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Abstract

In non-coherent wideband fading channels where energyeratian spectrum is the limiting
resource, peaky and non-peaky signaling schemes have leeig tonsidered species apart, as the
first approaches asymptotically the capacity of a widebaWtsAN channel with the same average SNR,
whereas the second reaches a peak rate at some diititeal bandwidth and then falls to zero as
bandwidth grows to infinity. In this paper it is shown thatstldistinction is in fact an artifact of the
limited attention paid in the past to the product between lihedwidth and the fraction of time it
is in use. This fundamental quantity, callbendwidth occupangymeasures average bandwidth usage
over time. For all signaling schemes with the same bandwidtiupancy, achievable rates approach to
the wideband AWGN capacity within the same gap as the bartbwidcupancy approaches its critical
value, and decrease to zero as the occupancy goes to infihigyunified analysis produces quantitative
closed-form expressions for the ideal bandwidth occuparegovers the existing capacity results for
(non-)peaky signaling schemes, and unveils a trade-offdet the accuracy of approximating capacity
with a generalized Taylor polynomial and the accuracy withialw the optimal bandwidth occupancy

can be bounded.
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|. INTRODUCTION AND RELATED WORK

Recently there has been great interest in wireless chanvitisa large bandwidth, owing
in part to the prospective investments onto the millimetavevbands, where vast quantities of
new spectrum is readily available [2]-[5]. In a frequenclestve fading channel where there is
no channel state information at the receiver (CSIR) or thegmitter, the wideband capacity is
affected by the growing uncertainty in the channel impuesponse. As bandwidth grows while
energy is constrained, it becomes infeasible to estimaecttannel coefficients to a precision
sufficient for coherent detection. Moreover, if the transead signal power is spread across all the
available bandwidth and time slots, the desired signal dbelburied by the channel uncertainty
when bandwidth is too large. Médard and Gallager provesl [ii through an upper bound to
the rate that is proportional to the ratio between the fourtment of the signal (Ex|*]) and
its bandwidth B), i.e., R < E[|z|*]/B. That is, to achieve rates above zero when- oo,
one has to make Er|!] grow at least as fast a8 by concentrating the power of the signal in
a vanishing fraction of its transmitted symbols (i.e. iqinent bursts of very large power).

In this paper we investigate the capacity bounds of non+esttevideband fading channels in
multi-input multi-output (MIMO) setup where both the siding bandwidth and signal peakiness
are design parameters. The channel is assumed to be ricarswgtfrequency selective, block
fading with a coherence timg. and a delay spreaf, such that the channel frequency response
becomes uncorrelated for frequencies apart from more tharcoherence bandwidiB,21/D.
The channel coherence lengiB,T,, is assumed to be large for capacity analysis purposes, as
in almost all practical channeld3. 7. > 1. In our expressions we temporarily treBt7,. as a
fixed parameter to derive closed-form expressions, whepeoapnation errors originated from
B.T.>1 are highlighted in smalb- expressions parametrized by higher order term&3df..
We further assume that.7.> N,, which is easily satisfied in typical systems where the numbe
of transmit antennas is not massive. We generalize the sinatyethod in([7], developed for
non-peaky signaling in single-input single-output (SISP3tems, to MIMO systems and extend

it to arbitrary level of signal peakiness by enforcing a sraission duty cyclé<(0, 1]. The duty



cycle prescribes a bursty transmission scheme where thentitier is active only for a fraction
d of time with boosted signal poweP/§ harnessed from thél—§) silent-cycle. Denoting by
C'(B) the capacity of the unconstrained non-coherent channebwgrid( B, ) the maximal rate

achieved by using bandwidtB and duty cycley, for all B > 0 and§ € (0, 1], we have
C(B,d) < C(B) < C*® £ N,P/N, [nats/s]

whereC* is the limit capacity of the coherent channel at infinite baidth, P is the received
signal power,\, is the noise power spectral density, aNdis the number of receive antennas.
Note that the first inequality is strict because we do not@xkghe position of the active symbols

to convey information. We show in Sdc.]lll that( B, §) is upper and lower bounded by
R"B(6B) < C(B,d) < R"(§B).

Note that both the upper and lower bounds, up to a small appetion erroro(1/§B), depend

on B andé only through the produciB, which measures average bandwidth usage over time
and is named the “bandwidth occupancy”. Our results showftina series of signaling schemes
with finite signaling bandwidthB larger or equal to aritical bandwidth occupancydB)et,
which falls in a range prescribed by closed-form expressidns possible to achieve rates close

to C>° within the same rate penalty

P P [T+logB.T
C(B,5) > Ny— — Ac, Ac =N, \/w(m—Q—th—IrNr)logﬁ, (1)

"No No BT,

as long as the duty cycle '&:%. Here NV, is the number of transmit antennas amnd0
is the kurtosis (whose definition is deferred to Sek. Il) a¢ tthannel. Thus, it is possible to
approachC'> up to the same gap with ay=(0, 1]. Note also thaBB.7.>>1 leads toA~-~0 and
R(6BS™)~(C= Furthermore, we show in Sdc.]IV that the analysi€¢f3) with peaky signaling
in literature [8], [9] experiences exactly this same gap’ts, although we obtained](1) using
non-peaky signals [7] and a power-boosting duty cy@0, 1]. Fig.[d illustrates the relation
between our bound§'(B, 9), capacityC'(B), and the coherent wideband channel lifit.

The main contribution of this paper is the unified approxiorabf C'>° with peaky and non-
peaky signaling, showing that these two extremes can beecteh by all level of peakiness
parametrized by the duty cycle=(0, 1]. All signaling scheme$B, ¢) with the same bandwidth

occupancyy B=(dB) i, approachC> within the same capacity gap up to a small approximation
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Figure 1.  All transmission strategies with the same bantwioccupancyd B=(dB)i: achieve the same polynomial

approximation ofC* at different bandwidthsC'(B) is separated from the maximu@i(B, §) by a difference ob(1/(0B)crit )-

error of o(1/(6B)ait). We have also derived closed-from expressions for capécitynds and
critical bandwidth occupancy for all valués (0, 1], which provide valuable engineering insights
and tools to quantify the resources needed to appré&thAs a byproduct, we obtained a group
of closed-form bounds to the range @fB).,;; that are implicit in the existing literaturel[8],[9].
These parametric bounds can be tuned based @teuracy-resolution tradeoffo complement

the range identified in our non-peaky signaling analysis.

A. Related Work

The results in[[6] have been extended to signals with outputth-order constraint [10] or
small input peakiness constraint [11]. Telatar and Tse [&Rjted channel uncertainty to the
number of resolvable independent paths, and showed thatich acattering environment where
this number increases witB, the rate can grow as long as the signal power in each path is no
too low, but it starts decreasing when the number of path®dvea critical value.

The capacity of a wideband fading channel achiefiess order optimalityif, as B goes to

infinity, it has the same limit as a wideband additive whiteu&aan noise (AWGN) channel.



