predicted ranking of energy supply strategy by city
and metric (1 is the optimal strategy)

6.3%

3.7% 4.6%4.4%

1.3%

Electric Grid + DHC

Input Energy

.4%

CCHP
NG

E Energy U Emissions Energy Cost

Figure 7: Graph of the percentage difference between the
constant- and variable-efficiency model predictions by key
metric and energy supply strategy.

More interesting than whether the predicted results vary
is understanding whether the use of one type of model
produces directionally different results than another. It
does.

With respect to energy, the constant and dynamic
models predict different best choices for both Boston
neighborhoods. There is directional agreement between
the optimal choices with respect to energy for the Lisbon
neighborhoods, but the remaining rankings differ. For
the Kuwait neighborhoods, the predicted energy
consumption rankings are the same for the first and
second choices, but reversed for the third- and fourth-
place energy supply strategies.

The comparison for emissions yields similar results. The
two methods predict the same optimal energy supply
strategy for the Boston neighborhoods and different
results for the second and third and fourth choices for
Lisbon and Kuwait City, respectively.

Energy cost differences do not follow the same trends as
energy and emissions. The constant and variable models
predict different choices for the Boston and Lisbon
neighborhoods, but agree on the top choice for the
neighborhoods in Kuwait City.

See Table 6 for a summary comparing the predicted
rankings for each of the energy supply strategies for
both constant and variable models with respect to
energy, carbon, and cost.

61 82 Li L2 K1 K2

C V C V C V C V C V C V
All-electric Grid 2 4 1 4 1 1 1 1 3 4 3 4

Electric+NGGrid 4 1 3 2 4 2 4 2 4 3 4 3
DHC 3 3 4 3 2 3 3 3 2 2 2 2

CCHP 1 2 2 1 3 4 2 4 1 1 1 1

Emissions B1 82 Li L2 K1 K2

C V C V C V C V c V C V
All-electric Grid 2 2 1 2 1 1 1 1 3 4 3 4

Electric + NG Grid 4 1 3 1 3 2 3 2 4 3 4 3
DHC 3 3 4 3 2 3 2 3 2 2 2 2

CCHP 1 4 2 4 4 4 4 4 1 1 1 1

Energy Cost c1 B2 v U L2 K1 K2

All-electric Grid
Electric + NG Grid

DHC
CCHP

4 4
3 2
2 3
1 1

2
3
4
1

4
2
3
1

2
4
3
1

3
1
2
4

2
4
3
1

3
1
2
4

1
2
3
4

1
2
3
4

1
4
3
2

C = Constant-efficiency Model, V = Variable-efficiency Model
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3.2 Neighborhood Results Using Variable Models

This section highlights the key results from applying the variable-efficiency models to the six neighborhood designs.
Figure 8 summarizes the annual energy consumption for each of the neighborhoods by energy supply strategy. Overall,
the Lisbon neighborhoods situated in mild climates consume the smallest amount of energy, while the Kuwait
neighborhoods consume the most. Heating loads represent a significant fraction of the total
Lisbon, whereas cooling needs dominate in Kuwait's warm climate.

energy use in Boston and

Annual Source Energy Breakdown, All Neighborhoods
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Figure 8: Energy Use Breakdown for Each Neighborhood by Strategy Showing Differences in Total Source Energy
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Except for the two Boston neighborhoods' total input
energy, the best energy supply strategies with respect to
energy, emissions, and cost were identical for the two
neighborhoods in the same city. Given that the pairings
share weather, emissions factors, energy costs, and
electrical transmission losses, it is not surprising that the
optimal energy supply schemes were nearly the same.

However, because of the dramatic regional differences,
the optimal energy supply system varies between cities
and with respect to the highlighted metrics. See Figure
8 for a summary of the annual results by neighborhood.

