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Abstract
The Hagia Sophia in Istanbul represents a culmination of engineering practice and design aesthetics that
were emulated extensively by both Byzantine and Ottoman builders. The resiliency and scale of the brick
masonry dome of the Hagia Sophia, particularly with respect to its seismically active location, is a
testament to the iterative and empirical construction techniques of its constructors. The existing
analyses of the structure have focused primarily on architectural features as well as seismic response
using various computational implementations of the Finite Element Method (FEM). This thesis seeks to
better understand the static stability of the Hagia Sophia dome and its dynamic failure mechanisms
through a combination of analytical and experimental techniques. By utilizing limit analysis,
implemented through graphical methods, the stability of the dome can be calculated by assuming the
compression-only behavior of masonry. This analysis demonstrates that the horizontal thrust of the
dome is 275 kN and the vertical thrust is 1012 kN. Experimentally, a scaled and discretized 3D printed
model of the Hagia Sophia dome was tested to find that the minimum lateral ground acceleration
necessary to cause collapse is 0.725g. In addition, the minimum outward displacement of supports
necessary to induce failure was determined to be 2.1m. The analysis undertaken in this thesis will
ultimately inform the maintenance and restoration of the dome and help provide design and structural
precedents for masonry construction of large diameter domes.

Thesis Supervisor: John Ochsendorf

Title: Class of 1942 Professor of Architecture and Civil and Environmental Engineering
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I - Introduction

1.1 - Background on the Hagia Sophia
Originally constructed between the years 532-537 CE, the Hagia Sophia was commissioned by Justinian I,
the Byzantine emperor, to be his imperial church in Constantinople. The design for the first church was
developed by Isidore of Miletus and Anthemius of Tralles, who were chose by Justinian to serve as the
architects for the project. As the seat of the Orthodox patriarch in Constantinople, it was the location for
all imperial Byzantine ceremonies, such as coronations (Mark and Cakmak 1992). The original dome was
noted to be very flat compared to the current configuration and earthquakes in 553, 557, and 558 CE
caused major cracking and the ultimate collapse of the main dome. The reconstructed dome (completed
in 562 CE) was higher than the original (the Hagia Sophia has a current height of 55 meters) and was
supported by four pendentives (Mark and Cakmak 1992). An earthquake in 989 CE caused a partial
collapse of the dome, at which time, the main dome was reconstructed. These repairs were ultimately
completed in the year 994 CE under the direction of Emperor Basil 11. The constant renovations on the
dome, in response to earthquakes during this period of time, ultimately gave the dome its current
asymmetry with a variable diameter roughly equivalent to 32 meters. In the year 1317, four massive
buttresses were added to the Hagia Sophia, to further stabilize the dome (Mark and Cakmak 1992). At
this point, however, the Hagia Sophia was in a poor state, as a result of the political faltering of the
Byzantine Empire.

After the capture of Constantinople by Ottoman forces under Mehmet II, in 1453, the Hagia Sophia was
converted into a mosque. This was accompanied by some renovations. Minarets were added to the
structure during the reigns of Sultan Bayezid 11 (1481-1512), Suleiman I (1520-1566), and Selim 11 (1566-
1574). It was during the reign of the latter sultan, that significant retrofits were made to the structure of
the Hagia Sophia. These constructions were undertaken by the principal Ottoman architect and engineer
at the time, Sinan. Sinan's renovations included stabilizing the foundation, clearing the site of houses
and other outbuildings, repairing cracks in the dome, and perhaps, most significantly, the addition of
four flying buttresses to resist the outward spread of the dome. These buttresses are recorded in an
engraving by Melchior Lorck, a Danish painter and printmaker, from the year 1559 (Mark and Cakmak
1992). The other imperial Ottoman mosques designed and built by Sinan all employ the characteristic
flying buttresses and it seems only natural that Sinan used a similar stabilizing technique on the quickly
deteriorating Hagia Sophia.

Under the reign of Sultan Abdulmecid I, in the year 1847, the Swiss-Italian architects Gaspare and
Giuseppe Fossati were tasked with repairing the building and restoring its mosaics (Mark and Cakmak
1992). The Fossati brothers removed the flying buttresses added by Sinan and instead used an iron chain
at the base of the dome to resist the outward movement which had been causing significant cracking.
After the renovations of 1847-49, no other significant retrofits were undertaken until 1997. Completed
in 2006, the most recent renovations to the building repaired cracks in the dome and restored many of

the interior details and aesthetics (World Monuments Fund 2017).

1.2 - Overview of Investigation
The study and analysis of historic masonry structures is of utmost importance to the effective

restoration and preservation of these heritage structures. In many seismically active regions of the

world, masonry structures such as domes are in danger of collapsing or being reinforced in ways which

may hasten their failure. This is primarily due to a lack of understanding of the fundamental behavior of

masonry as well as the stability and failure mechanisms associated with these structures. As one of the

hallmarks of Byzantine design, and a prominent world architectural monument, the Hagia Sophia, and
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most importantly its dome, is one such masonry structure that has endured multiple seismic events and
several changes of political power. This investigation seeks to better understand the static stability of
the current dome of the Hagia Sophia and explore how the dome fails in response to seismic activity and
support movements. Special focus is given to the dome, as opposed to the entire building, due to its
significant structural role and vulnerability to failure. Based on the results of this investigation, a better
understanding and awareness of the behavior of large, masonry domes is developed which can be
instrumental in their subsequent repair and restoration.
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11 - Literature Review

There are multiple analytical, computational, and experimental methods for describing the behavior of
historical masonry structures. Many of these methods have been used to provide some level of
structural analysis for either the dome or the entirety of the Hagia Sophia. Each methodology has its
own key assumptions, and ultimately some are better suited to describe the fundamental behavior of
masonry.

2.1 - Theories of Masonry Analysis
Masonry structures can either be analyzed using elastic or limit analysis. First outlined by Navier (1826),
elastic analysis assumes that the material is a continuum, homogenous and isotropic, and that
deformations are small. However, this analysis is inconsistent with masonry structures, which are
composed of discrete, heterogeneous stones or brick which are separated by a joint or a crack. In
addition, the deformations associated with the overall masonry structures are quite large, and often
visibly noticeable. To this end, the limit analysis of masonry structures seeks to better approximate the
behavior of masonry, by making three key material assumptions, formalized by Jacques Heyman (1997):

1. Masonry has infinite compressive strength
2. Masonry has no tensile strength
3. Sliding failure does not occur

Given the relatively low stresses in masonry structures, the first assumption is valid. In addition, while a
brick or stone may be able to be loaded in tension, the joints cannot be loaded (mortar is too brittle to
sustain any tensile forces). Furthermore, it is often correct to assume that the high coefficient of friction
between blocks prevents sliding failure. Thus, analysis of masonry structures becomes not about
strength and elasticity, but more about stability (Zessin 2012).

2.2 - Computational Methods
In the field of elastic analysis, to date, several computational, finite element models (FEM) of the Hagia
Sophia have been constructed (Mark et al. 1995). Typically, all of these models evaluated the entire
building, not just the dome. These simulations approximate the early phase behavior of the mortar in an
attempt to derive a general form for the constitutive behavior of the masonry. These models have found
the horizontal and vertical thrust associated with the dome as well as the average deformation in the
main piers and arches of the Hagia Sophia (Swan and Cakmak 1993). Further FEM analysis of the building
has introduced seismic accelerations, associated with historical earthquake events, and examined the
behavior of the Hagia Sophia in response to these. Typical results associated with this seismic analysis
include natural frequencies and mode shapes of the building (Cakmak et al. 1993).

