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Abstract

In non-coherent wideband fading channels where energy rather than spectrum is the limiting

resource, peaky and non-peaky signaling schemes have long been considered species apart, as the

first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR,

whereas the second reaches a peak rate at some finitecritical bandwidth and then falls to zero as

bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the

limited attention paid in the past to the product between thebandwidth and the fraction of time it

is in use. This fundamental quantity, calledbandwidth occupancy, measures average bandwidth usage

over time. For all signaling schemes with the same bandwidthoccupancy, achievable rates approach to

the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical

value, and decrease to zero as the occupancy goes to infinity.This unified analysis produces quantitative

closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for

(non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity

with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy

can be bounded.
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I. INTRODUCTION AND RELATED WORK

Recently there has been great interest in wireless channelswith a large bandwidth, owing

in part to the prospective investments onto the millimeter wave bands, where vast quantities of

new spectrum is readily available [2]–[5]. In a frequency selective fading channel where there is

no channel state information at the receiver (CSIR) or the transmitter, the wideband capacity is

affected by the growing uncertainty in the channel impulse response. As bandwidth grows while

energy is constrained, it becomes infeasible to estimate the channel coefficients to a precision

sufficient for coherent detection. Moreover, if the transmitted signal power is spread across all the

available bandwidth and time slots, the desired signal would be buried by the channel uncertainty

when bandwidth is too large. Médard and Gallager proved this [6] through an upper bound to

the rate that is proportional to the ratio between the fourthmoment of the signal (E[|x|4]) and

its bandwidth (B), i.e.,R <∝ E [|x|4]/B. That is, to achieve rates above zero whenB → ∞,

one has to make E[|x|4] grow at least as fast asB by concentrating the power of the signal in

a vanishing fraction of its transmitted symbols (i.e. infrequent bursts of very large power).

In this paper we investigate the capacity bounds of non-coherent wideband fading channels in

multi-input multi-output (MIMO) setup where both the signaling bandwidth and signal peakiness

are design parameters. The channel is assumed to be rich scattering, frequency selective, block

fading with a coherence timeTc and a delay spreadD, such that the channel frequency response

becomes uncorrelated for frequencies apart from more than one coherence bandwidthBc,1/D.

The channel coherence length,BcTc, is assumed to be large for capacity analysis purposes, as

in almost all practical channels,BcTc ≫ 1. In our expressions we temporarily treatBcTc as a

fixed parameter to derive closed-form expressions, where approximation errors originated from

BcTc≫1 are highlighted in small-o expressions parametrized by higher order terms ofBcTc.

We further assume thatBcTc>Nt, which is easily satisfied in typical systems where the number

of transmit antennas is not massive. We generalize the analysis method in [7], developed for

non-peaky signaling in single-input single-output (SISO)systems, to MIMO systems and extend

it to arbitrary level of signal peakiness by enforcing a transmission duty cycleδ∈(0, 1]. The duty
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cycle prescribes a bursty transmission scheme where the transmitter is active only for a fraction

δ of time with boosted signal powerP/δ harnessed from the(1−δ) silent-cycle. Denoting by

C(B) the capacity of the unconstrained non-coherent channel andby C(B, δ) the maximal rate

achieved by using bandwidthB and duty cycleδ, for all B > 0 andδ ∈ (0, 1], we have

C(B, δ) < C(B) ≤ C∞ , NrP/N0 [nats/s],

whereC∞ is the limit capacity of the coherent channel at infinite bandwidth, P is the received

signal power,N0 is the noise power spectral density, andNr is the number of receive antennas.

Note that the first inequality is strict because we do not exploit the position of the active symbols

to convey information. We show in Sec. III thatC(B, δ) is upper and lower bounded by

RLB(δB) ≤ C(B, δ) ≤ RUB(δB).

Note that both the upper and lower bounds, up to a small approximation erroro(1/δB), depend

on B and δ only through the productδB, which measures average bandwidth usage over time

and is named the “bandwidth occupancy”. Our results show that for a series of signaling schemes

with finite signaling bandwidthB larger or equal to acritical bandwidth occupancy(δB)crit,

which falls in a range prescribed by closed-form expressions, it is possible to achieve rates close

to C∞ within the same rate penalty

C(B, δ) ≥ Nr
P

N0
−∆C , ∆C = Nr

P

N0

√

1 + logBcTc
BcTc

(κ− 2 +Nt +Nr) log π, (1)

as long as the duty cycle isδ= (δB)crit
B

. HereNt is the number of transmit antennas andκ>0

is the kurtosis (whose definition is deferred to Sec. II) of the channel. Thus, it is possible to

approachC∞ up to the same gap with anyδ∈(0, 1]. Note also thatBcTc≫1 leads to∆C≃0 and

R(δBcrit)≃C∞.Furthermore, we show in Sec. IV that the analysis ofC(B) with peaky signaling

in literature [8], [9] experiences exactly this same gap toC∞, although we obtained (1) using

non-peaky signals [7] and a power-boosting duty cycleδ∈(0, 1]. Fig. 1 illustrates the relation

between our boundsC(B, δ), capacityC(B), and the coherent wideband channel limitC∞.

The main contribution of this paper is the unified approximation of C∞ with peaky and non-

peaky signaling, showing that these two extremes can be connected by all level of peakiness

parametrized by the duty cycleδ∈(0, 1]. All signaling schemes(B, δ) with the same bandwidth

occupancyδB=(δB)crit approachC∞ within the same capacity gap up to a small approximation
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Figure 1. All transmission strategies with the same bandwidth occupancyδB=(δB)crit achieve the same polynomial

approximation ofC∞ at different bandwidths.C(B) is separated from the maximumC(B, δ) by a difference ofo(1/(δB)crit).

error of o(1/(δB)crit). We have also derived closed-from expressions for capacitybounds and

critical bandwidth occupancy for all valuesδ∈(0, 1], which provide valuable engineering insights

and tools to quantify the resources needed to approachC∞. As a byproduct, we obtained a group

of closed-form bounds to the range of(δB)crit that are implicit in the existing literature [8], [9].

These parametric bounds can be tuned based on anaccuracy-resolution tradeoffto complement

the range identified in our non-peaky signaling analysis.

A. Related Work

The results in [6] have been extended to signals with output fourth-order constraint [10] or

small input peakiness constraint [11]. Telatar and Tse [12]related channel uncertainty to the

number of resolvable independent paths, and showed that in arich scattering environment where

this number increases withB, the rate can grow as long as the signal power in each path is not

too low, but it starts decreasing when the number of paths is above a critical value.

The capacity of a wideband fading channel achievesfirst order optimalityif, as B goes to

infinity, it has the same limit as a wideband additive white Gaussian noise (AWGN) channel.
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This has been studied in [8], [9], [12]–[14] and the linear inpower capacity limit for MIMO is

lim
B→∞

C(B)noncoherent = lim
B→∞

C(B)AWGN =
NrP

N0

.

To quantify the “exchange rate” of bandwidth to capacity in the asymptotic regime where

B → ∞, the concept ofwideband slopewas introduced in [13]. A larger wideband slope means

that higher rate gain is obtained given the same amount of extra bandwidth. The wideband slope

is studied in [13, Theorem 9] based on the second order term ofa Taylor series expansion of the

spectral efficiency (C/B, in nats/s/Hz) with respect to the signal-to-noise ratio (SNR) at each

receive antenna, SNR,P/(BN0). The wideband slope is inversely proportional to the second

order derivative of the spectral efficiency at SNR=0, which is finite for AWGN and coherent

fading channels (i.e., with perfect CSIR) but−∞ for non-coherent scenarios (i.e., with no CSIR).

Thus the coherent fading channel issecond order optimalbut the non-coherent channel is not.

This abrupt distinction contrasts with the intuition that,as the channel coherence timeTc and/or

frequencyBc grow, channel estimation becomes increasingly rewarding and the capacity of

the non-coherent channel converges to the capacity of the coherent channel. This contradiction

was resolved in [8], [9] by showing that in non-coherent Rayleigh fading channels the spectral

efficiencyC(B)/B is better represented by a generalized Taylor polynomial oforder1+α < 2,

C(B)

B
=Nr

(

P

N0B

)

−Nr(Nr+Nt)

2Nt

(

P

N0B

)1+α

+ o(
1

B1+α
), [nats/s/Hz], (2)

where the exponentα∈(0, 1) grows with increasingBcTc. The first term equalsC∞/B, repre-

senting afirst order optimalupper bound of the spectral efficiency when rate is power-limited.