The ideal energy supply strategy for a given
neighborhood differs depending on the relative
importance of minimizing input energy, emissions, or
energy costs. For example, look at the second
neighborhood in Boston. The CCHP plant requires the
smallest annual energy consumption, but if the primary
goal is to minimize carbon emissions, the Electric +
Natural Gas Grid energy supply strategy offers better
performance.

While the best choice for minimal annual energy
consumption and carbon emissions matches for five of
the six case studies-all except the first Boston
neighborhood-interestingly, the supply schemes with
lowest energy costs are different for the same five
examples. The two Kuwait City neighborhoods
illustrate a dramatic inconsistency between energy use
and cost. Despite requiring more than 50% more annual

energy than the CCHP option, the All-electric grid
scenario is 26x cheaper because of heavily subsidized
electricity rates that do not reflect the true cost of
electrical generation.

Small differences (approximately 5% or less) exist
between the majority of the four energy supply
strategies as shown in Table 7. For example, look at the
first Boston neighborhood. The Electric + NG Grid
scenario is predicted to require 6.9% less energy than
the All-electric Grid option, but the predicted energy
consumption for the DHC and CCHP options differs
from this one by only 3.1% and 1.9%, respectively. A
similar trend exists for the remaining three
neighborhoods in Boston and Lisbon, where the
difference between the most energy intensive scenario
and the next is over 5%, but the remaining three options
are within -5% of each other. However, the Kuwait
neighborhoods are a bit different. There, a small -1.5%
difference in predicted energy consumption exists for
the All-electric and Electric + NG options, but larger
differences on the order of 10-30% exist for the DHC
and CCHP scenarios.

Three of the four energy supply scenarios are the best
choice for at least one combination of neighborhood and
key metric, but the third scenario with the district
heating and cooling plant is absent in the results.
Additional details are provided in the discussion section
on this topic.

Table 7: Annual Energy, emissions, and energy cost results by neighborhood (optimal strategy bolded). % Column represents the
percent difference between the current and largest value within a neighbourhood.

Boston 01 Boston 02 lisbon 01 Lisbon 02 Kuwait Ciy0 KuitCt 02

Input Energy (GWh) Value % Value % Value % Value % Value % Value %
All-electric Grid 135.4 0.0% 97.8 0.0% 56.5 -25.0% 69.5 -21.4% 172.7 0.0% 205.5 0.0%

Electric + NG Grid 126.1 -6.9% 88.2 -9.9% 58.4 -22.5% 71.0 -19.7% 170.0 -1.5% 203.0 -1.2%
DHC 130.3 -3.8% 92.6 -5.3% 60.4 -19.7% 73.4 -17.0% 154.4 -10.6% 172.4 -16.1%

CCHP 128.6 -5.0% 86.3 -11.8% 75.3 0.0% 88.5 0.0% 117.7 -31.8% 136.6 -33.5%

Boston 01 Boston 02 Lisbon 01 Lisbon 02 Kuwait City 01 Kuwait City 02
Emissions (x100 MT C0 2) Value % Value % Value % Value % Value % Value %

All-electric Grid 201.1 -10.8% 145.2 -5.9% 76.6 -42.1% 94.3 -39.7% 337.8 0.0% 402.0 0.0%
Electric + NG Grid 198.3 -12.0% 143.4 -7.1% 88.8 -32.9% 106.1 -32.1% 331.8 -1.8% 396.3 -1.4%

DHC 204.5 -9.2% 151.0 -2.1% 92.2 -30.3% 110.0 -29.7% 297.4 -12.0% 330.0 -17.9%
CCHP 225.4 0.0% 154.3 0.0% 132.3 0.0% 156.3 0.0% 204.4 -39.5% 233.5 -41.9%

Boston 01 Boston 02 Lisbon 01 Lisbon 02 Kuwait City 01 Kuwait City 02
Energy Cost (Million USD) Value % Value % [ Value % I Value % [ Value % Value %