However, these FEM simulations make several key assumptions which limit their applicability. Primarily,
FEM analysis assumes some degree of elastic behavior in the medium. These models assume that this
elasticity can be derived from the supposed tensile strength of the mortar between the bricks. Although
the mortar may be stiff enough in some regions, often it is too dry and brittle to sustain any tension
load. Cracking patterns in masonry domes also invalidate any consideration of mortar strength; the
dome is cracked so there are no more mortared contact surfaces between certain segments, yet the
dome is still stable.

Furthermore, many of these computational models use calibration from in-situ measurements. While
this technique ensures that results are realistic, it does not prove the applicability of the model for
masonry analysis.
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Perhaps even more importantly, FEM analysis is unable to simulate collapse mechanisms or simulate
required failure loads or accelerations due to seismic events. Since one of the key assumptions in elastic
analysis is small deformation, these computational models cannot account for the large displacement,
cracking, and hinging typically associated with masonry structures.

More recent FEM analysis of the Hagia Sophia has taken advantage of improvements in modeling
assumptions and deployed more advanced non-linear analysis to the entirety of the structure (Almac et
al. 2013). In addition, there is the possibility of using discrete element modeling (DEM) analysis to
simulate the behavior of masonry structures. DEM analysis better accounts for the criteria determining
the stability of masonry by using physics based, rigid-body motion analysis, not accounting for significant
deformation. Nonetheless, advanced FEM and DEM analysis of large buildings is incredibly complex,
time consuming, and expensive, making this type of modeling out of the scope for most restoration and
retrofit projects.

2.3 - Limit Analysis
Contrasting with FEM elastic analysis, limit analysis of masonry structures is primarily concerned with
the stability of the blocks or units which can be evaluated via a line of thrust, a locus of points along
which internal forces (resultant compressive forces) flow. The two following theorems dictate the
stability and failure mechanisms associated with masonry structures.

1. Safe Theorem: If a line of thrust can be found which is in equilibrium with the external loads and
which lies wholly within the masonry, the structure is safe (Heyman 1997).

2. Uniqueness Theorem: If a line of thrust can be found which represents an equilibrium state for
the structure under the action of the given external loads, which lies wholly within the masonry,
and which allows the formation of sufficient hinges to transform the structure into a
mechanism, then the structure is on the point of collapse (Heyman 1997).

For uniform thickness and hemispherical geometries, the line of thrust can be derived analytically. This is
particularly useful, as the location of hinges and associated displacements can be found. This
implementation of limit analysis has been developed to consider the stability of the dome of the Hagia
Sophia (Pavlovic et al. 2016). While the failure mechanisms found in this investigation are correct, the
study considers a single point load as the cause for collapse. This is unrealistic as it is hard to imagine a
source that could impart such a high magnitude force onto the dome. In addition, while it is convenient
to assume that a dome is uniform in thickness and hemispherical, this is a large simplification for a
structure with highly variable geometry such as the Hagia Sophia.

2.4 - Membrane Analysis
Membrane theory, as a particular implementation of limit analysis, is useful in the evaluation of
masonry domes since it assumes that applied loads are only resisted by internal forces in pure
compression. In effect, membrane analysis assumes a zero-thickness surface that has no stiffness to
bending. Membrane analysis also dictates that forces act in the latitudinal (meridional) or hoop
directions and equilibrium solutions are constrained to the median surface of domes. The dome of the
Hagia Sophia has been analyzed using this technique (Duppel 2009). This investigation provides values
for the horizontal and vertical thrust associated with the dome. However, in general, membrane theory
often underestimates dome stability since only solutions constrained to the centerline of the structure
are considered. Logistically, it is often difficult to apply the relevant equations to non-uniform
geometries.
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2.5 - Graphic Statics
Graphical implementations of limit analysis can also be developed based on the fundamental
assumptions of masonry behavior. Graphic statics, a particular method formalized by Karl Culmann
(1864), can be used to analyze the stability of structure by demonstrating the link between the internal
forces and line of thrust for a structure. This method is based on the representation of forces as vectors
and finding equilibrium states.

One of the earliest masonry structures to be analyzed using graphic statics was the dome of St. Peter's
basilica (Poleni 1748). By considering the dome as a series of independent wedges or lunes, Poleni only
considered downward latitudinal or meridional forces. This did not account for hoop forces acting
between the lunes and so it is a conservative estimate of the dome's stability.

Wolfe (1921) refined graphic statics to account for both hoop and meridional forces in the analysis of
domes. The implementation is similar to membrane theory, however it allows for the line of thrust to
depart from the median of the surface in certain locations. This was further developed by Lau (2006).

One key problem with graphical methods is that they are tedious and time consuming to implement by
hand. However, with the advent of parametric modeling and other computational tools, graphical
methods can readily be applied to non-uniform thickness masonry structures (Block 2005). Nonetheless,
to date, there has been no graphic statics analysis of the Hagia Sophia or any other later era Ottoman
domes. The development of quick and adaptable graphical methods will be a key contribution of this
investigation as it seeks to answer the following research question:

1. What does limit analysis, implemented via graphic statics, reveal about the structural behavior
and performance of historical masonry domes, in particular the Hagia Sophia?

2.6 - Scale Models and Physical Experimentation
The use of scale models to test the collapse behavior of masonry structures is a nascent field. Much of
this work has historically focused on arches with limited work on other masonry structures. Zessin et al.
(2010) and Quinonez et al. (2010) developed the use of 3D printed domes to evaluate their performance
under quasi-dynamic conditions. These hemispherical, uniform thickness domes were constructed out
of multiple 3D printed gypsum blocks which were subsequently coated with polyurethane adhesive to
aid in model durability. Two important physical experiments were conducted on these domes:

1. Tilting Test: By placing the dome on a surface that can be gradually tilted, the angle of collapse
can be measured. This angle can then be correlated to the minimum ground acceleration
required to collapse the dome (DeJong 2009; Zessin 2012). This is a direct measure of the
strength of a given seismic event.

2. Spreading Test: By placing the dome on a series of spreading leaves, the minimum outward
movement of supports needed to induce a collapse mechanism can be experimentally derived.
By applying a scaling factor, the relevant value for the full scale dome can be found (Zessin et al.
2010; Zessin 2012).

This investigation seeks to better understand the possible collapse behavior of the Hagia Sophia by
developing a similar 3D printed model and repeating the two tests in order to answer these two
research questions:
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1. With regards to seismic performance, what is the minimum lateral ground acceleration
necessary to collapse the dome of the Hagia Sophia?

2. What is the qualitative behavior of the Hagia Sophia in response to moving supports and what is
the minimum outward movement required to induce a collapse mechanism?
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Ill - Methodology

In order to better understand the behavior of the Hagia Sophia and answer the three main research
questions reviewed in Sections 2.5-6, this investigation utilized both a computational implementation of
graphic statics as well as scaled, experimental model of the dome. The procedure for the development
of the analytical and experimental phases of this investigation are explored in this section.

