


SS, INST. r

AUG 26 1952

BRAR~



ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her

thesis advisers Professor P. M. Morse and Professor W. P. Allis for

their suggestion of the problem and their incessant interest, guidance

and encouragement during the course of research. Thanks and apprecia-

tion are due to Mrs. Norma W. Donelan who typed the thesis. She also

wishes to express her gratitude to the Physics Department and the

Research Laboratory of Electronics who made this research possible.



i-

WAVE FUNCTIONS OF ELECTRONS IN A HIGHLY COMPRESSED GAS

by

Hilda Hsi-Teh Hsieh

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy on July 16, 1951

ABSTRACT

Quantum mechanical treatments of problems which deal with gases

inside the stars have thus far been carried out by using the wave function

of an electron moving in the field of a single atom. This simplified

picture is no longer valid when the pressure of the gaseous medium is

very high. This anomalous situation may give rise to two special

phenomena. The bound electrons may be squeezed out of the atoms completely,

or if any bound level does exist, its ionization potential is lowered.

It is the purpose of the present study to find the wave function of elec-

trons for both cases. Only hydrogen gas will be considered here; however,

the method developed may be extended to other elements.

By using the method of self-consistent fields, developed by

Hartree and Fock, calculations are first carried out for electrons that

are completely squeezed out of their bound levels. Those free electrons

form a highly degenerate gas about the ions. The problem can be considered

as spherically symmetric and the Schrodinger equation of the electron is

solved by using an assumed potential. The charge distribution can then

be determined by the solutions and from the charge distribution, a

potential can be calculated. A new method is used in obtaining a self-

consistency between the calculated and the assumed potential. This is
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done by adjusting a parameter which determines the density of the gas

and the Fermi energy. The correction due to the exchange potential is

also taken into account by assuming the electrons are perfectly free.

For the case that a bound level with very low ionization

potential exists, the problem is treated by methods which have been

developed for the theory of solids. The situation differs in the fact

that there is no periodicity in the arrangement of the gaseous atoms.

The single electron wave function is assumed to be of the Bloch type.

The width of the energy band is determined as a function of the inter-

atomic distance. A self-consistent calculation is then carried out for

cases which have different ionization potentials.

Using the wave functions obtained, the opacity of a compressed

hydrogen gas is determined as a function of temperature and density.

The absorption of radiation is mainly caused by absorption by the bound

electrons as well as that of the free electrons in the presence of the

field. The coefficients of the absorption are calculated for both

cases and the results are compared with that obtained by Kramers from

a semi-classical treatment. Ratios between the two, called the Gaunt's

factors, are determined for various densities and frequencies. From

these are computed the opacities of the gas for various densities and

temperatures.
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INTRODUOTION

Following the development of quantum mechanics, mauW astro-

physical problems such as photoelectric absorption, recombination, and

problems concerning the stellar models have been explored by means

of the new method. So far, however, most of the calculations have

been made under the assumptions of oversimplified models of the

stellar material concerned; since more rigorous treatments, if not

unsolvable, usually involve a great deal of mathematical difficulties.

It is known that very high pressures usually exist inside the stars.

The pressure can be so high that the electrons are squeezed out of

their quantized levels. This phenomenon is usually called "pressure

ionization". Under such anomalous conditions, it is not justifiable

to use the same wave functions for the electrons as those that are

used in problems concerning only a single atom. In the present study,

an attempt will -be made to find the wave function of electrons which

are applicable to very high density gaseous media.

As the interatomic distance decreases on account of the

high density, the field exerted on an electron is not only that due

to the single nucleus and the electrons belonging to the same atom;

that caused by the other nuclei and electrons of the other atoms must

also be taken into account. Therefore, the high pressure gaseous

media give rise to manybody problems, the satisfactory solutions of

which cannot be obtained without certain approximations and simplifi-

cations. It is hoped to reduce the complexities of the problem, and

yet present a valid description of the physical phenomena. Although

the stellar material consists of hydrogen, helium, and many other
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elements, it is generally believed that hydrogen is the predominating

element in many stars. In the present study, calculations will only

be made to find the wave functions of electrons for a hydrogen gas,

but it is hoped that the method developed my be extended to other

elements, as well as to gases which are mixtures of various elements.

Among the various methods which are employed in solving

complex quantum mechanical problems, the Hartree(1) method of self

consistent field is generally used in dealing with the many electrons

problem. Hartree has shown that it is plausible to replace the =utual

interaction of the electrons and of the electron with the nuclei by a

#representative' or "self consistent" potential field. The method has

been widely used in finding the wave function for electrons of complex

atoms. To carry out the self-consistent calculations, one has to

assume an averaged potential field and solve the one electron wave

equation. From the solution one can then determine the charge distri-

bution and the potential in which the electron is moving. The purpose

of the method is to make the potential assumed agree with that calcu-

lated; this is usually done by means of successive revisions of the

former. Although Hartree's method yields satisfactory results for

many purposes, yet it still has the defect of not having taken into

account the Pauli exclusion principle. If one starts out with an

antisymmetric wave function of all the electrons and then varies the

one electron wave function so as to make the energy an extreme, the

result shows that the electron moves in the field of all the nuclei

and all the electrons other than itself. The equation resulting from

the variational principle is called the Hartree Fock(2) equation. It
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contains an extra term in addition to the potential energy of the

Hartree equation. This is called the "exchange term", the physical

meaning of which will be mentioned in greater detail in the further

discussions.

For the present problem the principle of the self consistent

calculations is to be employed. As the gas atoms or ions do not have

any preferred relative orientations, the averaged effect from all the

other nuclei and electrons on a particular one may be considered as

approximately spherical. Therefore it is justifiable to assume that

the averaged field acting on an electron has spherical symmetry and this

is going to be used as the starting point of the self consistent

calculations.

Discussions and calculations will be first carried out for

pressures so high that the gas is completely ionized. The electrons,

although freed from the atoms, remain in the gas, so that the whole

medium is electrically neutral. It is known that electrons obey the

Fermi-Dirac statistics and it is degenerate at sufficiently low

temperatures. The energy distribution depends on a parameter which is

the maximum energy of the electrons in the distribution. This maximum

energy, which is called Fermi energy, is a function of density at the

absolute zero of temperature. It is of the order of the ionization

potentials and increases as the density increases. Consequently the

Fermi energy is much higher than kT, and is even more so as the pressure

increases. Therefore under very high pressure, the maximum energy of

the electron at any temperature does not differ much from the Fermi

energy at zero temperature. The high density gas medium can be considered
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as consisting of ions embedded in a highly degenerate Fermi-Dirac elec-

tron gas. The electrons form an energy band with all the energy states

filled up to the Fermi energy. Since all the ions are surrounded by the

same kind of electron bands, one can simplify the problem by considering

a box with the ion at the center surrounded by enough electrons so as

to make the whole volume electrically neutral. The assumed potential is

such that the electrons are almost free except when they are near to

the nucleus. The free electron wave functions can be joined smoothly to

those of the neighboring boxes by means of periodic boundary conditions.

The problem is therefore reduced to solving a one electron problem with

an assumed potential field. The electron density is then determined

from the solutions averaged over all the ocodpied states in the energy

band. The potential which is obtained from the charge distribution must

be consistent with the one assumed. The self-consistency between the

two is reached by varying the Fermi energy, or in other words, quantities

which determine the density of the electrons are used as the adjustable

parameters in the self-consistent calculations. Since the wave functions

remain unaltered as the density is varied, the calculation is much

easier to perform than the usual Hartree procedure. The correction due

to the exchange potential is also introduced by considering the elec-

trons as perfectly free. This is not a bad approximation, since the

wave functions considered are not too much different from those of the

perfectly free case. The detailed discussions of this method and the

physical significance of the parameters involved will be discussed in

Chapter I.

As the density of the gas decreases, the former situation
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changes into one where bound levels of very low ionization potential

begin to appear. The electrons, instead of forming a free, degenerate,

Fermi gas, are loosely bound to the respective nuclei. If the atoms

are still sufficiently close to each other so that the interatomic

distances are not too much greater than the magnitude of the electron

orbits of an individual atom, the loosely bound electron does not

remain around one atom, but the electron wave can be considered as

travelling from one atom to the other. The situation bears a certain

similarity to that of electrons in a metal. The electrons behave either

like bound ones or like free ones depending on their positions with

respect to the nuclei. Consequently, the present problem can be treated

by using the method developed in the theory of solids. The one electron

wave functions suggested by Bloch3 are to be used in building up the

antisymmetric wave function of all the electrons in the medium. The

effect on the electron energy due to the presence of other atoms and a

self-consistent calculation of the potential field is to be carried out.

Although it is quite appropriate to apply methods similar to

that used in solids, the situation differ in the fact that there is no

periodicity in the arrangement of the gas atoms. The effect of various

possible orientations is taken into consideration and an averaged result

obtained. As a consequence of the close approach of the atoms, the

bound energy level ixstead of being a discrete one, is spread into a

band. The width of the band is a function of the mean interatomic

distance. The self-consistent calculation of the potential is performed

by the adjustment of the parameters which are connected with atomic

volume and potentials. The method is similar to that used for the case
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described in the first chapter; the difference lies in the fact that

for the bound case there is no Fermi band. The charge density is

obtained by averaging over the occupied states in the energy band. A

detailed description of the method and the comparison with that for the

free electrons are given in Chapter II.

Using the wave functions obtained for both the "pressure

ionized" and the atomic hydrogen gas, calculations of opacity for a

hydrogen gas will be made. Phenomena such as photoelectric absorption

of radiation by the bound electron, absorption of radiation by the free

electrons in the presence of an atomic field, are both dominating

factors in determining the opacity of stars. The problems of the

(h.)continuous absorption have been solved by Kramers using a semi-

classical method. Quantum mechanical calculations using hydrogen wave

functions have been carried out by many authors.(5)-(8) With the

wave functions obtained in the present troatment, absorption cross-

sections are to be calculated as functions of gas density and frequency.

