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Event Detection and localization in Urban Water
Distribution Network

Thaw Tar Thein Zan, Nanyang Technological University, Hock Beng Lim, Intelligent Systems Centre,
Kai-Juan Wong, Singapore Institute of Technology, Andrew J. Whittle, Massachusetts Institute of Technology

and Bu-Sung Lee, Nanyang Technological University

Abstract—Urban water supply and distribution system in-
frastructure is aging rapidly and the frequency of pipe burst
increases. These events can be very expensive due to water
supply disruptions, and damage to surrounding properties and
infrastructures. Therefore, methods of detecting and localizing
underground burst events in real time can be very helpful in
mitigating these impacts. In this research, a cost-effective wireless
sensor network was developed for real time monitoring, analyzing
and modeling of urban water distribution systems. This paper
presents an application of a proposed Joint Time Frequency
Analysis for detecting events in water distribution pipelines. The
idea behind this method is based on the detection of pressure
fluctuations induced by the burst. This proposed approach for
event detection employs a spectrogram, one of the Joint Time
Frequency Analysis approaches. The feasibility of the proposed
method is tested through emulated leak-off experiments and is
validated with monitoring data in an operational system. The
results demonstrate that the proposed method has the potential
to assist in the management water infrastructure by monitoring
existing conditions and providing real-time feedback in case of
the failure.

Index Terms—Event Detection, Joint Time Frequency Domain
Analysis, Spectrogram, Gabor Transform.

I. INTRODUCTION

RAPID growth of urban population, water scarcity, com-
bined with aging infrastructures increases the necessities

for the smart water infrastructures for the authorities. In 2008,
more than half of the human population is living in cities.
Urban population growth is at an unprecedented rate in the
developing countries. Urban infrastructures such as transporta-
tion network, drinking water distribution system, sewer system
are critical to sustain the quality of urban life. For long-
term sustainability of the environment, cities need to manage
complex, aging infrastructures efficiently. According to United
Nation Human Development Report 2006, more than 1.2
billion people lack access to clean drinking water. Therefore,
the effective management of water infrastructure is one of
the main challenges for water authorities. Recently, in many
U.S. cities, water main burst is a critical issue with failing
infrastructure. In September 2009, Maryland experienced a
huge (72-in) water main burst under a road, sending muddy
water over neighborhood streets and down highway ramps.
Nearly 1,000 customers were without power. In December
2013, a series of water main bursts occurred in the downtown
area of Jersey City. The time and location of the burst was not
immediately able to be determined. Dozens of families were
without water. The lack of real-time monitoring, detection

and localization system caused the repaired crews to dig
underground to find the broken pipe.

Based on these examples, it is necessary to have real-time
event detection and localization system to assess the condition
of water distribution system infrastructure.

1) To effectively detect the leak so as to minimize the water
loss and conserve energy

2) To accurately locate the leak so as to initiate the subse-
quence progress of isolating the affected area and repair
the corresponding pipes.

3) To notify the utility operator to effectively react so as to
prevent further damage and isolate the affected area.

The primary sources of water losses within distribution sys-
tems are associated with leaks and bursts in the underground
pipe network and arise from a range of mechanisms including
material corrosion, fatigue associated with water pressure
fluctuations, structural failures caused by ground movements
or erosion of soil support, or excessive surface loading from
traffic etc. Apart from water shortages, leakage in water
transmission pipes imposes many associated dilemmas, such
as financial loss, water quality issues and ensuing damage and
harm to public safety. Among these problems, economic losses
include direct costs from water loss, costs of producing unpaid
water, repair costs, costs associated with service disruption
and intangible costs such as customer dissatisfaction, water
quality impairment and public safety. Therefore, leak detection
and localization have become imperative activities for water
authorities. A total of 27% of real loss has been due to
unaccounted for water [1]. To mitigate water losses during
transmission, a better approach to leakage management is
necessary. Extensive research has been carried out on this
topic for more than two decades. Several numerical studies
[2] [3] and computer simulation methods [4] [5], as well as
numerous laboratory and field experiments [6] [7] [8], have
been carried out. Leak detection methods can be categorized
into active techniques which address unreported losses of
water, and passive methods to address reported ones.