3.1 - Model Generation
The model of the dome of the Hagia Sophia was based on section cuts of the structure (Necipoglu 2005).
The drawings were prepared using Rhinoceros 3D (see Figure (1)), a commercially available 3D modeling
platform (Robert McNeel and Associates 2012). Previous investigations focused on the entirety of the
structure of the Hagia Sophia. This is a logistical constraint on the development of quick analysis and
scaled experimental models. This investigation chose to focus solely on the dome. This is justified for
two primary reasons. First, the dome is the largest single-spanning element in the Hagia Sophia and is
thus, of primary interest in the investigation of static and seismic stability. In addition, the rest of the
Hagia Sophia is incredibly massive and stable due to the built up construction of additional retaining and
buttressing walls. Relatively considered, the dome is very light and so there is much greater concern
about its behavior relative to the whole building. Secondly, the historical earthquakes that have
occurred at the site all either completely or partially collapsed the dome while other structural elements
such as half domes and arches may or may not have been damaged. This validates the idea that the
dome is indeed the most critical and weakest structural component of the building.

0.95m

is.

Centroid (18.36. 6.61)

Origin (0.0)
32.13m

i6m

Figure (1): Rhino 3D model of the dome and annotated section through the dome indicating key dimensions.

3.2 - Material Study
The dome of the Hagia Sophia is constructed out of bricks with layers of mortar between them. An
investigation of the mechanical and chemical properties of the bricks reveals that they have a density of
1540 kg/M 3 and that the mortar has a density of 1430 kg/M3 (Mark and Cakmak 1994). Nonetheless, a
density of 1700 kg/m 3 is used by some computational simulations (Swan and Cakmak 1993) and a
density of 1843 kg/m3 is considered in a membrane theory analysis of the dome (Duppel 2009). This
investigation will consider the latter two densities in order to be able to effectively compare its findings
with previous studies.
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3.3 - Implementation of Graphic Statics

3.3.1 - Graphic Statics and Application to 3D Geometry
Graphic statics is a vector equilibrium implementation of limit analysis that is readily applicable to two-
dimensional structures such as arches. These specific structures are held in a static equilibrium solely via
downward compressive or meridional forces. An overview of this analysis method and a small example
are provided in Appendix A of this thesis.

Three dimensional masonry structures such as domes involves both meridional forces as well as
longitudinal hoop forces (see Figure (2)).

Meridional Forces

Hoop Forces

Figure (2): Meridional and hoop forces acting on an idealized dome.

As demonstrated by Poleni (1748), the graphic statics analysis of masonry domes must decompose the
structure into wedges or lunes. Figure (3) indicates how a hemispherical dome is cut into 16 slices of
22.5* each. The lune effectively serves as a two-dimensional representation of the dome since the
magnitude of self-weight dramatically reduces towards the top of the lune. Appropriate lune angles
range from 10-15". By considering only the meridional forces (i.e. each lune acting independently), a
similar approach to Figure (2) can be used to generate the thrust line for a dome once the lune is divided
into individual voussoirs.

Wolfe (1921) developed a modified thrust line method to account for the hoop forces in the dome. This
is a conservative method that makes one critical assumption: for a hemispherical dome, at about 52*
from the horizontal, the hoop forces change in direction. Above this angle, the upper half of the dome is
held together both by the compressive meridional forces as well as compressive hoop forces. To account
for the contribution of the hoop forces, Wolfe's modified thrust line is constrained to the median
surface of the lune for this region. Based on a series of vector relations, the magnitude of the hoop
forces can also be derived. The lower half of the dome, however is only held together by meridional
forces since the hoop forces are tensile in this region. Since it can be assumed that masonry has no
tensile capacity, the analysis of the lower part of the dome is the standard two-dimensional graphic
statics approach.

Figure (3): Idealized hemispherical dome divided into
lunes. The removed slice indicates the wedge like
geometry of the lune which is essential for the accurate
implementation of graphic statics.
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3.3.2 - Computational Implementation
This investigation has focused on developing a robust, computational implementation of graphic statics
that is able to account for both hoop and meridional forces in domes with variable geometry and non-
uniform thickness.

Grasshopper Parametric Modeling Environment I Python Scripting

Inputs:
- 3D model of dome

- Lune angle
-Number of voussoir

Inputs:
- Horizontal reaction
- Thrust line location

4I

Output:
- Force polygon

-Thrust line

4I
Inputs:

- Horizontal reaction
- Thrust line location

4I

Figure (4); Process logic for the implementation of
graphic statics for a given dome geometry within
the Rhinoceros 3D and Grasshopper modeling
environment.

Output:
Force polygon
-Thrust line

Since graphic statics is essentially an iterative method, tasked with finding an admissible line of thrust
for a structure, it is an ideal use of the flexibility afforded by parametric modeling. Given that the model
of the Hagia Sophia dome was prepared using Rhinoceros 3D, it is natural to use the associated plugin,
Grasshopper, to develop the graphic statics solutions for the dome. Grasshopper is a visual
programming language that interacts and ties with the core functions of Rhinoceros 3D which allows
parametric control of geometry. Grasshopper also allows a user to develop custom Python scripts which
afford even greater control over Rhinoceros 3D geometry (Robert McNeel and Associates 2014).

The process logic for the implementation of graphic statics is illustrated in Figure (4). The following steps
are involved in the implementation of graphic statics in Grasshopper via the Python programming
language.

1. Lune Generation: The 3D model of the dome is divided and one lune, with the desired input
angle, is output. The number of voussoirs is also input, as a parameter, which splits one lune
into multiple blocks.

2. Graphic Statics (Meridional Forces Only):
a. The volume of each voussoir is calculated and a load line is generated based on an input

density for the blocks.
b. Based on the input horizontal reaction, the force polygon is constructed.
c. The line of thrust is generated based on the geometry of the force polygon (see section

3.3.1) and the line is superimposed onto the geometry of the lune. A series of inputs
control the starting point of the thrust line.

d. The horizontal reaction is another parametric control that can be modified to ensure
that the line of thrust fits completely within the structure.

3. Graphic Statics (Meridional and Hoop Forces)
a. The same procedure is repeated to generate the load line for the dome.
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b. For the blocks above the critical angle (an input), the line of thrust is constrained to the
centerline of the lune, which can be extracted from the 3D geometry.

c. For the blocks below the critical angle, the horizontal reaction force is an input. Based
on this, the entire force polygon is constructed.

d. The same series of controls (horizontal reaction, starting location) can be iteratively
changed to ensure that the thrust line is admissible for the given dome geometry.

This particular methodology is an important contribution of this investigation. Since this particular
implementation of graphic statics uses a complete 3D model for the dome, as opposed to only accepting
a lune input, and requires minimum inputs, it is able to generate the line of thrusts for domes of varied
geometries and with non-uniform thicknesses. Therefore, simplifications are not necessary and a more
accurate evaluation of the stability and internal forces of the dome can be produced.

3.4 - Scaled Model and 3D Printing
An accurate scaled model of a masonry structure must best reproduce the discontinuous nature of the
bricks or stones. The level of discretization is restricted by the desired size of the scaled model since
blocks which are too small do not behave or interact with each other accurately. On the other hand, it is
also incorrect to produce a monolithic scaled dome model. To readily produce a scaled model of the
Hagia Sophia, while preserving finer details, this investigation chose to use 3D printed blocks (Zessin et
al. 2010; Quinonez et al. 2010; Zessin 2012). The process workflow summarized in Figure (5) describes
the inputs required to discretize a complete dome geometry into a series of blocks which can directly be
printed. A similar logic to section 3.3.3, using Grasshopper and Python, was used. The blocks were
printed with a ZCorp 450 gypsum powder printer and coated with a layer of polyurethane adhesive
(Quinonez et al. 2010). This produces blocks that are durable through repeated testing and that have a
suitable friction coefficient between them.

