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ABSTRACT

Quantum mechanical treatments of problems which deal with gases
inside the stars have thus far been carried out by using the wave function
of an electron moving in the field of a single atom. This simplified
picture is no longer valid when the pressure of the gaseous medium is
very high., This anomalous situation may give rise to two specilal
phenomena. The bound electrons may be squeezed out of the atoms completely,
or if any bound level does exist, its ionization potential is lowered.

It is the purpose of the present study to find the wave function of elec-
trons for both cases. Only hydrogen gas will be considered here; however,
the method developed may be éxtended to other elements,

By using the method of self-consistent fields, developed by
Hartree and Fock, calculations are first carried out for electrons that
are completely squeezed out of their bound levels, Those free electrons
form a highly degenerate gas about the ions. The problem can be considered
as spherically symmetric'and the SchrSdinger equation of the electron is
solved by using an assumed potential. The charge distribution can then
be determined by the solutions and from the charge distribution, a
potential can be caleulated, A new method is used in obtaining a self-

consistency between the calculated and the assumed potential., This is



ii

done by adjusting a parameter which determines the density of the gas
and the Fermi energy. The correction due to the exchange potential is
also taken into account by assuming the electrons are perfectly free,

For the case that a bound level with very low ionization
potential exists, the problem is treated by methods which have been
developed for the theory of solids, The situation differs In the fact
that there is no periodicity in the arrangement of the gaseous atoms.
The single electron wave function is assumed tc be of the Bloch type.
The width of the energy band is determined as a function of the inter-
atomic distance. A self-consistent calculation is then carried out for
cases which have different ionization potentials.

Using the wave functions obtained, the opacity of a compressed
hydrogen gas is determined as a function of temperature and density.
The absorption of radiation is meinly caused by &bsorption by the bound
electrons as well as that of the free electrons in the presence of the
field. The coefficiernts of the absorption are calculated for both
cases and the results are compared with that obtained by Kramers from
a semi-classical treatment. Ratlios between the two, called the Gaunt's
factors, sre determined for various densitles and frequencies. From
these are computed the opacities of the gas for various densities and

temperatures,
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INTRODUCTION

Following the development of quantum mschanics, many astro- .
physical problems such as photoelectric absorption, recombination, and
problems concerning the stellar models have been explored by means
of the new method. So far, however, most of the calculations have
been made under the assumptions of oversimplified models of the
stellar material concerned; since more rigorous treatments, if not
unsolvable, usually involve a great deal of mathematical difficulties.,
It is known that very high pressures usually exist inside the stars.,
The pressure can be so high that the electrons are squeszed out of
their quantized levels. This phenomenon is usually called "pressure
ionization®., Under such anomelous conditions, it is not justifiable
to use the sams wave functions for the electrons as those that are
used in problems concerning only a single atom. In the present study,
an attempt will be made to find the wave function of electrons which
are applicable to very high density gaseous media.

A3 the interatomic distance decreases on account of the
high den;ity, the field exerted on an elsctron is not only that due
to the single nucleus and the electrons belonging to the same atom;
that caused by the other nuclei and electrons of the other atoms must
also be taken into account. Therefore, the high pressure geseous
nedia give rise to manybody problems, the satisfactory solutions of
which cannot be obiained without certain approximetions and simplifi-
eations. It is hoped to reduce the complexities of the problémb and
yet present a walid description of the physical phenomena. Although

the stellar material consists of hydrogen, helium, and many other



elenents, it is generally believed that hydrogen is the predominating
element in many stars. In the present study, calculations will only
be made to find the wave funciions of slectrons for a hydrogen gas,
but it is hoped that the method developed mey he extended to other
elements, as well as to gases which are mixtures of various elements.
Among the various methads which are employed in solving
complex quantum mechanical problems, the Hartree(l) method of self
consistent field is generally used in dealing with the many electrons
problem. Hartree hes shown that it is plsusible to replace the mutual
interaction of the electrons and of the electron with the nuclei by a
"representative' or "self consistent” potential field. The method has
been widely used in finding the wave function for electrons of complex
atoms. To ecarry out the self-consistent ealculations, one has to
agswue an averaged potential field and solve the one electron wave
squation. PFrom the solution one can then determine the charge distri~
bution and the potential in which the electron is moving. The purpose
of the mathod is to make the potential assumed agree with that calcu-
lated; this iz usually done by means of successive revisions of the
former., Although Hartree's method yields satisfastory results for
many purposes, yet it still has the defect of not having taken into
account the Pauli exclusion principle. If one starts out with an
antisymmetric wave funetion of all the elsctrons and then varies the
one electron wave function so as to meke the energy an extreme, the
result shows that the electron moves in the field of all the nuclei
and all the olectrons other than itself. The equation resuliing from

the variationsl principle is called the Hartree Foak(z) equation. It



contains an extra term in addition to the potential energy of the
Bartree squation. This is called the "exchange term", the physical
meaning of which will be mentioned in greater detail in the further
discusaions.

For the present problem the principle of the self consistent
calculations is to be employed. As the gas atoms or ions do not have
any preferred relative orientations, the averaged effect from all the
other nuclei and electrons on a particular one may be considersd as
approximately spherical. Therefore it is justifiable to assume that
the averaged field acting on an electron has spherical symmetry and this
ia going to be used as the starting point of the self consistent
calculations.

Discussions and calculations will be first carried out for
pressures so high that the gas is completely ionized. The electrons,
although freed from the atoms, remain in the gas, so that the whole
medium is electrically neutral., It is known that electrons obey the
Fermi-Dirac statistics and it is degenerate at sufficiently low
temperatures. The energy distribution depends on a parameter which ie
the maximum enaergy of the electrons in the distribution. This maximum
energy, which is called Fermi energy, is a function of density at the
absolute zerc of temperaturs. It is of the order of the ionization
potentials and increases as the density increases. Consequently the
Fermi energy is much higher thaen kT, and is even more so as the proaa&ra
increases. Therefore under very high preesure, the maximum energy of
the electron at any temperature does not differ much from the Fermi

energy at zero temperature. The high density gas medium can be considered
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as consisting of ions embedded in a highly degenerate Fermi-Dirac elec-
tron gas, The electrons form an energy band with all the energy states
filled up to the Fermi energy. Since all the ions are surrounded by the
same kind of electron bands, one can simplify the problem by considering
a box with the ion at the center surrounded by enough electrons so as

to make the whole volume electrically neutral., The assumed potential is
such that the electrons are almost free except when they are near to

the nucleus. The free electron wave functions can be joined smoothly to
those of the neighboring boxes by means of periodic boundary conditions.
The problem is therefore reduced to solving a one electron probleﬁ with
an assumed potential field, The electron density is then determined
from the solutions averaged over all the ocetupied states in the energy
band. The potential which is obtained from the charge distribution must
be consistent with the one assumed, The self-consistency between the
two is reached by varying the Fermi energy, or in other words, quantities
which determine the density of the electrons are used as the adjustable
parameters in the self-consistent caleculations. Since the wave functions
remain unaltered as the density is varied, the calculation is muéh
easier to perform than the usual Hartree procedure, The correction due
to the exchange potential is also introduced by conaidering the elec-
trons as perfectly free. This is not a bad approximstion, since the
wave functions considered are not too much different from those of the
perfectly free case. The detailed discussions of this method and the
physical significance of the parameters involved will be discussed in
Chapter I.

As the density of the gas decreases, the former situation
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changes into one where bound levels of very low ionization potential
begin to appear. The electrons, instead of forming a free, degenerate,
Fermi gas, are loosely bound to the respective nuclei. If the atoms
are still sufficiently close to each other so that the interatomic
distances are not too much greater than the magnitude of the electron
orbits of an individual atom, the loosely bound electron does not
remain around one atom, but the electron wave can be considered as
travelling from one atom to the other, The situation bears a certain
similarity to that of electrons in a metal. The electrons behave either
like bound ones or like free ones depending on their positions with
respect to the nuclei. Consequently, the present problem can be treated
by using the method developed in the theory of solids. The one electron
wave functions suggested by Bloch3 are to be used in building up the
antisymmetric wave function of all the electrons in the medium. The
effect on the electron energy due to the presence of other atoms and a
self-consistent calculation of the potential field is to be carried out.
Although it is quite appropriate to apply methods similar to
that used in solids, the situation differ in the fact that there is no
periodicity in the arrangement of the gas atoms. The effect of various
possible orientations is taken into consideration and an averaged result
obtained, As a consequence of the close approach of the atoms, the
bound energy level imstead of being a discrete one, is spread into a
band, The wldth of the band is a function of the mdan interatomic
distance. The self-consistent calculation of the potential is performed
by the adjustment of the parameters which are comnected with atomic

volume and potentials., The method is similar to that used for the case



described in the first chapter; the difference lies in the fact that
for the bound case there is no Fermi band, The charge density is
obtained by averaging over the occupied states in the energy band, A
detailed description of the method and the comparison with that for the
free electrons are given in Chapter II.