Active leak detection systems comprise the analysis of the
hydraulic characteristics of a pipeline system (acoustic signals,
vibration, flow and pressure measurements), whereas passive
leak detection methods are carried out by visual inspections
of sites. The visual inspection approach is inefficient because
it takes a certain amount of time for water from a leak to
be visible on the ground. Apparently, a smaller leak takes
longer to become visible. In certain cases, the appearance of
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water from a small leak may take up to two years. Moreover,
this approach is not applicable during normal operation, is
time-consuming and costly, and is unable to be deployed on
a continuous basis.

Among active leak detection methods, the acoustic leak
detection method [9] [10] is commercially adopted to verify
a suspected leak and to pinpoint the location of the leak by
listening to sounds on the pavement or soil above the water
pipes. Although it can accurately pinpoint the location of a
leak, its performance is affected by the type of pipe material
and interference from road traffic and other sources. Moreover,
this method requires a dense sensor network, and acoustic
signals have excessive signal attenuation, which makes this
method infeasible for continuous monitoring. Therefore, an-
alyzing the transient behavior of a system to detect leaks
has been identified as a popular research area because this
technique possesses the immense benefit of being able to mon-
itor continuously which has been proven by PIPENET [11]
and the Water-WiSe@SG [12] project. Different researchers
have analyzed different characteristics of hydraulic pipeline
systems (acoustic, pressure and flow measurements). All of
these methods apply fundamental signal processing functions,
such as cross-correlation [13] , wavelet transforms [14] [15]
(Continuous, Discrete), Fast Fourier Transform (FFT) [16]
[17] [18] [19] and Cepstrum Analysis [20], in conjunction
with other sophisticated mechanisms (Artificial Neural Net-
work (ANN), Support Vector Machine (SVM) and Genetic
Algorithm (GA)) to achieve an individual goal.

In 1992, Pudar and Liggett [21] introduced the inverse
steady state analysis method. Inverse Transient Analysis (ITA)
is one of the first leak detection methods to use the inverse
method for pressure measurements. ITA identifies the presence
of the leak and its location by analyzing the transient pressure
wave of the pipeline. The drawback of this ITA method is
that performance is highly reliant on the hydraulic model em-
ployed. Covas extended this method to estimate the leak flux
associated with sudden burst events by using flow and pressure
measurements and an optimization algorithm amalgamated
with closed loop network topology (referred to as a District
Metered Area [DMA]) and a Supervisory Control And Data
acquisition (SCADA) system. The prerequisite for this method
is that it must be used in conjunction with DMA and the
network with a well-calibrated model. In 2000, Vitkovsky [22]
proposed the implementation of Genetic Algorithm (GA) for
ITA to improve the efficiency of the optimization algorithm.
Their experiments on a test program showed that this scheme
is effective under a controlled environment and detects leaks
at nodal locations.

Misiunas [23] [24] suggested an alternate version of a
transient-based leak detection methodology in which the
pipeline system is monitored periodically to discern anomalies
(leaks, bursts, blockages, etc.). The method was validated on
a water transmission pipeline with a single dead-end pipe.
However, the applicability of the method in a real water
distribution network needs to be investigated, and the timing
window for the initial transient reference model needs to be
calibrated in order to achieve good results.

Mpesha [17] [18] initiated a method to analyse the signal in

the frequency domain, Frequency Response Analysis (FRA).
In the FRA approach, a transient signal is first created and
then transformed to the frequency domain using FFT. Next,
the Frequency Response Diagram (FRD) of the system is
built to detect the presence of a leak. The primary pressure
amplitude peak in the FRD indicates the system resonance
peak, whereas the secondary peak indicates the leak resonance
peak. Lee [2] [25] validated the relevance of his previous
research on leak detection using a FRD with numerical
studies for different sorts of systems. Similarly, Ferrante and
Brunone [26] established wavelet analysis of experimental
data to expose the singularity, which is the indication of the
occurrence of a burst. Beck et al. [13] recommended the
application of a cross-correlation method to the analysis of
a reflected pressure wave to identify the features (junction,
branch, node, etc.) of pipelines and leaks. Ferrante et al.
[27] continued their research on the effectiveness of different
wavelet techniques for pipeline diagnosis with both numerical
studies and experiments.