Grasshopper Parametric Modeling Environment I Python Scripting
--- .... - .. .. - .. ... - - .,

Inputs:
-3D model of dome I
- Number of lunes I

- voussoirs per row

II I

Output:
-Discretized dome
to be 3D printed

- - I

Figure (5): Process logic for discretization of 3D
dome geometry into blocks to allow for printing of
scaled geometry.
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3.5 - Tilting Test

3.5.1 - Theory and Physical Implementation
Tilt testing is an experimental technique in which a masonry structure is placed on a planar surface
which is gradually inclined until the structure collapses (DeJong 2009). This collapse angle can be linked
to the minimum ground acceleration necessary to cause the collapse of the dome, a quasi-dynamic
evaluation of the strength of an earthquake.

r

1 2

Figure (6): Tilting of an idealized hemispherical dome (1) and corresponding failure mechanism (2).

As demonstrated in Figure (7), tilting the dome causes the thrust line to lie tangent to the structure in 5
locations. As postulated by the Uniqueness Theorem in section 2.3, since this thrust line will cause
hinges to form at this location, it is sufficient to cause the collapse of the structure. Thus, at a given
angle of inclination corresponding to collapse, the thrust line will lie tangent to the dome and then exit
the structure, indicating failure, due to hinging mechanisms. The relationship between the angle of
collapse and ground acceleration can be computed based on a vector decomposition (DeJong 2009;
Zessin 2012).

r = tan(y) * g Equation 3.5.1

3.5.2 - Validation
The results of the physical tilt table test can also be verified by adjusting the force polygon from section
3.3.3. By rotating the load line by the desired angle, a new force polygon corresponding to an inclined
geometry can be found. This updated force polygon naturally links to a new thrust line which can be
verified to make sure it still passes through the structure. The angle at which the thrust line is no longer
admissible is the angle of collapse.

It is important to note that this modification of the force polygon can only be implemented if hoop
forces are not considered (i.e. only meridional forces). As a result, a lower bound or conservative
estimate of the collapse angle is achieved. This is because the specific implementation of graphic statics
that considers hoop forces constrains the thrust line to the centerline of the lune.



18

3.6 - Spreading Test

3.6.1 - Theory and Physical Implementation
The spreading support test experimentally simulates the behavior of a masonry dome with supports that
are displacing outwards either due to the thrust of the dome, weakness in adjacent structure, or
differential soil settlement underneath the piers.

UC
A o

Figure (7): Spreading of an idealized hemispherical dome. The formation of 4 hinges indicates a failure mechanism. When the structure

fails, two more hinges will form at the supports.

This displacement similarly shifts the line of thrust so that it lies tangent to the dome at the location of
the four hinges (A, B, C, and D). When the actual collapse mechanism is induced, two more hinges will
form at the base of the piers. Since the scaled model behaves in a similar way, it can be assumed that
the displacement measured in the physical experiments can be magnified to describe the failure of the
actual dome (Zessin et al. 2010; Zessin 2012).

3.6.2 - Validation
Analytic validation of the displacement necessary to cause collapse can be calculated by assuming that
the dome is hemispherical and with a uniform thickness. For the Hagia Sophia, this will naturally be an
upper bound for the actual displacement necessary to cause failure as the dome is much shallower and
thinner than a corresponding hemispherical approximation. The formulaic derivation of the critical
percentage span increase is given by the following equation (Zessin 2012).

-334 + 283 ( - 10.7 Equation 3.6.2
LRR

In this expression, L" corresponds to the critical span increase while t is the thickness to radius ratio
L R

of the dome. When applied to the Hagia Sophia, assuming a constant thickness of 2.4m which

corresponds to the base of the pier, and a radius of approximately 16m, a predicted span increase of

23.9% (3.83m) would induce collapse.
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IV - Results and Discussion

Based on the methodology presented in section 3, the analytical and experimental study of the dome of
the Hagia Sophia was performed to demonstrate its static stability and its behavior under seismic
loading and support displacement.

4.1 - Comparison of Hoop and Meridional Forces
One key question related to the static stability of the Hagia Sophia, and perhaps giving much insight into
the behavior of domes in general, is the relative effect of hoop forces in the force equilibrium of the
dome. Assuming a density of 1700 kg/M 3 (which is consistent with the FEM analysis of the dome) and a
10 degree lune with 11 voussoirs, values for the horizontal and vertical thrust were calculated for the
dome of the Hagia Sophia. These are provided in Table (1).

Table (1): Thrust Values for the Dome of the Hagia Sophia

No Hoop Forces Hoop Forces

Horizontal Thrust (kN) 254 275

Vertical Thrust (kN) 1012 1012

Considering hoop forces does not make any difference with regards to the vertical thrust of the dome.
Indeed, hoop forces simply flatten the thrust line slightly resulting in a higher horizontal thrust value if
the hoop force calculation constrains the solution to the dome centerline. This is further illustrated by
looking at the thrust lines for the two different conditions (see Figure (8)).

- - Hoop Forces Considered
r- - Only meridionl Forces Figure (9): Thrust lines for the Hagia Sophia

with and without hoop forces. The conditions
are very similar. The thrust line which
considers hoop forces is locked to the
centerline of the dome since this is a critical
assumption involved in the graphic statics
technique.

It is evident that for the geometry of the dome of the Hagia Sophia, the two graphic statics methods
yield similar results, albeit the consideration of hoop forces is a more realistic case for the static
equilibrium of the structure.
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4.2 - Overturning Stability of the Dome of the Hagia Sophia
An important metric for determining the stability of the Hagia Sophia is the safety of factor associated
with the stability of the pier. In this calculation (see Figure (9)), it is assumed that the structure adjacent
to the dome is very stiff and that the supporting pier is the most likely to overturn. A simple analysis of
the stabilizing and overturning moments due to the thrust entering the pier reveals a very high safety
factor against overturning as can be seen in Table (2).

Figure (9): The pier of the Hagia Sophia may overturn due to the thrust imparted from
the rest of the dome. It's resistance to overturning can be quantified as a safety factor.
The thinnest part of the pier, the critical section, is highlighted.

Y- Stablzng

Weoht- SIabilizin

Table (2): Safety Factor against Overturning for Piers of the Hagia Sophia Dome

No Hoop Forces Hoop Forces Hoop Forces (Crit. Section)

Safety Factor against Overturning 2.02 1.90 1.06

The high stability is due to the large weight and volume of the pier which was most likely overdesigned
and strengthened through the lifetime of the building for this exact purpose. When considering hoop
forces, the safety factor decreases since there is an increased horizontal component of the thrust. When
looking at the thinnest critical section of the pier, the safety factor further decreases to 1.06, due to the
reduced section which is able to provide less resistance to overturning.