Using the wave functions obtained for both the "pressure
ionized" and the atomic hydrogen gas, calculations of opacity for a
hydrogen gas will be made, Phenomena such as photoelectrie absorption
of radiation by the bound electron, absorption of radiation by the free
electrons 1n the presence of an atomic field, are both dominating
factors in determining the opacity of stars., The problems of the

(4)

continuous absorption have been soived by Kramers using a semi-
classical method, Quantum mechanical calculations using hydrogen wave
functions have been carried out by many authors.(S)"(s) With the

wave functions obtained in the present {reatment, absorption cross-
sectlons are to be calculated as functions of gas density and frequency.
Both bound-free and free-free transitions are to be considered, The
opacity is then obtained by evaluating the Rosseland mean which is a
weighted average of the absorption coefficient over the distributions iﬁ
frequency. The result can be expressed as a function of the density and
temperature and is to be compared with Kramers' result and those using
the simple hydrogenic wave functions, It is hoped that the result

obtained may have some significance for solving problems concerning

stellar interiors.
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CHAPTER I
SELF-CONSISTENT CALCULATIONS FOR A COMPLETELY IONIZED GAS

The gas medium to be discussed in the present chapter is so
dense that there are no bound levels, The electrons are moving in the
field of all the bare nuclel and the electrons that are present in the
medium, This many electron problem is to be solved by using the prin-
ciple of the self-consisteﬁt field developed by Hartree and Fock, A
new method is developed so as to take the place of the hitherto tedious
computations involved in such problems, The calculations will be started
with an assumed spherical potential and then the charge density deter-
mined, from which the process of self-consistent calculations can be
pursued., A model of the ionized gas medium is to be obtained whose
charge distribution is in satisfactory conformity with that of the

potentliel field,

1,1, Potential Field Agsumed

As it has been pointed our previously, the electron is to be
congidered as moving in a spheriqal potential field., The problem is
further simplified by considering a single nucleus, embedded in a
degenerate electron gas, enclosed in & bhig box, When the electron is
near the nucleus, the dominating force that is exerted on the electron
is that due to the nucleus and is of the ordinary Coulombian type. How-
ever, this field may be reduced by the presence of other electrons, This
repulsive force becomes more prominent as the electron is further away

from the nucleus, As a first approximation, it is possible to use an



averaged potential field of the following type:

V= -(fj - -2-) ri a
(1.1)

¥=20 T Z; a

Physically, such a field is due to the presence of a nucleus
and a spherical shell of electroms with radius "a" carrying the same
total amount of charge as that of the nucleus, This field saused by
the spherical shell of electrons is introduced so as to represent the
field due to all the other electrons. Therefore one can regard "a" as
some kind of averaged distance between the nucleus and the nearest elec-~
trons present., It is rather presumptive to assume that the electrons
are localized in such a predescribed manner; however, since a self-
consistent calculation is going to be carried out, an improved model
may be obtained from this seemingly crude approximation,

The kind of potential given by (1.1) has been used by Guth
and Sexl(g) to study the emission of alpha-particles by radiocactive
nuclei and by Allis and Morse(lo) in computing the scattering cross-
section of electrons in rare gas atoms and sodium atoms. Putting (1.1)

in the Schrodinger equation:

1IN
w

Vir[Eeag-l=o x
(1.2)

hv
®

§]2*-+ E}=0 T
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Atomic units will be used throughout the calculations, their
values in terms of the C,G.S. unit are given in Appendix (IA). Solutions
of (1.2) can be obtained separately for electrons of negative and positive
energy. Only the positive energy solutions will be considered in the
present chapter., In finding the solution, the ususl process of deter-
mining the wave functions for regions r £ a and r 7 a separately are
used; the values and slopes of the wave functions are equated at r = a.
The solution for the region r > a is that of & free electron with the
phase distorted due to the presence of the mucleus, The amount of disz~
tortion is called the phase shift )7( « The walue of 772 depends on
the angular momentum of the electronj it is also a function of the
energy of the electron as well as the range of the potential. If one
lets k = ﬁ » 711 cen be most conveniently expressed as a function of
ka, where "a" is the range of our potential field, The product ka
gives a measure for the scattering strength of the potential field.

The wave functions are normalized in such a manner that the radial wave

functions have the asymptotic form

sin(kr - 201 +7%% )
- . (1.3)

R(r) —
p-90
The solutions of (1.2) for both regions r< a and r 57 a are
given in Appendix (IIB). The relation of )7‘, and ka are also obtained
for varlous values of cut-off radius ®"a®, The values of phase shifts
expressed as functions of ka and that of Ja/2 are given in Figs. (1.1) -

(11)

(1.4). Similar curves have been shown by Morse in the review article.



90

10.

Fig. 1.1 PHASE SHIFTS 70 AS FUNCTIONS OF ka
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Fig., 1.3 PHASE SHIFTS )71 AS FUNCTIONS OF ka

k=/E
%a® satisfies the conditions V = -(% - g') r £a
V=209 T 2 a
7.
-]
4 %a=1.5
2+
+a=10
A | / 06

0 0.2 0.4 0.6 0.8 1.0

Fig. 1.4 PHASE SHIFT871 AS FUNCTIONS OF Ja/2



13.

From Figs. (1.1) and (1.3), it can be seen that the phase shifts for
£ = 0 wave is greater than that for the £ = 1 wave, while that of the /
£ = 2 wave can be regarded as zero for most of the present purposes.
This is to be expected, since it is quite unlikely for electrons of
higher angular momentum to get close to the nucleus, In Fig. (1.2) and
(1.4), the phase shifts ﬁk are given as functions of /;75 $ it can be
seen that 7L behafeé like a step function which has a sudden rise at
J§75 = 0,87 (& = 1,75). If one considers the relation between the
solution of Schradinger equations and the cut-off radius "a®, it can be
shown that & bound level will begin to appear as "a® increases; there
exists a critical value of ®a" such that the bound level appears at

zero energy. Correspondingly, at this value of "a", one would expect

a sudden change of phase shift. Since only the completely ilonized cases

are considered here, values of "a® are chosen to be smaller than the

critical value.

1,2 Determination of the Charge Density

In order to carry out the self-consistent calculations, the
charge distribution is to be calculated from the solution of the
Schrodinger equations obtained in Appendix B, Since the positive
energy electron has a continuous spectrum, the charge demsity should be
obtained from electrons of all states. For a Ferml-Dirac gas; the num-

ber of states for elsctrons of energy between E and E + dE is

o = T/ 1
o E-E
T
e & + 1

(1.4)




where EF is the Fermi energy and Ta i the energy kT of the electron
in the atomic unit. Consider first the case where the temperature is

at absolute zero, then from (1.4) it follows that
B, = (370 )%/ (1.5)

where EF° is the maximum energy of the electron at the absolute zero
and n, is the density of electrons. For the density of interest at
present, EFo is higher than 15.6 e.v., Consequently, this is much higher
than the thermal energy of the electron, The relation between EF and

EFo is given approximately by

o

T @8

Therefore for high densities EF°'>> T;, EF = EFo' One can consider
the free electron gas as completely degenerate with all the states
filled up to EFo which will be called Fermi energy. For the present
problem, the potential given by Eq. (1l.l) corresponds to a charge of
one electron distributed uniformly over a apherical surface of radius a,
One can substitute in (1.5) for n_ = 3/&!&3 or any smaller quantity,
as any sphere of radius larger than ®a" also contains one eleetron.
Using the limiting value EFo is given as a function of ®*a" by:

Eg, = 3.68 ‘:—2 . \ (1.7)

The charge density of electrons with energy E at any position
(r,8,8) is given by \ﬂﬁm(r,e,ﬁ)\z. To obtain the total charge demsity,
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the value of |} E(r,e,¢))2 ie to be averaged over all the possible
states in the Fermi band, Since for each energy there is a (2€+ 1)
fold degeneracy of the angular momentum, the electron density at a

position (r,9,d) is
Ep /2
n(r’9’¢) = Z (2€ + 1) j ole e(r)eoﬁ)'z “E}""‘g’ﬁ‘: o (1.8)
£ b ’ 2w

As a result of the spherical symmetry of the problem (1.8) can also be

written as
(2¢+ 1) *Fo /2
n(r) = 2 j 'RE[(T)IzEl dE (1.9)
e o I

where REJ(r) is the radizl wave function of the electron, For the

case of a free electron gas without the presence of any potential

field, the solution is REﬂ(r) = je(kr). As to be expected, (1.9) then

gives a uniform distribution throughout the medium, sinces(24 + 1)1§(kr) = 1.
The charge densities for varlous cut-~off redii are shown

in Fig. (1.5). The ordinate 1s the ratio n(r)/no, where n_ is the

uniform charge distribution given by n_ = 3/1.m3. Figure (1.5) shows

that the electrons tend to stay inside the radius "a", This effect is

extremely prominent for the case of a = 1,5, becoming less so for

smaller velues of cut—off and finally approsching & uniform distribu-~

tion as & = O which 1s the same as seying that the electron is

completely free, As it has been shown at the end of the last section

the bound level begins to appear at a cut-off of a = 1.,75. When a = 1.5,

the quantized level is just about to appear, consequently the electron
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ny)
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Fig. 1,5 NORMALIZED CHARGE DISTRIBUTIONS FOR VARIOUS CUT-OFF RADII

n (r) = 3/4ma’
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has a tendency ito become partially bound by the nucleus and there is

8 higher probability for the electron to stay inside the cut-off radius.

1.2 Self-Congistent Calculation of the Potential

Having solved the wave equation with the assumed potential
field and determined the charge density, the next step is to calculate
the potentiai function,

Let nj(r) be the charge density at r due to the jth electron,

then the potential of the 1th electron at a ppsition ry can be written as

2 (r.)d
eVi(rl) =2 - ; + 32 2[5_:_2:2 . (1.10)
in J 12

n

The first term is the potential energy due to all the hydrogen nuclei
and the second term is that caused by all the electrons except for the
one considered, since the electron does not act on itself. However,
(1.10) is not a satisfactory expression for the potential energy since
it has not taken into account the antisymmetric property of the electron
wave function,

| Let uy be the normalized one electron wave funection of both
coordinate and spin, then the antisymmetric wave funetion of the N elec-

trons can be written as

u, (x;) ul(xz).........‘.ul(xn)

uz(xl) “2(12)"""""‘12(1%)
¥ =2 (1.11)

u (x) un(xz)..........un(xn)
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where X9 xé,....xn are the coordinates of the respective electrons,

and ¥ satisfies the equation H¥= E¥. It has been shown by many
authors that the Hartree Fock equation, which is obtained by varying

the one electron wave function so as to mske the energy an extreme, gives
the best set of one electron wave functions for self-consistent calcule-

tions. The equation is of the following form(13)=

n
Hu, (x, ) *(é j “:("2) “k(xz)igl; d"z] vy ()

n * 2
) kéz'lUuk(x2)ui(x2)?l"; dxz)“x(xl) = Eu, (x).  (1.12)

The integration of dx2 includes also the summing of the spin. The
second term at the left of Eq. (1.12) represents the potential due to

the charge of all the electrons including the ith

one concerned, The
last term can be shown to represent the exchange potential, The ex-
change charge density represents a charge equal to that of one electron
caused by all the electrons having the same spin as the one considered.