This has been studied inl[8],1[9], [12]-[14] and the lineapimwer capacity limit for MIMO is

lim C(B)noncoherent — lim C(B)AWGN — NI”P

B—o0 B—o0 Ny

To quantify the “exchange rate” of bandwidth to capacity lie tasymptotic regime where
B — oo, the concept ovideband slopavas introduced in [13]. A larger wideband slope means
that higher rate gain is obtained given the same amount o &sindwidth. The wideband slope
is studied in[[13, Theorem 9] based on the second order temanTaf/lor series expansion of the
spectral efficiency /B, in nats/s/Hz) with respect to the signal-to-noise ratiblR} at each
receive antenna, SNRP/(BN,). The wideband slope is inversely proportional to the second
order derivative of the spectral efficiency at SNR which is finite for AWGN and coherent
fading channels (i.e., with perfect CSIR) bubo for non-coherent scenarios (i.e., with no CSIR).
Thus the coherent fading channelsscond order optimabut the non-coherent channel is not.
This abrupt distinction contrasts with the intuition thas, the channel coherence tifhigand/or
frequency B. grow, channel estimation becomes increasingly rewardimg) the capacity of
the non-coherent channel converges to the capacity of thereot channel. This contradiction
was resolved in[[8],[[9] by showing that in non-coherent Regt fading channels the spectral
efficiency C(B)/B is better represented by a generalized Taylor polynomiardér1+a < 2,

1+ao
BN <NfB) _Nr(gfrvt = (NfB) o

where the exponente(0,1) grows with increasing3.T.. The first term equal§€'>/B, repre-

311 —), [nats/s/Hz 2)
senting afirst order optimalupper bound of the spectral efficiency when rate is poweitditdn
The third term captures the approximation error, that Vaessfaster tharB~(+%) as B—oc.
The second term represents the penalty from lack of chamwlledge. It contains SNR?, a
sub-quadratic terml{+a<2) that characterizes the convergence speed of the spefficarey
for non-coherent fading channels. Representing (2) by ¢cersd order Taylor polynomial leads
to an infinite coefficient to the term SNRwideband slope) and lack of second order optimality
as in [13]. In this paper the word “polynomial” refers to thegeneralized Taylor polynomials
with real-valued exponents.

Although peaky signals are imperative to achieve first ogimality [13, Th. 7], they are
challenging to synthesize owing to hardware non-lineaity the infinite amount of bandwidth

they require in non-coherent channels. If a small gap fédthat a large but finite bandwidth is



admissible, which is the case in all practical applicatiohasymptotic results, recent works have
shown that non-peaky signals may suffice. For example, ZlaagLaneman [15] investigated
the achievable rate of phase-shift keying (PSK) for fregydiat time-varying non-coherent
Rayleigh fading channels. Under average power constraimts signaling scheme approaches
the wideband capacity limit for low but not too low SNRs. Fagrals subject to both peak
and average power constraints, it was observed in [16] Heagap between capacity upper and
lower bounds can be very small for discrete-time frequdiatyRayleigh fading channels. The
capacity of non-coherent time-frequency selective wiglese stationary uncorrelated scattering
(WSSUS) channels with both peak and average power constraas been studied in [17],
where bell-shaped capacity upper and lower bounds werblisstad and the capacity optimal
bandwidth, thecritical bandwidth was coarsely identified as a function of the peak power and
the scattering function. For flat scattering functions, ¢chpacity bounds depend on the system
bandwidth and the input-signal peak constraint only thiotkgeir ratio. The results in [17] have
been extended to MIMO in [18], where the impact of transmitéeeiver antenna correlation on
capacity was also investigated. Lozano and Porrat [7] densd non-peaky signaling in SISO
systems under a general fading distribution. Their resstitsw that, when bandwidth is not
too large, there is a transitory first stage where fat#) grows with B before approaching a
maximum R(Bgit) at the critical bandwidtiB= B, beyond which the rat&(B) decreases to
zero asB grows unbounded. By resorting to computation of mutualrnmfation rather than the
capacity analysis as in [17], [18], they provided closed¥faexpressions to the maximum rate

and the corresponding capacity gap,

. p P [1+1ogB.T.
F(Be) = N S AT No\/ B.T,

where A vanishes with increasing coherence lendili,.. For Rayleigh fading, closed-form

klog, 3)

expressions for the range &f.;; were also derived.

Even though [[13, Th. 7] found that peaky signaling is impeeato achieve first order
optimality, the definition of first order optimality enforeean implicit requirement to make
bandwidth grow as high as possiblB (- ~o). Thus, only those inputs that approaCh when
B is infinite are covered by [13, Th. 7]. What our results showhist C>° can be approached
as well using a finite bandwidtB and non-peaky signaling.

Unlike in [8], [9] where the non-coherent wideband fadinguehel capacity”(B) is obtained



by using the position of signal pulses in the frequency donfiee., FSK) to convey information,
in our analysis the position of actively transmitted synstiolthe time domain, which collectively
defines the active-cycle, is revealed in advance to theweicand therefore bears no information.

Our capacity bounds are based on computation of mutualnrgbon with constrained input
signal peakiness — in the sense of kurtosis — that is coattdly enforcing a duty cyclé € (0, 1].
This is in contrast to[[17],[[18] where capacity analysis s&ed with peak constraint on the
amplitude of transmitting signals. Our choice of mutualomhation analysis can be justified
from two aspects: even thought we do not design inputs toesehihe capacity bounds we
can guarantee such inputs exist as long as the channel asel @ stationary weakly mixing
processes, see [19, Prop. 2.1]; the rate upper and lowerdboaimd the range of the critical
bandwidth occupancy can be described in closed-form esjoes which are otherwise difficult
to obtain using capacity analysis, see![17],/[18].

Our choice of using duty cycle rather than peak constrainsignal amplitude[[16],[[17] to
control the signal peakiness can be justified as followsmihe same average power constraint,
a peak constraint on signal amplitude will limit the peakat@rage power ratio (PAPR), which
is sufficient but not necessary to generate a constraint gimmakpeakiness. Signals with finite
peakiness may have infinite PAPR (e.g., Gaussian signalrtiedte PAPR but only a small
kurtosis k=2). It must be noted that in non-coherent wideband fading bk capacity is
related to the peakiness in the kurtosis sense [6], [13].

The rest of this paper is organized as follows. We introdieestystem model in Selc] Il and
present our unified analysis of wideband non-coherent adanrSec[1ll. We describe our non-
coherent polynomial approximation to coherent capacityg discuss its relation with literature

in Sec.[1V. Finally our conclusions are in S&d. V.

1. SYSTEM MODEL

We consider a rich scattering, frequency selective, blaknig, N; x N, MIMO wideband
channel with an impulse responk&)®*) between antennds, v). For compactness we assume
that all channels experience a coherence tifheand a delay spread and the channel fre-
guency response becomes uncorrelated for frequenciesnapas than one coherence bandwidth
B.21/D. We focus only on the frequency signaling scheme since i@ [7] that differences

between frequency and time signaling only affect the sgadiith bandwidth in its vanishing



higher order terms. In the following we present the charattes of the discrete-time system
modem. Justification of our choice of the wideband fading modelrsspnted in AppendixIA.
Our model starts from a continuous-time wideband fadinghokh followed by the discretiza-
tion/sampling process on the input-output signals. Thivigles a signaling scheme where every
T. seconds, the transmitted signal’[n] with bandwidth B carries k=BT, complex samples
on antenna:€[0, N;—1]. Taking aK-point DFT of the complex samples for each antenna and
then stacking all théV; vectors up, the transmitted codeword is uniquely definechby\; K x 1

vectorx that satisfies the average power constraint

LE[x] < PT.
For i=kN,+u, the i-th coefficient ofx, denoted as:”, corresponds to the transmitted signal
on antennau with DFT index k{0, 1,..., K—1}. For each pair of antennds, v), the dis-
crete samples of the channel have=BD i.i.d. coefficientsh“¥)[n], n=0,1,..., M—1, with
M/K=D/T,=4%. After applying -point DFT to each discrete channel sequehte’[n],

we define a block-diagonal matrix

H[0]| © 0
0 |H[]| :

H= _ , (4)
0 | ... |0 |HK-I]

whereH k] contains in itv, u)-th element thé-th DFT coefficient ofs(“*)[n], whose distribu-
tion is determined by the impulse resporige) ). Each channel only has/ i.i.d. coefficients
and any two blocksH[k] and H[K'| are correlated only ifk—k'|<B.1.. We also define the
average gain of the-th channel coefficieny,""=E [|1(“*)[n]|?] satisfying>"" ' g{“* = 1.
When D«T,, a cyclic prefix with negligible influence in rate can be insdrto remove the
inter-symbol interference and the signal received on eadim{ realization,l;., depends only
on the state of the channel and signal transmitted duringséimee realization. After applying

K-point DFT to the received signal, we can represent the sysie

y = Hx + z, (5)

1The equivalence between the discrete-time and contintio#sehannel models for SISO is established if [20] usingpdizmg
and DFT, and in[21] using pulse shaping filter banks with \Aldgisenberg projection. Our result uses MIMO in a rich szaty

environment and we provide explicit mapping of the chanmelfficients between two different discrete-time models.



wherey is a N, K x 1 vector whose-th elementy®, with i = kN,+v, corresponds to the signal
received on antenna with DFT coefficient indexk. The noise vector follows a Gaussian
distribution with PSDN, (CAN (0, In,x NoT?.)).