4.3 - Comparison to Other Methods
In order to validate the results of this investigation, it is important to compare the thrust values
calculated using graphic statics to those that have previously been found using both membrane analysis
and FEM analysis. With a density of 1700 kg/m3 , the FEM analysis of the dome produced a value of 600
kN for the vertical thrust and 154 kN for horizontal thrust (Swan and Cakmak 2010). This is half the value
found using graphic statics and further diminishes the viability of using elastic analysis to study historic
masonry structures. However, membrane theory, which operates on similar assumptions to graphic
statics, can be used to study masonry domes. The membrane analysis of the dome of the Hagia Sophia,
assuming a density of 1834 kg/M3, yielded a vertical thrust value of 1069 kN and a horizontal thrust
value of 267 kN (Duppel 2009). These results are nearly identical to those found in this investigation.
While, membrane analysis may be used in lieu of graphic statics, this investigation has demonstrated
that a flexible implementation of graphical methods can make the analysis of complex dome geometries
quicker and more efficient without the need to develop governing equations and equilibrium conditions.
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4.4 - Comparison to Later Ottoman Domes
Since the Hagia Sophia is considered the architectural and structural progenitor of all later Ottoman
imperial mosques, it is important to analyze its static stability compared with two of the hallmarks of
Ottoman construction, the Suleymaniye and Selimiye. The Suleymaniye was built in Istanbul under the
orders of Sultan Suleiman I by Sinan from the years 1550-1558. The dome measures approximately 26
meters in diameter. The Selimiye, designed and built by Sinan from 1568-1574 in Edirne, is considered
the pinnacle of Ottoman architecture and measures a staggering 32 meters in diameter, nearly identical
to the Hagia Sophia. The 3D models for the two Ottoman domes were based on section cuts of the
mosques. Both the Suleymaniye and Selimiye utilize flying buttresses to resist the outward spread of the
dome. However, as indicated by the thrust lines in Figure (10), the two Ottoman domes are in static
equilibrium even without the buttresses.

Hagia Sophia [532-537] Suleymaniye [1550-1558] Selimiye [ 1568-1574

Figure (10): Thrust lines for the Hagia Sophia, Suleymaniye, and Selimiye. The thrust line which corresponds to only meridional forces is shaded
green while the thrust line which also includes hoop forces is colored red.

It is important to note that while the Suleymaniye is stable considering solely meridional forces or
including hoop forces, the thinner Selimiye requires hoop forces to be in static equilibrium. As a result,
there is no admissible meridional force only thrust line that passes through its structure. In general, the
thickness to radius ratio of the three domes is similar. The Hagia Sophia has a t/R = 0.148, the
Suleymaniye has a t/R = 0.167, and the Selimiye has a t/R = 0.151. This metric only considers the
thickness at the base of the pier but indicates that the aspect ratio of the domes is fairly similar
indicating both architectural and structural continuity. The safety factors and thrust values, assuming
hoop forces are present, for the three domes is summarized in Table (3). To compare geometry rather
than materiality, the same 1700 kg/m3 density was used to determine the self-weight of the domes.

Table (3): Static Stability and Thrust of the Hagia Sophia and Ottoman Domes
Vertical Thrust (kN) Horizontal Thrust (kN) Safety Factor

Hagia Sophia 1011 274 1.90
Suleymaniye 719 200 1.73
Selimiye 1055 256 1.71

It is important to note the reduced safety factor associated with the two Ottoman mosques. Although
the values are still higher than 1.5, concern about static stability may have driven Sinan to deploy flying
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buttresses to prevent overturning and outward displacement. This is particularly evident in looking at
the Selimiye, which is directly comparable to the Hagia Sophia in geometry and size. Even though it has a
larger pier and less horizontal thrust (it is slightly less shallow than the Hagia Sophia), the safety factor is
reduced by about 10% owing to the thinner size of the dome and the pier geometry.

4.5 - Collapse Due to Seismic Activity
The model of the dome of the Hagia Sophia was 3D printed at a 1:88 scale based on logistical
constraints. This resulted in a dome with 10 rows of voussoirs and more than 100 3D printed pieces with
a total span of approximately 46cm.

Figure (11): collapse of the scaled model of the Hagia Sophia due to tilting to simulate seismic behavior.

The dome was placed on an inclined surface which was gradually tilted upwards until collapse was
reached. The results were recorded using a high speed camera and are shown in Figure (11). As
expected based on the method outlined in Section 3.5.1, the dome collapsed when 4 hinges form. The
collapse induces a bulging of the dome in one direction and a flattening on the other side. Based on the
angle of collapse recorded (35.9), an average minimum ground acceleration of 0.725g (standard
deviation of 0.031g) was determined using Equation 3.5.1 (see Table (4)).

Table (4): Experimental Values of Lateral Ground Acceleration Using Tilting Test

Test 1 2 3 4 5
Collapse Angle 36.70 37.40 36.30 35.20 34.10

Acceleration 0.745g 0.765g 0.732g 0.705g 0.677g
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The recorded collapse angle corresponds to a very high lateral ground acceleration and is indicative of
the highly stable dome of the Hagia Sophia which is to be expected given the resilience of the building to
withstand seismic activity over the last 1000 years. The trend for the last three tests lowers due to
corner rounding and global damage to the blocks as a result of multiple collapses.

Apply the modified graphic statics method described in Section 3.5.2, a minimum ground acceleration of
0.51g is predicted. This is corresponding to an angle of 270. At this state (see Figure (12)), the thrust line
lies tangent to the lune at two different points and then exits the structure at the base. The thrust line is
tangent at the crown and at a point located approximately 550 from the vertical. These tangencies
correspond to the hinges that will form and cause a collapse mechanism.

Figure (12): Analytical derivation of the angle of
collapse of the Hagia Sophia using a modified graphic
statics method. The green thrust line lies tangent to
the lune at two points. The lower tangency
corresponds to the formation of a hinge that causes
a failure. This is the last admissible thrust line,
indicating that this the highest angle at which the
structure can be titled before failure is recorded.

Hingj Lcaton

This analytical derivation validates the experimental results since the graphical method is a lower bound,
conservative estimate that does not consider hoop forces which are evidently influencing the behavior
of the scaled model. In addition, the physical experiment also introduced friction between the blocks,
which reduces their likelihood to rotate or hinge. However, the graphical method is unable to capture
this. However, as can be seen from the still frames in Figure (11), the location of the hinge (between the
second and third row of blocks) corresponds exactly to the position predicted using graphic statics.

Present-day Istanbul is located in a seismically active region and it is situated close to the North
Anatolian fault. Based on historical data and seismic models, the Peak Ground Acceleration (PGA) for
Istanbul is between 0.20g and 0.30g for earthquake events with a 10% likelihood in 50 years. For
earthquakes with a 2% likelihood, the PGA is between 0.33g and 0.49g (Kalkan et al. 2008). These values
indicate that although the region is expected to experience moderate to large seismic events, it is highly
unlikely that the dome of the Hagia Sophia will collapse as a result, since a minimum lateral ground
acceleration of 0.725g is required to induce a collapse mechanism in the structure.

Accelerometers installed throughout the Hagia Sophia (including the dome) record the response of the
structure to seismic events and registered two large earthquakes that struck the region in 1999. The 7.4
magnitude Kocaeli earthquake occurred in August while the 7.2 magnitude Duzce earthquake occurred
in November of that year. The peak acceleration recorded at the Hagia Sophia, during both events, was
0.077 m/s 2, or 0.0078g. (Durukal et al. 2003). This is significantly lower than the acceleration required to
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cause collapse and thus, the Hagia Sophia is determinately safe during medium to large seismic events,
as demonstrated by the two most recent, significant earthquakes.