The explanation given here was first carried out by Wigner and Seitz(lA)

and extended by Slater(lS). Although in both (1.12) and the potential
energy given by (1.10), the electrons are moving in the field of all
the nuclei and N-1 electrons, yet they differ in the fact that in (1.12)
the effect of this removed electron is localized at the position x of
the ith slectron; whereas in (1.10) the similar effect being spread out,

it can be consldered as equlvalent to the reduction of the nuclear

charge by an emount of 1/N of the removed charge., This effect is
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consequently much smeller than that given by (1.12).

Although (1,12) gives a good deseription of the averaged
field in which the electrons are moving, unfortunately its applicability
is greatly hindered by the difficulties involved in the evaluation of
the exchange term. The unit charge that has to be removed can be
congidered as being localized around the ith electron with a spherical
symmetry and the dimensions of the exchange hole depend primarily on
the electron density at the point concerned, Slater(l5) has suggested
that the exchange poftential ecan be obtained by using that for a free
electron gas, This simplified exchange potential energy at & certain

position r has the form
1/3
eV(r) = ~6[3§45%J (1.13)

where n(r) 1s the charge density at the point r concerned, Therefore
by combining (1.12) and (1.13), the potential energy of the 1% iee-

tron is

n,(r,)

3
O zj_i.__g___z oy, (L.12)

(1.14) can be further simplified by considering the model used in the
pregent treatment, Here it 1s essentlally an electron band surrounding
the nucieus. The electron bend and the nucleus form a neutral unit with
s radiusS. So far in the discussions, the cut-off radius "a" has been
used as that of & neutral unit., Inside this neutral unit, an averaged

potential field of spherical symmetry is assumed; therefore, the
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existence of the other ions outside the unit considered does not play
an expliclit role in the determination of the wave function. One can
then venture to carry out the self-consistent calculations just within
one neutral unit, Similar measures can be taken for all the neutral
units around each nucleus aﬁd attain a self-consistent result through-~
out the medium, The assumption makes it possible to reduce (1.14) into

simpler form:

L B 1)

] 5 1/3
QV(r) = - + % ] m'zn(r")dr' + Zj An"n(r')dr' - 6[‘2%1,,2)‘] (1.15)
0

r

where 5 is determined by the relstion
S 2
f rrn(rt)dr' =1, (1.16)
0

The first term in the right side of (1,15) does not involve a summation
anymore, since only the field due to one nucleus has to be concerned.

The second term is the field due to the electrons inside the radius r,
while the third term 1s that due to those lying between r and g . The
integration does not have to be extended to the region beyond r = S .
Equation (1.15) can be calculated with the use of n(r) given in Sec. 1.2.
As a first trial, it is simpler not to take into account the correction
due to the exchange. By evaluating (1.16), it is found that the value
of 5 so determined is smaller than "a", consequently the potential
calculated by (1.15) approaches sero at r = S instead of r = a. More-

over, a comparison of the calculated potenti’.al with that assumed does
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not give satisfactory agreement., The dlscrepancy might have been
expected, however, since the calculation has been started out with a
rather crude assumption, For further improvement, if the method
developed by Hartree is to be followed, then a new potential has to be
assumed and a numerical integration of the Schrodinger equation carried
out. Ir order to avoid this cumbersome calculation, a simplified
procedure is developed.

As has been shown previously the cut-off radius "a® can be
considered as an averaged distance between the nearest electrons and
the nucleus., It has alsoc been assumed that the Fermi energy is deter-
mined by an electron density corresponding to unit charge in a volume
of i¥a>/3. By doing so, it is automatically assumed that this averaged
radius is at the edge of the neutral unit., In order to increase the
value of 5 , one has to reduce the charge density n(r) inside the
radiusS . This can be done by decreasing the Fermi energy, which is
the same as saying that the density n, is reduced. Let us define a
sphere of radius B such that there is, in the average, one eleetron
inside it:

2—=n .
wp? O

There are now two parameters B and § at our disposal, the
adjustment of which will be cerried out in such a way as to obtain good
agreement with the assumed potential. The agreement is satisfactory if

the following criteria can be satisfied:
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5
(1) “5 no(r)Awrzdr =1 (1.17a)
0
(11) v() =0 (1.17b)
(114) vassumed(r = Q) = vcal.(r = 0) (1.17¢)

Calculations have shown that the second condition V(§) = O cannot be
satisfied unless an extra constant is added to the potential energy

term

T s
eV = - % + %j n(r!)4retédrt + ZI n{r')4mrtdrt + V (r) + V', (1.18)

0 T

exchange

With the insertion of V', the three criteria can be fulfilled and the
self-consistent calculation accomplished, The physical significance
of V' can be considered as the average potential of the electrons and
nuclel in the medium, The situation can be understood from the fact that
the net electric field due to all the electrons and nuclel does not
vanish at any position of the space. Since this is a mean value of
the field produced by all the particles, it should have a constant value,
At radius $ the value of the potential will vanish only if this averaged
potential V' is chosen as the point of reference.

Self-consistent caloulations are carried out for a = 0.5,
1.0 snd 1.5. The results are shown in Fig, (1.6). The agreement
between the calculated potential and the assumed one is quite satis-

fectory. Better results seem to favor the case of small cut-off this
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fact may imply that the approach used is more suitable for very high
density cases.
The parsmeters a, B and S' bear thefollowing relation in

their relative magnitude
ac §< 8. (1.19)

Since 5 satisfies the condition given by (1.,17a), it is the radius of
the sphere inside which the net charge is zero, The distance between
each electron and the nucleus ranges from 0 to g . To get a representa-
tion of ﬁheir average effect, their presence has been replaced by a
spherical shell of the same amount of charge located at certain average
radius., Consequently, “a" must be smaller than "§n,

So far the problem has been regarded as & spherically
symmetric one; as a result of this justifiable assumption, the volume
of the sphere is equal to that ofva sphere of radius S. However, one
cannot join them smoothly from one unit to the other, since it is
impossible to divide the space into equal volume spheres without having
some gaps existing between the spheres, This discrepancy is remedied
by the introduction of 8. B can be considered as an effective radius
for a volumelincluding the gaps., This effective volume may be of
certain geometric dimenslions which will allow smooth joining from one
unit to the other., Since the "effect volume" is larger than 4t§?/3, it
is not surprising that B is greater than éras shown by the result.

With the initial assumption that the nuclei are embedded in the free
electron gas, the electron band surrounding one nucleus should join

smoothly to that around the neighboring nuclei, It is to be expected
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that the Fermi energy should also be determined by the density cor-

responding to unit charge in the effective volume AJrBB/ 3, The values

of B, 5, and V as functions of & are shown in Fig. (1.7).



29
CHAPTER II
DETERMINATION OF SELF-CONSISTENT POTENTIAL FOR BOUND ELECTRONS

1

IN THE HIGH DENSITY HYDROGEN GAS

In the previous chapter, the method of self-consistent field
has been used to determine wave functions of electrons in a completely
ionized gas medium, In order to get a further understanding ofvelec-
trons in gases of various densities, it is necessary to extend the
'method to the case of & high pressure atomic hydrogen gas. Starting
with an assumed average potentilal given by Eq. (1l.1l), the wave equa-
tion will be solved for eleetrons of negative energles and the discrete
energy levels determined. As a consequence of the close approach of
the atoms, it is possible for a bound electron of atom A to get to the
vicinity of the nuclei of its neighboring atoms., The fact that an
electron can no longer be considered as being bound by a particulat
nucleus, suggests the possibility of using wave functions of the Bloch
type for a single elec¢tron wave function. The eleectron wave is considered
as a modﬁlated fave travelling in the medium with various possible
energies; consequently the discrete energy levels will spread into
bands whose widths are functions of the interatomic distance, In this
chapter, the energy bands of electrons in gases of various densities will
be determined and self-consistent calculations of the potential field

will be carried out.
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2.1 Solutions of Wave Eguatiopns for Negative Energy Electrons

The wave equationa to be solved are

O+(E+2G-D)t=0 r (2.1)

N
o

(2.2)

v
»

v2++ EY=0 : r

Since only a high pressure gas is of primary interest, discussions will
be limited to atoms that possess only the ground level. The density is
so high that no bound excited levels can exist, Consequently only
solutions corresponding to 4 = 0 have to be found; The detailed solutions
of Egs. (2.1) and (2,2) are given in Appendix IIA,

In previous discussions, it has been shown that the phase
shift of a positive energy electron in a potential field depends strongly
on both the energy of the eleptrons and the range of the force, Similarly,
the energy of a bound level is primarily governed by the range and depth
of the force fileld under consideration. To determine the discrete energy

levels, it is convenient to introduce two dimensionless quantities 3

and rl given by:

3=J £ - 2)a (2.3)
77: fTE—a (244)

3 and 7 being the variables upon which the position of the energy
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levels depend. From (2.3) and (2.4), it follows that
3%-9%=2. (25)

Another relation between S and 7 can be obtained by the continuity
conditions of the wvelues and slopes of wave functionsg at the cut-foff
radius a. It is shown in Appendix IIA Egs.(5) that 3 and 7 satisfy

the relation

1 - (1-4) 1 (24,92 )] =741 (2.6)

3 [ T lFl(l—k,2,2 )1- 7 ¢

where )\ satisfies the condition E' = - '1"'?: . (2.7)
A

The energy levels can be determined by a graphical sclution
of the two simlteneous equations (2.5) and (2.6). The values of 3
and '7 are given by the points of intersection of the two families of
curves shown in Fig. 2.1. The energy level determined is plotted as a
function of the cut-off radius inm Fig. 2.2. The first excited level
which corresponds to.£ = O and sets in at a = 6.48&0 is also shown in
Fig. 2.2. Since only the high density case is of interest, calculations
will only be made for cases that have cut-off radii smaller than a = 6,48,
In general, the energy of the first bound level E can be

written as:

E=-14

v . (2.8)

® o

As the range of the potentlal field increases, the electrons become more
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tightly bound and the energy approaches the value of the ground level

of a normal hydrogen atom as "a" goes to infinity.

2,2 Determination of the Energy Band

The solution obtained in the last section is that for an elec-
tron of a single atom in an assumed potential field. As the atoms are
close to each other, the solution of the Schrodinger equation must be
some linear combination of the wave functions for single atoms. It has
Eecn shown by Bloch(B) that the wave function of an electron in a

periodic potential field can be written as:

L

(r) = 1< g - 2 l)eﬁZ i (2.9)
Y 3 .