All-electric Grid
Electric + NG Grid

DHC
CCHP

$7.69 0.0%
$6.53 -15.0%
$6.68 -13.2%
S4.98 -35.2%

$5.55
$4.29
$4.47
$3.29

0.0% $6.80
-22.7% $6.59
-19.5% $6.77
-40.8% $7.50

-9.3%
-12.1%
-9.7%
0.0%

$8.38
$8.11
$8.33
$8.81

-4.9% $0.6
-8.0% $0.48
-5.5% $0.49
0.0% $5.15

-96.8%
-90.8%
-90.5%

0.0%

$0.19
$0.53
$0.53
$4.98

-96.1%
-89.4%
-89.4%

0.0%
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The overall heating and cooling system efficiencies for each
energy supply scheme and neighborhood can be found in
Table 8. The Electric Grid + NG strategy performed the best
for overall heating efficiency for Boston and Kuwait City.
This is likely because no heat losses were assumed for this
scenario in comparison to the two district-level systems.
While the heat pumps in the all-electric scheme have a
higher COP than the boilers, the total system efficiency
accounts for the electrical generation efficiency and
transmission losses which reduce the overall performance of
the heating system.

Lisbon's electrical grid is significantly more efficient than
Boston's and Kuwait City's, and, as a result, the All-Electric
Grid wins for heating performance for the two
neighborhoods in Portugal. Except for the second
neighborhood in Boston, the CCHP plant performs with the
highest cooling efficiency. This is the result of coupling
high-efficiency centrifigal chillers with absorption chillers
that take advantage of waste heat. The waste heat is not
subject to the electrical generation efficiency or
transmission losses that decrease the overall system
efficiency of cooling systems in the other three scenarios.

Table 8: Heating and Cooling System Efficiencies by Energy
Supply Strategy and Neighborhood

Heating System
Efficiency B1 B2 Li L2 Ki K2

All-electric Grid 0.54 0.55 0.75 0.73 0.47 0.48
Electric + NG Grid 0.68 0.69 0.69 0.68 0.69 0.69

DHC 0.63 0.63 0.63 0.63 0.63 0.63
CCHP 0.55 0.55 0.59 0.58 0.48 0.48

Cooling System
Efficiency 51 52 Li L2 K1 K2

All-electric Grid
Electric+ NG Grid

DHC
CCHP

1.89
1.89
1.85
2.21

1.97
1.97
1.73
1.87

2.43
2.43
2.57
3.02

2.52
2.52
2.54
2.84

0.98
0.98
1.50
1.74

0.93
0.93
1.52
1.80

4 DISCUSSION

The application of the energy supply systems framework to
the six case studies highlighted the implications of using
variable-efficiency energy supply models over constant
COP models, as well as the variability in the optimal energy
supply system depending on objective and the regional
power generation characteristics.

4.1 Constant vs. Variable Results

Figure 6 illustrates the double-digit percentage variance
between the two types of models for the Boston and Lisbon
neighborhoods, and a mid to high single-digit variance for
the case studies located in Kuwait City. While these results
alone should convince the reader that the type of model used
matters, Figure 7 reinforces this observation. For the six
case studies the authors used, the CCHP plant and All-

electric Grid scenarios exhibited the greatest variance
between the constant and variable models. It is not
surprising that the CCHP scenarios illustrated the greatest
variance, as they rely on the most equipment models.
Naturally, the potential for differences to accumulate
increases with a larger number of equipment models.
However, it is not as obvious why the All-electric Grid
scenario exhibits more than double the difference that the
DHC and Electric + Natural Gas Grid scenarios display.

The summary of the results by equipment type in Table 5
help explain the dramatic difference for the All-electric
scenario which relies on electric, air-source heat pumps for
both heating and cooling. Of the six variable-efficiency
equipment models implemented, these two models
exhibited the greatest difference in COP in comparison to
their constant-efficiency counterparts.