Some references, such as [8], [9], use a different dis¢m@te-model with fewer frequency
bins, each experiencing an independent fading coefficteat repeats itself for many consec-
utive symbols. We prove in Appendix] B that the two discréteet models are compatible.
In Appendix[C we show that the two models are equivalent atctirginuous-time level using
concepts of multi-carrier modulations and we provide eipihapping of the channel coefficients
between the two models. Therefore our results are indepemdeéhe model chosen.

Wideband capacity is related to peakiness in the sense afidhmalized fourth moment of

the inputs, orkurtosis[6], [13]. Given a stochastic sequengét), its kurtosis is defined as

s Eaw lla(®)]
O E s latoPT” ©

where the time indext) may be dropped if the process is stationary. By enforcingts dycle
d€(0, 1] on the input signak, the system is converted into the time-alternation of aivactage
for a fractiond of the time with boosted poweP’=Z, and an idle stage for a fractiafl—o)
of the time. Letx be a non-peaky signal with powét and finite kurtosis:(x). We introduce
a binary random variablec{0, 1} to represent the use of each fading block of siz&B.,
wherec=1 means the channel block is active for signal transmissi@hcai) means idle, with

probability P,.(c=1) = §. We revealc to the receiver in advance, which will reduce the rate as
C(B,d) =1(xyle) =l (x,c;y) =1 (cy) = 1 (xy) =1 (y) < H(xy),
where0<I (¢; y)<H (¢) with all equalities hold fow=1. The duty cycle induces a new signal

[T X/Vo, w.p.o, _ Elx]] E[x
X=X,/ =—— = h k(x)= =
e Vo, wpas TN o

] _ ()
e O

M

Therefore we can effectively adjust the peakiness (in tises®f kurtosis) of signaling without

imposing any extra constraint on the distribution of thevacsignal z.

[1l. BANDWIDTH OCCUPANCY LIMIT

Our analysis is a generalization of the the SISO analysis nan-peaky signaling in_[7]. We
extend the process to MIMO systems and to an arbitrary Iév&igmaling peakiness through the

tunable duty cycle parametérc (0, 1]. Both analyses follow four steps, represented in Eig. 2.
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1) Find a bell-shaped lower bourfe? (6§ B) < C(B, );

2) Determine the unique maximum &% (§B), R¥?((§B)*);

3) Find a bell-shaped upper bout¥ ?(§ B) > C(B, 6);

4) Determine(6B)" and (6B)~ such thatRVB((6B)")=RV2((6 B)")=R"B((6B)*).
The result of [[Y] shows that the capacity of a non-coheredinta channel with non-peaky
signaling =1, finite ) grows with bandwidthB only when it is below aritical bandwidthB,.;;,
which falls into the rangéB—, B*]. A system operating with insufficient bandwidi B.,;; is
less efficient in converting available signal energy intterdue to the sub-linear law between
rate and SNR, and the corresponding achievable rate grothisimdgreasing bandwidth. When
signal power spreads over too much bandwithB..;;, the channel-uncertainty induced penalty
grows with increasing bandwidth and the achievable rateedses to zero a8—oo. Therefore,
contrary to the wideband AWGN channel where “the deeper tht low-SNR regime, the
better”, in the non-coherent fading channel the guidelgn&nter, but not in excess, in the low-
SNR regime”, with the optimal operation point &t.;;. Our result shows that for ani> B,
it is possible to bring the capacity back to the same optimahle; up to a small approximation
error of ordero(1/B.), by imposing a duty-cycle parametés(dB)..;;/B and a power-boost
P’ = P/§ on the original non-peaky signaling. Moreover, in Sed. IV st®w that this strategy

achieves the same gap frofit° as in the peaky-signaling analysis [E]] [9].

A. Capacity Lower Bound fof'(B, d)

As in [7], our lower bound is obtained by first calculating theaximum achievable rate
of a coherent non-peaky signaling under the average powsstraint and then deducting the
maximum rate penalty from lack of CSI. Therefore it is valior fgeneral channel fading
distributions and for any value oB and B.T.>N,. The potential spatial correlation among

different antennas is not considered here.

Lemma 1. The achievable rate in a wideband non-coherent channel with fading and a
duty cycles € (0, 1] is lower bounded by

PN, P(k—2+4 N, + Nr)] §BN,N,

P
LB(5B) = 1— 1 1+ ———B.T. 8
R™(0B) Ny 26BN, Ny 5. 2\ TSN, )

whererx = k(h) is thekurtosisof the channel fading coefficients.
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Figure 2. Our four-step analysis of critical bandwidth quancy. SubstitutinddB) by B gives the original analysis by[7].

Proof: See AppendiXxD. [
The kurtosisx for many fading distributions are in the range[0f2]. For example, as given
in [7], » = 2 for Rayleigh fading = 2—4k?/(1+2k)? for Rice fading with factork > 0, and

k = 1+1/m for Nakagamim fading channels.

Remark 1. Even though the duty-cycle constrained capac€ifyB, §) might be two-dimensional

function ofy and B , the lower bound is only a function of the produds.

B. Maximum ofRLE

We use the assumption thBL7,.>>1 to determine the maximum of the capacity lower bound
RLB, For any finite B, T, we can approximate the optim&iB)* and the associated maximum
rate up to an error term (,/%) that decreases to zero &7, — co.

Lemma 2. R*B(4B) is maximized at B=(§B)* with

P B.T, B.T,
B)* = crce — 9294+ N. + N _cc
OB = Fw, \/log(BcTc) (=24 Nek a) o ( log(BcTc)> ’ ®)

RMB((6B)*) > ]jVNr 1—- \/M(K—Q—I—Nmﬁ\fr) logﬂ} —0 log(BcTC)) . (10)

0 BcTc BcTc
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Proof: See AppendiXE. [

Remark 2. We would like to emphasize that the rate-maximizing bantiwedcupancy(dB)*

is very large given the fact that the channel cohereB¢€, usually ranges from a few hundreds
to hundreds of thousands. For example, assuding@ MIMO over Rayleigh fading«=2) with
P/Ny=70 dB, we have(§B)*~120 MHz with capacity gapA/C*°<0.18 for B,T,=10%, and
(6B)*~930 MHz with A/C*><0.03 for B.T.=10°.

C. Capacity Upper Bound fo€'(B, §)

We obtain a capacity upper bound for the case when channetyteigh distributed. The
bound, up to an error term @1/ B) that vanishes a8B — oo, applies to any value aB and

B.T.>N, and all inputs subject to constraints of average poiveand signaling duty cyclé.