Both bound-free and free-free transitions are to be considered. The

opacity is then obtained by evaluating the Rosseland mean which is a

weighted average of the absorption coefficient over the distributions in

frequency. The result can be expressed as a function of the density and

temperature and is to be compared with Kramers' result and those using

the simple hydrogenic wave functions. It is hoped that the result

obtained may have some significance for solving problems concerning

stellar interiors.
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CHAPTER I

SELF-CONSISTENT CALCULATIONS FOR A COMPLETELY IONIZED GAS

The gas medium to be discussed in the present chapter is so

dense that there are no bound levels. The electrons are moving in the

field of all the bare nuclei and the electrons that are present in the

medium. This many electron problem is to be solved by using the prin-

ciple of the self-consistent field developed by Hartree and Fock. A

new method is developed so as to take the place of the hitherto tedious

computations involved in such problems. The calculations will be started

with an assumed spherical potential and then the charge density deter-

mined, from which the process of self-consistent calculations can be

pursued. A model of the ionised gas medium is to be obtained whose

charge distribution is in satisfactory conformity with that of the

potential field.

1.1, Potential Field Assumed

As it has been pointed our previously, the electron is to be

considered as moving in a spherical potential field. The problem is

further simplified by considering a single nucleus, embedded in a

degenerate electron gas, enclosed in a big box. When the electron is

near the nucleus, the dominating force that is exerted on the electron

is that due to the nucleus and is of the ordinary Coulombian type. How-

ever, this field may be reduced by the presence of other electrons. This

repulsive force becomes more prominent as the electron is further away

from the nucleus, As a first approximation, it is possible to use an
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averaged potential field of the following type:

r a

(1.1)

V=0 r a

Physically, such a field is due to the presence of a nucleus

and a spherical shell of electrons with radius "a" carrying the same

total amount of charge as that of the nucleus. This field caused by

the spherical shell of electrons is introduced so as to represent the

field due to all the other electrons. Therefore one can regard "a" as

some kind of averaged distance between the nucleus and the nearest elec-

trons present. It is rather presumptive to assume that the electrons

are localized in such a predescribed manner; however, since a self-

consistent calculation is going to be carried out, an improved model

may be obtained from this seemingly crude approximation.

The kind of potential given by (1.1) has been used by Guth

and Sexl(9) to study the emission of alpha-particles by radioactive

nuclei and by Allis and Morse(10) in computing the scattering cross-

section of electrons in rare gas atoms and sodium atoms. Putting (1.1)

in the Schidinger equation:

S + (E + 2(1 - I)I = 0 r :6 arr a

(1.2)

2 i+ E = 0 r a.

--A
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Atomic units will be used throughout the calculations, their

values in terms of the C.G.S. unit are given in Appendix (IA). Solutions

of (1.2) can be obtained separately for electrons of negative and positive

energy. Only the positive energy solutions will be considered in the

present chapter. In finding the solution, the usual process of deter-

mining the wave functions for regions r ,. a and r ? a separately are

used; the values and slopes of the wave functions are equated at r = a.

The solution for the region r ) a is that of a free electron with the

phase distorted due to the presence of the nucleus. The amount of dis-

tortion is called the phase shift * The value of depends on

the angular momentum of the electron; it is also a function of the

energy of the electron as well as the range of the potential. If one

lets k = IT , can be most conveniently expressed as a function of

ka, where "a" is the range of our potential field. The product ka

gives a measure for the scattering strength of the potential field.

The wave functions are normalized in such a manner that the radial wave

functions have the asymptotic form

sin (kr - !.fr + j
R(r) -+ (1.3)

The solutions of (1.2) for both regions r 4 a and r '7 a are

given in Appendix (IIB). The relation of le and ka are also obtained

for various values of cut-off radius "a". The values of phase shifts

expressed as functions of ka and that of a are given in Figs. (1.1) -

(1.4). Similar curves have been shown by Morse(1l) in the review article.
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From Figs. (1.1) and (1.3), it can be seen that the phase shifts for

X2= 0 wave is greater than that for the2. = 1 wave, while that of the

.= 2 wave can be regarded as zero for most of the present purposes.

This is to be expected, since it is quite unlikely for electrons of

higher angular momentum to get close to the nucleus. In Fig. (1.2) and

(1.4), the phase shifts )k are given as functions of ra72 ; it can be

seen that 10 behaves like a step function which has a sudden rise at

4a72 = 0.87 (a = 1.75). If one considers the relation between the

solution of Schrodinger equations and the cut-off radius "a", it can be

shown that a bound level will begin to appear as "a" increases; there

exists a critical value of "a" such that the bound level appears at

zero energy. Correspondingly, at this value of "a", one would expect

a sudden change of phase shift. Since only the completely ionized cases

are considered here, values of "a" are chosen to be smaller than the

critical value.

1.2 Determination of the Charge Density

In order to carry out the self-consistent calculations, the

charge distribution is to be calculated from the solution of the

Schrodinger equations obtained in Appendix B. Since the positive

energy electron has a continuous spectrum, the charge d4msity should be

obtained from electrons of all states. For a Fermi-Dirac gas, the num-

ber of states for electrons of energy between E and E + dE is

dN B (1.4)

T +1
e a +1
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where EF is the Fermi energy and Ta is the energy kT of the electron

in the atomic unit. Consider first the case where the temperature is

at absolute zero, then from (1.4) it follows that

EFo o) (15)

where E is the maximum energy of the electron at the absolute zero

and no is the density of electrons. For the density of interest at

present, E., is higher than 15.6 e.v. Consequently, this is much higher

than the thermal energy of the electron. The relation between EF and

Ep is given approximately by

2

F E 12 (Ta ) . (1.6)

Therefore for high densities EFO ')) Ta, EF = E . One can consider

the free electron gas as completely degenerate with all the states

filled up to EF which will be called Fermi energy. For the present

problem, the potential given by Eq. (1.1) corresponds to a charge of

one electron distributed uniformly over a spherical surface of radius a.

One can substitute in (1.5) for no = 3/4ra3 or any smaller quantity,

as any sphere of radius larger than *a# also contains one electron.

Using the limiting value EFO is given as a function of *a" by:

E = 3.68 12 (1.7)
a

The charge density of electrons with energy E at any position

(r,,) is given by 12(r,e,). To obtain the total charge density,
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the value of l - (r,e,0)1 2 is to be averaged over all the possible

states in the Fermi band. Since for each energy there is a (2e + 1)

fold degeneracy of the angular momentum, the electron density at a

position (re,$) is

n(rE) (2 + 1) If(re,) (
0

As a result of the spherical symmetry of the problem (1.8) can also be

written as

n(r) = (2 + l)FoI EY(r)|2 v/ZdE (1.9)

0

where R.(r) is the radial wave function of the electron. For the

case of a free electron gas without the presence of any potential

field, the solution is R (r) = 4e(kr). As to be expected, (1.9) then

gives a uniform distribution throughout the medium, sincej(29 + 1)J j(kr) = 1.

The charge densities for various cut-off radii are shown

in Fig. (1.5). The ordinate is the ratio n(r)/n0 , where no is the

uniform charge distribution given by no = 3/47m3. Figure (1.5) shows

that the electrons tend to stay inside the radius "a". This effect is

extremely prominent for the case of a = 1.5, becoming less so for

smaller values of cut-off and finally approaching a uniform distribu-

tion as a = 0 which is the same as saying that the electron is

completely free. As it has been shown at the end of the last section

the bound level begins to appear at a cut-off of a = 1.75. When a = 1.5,

the quantized level is just about to appear, consequently the electron
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has a tendency to become partially bound by the nucleus and there is

a higher probability for the electron to stay inside the cut-off radius,

1.3 Self-Consistent Calculation of the Potential

Having solved the wave equation with the assumed potential

field and determined the charge density, the next step is to calculate

the potential function.

Let n (r) be the charge density at r due to the jth electron,

then the potential of the ith electron at a psition r1 can be written as

eV (r 1) =e 2 + e2 j nj(r2)d , (1.10)
n in j 12

The first term is the potential energy due to all the hydrogen nuclei

and the second term is that caused by all the electrons except for the

one considered, since the electron does not act on itself. However,

(1.10) is not a satisfactory expression for the potential energy since

it has not taken into account the antisymmetric property of the electron

wave function.

Let u, be the normalized one electron wave function of both

coordinate and spin, then the antisymmetric wave function of the N elec-

trons can be written as

u.I(X1) ul(x2)'''-'-" Un

U2 (x1 ) u2(X2) ''--''-''u 2 (xn)
1(1.11)

u(x) Un(x2 ''''''''u (x )
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where x., X2p**,*mn are the coordinates of the respective electrons,

and i satisfies the equation H'= Ej!. It has been shown by many

authors that the Hartree Fock equation, which is obtained by varying

the one electron wave function so as to make the energy an extreme, gives

the best set of one electron wave functions for self-consistent calcula-

tions. The equation is of the following form :

Hu,(xl) + * u(x2)Uk,*) 2d x)
(,,?i U 12 2ixl

- fl(x2)ui(x2) 2 dx 2juk(xl) = Eiui(x). (1.12)

The integration of dx, includes also the summing of the spin. The

second term at the left of Eq. (1.12) represents the potential due to

th
the charge of all the electrons including the i one concerned. The

last term can be shown to represent the exchange potential. The ex-

change charge density represents a charge equal to that of one electron

caused by all the electrons having the same spin as the one considered.