Though the differences in the results for the Electric Grid +
NG scenario are all under 4%, the authors caution readers
who may be tempted to conclude that the use of variable- or
constant- efficiency models may not matter for this case.
While this conclusion may be valid for the six case studies
examined in this text, this trend may not generalize well to
other neighborhoods. The close agreement between the two
model types for this scenario is because the variable-
efficiency heat pump in cooling mode's average COP is
higher than its counterpart, whereas the natural gas boiler
has the opposite trend. Together, these trends convey an
artificial sense of agreement between the model types.
However, if the ratio of heating to cooling loads were to
dramatically change, the authors do not expect these trends
to persist.

It is clear from Table 5 that equipment models exhibited
double-digit differences in average variable COPs
compared to their nominal, rated values. However, it is
interesting to note that relatively small variance between
neighborhoods for the COP of the gas boiler, absorption
chiller, and gas turbine. The maximum difference between
their average COP was 6.5%, 2.1%, and 1.5%. For these
given models, it may not be necessary to estimate the
equipment's COP on an hourly timescale. Instead, one may
be able to use a constant-based COP model with little impact
on the results. However, before arriving at this conclusion,
the authors recommend confirming the models they selected
for these pieces of equipment are appropriate for a wider set
of cases and testing the models on a wider variety of
neighborhoods to strengthen confidence in this trend.

The comparison between the constant- and variable-
efficiency models undoubtedly shows a difference in the
predicted energy consumption, carbon emissions, and
energy cost. These differences were shown to have a
material impact on the optimal energy supply strategy, but
the obvious question is which type of models should be
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used. Without a set of data from actual neighborhoods to
compare, the authors cannot definitively guarantee one type
of model is preferred. However, variable efficiency models
capture the changes in efficiency from temperature and/or
load that the constant-efficiency models neglect, bolstering
their case for use. Additionally, the variable-efficiency
models have been thoroughly documented and peer
reviewed, which further strengthens their credibility and
justification for use.

4.2 Neighborhood-level Results

The results presented demonstrate the influence that the
regional characteristics of an area have on the optimal
choice of an energy supply strategy. While it may seem
obvious that energy supply systems should be evaluated
within the context of their environment, these results
provide empirical basis for this task.

As mentioned in the results section, the best energy supply
strategy depends on the relative importance of minimizing
total energy consumption, emissions, or energy costs. For
the case studies evaluated in this text, the optimal strategy
with respect to annual energy consumption and emissions
were identical for five out of the six examples. This result is
because all scenarios are tied to the combustion of carbon-
releasing fuels. However, as renewable, low-carbon energy
sources are increasingly integrated into electric grids, the
authors expect this trend to change.

4.2.1 Boston Neighborhoods
The authors' models predict that the All-electric and CCHP
options are the optimal strategy for the first and second
Boston neighborhoods with respect to total input or source
energy. However, as noted in the previous section, the
difference between these two options and the DHC option
is less than 5%. Depending on how closely the parameters
and equipment used match an actual neighborhood in
Boston, 5% may not be a large enough difference to declare
a clear winner based on energy alone. But, comparing the
carbon and cost metrics provides additional information that
can be used to make a decision. For example, due to the
disparity in electricity and natural gas costs in Boston, the
CCHIP plant is dramatically cheaper than the other three
options that rely more on electricity from the grid.

Assuming that a 5% or greater difference is needed to
reasonably say one scenario is different than another, the
authors conclude that the All-electric option should not be
selected, but the other three options are possible choices.
However, as the electrical grid in Boston becomes more
energy efficient, this option will become more attractive.
From an emissions standpoint, the first three options
perform similarly (All-electric, Electric + NG grid, and
DHC). However, the CCHP performs the worst by a fare
margin.

4.2.2 Lisbon Neighborhoods
Three different options are viable top candidates with
respect to both input energy and cost if one assumes that +/-
5% is too close to definitively decide. For emissions, the
choice is clearer and the all-electric grid wins. The primary
driver for this result is the high percentage of renewable,
low-carbon energy sources. Given this, the authors note that
the All-electric scenario is likely the best all-around strategy
for Lisbon.