Lemma 3. The achievable rate of signaling schemes with duty cyel@®, 1] in a wideband

non-coherent Rayleigh fading channel is upper bounded by

P 0BNN,

1
%BN, PB.I. {Og( TSN.BN,

T (5B)

1—
No

(11)

RUB(éB) = BcTcgminw):|

Where gy,im=min, .., E [|2**)[m]|?] is the minimum non-zero square channel gain among all

delays and antenna pairs, and the random variablés defined as

= argmmE {log (1+%B T)}, wherey , = |ZK ! ke 2 . (12)

Proof: See AppendixF. u

Remark 3. The auxiliary variable) is bounded{ >0, E [/]<1) and serves here as a placeholder

for the minimization of the last term of the bound, which iplinitly determined by(12).

D. Critical Bandwidth Occupancy

We obtain the range of values éf3 where the upper bound is larger thdt?((6B)*).
C(B,¢) can approachC> within the small gap in[(I0) only if the bandwidth occupansy i

contained in an interval that grows linearly wi bjg;c), as suggested byl(9), and the error

termo(5) in LemmalB can be substituted with an equivalent texfy oelBelo)),
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Lemma 4. In a wideband non-coherent Rayleigh fading channel, theimam rate in(10) is

achievable at a critical bandwidth occupan@yB)..;; that resides in the range

(63)_ S (5B)crit S (6B)+7 (13)
where
P 1 [ B, B.T,
5B -—— c*+c + c+-cC ,
(45) No 2\/<Nt + N;)logm log(B.T) ¢ < log(BCTc)> (14)
P (N, + N, B.T. B.T.
+_ - v P or) _ Teme _ e
@5) _NOQ\/ N? log”\/bg(BcTc) e ( log(BcTc>> '
Proof: See Appendix G. n

E. Interpretation of the Result

Our upper and lower bounds d@i(B, §) are all derived from the chain rule
| (x;y]c) =0l (x, H; y|e=1) — I (H; y|x, c=1),

where the first term corresponds to the data transmissiap sbat quantifies the information
about Hx contained iny and the second term can be interpreted as a “channel estihati
setup that quantifies the rate penalty for not knowkhgBoth terms grow as B increases but
the first term grows faster whefB is small, thus increases(x; y|c), until the second term
“accelerates”. Beyond the critical poi(iB)., the second term grows faster than the first, thus
erodes [x;y|c), until the capacity drops to zero wheiB — oo. This behavior is illustrated
in Fig.[2 for both the capacity upper and lower bounds. Thesoatce timel,. and coherence
bandwidth B. of the channel jointly determine the relative speeds of trase” through their
product. The factofl.B. appears in rate penalty both as the denominator outsidegazithm
(there arel. B, times fewer i.i.d. channel realizations than signal reaions) and as a multiplier
of the SNR inside the logarithm (the power @fB,. signal realizations can be combined to
estimate each channel realization), leading to a capaaipydgpending oﬁ%.

In Fig.[3(a) we represent the upper bound to capacity as a diedd the 2D plan€g/, B)
with B.T.=10% and P/Ny=20 dB. In the vertical cut for’=1 we also plot the lower bound
using triangular bullets. Note that we intentionally che@ssmaller value of’/ N, to illustrate

the details of the transition phase in capacity, which woailderwise be difficult to observe
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Figure 3. Capacity upper bound over the pladeB) and the low bound fop=1, with B.T. = 10°, N,=N,=1, and an
intentionally chosen small valuB/Ny=20dB. Range of critical bandwidth occupancy is also shown.

with typical values of P/Ny~70 dB [7]. On the B-axis, we can see that for fixed values of
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0 the capacity as a function of bandwidth is bell-shaped, gratvsmall bandwidth, reaches a
maximum and then decreases to zero. Fig.|3(b) provides arhgttspective on the value of
capacity upper bounds as a function of the bandwidth ocayp&B, where the optimaloB)*
that maximizes the capacity lower boudtf® and the rangé(éB)~, (6B)"] for the critical
bandwidth occupancydB)., are also plotted. For different level of peakinegsthe peak
values of capacity are the same but appear at different hdtid, and in fact all points with
identical valued B have the same lower/upper bounds. Our analysis recovevopseresults
for non-peaky signals by setting=1, producing a finite critical bandwidth. It also recovers the
capacity with infinite-fourth-moment signals by takitig>0, which drives the critical bandwidth

. . . . . B cri
occupancy point further into higher bandwidths satlsfy(is'n%M =0

Our analysis also unveils the impact of the dimensions thgO array on the non-coherent
wideband fading channels. The maximum rate in Leniina 2, éérivnder the condition that
N,<B,T., depends critically on channel coherenBgl’... For example, forB,7. = 10° and
B.T. = 10°, the maximum rate (10) can be approximated as, respectively

PN, . _ PN,
R(BI,=10°) = —(1 = 0.1/ N N,), R(BI=10°) = —(1 — 0.005v/Ni+ Ny,
0 0

When N,.>1 is fixed, increasing the number of transmit antennas willraeég the rate, with
the gap growing linearly withy/N,+N,. When N,>1 is fixed and channel is relatively flat
(henceB,T. is large), the rate gap is negligible for typical MIMO setupd therefore the rate
grows almost linearly withv,. When the channel is rather dispersive (heitd’. is small),
however, increasingv, will produce a power gain that increases the rate at spéebut at the
same time will bring in more channel uncertainty that inseethe penalty at rate proportional to
v/N;+N,.. Therefore using too many receive antennas will hurt théeaable rate. For example,
the maximum rate peaks aroudd =40 for B.T, = 103. It must be noted that our analysis is
accurate for conventional MIMO systems witfy < B.T., and extension to high-dimensional

MIMO is out of the scope of the current paper.

IV. UNIFIED CAPACITY FOR PEAKY AND NON-PEAKY SIGNALS
In this section we will show that the peak rat&"?((6B)*) in (I0), which is derived by
combining non-peaky signaling analysis [7] and tunablekjpesss through duty cyclé< (0, 1],

approaches”> within the same gap as in the unconstrained capaCit$8) analysis using a
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generalized polynomial rate approximatidn (2) obtaineal peaky signaling analysis![8],![9].
We first replace’, a free parameter in our model representing the duty cydlé, an assigned
value 5=SNR'"* as in [9], whereSNR = P/(BN,) and« is the exponent that determines the
wideband slope. This substitution will show that, when tharmel coherence length is large, i.e.,
B,T. > 1, the gaps taC> in (I0) and in [2) have the same value at poifls 6 = SNR'™).
Furthermore, we show that the sufficient and necessary tonslion the coherence lengih.7T..

to approachC'>, proved in [9, Th. 1-Th. 3], can also be established usingresults. Once we
have established that the results are equivalent, the dpgagh can be taken and use the values
of o obtained in[[9] to calculate a new range of the critical baitlvoccupancy in closed-form
expressions. We discuss the relationship of the two exjoresswhich have minor differences
in the error terms of the calculation of, reveal a trade-off between accuracy and resolution in

[9], and demonstrate that the two methods represent the sptimaal rate.

A. Different Analyses Show the Same Results

The analysis in[[9] obtains a necessary and sufficient cmmditn the coherence length of the
channel,B.T,, to guarantee that capacity is above a polynomia‘SNR:W’} as B—oo with
specified peakyness = SNR*™*. This result is given in[[9, Th. 3], which is rewritten in the
next lemma for easy reference. The result is valid for aabjti3. 7., but the necessary condition

to approximateC is akin to requiring thatB.7, be large.

Lemma 5 (Th. 3 [Q]). For any a€(0, 1] and e€(0, «) the capacity of a Rayleigh block-fading
MIMO channel with coherence tiniE., coherence bandwidti®., and average signal to noise

ratio SNR:BLJQO is

B N:(N; + N,
CB) o yoNg — NelVe t N gypiva | grgngitate), (15)
B 2N,
if and only if there exists a<(0, ¢) such that
BT, = LSNR‘Q(”Q). (16)
(Ve + Ny)?