The third term captures the approximation error, that vanishes faster thanB−(1+α) asB→∞.

The second term represents the penalty from lack of channel knowledge. It contains SNR1+α, a

sub-quadratic term (1+α<2) that characterizes the convergence speed of the spectral efficiency

for non-coherent fading channels. Representing (2) by the second order Taylor polynomial leads

to an infinite coefficient to the term SNR2 (wideband slope) and lack of second order optimality

as in [13]. In this paper the word “polynomial” refers to these generalized Taylor polynomials

with real-valued exponents.

Although peaky signals are imperative to achieve first orderoptimality [13, Th. 7], they are

challenging to synthesize owing to hardware non-linearityand the infinite amount of bandwidth

they require in non-coherent channels. If a small gap fromC∞ at a large but finite bandwidth is
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admissible, which is the case in all practical applicationsof asymptotic results, recent works have

shown that non-peaky signals may suffice. For example, Zhangand Laneman [15] investigated

the achievable rate of phase-shift keying (PSK) for frequency-flat time-varying non-coherent

Rayleigh fading channels. Under average power constraints, this signaling scheme approaches

the wideband capacity limit for low but not too low SNRs. For signals subject to both peak

and average power constraints, it was observed in [16] that the gap between capacity upper and

lower bounds can be very small for discrete-time frequency-flat Rayleigh fading channels. The

capacity of non-coherent time-frequency selective wide-sense stationary uncorrelated scattering

(WSSUS) channels with both peak and average power constraints has been studied in [17],

where bell-shaped capacity upper and lower bounds were established and the capacity optimal

bandwidth, thecritical bandwidth, was coarsely identified as a function of the peak power and

the scattering function. For flat scattering functions, thecapacity bounds depend on the system

bandwidth and the input-signal peak constraint only through their ratio. The results in [17] have

been extended to MIMO in [18], where the impact of transmitter/receiver antenna correlation on

capacity was also investigated. Lozano and Porrat [7] considered non-peaky signaling in SISO

systems under a general fading distribution. Their resultsshow that, when bandwidth is not

too large, there is a transitory first stage where rateR(B) grows withB before approaching a

maximumR(Bcrit) at the critical bandwidthB=Bcrit, beyond which the rateR(B) decreases to

zero asB grows unbounded. By resorting to computation of mutual information rather than the

capacity analysis as in [17], [18], they provided closed-form expressions to the maximum rate

and the corresponding capacity gap,

R(Bcrit) =
P

N0
−∆, ∆ =

P

N0

√

1 + logBcTc
BcTc

κ log π, (3)

where∆ vanishes with increasing coherence lengthBcTc. For Rayleigh fading, closed-form

expressions for the range ofBcrit were also derived.

Even though [13, Th. 7] found that peaky signaling is imperative to achieve first order

optimality, the definition of first order optimality enforces an implicit requirement to make

bandwidth grow as high as possible (B → ∞). Thus, only those inputs that approachC∞ when

B is infinite are covered by [13, Th. 7]. What our results show isthatC∞ can be approached

as well using a finite bandwidthB and non-peaky signaling.

Unlike in [8], [9] where the non-coherent wideband fading channel capacityC(B) is obtained
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by using the position of signal pulses in the frequency domain (i.e., FSK) to convey information,

in our analysis the position of actively transmitted symbols in the time domain, which collectively

defines the active-cycle, is revealed in advance to the receiver and therefore bears no information.

Our capacity bounds are based on computation of mutual information with constrained input

signal peakiness – in the sense of kurtosis – that is controlled by enforcing a duty cycleδ ∈ (0, 1].

This is in contrast to [17], [18] where capacity analysis is used with peak constraint on the

amplitude of transmitting signals. Our choice of mutual information analysis can be justified

from two aspects: even thought we do not design inputs to achieve the capacity bounds we

can guarantee such inputs exist as long as the channel and noise are stationary weakly mixing

processes, see [19, Prop. 2.1]; the rate upper and lower bounds and the range of the critical

bandwidth occupancy can be described in closed-form expressions, which are otherwise difficult

to obtain using capacity analysis, see [17], [18].

Our choice of using duty cycle rather than peak constraint onsignal amplitude [16], [17] to

control the signal peakiness can be justified as follows: given the same average power constraint,

a peak constraint on signal amplitude will limit the peak-to-average power ratio (PAPR), which

is sufficient but not necessary to generate a constraint on signal peakiness. Signals with finite

peakiness may have infinite PAPR (e.g., Gaussian signal has infinite PAPR but only a small

kurtosis κ=2). It must be noted that in non-coherent wideband fading channels, capacity is

related to the peakiness in the kurtosis sense [6], [13].

The rest of this paper is organized as follows. We introduce the system model in Sec. II and

present our unified analysis of wideband non-coherent channel in Sec. III. We describe our non-

coherent polynomial approximation to coherent capacity, and discuss its relation with literature

in Sec. IV. Finally our conclusions are in Sec. V.

II. SYSTEM MODEL

We consider a rich scattering, frequency selective, block fading,Nt × Nr MIMO wideband

channel with an impulse responseh(t)(u,v) between antennas(u, v). For compactness we assume

that all channels experience a coherence timeTc and a delay spreadD and the channel fre-

quency response becomes uncorrelated for frequencies apart more than one coherence bandwidth

Bc,1/D. We focus only on the frequency signaling scheme since it is known [7] that differences

between frequency and time signaling only affect the scaling with bandwidth in its vanishing
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higher order terms. In the following we present the characteristics of the discrete-time system

model1. Justification of our choice of the wideband fading model is presented in Appendix A.

Our model starts from a continuous-time wideband fading channel, followed by the discretiza-

tion/sampling process on the input-output signals. This provides a signaling scheme where every

Tc seconds, the transmitted signalx(u)[n] with bandwidthB carriesK=BTc complex samples

on antennau∈[0, Nt−1]. Taking aK-point DFT of the complex samples for each antenna and

then stacking all theNt vectors up, the transmitted codeword is uniquely defined by theNtK×1

vectorx that satisfies the average power constraint

1

K
E
[

|x|2
]

≤ PTc.

For i=kNt+u, the i-th coefficient ofx, denoted asx(i), corresponds to the transmitted signal

on antennau with DFT index k∈{0, 1, . . . , K−1}. For each pair of antennas(u, v), the dis-

crete samples of the channel haveM=BD i.i.d. coefficientsh(u,v)[n], n=0, 1, . . . ,M−1, with

M/K=D/Tc=
1

BcTc
. After applyingK-point DFT to each discrete channel sequenceh(u,v)[n],

we define a block-diagonal matrix

H =

















H[0] 0 · · · 0

0 H[1]
. . .

...
...

. . . . . . 0

0 . . . 0 H[K − 1]

















, (4)

whereH[k] contains in its(v, u)-th element thek-th DFT coefficient ofh(u,v)[n], whose distribu-

tion is determined by the impulse responseh(t)(u,v). Each channel only hasM i.i.d. coefficients

and any two blocksH[k] and H[k′] are correlated only if|k−k′|<BcTc. We also define the

average gain of then-th channel coefficientg(u,v)n =E
[

|h(u,v)[n]|2
]

satisfying
∑M−1

n=0 g
(u,v)
n = 1.

WhenD≪Tc, a cyclic prefix with negligible influence in rate can be inserted to remove the

inter-symbol interference and the signal received on each fading realization,Tc, depends only

on the state of the channel and signal transmitted during thesame realization. After applying

K-point DFT to the received signal, we can represent the system as

y = Hx+ z, (5)

1The equivalence between the discrete-time and continuous-time channel models for SISO is established in [20] using sampling

and DFT, and in [21] using pulse shaping filter banks with Weyl-Heisenberg projection. Our result uses MIMO in a rich scattering

environment and we provide explicit mapping of the channel coefficients between two different discrete-time models.
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wherey is aNrK×1 vector whosei-th elementy(i), with i = kNr+v, corresponds to the signal

received on antennav with DFT coefficient indexk. The noise vectorz follows a Gaussian

distribution with PSDN0 (CN (0, INrKN0Tc)).

Some references, such as [8], [9], use a different discrete-time model with fewer frequency

bins, each experiencing an independent fading coefficient that repeats itself for many consec-

utive symbols. We prove in Appendix B that the two discrete-time models are compatible.

In Appendix C we show that the two models are equivalent at thecontinuous-time level using

concepts of multi-carrier modulations and we provide explicit mapping of the channel coefficients

between the two models. Therefore our results are independent of the model chosen.