The explanation given here was first carried out by Wigner and Seitz(14

and extended by Slater(15) . Although in both (1.12) and the potential

energy given by (1.10), the electrons are moving in the field of all

the nuclei and N-1 electrons, yet they differ in the fact that in (1.12)

the effect of this removed electron is localized at the position x, of

the ith electron; whereas in (1.10) the similar effect being spread out,

it can be considered as equivalent to the reduction of the nuclear

charge by an amount of 1/N of the removed charge. This effect is
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consequently much smaller than that given by (1.12).

Although (1.12) gives a good description of the averaged

field in which the electrons are moving, unfortunately its applicability

is greatly hindered by the difficulties involved in the evaluation of

the exchange term. The unit charge that has to be removed can be

considered as being localised around the ith electron with a spherical

symmetry and the dimensions of the exchange hole depend primarily on

the electron density at the point concerned. Slater(15) has suggested

that the exchange potential can be obtained by using that for a free

electron gas. This simplified exchange potential energy at a certain

position r has the form

13
eV(r) =6 (1.13)

where n(r) is the charge density at the point r concerned. Therefore

by combining (1.12) and (1.13), the potential energy of the i elec-

tron is

eV~r ) = f -r + n (r2)d(tc (.4

n ln j 12

(1.14) can be further simplified by considering the model used in the

present treatment. Here it is essentially an electron band surrounding

the nucleus. The electron band and the nucleus form a neutral unit with

a radius 5. So far in the discussions, the cut-off radius "al has been

used as that of a neutral unit. Inside this neutral unit, an averaged

potential field of spherical symmetry is assumed; therefore, the



existence of the other ions outside the unit considered does not play

an explicit role in the determination of the wave function. One can

then venture to carry out the self-consistent calculations just within

one neutral unit. Similar measures can be taken for all the neutral

units around each nucleus and attain a self-consistent result through-

out the medium. The assumption makes it possible to reduce (1.14) into

simpler form:

eV(r) = - +n(r'dr' + 2 4lTrn(r')dr' - 6 [3
(1.15)

0 r

where S is determined by the relation

I 4r'2n(rf)drl = 1
0

(1..16)

The first term in the right side of (1.15) does not involve a summation

anymore, since only the field due to one nucleus has to be concerned.

The second term is the field due to the electrons inside the radius r,

while the third term is that due to those lying between r and 9. The

integration does not have to be extended to the region beyond r =9

Equation (1.15) can be calculated with the use of n(r) given in Sec. 1.2.

As a first trial, it is simpler not to take into account the correction

due to the exchange. By evaluating (1.16), it is found that the value

of S so determined is smaller than "a", consequently the potential
calculated by (1.15) approaches zero at r = instead of r = a. More-

over, a comparison of the calculated potential with that assumed does

20.
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not give satisfactory agreement. The discrepancy might have been

expected, however, since the calculation has been started out with a

rather crude assumption. For further improvement, if the method

developed by Uartree is to be followed, then a new potential has to be

assumed and a numerical integration of the Schr~dinger equation carried

out. In order to avoid this cumbersome calculation, a simplified

procedure is developed.

As has been shown previously the cut-off radius "a" can be

considered as an averaged distance between the nearest electrons and

the nucleus. It has also been assumed that the Fermi energy is deter-

mined by an electron density corresponding to unit charge in a volume

of 4na3 /3. By doing so, it is automatically assumed that this averaged

radius is at the edge of the neutral unit. In order to increase the

value of 5, one has to reduce the charge density n(r) inside the

radiusS. This can be done by decreasing the Fermi energy, which is

the same as saying that the density n0 is reduced. Let us define a

sphere of radius 0 such that there is, in the average, one electron

inside it:

I3 M o

There are now two parameters P and 9 at our disposal, the

adjustment of which will be carried out in such a way as to obtain good

agreement with the assumed potential. The agreement is satisfactory if

the following criteria can be satisfied:
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(i) n (r)4rr2dr 1 (1.17a)

0

(ii) V(s) = 0 (1.17b)

(iii) Vassumed(r = 0) = Vcal.(r 0) (1.17c)

Calculations have shown that the second condition V(S) = 0 cannot be

satisfied unless an extra constant is added to the potential energy

term

r (
ev = - + 2 n(r')47rr'2dr' + 2 n(r')h4rrdrt + V g(r) + V. (1.18)

r r J xcag
0 r

With the insertion of Vt, the three criteria can be fulfilled and the

self-consistent calculation accomplished. The physical significance

of Vt can be considered as the average potential of the electrons and

nuclei in the medium. The situation can be understood from the fact that

the net electric field due to all the electrons and nuclei does not

vanish at any position of the space. Since this is a mean value of

the field produced by all the particles, it should have a constant value.

At radius 5 the value of the potential will vanish only if this averaged

potential V is chosen as the point of reference.

Self-consistent calculations are carried out for a = 0.5,

1.0 and 1.5. The results are shown in Fig. (1.6). The agreement

between the calculated potential and the assumed one is quite satis-

factory. Better results seem to favor the case of small cut-off; this
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fact may imply that the approach used is more suitable for very high

density cases.

The parameters a, P and g bear the following relation in

their relative magnitude

a 4 9,< p. (1.19)

Since S satisfies the condition given by (1.17a), it is the radius of
the sphere inside which the net charge is zero. The distance between

each electron and the nucleus ranges from 0 to To get a representa-

tion of their average effect, their presence has been replaced by a

spherical shell of the same amount of charge located at certain average

radius. Consequently, "a" must be smaller than "9".

So far the problem has been regarded as a spherically

symmetric one; as a result of this justifiable assumption, the volume

of the sphere is equal to that of a sphere of radius E. However, one

cannot join them smoothly from one unit to the other, since it is

impossible to divide the space into equal volume spheres without having

some gaps existing between the spheres. This discrepancy is remedied

by the introduction of f. p can be considered as an effective radius

for a volume including the gaps. This effective volume may be of

certain geometric dimensions which will allow smooth joining from one

unit to the other. Since the "effect volume" is larger than 4irj/3, it

is not surprising that p is greater than S as shown by the result.
With the initial assumption that the nuclei are embedded in the free

electron gas, the electron band surrounding one nucleus should join

smoothly to that around the neighboring nuclei. It is to be expected
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that the Fermi energy should also be determined by the density cor-

responding to unit charge in the effective volume /4r13/3. The values

of P, , and V as functions of a are shown in Fig. (1.7).
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CHAPTER II

DETERMINATION OF SELF-CONSISTENT POTENTIAL FOR BOUD ELECTRONS

IN THE HIGH DENSITY HYDROGEN GAS

In the previous chapter, the method of self-consistent field

has been used to determine wave functions of electrons in a completely

ionized gas medium. In order to get a further understanding of elec-

trons in gases of various densities, it is necessary to extend the

method to the case of a high pressure atomic hydrogen gas. Starting

with an assumed average potential given by Eq. (1.1), the wave equa-

tion will be solved for electrons of negative energies and the discrete

energy levels determined. As a consequence of the close approach of

the atoms, it is possible for a bound electron of atom A to get to the

vicinity of the nuclei of its neighboring atoms. The fact that an

electron can no longer be considered as being bound by a particulat

nucleus, suggests the possibility of using wave functions of the Bloch

type for a single electron wave function. The electron wave is considered

as a modulated wave travelling in the medium with various possible

energies; consequently the discrete energy levels will spread into

bands whose widths are functions of the interatomic distance. In this

chapter, the energy bands of electrons in gases of various densities will

be determined and self-consistent calculations of the potential field

will be carried out.
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2.1 Solutions of Wave Equations for Negative Energy Electrons

The wave equations to be solved are

2j+ E + 2 -) 0 r t a (2.1)

2 t + Et= 0 r a (2.2)

Since only a high pressure gas is of primary interest, discussions will

be limited to atoms that possess only the ground level. The density is

so high that no bound excited levels can exist. Consequently only

solutions corresponding tol = 0 have to be found. The detailed solutions

of Eqs. (2.1) and (2.2) are given in Appendix IIA.

In previous discussions, it has been shown that the phase

shift of a positive energy electron in a potential field depends strongly

on both the energy of the electrons and the range of the force. Similarly,

the energy of a bound level is primarily governed by the range and depth

of the force field under consideration. To determine the discrete energy

levels, it is convenient to introduce two dimensionless quantities 3
and given by:

F !&.E k'. 2.3)

Fh !E- a (2.4)

3 and I being the variables upon which the position of the energy
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levels depend. From (2.3) and (2.4), it follows that

2 2 = 2a (25)

Another relation between and can be obtained by the continuity

conditions of the values and slopes of wave functions at the cut-off

radius a. It is shown in Appendix IIA Eqs.(5) that 3 and satisfy

the relation

1 F1 (-4,3,2 )_
F(X) F(-,2,2 ) = + 1 (2.6)

where X satisfies the condition E' 2 (2.7)

The energy levels can be determined by a graphical solution

of the two simultaneous equations (2.5) and (2.6). The values of 3
and are given by the points of intersection of the two families of

curves shown in Fig. 2.1. The energy level determined is plotted as a

function of the cut-off radius in Fig. 2.2. The first excited level

which corresponds toP = 0 and sets in at a = 6.48ao is also shown in

Fig. 2.2. Since only the high density case is of interest, calculations

will only be made for cases that have cut-off radii smaller than a = 6.48.

In general, the energy of the first bound level E can be

written as:

E 2 + .*(2.8)

As the range of the potential field increases, the electrons become more

-4



2.0

2.5 3.0

-=3.0

(B)

4-=2.5

(A)

0-=2.0

2 2

(A) ( ' 2a.