Alternatively, Xin-Lei et al. [28] developed an enhanced
version of wavelet analysis (threshold self-learning wavelet
method) for pipeline leak detection by means of de-noising the
signal. Tang [29] also applied a wavelet analysis to de-noise
the signals acquired from vibration sensors, which are assumed
to be linked to the onset of a leak using a cross-correlation
method. Srirangarajan et al. [30] proved the applicability of
wavelet transform for leak detection and approximation of
the leak location on an operating water distribution system.
All of these burst detection methods work well under certain
controlled conditions. In addition, the fidelity of each method
is largely limited by underlying constraints. In essence, all leak
detection and localization methods have the same drawback
associated with their reliance on the system characteristics
apart from internal and external background noises. In time
domain, the signal is represented as a function of time. The
analysis of signals in the time domain is rather subjective and
largely reliant on prior experiences. In frequency domain, the
signal is represented as a function of frequency by performing
Fourier transformation, which shows how quickly the signal
magnitude changed. The pressure transient signals comprise
non-periodic signal which changes its frequency contents over
time. Therefore, it is far more useful to characterize the signal
in time and frequency domains simultaneously. Therefore, we
employ joint time-frequency analysis (JTFA) [31] to identify
the presence of leaks.

One of the most popular application of JTFA is speech
signal processing. The other applications includes study of
detection of radio frequency (RF) non-linear chirp-type signal,
radar image processing, biomedical signal processing, econ-
omy and ecology data analysis.

This paper presents a novel approach for detecting leaks and
bursts within an urban water distribution system. The proposed
approach is based on a spectrogram approach together with the
Gabor transform [32] to filter the noise from the results and
hence, enhance the capability of the proposed JTFA algorithm
to detect leaks. The proposed approach is simple and easy
to implement. It does not require a sophisticated model of the
system. Moreover, this approach has been developed and tested
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Fig. 1. WaterWiSe@SG sensor node collecting pressure, hydrophone, pH and
ORP data.

on a real Water Distribution System (WDS) in Singapore.

II. SYSTEM DESIGN AND IMPLEMENTATION

The Wireless Water Sentinel project in Singapore (Wa-
terWiSe@SG) [36] is a large scale wireless sensor network
for urban water distribution system designed to serve as
a decision support system, a hydraulic test-bed and a real
time monitoring system. The current test-bed comprises more
than 35 sensor nodes covering 60 km2 in the FPCH water
distribution zones of Singapore. The WaterWiSe@SG project
aims to develop a generic wireless sensor network to monitor
the water distribution network in a continuous manner with
the following goals:

1) Deployment of a cost-effective wireless sensor network
for high data acquisition rate, on-line monitoring of
hydraulic and water quality parameters within a large
urban water distribution network;

2) Remote detection of leaks and pipe burst events with
sophisticated data mining algorithms; and

3) Real-time pressure and flow measurements from the sen-
sor network to improve state estimation of the network
using a hydraulic model.

WaterWiSe@SG test-bed was designed to continuously moni-
tor the water distribution system in real time. Therefore, sensor
nodes comprising hydraulic (flow and pressure) and water
quality (pH and oxidation reduction potential (ORP)) sensors
were deployed in a section of downtown Singapore. These
sensor nodes are attached to the water distribution pipes to
measure, collect the data. The data is divided into 30 seconds
files and compressed before transmitting to the back-end data
server for archival and processing. All the sensor nodes (Fig-
ure. 1) are time-synchronized using Global Positioning System
(GPS). The WaterWise@SG test-bed enables online hydraulic
modeling, leak-off experimentation and operational event anal-
ysis. Several leak-off experiments have been performed using
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Fig. 2. Fourier Transform of normal pressure signal and transient signal. N
is the number of FFT point

Fig. 3. WaterWiSe@SG sensor node deployment: (from left to right) the
sensor node and batteries, the enclosure and solar panel mounting and the
tapping point attaching the sensors to the pipe

the WaterWiSe@SG test-bed to verify the applicability of the
leak detection and localization algorithm.

III. JOINT TIME FREQUENCY ANALYSIS FOR EVENT
DETECTION

This method employs the JTFA of the pressure transient
signals. Fourier transform provides an efficient tool for ob-
serving a signal in the frequency domain. According to the
compression/expansion relationship between time and fre-
quency, an event that occurs faster in time is composed of
a higher frequency [33]. Because the transient signal occurs
within a short period of time, it contains more high-frequency
components than does the normal signal (Figure.2).