Recall that in Sed.1ll, our rate lower bound [ (8) contaimee terms, the wideband capacity
C*, a non-linear rate penalty dueligz(1+SNR), and a rate penalty due to lack of CSIR. Below
the optimal bandwidth occupangy B)*, the third term of [(B) is smaller in absolute value than

the second. Replacing the third term by the second term astifitings=SNR'~%, a.c(0,1)
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into (8) produces the following sufficient condition in tesraf the bandwidth occupan@B, as
stated in Corollary11.

Corollary 1. If 6B < (§B)*, the achievable rate is lower bounded by

PN, P\ (k—24+N,+N,)
cip.yz P 1 (£ ] a

On the other hand, abovéB)..i;, the third term of[(B) is greater than the second. This means
that C'(B, §) is smaller than[(I7), which leads to the necessary conditidDorollary[2.

Corollary 2. In Rayleigh fading £=2), if 5=SNR'~ and if

PN, P\ (N +N)
c8.9) 2 [1_(31\70) N, } (18)

then the bandwidth occupancy satisfids < (6B)™.

Now we can use the necessary condition in Corolldry 2 and tHficient condition in

Corrollary[1 on bandwidth occupan@pB to prove the sufficient and necessary conditiod (16).
Proposition 1. Corollary 1 implies the sufficient conditiod8) for Lemma(b.

Proof: Substitutingd=SNR'~* andx=2 into (9), we can rewritéd B<(5B)* in Corollary[1
as
N
(N, + N;)?
iSnce (N, + N,) log(B.T.) is a constant and® — oo, we have(N, + N,)log(B.T,) < SNR™*
for any e > 0. Therefore, it is also sufficient to have

N1:2 SNR—2(0¢+5)
(N: + N )2 ’

which is a sufficient condition that Lemma 5 transforms in tipper limit of o < e. [ |

B.T, > SNR™2%(N; + N,) log(B.T,).

BcTc >

Proposition 2. Corollary [2 implies the necessary conditi¢bd) for Lemma_b.

Proof: The necessary condition3 < (6B)* in Corollary[2 can be rewritten as

N? N.AN,
BT, > i gyp-2e Nt

log(B.1%).
(N, + N;)? 4logm og(B.T.)



18

Therefore we can express the necessary condition that Ldshsets as lower limit of > 0,

N? 2
BT.> — "t ___SNR,
(N; + N;)?
as long as%TNﬁ log(B.T,) > 1, i.e., B.,T,>mn*M:+N) which is always satisfied in wideband

fading channels wher&.T, is very large, and thu®,.7, > =2 [ |

Remark 4. From Propositiori 1l and Propositida 2, it is not surprisingatithe power gain term
log(B.T.) was lost in [9], because this sub-polynomial variation of tesult has been “buried”

in the range of valid exponentsof the error termO(SNR'"**¢),

B. New Bounds o1 B)..;; using the Subquadratic Polynomial Rate Approximation

In our analysis, Lemmal 2 prescribes a near-linear-in-paapacity lower bound which can
be achieved by all signaling schemes withB) as long as the bandwidth occupandy equals
some constantdB).. Our analysis does not provide the exact valug@®B)..;;, but rather
bounds it within[(0B)~, (0B)*] in Lemmal4. On the other hand, the result in [9, Th. 3],
reproduced here as Lemrha 5, prescribes an entire family @mrized bounds where the
parametek controls both the error term of the generalized Taylor esganand the resolution

of bounding brackets aroundB)..i;. Corollary[3 makes this explicit.

Corollary 3. The necessary and sufficient conditi@@) of Lemmalb shows that coherent

capacity C* is approached by transmitting signals with bandwidth o@ngy § B within the

limits
P N, + N,
6B < T B s (spyme (19)
No N,
P (N, + N aHe ~
B - B T 4 B mln‘ 2
6 > N() ( Nt c C) (5 )E ( O)

Proof: SubstitutingB, 7., )=SNR'~* andSNR=z%- into (18), we can obtairi (19) and (20)

by the fact thatr>0 and o<e, respectively. [ |
Therefore for a givem, which controls the level of peakinedsand determines the wideband
slope, we can observe a clear tradeoff, parametrizeddfy, o), between the accuracy of the

Taylor polynomial and the resolution of the bandwidth betsk
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1) The accuracy of the capacity lower bound calculated in Lemfda 5 is deteeahihy the
ratio betweenSNR'™ and the error termO(SNR'***¢). The largere, the better the
approximation, since the error term will vanish fasteras+ oc.

2) Theresolution of the interval wheréd B)...;; is contained|(6 B)™™®, (§ B)™*], is determined
by the width of the interval. The smaller the better the resolution, as the lower boundary

(6B)™n will increase and become tighter wherbecomes smaller.

C. Comparison of Critical Bandwidth Occupancy Estimators

So far we have characterized the critical bandwidth occopddB)..i. in two different
ranges: by a pair of brackétdB)~, (6 B)*], in our analysis in Lemmal 4; and by a parametric
interval (6 B)™", (6 B)™#x], derived from [[9, Th. 3] in Corollary/]3. To explore the retatship
between the two estimators, we compare the difference iregtienated value ofv that each
analysis produces. We do this because the expan@nbvides a unique relation betweéhand
0=SNR'~*=(355)'*, allowing for scalar comparison of the methods.

We begin by representing according to([9, Th. 3]. Froni(16) in Lemni& 5, for given values
of the coherence block length.7. and bandwidthB € [(§B)™", (§ B)™*] can be written as

log (Lt Nt““) B.T.)
ta= . 21
cres 210g(SNR 0 (1)

From the fact that > 0 we get

log(i(N‘JrNr) B.T,)

< Omax = — 5 22
asa 21og(SNR™) (22)
and from the fact that < ¢ < a we get
log((NtJrNr) B.T,)
o > max (ﬁ, ozmin(e)> , whereay,(e) £ 2log(SNRT) — €. (23)

Note that where decreasesy.,i,(¢) increases such that the rangecobecomes smaller but at
the same time the error terM(SNR'**"¢) vanishes more slowly: improving thresolutionof
the bandwidth occupancy range comes at the price of dengeéise accuracyof the capacity
polynomial approximation. We can make an approximate seleof ¢ such that polynomial

error term is in the order of a-percent of the ternsNR'*, i.e., findinge(p) such that

SNR,1+a > @SNRH_O[—’_G(]D) )
p
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This generates a family of narrower estimated mar¢ing, (p), amax) parametrized by the pre-
selected error percentagé; by raising the lower bracket.

On the other hand, we can bouadising the critical bandwidth occupancy interval in Lenirha 4
in combination withi=SNR'~. With §B=(6B)* we get

(Ny N,r log T (Ny Nr t r)lo cTe
IOg( +N:) log 1O§Bch)) :log( N BT, _mxw) o
2log(SNR_1) 210g(SNR b 2log(SNR™) 7
and withéB = (§B)~ we get
gl i) log(MFEBTL)  log(4log m M log(B.T.)) 25)
o = = — .
21og(SNR™) 2log(SNR o) 210g(SNR o)

Recall that for any > 0 we have(N; + N,)log(B.T.) < 81\11i1>{n 0SNR‘%. This means that we
_)

can show thaty,., > a™ > aun(€), and the interval between the three vanishes-as.

Remark 5. All the results coincide in thatoclog(B.T..), making capacity of channels with low
B_.T. approach their wideband limit very slowly witiN R—0 and channels with highB.T.
approach the wideband limit faster. This is the main inantbf the results in[[9]: non-coherent

channels approach the coherent channel capacity when eaberlength is large enough.