(B ) (I - F- (2 - -

3.5

Fig. 2.1 DETERIINATION OF THE BOUND ENERGY LEVELS FOR VARIOUS CUT-OFF RADII

3 - a ,-

32f) =,li-
)2123)

1.5

1.01

0.5

0
2.0

32

4.0 1

=PI a



33

0

0.61-

0.8

2 4

(a)

ROUND LEVEL
SC:T- ' YrI TPT I W\/fl

Y~ L#/ I II ~ I L-d'~'~. I I L~I~ I-I-- V ~

Fig. 2.2 IONIZATION POTENTIALS AS FUNCTIO1N8 OF CUT-OFF RADII FOR

ELECTRONS IN THE FIELD

V = -(l - 1)

V = 0

r a

(a.)G
I -) i-C

I

02

0.4

66



34

tightly bound and the energy approaches the value of the ground level

of a normal hydrogen atom as "a" goes to infinity.

2,2 Determination of the Energy Band

The solution obtained in the last section is that for an elec-.

tron of a single atom in an assumed potential field. As the atoms are

close to each other, the solution of the Schrodinger equation must be

some linear combination of the wave functions for single atoms. It has

been shown by Bloch that the wave function of an electron in a

periodic potential field can be written as:

(r) = 1 0. r( - Oekr (2.9)

where 0(1i r - r 1) is the wave function of an electron surrounding the

th -* thJ nucleus. r. is the radius vector of the j nucleus. N' is the

normalizing factor. For cases where overlapping of wave functions is

negligible, N' is just equal to the number of atoms in the medium. The

wave function given by (2.9) gives a good description for electrons in

the medium concerned. At points near a nucleus, save for a constant

factor, it behaves similar to an electron bound to a single atom;

whereas it is more like a plane wave with wave number iklin the inter-

atomic space.

In determining the energy of an electron described by the Bloch

wave function, the single electron wave function g( Ir - r ), which

satisfies Eqs. (2.1) and (2.2), is calculated by using a potential of the
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form:

U = -( 1 - 1)
1-r - -9 a1 1

U = 0

There is a potential of the same type

potential of the whole gas medium is

V(r) = kU( li - I )
a i

r - r a (2.10)

ao - r h nc a

about each nucleus; hence the

ri -iy Y| a

Both U( r? - i j1) and V(r) are shown in Fig. 2.3. The Bloch wave

function I satisfies the equation

V 2f+ (E - 2V)f= 0,

from which one obtains

J + 2V(r) dt

J 1. 2 d.

Since the unperturbed wave function O(Ir - r.I) satisfies Eqs. (2.1) and

(2.2) and the potential is given by (2.10), therefore in order to carry

out the integration, it is more convenient to write the potential func-

tion as

V(r) = V(r) + U (i -I | () - rU(;' -r&3i) (2.14)

(2.11)

(2.12)

(2.13)
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By using (2.14), it is shown in Appendix IIB that (2.13) can be

written as:

E = E + (2.15)

where E is the energy of an electron of a single atom. The values of

C, A, and D are given as follows:

(i) C =f (T - iI ) V(r) - U(I - I)$Y ) d-c (2.16)

The difference of V(r) and U(fi - I) represents the

field due to all the atoms other than the one at the position r.

Therefore C is the average value of the potential given rise to by all

the neighboring atoms. Since V(r) - U(11 - I)' is always negative,

the effect of its presence is to make the energy E more negative than

that of E 0 This is to be expected, since when the atoms are nearer

to each other, the Coulombian energy of the electron increases in

absolute value.

-ik(
(ii) A e ( -i l)LV(r) - U(r)J $(r)dt (2.17)

1~ #0 J ,I

where is the inter-nuclear distance. This represents the effect of

the potential of the neighboring atoms averaged over the overlapping wave

functions. A is a function of both the propagation vector k and inter-

atomic distance. It gives the major contribution in determining the

width of the energy band.
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(iii) (2.18)D 3e () $(r) d.
01 f i

Since the 0(r) 's are normalized wave functions, D is the trw which

gives the modification of the normalizing factor. The magnitude of D

depends on the amount of overlapping between the neighboring wave

functions.

(2.1) and

To evaluate the integrals C, A and D, solutions of Eqs.

(2.2) are used for O(r)

0(r) = ~Le~"F(-X + l,2,2sr)

N 1
#(r)~ = -- 2/arr

r a

r a

(2.19a)

(2.19b)

where N and N2 ,normalizing factors, satisfy the condition of continuity

at the cut-off radius a.

and E =- + 2
o % 2 a

As calculations show that both a and X differ

Eq. (2.19a) can be reduced to

very slightly from unity,

0(r) = --- (2.20)

For a = 1, (2.20) is the same wave function as that of a normal hydrogen

atom except for the difference of the normalizing factor. When electrons

a = ) -, 0 I)jI '=T E0
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are near to the nucleus, the Coulombian force provides the major effect

in determining the electron wave function. The cut-off potential affects

chiefly the part of the wave function outside the cut-off radius. (2.20)

can be used in evaluating A, C, and D. Although the wave function

deviates somewhat from that of the exact form, the energy determined can

still be fairly accurate, for the exact wave function gives a minimum

of the energy and therefore the mean of the energy over a poor wave

function is nearly correct. Evaluations of A, C, and D involve wave

functions having different points on their origins. The integrations

can be carried out by using the expansions given by Coulson(16)

For calculating A and C, integrals of the following form have

to be evaluated:

Oe#()#.- (1'r - )d T- (2.21)

This involves wave functions belonging to two different origins and a

potential function with a third point as the origin. The evaluation

can be simplified considerably if the actual potential U(I'r - 1) of

the third atom is replaced by an averaged potential which is defined as:

2 = X- + 2 sin 0 dr dO d$ (2.22)

0 0, 0

where 4. is the volume of a single atom and x is the radius of the atom.

Similarly to the case of determining the Fermi energy for the ionized

gas, the cut-off radius "a" can be considered as that of an average
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radius of the atom. If for the first approximationn.= 4 a3, it

follows from (2.22) that

V = - . (2.23)

As U( j7 - 1) has a non-vanishing value only inside the sphere of

radius "a" with as the center; and the values of both wave functions
i 3 -alri -a ir-

O(r) and 0(1~ - ') are of the form and a /7% -

which decrease slowly as Iri and ~ - Tiiincrease, consequently, it is

justifiable to replace U(1? - 1) by the averaged value in evaluating

the integral. The potentials with and without approximations are

shown in Fig. 2.4. The atoms are drawn in such a way that they are

contiguous, since only under such a relative configuration do the

wave functions give appreciable contribution to the value of the

integral.

With this approximation, all the integrals can be readily

evaluated. The detailed evaluations are given in Appendix TIC and

the results are as follows:

N2  -2ot L
C = - P . +l (,I+ p) ' (2.24a)

#0 C (2(4) p0

-ik. N N2 N1N2  -a
A = 0 e h(a a,a) - --- av + e (2.24b)

D = 0i f'h(a a) + 2cra J

D = e i ea F(cz~a,a) + e pa6a 22c
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where the constants B, CC and functions h(aaa), F(a,oa) and

p(aac,a) are defined in Appendix IIC.

In order to determine the energy, the summation over in

(2.24) must be carried out. For atoms in a metal, the relation between

vector k and is definite once the direction of k is specified. In

the present problem t only represents an arbitrary direction of propaga-

tion and the angle between I and r i varies at random; therefore, an
average over all possible directions of should be made. This can

be fulfilled by replacing the summation in (2.24) by an integral.

For example (2.24c) becomes:

D = S eik[!# F(a,o,a) + e9 p(a,a,a) r2d (sin e dO d$ (2.25)

o 0 2x

where, as shown previously,-sl is the volume of each atom and the lower

limit of integration is the minimum interatomic distance.

With the values of A, C and D, energy bands corresponding to

cut-off radii equal to 2.5, 3 and 4 atomic units are calculated.

Figure 2.5 gives the energy as a function of wave number k and Fig. 2.6

shows the variation of the bandwidth produced by the change of cut-off

radius "a". Calculation for a = 2 is not shown, since for this case

the electron is not very tightly bound and there is a great deal of

overlapping between wave functions of electrons of the neighboring

atoms; this is a situation for which the Bloch scheme is no more

applicable. The bottom of each energy band is lower than the corresponding

discrete level; this is the consequence of the increase of the Coulombian

energy. It can also be seen in Fig. 2.6 that the band, becoming narrower



+3

as the cut-off radius increases, approaches the ground level of a

normal hydrogen atom at the limit.

2.3 Self-Consistent Calculation of the Potential Field

If the gas

of all the electrons

single electron wave

the wave function of

medium is considered as an entity, wave functions

should be an antisymmetric combination of. all the

functions. It is shown in the last section that

an electron is:

(2.26)n(r) L eni$rm -rj)k.tn [ rNj )XC

where rm is the radius vector of the mth electron, N' is the normalizing

factor andX.(c ) is the spin function. 'fn(rm) represents the wave

function of the mi electron with an energy of propagation corresponding

to wave number k The wave function for all the electrons is of then

form

tl( 1 2(r2).....(r )

with all the possible permutations of all the r n's. It can be shown that

the I s are orthogonal for functions corresponding to different propaga-

tion energies (7). The antisymmetric wave function of the medium is of

the form

-f ( r.

2 2(rl) I 2 c 2 )

In(r2
l(rl) K 2(r**'''''''''(rn

(2.27)
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where N is the number of electrons.

The probability that an electron with coordinate r is at

the volume element dTj is

- 1. =ffff.. d 2 dt.....ds,, (2.28)

The integration is carried out over all coordinates other than -.