F1)

where #(IT - ;3|) is the wave function of an electron surrounding the
jth mucleus, -;j is the radius vector of the jth nucleus, N' is the
normalizing factor, For cases where overlapping of wave functions is
negligible, N' is just equal to the number of atoms in the medium. The
wave function given by (2.9) gives a good deseription for electrons in
the medium concerned. At points near a nucleus, save for a constant
factor, it behaves similar to an electron bound to a single atom;
whereas it is more like a plane wave with wave numberiklin the inter-
atomic space,

In determining the energy of an electron described by the Bloch
wave function, the single electron wave function g(IT - ?3‘), which

satisfies Egs. (2.1) and (2.2), is calculated by using a potentlial of the
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form:

U= of—tou % R-% £ a (2.10)
Fo @ J
i
U=0 Y?-—?%) Za

There is a potential of the same type about each nucleus; hence the

potential of the whole gas medium is

| (2,11)

1]
®

V) = SUIR-R)) TIE-%
; 1 3

Both U(I? -7 l) and V(r) are shown in Fig, 2.3. The Bloch wave
J

function '1— satisfies the equation
V44 (- 20)}= o, (2.12)

from which one obtains

’H,*[-V? +‘ 2V(r)]+ dt

I

. (2.13)

Since the unperturbed wave function @(|T —'?5|) satisfies Egs, (2.1) and
(2.2) and the potential is given by (2.10), therefore in order to carry
out the integration, it is more convenient to write the potential func-

tion as

V(r) = V(r) + U (F - ?jl) -U(¥- ?jl ) (2.14)
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Fig. 2.3 ASSUMED POTENTIALS U(I# - ‘r’jl) AND V(%)
a U((? —'?BI) Assumed potential around the jth nucleus
b V(¥ Assumed potential in the gas medium

(Atoms A, B, C may have arbitrary positions)



By using (2.14), it is shown in Appendix IIB that (2.13) can be

written ast

E=E +T7 (2.15)

A+C
1+
where Eo is the energy of an electron of a single atom., The values of

Cy, A, and D are given as follows:
(1) C =f¢*(l? -?jl ){V(r) - (7T - 'r’jn)]gd(\'i- -?jl Jar  (2.16)

The difference of V(r) and U(IT —'?Jl) represents the
field due to all the atoms other than the one at the positicn'§3.
Therefore C is the average value of the potential given rise to by all
the neighboring atoms. Since V(r) - U(IT -'?HI)'is always negative,
the effect of its presence is to make the energy E more negative than
that of Eo' This is to be expected, since when the atoms are nearer
to each other, the Coulombian energy of the electron ilncreases in

absolute value.

l) oy
-1k
(1) a= Z e rjf(n?-’s‘i\)[v(r) - U(@)] f(r)ae (2.17)
i # 0
where ri is the inter-nuclear distance. This represents the effect of
the potential of the neighboring atoms averaged over the overlapping wave
’

functions., A is a function of both the propagation vector k and inter-

atomic distance, It gives the major contribution in determining the

width of the energy band.
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-1k.p.
(111) D= Z e hfgf*(l?-’g’il)gf(r)d-c (2,18)
L #0

Since the #(r)'s are normalized wave functions, D 1s the term which
gives the modification of the normalizing factor. The magnitude of D
depends on the amount of overlapping between the neighboring wave
functions.

To evaluate the integrals C, A and D, solutions of Egs.

(2.1) and (2.2) are used for #(r)

N
g(r) = fl"" e F(-A + 1,2,20r) T % a (2.19a)
VA §
¥ o
#(r) == ¢ " Jor rza (2.19b)
Lw

where N, and N, ,normalizing factors, satisfy the condition of continuity

1 2
at the cut-off radius a.

.-l 2 = = . L
a=|-(E - 3) oc=J|E] and E = -5+

As calculations show that both a and A differ very slightly from unity,

*

>
o

Eq. (2.19a) can be reduced to
Nl -ar
g(r) = —=—=e . (2.20)
Lr

For ¢ = 1, (2.20) is the same wave function as that of a normal hydrogen

atom except for the difference of the normalizing factor, When electrons
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are near to the nucleus, the Coulombian force provides the major effect
in determining the electron wave function., The cut-off potential affects
chiefly the part of the wave function outside the cut-off radius. (2.20)
can be used in evaluating A, C, and D, Although the wave function
devlates somewhat from that of the exact form, the energy determined can
stlll be fairly accurate, for the exact wave function gives a minimum
of the energy and therefore the mean of the energy over a poor wave
function is nearly correct, Evaluations of A, C, and D involve wave
functions having different points on their origins. The integrations
can be carried out by using the expansions given by Coulson(lé).

For calculating A and C, integrals of the following form have

to be evaluated:

= -
-ik.f. NN
= o f1 }Jr_g j‘g(r)g(\}’-f’il) s U(l?-"’jl)dt (2.21)
[y #o fige 0
This involves wave functions belonging to two different origins and a
potential funetion with a third point as the origin, The eveluation
can be simplified considerably if the actusl potential U(|F -F}l) of

the third atom is replaced by an averaged potential which is defined as:

/M T X
V=3 J [ J (- 2+ 2)Pstn 0 ar a0 ag (2.22)
0 00

where (). is the volume of a single atom and x is the radius of the atom.
Similarly to the case of determining the Fermi energy for the ionized

gas, the cut-off radius "a¥ can be considered as that of an average



radius of the atom, If for the first approximation,f2.= %Z a3, it

follows from (2.22) that

V=-. (2.23)

As U([? - fgl) has a non-venishing value only inside the sphere of

radius "a® with Fﬁ as the center; and thqqyalues of both wave functions
1 oI T oIF P
g(r) and g(IF - fi‘) are of the form o] and e /[olT '-Fil

which decrease slowly as IT| and |7 —’?ijincrease, consequently, it is
justifiable to replace u(i? —'Esl) by the averaged value in evaluating
the integral., The potentials with and without approximations are
shown in Fig. 2.4, The atoms are drawn in such a way that they are
contiguous, since only under such a relative configuratiom do the
wave functions give appreeciable contribution to the value of the
integral,

With this approximation, all the integrals can be readily
evalusted., The detailed evaluztions are given in Appendix IIC and

the results are as follows:

Nz e—zdfj I’*’ p)'
{: #0 [ (20'(’3) ! p=0 p!(f-p)! (wf)
_{Q:‘ —Gf
A= e ( h(o,a,a) - aVv |+ V i (2.24Db)
1#0 dri [ ]
-1xF, [ [1
D= % e (i g Fla,0,8) + e‘dfip(a,o,a) (R.24¢)

1 ° k!

40
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where the constants Bg, Gg and functions h(c,a,a), F(a,0,8) and
pla,0,a) are defined in Appendix IIC,

In order to determine the energy, the summation overF 5 in
(2.24) must be carried out, For atoms in a metal, the relation between
vector i and-jsi is definite once the direction of‘z is specified, In
the present problem'ﬁ only represents an arbitrary direction of propaga-
tion and the angle between k andr varies at randomj therefore, an
average over all possible directions of'ri'should be made, This can
be fulfilled by replacing the summation in (2.24) by an integral.

For example (2.24c) becomes:

b

27 r (R
=1 j 5 j “ik‘f[ 57 F(a,0,8) + e (’p(d,a,a))[“zd fsin § 49 af (2.25)

0 0 2x

where, as shown previously, sl is the volume of each atom and the lower
1limit of integration is the minimum interatomic distance,

With the values of A, C and D, energy bands corresponding to
cut-off radii equal to 2,5, 3 and 4 atomic unite are calculated,
Figure 2.5 gives the energy as a function of wave number k and Fig; 2.6
shows the variation of the bandwidth produced by the change of cut-off
radius *a"., Calculation for a = 2 is not shown, since for this case
the electron is not very tightly bound and there is a great deal of
overlapping between wave functions of electrons of the neighboring
atomsy this iz a situation for which the Bloch scheme is no more
applicable, The bqttom of each energy band is lower than the corresponding
discrete level; this is the consequence of the increase of the Coulombian

energy. It can also be seen in Fig, 2.6 that the band, becoming narrower
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as the cut-off radius increases, approaches the ground level of a

normal hydrogen atom at the limit,

2.3 Self-Consistent Calculation of the Potential Field

If the gas medium is cqnsidered as an entity, wave functions
of all the electrons should be an antisymmetric combination of all the
single electron wave functions. It is shown in the last section that

the wave function of an electron 1s:
X v
oT
Yot == Z ¢ ® Y6, - N0y (2.26)
nm N g m J 1

where T is the radius vector of the mth‘electron, N' is the normalizing
factor and)((crl) is the spin function, “f' n(rm) represents the wave
function of the mth electron with an energy of propagation corresponding
to wave number kn. The wave function for all the electrqns is of the

form

2 Y‘l(rl)fz(rz).....‘tl(rn)

with all the possible permutations of all the rn's. It can be shown that

the ‘f—'s are orthogonal for functions corresponding to different propaga-

tion energies(l7). The antisymmetric wave function of the medium is of

the form \Pl(rl) 'i-',(rz)..........\k(rn

L \FZ("I) '1,2(1'2)..........\k,(x'n o
. 242
M °

. "fn(rl) \}—n(rz)..........‘kl(rn

P-
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where N is the number of electrons.
_,
The probability that an electron with coordinate Ty is at

the volume element dtl is

n, =jf [f--1142dr2dt3.....dcn (2.28)

The integration is carried out over all coordinates other than';l.
Subatituting the value of'if given by (2.28) and making use of the
orthonormal properties of ]P’s; it can be shown that the total charge

density at Ty is
n(r) =2 ) F )2 (2.29)
n

where the summation is to be carried over electrons of all energies.