4.6 - Collapse Due to Displacement of Supports
The scaled model of the dome of the Hagia Sophia was also placed on a spreading supports table to
simulate the collapse mechanism associated with outward moving supports (Zessin et al. 2010; Zessin
2012). A series of 6 leaves are slowly moved apart and the movement of the dome is recorded with a
high speed camera.

Figure (13): Collapse of the scaled model of the Hagia Sophia due to spreading supports.

On average, full collapse occurred after an average outward support movement of 2.4 cm (standard
deviation of 0.15 cm) and a downward crown displacement of 0.6 cm (see Table(5)). Taking the scaling
factor into account, this corresponds to 2.1m and 1.4m, respectively. The spreading supports first
introduce cracks into the lower part of the dome. In these regions, the masonry cannot bear the tensile
hoop forces present and the classical dome cracking pattern becomes visible. The upper part of the
dome however, remains rigid with minimal cracking since there are compressive forces in this region.
The dome ultimately only collapses when two hinges form per lune, or four hinges for any given cross
section of the dome.

Table (5): Experimental Values for the Outward Spread Distance Required to Cause Dome Collapse
Test 1 2 3 4

Spreading Distance (cm) 2.54 2.22 2.38 2.54
Span Increase 10.0% 8.9% 9.4% 10.0%
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This experimental result can be compared to a theoretical prediction by simplifying the dome to be
purely hemispherical and uniform in thickness. As previously demonstrated, using Equation 3.6.2, a
critical span increase of 23.8% is estimated to cause collapse in a hemispherical dome with a thickness
to radius ratio of 0.148. Of course this is a non-conservative estimate of how far the supports of the
Hagia Sophia can displace without causing failure mechanisms. Indeed, there is a 45% difference in the
values corresponding to this simplified version of the dome versus the actual 3D printed geometry. The
dome of the Hagia Sophia gets thinner towards the top and it is shallower than a hemispherical dome
with the same diameter. Although the theoretical prediction serves as an upper bound estimate of
performance, it is not refined enough to take into account specific geometric parameters. This result
illustrates the significance and value of scaled physical models and necessitates the development of
more rigorous analytical expressions to describe the stability behavior of domes.
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V - Conclusions

The Hagia Sophia is a testament to the design and engineering prowess of Byzantine builders. Indeed,
the iconic form was emulated closely by later Ottoman builders such as Sinan during the 16th century.
The Hagia Sophia has stood, albeit in reconstructed and often rebuilt forms, for almost 1500 years
however, little is understood about the stability of the building and its surprising resiliency in seismic
events. As the signature part of the structure, the brick masonry dome of the Hagia Sophia is particularly
interesting due to its long span and low thickness to radius ratio. This investigation aimed to better
understand the fundamental behavior of the dome of the Hagia Sophia as a way to motivate
appropriate restoration and conservation of this dome and other ancient and medieval masonry
structures.

By developing an automated implementation of graphic statics, an adaptation of limit analysis which

follows the fundamental stability governed behavior of masonry structures, this investigation was able
to determine the relative magnitude of forces found throughout the dome. Accounting for hoop forces,

the Hagia Sophia has a vertical thrust of 1011 kN and a horizontal thrust of 274 kN. These results can be
corroborated with other structural analysis evaluations of the dome. For example, using membrane

analysis, Duppel (2009) predicted a vertical thrust of 1069 kN and a horizontal thrust of 267. The results

also help illustrate why computational FEM analysis, based on elastic strength criteria, are not well

suited for analyzing masonry structures. Indeed, using FEM analysis, Swan and Cakmak (2010) estimated
a vertical thrust of 600 kN and a horizontal thrust of 154 kN for the dome. It can be seen due to its

geometry, the effect of radial hoop forces are not significant in the equilibrium state of the dome of the

Hagia Sophia. This is different than later Ottoman domes which require hoop forces for their stability,

such as the Selimiye in Edirne. Furthermore, using graphic statics, the investigation was able to validate

the high resistance of the dome piers from overturning due to thrust from the dome. Considering its

thickest section, the dome pier has a 1.90 factor of safety against overturning. Even considering the

thinnest section of the piers, the factor of safety against overturning remains adequate, with a value of

1.06.

Building on previous work with discretized, physical masonry models, this investigation 3D printed and

collapse tested a scaled model of the dome of the Hagia Sophia. This model, again based on the

principles of limit analysis, assumes that the blocks or masonry units are rigid bodies and that collapse is

a result of plastic hinge formation rather than failure due to material strength. Considering the dome on

a titling surface, the minimum lateral ground acceleration necessary to induce collapse was found to be

0.725g. This high value points to the resiliency of the current dome configuration and its ability to

withstand multiple seismic events in the past centuries. The safety of the dome can be further

confirmed by comparing this value to the expected PGA in Istanbul of 0.33g to 0.49g. Finally, by looking

at the dome on spreading supports, this investigation demonstrated that a minimum 2.1 meter

movement of the piers is required to induce a collapse mechanism in the dome. Both these

experimental values can be validated by considering theoretical approximations of the two collapse

states.

Further refinement of this investigation can focus on both the experimental and analytical portions of

the study. To more fully understand the seismic behavior of the Hagia Sophia, more of the structure can

be 3D printed and tested, including the supporting piers. In addition, by using laser-scanning tools on

site, a more complete and accurate geometry of the building and dome can be generated which will

further refine the 3D model used for both experimentation and graphic statics and make any

conclusions more directly relevant to the actual building. Finally, a future iteration of this investigation
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can focus on rigorously establishing theoretical expressions for the stability and quasi-dynamic behavior
of non-hemispherical, non-uniform thickness domes. These general expressions would be instrumental
in the analysis of the Hagia Sophia as well as any other historical masonry dome.

Through a combination of automated, graphic methods and physical, scaled models, this investigation
has developed a robust methodology to analyze the stability of non-hemispherical, non-uniform
thickness masonry domes and evaluate their seismic and support behavior via quasi-dynamic
experimental testing. This process has indeed shown the applicability and advantages of limit analysis to
analyze heritage masonry structures and has revealed significant insights into the behavior of the dome
of the Hagia Sophia.
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VI - Appendix A

A.1. Graphic Statics Theory and Implementation

As a specific implementation of limit analysis, graphic statics is a technique
with internal actions, via vector equilibrium.
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Figure (Al): The three steps involved in generating the thrust line for a given geometry. Here, a state of minimum thrust is displayed. This
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Figure (Al) illustrates the basic premise involved with generating the thrust line for a 3 voussoir
(segment) arch in two dimensions (unit depth into the page) (Allen and Zalewski 2009). The first step
involves determining the forces acting on the masonry structure. In the case of the given example, the
only load present is the self-weight of each voussoir (wi, w 2, and w 3 ) which can be represented by
downward vectors with a given scaled magnitude. It is important that the scaling factor used to draw
forces in graphic statics is kept constant. In step 2, the vectors representing the self-weight of the blocks
are placed tip to tail in a vertical representation which is called the load line. Picking a point (the node or
o) horizontal with regards to the beginning of the load line will establish the horizontal reaction force
necessary to keep the arch in equilibrium. By connecting the tips of the load vectors to the node, the
arch is now in equilibrium. This graphical representation is called a force polygon. The magnitude of the
lines (a-o, b-a, c-o, d-o) correspond to the magnitude of the meridional force in that voussoir of the arch
(when the necessary scaling factor is applied). As step 3 demonstrates, lines with the same slopes can be
then be drawn within the geometry of the arch. This is the thrust line for the structure. If the thrust line
fits wholly within the geometry, it is an admissible equilibrium solution and the arch is stable. As is
instantly noticeable, there are a large number of admissible thrust lines which can be generated, even
for a simple arch. Different equilibrium conditions can be found by moving the node location to the left
or right, thereby decreasing or increasing the magnitude of the horizontal reaction at the crown of the
arch and redefining the thrust line.