Substituting the value of i given by (2.28) and making use of the

orthonormal properties of f's; it can be shown that the total charge

density at r is

A(r) f n(r) 2 (2.29)
n

where the summation is to be carried over electrons of all energies.

In problems on metals where atoms form a regular periodic

array, it is usually more convenient to discuss energies and densities

in the reciprocal lattice space; the structure of which is based on

the periodic and symmetric properties of the propagational vectors (k).

The space is filled with cells of equal volumes. It can be proved(lS)

that the volume of the unit cell in the reciprocal lattice space is

such that there are the right number of states in each cell to accomodate

two electrons per atom. For alkali metals that have only one valence

electron, the valence bands are only half filled. For the present

problem, the direction of k is chosen at random; therefore, it is

justifiable to assume that the cells in the k space must have spherical

symmetry. However, the unit cell cannot be a sphere on account of the



fact that it is impossible to fill up the space with spheres.

The number of electrons in a volume JLin configuration space
-6 40 -4

and in a volume of dk dk dk can be written as
ly

dN = dk dk Y4k (2.30)

For problems of spherical symmetry (2,30) becomes

dN = k2dk (2,31)

From the Fig. 2.5 of the energy as a function of k, it can be shown

that the value of k corresponding to the maximum energy satisfies

approximately the relation

k (2.32)

This resembles the relation in the theory of solids between the

translational vector 1 in the reciprocal lattice space and the primitive

translation of the lattice which is given as

-4> -:b

N ik. = 2wT (2.33)

where ni = 0, + I, 2, ..... The difference lies in the fact that

there is no translational periodicity in the present case. If (2.32)

is taken to be the maximum radius for the integration of (2,31) and if

itL is assumed to be 403/3 for the first approximation, the integration

shows that the densities of states cannot accommodate even one electron,

The situation can be improved, however, by redefining an effective
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volume for the atom. If Eq. (2.32) determines the boundaries of a

cubic cell with the nucleus at the center, it can be shown that this

volumell for N = 2 is 8a3 . This will lead to a half filled bamd for
C

a monovalent element. In order to take into account the empty gaps

between the spheres, one can assume that .O1C is the effective volume

of the atom. By substituting .1c into Eq. (2.31) for the volumelL,

the maximum value of k for N = 1 can be determined. By using the

wave functions for electrons of all energies, the total charge density

can then be calculated by summing the densities over all the possible

states up to the maximum value of k thus determined.

In Chapter I, the self-consistent calculations are performed

by adjusting a parameter 0 which determines the Fermi energy of the

free electron band and is also the radius of an effective volume in

which the net charge is zero. The exchange' potential is determined by

using the free electron approximation. Due to the complicated form of

the exchange integral, it can only be evaluated for cases either of

free electrons or those of tightly bound ones. Figure 2.6 shows that

for cut-off radius 3a or 4a', the energy bands are not very broad;
0 0

therefore the electrons resemble more of the tightly bound case;

whereas for the broader bands, the free electron approximation previously

used can be applied.

When the electrons are more. tightly bound by the nuclei, the

overlapping of the wave functions belonging to the neighboring atoms is

small and the band is narrow. The exchange correction for the electrons

with wave functions of the Bloch type has been worked out (19) for the

-4
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case of narrow band. It can be shown that the effect of the exchange

integral reduces the potential due to the electrons by one half of

its original value; since only electrons of the same kind of spin give

a non-vanishing exchange integral.

Self-consistent calculations are made for a = 3 and a = 4.

Although the calculated potential can be altered by changing the size

of the effective volume, calculations show that better agreement can

be achieved by readjusting the cut-off potential. The assumed potential

about each atom is of the form given in Fig. 2.3, and it has also

been seen that in order to evaluate the exchange integral A, an approxima-

tion illustrated in Fig. 2.4 is used. Consequently, one is led to test

the possibility of obtaining self-consistency by making a less sharp

transition between the two types of potential in Fig. 2.4. This can

be done by letting

V r a

(2.34)

- 1 2V =V -. = g r 2a 3

Schrodinger equations with potentials given by (2.34) can be solved

analytically by the method given in Appendix IIA. By using the

solutions corresponding to the new potential, the self-consistent

calculation is performed and the results are shown in Figs. 2.7a and

2.7b. The agreement between the assumed and calculated potentials is

quite satisfactory. Greater deviations occur in the region near r = 2a/3,

since this is the position corresponding to a discontinuity of slope of
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the assumed potential, it is natural that poor results occur at the

position where the assumption made on the shape of the potential is

not satisfactory.

This method of obtaining self-consistency is different from

that previously used, yet a closer comparison shows that the results

obtained are in good conformity with each other. In the method used

in Chapter I, in addition to the adjustment of the parameter P, it is

necessary to introduce an average potential V1. The charge density is

given by 3/403 and the cut-off radius "a" is smaller than "p". In

the present calculations, V is an average potential, the charge density

is determined by the effective volume 1.c, the equivalent radius of

which is larger than the radius of the spherical shell of charge in

the assumed potential.
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CHAPTER III

CALCULATIONS OF M{E OPACITY OF A HIGH DENSITY HYDROGEN GAS

In the previous discussions, the wave functions of electrons

in a hydrogen gas are determined for the case that the electrons are

completely squeezed out of the bound levels as well as for the case

that they remain being bound with their ionization potentials lowered.

The results are to be used in the study of the opacity of a dense hydrogen

gas. In order to make further discussions easier, we shall distinguish

the two cases by considering the first case as a "pressure-ionized"

hydrogen gas and the latter case, atomic hydrogen gas.

In the temperature range that is to be covered by the present

study, the opacity due to scattering which occurs at high temperature

will not be considered. The photoelectric absorption of the bound elec-

trons and the absorption of the free electrons in the presence of the

nuclear fields give the major contributions to the opacity of the gas.

The reduction of the total intensity of radiation in passing through a

certain thickness'of medium depends both on the number of electrons in

the medium and the intensity distribution of the radiation. According

to Planck's law, the distribution of the intensity of radiation in atomic

units is

I(co hc (3.1)

T
a -l
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where co, Ta are defined in Appendix IA.

An absorption coefficient per electron a for a given frequency

is defined in such a way that the intensity of radiation of frequency Co
-Na

is reduced by a factor e C in passing through 1 cm length of a gas

containing N electrons per cc. a is given in the unit of cm 2 In the

study of opacity, an absorption coefficient kco is defined such that the

intensity of radiation is reduced by a factor o in passing through

1 cm length of a gas of densityrL. k is obtained by multiplying a

by the number of electrons per unit mass of material. In studying the

opacity, there are two quantities that are of interest. One can either

study the "straight mean" of the atomic absorption coefficient which is

defined as

k I (o)dco

K = o Co (3.2)

rI()do
0

or express the opacity by the "Rosseland mean"(21) which is given by:

_ I )T
1 0 3 -3a

fn T M

o 0
T

where k' k (1 - e a) The Rosseland mean is an energy-transparency
Co a)

mean, which also takes into consideration the temperature dependence of

the radiation intensity. The extra factor (1 - e a) is introduced

by Rosseland to eliminate the stimulated emission from the absorption.

Radiation incident in a given direction stimulates emission in a direction

0 -nem ____ - - - .'_ -
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exactly parallel to itself. However, the absorption followed by stimulated

emission has no influence on the net flux of energy and therefore k' is

used instead of k.

The coefficient of opacity of the stellar material has been

calculated by Eddington using Kramers' formula for the absorption

(22) .. (7)coefficient. Stromgren has applied the quantum mechanical

calculation of the absorption coefficient to evaluate the opacity of

certain gas mixtures. Evaluation of the opacity for high density gas

mixtures has been carried out by Marshak(23) and Morse (24)using the

Fermi Thomas potential for the gas atoms. In general, the opacity can

be expressed as a function of temperature, gas density, and the con-

stituents of the gas. For the present problem, the dependence on the

constituents is not considered. In the following calculation of the

opacity of hydrogen gas, a general description of the methods used in

the determination of the absorption coefficient and the opacity will be

made. This is to be followed by the results of calculation and a dia-

cussion of these results.

3.1 Opacity of a "Pressure-Ionized" Hydrogen Gas

For the very high density case where no bound states exist,

the free-free transitions give the only contribution to the absorption

of radiation. The absorption coefficient a of an electron with energy e

absorbing a radiation of frequency 4O is given by the quantum theory of

radiation as:
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a 0 ) =7()(a )0 (M-1,6,12 y ll)

aq( ,9s ,) 2 CM5 r34)
r2

where the matrix element corresponds to the acceleration, e and e

are the energies of the initial and final states, a is the Bohr's radius,

cD is the frequency of absorption, and I is the orbital angular momentum

quantum number of the final state.

For the sake of convenience, the absorption coefficient is

usually expressed in terms of Kramers' formula multiplied by a factor

"fg(M,s )" which is called Gaunt's factor. Using Kramers' formula, the

absorption coefficient for the free-free transition can be written as

a = ( ) ( ) L g(,) m5  (35)
a 3(3 e 2s W

To calculate the absorption coefficient as a function of frequency, one

has to sum over all the electrons in the initial states; moreover, the

transition can only take place when the upper state is vacant. Using

the Fermi-Dirac statistics, the number of electrons per unit volume

having energy between z and s + de is

(1 ) _A- de de (1) (3,6)

0 1 + e Ta + e /A a0

where A = e and e is the Fermi energy. The value of A id determined
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by the number of free electrons N per unit volume

T 3/2 0"1/2 1
N = a x dx ( ) (3.7)
e0 1 + 1 e aA

where x = s/Ta.