In problems on metals where atoms form a regular periodic
array, it is usually more convenient to discuss energies and densities
in the reciprocal lattice space; the structure of which is based on
the periodic and symmetric properties of the propagational vectors C;).
The space is filled with cells of equal volumes., It can be proved(ls)
that the volume of the unit cell In the reciprocal lattice space is
such that there are the right number of states in each cell to accommodate
two electrons per atom, For alkali metals that have only one valence
electron, the valence bands are only half filled., For the present
problem, the direction of-; is chosen at random; therefore, it is
justifiable to assume that the cells in the k space must have spherical

symmetry., However, the unit cell cannot be a sphere on account of the



fact that it is impossible to fill up the space with spheres,
The number of electrons in a volume L) in configuration space
> -
and in a volume of dzxdk%dkz can be written as
ik_d_dk | (2.30)
aN = dkx - kn | 2,30

2
For problems of spherical symmetry (2,30) becomes

L .2
d =7 k"dk (2.31)
?

From the Fig. 2,5 of the energy as & function of k, it can be shown
that the value of k corresponding to the maximum energy satisfies

approximately the relation
k=5 : (2.32)

This resembles the relation in the theory of solids between the
translational veetor'i in the reciprocel lattice space and the primitive

translation of the lattice’fi which 1s given as
- >
Nk T = 2m, (2,33)

where n, = 0, +1, + 2, +444.+ The difference lies in the fact that
there is no translational periodieity in the present case, If (2.32)

is taken to be the maximum radius for the integration of (2,31) and if
M is assumed to be A1h3/3 for the first approximation, the integration
shows that the densities of states cannot accommodate even one electron,

The gituation can be improved, however, by redefining an effective

47
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volume for the atom, If Eq. (2.32) determines the boundaries of a
cubic cell with the nucleus at the center, it can be shown that this
volume.C% for N =2 is 8a3. This will lead to a half filled bamd for
a monovalent element., In order to take into account the empty gaps
between the spheres, one ean assumne that.flc is the effective volume
of the atom., By substituting f2 , into Eq. (2.31) for the volume(lL ,
the maximum value of k for N = 1 can be determined., By using the

wave functions for electrons of all energies, the total charge density
can then be calculated by summing the densities over all the possible
states up to the maximum value of k thus determined.

In Chapter I, the self-consistent calculations are performed
by adjusting a parameter B which determines the Fermi energy of the
free electron band and is also the radius of an effective volume in
which the net charge is zero, The exchange potential is determined by
using the free electron approximation. Due to the complicated form of
the exchange integral, it can only be evalusted for cases elther of
free electrons or those of tightly bound ones. Figure 2.6 shows that
for cut-off radius Bao or 4&6’ the energy bands are not very broad;
therefore the electrons resemble more of the tightly bound case;
wherees for the broader bands, the free electron approximation previously
used can be applied,

When the electrons are more. tightly bound by the nuclei, the
overlapping of the wave functions belonging to the neighboring atoms is
small and the band is narrow., The exchange correction for the electrons

with wave functions of the Bloch type has been worked out(19) for the
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case of narrow bend., It can be shown that the effect of the exchange
integral reduces the potential due to the electrons by one half of
its original value; since only electrons of the same kind of spin give
s non-vanishing exchange integral.

Self-consistent calculations are made for a = 3 and a = 4,
Although the §alculated potentiai can be altered by changing the size
of the effective volume, calculations show that better agreement can
be achleved by readjusting the cut-off potential, The assumed potential
about each atom is of the form given in Fig, 2.3, and it has also
been seen that in order to evaluate the exchange integrasl A, an approxima-
tion 1llust£ated in Fig. 2.4 is used, Consequently, oné is led to test
the possibility of obtaining self-congistency by meking & less sharp
transition between thé two types of potential in Fig. 2.4. This can

be done by letting

- (& _¢& < 2
V= (r a) r£5a
(2.24)
= ¥ = _ 1 > 2
V=¥ = oo r 2 3 a

Schradinger equations with potentials given by (2.34) cen be solved
analytically by the method given in Appendix IIA, By using the

solutions corresponding to the new potential, the self-consistent
calculation is performed and the results are shown in Figs. 2.7a and
2.7b. The agreement between the assumed and calculated potentisls is
quite satisfactory. Greater deviaetions occur in the region near r = 2a/3,

since this is the position corresponding to a discontinuity of slope of
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the assumed potential, it is natural that poor results occur at the
position where the assumption made on the shape of the potential is
not satisfactory.

This method of obtaining self-consistency is different from
that previously used, yet a closer comparison shows that the results
obtained are in good conformity with each other, In the methaod used
in Chapter I,vin addition to the adjustment of the parsmeter 8, it is
necessary to introduce an aversge potential_VT. The charge density is
given by 3/4#33 and the cut-off radius "am™ is smaller than "B", In
the present calculations, V 18 an average potential, the charge density
is determined by the effective volume_flb, the equivalent radius of
which is larger than the rédius of the spherical shell of charge in

the assumed potential,
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CHAPTER III

CALCULATIONS OF THE OPACITY OF A HIGH DENSITY HYDROGEN GAS

In the previous discussions, the wave functions of electrons
in a hydrogen gas are determined for the case that the electrons are
completely squeezed out of the bound levels as well as for the case
that they remain being bound with their ionization potentials lowered.
The results are to be used in the study of the opacity of a dense hydrogen
gas. In order to make further discussions easier, we shall distinguish
the two cases by considering the first case as a "pressure-ionized®
hydrogen gas and the latter case, atomic hydrogen gas.

In the temperature range that is'to be covered by the presént
study, the opacity due to scattering which occurs at high temperature
will not be considered. The photoelectric absorption of the bound elec-~
trons and the absorption of the free electrons in the presence of the
nmuclear fields give the major contributions to the opacity of the gas.
The reduction of the total intensity of radiation in passing through a
certain thickness'of medium depends both on the number of electrons in
the medium and the intensity distribution of the radiation. According
to Planck's law, the distribution of the intensity of radiation in atomic

units is

T
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where @, Ta are defined in Appendix IA,

An absorption coefficient per electron a. for a given frequency
is defined in such a way that the intensity of radiation of frequency
is reduced by a factor e.Naw in passing through 1 cm length of a gas

containing N electrons per cc. &, is given in the unit of cmz. In the

study of opacity, an absorption coefficient kw is defined such that the
-nk

intensity of radiation is reduced by a factor e ® in passing through
1l cm length of a gas of densityn. %m is obtained by multiplying 8
by the number of electrons per unit mass of material. In studyling the
opacity, there are two quantities that are of interest. One can either

study the "straight mean® of the atomic absorption coefficient which is

rkmx () doo
0
f'I(cn)dm

0

or express the opaclty by the "Rosseland mean®

j"“_l__bl(m} o
0

defined as

K= (3.2)

(21) which is given by:

L kﬂ)a ?a |
E = (303)
21 ()
a1, *
o 0
- Ta
where %5 = %n(l - e ). The Rosseland mean is an energy-transparency

mean, which also takes into consideration the temperature dependence of
T

the radiation intensity. The extra factor (1 - e a) is introduced

by Rosseland to eliminate the stimulated emission from the absorption.

Radiation incident in a given direction stimilates emission in a direction
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exactly parallel to itself, However, the ebscrption followed by stimulated
emission has no influence on the net flux of energy and therefore g& is
used instead of %m'

The coefficient of opacity of the stellar material has been
calculated by Eddington using Kramers' formula for the absorption

coefficient.(zz)

StrSmgren(7) has applied the quantum mechanical
calculation of the absorption coefficient to evaluate the opacity of
certain gas mixtures. Evaluation of the opacity for high density gas

(23) and Morse(ZA)

mixtures has been carried out by Marshak s using the
Fermli Thomas potential for the gas atoms. In general, the opacity can
be expressed as a function of temperature, gas densgity, and the con-~
stituents of the gas. For the present problem, the dependence on the
constituents is not considered. In the following calculation of the
opacity of hydrogen gas, a general description of the methods uged in
the determination of the absorption coefficient and the opacity will be
‘made., This is to be followéd by the resulfs of calculation and a dis-

cussion of these results.

3.1 Opacity of a "Pregsure-lonized" Hydrogen Gas

For the very high density case where no bound states exist,
the free-free transitions give the only contribution to the absorption
of radiétion. The absorption coefficient a, of an electron with energy &
absorbing a radiation of frequency'ubis given by the quantum theory of

radiation as:



56

2 2 g o [
a(l)(gi) = 2—%&2— (%‘é’) (30)5%£fll{l(l~lysi'%§‘ :ef)lz

*{(I ’sil }'él "lysf)' 2} Cm5 (3.4)
r

wheée the matrix element corresponds to the acceleration, & and €p
are the energies of the initial and final states, a, is the Bohr's radius,
o is the frequency of absorption, and § is the orbital angular momentum
guantum number of the final state,

For the sake of convenience, the absorption coefficient is
usually expressed in terms of Kramers' formula multiplied by a factor
“g(absi)" which is called Gaunt's factor. Using Kramers' formula, the

absorption coefficient for the free-fres transition can be written as

aw-—-—‘k—(*‘—;)/*(ﬁ;f G (3,5)
35”2 e F.'imB |

To calculate the absorption coefficient as a function of freguency, one

has to sum over all the electrons in the initial states; moreover, the

transition cen only take place when the upper state is vacant., Using

the Fermi-Dirac statistics, the number of electrons per unit volume

having energy between €& and ¢ + de is

& S s (3.6)
%o —F aPli+e a/A]ao
l+e Ta
EF/Ta
where A = e ~ and e_ is the Fermi energy. The value of A i@ determined

| 3



by the number of free electrons Ne per unit volume

3/2 0@
) T, x1/2dx 1
N ™" 2 ( 3 (3.7)
x4 l x a

o1+ 3 e o -

where x = e/Ta.
At high temperature such that kT >> €ps the distribution is
Maxwellian and it can be shown that A is given by

. 3/2
A= (e’ (3.8)

For the general case, A is determined by Eq. (2.7) and its value

corresponding to various electron densities is given by Morse.(24) The

probability that the upper state is vacant is

ei + o
1, "

1 A )

l -~ = . (3‘9)

ai + o ei + ®©
T T
1 a 1 a

I e +1 2 e + 1

By using Eqs. (3.5), (3.6) and (3.9), the absorption coefficient

per gram for the free-free transition can be written as:

ei+w
T
1 a
6 =.e
k() = hell X 10 ’ 4 —— glo,8,)de; cm®/g  (3.10)
A &+ 1
T
(1+de™H@+3e *)
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If the g factor is independent of the initial energy, then (3.10) can

be integrated, The absorption coefficient becomes

ER @
487 x 106Tae a eTa A+l 5
k() = — g(w) fn -———-L——-)-.m en“/g  (3.11)
T T
(03(6 a. 1) _ e d + 4