a
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VII - Appendix B

B.1. Lune Generation and Voussoir Discretization

import rhinoscriptsyntax as rs
import math
import Rhino as rh
from Grasshopper.Kernel.Data import GHPath
from Grasshopper import DataTree
import scriptcontext as sc
import Rhino.Geometry as rg

sc.doc = rh.RhinoDoc.ActiveDoc
rh.RhinoDoc.ActiveDoc.ModelAbsoluteTolerance = 0.001;

angleDomeTree = DataTree[object]();
vertDomeTree = DataTree[object]();
finalDomeTree = DataTree[object]();
radialDivisionsTree = DataTree [object]();
worldZ = [0,0,1];
worldY = [0,1,0];
inputGeo = InputGeo;
centPoint = CenterPoint

if Run:
angle Vert = LuneAngle;
#centPoint = [0,0,0]
#centPoint = rs.SurfaceVolumeCentroid (inputGeo [0]);
#centPoint = centPoint[0]
vertDivGuide = rs.AddLine(centPoint,(0,100,centPoint[2]));

angleupdatedl = 0;
angle updated2 = angle Vert[0]

xform_1 = rs.XformRotation2(angle updatedl,worldZ,centPoint);
xform_2 = rs .XformRotation2 (angleupdated2,world_Z, centPoint);

vertDivLineArrayl = rs.TransformObject(vertDivGuide,xform_1,True);
vertDivLineArray_2 = rs.TransformObject(vertDivGuide,xform_2,True);

join_vertDivLine = rs.JoinCurves([vertDivLineArrayl,vertDivLineArray_2],True);

vertCuttingSurfaces_1 =
rs.ExtrudeCurveStraight(join vertDivLine,centPoint, [0,0,100]);

vertCuttingSurfaces_2 = rs.ExtrudeCurveStraight(join-vertDivLine,centPoint,[0,0,-
100]);

vertCuttingSurfaces =

rs.JoinSurfaces ( [vertCuttingSurfaces_l,vertCuttingSurfaces_2] ,True);

brp_1 = rs.coercebrep(vertCuttingSurfaces);
brp_2 = rs.coercebrep(inputGeo[Ol);

rs.FlipSurface(brp_1);

brpvert = rh.Geometry.Brep.CreateBooleanDifference (brp_2,brp_1,0.001);

anglecount = AngledDiv[0];

angleDivLine = rs.AddLine([0,0,0],[0,100,0]);
angleDiv-indx = [90/i for i in AngledDiv]

angleDiv = [];
angleDivLine_2D = [];
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angleDivLine polar =

angleCutSurfaces =

angleCutDome = []
anglebrepGeo = brp vert[0];
newLine = rs.AddLine([0,0,0],[0,0,1])
radialDivisions = [];

angleCutSurfaces.append(rs.AddRevSrf(angleDivLine,newLine,0,360));

for i in range(0,anglecount):
angleDiv.append(angleDivindx[0]*i+angleDivindx[0]);

angleDivLine_2D.append(rs.RotateObject(angleDivLine, [0,0,0] ,angleDiv[i] ,None,True));

angleDivLine_polar.append(rs.RotateObject(angleDivLine_2D[i], [0,0,0], 90,worldY,False)

angleCutSurfaces.append(rs.AddRevSrf(angleDivLine-polar[i],newLine,0,360));

anglebrepSrf = rs.coercebrep(angleCutSurfaces[i]);

brp_3 =
rh.Geometry.Brep.CreateBooleanDifference (anglebrepGeo, anglebrepSrf, 0.01);

rs.FlipSurface(anglebrepSrf,True);

brp_4 =
rh.Geometry.Brep.CreateBooleanDifference (anglebrepGeo, anglebrepSrf, 0.01)

rs.FlipSurface(anglebrepSrf,True);

anglebrepGeo = brp_4[0]
print brp_4

angleCutDome.append(brp_3);
path 1 = GHPath(i)
angleDomeTree.AddRange(angleCutDome[i],path_l);

radialDivisions.append(rs.coercecurve (angleDivLinepolar [i));

angleCutDome.append(brp_4);
path_2 = GHPath(anglecount+l)
angleDomeTree.AddRange(angleCutDome[angle count],path_2);

Lune = angleDomeTree
radialDivisions.insert(0, rs.coercecurve (angleDivLine));

RadialDivisions = radialDivisions;

rs.DeleteObjects (angleCutSurfaces);
rs.DeleteObjects(angleDivLine_2D);
rs.DeleteObjects(angleDivLine);
rs.DeleteObjects (angleDivLinepolar);
rs.DeleteObjects(newLine);

rs.DeleteObjects ( [vertCuttingSurfaces, join vertDivLine,vertDivGuide,vertDivLineArray
l,vertDivLineArray 2]);

sc.doc = ghdoc;
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B.2. Graphic Statics Only Considering Meridional Forces

import rhinoscriptsyntax as rs
import Rhino as rh
import itertools as iter
from Grasshopper.Kernel.Data import GHPath
from Grasshopper import DataTree
import math as m

length = len(InputVsrGeo);
forceLen = [];
forceLine =

fPolygPt = InitPt_ForcePolyg;

for i in range(O,length):
vsrGeo = rs.coercebrep(InputVsrGeo[i]);
volVoussoir = rs.SurfaceVolume(vsrGeo);
forceLen. append (volVoussoir [0] *Density/ForceScale)

startPt = fPolygPt;
cumsums = [sum(forceLen[:i+1]) for i in xrange(len(forceLen))];
cumsums insert(0,fPolygPt[2]);

forceLine = [];
angledPoints = [];

for i in range (1,length):
angledPoints.append([0,fPolygPt[1]-(cumsums[i]*m.tan(TiltAngle)) ,cumsums[i]]);

angledPoints.insert(0, [0, fPolygPt[1],fPolygPt [2]]);

for i in range (1,length):
tiltpoint = angledPoints[i];
endPt = [O,tiltpoint[l],tilt point[2]];
forceLine. append (rs .AddLine (startPt, endPt));

startPt = endPt;

forceLine.insert(length,rs.AddLine(endPt, [0,fPolygPt[l]-

(cumsums [length] *m.tan(TiltAngle) ) ,cumsums [length]]));

horzPoint = [0,HorzRctSlider,cumsums[length]];
forcePolyg =

vectPolyg =
unit vectPolyg =

for i in range (0,length):
tilt point = angledPoints[i];
forcePolyg.append(rs.AddLine( [0,tilt_point[] ,tiltpoint [2]] ,horzPoint));

vectPolyg.append(rs.VectorCreate([0,tiltpoint[1] ,tilt_point[2] ],horzPoint));
unit vectPolyg.append(rs.VectorUnitize(vectPolyg[i]))

horzLine = rs.AddLine([0,fPolygPt[l]-
(cumsums [length] *m.tan (Tilt-Angle)) ,cumsums [length]] ,horzPoint);

forcePolyg.insert(length,horzLine);

dispfpolyg = [forcePolyg,forceLine];
fpolygTree = DataTree[object]();

for i in range (0,1en(disp fpolyg)):
path _fpolyg = GHPath(i);
fpolygTree.AddRange(dispfpolyg[iI ,path-fpolyg);
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unit vectPolyg.reverseo;
unit vectPolyg[:1 = [x*-l for x in unit vectPolyg]