4.2.3 Kuwait City Neighborhoods
If minimizing energy consumption and emissions are the
key objectives, the authors recommend the use of a CCHP,
which is predicted to significantly outperform the other
three scenarios. This is because of the combination of low-
efficiency, fossil-burning power plants used in Kuwait.
However, the dramatically subsidized electricity rates favor
the use of an All-electric system.

All scenarios took first place for at least one combination of
neighborhood and key metric, except for the district heating
and cooling plant-though it should be noted that the DHC
plant took second place for the Kuwait City neighborhoods
with respect to input energy and carbon emissions. The
authors expect DHC plants to continue to play an integral
role in the global energy supply system, despite these results
for several reasons. With the increasing integration of low-
carbon electrical sources, the DHC plant will become more
attractive from an emissions standpoint relative to its CCHP
counterpart. Additionally, the replacement of the district-
scale gas boilers with heat pumps will further improve the
energy and emissions performance of the DHC plant.
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5 CONCLUSIONS AND FUTURE WORK
The primary contributions of this work are: (1)
Development of an integrated energy supply and demand
analysis tool, (2) Comparison between constant- and
variable-efficiency supply models, and (3) Results from six
neighborhood case studies.

The application of the authors' integrated energy supply tool
to the six neighborhood designs reveals several key
takeaways. First, constant- and variable-efficiency energy
supply models often produce directionally different results
with respect to energy, carbon, and cost. Second, the optimal
energy supply scheme is non-trivial and depends on the
relative importance of energy, carbon, and cost, in addition
to region-specific parameters. Additionally, while the
optimal strategy may not be clear based on the results, often
at least one of the energy supply strategies can be eliminated
from consideration.

The authors identified several areas of focus that may
improve the framework presented in this manuscript. The
first is conducting a comparison of the predictions made by
the energy supply strategies to an actual neighborhood's
energy consumption. This analysis will benchmark the
variance between the predicted and actual energy
consumption and determine the need for calibration of the
energy supply models.

A second is expanding the modularity of the equipment
models, allowing users to construct more complex,
customizable energy supply systems. For future work, the
authors recommend including a modified district heating
and cooling scenario that uses large heat pumps (>1 MW),
the ability to utilize economizing by using thermal
reservoirs, and the inclusion of thermal storage and heat
exchange between buildings.

The authors also suggest additional work to determine if the
constant heat losses assumption for the DHC and CCHP
strategies is appropriate. Finally, the authors see strong
benefits associated to including functionality for estimating
investments costs that would enable more sophisticated
financial comparisons of energy supply schemes.

The proposed framework represents an improvement in
coupling supply and demand analyses, and the authors hope
this tool will help municipalities, developers, and urban
planners focus their attention on the most promising energy

supply strategies.
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6 APPENDIX

6.1 Equipment Parameters

Table 9: Heat Pump (Cooling Mode) Specifications

Make Mitsubishi

Model MUZ-A09NA-1 (outdoor unit) and
MSZ-AO9NA (indoor unit)

Rated Cooling Capacity 9 kW (2.6 Refrigeration Tons)

Nominal COP 3.81

PLR range 10% to 100%

Zone - Outdoor air OC to 30C
differential range
Evaporator Outlet Air 12.5 *C, Saturdated
Temneprature I_________________

Table 10: Heat Pump (Heating Mode) Coefficients

Coefficients Values

CO 0.0914

Cl 0.8033

C2 2.5976

C3 -3.2925

C4 -0.8678

C5 0.1902

C6 1.4833

Table 11: Heat Pump (Heating Mode) Specifications

Make Fujitsu

Model ASU12RLS (indoor unit)
ModelAOU12RLS (outdoor unit)

Rated Heating Capacity 4.69 kW (1.3 RT)