It can be shown that for a non degeneréte case (3.11) reduces to

-7 N
K = 1'565(:3( = Tifz glw)  en/g (3.12)
a

[ie}

For most cases in the present caleulation, g(abei) is not slowly varying
and Eq, (3.10) must be evaluated by a numerical integration, It has
been showm in the first chapter that the free electrons form a Fermi
band with all the energy states filled up to the Fermi energy, The

only transition that can occur is between a state in the Fermi band and
any one above the band, Since the electron gas has been considered as

highly degenerate, Ed. (3.10) can be written as:

[¢v}

3
k, = afl2 10 3 1’ f F gloe,)de,  on’/g (3.13)
& - ©
Having determined the absorption coefficient, the opacity is
then calculated by finding the "Rosseland mean", Substituting (3,13) into
(3.3) and using the dimensionless variable u = a/Ta, one can show that

the opacity K is given by:



1_15 {1 42u u 3 ‘
2 = = y*e“ (" - 1)%du . - (3.14)
P R

A discussion on the evaluation of the Rosseland mean is given in

Appendix ITI,

342 Opacity of a High Density Atomic Hydrogen Ges

Through the process of photoelectric ionization, the bound
electron becomes free after the absorption of radiation. For gases of
high density such as-tﬁat shown in the second chapter, only the K level
exlistsy therefore, to calculate the opacity of such an atomic hydrogen
gas, only the absorption by the K elsctron and that of the free elec-
tron have to be considered. The absorption coefficient of a K elec-

tron can be written as:
ir &2, |2 1/2 2 2
8 = 3 Folay) (@) (e) [(L=0,5,|r| £=1, s.)] en”  (3.15)

where W is the frequency of absorption and o is the energy of the final
state, The matrix element is that of dipole radiations. As in the case
of a free-free transition, it is convenient to express the absorption
coefficient in terms of Kramers' formula multiplied by a Gaunt factor.
The g factor for the bound free tranéition of a hydrogen atom has been
(8)

evaluated by Menzeld and Pekeris and many others, It is a slowly

varying function of frequency and differs not mich from unity over a

certain range of frequency. The absorption coefficient per gram can then

59
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be written as
Sl 16 e5141 2
k, W o mc(Ry 033 g{w) em”/g (3.16)

where Ry is the Rydberg constant and MH is the mass of the hydrogen atom.

The number of electrons having a negative energy -1 is

2

T (3.17)
T

1l
1+ 3 e

and the probability that the final state is vacant is

(3.18)

The absorption coefficient for the bound free transition is then obtained
by multiplying (3.16) by (3.17) and (3.18), To calculate the opacity,
the total sbsorption coefficient due to both the bound free and free-free
transition must be considered. For frequencies lower than the ionization
potential, the contribution to the absorption is given by the free-free
trangition alone, In the high temperature region when esF/Ta<3; 1, the

electron gas is non degenerate, the absorption coefficient is given byt



é
%m = ihééiBX 10 ;L3.5 cmz/g w<L I
a (3,19)
| 9.484 x 10° W 1 Ty >
- 04: 4 X . 776 ]
iy = 2L L [1+ LE— ] o>
a

where YL is the density of the gas and the g factor for the free-free
transition is taken as unity. This approximation is justifiable if the
gas is non degenerate, since it can be shown that for a non degenerate
gas the bound free transition is more important. The opacity can then
be calculated by substituting (3.19) in (3.3). The result is usually
expressed in the form:

n
K= 9,484 x 106 375 L cm;/g (3.20)
T *

a

where € is called the "guillotine factor". For temperatures such that
the Maxwellian distribution is no more valid, the exact form of the

absorption coefficient has to be used., This is given as:

6 u u

kGJ = és.s.;..l‘..].-g_ g! (o) ue in .e__;(lé_t_]_-). cmz/g (0 £ I)

u Ti e -1 e + A

1 6 e (4 + 1)
k = 487 % 10°T g' (o) £n (3.21)
® uBTz{. * et -1 o + A

1 "I/Ta + u
+ 476 x 10% () A 2° 2
4,76 x 107g(w 1T ST /g (0> I)
1+e 2/ %:e a +1
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g'(w) is the g factor for the free-free transition and g(w) is that of

the bound free transition.,

3.3 Results of Calculations and Discussions

Calculations for the "pressure lonized" gas are carried out
by using the wave functions computed in the first chapter. Absorption
coefficient is then determined by means of Eq. (3.4). The matrix
element is that corresponding to the acceleration, This is preferred
to the usually used one of the dipole fadiation on account of better
convergence. Since the acceleration is proportional to grad V, there-
fore the matrix element vanishes in the region where the potential is
either zero or a constant, This simplifies considerably the procedure
in the evaluation of the matrix element, since the integration only
has to be carried out radially up to the cut-off radius. The method
used is given in Appendix III,

The absorption coefficient for electrons of a given energy
is obtained by summing over all the possible wvalues of the angular
momentum. For low energy electrons, only those that have zero angular
momentum give the mejor contribution to the absorption coefficient since
the ®closest approach" of those with large angular momentum is greater
than the cut-off radius, For higher energy electrons, absorption caused
by those with higher angular momentum must be taken into account. The
maximum energy of the absorbing electron is determined by the density;
it can be shown by means of the classical analogy that there is an upper

limit for the angular momentum such that the closest approach is within
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the cut-off radius, Calculations were made for cut-off radii a = 0.5 &,
and a = 1.0 a,. As shown in Chapter I, the density of the electron gas
is determined by the effective radius B, The corresponding values of B
are found to be 0,69 a, and 1,321 a s respectively. The values of
densities are 8,29 g/c.c. and 1.21 g/c.c. for the two cases.

For the high density region, the g factor varies with the
initial energy of the electron. Their values are shown in Fig. 3.1,
For a cut-off radius as large as & = a, however, g is only a function
of frequency. The absorption coefficient and the opacity are determined
by Egs. (3.13) and (3.14). The density. does not appear explicitly in
these equations. This is characteristic of a strongly degenerate gas.
The increase of electron concentrations does not alter the distribution
of electrons in the Fermi band, The change of concentration results
only in the addition of electrons with energies greater than the
original Ferml energy; consequently, the absorption coefficlent does
not vary explicitly with the density.

Except for the g factor, the integral in the determination of

the Rosseland mean is of the form:
u_7e2u
a3 du
o(e "l)

The integrand has & meximum value near u = 73 it decreases

where u = a/Ta.

rather fast and becomes negligible as u ? 20. The temperasture Ta
chosen for the present calculation satisfies the condition I;'4< €pe

Consequently for small values of Ta’ only the low frequency absorptions
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are important in the evaluation of the Rosseland mean., In other words,
only the electrons near the top of the Fermi band take an important
part in the absorption process.

Abgorption coefficients for the bound free transition are
calculated by using the weve functions obtained in Chapter III, Their
values corresponding to various cut-off radii are given in Fig, 3.2.
They are compared with the absorption coefficient of a K electron for
a normal hydrogen atom, The essential difference lies in the shift
of the absorption edge with changes of density, At high frequencies
the effect of the cut-off potential is not importeant and the absorption
coefficients for all densities approach asymptotically that of a
normal hydrogen atom,

The opacity is calculated as a function of temperature for
a= 4ao and 6&0 which correspond to densities of 0,0225 and 0.0065 g/c.c.
respectively., The calculations are made for a temperature range which
lies between Ta = 0.1 to Ta = 4. The results are shomn together with
that for a completely ionized gas in Fig, 3.2, The values of the g
factors and the absorption coefficients are given in Tables IA, IB, IIA
and TIB, It can be seen that the opacity varies with temperature and

density. The dependence on the two factors is discussed as follows:

a) The Temperature Dependence

For the non-degenerate case, the opacity varies approximately
as Ta’3‘5. This is clearly seen in Eq. (3.19). When T, is very high,

the opacity decreases faster than the Ta'3‘5 factor, However, for very
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TABLE IA

g FACTORS FOR THE FREE-FREE TRANSITION (a = 0.5&0)

Initial Energy €y

0.40

1.3

1.8

2.6

~ g FACTORS FOR THE FREE-FREE TRANSITION (a

Frequency

1.76
3.80
5.33
6.93

Frequency w

8.84
12.8
30.0

7.31
11,2
14.3
18.5
28.5

5.76

9.72
12.7
27.0

2.08

6.20

9424
13.5
2345

TABLE 1B

g

1
1
1
1

5,88 x 10~
6.59 x 10
7.04 x 10°
7.82 x 10

3.27 x
5.52 x
1.26 x
9.24 x
1.55 x
1.98 x
R.27 x
3.52 x
1.11 x
1.87 x
2.36 x
L4 x
1.44 x
3.07 x
349 x
3.9 x
5.49 x

-

ao)
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TABLE IIA

ABSORPTION COEFFICIENT FOR a = Aao

Frequency w
(in atomic unit)

0.553
0.656
0.812
0.870
0.930
0.962
1.06
1,13
1,27

Absorption coefficient aw(lo

2.08
3.46
463
4475
4470
4463
4431
406
3.21

TABLE I1B

ABSORPTION COEFFICIENT FOR a = 6ao

Frequency ®
(in atomic unit)

0.706
0.826
0.859
0.916
0.955
1.14
1.35

1,50

Absorption coefficient aw(lo

478
8,53
9.89
8.21
7.19
4465
2.78
1.91

-18 2
em’)

_180m2 )
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high temperature, scattering sets in and the present discussion is no

more adequate, As the temperature decreases, the opacity increases more

P Y
slowly than that determined by Ta 3". This can be ;xplained by
& /T
considering the effect of Ta on the value of A = e a. The value

of "A" for the non-degenerate case given by Eq., (3.8) is

/2

3
W ()

For a given density, "A" increases with the decrease of temperature.
The probability that the upper state is vacant decreases as "A" in-
creases; this means a corresponding reduction of absorption processes.
Consequently, it results in a smaller value of opacity.