ForcePolyg = fpolygTree;

startPt TL = InitPtThrustLine;
thrustLine = [];
TLscale = 2;

Radial Divisions.popo;
Radial Divisions.reverse()
RadialDivisions.insert(len(RadialDivisions)+1,DrumCurve);

for i in range (O,length):
thrustLine.append(rs.AddLine(startPtTL,startPtTL+unit vectPolyg[i]*TL scale));

intersectTL = rs.LineLineIntersection(thrustLine[i],RadialDivisions[i]);
startnextTL = intersectTL[O];
thrustLine[i] = rs.AddLine(startPtTL,startnextTL);
startPtTL = start nextTL;

ThrustLine = thrustLine
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B.3. Graphic Statics Considering Hoop and Meridional Forces

import rhinoscriptsyntax as rs
import Rhino as rh
import itertools as iter
from Grasshopper.Kernel.Data import GHPath
from Grasshopper import DataTree
import ghpythonlib.components as ghc
import math as m

length = len(InputVsrGeo);
forceLen = [];
forceLine =

fPolygPt = InitPt_ForcePolyg;
brepFaces = [];
zeroHF = Zero Hoop Force;

for i in range(O,length):
vsrGeo = rs.coercebrep(InputVsrGeo[i]);
volVoussoir = rs.SurfaceVolum (vsrGeo);
forceLen.append(volVoussoir [0] *Density/ForceScale);

for i in range (0,length):
expBrep = ghc.DeconstructBrep(InputVsrGeo[i]);
if len(expBrep.faces) > 6:

mergeBrep = ghc.MergeFaces(Input VsrGeo[i])
expBrep = ghc.DeconstructBrep(mergeBrep)
brepFaces.append(expBrep.faces[41);

else:
brepFaces.append(expBrep.faces[2])

averageLine = [];,
vectaverageLine = [1];
unit vectaverageLine = [];

for i in range (0,length):
brepEdges = ghc.BrepEdges(brepFaces[il);
edgeLen = ghc.Length(brepEdges.naked);
sortEdge = ghc.SortList(edgeLen,brepEdges.naked);
line 1 = sortEdge. l[0];
line 2 = sortEdge._l[1];
cut_1 = ghc.DivideCurve(line_1,2);
cut_2 = ghc.DivideCurve(line_2,2);
midPt_1 = cut l.points[1];
midPt_2 = cut_2.points[l];
averageLine.append(rs.AddLine(midPt_1,midPt_2));
vectaverageLine.append(rs.VectorCreate(midPt_1,midPt_2));
unitvectaverageLine.append(rs.VectorUnitize(vectaverageLine[i]));

startPt = fPolygPt;
cumsums = [sum(forceLen[:i+1]) for i in xrange(len(forceLen))];
cumsums.insert(O,fPolygPt[2]);

forceLine = [1;
angledPoints = [1];

for i in range (1,length):
angledPoints.append([O,fPolygPt[1]-(cumsums[i]*m.tan(TiltAngle)),cumsums[i]]);

angledPoints.insert(0, [0,fPolygPt[1] ,fPolygPt[2]]);

for i in range (1,length):
tiltpoint = angledPoints[i];
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endPt = [O,tiltpoint[1],tilt point[2]1;
f orceLine. append (rs .AddLine (startPt, endPt));
startPt = endPt;

forceLine.insert(length,rs.AddLine(endPt, [0,fPolygPt[1]-
(cumsums[length]*m.tan(TiltAngle)) ,cumsums[length]]));

horzPoint = [0,HorzRctSlider,cumsums[length]];
forcePolyg =

vectPolyg =
unitvectPolyg = [1;

for i in range (O,zeroHF):
tilt point = angledPoints[i];
forcePolyg.append(rs.AddLine([0,tiltpoint[1],tilt point[2]],horzPoint));

vectPolyg.append(rs.VectorCreate( [0,tilt point [1], tilt_point [2]] ,horzPoint));
unitvectPolyg.append(rs.VectorUnitize(vectPolyg[i]));

horzLine = rs.AddLine([O,fPolygPt[l]-
(cumsums(length] *m.tan(Tilt_Angle)) ,cumsums[length] ],horzPoint);

forcePolyg.insert(length,horzLine);
intersectPt = [];

for i in range (zeroHF,length):
tiltpoint = angledPoints[i];
pointInit = rs.coerce3dpoint([O,tilt_point[l],tiltpoint[2]]);
pointMove = pointInit + unitvectaverageLine[i]*-500;
lineExtend = rs.AddLine(pointInit,pointMove);
lineIntersect = rs.LineLineIntersection(horzLine,lineExtend);
intersectPt.append(lineIntersect[0]);
forcePolyg.append(rs.AddLine(lineIntersect[] ,pointInit));
vectPolyg.append(rs.VectorCreate(lineIntersect[0] ,pointInit));
unitvectPolyg.append(rs.VectorUnitize(vectPolyg[i]));

HF 1 = [];

HF_2 = [];

angle = ghc.Radians(Lune Angle);
intersectPt = ghc.ReverseList(intersectPt);
intersectPt.insert(0,rs.coerce3dpoint( [0,fPolygPt[1-
(cumsums[length]*m.tan(Tilt Angle)),cumsums[length]]));
lenHF = len(intersectPt);

vectNeg = rs.coerce3dvector([O,m.tan(angle)*-1,1]);
vectPos = rs.coerce3dvector([O,m.tan(angle),1]);

index = 0;
while index < lenHF-1:

pointMove HF neg = intersectPt[index] + vectNeg*500;

pointMoveHFpos = intersectPt[index+1] + vectPos*500;
lineExtendHFneg = rs.AddLine(intersectPt[index],pointMoveHFneg);
lineExtendHFpos = rs.AddLine(intersectPt[index+l],pointMove_HFpos);
lineIntersect_HF = rs.LineLineIntersection(lineExtendHFpos,lineExtendHFneg);
HF l.append(rs.AddLine(intersectPt[index],lineIntersectHF[0]));
HF_2.append(rs.AddLine(intersectPt[index+1],lineIntersectHF[O]));
index = index + 1;

disp fpolyg = [forcePolyg,forceLine,HF_1,HF_2];
fpolygTree = DataTree[object]();

for i in range (O,len(disp fpolyg)):
pathfpolyg = GHPath(i);
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fpolygTree.AddRange(dispfpolyg[i] ,pathfpolyg);

ForcePolyg = fpolygTree;

startPt TL = InitPtThrustLine;
thrustLine = [;
TLscale = 2;

unit vectPolyg = ghc.ReverseList(unit vectPolyg);

Radial Divisions.popo;
Radial Divisions.reverse()
RadialDivisions.insert(len(RadialDivisions)+1,DrumBase);

for i in range (O,length):
thrustLine.append(rs.AddLine(startPtTL,startPtTL+unitvectPolyg[i]*TLscale));
intersectTL = rs.LineLineIntersection (thrustLine [i] ,RadialDivisions[i]);
startnextTL = intersectTL[O];
thrustLine[i] = rs.AddLine(startPtTL,start nextTL);
startPtTL = start nextTL;

ThrustLine = thrustLine
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