Nominal COP 3.90

Outdoor air drybulb temperature range -14 to 18 "C

PLR range 28% to 100%

Indoor Zone Temperature Constant 21 'C

Table 12: Hydronic Boiler Coefficients

Coefficients Values

C1 0.83888652

c2 0.132579019

c3 -0.17028503

c4 0.047468326

Table 13: McQuay PEH Electric Centrifugal Chiller Coefficients

Coefficients CapFunT EIRFunT EIRFPLR

a 5.52E-01 4.45E-01 1.04E-01
b I1..39E-02 -3.19E-02 1.71E-02
c -4.82E-03 -8.26E-04 -1.40E-05

Coefficients CapFunT EIRFunT EIRFPLR

d 3.710E-02 3.71E-02 -9.14E-03

e -1.43E-03 -4.89E-05 1.08
f 3.47E-03 -4.98E-04 -1.63E-02

g - - 0
h - - -1.81E-01

- - 0
- .. 0

Table 14: Electric Centrifugal Chiller Specifications

Make McQuay

Model PEH

Rated Capacity 819 kW

Nominal COP 8.11

Min Part Load Ratio 9%

Min Leaving Evap Temp 4.44 "C

Max Leaving Evap Temp 8.89 "C

Min Leaving Condenser Temp 18.51 OC

Max Leaving Condenser Temp 35.07 "C

Table 15: Leaving Condenser Water Return Temperature

Approximation Coefficients

Coefficients Values

Cl 28.27

C2 5.57 E-04

C3 1.63 E-0 I

Table 16: Absorption Chiller Coefficients

Coefficients AbsCapFunT TFIRFunT TeEIRFunPLR

a -1.15 1.31E+00 2.63E-02

b -8.01E-02 -1.59E-02 6.78E-01

c -9.45E-03 7.74E-04 2.74E-01

d 2.10E-01 -1.96E-02 -

e -5.67E-03 3.78E-04 -

f 9.44E-03 5.58E-05 -

Table 17: Absorption Chiller Specifications

Make Unknown

Model Unknown

Rated Cooling Capacity 231 kW (66.0 Refrigeration Tons)

Nominal COP 1.39

Outdoor air drybulb -14 to 18 'C
temperature range

PLR range 0% to 100%
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6.2 Regional Information

Table 18: Electrical Generation Efficiencies from U.S. Energy
Information Administration

Prime Mover Fuel Type Efficiency

Gas Turbine Natural Gas 30%

Gas Turbine Petroleum 25%

Combined Cycle Natural Gas 45%

Combined Cycle Petroleum 35%

Steam Turbine Nuclear 33%

Steam Turbine Coal 34%

Geothermal - 16%

Hydro - 90%

Solar Photovoltaic - 12%

Solar Thermal - 21%

Wind - 26%

Table 19: Power Generation Mix by City

Electricity Sources Boston Lisbon Kuwaitcity

Coal 25% 23% 0%

Nuclear 13% 0% 0%

Natural Gas 53% 13% 34%

Petroleum 2% 3% 66%

Biomass 3% 5% 0%

Hydro 3% 31% 0%

Photovoltaic 0% 1% 0%

Geothermal 0% <1% 0%

Other 1% 0% 0%

Sources: Boston (IER, 2009), Lisbon
Kuwait City (IEA, 2014)

(IEA, 2014), and

Table 20: Region-specific Parameter Sources

Kuwait
Input Parameters Boston Lisbon City

Price of Electricity EIA, Eurostat, Oxford,
(USD/kWh) 2017 2016 2014

Price of Natural BLS, Eurostat, Mundi,
Gas (USD/kWh) 2017 2016 2017

Electrical EIA, lEA,
Transmission 2017EA, 2014
Losses (%)
Emissions Factor
(Metric Tons Emissions Emissions Emissions
CO2/kWh Factors Factors Factors
generated) II _ I
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