Wideband capacity is related to peakiness in the sense of thenormalized fourth moment of

the inputs, orkurtosis[6], [13]. Given a stochastic sequenceA(t), its kurtosis is defined as

κ(A(t)) ,
EA(t) [|a(t)|4]
EA(t) [|a(t)|2]2

, (6)

where the time index(t) may be dropped if the process is stationary. By enforcing a duty cycle

δ∈(0, 1] on the input signalx, the system is converted into the time-alternation of an active stage

for a fractionδ of the time with boosted powerP ′=P
δ
, and an idle stage for a fraction(1−δ)

of the time. Letx̃ be a non-peaky signal with powerP and finite kurtosisκ(x̃). We introduce

a binary random variablec∈{0, 1} to represent the use of each fading block of sizeTc×Bc,

wherec=1 means the channel block is active for signal transmission and c=0 means idle, with

probabilityPr(c=1) = δ. We revealc to the receiver in advance, which will reduce the rate as

C(B, δ) = I (x;y|c) = I (x, c;y)− I (c;y) = I (x;y)− I (c;y) ≤ I (x;y),

where0≤I (c;y)≤H (c) with all equalities hold forδ=1. The duty cycle induces a new signal

x= x̃

√

c

E [c]
=











x̃/
√
δ, w.p. δ,

0, w.p. 1−δ,
with κ(x)=

E [|x|4]
E [|x|2]2

=
E [|x̃|4]
δE [|x̃|2]2

=
κ(x̃)

δ
. (7)

Therefore we can effectively adjust the peakiness (in the sense of kurtosis) of signaling without

imposing any extra constraint on the distribution of the active signalx̃.

III. B ANDWIDTH OCCUPANCY L IMIT

Our analysis is a generalization of the the SISO analysis with non-peaky signaling in [7]. We

extend the process to MIMO systems and to an arbitrary level of signaling peakiness through the

tunable duty cycle parameterδ ∈ (0, 1]. Both analyses follow four steps, represented in Fig. 2.
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1) Find a bell-shaped lower boundRLB(δB) ≤ C(B, δ);

2) Determine the unique maximum ofRLB(δB), RLB((δB)∗);

3) Find a bell-shaped upper boundRUB(δB) ≥ C(B, δ);

4) Determine(δB)+ and (δB)− such thatRUB((δB)+)=RUB((δB)−)=RLB((δB)∗).

The result of [7] shows that the capacity of a non-coherent fading channel with non-peaky

signaling (δ=1, finiteκ) grows with bandwidthB only when it is below acritical bandwidthBcrit,

which falls into the range[B−, B+]. A system operating with insufficient bandwidthB<Bcrit is

less efficient in converting available signal energy into rate due to the sub-linear law between

rate and SNR, and the corresponding achievable rate grows with increasing bandwidth. When

signal power spreads over too much bandwidthB>Bcrit, the channel-uncertainty induced penalty

grows with increasing bandwidth and the achievable rate decreases to zero asB→∞. Therefore,

contrary to the wideband AWGN channel where “the deeper intothe low-SNR regime, the

better”, in the non-coherent fading channel the guideline is “enter, but not in excess, in the low-

SNR regime”, with the optimal operation point atBcrit. Our result shows that for anyB>Bcrit

it is possible to bring the capacity back to the same optimal value, up to a small approximation

error of ordero(1/Bcrit), by imposing a duty-cycle parameterδ=(δB)crit/B and a power-boost

P ′ = P/δ on the original non-peaky signaling. Moreover, in Sec. IV weshow that this strategy

achieves the same gap fromC∞ as in the peaky-signaling analysis [8], [9].

A. Capacity Lower Bound forC(B, δ)

As in [7], our lower bound is obtained by first calculating themaximum achievable rate

of a coherent non-peaky signaling under the average power constraint and then deducting the

maximum rate penalty from lack of CSI. Therefore it is valid for general channel fading

distributions and for any value ofB and BcTc>Nt. The potential spatial correlation among

different antennas is not considered here.

Lemma 1. The achievable rate in a wideband non-coherent channel withi.i.d. fading and a

duty cycleδ ∈ (0, 1] is lower bounded by

RLB(δB) =
PNr

N0

[

1− P (κ− 2 +Nt +Nr)

2δBNtN0

]

− δBNtNr

BcTc
log

(

1 +
P

δBNtN0

BcTc

)

, (8)

whereκ = κ(h) is thekurtosisof the channel fading coefficients.
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Figure 2. Our four-step analysis of critical bandwidth occupancy. Substituting(δB) by B gives the original analysis by [7].

Proof: See Appendix D.

The kurtosisκ for many fading distributions are in the range of[1, 2]. For example, as given

in [7], κ = 2 for Rayleigh fading,κ = 2−4k2/(1+2k)2 for Rice fading with factork > 0, and

κ = 1+1/m for Nakagami-m fading channels.

Remark 1. Even though the duty-cycle constrained capacityC(B, δ) might be two-dimensional

function ofδ andB , the lower bound is only a function of the productδB.

B. Maximum ofRLB

We use the assumption thatBcTc≫1 to determine the maximum of the capacity lower bound

RLB. For any finiteBcTc we can approximate the optimal(δB)∗ and the associated maximum

rate up to an error termo

(

√

log(BcTc)
BcTc

)

that decreases to zero asBcTc → ∞.

Lemma 2. RLB(δB) is maximized atδB=(δB)∗ with

(δB)∗ =
P

N0Nt

√

BcTc
log(BcTc)

(κ− 2 +Nt +Nr) + o

(
√

BcTc
log(BcTc)

)

, (9)

RLB((δB)∗) ≥ PNr

N0



1−
√

1 + log(BcTc)

BcTc
(κ−2+Nt+Nr) log π



− o





√

log(BcTc)

BcTc



 . (10)
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Proof: See Appendix E.

Remark 2. We would like to emphasize that the rate-maximizing bandwidth occupancy(δB)∗

is very large given the fact that the channel coherenceBcTc usually ranges from a few hundreds

to hundreds of thousands. For example, assuming2×2 MIMO over Rayleigh fading (κ=2) with

P/N0=70 dB, we have(δB)∗≃120 MHz with capacity gap∆/C∞<0.18 for BcTc=103, and

(δB)∗≃930 MHz with∆/C∞<0.03 for BcTc=105.

C. Capacity Upper Bound forC(B, δ)

We obtain a capacity upper bound for the case when channel is Rayleigh distributed. The

bound, up to an error term ofo(1/δB) that vanishes asδB → ∞, applies to any value ofB and

BcTc>Nt and all inputs subject to constraints of average powerP and signaling duty cycleδ.

Lemma 3. The achievable rate of signaling schemes with duty cycleδ∈(0, 1] in a wideband

non-coherent Rayleigh fading channel is upper bounded by

RUB(δB) =
PNr

N0

[

1− P

2δBN0

− δBNtN0

PBcTc
Eψ

[

log(1+
P

δNtBN0

BcTcgminψ)

]

]

+ o(
1

δB
), (11)

wheregmin=minm,u,v E
[

|h(u,v)[m]|2
]

is the minimum non-zero square channel gain among all

delays and antenna pairs, and the random variableψ is defined as

ψ=argmin
ψK,n

E

[

log

(

1+
PgminψK,n
δNtN0B

BcTc

)]

, whereψK,n, 1
K
|∑K−1

k=0
xk√
P
e
−j2π kn

MNt |2. (12)

Proof: See Appendix F.

Remark 3. The auxiliary variableψ is bounded (ψ>0, E [ψ]≤1) and serves here as a placeholder

for the minimization of the last term of the bound, which is implicitly determined by(12).

D. Critical Bandwidth Occupancy

We obtain the range of values ofδB where the upper bound is larger thanRLB((δB)∗).

C(B, δ) can approachC∞ within the small gap in (10) only if the bandwidth occupancy is

contained in an interval that grows linearly with
√

BcTc
log(BcTc)

, as suggested by (9), and the error

term o( 1
δB

) in Lemma 3 can be substituted with an equivalent termo
(

√

log(BcTc)
BcTc

)

.
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Lemma 4. In a wideband non-coherent Rayleigh fading channel, the maximum rate in(10) is

achievable at a critical bandwidth occupancy(δB)crit that resides in the range

(δB)− ≤ (δB)crit ≤ (δB)+, (13)

where

(δB)−=
P

N0

1

2
√

(Nt +Nr) log π

√

BcTc
log(BcTc)

+ o

(
√

BcTc
log(BcTc)

)

,

(δB)+=
P

N0

2

√

(Nt +Nr)

N2
t

log π

√

BcTc
log(BcTc)

+ o

(
√

BcTc
log(BcTc)

)

.