At high temperature such that kT >> s, the distribution is

Maxwellian and it can be shown that A is given by

3/2 3
A = 4N ( ) (a ) .3.8)

For the general case, A is determined by Eq. (3.7) and its value

corresponding to various electron densities is given by Morse.(24) The

probability that the upper state is vacant is

e + C

1 Ta
1- -

e i +C e +o (

1 T 1e +1 e +1

By using Eqs. (3.5), (3.6) and (3.9), the absorption coefficient

per gram for the free-free transition can be written as:

S +W

Ta

k(co) X 106 + 6 g(c'si)de ama/g (3.10)

(1 T + 1 TaA)( A
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If the g factor is independent of the initial energy, then (3.10) can

be integrated. The absorption coefficient becomes

a)
6 *c

4.87 x 106T a Ta(A+12
k(m) = e (A+O) Am2/g (3.11)

T T
(e a ea + A

It can be shown that for a non degenerate case (3.11) reduces to

k 1.565 x 10-17 Ne 2() am2/g (3.12)(//2

a

For most cases in the present calculation, g(wee) is not slowly varying

and Eq. (3.10) must be evaluated by a numerical integration. It has

been shown in the first chapter that the free electrons form a Fermi

band with all the energy states filled up to the Fermi energy. The

only transition that can occur is between a state in the Fermi band and

any one above the band. Since the electron gas has been considered as

highly degenerate, Eq. (3.10) can be written as:

k 4.87 x 106 f F g(0*i de cm2/g (3.13)

Having determined the absorption coefficient, the opacity is

then calculated by finding the "Rosseland mean". Substituting (3.13) into

(3.3) and using the dimensionless variable u = oq/Ta, one can show that

the opacity( is given by:

wwb - -MOOT"
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u 4 e2 u(eU - )3du . (3.14)

A discussion on the evaluation of the Rosseland mean is given in

Appendix III.

3.2 Opacity of a High Density Atomic Hydrogen Gas

Through the process of photoelectric ionization, the bound

electron becomes free after the absorption of radiation. For gases of

high density such as- that shown in the second chapter, only the }{ level

exists; therefore, to calculate the opacity of such an atomic hydrogen

gas, only the absorption by thejK electron and that of the free elec-

tron have to be considered. The absorption coefficient of a K elec-

tron can be written as:

4re 2 2 /2 2 2
a = )((aO) ( f =0,aSi rl E=1, a ) cm (3.15)

where W is the frequency of absorption and e is the energy of the final

state. The matrix element is that of dipole radiations. As in the case

of a free-free transition, it is convenient to express the absorption

coefficient in terms of Kramers' formula multiplied by a Gaunt factor.

The g factor for the bound free transition of a hydrogen atom has been

evaluated by Menzel and Pekeris and many others. It is a slowly

varying function of frequency and differs not much from unity over a

certain range of frequency. The absorption coefficient per gram can then
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be written as

1 16 e 2J( 1 2 (.6k =m- e g (w) cm2/A (3.16)

where Ry is the Rydberg constant and MH is the mass of the hydrogen atom.

The number of electrons having a negative energy -I is

2 1(3.17)

1+ e a
A

and the probability that the final state is vacant is

I+c
T

I + 1T
1 a+

The absorption coefficient for the bound free transition is then obtained

by multiplying (3.16) by (3.17) and (3.18). To calculate the opacity,

the total absorption coefficient due to both the bound free and free-free

transition must be considered. For frequencies lower than the ionization

potential, the contribution to the absorption is given by the free-free

sF/Ta
transition alone. In the high temperature region when e 4<<. 1, the

electron gas is non degenerate, the absorption coefficient is given by:
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k =9.484 x 106 m 2
u3 T 3.5c 4

a I/T 3.19)

km =2.484 x 106 
e. ' a

a

where VL is the density of the gas and the g factor for the free-free

transition is taken as unity. This approximation is justifiable if the

gas is non degenerate, since it can be shown that for a non degenerate

gas the bound free transition is more important. The opacity can then

be calculated by substituting (3.19) in (3.3). The result is usually

expressed in the form:

6)'- 1 2
K = 9.484 x 10 c 1 cm /g (3.20)

a

where t is called the "guillotine factor". For temperatures such that

the Maxwellian distribution is no more valid, the exact form of the

absorption coefficient has to be used. This is given as:

k 4.87 x,106 e eu(A + 1) Cm2/g
e 

u3T2 eu + A a

k = 6 4.87 x e06T gt() I U(A +) (3.21)
W u33 a eU_ 1 eu+ A

6-I/T a + u
+ 4.76 x 106 A /T -I/T + u C2

1 + e a/A e a + 1



62

g'(o) is the g factor for the free-free transition and g(co) is that of

the bound free transition.

3.3 Results of Calculations and Discussions

Calculations for the "pressure ionized" gas are carried out

by using the wave functions computed in the first chapter. Absorption

coefficient is then determined by means of Eq. (3.4). The matrix

element is that corresponding to the acceleration. This is preferred

to the usually used one of the dipole radiation on account of better

convergence. Since the acceleration is proportional to grad V, there-

fore the matrix element vanishes in the region where the potential is

either zero or a constant. This simplifies considerably the procedure

in the evaluation of the matrix element, since the integration only

has to be carried out radially up to the cut-off radius. The method

used is given in Appendix III.

The absorption coefficient for electrons of a given energy

is obtained by summing over all the possible values of the angular

momentum. For low energy electrons, only those that have zero angular

momentum give the major contribution to the absorption coefficient since

the "closest approach" of those with large angular momentum is greater

than the cut-off radius. For higher energy electrons, absorption caused

by those with higher angular momentum must be taken into account. The

maximum energy of the absorbing electron is determined by the density;

it can be shown by means of the classical analogy that there is an upper

limit for the angular momentum such that the closest approach is within
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the cut-off radius. Calculations were made for cut-off radii a = 0.5 a0

and a = 1.0 a . As shown in Chapter I, the density of the electron gas

is determined by the effective radius 3. The corresponding values of p

are found to be 0.69 a and 1.31 a , respectively. The values of

densities are 8.29 g/c.c. and 1.21 g/c.c. for the two cases.

For the high density region, the g factor varies with the

initial energy of the electron. Their values are shown in Fig. 3.1.

For a cut-off radius as large as a = a 0 , however, g is only a function

of frequency. The absorption coefficient and the opacity are determined

by Eqs. (3.13) and (3.14). The density does not appear explicitly in

these equations. This is characteristic of a strongly degenerate gas.

The increase of electron concentrations does not alter the distribution

of electrons in the Fermi band. The change of concentration results

only in the addition of electrons with energies greater than the

original Fermi energy; consequently, the absorption coefficient does

not vary explicitly with the density.

Except for the g factor, the integral in the determination of

the Rosseland mean is of the form:

7 2u
u e du

(eu 3

where u = q Ta

The integrand has a maximum value near u = 7; it decreases

rather fast and becomes negligible as u ' 20. The temperature Ta

chosen for the present calculation satisfies the condition Ta < a F

Consequently for small values of Ta, only the low frequency absorptions
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(A) Gaunt factor for a = 0.5

(B) Gaunt factor for a = 1.0
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are important in the evaluation of the Rosseland mean. In other words,

only the electrons near the top of the Fermi band take an important

part in the absorption process.

Absorption coefficients for the bound free transition are

calculated by using the wave functions obtained in Chapter III. Their

values corresponding to various cut-off radii are given in Fig. 3.2.

They are compared with the absorption coefficient of a K electron for

a normal hydrogen atom. The essential difference lies in the shift

of the absorption edge with changes of density. At high frequencies

the effect of the cut-off potential is not important and the absorption

coefficients for all densities approach asymptotically that of a

normal hydrogen atom.

The opacity is calculated as a function of temperature for

a = 4a and 6a which correspond to densities of 0.0225 and 0.0065 g/c.c.

respectively. The calculations are made for a temperature range which

lies between Ta = 0.1 to Ta = 4. The results are shown together with

that for a completely ionized gas in Fig. 3.3. The values of the g

factors and the absorption coefficients are given in Tables IA, IB, IIA

and IIB. It can be seen that the opacity varies with temperature and

density. The dependence on the two factors is discussed as follows:

a) The Temperature Dependence

For the non-degenerate case, the opacity varies approximately

as T a-3.5 This is clearly seen in Eq. (3.19). When Ta is very high,

the opacity decreases faster than the T a- factor. However, for very
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TABLE IA

g FACTORS FOR THE FREE-FREE TRANSITION (a = 0.5a0)

Initial Energy e

0.40

1.3

1.8

2.6

Frequency o

8.84

12.8

30.0

7.31

11.2

14.3

18.5

28.5

5.76

9.72

12.7

27.0

2.08

6.*20

9.24

13.5

23.5

g

3.27

5.52
1.26

9.24

1.55

1.98

2.27

3.52
1.11

1.87

2.36

4.74

1.44

3.07

3.49

3.96

5.49

10-2

10-2

101

10-2

101

101

101

10 1

10-1

10- 1

101

10

10~

10~1

10-1

10~-

10~-

TABLE IB

g FACTORS FOR TIE FREE-FREE TRANSITION (a = a )

Frequency co

1.76

3.80

5.33
6.93

g

5.88 x 10~ 1

6.59 x 10~1

7.04 x 101

7.82 x 10~1
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TABLE IIA

ABSORPTION COEFFICIENT FOR a = 4a0

Frequency co
(in atomic unit)

0.553.