D. lllustration

We plot the capacity lower bound on the plaf#eB) in Fig.[4 for B.T,=10° (first graph)
and for B.T.=10* (second graph). The peak capacity is achievable in a regitm aenstant
productd B, starting at relatively large bandwidths, and both estiomat of the optimal region
are narrow. The choice of determines the polynomial lower bound and therefore thgean
[amin(€), amax)- We can generate a set of estimationg,(¢) by fine-tuninge within the range
(0, ), as shown by the curves correspondingai@,(¢) with e=a/2, /4, respectively. Note
that the conservative choice=« leads to the widest possible range fof,.x/2, max). ON the
other hand, the resolution of the estimators from our ownyais|«~, o] depends only on the
value of B.T,, and its range becomes smaller Agl. increases.

Since the resolution of the estimation by, o] relies onB.T, and the relative margin of
[@min, Omax] depends on, we show in Fig[b the evolution of the two boundary method wi
and B.T.. The method[[9] produces the highest upper boung, that does not change, and a
family of lower boundsn,,;i,(p) depicted in the figure for errors df’o and 10% and its lowest
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Figure 4. Capacity lower bound on the plafg B) with P/Ny=20dB, B.T.=10° (first graph) andB.T.=10* (second

graph). Curves withumin(€) are generated witb=a, /2, a/4, respectively.

bound a,,. /2. Note that at low coherence lengtB, 7., the limit a;, > amac/2 Makes it
impossible to select values efcorresponding with a polynomial accuracy1f, and theni0%.
This shows that the polynomial rate with peaky signaling@hdlso displays a gap frora'>

decreasing withB.T,.. On the other hand, the critical bandwidth occupancy methaduces
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Figure 5. Evolution ofm versusB.T. with SNR = —20dB.

boundaries that are loose at low coherence length but ire@imnificantly when this parameter

grows and that do not pay for tightness a price in accurach@®fpblynomial approximation.

V. CONCLUSIONS

In this paper we have unified the study of the rate approxonatioC*> for peaky and non-
peaky signaling in non-coherent wideband fading channélsrey energy rather than spectrum
is the limiting resource. We have generalized the criticahdwidth analysis[[7] to families
of signaling schemes with varying bandwidih and transmission duty-cyclés(0, 1] to allow
arbitrary levels of signal peakiness. We introduce the imefrbandwidth occupancy to measure
the average bandwidth usage over time and define dttaghe product between the bandwidth
and the fraction of time it is in use. Our main result shows ¢xestence of a fundamental
limit on the bandwidth occupancy in non-coherent channaisahy level of signal peakiness.
For all signaling schemes with the same bandwidth occupaaythe bandwidth occupancy

approaches its critical valu@ B)..i;, rates converge with the same asymptotic behavior to the
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same almost-linear in power value (measured in nats/s)

(5B>Crit) > PNr 1— 1+ log(BcTc)
B - Ny B.T.,

C(B,0 = (k=24 Ny + Ny)logm |,

whereT, is the coherence time ané, is the coherence bandwidth. The rates decrease to zero
as the bandwidth occupancy goes to infinity. Moreover, wevigeoupper and lower bounds to
this critical value. The bounds have the same growth it and io, and they only differ on

a constant term.

To characterize the relation between the capacity with alilenpeakiness constrai@t 3, 9)
and the unconstrained non-coherent wideband capadity), we rewrite the above capacity
expression as a polynomial equivalent to the analysig in /@ have recovered the results
in [9, Th. 1-Th. 3] and obtained the almost-linear polyndngigpressions for capacity in the
limit 6B — (0B)ais With a dominant sub-linear terrSNR®. As the bandwidth occupancy
approaches the limit, capacity approaches the powerdantideband limit with a speed of
convergence determined BWR'™®, which approaches that of coherent channel8&8 — cc.
The fundamental nature of the bandwidth occupancy measflexts the fact that capacity of
any signaling scheme is contained within the same boundsngsds the produciB is constant.

Within this framework, limited bandwidth transmission witon-peaky signaling and unlimited
bandwidth transmission with peaky signaling, which haverbigeated as very different schemes,
are shown to be merely two extreme points in a continuouseraigtransmission strategies
within the same bounds as long as they have the same amouanhdWizth occupancy. This
suggest that for the practical goal of operating atate very close toC*, all pairs (B, )
with the optimal occupancy do not exhibit significant diffieces. Achieving capacity, i.e. the
supremum rate, may on the other hand only be possible in sgedfis distributions. The
selected peakiness= SNR'~“ in [9] becomes invalid iSNR>1 (asd < 1 by design), whereas
our model determines peakiness througB<(dB).i, @ quantity that is well defined for all
values of SNR. This gives the intuition that below the catipoint it would be questionable
to claim that the frequency-selective channel is in the Wahel regime, and therefore regular
non-peaky transmissions with full bandwidth occupancy tnbmesemployed. Beyond the critical
point, both signaling schemes provide the same capacity. lim

We have shown that most of the advantage of peaky signakmgsstrom harnessing power for

long periods of time to transmit some infrequent flashes Wwabsted power, without encoding
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information in the position of the active symbols as in ONFORodulations. Moreover, this
power boost does not in fact outperform non-peaky transamssith the optimal bandwidth,
which means that in practical systems the amount of peakiswed the bandwidth may be chosen
at will as long as the maximum occupancy level is respected.

Our analysis has some limitations. Firstly, the potentt®l correlation among MIMO
antennas is not accounted for. Secondly, although our tgpkever bounds are valid for
general fading channels, our upper bound and critical battbveccupancy expressions assume
Rayleigh fading. Besides, the performance of a signalisgesy with practical channel estimation
techniques|[22], peak constrained signals [11],) [15], [198], finite modulation options, and
non-ideal decoders may be degraded as compared to the ttbalbobeounds provided in this

paper.

APPENDIX A

JUSTIFICATION OF OUR FADING MODEL CHOICE

As a general case, a wireless channel is modeled as A skpaths, where each pathe £
is defined by a group delay, a phase of arriva#,, and an impulse respongg(t). For a pair
of antennagu, v) with received signat(®)(¢) and transmitted signai™(¢), we have

r@(t) = s (t) Z hé“’v) (t — Tz(u’v))ejeéum +20() = sW) « B (1) + 2(),  (26)
lel

where z(")(¢) is the AWGN noise, and the channel delay spréaénd coherence timé, are
determined by the aggregate channel impulse respgisgt). Traditionally,hé“’”) (t)s are scalar
gains or narrow pulses that can be approximated by the De#a tunction, in which case the
set £ would be a sort of “ray tracing” of perfect reflections of thigral with a scalar gain.
However, recent mmWave meassurements have found muctr liglag-spread values [24] than
those predicted in ray-tracing calculations![25]. This ni@ydue to rich scattering from small
objects in mmWave fading channels, which are not so sparpearttice. This is due to the fact
that, although there are few arrival direction “clustensi’,each cluster energy arrivals spread
along many angular directions [26]. Therefore each armedction sees the additive effect of
a large number of scattered reflections, not a single path;eanhh@“’”) (t) has a delay spread,
instead of a scalar channel gain. The construction of disd¢nme system models falls into the

following three regimes depending on the sampling rate:
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« Samplingh®¥)(t) at low rate, all the energy in the delay spreRdwould be captured by
a single sampling interval, so the resulting discrete cekhmould be a scalar coefficient,
which is approximately Gaussian distributed due to the l&laige numbers. This is called
the narrowband, or frequency-flat channel.

« Sampling at higher rate would make the energylinbe captured in multiple sampling
intervals, each with an independent scalar coefficients ©called thevideband channel,
or frequency selectivewith rich scattering environment.

« The third regime occurs when the number of sampling bins istiarger than the number
of paths in£. The sampled channel coefficients are sparse and not Gaudistaibuted.
This is called theultra-wideband.