(14)

Proof: See Appendix G.

E. Interpretation of the Result

Our upper and lower bounds onC(B, δ) are all derived from the chain rule

I (x;y|c) = δI (x,H;y|c=1)− δI (H;y|x, c=1),

where the first term corresponds to the data transmission setup that quantifies the information

aboutHx contained iny and the second term can be interpreted as a “channel estimation”

setup that quantifies the rate penalty for not knowingH. Both terms grow asδB increases but

the first term grows faster whenδB is small, thus increases I(x;y|c), until the second term

“accelerates”. Beyond the critical point(δB)crit, the second term grows faster than the first, thus

erodes I(x;y|c), until the capacity drops to zero whenδB → ∞. This behavior is illustrated

in Fig. 2 for both the capacity upper and lower bounds. The coherence timeTc and coherence

bandwidthBc of the channel jointly determine the relative speeds of this“race” through their

product. The factorTcBc appears in rate penalty both as the denominator outside the logarithm

(there areTcBc times fewer i.i.d. channel realizations than signal realizations) and as a multiplier

of the SNR inside the logarithm (the power ofTcBc signal realizations can be combined to

estimate each channel realization), leading to a capacity gap depending onlogBcTc
BcTc

.

In Fig. 3(a) we represent the upper bound to capacity as a fieldover the 2D plane(δ, B)

with BcTc=103 and P/N0=20 dB. In the vertical cut forδ=1 we also plot the lower bound

using triangular bullets. Note that we intentionally choose a smaller value ofP/N0 to illustrate

the details of the transition phase in capacity, which wouldotherwise be difficult to observe
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Figure 3. Capacity upper bound over the plane(δ,B) and the low bound forδ=1, with BcTc = 103, Nt=Nr=1, and an

intentionally chosen small valueP/N0=20dB. Range of critical bandwidth occupancy is also shown.

with typical values ofP/N0∼70 dB [7]. On theB-axis, we can see that for fixed values of



15

δ the capacity as a function of bandwidth is bell-shaped, grows at small bandwidth, reaches a

maximum and then decreases to zero. Fig. 3(b) provides a better perspective on the value of

capacity upper bounds as a function of the bandwidth occupancy δB, where the optimal(δB)∗

that maximizes the capacity lower boundRLB and the range[(δB)−, (δB)+] for the critical

bandwidth occupancy(δB)crit are also plotted. For different level of peakinessδ, the peak

values of capacity are the same but appear at different bandwidth B, and in fact all points with

identical valueδB have the same lower/upper bounds. Our analysis recovers previous results

for non-peaky signals by settingδ=1, producing a finite critical bandwidth. It also recovers the

capacity with infinite-fourth-moment signals by takingδ→0, which drives the critical bandwidth

occupancy point further into higher bandwidths satisfyinglim
δ→0

(δB)crit
δ

= ∞.

Our analysis also unveils the impact of the dimensions of theMIMO array on the non-coherent

wideband fading channels. The maximum rate in Lemma 2, derived under the condition that

Nt<BcTc, depends critically on channel coherenceBcTc.. For example, forBcTc = 103 and

BcTc = 106, the maximum rate (10) can be approximated as, respectively,

R(BcTc=103) ≃ PNr

N0
(1− 0.1

√

Nt+Nr), R(BcTc=106) ≃ PNr

N0
(1− 0.005

√

Nt+Nr).

WhenNr>1 is fixed, increasing the number of transmit antennas will degrade the rate, with

the gap growing linearly with
√
Nt+Nr. When Nt>1 is fixed and channel is relatively flat

(henceBcTc is large), the rate gap is negligible for typical MIMO setupsand therefore the rate

grows almost linearly withNr. When the channel is rather dispersive (henceBcTc is small),

however, increasingNr will produce a power gain that increases the rate at speedNr but at the

same time will bring in more channel uncertainty that increase the penalty at rate proportional to
√
Nt+Nr. Therefore using too many receive antennas will hurt the achievable rate. For example,

the maximum rate peaks aroundNr=40 for BcTc = 103. It must be noted that our analysis is

accurate for conventional MIMO systems withNt < BcTc, and extension to high-dimensional

MIMO is out of the scope of the current paper.

IV. UNIFIED CAPACITY FOR PEAKY AND NON -PEAKY SIGNALS

In this section we will show that the peak rateRLB((δB)∗) in (10), which is derived by

combining non-peaky signaling analysis [7] and tunable peakiness through duty cycleδ∈(0, 1],
approachesC∞ within the same gap as in the unconstrained capacityC(B) analysis using a
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generalized polynomial rate approximation (2) obtained via peaky signaling analysis [8], [9].

We first replaceδ, a free parameter in our model representing the duty cycle, with an assigned

valueδ=SNR1−α as in [9], whereSNR , P/(BN0) andα is the exponent that determines the

wideband slope. This substitution will show that, when the channel coherence length is large, i.e.,

BcTc ≫ 1, the gaps toC∞ in (10) and in (2) have the same value at points(B, δ = SNR1−α).

Furthermore, we show that the sufficient and necessary conditions on the coherence lengthBcTc

to approachC∞, proved in [9, Th. 1-Th. 3], can also be established using ourresults. Once we

have established that the results are equivalent, the opposite path can be taken and use the values

of α obtained in [9] to calculate a new range of the critical bandwidth occupancy in closed-form

expressions. We discuss the relationship of the two expressions, which have minor differences

in the error terms of the calculation ofα, reveal a trade-off between accuracy and resolution in

[9], and demonstrate that the two methods represent the sameoptimal rate.

A. Different Analyses Show the Same Results

The analysis in [9] obtains a necessary and sufficient condition on the coherence length of the

channel,BcTc, to guarantee that capacity is above a polynomial ofSNR= P
N0B

asB→∞ with

specified peakynessδ = SNRα−1. This result is given in [9, Th. 3], which is rewritten in the

next lemma for easy reference. The result is valid for arbitraryBcTc, but the necessary condition

to approximateC∞ is akin to requiring thatBcTc be large.

Lemma 5 (Th. 3 [9]). For any α∈(0, 1] and ǫ∈(0, α) the capacity of a Rayleigh block-fading

MIMO channel with coherence timeTc, coherence bandwidthBc, and average signal to noise

ratio SNR= P
BN0

is

C(B)

B
≥ NrSNR− Nr(Nr +Nt)

2Nt
SNR1+α +Θ(SNR1+α+ǫ), (15)

if and only if there exists aσ∈(0, ǫ) such that

BcTc =
N2

t

(Nr +Nt)2
SNR−2(σ+α). (16)

Recall that in Sec. III, our rate lower bound in (8) contains three terms, the wideband capacity

C∞, a non-linear rate penalty due tolog(1+SNR), and a rate penalty due to lack of CSIR. Below

the optimal bandwidth occupancy(δB)∗, the third term of (8) is smaller in absolute value than

the second. Replacing the third term by the second term and substitutingδ=SNR1−α, α∈(0, 1)
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into (8) produces the following sufficient condition in terms of the bandwidth occupancyδB, as

stated in Corollary 1.

Corollary 1. If δB ≤ (δB)∗, the achievable rate is lower bounded by

C(B, δ) ≥ PNr

N0

[

1−
(

P

BN0

)α
(κ−2+Nt+Nr)

Nt

]

. (17)

On the other hand, above(δB)crit, the third term of (8) is greater than the second. This means

thatC(B, δ) is smaller than (17), which leads to the necessary conditionin Corollary 2.

Corollary 2. In Rayleigh fading (κ=2), if δ=SNR1−α and if

C(B, δ) ≥ PNr

N0

[

1−
(

P

BN0

)α
(Nt +Nr)

Nt

]

, (18)

then the bandwidth occupancy satisfiesδB < (δB)+.

Now we can use the necessary condition in Corollary 2 and the sufficient condition in

Corrollary 1 on bandwidth occupancyδB to prove the sufficient and necessary condition (16).

Proposition 1. Corollary 1 implies the sufficient condition(16) for Lemma 5.