0.656

0.812

0.870

0.930

o.962
1.06

1.13

1.27

-18 2
Absorption coefficient a (10~ cm2)

2.08

3.46

4.63
4.75
4.70

4.63

4.31

4.06

3.21

TABLE IIB

ABSORPTION COEFFICIENT FOR a = 6a
0

Frequency o
(in atomic unit)

Absorption coefficient a (10 18 cm2 )

0. 706
0.826

0.859

0.916

0.955
1.14

1.35
1.50

4.78

8.53

9.89
8.21

7.19

4.65

2.78

1.91
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high temperature, scattering sets in and the present discussion is no

more adequate. As the temperature decreases, the opacity increases more

slowly than that determined by T ~-3'. This can be explained by

e /T
considering the effect of Ta on the value of A = e a The value

of "A" for the non-degenerate case given by Eq. (3.8) is

ir 3/2 3
4NA( ) (a )

a

For a given density, "A" increases with the decrease of temperature.

The probability that the upper state is vacant decreases as "A" in-

creases; this means a corresponding reduction of absorption processes.

Consequently, it results in a smaller value of opacity.

In the determination of the Rosseland mean, the reciprocal

of the opacity is averaged over the temperature variation of the

intensity of radiation for all frequencies. The integrand in the

Rosseland mean is a function of the variable u = %/Ta. For small

values of Ta, the absorption of the frequency immediately below the

absorbing edge gives the major contribution to the integral for the

Rosseland mean. Therefore, the free-free transition is more important

for lower temperatures. This fact has been pointed out by Chandransekhar. (25)

He has shown that for a highly degenerate gas, the opacity varies

essentially according to T a-2 . This effect is brought out likewise by

the present calculation. A change of slope is noticeable in a log K

versus log Ta plot as that given by Fig. 3.3.

For the "pressure-ionized" gas, no calculation is made for

temperature Ta greater than unity. Since the self-consistent determination
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of the potential is carried out under the assumption that the electron

gas is strongly degenerate, the temperature dependence of opacity for

this case comes mainly from the temperature variation of the distribu-

tion of the radiation intensity. The Fermi energy eFO is that for a

gas at absolute zero of temperature. This is no longer valid when

the condition Ta Ao 4 1 is not satisfied. The actual Fermi energy

EF will be displaced and there will be some non-occupied states and

some occupied ones below and above the Fermi energy. As it has been

pointed out previously that the electrons near the top of the Fermi

band give the major contribution to the absorption; the change of eF

as a consequence of temperature will affect the value of the opacity.

To get a better determination of opacity for such cases requires a re-

calculation of the self-consistency of the potential.

b) The Density Dependence

For a non-degenerate gas, the opacity increases with the

density at a given temperature. This is shown in the Fig. 3.3 for

Ta = 1. As the density keeps increasing, the gas gradually approaches

the state of degeneracy; the opacity no longer depends on the density

explicitly. In the lower temperature range, the opacity decreases with

respect to the density on account of the low values of the "g" factors

for the high density gas. The opacity increases at first with the density

and then decreases as the gas becomes degenerate. This is usually

considered as a "saturation effect" and it is shown for T =.l.

In pointing out the importance of the free-free transition for
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a degenerate gas, Chandrasekhar(25) has considered the free-free

transition as analogous to that of a bound free case. Since absorption

can only occur under the condition CO > SF - Si, this is as if the

electron with energy a is bound with an ionization potential eF - *

In the present calculations, by using the self-consistent potentials

and the model of ions embedded in a highly degenerate Fermi gas, the

analogy is automatically fulfilled. The opacities for densities

corresponding to a = 2a and 3a0 are not included,since, from the

results given by Fig. 3.3, the variation of opacity with density is

not very rapid for the range of temperature studied. As the density

becomes very high, the problem of electronic conductivity has to be

considered; this is beyond the scope of the present study.

3.4 Comparison with Previous Work and Further Suggestions

- in the discussion of opacity, the coefficient is usually

given as (3.20)

K = 9.48 x 106 n 1 i C 2
T 3.a

Without the factor 1/, this is just Kramers' formula. The results of

the present calculations show that t is much greater than unity. There-

fore the actual opacity for a high density hydrogen gas given by the

present study is less than that given by Kramers' formula. For Ta 1 1,

the "guillotine factorB for various densities are given as:
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n(g/c.c.) 1:(T = 156,00000) ,:&(T = 400,00000)

8.29 3.14 x 103 8.3 x 102

2.22 x 10-2 4.15 x 10 2.26

6.59 x 10- 3  4.04 x 10 1.35

*
The values are compared with the corresponding factor t

c2)
which is given by Morse for a certain mixture of Fe, K, Ca, Na, Mg, 0

and H with a density of similar order of magnitude. The temperatures

are not the same though they are also of similar order of magnitude.

The opacity of a pure hydrogen gas is considerably less than that of a

mixture. For an electron in an ordinary Coulombian field of a nucleus

with charge Ze, the energy level is given by

Z2

in n

if the shielding of the other electrons are neglected. The K shell of

the heavier element has a higher ionization potential. Although this

is reduced as a result of high pressure, it is still considerably

higher than that for an electron of a hydrogen atom. From Eq. (3.19),

it can be seen that for a non-degenerate case a high value of ioniza-

tion potential will favor the increase of the opacity. At a density

when hydrogen is completely ionized, the K shells of the heavier elements

still exist, the bound free transition causes the increase of the opacity.

Although hydrogen gas is the chief constituent of the stellar

matter, yet the study of the opacity of the star cannot be considered
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as satisfactory without including the other elements. This can be

carried out by further study.
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APPENDIX IA

Table of units used

Energy

Length

2
E .t

2a 
0

r r0

= 15.53 e.v.

= 0.528 x 10 -cm

Temperature

Frequency

2
T = 157,0000Ca 2a 0 k

w0 = Rydberg constant =3.29 x 05e1
2a 0 h

APPENDIX IB

Solutions of the wave equations for positive energy states with the

assumed potential

r a

V 0

r _4 a

r.> a

The Schrodinger equations are

2 + 2( 1

2 f+ E *-= 0

(1)

(2)

r :I a

r >- a

-A
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Let E - = El
a

Solutions of (1) have different forms according to whether

E' > 0 or E' 4 0. They are to be considered separately.

(i) E'4 0. i.e. E 4. a

r a

Let = f AP (cos O)L(r)

satisfies the equation

for equation (1) where L(r)

+ rdr
dr2 r dr

+ (E' + ar (+)JL = 0
r2

Let X= rL

d2dr2

or E' = -

,p=
2ar where a = --E'

Equation (3) becomes

r- + - + 1) X = 0/+ P 2 1

(E' + r),-r

Let X = 1

1

(4)

I( U+ -1) x- 0
r2



The solution of (4) is in the form

e- /2 f+1F +f + 1, 21 + 2F)

F is the confluent hypergeometric function.

The solution for the region r 4 a is

1Pg(cos ) )+1 +1 + 1, 2t+ 2, 2ar)

For the region r > a, the radial equation has the form

d 2R

d92

where e= kr

2dR

fdp

(5)

- (-e+ ).R =0
2 o

k2 = E ; the solution of which is of the form

R (r) = ( (kr)cosf nA(kr)sin

(6)

is the phase shift of theA partial wave and can be

determined by means of the continuity relation

AdRJ2LdR
1 0 .

R dr R dri r= a o r a

78

(k) t sin (kr - 2+ )
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dR

i r = a

jj(ka)cos - nj(ka)sin ]
r (ka) cos - (ka) sin,/

kV(ka) - Og j(ka)

Having determined .1 the normalization is determined so that

the wave function has the asymptotic form given by (6)

(ii) E' > 0

Solution of Eq. (1) can be obtained by letting

k' = r n = - I

=0 2ik'r

The solution is of the form

L =( f + ) a- P/21Fl( + 1 + -, 2.+ 2, 2ik'r)

which has the same asymptotic form as that given by (6).

A series expansion of L can be obtained in the form

C *0
L = (2+t) (2k'rf : C-0

(7)

(8)

If



so

where the C m' follow the recurrence relation:

(.2t+ 2 + m)CG+ + 2 C + M = 0

with C0 1

C -k'(1 +1)

has the following form

= L A+

(9)

(10)

k'r-

Ic, m (k'r)m

3 Cm MM

The normalization factor can be determined by the same method as that

given for E'4 0.
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APPENDIX IIA

DETERMINATION OF THE NEGATIVE ENERGY STATE

Equations to be solved are:

V 2 [+ [E + 2(l - ) 0

V 2f+ E =0

r a

r a

(1)

(2)

Solution for (1) is the same as that given by Appendix IB

,V (cos 0) (2ar+ +f + 1, Ze+ 2, 2ar)

E= -aI

1

For r> a

Gr2 = ) E

= ior

The radial wave equation has the form

d2 R + 2dR

d 2 PC
+fE - uf+ 1) R = 0

2

where

(3)

Let

(3)

-4
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the solution of which can be given by the spherical Hankel function

R = y hV (icr)

If R and R are solutions of the radial wave equation for r < a and

r > a respectively, then the continuity condition gives

1 dR
Sdr _i r= a

1 41
R 0 drJr a

For the case ofj 0, Eq. (4) gives

r F 1(2-,3,23 )

31 (l-.) F (l-X,2,2) +1

where 3 =a

Equation (5) together with the relation

32 2 = 2a

are used to determine graphically the values of and , from which
the bound level is determined.

(4)

(5)

(6)
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APPENDIX IIB

CALCULATIONS OF THE ENERGY BAND

To evaluate Eq. (2.13)

J2V + 2 V ( r ) ] f d x

J It 2d12 .