In the determination of the Rosseland mean, the reciprocal
of the opacity is averaged over the temperature variation of the
intensity of radiation for all frequencies. The integrand in the
Rosseland mean is a function of the variable u = m/Ta. For small
values of Ta’ the absorption of the frequency immediately below the
absorbing edge gives the major contribution to the integral for the

Rosseland mean. Therefore, the free-free transition is more important

for lower temperatures, This fact has been pointed out by Chandransekhar,

He has shown that for a highly degenerate gas, the opacity varies
essentially according to Tanz. This effect is brought out likewise by
the present calculation., A change of slope is noticeable in a log K
versus log Ta plot as that given by Fig. 3.3.

For the "pressure-ionized® gas, no calculation is made for

(25)

temperature Ta greater than unity. ©Since the self-consistent determinstion



of the potential is carried out under the assumption that the electron
gas is strongly degenerate, the temperature dependence of opacity for
this case comes mainly from the temperature variation of the distribu-
tion of the radiation intensity., The Fermi energy sFo is that for a
gas at absolute zero of temperature. This is no longer valid when

the condition Ta/eFo‘éé‘l is not satisfied. The actual Fermi energy
e will be displaced and there will be some non-occupied states and
some occupied ones below and above the Fermi energy. As it has been
pointed out previously that the electrons near the top of the Fermi
band give thé major contribution to the zbscrption; the change of eg
as a consequence of temperature will affect the value of the opacity.
To‘get a better determination of opacity for such cases requires a re-

calculation of the self-consistency of the potential.

b) The Density Dependence

For a non-degenerate gas, the opacity increases with the
density at a given temperature, This is shown in the Flg. 3.3 for
Ta = 1. As the density keeps increasing, the gas gradually approaches
the state of degeneracy; the opacity no longer depends on the density
explicitly. In the lower temperature range, the opacity decreases with

respect to the density on account of the low values of the "g" factors

72

for the high density gas. The opacity increases at first with the density

and then decreases as the gas becomes degenerate., This is usually

considered as a "saturation effect? snd it is shown for Ta =1,

In pointing out the importance of the free-free transition for
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(25)

a degenerate gas, Chandrasekhar has considered the free-free
transition as analegous to that of a bound free case, Since absorption
can only occur under the condition @ » & - s this is as if the
electron with energy ey is bound with an ionization potential Ep - &4,
In the present calculations, by using the self-consistent potentials
and the model of ions embedded in a highly degenerate Fermi gas, the
analogy is automatically fulfilled., The opacities for densities
corresponding to a = 2&0 and Bao are not included,since, from the
results given by Fig. 3.2, the variation of opacity witﬁ density is
not very rapid for the range of temperature studied. As the density
becomes very high, the problem of electronic conductivity has to be

considered; this is beyond the scope of the present study.

3s4 Comparison with Previous Work and Further Suggestions

- in the discussion of opacity, the coefficient is usually

given as (3,20)

_ 6 _n_ 1 2

a

Without the factor 1/ , this is just Kramers' formula. The results of
the present calculations show that T is much greater than unity, There-
fore the actual opaclty for a high density hydrogen gas given by the
present study is less than thet given by Krsmers! formula. For Ta =1,

the "guillotine factor® for various densities are glven as:



n(g/c.c.) < (T = 156,000°C) < (T = 400,000°C)
8.29 3.14 x 10° 8.2 x 107
2.22 x 107% 4.15 x 10 2.26
6.59 x 10 4204 % 10 1.35

The values are compared with the corresponding factor t*
which i8 given by Morsgigl'a.certain mixbure of Fe, K, Ca, Na, Mg, O
and H with a density of similar order of magﬁitude. The temperatures
are not the same though they are also of similar order of magnitude,
The opacity of a pure hydrogen gas is considersbly less than that of a

mixture. For an electron in an ordinary Coulombian field of a nucleus

with charge Ze, the energy level is given by

-

"ol

if the shielding of the other electrons are neglected. The K shell of
the heavier element has a higher ionization potentisl. Although this
is reduced as a result of high pressure, it is still considerably
higher than that for an electron of a hydrogen atom. From Eq. (3.19),
it can be seen that for a non-degenerate case a high value of ioniza-

tion potential will favor the increase of the opacity. At a density

74

when hydrogen is completely ionized, the K shells of the heavier elements

still exist, the bound free transition causes the increase of the opacity.

Although hydrogen gas is the chief constituent of the stellar

matter, yet the study of the opacity of the star cannot be considered



as satisfactory without including the other elements.

carried out by further study.

This can be
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Table of units used

Energy

Length

Temperature

Frequency ®
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APPENDIX IA
e2
'é"a“ = 15,53 e.v.
(.}
r, = 0.528 x 10—8cm
2
e °
s & - 157,000°C
o
e2 15 -1
e D - Rydberg constant = 3,29 x 10 “sec
o

APPENDIX IB

Solutions of the wave equations for positive energy states with the

assumed potential

V= —(% -8 ria

The Schrodinger equations are

v2*+ [E+ 2(% - ;})]1—: 0

vprEF= O r

(1)

2]
IIn
@

(2)

I\
®
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R
Let E s = E
Solutions of (1) have different forms according to whether
B' > Oor E' £ 0, They are to be considered separately.

(1) E'< 0. 1i.e. E<f—
r £ g

Let "{’ = £ A[Pl(cos 8)L(r) for equation (1) where L(r)

satisfies the equation

&L, 24 2 L€+ Dy, -
2+rdr+[E'+r" r2 L=290

dar
Let X.= rL
2 .
.d_._é.x‘.;. (E’ +.2_)X,_u—-l+l X =0 (3)
r 2
dar T
Let A-':’-%T or E'=-l‘-§
A
- — P |
ﬁ—~2ar where a= «E =3
Equation (3) becomes
2
EX L o r_ AL+ DYy
df2+[ TP P2 Jx =0 (4)



The solution of (4) is in the form

-P,z‘ohll 1(4 f+1, 20+ z’f')

117‘1 is the confluent hypergeometric function.

The solution for the region r £ a is

-]=(2ar)1 -

"f’i = £ %Pl(cos S)r

lFl(-k +0 +1, 24+ 2, 2ar)

For the region r > &, the radial equation has the form

&R , 2%, PITESI
7 PP i

whers = kr ¥ = E ; the solution of which is of the form

R, (r) = %ﬁe(kr)cosvl - r}l(kr)sinllﬁ]

—_— (kr)"lB!sin(kr -1.12!4, %)

o0

(5)

(6)

72 is the phase shift of the jth partial wave and can be

determined by means of the continuity relation
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1 i _
If i"'&’r'j]_“Yz

| k(i (ka)cosVp - n,'(ka)sinzb]
= ) (ka)cos % - I}(ka) sinz,

ki (ka) - % Jp(ka)
or tan )’e z—ﬁv Ta) -}}nl(ka)

Having determined 71 , the normalization is determined so that

the wave function has the asymptotic form given by (6)
(i1) E' > 0

Solution of Eq. (1) can be obtained by letting

k'=ﬁ}_' n=-%,

f‘-’ 2ik'r

The solution is of the fom

L= (—if)p T%—ﬁ!e‘P/lel(lqu 1+ %;, 22+ 2, 2ik'r) (7)

which has the same asymptotic form as that given by (6).

A series expansion of L can be obtained in the form

00 Y
L= W%’Iﬁ (Zk'r)e % Cp Q;?)— (8)



where the Cm's follow the recurrence relation:

2 =
(L+ 2 +m)C 4 +37Cy +mC, 4 =0

]
et

with C

ldLJ Y

L ar =p=3t¥ o) B

L dr r=a /4 a < Cmfkmfl
m

(9)

(10)

The normalization factor can be determined by the same method as that

given for E'< O,



APPENDIX ITA
DETERMINATION OF THE NEGATIVE ENERGY STATE

Equations to be solved are:

N
o

VN+[E+22-DlY=0 =

I
o
Lo ]
v
w

2
\v¢ *-+ E‘f
Solution for (1) is the same as that given by Appendix IB

\h = % A?Pl(cos e)%(zar)“le"“rlr'l(-). +€ +1, 2+ 2, 2ar)

where a= ’]E - a|
a

1
E= - =
22
For r)> a
Let & = |E|
f>= ior

The radial wave equation has the form

“R
i;g + ?%? +-r1 -'Zié%fgll R=0

g1

(1)

(2)

(3)

(3)



the solution of which can be given by the spherical Hankel funetlon

R = &h}l) (ior)

If R, and RO are solutions of the radial wave equation for r < a and

i

r > a respectively, then the continuity condition gives

ﬁl _L
dr __ R -
i r=a o r=a

|-

For the cage of ¢ = 0, Eq. (4) gives

1F1(2-1,3,23 )] i
3 (1- Q- F1(0%,2,230] 7* 1

where j

T

Equation (5) together with the relation

n
8

oa

35t

(4)

(5)

(6)

are used to determine graphically the values of j and 7 s from which

the bound level is determined,



APPENDIX IIB
CALCULATIONS OF THE ENERGY BAND

To evaluate Eq. (2,13)
. J;[-vz + 2V(r)]'+dt
E =

J |‘H2dt.