Proof: Substitutingδ=SNR1−α andκ=2 into (9), we can rewriteδB<(δB)∗ in Corollary 1

as

BcTc >
N2

t

(Nr +Nt)2
SNR−2α(Nr +Nt) log(BcTc).

iSnce(Nr +Nt) log(BcTc) is a constant andB → ∞, we have(Nr +Nt) log(BcTc) ≤ SNR−2ǫ

for any ǫ > 0. Therefore, it is also sufficient to have

BcTc ≥
N2

t

(Nr +Nt)2
SNR−2(α+ǫ),

which is a sufficient condition that Lemma 5 transforms in theupper limit of σ ≤ ǫ.

Proposition 2. Corollary 2 implies the necessary condition(16) for Lemma 5.

Proof: The necessary conditionδB < (δB)+ in Corollary 2 can be rewritten as

BcTc >
N2

t

(Nr +Nt)2
SNR−2α (Nr+Nt)

4 log π
log(BcTc).
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Therefore we can express the necessary condition that Lemma5 sets as lower limit ofσ ≥ 0,

BcTc >
N2

t

(Nr +Nt)2
SNR−2α,

as long as(Nr+Nt)
4 log π

log(BcTc) ≥ 1, i.e.,BcTc≥π4/(Nr+Nt), which is always satisfied in wideband

fading channels whereBcTc is very large, and thusBcTc > π2.

Remark 4. From Proposition 1 and Proposition 2, it is not surprising that the power gain term

log(BcTc) was lost in [9], because this sub-polynomial variation of the result has been “buried”

in the range of valid exponentsǫ of the error termO(SNR1+α+ǫ).

B. New Bounds on(δB)crit using the Subquadratic Polynomial Rate Approximation

In our analysis, Lemma 2 prescribes a near-linear-in-powercapacity lower bound which can

be achieved by all signaling schemes with(δ, B) as long as the bandwidth occupancyδB equals

some constant(δB)crit. Our analysis does not provide the exact value of(δB)crit, but rather

bounds it within [(δB)−, (δB)+] in Lemma 4. On the other hand, the result in [9, Th. 3],

reproduced here as Lemma 5, prescribes an entire family of parametrized bounds where the

parameterǫ controls both the error term of the generalized Taylor expansion and the resolution

of bounding brackets around(δB)crit. Corollary 3 makes this explicit.

Corollary 3. The necessary and sufficient condition(16) of Lemma 5 shows that coherent

capacityC∞ is approached by transmitting signals with bandwidth occupancy δB within the

limits

δB <
P

N0

Nr +Nt

Nt

√

BcTc , (δB)max, (19)

δB >
P

N0

(

Nr +Nt

Nt

√

BcTc

) α
α+ǫ

, (δB)min
ǫ . (20)

Proof: SubstitutingBcTc, δ=SNR1−α andSNR= P
BN0

into (16), we can obtain (19) and (20)

by the fact thatσ>0 andσ<ǫ, respectively.

Therefore for a givenα, which controls the level of peakinessδ and determines the wideband

slope, we can observe a clear tradeoff, parametrized byǫ∈(0, α), between the accuracy of the

Taylor polynomial and the resolution of the bandwidth brackets:
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1) The accuracy of the capacity lower bound calculated in Lemma 5 is determined by the

ratio betweenSNR1+α and the error termO(SNR1+α+ǫ). The largerǫ, the better the

approximation, since the error term will vanish faster asB → ∞.

2) Theresolution of the interval where(δB)crit is contained,[(δB)min
ǫ , (δB)max], is determined

by the width of the interval. The smallerǫ, the better the resolution, as the lower boundary

(δB)min
ǫ will increase and become tighter whenǫ becomes smaller.

C. Comparison of Critical Bandwidth Occupancy Estimators

So far we have characterized the critical bandwidth occupancy (δB)crit in two different

ranges: by a pair of bracket[(δB)−, (δB)+], in our analysis in Lemma 4; and by a parametric

interval [(δB)min
ǫ , (δB)max], derived from [9, Th. 3] in Corollary 3. To explore the relationship

between the two estimators, we compare the difference in theestimated value ofα that each

analysis produces. We do this because the exponentα provides a unique relation betweenB and

δ=SNR1−α=( P
N0B

)1−α, allowing for scalar comparison of the methods.

We begin by representingα according to [9, Th. 3]. From (16) in Lemma 5, for given values

of the coherence block lengthBcTc and bandwidthB ∈ [(δB)min
ǫ , (δB)max] can be written as

σ + α =
log( (Nt+Nr)2

N2
t

BcTc)

2 log(SNR−1)
. (21)

From the fact thatσ > 0 we get

α < αmax ,
log( (Nt+Nr)2

N2
t

BcTc)

2 log(SNR−1)
, (22)

and from the fact thatσ < ǫ < α we get

α > max
(αmax

2
, αmin(ǫ)

)

, whereαmin(ǫ) ,
log( (Nt+Nr)2

N2
t

BcTc)

2 log(SNR−1)
− ǫ. (23)

Note that whenǫ decreases,αmin(ǫ) increases such that the range ofα becomes smaller but at

the same time the error termO(SNR1+α+ǫ) vanishes more slowly: improving theresolutionof

the bandwidth occupancy range comes at the price of decreasing theaccuracyof the capacity

polynomial approximation. We can make an approximate selection of ǫ such that polynomial

error term is in the order of ap-percent of the termSNR1+α, i.e., findingǫ(p) such that

SNR1+α >
100

p
SNR1+α+ǫ(p).
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This generates a family of narrower estimated margins[αmin(p), αmax] parametrized by the pre-

selected error percentagep% by raising the lower bracket.

On the other hand, we can boundα using the critical bandwidth occupancy interval in Lemma 4

in combination withδ=SNR1−α. With δB=(δB)+ we get

α+ =
log(4(Nt+Nr) log π

N2
t

BcTc
log(BcTc)

)

2 log(SNR−1)
=

log( (Nt+Nr)2

N2
t

BcTc)

2 log(SNR−1)
−

log( (Nt+Nr) log(BcTc)
4 log π

)

2 log(SNR−1)
, (24)

and withδB = (δB)− we get

α− =
log( 1

4(Nt+Nr) log π
BcTc

log(BcTc)
)

2 log(SNR−1)
=

log( (Nt+Nr)2

N2
t

BcTc)

2 log(SNR−1)
−

log(4 log π (Nt+Nr)3

N2
t

log(BcTc))

2 log(SNR−1)
. (25)

Recall that for anyǫ > 0 we have(Nt + Nr) log(BcTc) ≤ lim
SNR→0

SNR−2ǫ. This means that we

can show thatαmax > α+ > αmin(ǫ), and the interval between the three vanishes asǫ→0.

Remark 5. All the results coincide in thatα∝ log(BcTc), making capacity of channels with low

BcTc approach their wideband limit very slowly withSNR→0 and channels with highBcTc

approach the wideband limit faster. This is the main intuition of the results in [9]: non-coherent

channels approach the coherent channel capacity when coherence length is large enough.

D. Illustration

We plot the capacity lower bound on the plane(δ, B) in Fig. 4 for BcTc=106 (first graph)

and forBcTc=104 (second graph). The peak capacity is achievable in a region with constant

productδB, starting at relatively large bandwidths, and both estimations of the optimal region

are narrow. The choice ofǫ determines the polynomial lower bound and therefore the range

[αmin(ǫ), αmax]. We can generate a set of estimationsαmin(ǫ) by fine-tuningǫ within the range

(0, α), as shown by the curves corresponding toαmin(ǫ) with ǫ=α/2, α/4, respectively. Note

that the conservative choiceǫ=α leads to the widest possible range for[αmax/2, αmax]. On the

other hand, the resolution of the estimators from our own analysis [α−, α+] depends only on the

value ofBcTc, and its range becomes smaller asBcTc increases.

Since the resolution of the estimation by[α−, α+] relies onBcTc and the relative margin of

[αmin, αmax] depends onǫ, we show in Fig. 5 the evolution of the two boundary methods with ǫ

andBcTc. The method [9] produces the highest upper boundαmax that does not change, and a

family of lower boundsαmin(p) depicted in the figure for errors of1% and10% and its lowest
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Figure 4. Capacity lower bound on the plane(δ,B) with P/N0=20dB, BcTc=106 (first graph) andBcTc=104 (second

graph). Curves withαmin(ǫ) are generated withǫ=α, α/2, α/4, respectively.

boundαmax/2. Note that at low coherence length,BcTc, the limit αmin > αmax/2 makes it

impossible to select values ofǫ corresponding with a polynomial accuracy of1%, and then10%.