We consider the wideband fading model to be relevant in mnaAammunications where
rich scattering and longer delay spread was observed [24.d&crete equivalent channel is
derived from the propagation described above by employiegctassic framework of a Nyquist
sampling at frequency, the consideration of frequency-domain signaling with goint DFT,
satisfying K = BT,, and a cyclic prefix of negligible duratio’éd = B/B. = K/B.T. < K.
The same channel model is employed![ih [7].

APPENDIX B

COMPATIBILITY WITH ANOTHER COMMON MODEL

In [9] the signals are divided into a set &f = B/B. narrowband channels (a.k.a. frequency
bins) with encoding symbols defined with a symbol period 6B.. Each narrowband channel
can be perfectly sampled at a rate of justample per symbol period, and there arfeparallel
frequency bands that produdé samples per symbol period. In this scheme multiple symbols
see the same channel realization and the channel coheremgth lis a block ofL. = T.B.
consecutive symbols. By indexing witlh the independent frequency bins and withthe

consecutive periods on the same channel block realizatterget the model
ylm, f] = H[m, (]x[m, (] + z[m, {], (27)

whereH|m, /] remains unchanged fdér= 1, ..., L.. To exploit channel coherence, the encoding

process must design the transmitted signal for theconsecutive symbols jointly, and the
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encoding model is represented with matrices as
Y[m] = H[m|X[m] + Z[m], (28)

where the dimensions am, x L, = (N, x Ny)(Ny x L).

In this model, for every encoding interval of length and across all/ frequency bins there
are a total of M L.=K complex valued coefficients. Therefore, this channel mqutelides
exactly the same number of signaling dimensions for tragsiom as the model we have derived.
But the representations of the channel variation are @iffein this model there are fewer channel
coefficients, each of them is i.i.d. and identically repdafier every L. consecutive symbols.
Whereas our derived modell (5) supports any type of chanmetlation, not only repetition,
as long as there ar& correlated coefficients generated by a fractioiB.7.. of independent
random variables. It is possible to represent the systeneh{@8) with repeated identical channel
coefficients in our derived model format by replacing the nratotation H|m|X[m] with our
vectorized notatiolx whereH is a block-diagonal matrix with the values Hf{m| in its main

diagonal and zeros in the upper and lower triangles aklin (4).

APPENDIX C

EQUIVALENCE IN SIGNALING REPRESENTATION

Our channel model uses Nyquist sampling at the ®iland therefore it is able to represent
any signal with this bandwidth without loss. For the sake aipleteness we will propose the
exact formulation to implement a valid signal in the modelQif (hereatfter, filter-bank model)
with our model (hereafter, OFDM model) using only prepraieg linear matrices. With this
we show that any signal possible in the filter-bank model catrdnsmitted through the OFDM
model, and therefore capacity results in our model are fedignpatible.

Without loss of generality, let us assume a SISO channel aitgpawer to simplify notation.
Assume also that the integefé=[7.B]|, M=|B/B,.| and L.=[T.B.]| are satisfied exactly so

we may use simply=M L.. In continuous time, the filter-bank model is represented in

r(t)= i S(t—iT.) + (Lilé(t—e/f;c) \ (Ag halm, Qz:lm, €]sinc(th)e—j27rcht>> ()
=0 m=0 (29)
where multiplication byh;[m, /] andx;[m, ¢] assigns the scalar value received in each frequency
bin m € {0,..., M—1} and in each transmit symbol peridd= {0,...,L.—1}.

1=—00
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We separate the encoding for each channel block realizatdexed by:, drop the index, and
use the fact that the channel coefficient in each frequentydmains the same for all symbols

to take away the index from h[m]. This gives
L.—1

Z o(t—t/B.) (Z him]x|[m, {]sinc(t B, )ejQﬂcht> +2(t). (30)

With this contlnuous-tlme signal, we apply Nyquist samglat rate3 to generate=B7T,. sam-
ples per sequence. Notice that for integée=5/B,, the discrete sinc function isnc[n/M] £

sinc(“8) and the delta delay on indexis /). We can represenf (30) by

L.—1

Z d[n—eM] x (Z hlm]z[m €smc[]\72]ej2”7_fémLC> +zn], n=0,...,K—1. (31)
We compute the{-point DFT,

ylk] = 3" €792 5 hm)a[m, (Jreclk/ L. — m]+z[k]. (32)

The rectangular window equals one only whg¥y L.|=m. By representingk<K ask =
u* L. +v withu = |k/L.] andv £ k mod L., we obtain

Lc—1 o . U= Lk/LCJ )
= hlu el chu z h
ylk] = hl ]; [u, €] + z[k], wit v=k mmod L,.

Now we can see that the sum is actually thle element in the..-IDFT of the sequence|u, ¢].
Since the IDFT of a sequenee=(a; ...ar, )" can be written as a matrix produ@®FT(a) = Fa,

We can represent the system model the same way as our matnxehnotation as
y = HOx + z, (33)
whereH for SISO is aK x K diagonal matrix with itsk-th diagonal element[u], x is K x 1
with x*) = z[u, v]. The L.-IDFT is computed by the block-diagonal square matrix
F|...]0
o= 2 IR IR (34)
0|...|F
This shows that any channel of the filter-bank model can beesgmted by the OFDM model

using a channel matriHl = H®. The reciprocal compatibility can be proven by taking a

precoding DFT matrix at the transmittér,= ®'x, which leads to

— Hx = Hbx = HPd'x = Hx.
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The multiplication by®' is unitary, so if the OFDM model uses ~ CA(u,X) and ® is a
full- K-rank square orthonormal matrix, thdrix ~ CN(®'u, ®T3®). Gaussian distribution is
maintained when the channel model is changed, and the mimfeaination results for both

channel models supported by our bounds based on Gaussiais emg completely equivalent.

APPENDIX D

PROOF OFLEMMA 1

Since the receiver knows which phase the duty cycle is in.,(echeduled according to a

pseudo-random sequence), the rate can be determined vihairerule

THyIe) = 71 (eyle=1) + (10) -0 = 1 (x Hiyle=1) = £1 (Hiyl.=1),  (39)
where the first step comes from the fact tlBt=0 in the idle block (tzO) and P.(c=1) = 6.
During the active block the input follows a Gaussian disttitn CN (0, 5BN ) and the first term
in (38) can be lower bounded by

5 0 !
7! (e Hiyle=1) = 1 (xiy|H, e=1) = 9 x En [7 log det(Lin. +5pa 0

where the first step is from the non-negativity of mutual iiation, and the second is due to

HHT)} . (36)

independence of channel coefficiddtin each subcarrier and transmit antenna. Furthermore,

1
0Ext | - log det(I
H{Tc og det(Lien + SEN

min(Ng,Ny)

(a) KK P

=0— Eg |log(1+ ———\;
T X H{Og( T SBN.N, )}

i=1

K P .
HH') | =0 —Ey |1 (1 HH'
)} o H{ og det(Iy, + SBN,N, )]

05 BE,, | £ trCHED pyu(E)
=77 BN N, S BN, N, 2
PN, [ P/(6B)
- N() 1- 2NN2N EH Z|htr‘ +Z|htr‘ |hur|+z‘htr| ‘htv‘ + Z htr
t#u,r t,r#£v t#u,r#v
(@ PNy 1 P (NyN:k + NtNr(Nr—l) + N:Ny(N;—1))
Ny 26 BN, N2 N
PN, P
= 1-— — 24+ N, + N, 7
N() |: 2(SBNtNO (K’ + t+ r):|7 (3 )

where ); are eigenvalues cHfH' with H=[h,,|x,~, representing the diagonal blocks Hf,

andh,, is the (r, t)-th element inf. Equation(a) comes from the fact tha[k] are identically
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distributed for allk=0, ..., K—1, (b) is due tolog(1+xz)>z—x?/2 for z—0 and the fact that
S, \=tr(HH') and Y, A\2=tr((HHT)?). Equation(c) is by careful rearrangement. Equatiaf)
comes from kg [|h|?]=1, Eg [|h|*|=k, Ex [h]=0, and independence of matrix entries.