V(r) = V(r) + U(

(1)

(2)

The numerator of (1) becomes

i -iki r
0 (YorZl) 9

ik r- V.I)dT.
j

=t*Ef ad + I e
-ik. r

(Ir - )2[V(r) - U(ir - r,4 )]

ik.
I e -r(i r -r )d

Let

m

Let

(3)

ir . r U) - r(I - Y 1)

+ 2[V(r) + U(Ir - r 1 ) - U(I r - r ))
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then

Trh -drr (r

The second term in (3) becomes

N 1e JO( r - -4 )2LV(r) - U(r)J 0(r)d-C (4)

Similarly the denominator of (1) becomes

fl2di
-ik.r

e (ir - i)2 e
i. r

Jo((r rjl)d.

= N ' (k O - )$(r)d-

= N 1 + (r -* )(r)d ..# ik.

Substituting (3), (4) and (5) into (1)

-4 -1

-ik
2 .e re 0 ) (V(r) - U (r)) 0(r)d X

E= +0

# -7~jO(- 0-1~ If + e l # dT.

pi1

(5)



2J@ (r)UV(r) -U(r]J (r)dT.+ I e ( [V(r)-U(r)] $(r)d-c.

- 11. -v- -1+ e ( rl )O(r)dT
P. #0

+ A + C

where

A = 2 '1

C =2

f(J - V(r) - U(r) $(r)d.

U(I7 r7) (r)dT.

V(r) = U(r) +

0 -

q- o .

E
0

85

(6)

since

(7)

(8)

:: U( $r - ~-* ):o / (I
ej#

(9)
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APPENDIX IIC

EVALUATIONS OF THE INTEGRALS A, C, AND D

(r) = ear

N
$(r) =

-or

r 4 a

r > a

The integrals A, C, and D can be simplified by using the

expansion of
-. .n

and e-alr-fI
- -

IF
given by Coulson(16 )0

(1)
(r )

r >

(2)

=IX+ 1 / 2 (cr)Ke+ 1/2(ar)

*-aIr -r' ( ) (Cos 0)p (arr, ) (3)

(e,r, ) = rIf + 1/ 2 (aP)Kf + 1/2(ar)- I-/ + 1/2(ar)

= I +/2(ar)K + (/2 )-rI -1/2(a)K+ /()Ie+ 1/2 3/r) 2- l/2e)K + 1/2(af

r >

(4)

r <

Ir-
(cos 0) Y(a,rf)

(a,r,)=I + 1/2 + 1/2(a)
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where Im and Km are Bessel functions of the imaginary arguments defined

by Watson(20)

a) Evaluation of D

D = e (r-o*jO )%(r)d-c
Pi#0

where

Or i a <-a
( 1)J(r)d T ff %Par e - r2sin 9 dO do dr

0 00 a re-

N 2 2 r -a -ar 0r2e e 2
+ 41, r sin 8 dO dg dr

0 0 a

N N( r -air -

+ 0 r sin 9 d do dr

0 0 p-

N -r-aI

+ 4Y -*-, f ;.Orr r sin d d dr

0 0 +a F r



-N(..ap
11e

2o elf1 0
ae- (a-a)a

(a-) a

ae-(a+a)a 1 (a+)a) 1
(c:+ca) (a+a) 2 J

-2a + e - e }

a -a(a-+)
_-,) +

+ l e-a(a-a) + 1
an(a a-o]

+e a(a+ )
+ (a+0r) a

ae-a(a+a) 2[e

a+C -

- a(a+a) -2an-
e

-2a ,-a(a+a)

o.a (a+) G4+C a
0-2af - a(a+) ,-2af

4-a a

+2

Neglecting terms of small order of magnitude, D can be simplified as:

N2

202

e o00i
06 o ei 

+ 2a

e -appiI
e.....

e-2ari
+ a(a+a a -2a + a(a+al

eN 1 N2a
+2a {

N 2

+ 2a

IW M

(a+0r)

+ )

+a
+i

(a+a)

2 e-2-p

e 2craj



D -ik. ri N 2'C=i I (- (a-) +(a-a) (a-s) 2
ae-a(a )+ (-

i - e-(H+1)
(a+a)

N2
2

a -a(a-.) +
(;-) *

-a -a(a+) +

a -a (-)+ -a(am-) (1
(;:-Ya-7 a +a-

W-a (a--)

1
2

e-a(a+a)

- 2 a)J

.# -4 -<r1-ik.
= e F(a,,a) + e (5)

b) Evaluation of C

C = 2 IEf*(r) f i U( r - rj ) (r)dr
To e

To evaluate C, it is convenient to define the following quantities(1 6 )

~ (a)
P mn(a) = f r'n (2ar) dr (6)

89

err (1

1 U
a (aMa)

ap (aaa)



Pm4a] = amI (20ra)

An n + 1/2,n +

Bn n + 1/2,n + 1/2

C 4 
= Pn + 1/2,n + 1/2

2oa 2Ya

a

AO 02- e -ca

B 2aa +e-20-a
B 0 2a

-1 2cY

C A,
B = 020

1 2or

The general recurrence formulas for A n B n, and Cn are

A = a2An-2
(2n-1) A,

2a~

n-1 2nB 1B =
n o

A
=U or

90

(7)

(8)

(9)

(10)

(12)

('3)
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Since U(ti - f) vanishes except inside a sphere of radius a around

the jth nucleus, the integration of C can be carried out by moving the

origin to the jth nucleus

IS=2C = 2 2(r - )(-) dl.

!2 -air ~ I

( r 4 
)-* --

r -

N2  ,2 2 2 '+
1/2(2ar)K jP+ 1/2 (2a)P',g(cos 9)

SPR(cos 0) ( 1

(gi

After integrating over the angles, all terms drop out except for those

with P = I

C = 2 
0

I+1 (2r) I)
(rp, 1/ 'V+ 12(cr)(

(. + )r2dr
j r a

'a

02 -2ap

0 j (2a ri) 2

1 w~+~~
B + .. +

Pi~~ P = 0 P!(W-P) 10(4api)
(L4)

The series converges rather fast; for most cases, terms ofk = 2 can

be neglected.

C = 2
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c) Evaluation of A

A = 2 Ui. I(r)( U(iY -r)- U(r)] Or - )d,

The integral can be carried out for two different cases

(i)

(ii)

(i)

A = 2
0

N N21 2 J e-ar -a) I

re

(15)

Since - 1 + has non-vanishing value within the sphere
a.

IF - iI
of radius a around the nucleus, (15) is equivalent to

A= 2

- -+

e-ik. 
r

0

=2 e
0

J7yf -cvi -P
r Nr

0 0 0

e N 12 1 1--
o- (l, a(a-)

1 1 + - r2 dr sin 0 dO do

1 ,~ea(~a) '~

a+cY a(~+cr) 4

-ik.i 0if af
0

(16)

+] d--C
jr - |
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(ii)

'YN2

A = 2 7e

0
S

-9

e~~r e n z2 tlLiY

This integral can be simplified by using the approximation discussed on

Page ( ); (17) can be evaluated as

A = 2 en (V NlN2) (e - - 2o'a) (18)

Combining (16) and (18)

e ti ih(a,c,a) - 1 aV
ri Or2

+ VN 1N2

203
1w (19)

To replace the summation over by an integration

h (a)a, a) - AVd2 F sin k 2

2x Or k dF

ef sin k 2d

2x0+

-,- . - I - - - -7 -1
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APPENDIX III

A Calculation of the Absorption Coefficient

a) Absorption coefficient for the free-free transition

2O 2e1 3 ,)a02 1f

rr
+ (s -, )21 cm5

The matrix is to be evaluated only inside the cut-off radius.

The radial wave functions as given by Appendix IB are different

depending on whether E - 40 or E - Z 0

(i) E 2 0a

R Ne-ar F (l - X +,29 + 2,2ar)(2ar) (2)

(ii) E 2 0a

N (2k'r (k'r)m(2X+ 1) m (3)

For the high density gas which corresponds to the small cut-off

radius of the potential, the matrix element can be evaluated by means of

the series expansion. The integration can then be performed term by

term. If the integration involves the product of wave functions given

by Eqs. (2) and (3), integral of the following form is involved:



b

,)= I e ee dt

0

This is an incomplete gamma function and can be evaluated by the

following formula

b) = Je eldt =r(p) 1 - -bbL-l I9 .r(b)-.

0 0

b) Absorption coefficient for the bound free transition

a = 4 e(a)2O 1/2 =0,sirl=1,) 2 cm2

(4)

(5)

(6)

The radial wave functions for the matrix element are the solutions of

the self-consistent potential given by Eq. (2.34)

V = ( e V
ra

2a

r 2 a

r a=3

(7)

The solution for the K electrons is

R = N e-ar F1 (1-X,2,2cr)

=N e -r
2 cr

r L

S3

(8)

95



For the final state which corresponds to g = 1-

R = NF(2a'r)e-ar F (2-X',21+ 2,2a'r) r a

(9)

= ji(k'r)cos - n1(k'r)sin r 3

where the quantities %, a and 0' are those defined in Appendix IIA.

The evaluation of the matrix element involves essentially the integral

given by Eq. (5). Integrations are carried out separately for the

regions r a and r g a.

B Evaluation of theRomse -nd Mean

As shown by Fc. (3.3), the Rosseland mean is given by

- T T
1 0 (12 ) a (o

iz 00(10)

0

Let u =co/'Ta

h2 c3 (4a
e -

Equation (10) becomes
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4 u~-u U+ -u 3 du

1 1 -- e-
K ~

u 2 du

0 (1 - e-)

Since k can be written as f(u) L3

Jo 7 1 ue du

f(u) , (e 3
1 0

K uu d

u e du
0 u 2

2 15
0 (eu -1

Therefore

1 m7 2u
f(u) ue du

o (e - 1)

The integral S(x) = - r u e du has been evaluated by

0 (e - 1)

Stromgren for values of x from 0 to a* A more accurate table is

given by Morse. (24) If f(u) is a function of u, then a numerical

integration has to be carried out.
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