This shows that the polynomial rate with peaky signaling in [9] also displays a gap fromC∞

decreasing withBcTc. On the other hand, the critical bandwidth occupancy methodproduces
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boundaries that are loose at low coherence length but improve significantly when this parameter

grows and that do not pay for tightness a price in accuracy of the polynomial approximation.

V. CONCLUSIONS

In this paper we have unified the study of the rate approximations toC∞ for peaky and non-

peaky signaling in non-coherent wideband fading channels where energy rather than spectrum

is the limiting resource. We have generalized the critical bandwidth analysis [7] to families

of signaling schemes with varying bandwidthB and transmission duty-cycleδ∈(0, 1] to allow

arbitrary levels of signal peakiness. We introduce the metric of bandwidth occupancy to measure

the average bandwidth usage over time and define it asδB, the product between the bandwidth

and the fraction of time it is in use. Our main result shows theexistence of a fundamental

limit on the bandwidth occupancy in non-coherent channels for any level of signal peakiness.

For all signaling schemes with the same bandwidth occupancy, as the bandwidth occupancy

approaches its critical value(δB)crit, rates converge with the same asymptotic behavior to the
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same almost-linear in power value (measured in nats/s)

C(B, δ =
(δB)crit
B

) ≥ PNr

N0



1−
√

1 + log(BcTc)

BcTc
(κ− 2 +Nt +Nr) log π



 ,

whereTc is the coherence time andBc is the coherence bandwidth. The rates decrease to zero

as the bandwidth occupancy goes to infinity. Moreover, we provide upper and lower bounds to

this critical value. The bounds have the same growth withBcTc and P
N0

, and they only differ on

a constant term.

To characterize the relation between the capacity with a tunable peakiness constraintC(B, δ)

and the unconstrained non-coherent wideband capacityC(B), we rewrite the above capacity

expression as a polynomial equivalent to the analysis in [9]. We have recovered the results

in [9, Th. 1-Th. 3] and obtained the almost-linear polynomial expressions for capacity in the

limit δB → (δB)crit with a dominant sub-linear termSNRα. As the bandwidth occupancy

approaches the limit, capacity approaches the power-limited wideband limit with a speed of

convergence determined bySNR1+α, which approaches that of coherent channels asBcTc → ∞.

The fundamental nature of the bandwidth occupancy measure reflects the fact that capacity of

any signaling scheme is contained within the same bounds as long as the productδB is constant.

Within this framework, limited bandwidth transmission with non-peaky signaling and unlimited

bandwidth transmission with peaky signaling, which have been treated as very different schemes,

are shown to be merely two extreme points in a continuous range of transmission strategies

within the same bounds as long as they have the same amount of bandwidth occupancy. This

suggest that for the practical goal of operating at arate very close toC∞, all pairs (B, δ)

with the optimal occupancy do not exhibit significant differences. Achieving capacity, i.e. the

supremum rate, may on the other hand only be possible in some specific distributions. The

selected peakinessδ = SNR1−α in [9] becomes invalid ifSNR>1 (asδ ≤ 1 by design), whereas

our model determines peakiness throughδB<(δB)crit, a quantity that is well defined for all

values of SNR. This gives the intuition that below the critical point it would be questionable

to claim that the frequency-selective channel is in the wideband regime, and therefore regular

non-peaky transmissions with full bandwidth occupancy must be employed. Beyond the critical

point, both signaling schemes provide the same capacity limit.

We have shown that most of the advantage of peaky signaling stems from harnessing power for

long periods of time to transmit some infrequent flashes withboosted power, without encoding
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information in the position of the active symbols as in ON/OFF modulations. Moreover, this

power boost does not in fact outperform non-peaky transmission with the optimal bandwidth,

which means that in practical systems the amount of peakiness and the bandwidth may be chosen

at will as long as the maximum occupancy level is respected.

Our analysis has some limitations. Firstly, the potential spatial correlation among MIMO

antennas is not accounted for. Secondly, although our capacity lower bounds are valid for

general fading channels, our upper bound and critical bandwidth occupancy expressions assume

Rayleigh fading. Besides, the performance of a signaling system with practical channel estimation

techniques [22], peak constrained signals [11], [15], [19], [23], finite modulation options, and

non-ideal decoders may be degraded as compared to the theoretical bounds provided in this

paper.

APPENDIX A

JUSTIFICATION OF OUR FADING MODEL CHOICE

As a general case, a wireless channel is modeled as a setL of paths, where each pathℓ ∈ L
is defined by a group delayτℓ, a phase of arrivalθℓ, and an impulse responsehℓ(t). For a pair

of antennas(u, v) with received signalr(v)(t) and transmitted signals(u)(t), we have

r(v)(t) = s(u)(t) ∗
∑

ℓ∈L
h
(u,v)
ℓ (t− τ

(u,v)
ℓ )ejθ

(u,v)
ℓ + z(v)(t) = s(u)(t) ∗ h(u,v)(t) + z(v)(t), (26)

wherez(v)(t) is the AWGN noise, and the channel delay spreadD and coherence timeTc are

determined by the aggregate channel impulse responseh(u,v)(t). Traditionally,h(u,v)ℓ (t)s are scalar

gains or narrow pulses that can be approximated by the Dirac delta function, in which case the

setL would be a sort of “ray tracing” of perfect reflections of the signal with a scalar gain.

However, recent mmWave meassurements have found much higher delay-spread values [24] than

those predicted in ray-tracing calculations [25]. This maybe due to rich scattering from small

objects in mmWave fading channels, which are not so sparse inpractice. This is due to the fact

that, although there are few arrival direction “clusters”,in each cluster energy arrivals spread

along many angular directions [26]. Therefore each arrivaldirection sees the additive effect of

a large number of scattered reflections, not a single path, and eachh(u,v)ℓ (t) has a delay spread,

instead of a scalar channel gain. The construction of discrete-time system models falls into the

following three regimes depending on the sampling rate:
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• Samplingh(u,v)(t) at low rate, all the energy in the delay spreadD would be captured by

a single sampling interval, so the resulting discrete channel would be a scalar coefficient,

which is approximately Gaussian distributed due to the law of large numbers. This is called

the narrowband, or frequency-flat channel.

• Sampling at higher rate would make the energy inD be captured in multiple sampling

intervals, each with an independent scalar coefficient. This is called thewideband channel,

or frequency selectivewith rich scattering environment.

• The third regime occurs when the number of sampling bins is much larger than the number

of paths inL. The sampled channel coefficients are sparse and not Gaussian distributed.

This is called theultra-wideband.

We consider the wideband fading model to be relevant in mmWave communications where

rich scattering and longer delay spread was observed [24]. Our discrete equivalent channel is

derived from the propagation described above by employing the classic framework of a Nyquist

sampling at frequencyB, the consideration of frequency-domain signaling with aK-point DFT,

satisfyingK = BTc, and a cyclic prefix of negligible durationM = B/Bc = K/BcTc ≪ K.

The same channel model is employed in [7].

APPENDIX B

COMPATIBILITY WITH ANOTHER COMMON MODEL

In [9] the signals are divided into a set ofM = B/Bc narrowband channels (a.k.a. frequency

bins) with encoding symbols defined with a symbol period of1/Bc. Each narrowband channel

can be perfectly sampled at a rate of just1 sample per symbol period, and there areM parallel

frequency bands that produceM samples per symbol period. In this scheme multiple symbols

see the same channel realization and the channel coherence length is a block ofLc = TcBc

consecutive symbols. By indexing withm the independent frequency bins and withℓ the

consecutive periods on the same channel block realization,we get the model

y[m, ℓ] = H[m, ℓ]x[m, ℓ] + z[m, ℓ], (27)

whereH[m, ℓ] remains unchanged forℓ = 1, . . . , Lc. To exploit channel coherence, the encoding

process must design the transmitted signal for theLc consecutive symbols jointly, and the
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encoding model is represented with matrices as

Y[m] = H[m]X[m] + Z[m], (28)

where the dimensions areNr × Lc = (Nr ×Nt)(Nt × Lc).

In this model, for every encoding interval of lengthLc and across allM frequency bins there

are a total ofMLc=K complex valued coefficients. Therefore, this channel modelprovides

exactly the same number of signaling dimensions for transmission as the model we have derived.

But the representations of the channel variation are different. In this model there are fewer channel

coefficients, each of them is i.i.d. and identically repeated for everyLc consecutive symbols.