(1)

Let
v(r) = V(r) +u(:i~’-§'j1) -U(:?-E’j») (2)

The numerator of (1) becomes

-2

-3k,
J £ o 0T-3 ){-Vz
i

- -

ik,
+2[7(x) + OOF - F)1) - 0T - 7)) % Y017 - 7, e

-ik.r
= (Y e} ac+ j% e A0R - 32V - 00F - 70

x.z
?e jﬁf(lr—?jl)dc (3)

Let \ri-rjl=f)i

g3



then

The second term in (3) becomes

~1k.p
nzi e fi_)'ﬁf(l‘f -F4)2(V(r) - U] d(r)ax (4)

Similarly the denominator of (1) becomes

> > -

-ik,r ik.r
f"”zdt =jz e az - EADE 7 -?jl)dt
1 3

T
=NZ P - (r)d
vEe  UJFURR e

ik fi

e £

JEaz-gogmee )

Substituting (3), (4) and (5) into (1)

-ik

fiﬁrur -3 [I® - s)gax

1+ % dk?ff(lr- Yg(r)de
xt "



=K
°

= E
(o]

where

since

-1k.p,
JUCICRD ECEES R N N (R PO

+

-1%.
1+ Z e Fijd*(l? —Fil Yg(r)dt
pL#0

A+C
1+D

-53(’ — .
_ 1 -
A= 2[12# Oe r Jf(l? —ri‘)[V(r) - U(I‘)] ¢(?‘)d'¢

c=2 £ (&) £ vR-F)) d(nac
F*‘J £3 Fs

V(r) = U(r) + f U(lr-
gro 0

ik
D= r r - r
" Z . ja"u LCES

(6)

(7)

(8)

(9)
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APPENDIX IIC
EVALUATIONS OF THE INTEGRALS A, C, AND D

‘ o~ar

g(r) = rd a

g

r> a

#(r) =

or

gl

The integrals &, C, and D can be simplified by using the

~aiT —E"l

expansion of £ ” and e-air—rl given by Coulson(lé):
|17 -Fl ‘
-alT -g|
L-L|_’ = L—L—7-)-(2 )I ; By (cos Q)Y’(a,r,r’) (1)
T of

Yp(“,r:f) = I,Z‘f' 1/2(0‘0)K£+ 1/2(01') r >(°
(2)

=I!+1/2(ar)x‘€+1/2(a{s) r<f>

—QII’ Fl = -(———-;-75)-?0 (cos e)?e(a,r r) (3)

(rf)

(a,r, ) = rIl + 1/2(°P)K[ + 1/2(°r).f11- 1/2(ar)K£+ l/2(01') r>r
(4)

LR AR R A Sl VAL VL SR



where Im and Km are Bessel functions of the imaginary arguments defined

by Watson(zc) .

a) Evaluation of D

-1k.p
b= £ . (’iﬁ*u%-ﬂn)mr)dr

f#o
where
M T a -o'lr-(sl
NN 1!
fﬂw(l;-rii)ﬁ(r)dtz —%—I-g-f ff -are rzsin 9 do 4af dr
0 “0%0 "'r‘t’i
W (R TP o -d}'f-~?,’i’
2 e e ) 2
+47f ff - — r“sin 9 d6 4f dr
0 Y07a ""”‘f’i‘

N

N1N2 _Mrw e IT -a)r - (»1|
+ == o’re rsi.nededﬁfdr
aJo Jo

+N1N2 2 e Pta e~0r -a|T -riz
5 or e r*sin 0 d0 dg dr
4r f

070

g2 (X or -crl?-‘"o”il |
+ 7 j J ‘ e - 9 rsin 0 40 ag dr
o ojr - Fil

0 fta

qh



g8

AN (P -(e0)e Lloeledle e(eale ) e(e)
B 20 l O'fi - (Q-G) (a_o.)2 ((ﬂ’d) - (M)z
Nz o 20 a0
202 ap; i~ 20
-2 -2 + a(ato -2 + . a(ato)
- T e T
N ¥ 2 e ( a -a(a-o‘) + (1
20 0’(31 l 0—0') (at0)
1 - ~-a(a-0) 1
sieeo—(2+ L)

+

e‘zapi(l a(u+0’)l l
(ato) m)}

2[ -20(01 - a(o+0) -2a(31] . ~2a 1—3(0*0')

N1N2 adiet ae-2(0+0) . [’ 1
20 opy T ato (at0)
+§]£2-e’qpi e-a(c+0')l_ 1 _;_9—26&- a(tﬂﬂ)_ ‘-20(‘.'/- 1 .:!:)
2a oy (ot0) ‘" @t " a ato VT atg T a
2
N ﬂ
+ == & .~ 20
200 f )

Neglecting terms of small order of magnitude, D can be simplified as:



(L Iy
__.‘];.-» ~F y
= Z e ; ri{ eo'(ar F(a,0,2) + e—apip(“ao'sa)} (5)
ft '

b) Evaluation of C

c=2 £ [ [ = 0F-7.1)]dr)ac
G#of [/(’J.;!o (' ]

To evaluate C, it is convenient to define the following quantities(lé)

a
Pmn(a) =~J' rmIn(2Gr)dr (6)
0



P e] = amIn(2cra)
A= Jiro Pr+ 1/2,n + 1/202]
B = [l ®, 1/2,n + 1/2

Co =4 ® 4 10 n 41/

ezo'a + ezo'a

A-1 = a

A = 0203 - e-zaa
0

B = eZo’a + e-—2o‘a -2
0 20

= a2A - fg

A 1" 20
5 = o= %

1l 20

¢ =k

1l 2o

The general recurrence formulas for An’ Bn’ and Gn are

(2n-1)
s omats

n n-2 0
B = e 2an-1
n 20
A
c =52

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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Since U(IT - FJI) vanishes except inside a sphere of radius a around
the jth nucleus, the integration of C can be carried out by moving the

- origin to the jth nucleus
c=2 2 |¢2(lr- )[-G - D) at
f » (j [ ]

- - 2
2¢ =glr - p,|
. N P3
F7 - fi =—2-[9-—-——-——-—]

TLoT -y
2
Nz 2:2 2'+1

4"172'2 (r(}J ]7_ L'+ 1/2(261')1( o'+ 1/2(2"‘93)1’1’(%5 9)

Z Pp(cos 9) (Lo 1
£

fi"

After integrating over the angles, all terms drop out except for those
with =0

N° (%1 (207)

o py) (’J (’
e P ™
F# § (20p)? p = 0 pt(¢-p)t (o)

The series converges rather fasty for most cases, terms of = 2 can

be ne_glected .

9l
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¢) Evaluation of A

Lz2 % e-ik'ri ¢(r)(§ U7 —f” 1)- U(r)] ] o4 -Fac
{’i £0 A J J

The integral can be carried out for two different cases

1) Ly =fs

(11) (i # (j

(1) P5 = (1

-kfy NN, (0T -a)T - (i~ 57 *ao (15)
e e IT - ril

A=2 2
L or
[L#0

s 4 non-vanishing value within the sphere

Since - ——t—— 4+ X
a

-> —
T - ri'
of radius a around the nucleus, (15) is equivalent to

-1k, a —cr]r =04
Azzré#o ri ——gj j (‘ e [-%+%] r“dr sin § a8 ag
oIT - (’ |
1 0 1
-11:.’61 ST, ) ale) g ca(ei)
=2 % op, 20 [ oo~ Talem) T ot T aler) .]
L Fo (1
-ik.p, 9P
= Z o ri s h(a,0,a) (16)

P, #0 fs
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(11) (’i 7 (s

R -7,
"'O're a ri 2(_.(._3:___.’_%] d'C(l7)

A= ik ?i A'R‘ or 3 - —

(1 # T - rjl

This integral can be simplified by using the approximation discussed on

Page ( )3 (17) can be evaluated as

11: - =P
A=22 Fi(V -2'6_3—)( foi - eo,(o. 20a) (18)
1
Combining (16) end (18)
-1k.p, (1 MY, ) KN, o
A=2% h(a,0,a) - V| + ¥ =5 (19)
(Di & g 3 [ Qa, a dz aJ 203 e

To replace the summation over (i by an integration

N H
h s2) - v
A ; (es0 a) 02 : [ sin kp 4
ek ZXU{’ r(’(’
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APPENDIX III

A Calculation of the Absorption Coefficient

a) Absorption coefficient for the free-free transition

) g, o0 2
a (e,) = Zi‘;ﬁ(ﬁg) (a,)’ ‘%éﬂ{ |@-1,e;1 if' 2,¢,)
2
+ l(g,ﬁiliz“e -l,Gf) ]’ em’ (1)

The matrix is to be evaluated only inside the cut-off radius.

The radial wave functions as given by Appendix IB are different

depending on whether E - % L QorE- i > 0

(1) E - f— £ 0
R = o™ F (1 - A 42,28+ 2,2ar) (2ar)’ (2)

(ii) E -

® R

> 0

o0 m
_ 2k'r (k'r) 1 »
R"N(2£+11%Cm mt (3)

For the high density gas which corresponds to the small cut-off
radius of the potential, the matrix element can be evaluated by means of
the series expansion., The integration can then be performed term by
term., If the integration involves the product of wave functions given

by Egs. (2) and (3), integral of the following form is involved:



b

Y (wsb) =I etebtat (4)
0

This is an incomplete gamma function and can be evaluated by the

following formula

b
_ - h ooy W1 -8
Y(psb) =J0 e b lat =1 (u){ 1- e ot z ﬁ'E:ST} (5)

b) Absorption coefficient for the bound free transition

a, =& K—-(a )2 (w) (sf)l/ 2{ 0=0,¢,1r12 =1,¢,)] 2} on® (6)

The radial wave functions for the matrix element are the solutions of

the self-consistent potential given by Eq. (2.34)

- _(& . & ¢ 2
V= (r a) r£3a
(7)
- _ i _3 > £
The solution for the K electrons is
- ~ar < 2
(8)
-or
= e > g
N2 = rz3ja
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For the final state which corresponds to ,e =1

‘ R, = Ni(za'r)e‘“'rlFl(z-x',zz+ 2,2a'r) r £ -§- a
(9)
= jl(k'r)cosql - l(k'r):-zin)ll r Z %a

where the quantitlies A, a and ¢ are those defined in Appendix IIA,
The evaluation of the matrix element involves essentially the integral
given by Eq. (5)., Integrations are carried out separately for the

regions r % %a and r Z %a.

B__Evaluation of the Rosseland Mean

As shown by Ec. (3.3), the Rosseland mean is given by

00
L1t
j K =Y L deo
0 {1 - e )

o0
3
o) g
j N

0

% = (10)

Let u = co/Ta

Equation (10) becomes



1
Svo k&) 3 du
1
v &u
’ du
0

(1- e'u)

xu—*

Since k_ can be written as f(u) i
© u}

~I”° Y du
0 f(U) (eu - 1)3

L u
\Jto __2_2___§.du
0 (eu - l)

-
=

x =

Therefore

1. 1 u eZu du
K~ ( 3
0 (e - 1)
15 (X _u'e™
The integral S(x) = 7 Jﬁ — 3 du has been evaluated by
AV (e - 1)

(7)

for values of x from O to® , A more accurate table is
(24)

Strgmgren
given by Morse. If f(u) is a function of u, then a numerical

integration has to be carried out.
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