To upper bound the second term we chod&fdo be Rayleigh fading (with the maximum

entropy) and interprex as a pilot signal that gives side information betwd&randy.

I (H7 y|X7 C:]-) S I (HGaussian; Y|XPi|0tS Signal) 621) £ I (H7 y|X7 C:]-) (38)

An example for channel estimation would be a system whereptlo¢ signal transmitted on
antennau is auM times delayed version of the signal on antenn&fter transmitting/ pilot
symbols, at each receive antenna<aequationM N;-unknowns linear estimation problem is
established and can be solved using the MMSE estimator.

Let A® be the M N, x MN, diagonal matrix containing in itsM/+m diagonal element
Guri+m = E[|A[m]™?)|?] (the gain of them-th channel tap in théu,v) transmit and receive
antenna pair), and IeE be a K x MN; circulant matrix (/ N;<K) containingX;_;) mod i
in its (4, j)-th coefficient, wherek=x/+/P is unit-power pilot signal. Notice that the mention
of pilot signals here is to upper bound a mutual informatiennt, rather than implementing a
practical channel estimation as required in a cohereniweceExploiting the fact that channel

estimation is carried out on each receive antenna condlyreased on the hypothetical pilot
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signal = from all transmit antennas, we get that the upper bound teegul
5 5 P/(6B)
—I (H; =1)=— > E|logdet [I4+ —2—L=I=A®
(a)&N 1 P/(6B)
<—IMNE |1 tr( I =fEA®
T, [Og<MNtr< * NtNO

C

M Ny
@5BNrNt P/ (0B) N
~ BT E |log NQNOE E |z[k—n— 1
=0
(C)éBNNt

IA

=

MNZ2N, Z

L PI6DB)
NN,

(

3}

)5BN Nt

| /\

(SBNNt ( P/(5B) MNE)
o 1+

chBNNt
L lo s
BT g(1+5BNONt(BT)) (39)

where(a) stems from the AM—GM inequality and that channel gains betwall antenna pairs

are i.i.d,(b) is due to the fact thet is a circulant matrix, which has the same coefficients sthifte

across all its columns, so its eigenvalues are the DFT casffi of the columng(c) is Jensen’s
inequality, (d) derives from the fact that has unit power, ande) is due to the upper bound of
squared channel coefficiens "\ g, < N;, and (f) usesX = B.T..

APPENDIX E

PROOF OFLEMMA 2

Taking partial derivative of_(8) w.r.t. the produéB, we obtain

aRLB((SB)_PNr P(k—2+N+N;) NONtl 1+ PB.T.
d(6B) ~ Ny | 2(6B)’N,N, PB.., (

]
+ .
(40)
Near the maximum ofR-Z (5 B) the term (531; B.T, is either>1 or ~1; becauseR*?(§B) is

already approaching zero gchTc < 1. This means we can make the approximation

(H—2+Nt+Nr)N log(l—}—((m) BT)
2  (P/(NiNo(6B)*))* B.T.
which solves as[{9). Evaluating”“?(§B*) and using the same inequality in [7] produces (10).

(41)
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APPENDIX F

PROOF OFLEMMA 3

We upper bound the first term ia_(35) enforcing signal bantlwid and duty cycle).

—

a

21 yle=1) 2 D (yle=1)—2h (y[Hx,e=1)

=

T, Ie
® %h(Hx+z|c=1)_%h(Z)
9oy ;{ (CN( 1 +BN0)) %h(Z) (42)
= ON:Blog(1 + 57,

where (a) is from the definition of mutual information; (b) fim the channel model; (c)
comes from the fact that is independent ok andH, and h(Hx + z|c=1) is maximized by a
Gaussian distribution under the power constrdint BN,. Use the approximatiotvg(1+x) =
r—1%/2 + o(x?), we can rewrite[(42) as

4] PN, p 1
Z yle=1) < _ ).
(x, H;y|c=1) < N, [1 25BNJ + 0(53)

1.
For the second term of (B5), with the Rayleigh fading assionpthe inequality in[(38) is

(43)

met with equality. From there on, upper bounds are found kingaa couple of minimums in
the argument of the logarithm.

5 5 P/(3B)
— 1 (H; =1) == Y E|logdet I+ =rEA®)
2 (L yl, =1 TZ ogder (14 24157 )]

5N Py
"E |logdet | T+ —222 =f=
ZT {Og ¢ ( SBN, N, )}

M N
N, Py
"E |1 1 2N (2TE
T, [Og< 5NN )H

©JBN, N, P g
25 r tE |:10g <1+ gmmw BCTC):|7 (44)

—
=

n=1
B.T. ONyNoB
Equation(a) is due t0gyi,= min,, , , E [|h[ ] v |2} is the minimum element in the diagonals
of A® and among alb’s, and(b) stems from the relation between determinant and eigersalue
SinceZ is a K x M N, circulant matrix containing the power normalized vectgk/P in its first

column, then-th eigenvalue o= is given by

M(ETE) = | SR SR & Ky, n=1,..., MN,.
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Since EYre,] < 25 Sy x| < 1 owing to the power constraint [k] < P, we obtain(c)
by the fact thatB. 7. < K and by the definition of) in (12). Moreover, we have > 0 because
the rate penalty of non-peaky inputs in active cycles is perm- (I (H;y|5</\/c_5) > 0).

APPENDIX G

PROOF OFLEMMA 4

We define(§B)* such that

P log(B.T) log(B.T)
- o e — Y, 45
(6B):N, 1. "\ BT ) (45)
Substituting [(4b) into[(11) we obtain that
. PN 1 [ logBa) . E [1og(1+\/QBCTC 108(BoT2) Gunint) /Nt)]
RVB(5B) = 1—=4/Q —N,
No 2 B,T. VBT, 1og(B.T,)
log(B.T,)
—————). (46
We separate the logarithm in two parts
RUB((;B) — PNY 1_1 Qlog(BcTc)_l Nt log(BcTc)
No 2 B.T. 2\/QB.T.log(B.T.)
E |:10g<\/ﬁ+ V Q log(BcTc)gminw/Nt)] L ( log(BcTC)) (47)
- 0 —_— ).
' VOB.T.log(B.T,) B.T.

Since E[¢] < 1, the third negative part is alse(,/°5%"=)). We have

RUP(6B) = ]j\,]: 1— /71°gé?§c)% <¢§+%)} +of 71%1(3?}?)). (48)

We will make this upper bound equal the achievable valué @), (Which leads to

1 N BT,
3 (\/ﬁ + ﬁ) = /(K =2+ N, + N,)log 7 + of oa(B.T) ). (49)
By making change of variabl& = Q/N; we get
1 K — 2 + Nr BcTc
VT+— ) =24/(——+ 1)1 —).
( * V T) \/( Nt * ) o8 * O( 1Og<BcTC)) (50)
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With x = 2 for Rayleigh fading,(“=+= + 1) > 1. We obtain the following two roots of (50)

=4/ ——l—l 10g7T+\/—+1 Ylogm — 1+ of
Ny

(51)
N, N, B.T,
=1/(+Dlogm — /(= + 1) logm — 1 ).
G+ togm — (5 + Dogm — 1+ 00205
It is ready to see that
\V Nt\/7 <2\/N +Nt 10g71‘—|—0( lOgBECBCS%C))
(52)

N
N \/7 o) BTy,
\/T ~ 2¢/(N: 4+ Ny) log ( 10g(BcTc))

Substituting them back in_(45) we get the poii®3)~ and (§B)* as shown in[(14). Therefore

the true achievement of the maximum can only occur in thegdh@).... € [(6B)~, (6B)*].
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