Whereas our derived model (5) supports any type of channel correlation, not only repetition,

as long as there areK correlated coefficients generated by a fraction1/BcTc of independent

random variables. It is possible to represent the system model (28) with repeated identical channel

coefficients in our derived model format by replacing the matrix notationH[m]X[m] with our

vectorized notationHx whereH is a block-diagonal matrix with the values ofH[m] in its main

diagonal and zeros in the upper and lower triangles as in (4).

APPENDIX C

EQUIVALENCE IN SIGNALING REPRESENTATION

Our channel model uses Nyquist sampling at the fullB and therefore it is able to represent

any signal with this bandwidth without loss. For the sake of completeness we will propose the

exact formulation to implement a valid signal in the model of[9] (hereafter, filter-bank model)

with our model (hereafter, OFDM model) using only preprocessing linear matrices. With this

we show that any signal possible in the filter-bank model can be transmitted through the OFDM

model, and therefore capacity results in our model are fullycompatible.

Without loss of generality, let us assume a SISO channel and unit power to simplify notation.

Assume also that the integersK=⌈TcB⌉, M=⌈B/Bc⌉ andLc=⌈TcBc⌉ are satisfied exactly so

we may use simplyK=MLc. In continuous time, the filter-bank model is represented in

r(t)=
∞
∑

i=−∞
δ(t−iTc) ∗

(

Lc−1
∑

ℓ=0

δ(t−ℓ/Bc) ∗
(

M−1
∑

m=0

hi[m, ℓ]xi[m, ℓ]sinc(tBc)e
−j2πmBct

))

+z(t),

(29)

where multiplication byhi[m, ℓ] andxi[m, ℓ] assigns the scalar value received in each frequency

bin m ∈ {0, . . . ,M−1} and in each transmit symbol periodℓ ∈ {0, . . . , Lc−1}.
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We separate the encoding for each channel block realizationindexed byi, drop the index, and

use the fact that the channel coefficient in each frequency bin remains the same for all symbols

to take away the indexℓ from h[m]. This gives

y(t) =
Lc−1
∑

ℓ=0

δ(t−ℓ/Bc) ∗
(

M−1
∑

m=0

h[m]x[m, ℓ]sinc(tBc)e
j2πmBct

)

+z(t). (30)

With this continuous-time signal, we apply Nyquist sampling at rateB to generateK=BTc sam-

ples per sequence. Notice that for integerM=B/Bc, the discrete sinc function issinc[n/M ] ,

sinc(nBc

B
) and the delta delay on indexn is ℓM . We can represent (30) by

y[n]=

Lc−1
∑

ℓ=0

δ[n−ℓM ] ∗
(

M−1
∑

m=0

h[m]x[m, ℓ]sinc[
n

M
]ej2π

n
K
mLc

)

+z[n], n = 0, . . . , K−1. (31)

We compute theK-point DFT,

y[k] =
∑

ℓ,m

e−j2π
kℓ
Lc h[m]x[m, ℓ]rec[k/Lc −m]+z[k]. (32)

The rectangular window equals one only when⌊k/Lc⌋=m. By representingk<K as k =

u ∗ Lc + v with u , ⌊k/Lc⌋ andv , k mod Lc, we obtain

y[k] = h[u]
Lc−1
∑

ℓ=0

ej2π
vℓ
Lc x[u, ℓ] + z[k], with







u=⌊k/Lc⌋,
v=k mod Lc.

Now we can see that the sum is actually thevth element in theLc-IDFT of the sequencex[u, ℓ].

Since the IDFT of a sequencea=(a1 . . . aLc
)T can be written as a matrix productIDFT(a) = Fa,

We can represent the system model the same way as our matrix channel notation as

y = HΦx+ z, (33)

whereH for SISO is aK ×K diagonal matrix with itsk-th diagonal elementh[u], x is K × 1

with x(k) = x[u, v]. TheLc-IDFT is computed by the block-diagonal square matrix

Φ =











F . . . 0

...
. . .

...

0 . . . F











. (34)

This shows that any channel of the filter-bank model can be represented by the OFDM model

using a channel matrix̃H = HΦ. The reciprocal compatibility can be proven by taking a

precoding DFT matrix at the transmitter,x̃ = Φ†x, which leads to

y = H̃x̃ = HΦx̃ = HΦΦ†x = Hx.
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The multiplication byΦ† is unitary, so if the OFDM model usesx ∼ CN (µ,Σ) and Φ is a

full-K-rank square orthonormal matrix, thenΦ†x ∼ CN (Φ†
µ,Φ†ΣΦ). Gaussian distribution is

maintained when the channel model is changed, and the mutualinformation results for both

channel models supported by our bounds based on Gaussian inputs are completely equivalent.

APPENDIX D

PROOF OFLEMMA 1

Since the receiver knows which phase the duty cycle is in (e.g., scheduled according to a

pseudo-random sequence), the rate can be determined via thechain rule

1

Tc
I (x;y|c) = δ

Tc
I (x;y|c=1) + (1−δ) · 0 =

δ

Tc
I (x,H;y|c=1)− δ

Tc
I (H;y|x, c=1), (35)

where the first step comes from the fact thatHx=0 in the idle block (c=0) andPr(c=1) = δ.

During the active block the input follows a Gaussian distribution CN (0, P
δBN0

) and the first term

in (35) can be lower bounded by

δ

Tc
I (x,H;y|c=1) ≥ δ

Tc
I (x;y|H, c=1) = δ × EH

[

1

Tc
log det(IKNr+

P

δBNtN0

HH†)

]

, (36)

where the first step is from the non-negativity of mutual information, and the second is due to

independence of channel coefficientH in each subcarrier and transmit antenna. Furthermore,

δEH

[

1

Tc
log det(IKNr +

P

δBNtN0

HH†)

]

=δ
K

Tc
EH

[

log det(INr +
P

δBNtN0

ĤĤ†)

]

(a)
=δ

K

Tc

min(Nt,Nr)
∑

i=1

EH

[

log(1 +
P

δBNtN0

λi)

]

(b)

≥δBEH





P tr(ĤĤ†)

δBNtN0

−
(

P

δBNtN0

)2 tr
(

(ĤĤ†)2
)

2





(c)
=
PNr

N0

[

1− P/(δB)

2NrN
2
tN0

EH

[

∑

t,r

|ht,r|4+
∑

t6=u,r
|ht,r|2|hu,r|2+

∑

t,r 6=v
|ht,r|2|ht,v|2+

∑

t6=u,r 6=v
ht,rh

∗
u,rh

∗
t,vhu,v

]

]

(d)
=
PNr

N0

[

1− P (NtNrκ +NtNr(Nr−1) +NrNt(Nt−1))

2δBNrN2
tN0

]

=
PNr

N0

[

1− P

2δBNtN0
(κ− 2 +Nt +Nr)

]

, (37)

whereλi are eigenvalues of̂HĤ† with Ĥ=[ht,r]Nr×Nt representing the diagonal blocks ofH,

andht,r is the(r, t)-th element inĤ. Equation(a) comes from the fact thatH[k] are identically



29

distributed for allk=0, . . . , K−1, (b) is due tolog(1+x)≥x−x2/2 for x→0 and the fact that
∑

i λi=tr(ĤĤ†) and
∑

i λ
2
i=tr((ĤĤ†)2). Equation(c) is by careful rearrangement. Equation(d)

comes from EH [|h|2]=1, EH [|h|4]=κ, EH [h]=0, and independence of matrix entries.

To upper bound the second term we chooseH to be Rayleigh fading (with the maximum

entropy) and interpretx as a pilot signal that gives side information betweenH andy.

I (H;y|x, c=1) ≤ I (HGaussian;y|xPilots Signal, c=1) , I (H;y|x, c=1). (38)

An example for channel estimation would be a system where thepilot signal transmitted on

antennau is auM times delayed version of the signal on antenna1. After transmittingK pilot

symbols, at each receive antenna aK-equationMNt-unknowns linear estimation problem is

established and can be solved using the MMSE estimator.

Let Λ(v) be theMNt × MNt diagonal matrix containing in itsuM+m diagonal element

guM+m = E
[

|h[m](u,v)|2
]

(the gain of them-th channel tap in the(u, v) transmit and receive

antenna pair), and letΞ be aK × MNt circulant matrix (MNt<K) containingx̃(i−j) mod K

in its (i, j)-th coefficient, wherẽx=x/
√
P is unit-power pilot signal. Notice that the mention

of pilot signals here is to upper bound a mutual information term, rather than implementing a

practical channel estimation as required in a coherent receiver. Exploiting the fact that channel

estimation is carried out on each receive antenna concurrently based on the hypothetical pilot
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signalΞ from all transmit antennas, we get that the upper bound results in

δ

Tc
I (H;y|x, c=1)= δ

Tc

Nr
∑

v=1

E

[

log det

(

I+
P/(δB)

NtN0

Ξ†ΞΛ(v)

)]

(a)

≤ δNr

Tc
MNtE

[

log

(

1

MNt
tr

(

I+
P/(δB)

NtN0
Ξ†ΞΛ(1)

))]

(b)
=
δBNrNt

BcTc
E

[

log

(

1+
P/(δB)

MN2
t N0

MNt
∑

n=1

gn

K−1
∑

k=0

|x̃[k−n−1]|2
)]

(c)

≤ δBNrNt

BcTc
log

(

1+
P/(δB)

MN2
tN0

K

MNt
∑

n=1

gnE

[

1

K

K−1
∑

k=0

|x̃[k]|2
])

(d)
=
δBNrNt

BcTc
log

(

1 +
P/(δB)

MN2
tN0

K
MNt
∑

n=1

gn

)

(e)

≤ δBNrNt

BcTc
log

(

1 +
P/(δB)

MNtN0
K

)

(f)
=
δBNrNt

BcTc
log

(

1 +
P

δBN0Nt

(BcTc)

)

, (39)

where(a) stems from the AM–GM inequality and that channel gains between all antenna pairs

are i.i.d,(b) is due to the fact thatΞ is a circulant matrix, which has the same coefficients shifted

across all its columns, so its eigenvalues are the DFT coefficients of the columns,(c) is Jensen’s

inequality,(d) derives from the fact that̃x has unit power, and(e) is due to the upper bound of

squared channel coefficients
∑MNt

n=1 gn ≤ Nt, and(f) usesK
M

= BcTc.

APPENDIX E

PROOF OFLEMMA 2

Taking partial derivative of (8) w.r.t. the productδB, we obtain

∂RLB(δB)

∂(δB)
=
PNr

N0

[

P (κ−2+Nt+Nr)

2(δB)2NtN0
− N0Nt

PBcTc
log

(

1+
PBcTc

(δB)NtN0

)

+
1

δB
(

1+ PBcTc
N0Nt(δB)

)

]

.

(40)

Near the maximum ofRLB(δB) the term P
(δB)N0

BcTc is either≫1 or ≃1; becauseRLB(δB) is

already approaching zero if P
(δB)N0

BcTc ≪ 1. This means we can make the approximation

(κ− 2 +Nt +Nr)

2
≃

log(1 + P
(δB)∗N0

BcTc)

(P/(NtN0(δB)∗))2BcTc
, (41)

which solves as (9). EvaluatingRLB(δB∗) and using the same inequality in [7] produces (10).
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APPENDIX F

PROOF OFLEMMA 3

We upper bound the first term in (35) enforcing signal bandwidth B and duty cycleδ.

δ

Tc
I (x,H;y|c=1) (a)

=
δ

Tc
h (y|c=1)− δ

Tc
h(y|H,x, c=1)

(b)
=

δ

Tc
h(Hx+ z|c=1)− δ

Tc
h(z)

(c)

≤ δ

Tc
h

(

CN (0, I
P

δ
+BN0)

)

− δ

Tc
h(z) (42)

= δNrB log(1 +
P

δBN0
),

where (a) is from the definition of mutual information; (b) isfrom the channel model; (c)

comes from the fact thatz is independent ofx andH, and h(Hx+ z|c=1) is maximized by a

Gaussian distribution under the power constraintP
δ
+BN0. Use the approximationlog(1+x) =

x−x2/2 + o(x2), we can rewrite (42) as

δ

Tc
I (x,H;y|c=1) ≤ PNr

N0

[

1− P

2δBN0

]

+ o(
1

δB
). (43)

For the second term of (35), with the Rayleigh fading assumption, the inequality in (38) is

met with equality. From there on, upper bounds are found by taking a couple of minimums in

the argument of the logarithm.

δ

Tc
I (H;y|x, c=1) = δ

Tc

Nr
∑

v=1

E

[

log det

(

I+
P/(δB)

NtN0

Ξ†ΞΛ(v)

)]

(a)

≥ δNr

Tc
E

[

log det

(

I+
Pgmin

δBNtN0
Ξ†Ξ

)]

(b)
=

MNt
∑

n=1

δNr

Tc
E

[

log

(

1 +
Pgmin

δBNtN0
λn(Ξ

†Ξ)

)]

(c)

≥ δBNrNt

BcTc
E

[

log

(

1+
Pgminψ

δNtN0B
BcTc

)]

, (44)

Equation(a) is due togmin=minm,u,v E
[

|h[m](u,v)|2
]

is the minimum element in the diagonals

of Λ(v) and among allv’s, and(b) stems from the relation between determinant and eigenvalues.

SinceΞ is aK×MNt circulant matrix containing the power normalized vectorx/
√
P in its first

column, then-th eigenvalue ofΞ†Ξ is given by

λn(Ξ
†Ξ) = |∑K−1

k=0
xk√
P
e
−j2π kn

MNt |2 , KψK,n, n = 1, . . . ,MNt.
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Since E[ψK,n] ≤ 1
KP

|∑K−1
k=0 xk|2 ≤ 1 owing to the power constraint E[x] ≤ P , we obtain(c)

by the fact thatBcTc < K and by the definition ofψ in (12). Moreover, we haveψ > 0 because

the rate penalty of non-peaky inputs in active cycles is non-zero (δI
(

H;y|x̃/
√
δ
)

> 0).

APPENDIX G

PROOF OFLEMMA 4

We define(δB)± such that

P

(δB)±N0
=

√

Ω
log(BcTc)

BcTc
+ o(

√

log(BcTc)

BcTc
). (45)

Substituting (45) into (11) we obtain that

RUB(δB) =
PNr

N0

[

1−1

2

√

Ω
log(BcTc)

BcTc
−Nt

E
[

log(1+
√

ΩBcTc log(BcTc)gminψ/Nt)
]

√

ΩBcTc log(BcTc)

]

+o(

√

log(BcTc)

BcTc
). (46)

We separate the logarithm in two parts

RUB(δB) =
PNr

N0

[

1−1

2

√

Ω
log(BcTc)

BcTc
−1

2

Nt log(BcTc)
√

ΩBcTc log(BcTc)

−Nt

E
[

log( 1√
BcTc

+
√

Ω log(BcTc)gminψ/Nt)
]

√

ΩBcTc log(BcTc)

]

+ o(

√

log(BcTc)

BcTc
). (47)

SinceE[ψ] ≤ 1, the third negative part is alsoo(
√

log(BcTc)
BcTc

). We have

RUB(δB) =
PNr

N0



1−
√

log(BcTc)

BcTc

1

2

(√
Ω+

Nt√
Ω

)



+ o(

√

log(BcTc)

BcTc
). (48)

We will make this upper bound equal the achievable value in (10), which leads to

1

2

(√
Ω +

Nt√
Ω

)

=
√

(κ− 2 +Nt +Nr) log π + o(

√

BcTc
log(BcTc)

). (49)

By making change of variableΥ = Ω/Nt we get
(√

Υ+
1√
Υ

)

= 2

√

(
κ− 2 +Nr

Nt

+ 1) log π + o(

√

BcTc
log(BcTc)

). (50)
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With κ = 2 for Rayleigh fading,(κ−2+Nr

Nt
+ 1) ≥ 1. We obtain the following two roots of (50)

√
Υ

−
=

√

(
Nr

Nt

+ 1) logπ +

√

(
Nr

Nt

+ 1) log π − 1 + o(

√

BcTc
log(BcTc)

),

√
Υ

+
=

√

(
Nr

Nt
+ 1) logπ −

√

(
Nr

Nt
+ 1) logπ − 1 + o(

√

BcTc
log(BcTc)

).

(51)

It is ready to see that
√
Ω

−
=
√

Nt

√
Υ

− ≤ 2
√

(Nr +Nt) log π + o(
√

BcTc
log(BcTc)

),

√
Ω

+
=
√

Nt

√
Υ

+ ≥ Nt

2
√

(Nr +Nt) log π
+ o(

√

BcTc
log(BcTc)

).
(52)

Substituting them back in (45) we get the points(δB)− and(δB)+ as shown in (14). Therefore

the true achievement of the maximum can only occur in the range (δB)crit ∈ [(δB)−, (δB)+].
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