However, Fourier transform is only an average of the
frequency content over time. To display the frequency content
as a function of time, a spectrogram (one of the JTFA methods)
is used. JTFA is a set of transforms that map a one-dimensional
time domain signal into a two-dimensional representation of
energy versus time and frequency.

Therefore, we propose a JTFA method to identify leaks in
water distribution networks. The method uses a Joint Time
Frequency Analysis (JTFA) to detect the pressure transient
signals induced by leaks. Because these transient signals are
less prone to noise, the detectable range is much wider than
that of acoustic signals. These signals are obtained from Wa-
terWiSe@SG [34] wireless sensor network currently installed
in the Fort Canning and Pearl’s Hill distribution zones in
Singapore.

First, the raw transient signals are acquired by the pres-
sure sensors 3 attached to the water distribution pipelines.
According to the initial calculation, we sampled and collected
the data at 2kHz. However, after through investigation of its
effects on event detection and localization, a lower sampling
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Fig. 4. Procedural Flow of the Frequency Domain Leak Detection Algorithm

Fig. 5. Low pass FIR filtering follows by down-sampling. x(n) is the filter
input sequence and y(n) is the filter output.

rate (250 Hz) is adequate. Therefore, the data are sampled
and collected at 2kHz until the end of 2010 and 250Hz since
then. Every 30 seconds, the sensor data are transmitted to a
central server where different event detection algorithms are
applied to identify the presence of anomalies in the signal.
The detailed procedure of collecting the pressure signal can
be found in [34]. The proposed burst detection algorithm is
applied to the data kept in the server. It employs JTFA to detect
leaks and bursts. Figure. 4 shows a procedural representation
of the proposed algorithm.

The raw pressure signals are acquired and sampled at 2 kHz.
To improve the computational efficiency of the process, these
signals are re-sampled from 2 kHz to 250 Hz using an anti-
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Fig. 6. Pressure traces collected at sensor node M1 during the leak-off
experiment on WaterWiSe@SG test-bed

N/2 N
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

samples

A
m

pl
itu

de
 w

ei
gh

tin
g 

 

 

 

Blackman window

Fig. 7. Blackman window

aliasing (low pass) Finite Impulse Response (FIR) filter [35].
The process of down-sampling is shown in Figure. 5 and this
process is not necessary for data acquired at 250 Hz. After that,
a one-dimensional wavelet transform is applied to remove high
frequency noise from the signal. Figure.6 shows the pressure
transient signals after down-sampling and de-noising.

The next step is to identify the leak-induced features.
Therefore, we use a spectrogram to extract those features.
A spectrogram is the time varying spectral representation of
the signal. It is computed using Short-time Fourier Transform
(STFT). To accomplish this, the signal is divided into smaller
chunks. When the Fourier transform of a block of data
is computed, the resulting frequency spectrum suffers from
spectral leakage, which is the generation of side lobes in
the frequency spectrum. To correct this spectral leakage, an
appropriate windowing function must be used. Therefore, the
individual block of the signal is multiplied by a sequence of
shifted Blackman window functions (Figure.7) in Equation 1
producing a sequence of time localized sub-signals.

ω(n) = 0.42+
1

2
cos

(
2πn

N

)
+0.08cos

(
4πn

N

)
, 0 ≤ n ≤ N

(1)

where N represents the window length, in samples, of the
symmetrical Black- man window ω (n). To compensate for
the ?loss? at the edges of the window, individual chunks may
overlap in time.

After that, each sub-signal is transformed using the Short
Time Fourier Transform in Equation 2 to obtain the time-
varying spectral distribution of the signals. The STFT of the
sub-signals is obtained by applying a 1024-point FFT to each
sub-signal.

STFT [x(n)] = X(m,ω) =

∞∑
n=−∞

x[n]ω[n−m]e−jωn (2)

where x(n) is the signal to be transformed, and ω (n) is the
Blackman window function (Equation 1).

σ̂ =

√√√√ 1

N + 1

N+1∑
i=1

(xi − x)2 (3)

According to Parseval’s relationship of the Fourier Transform,
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Fig. 8. Spectrogram of the simulated burst event during the leak-off
experiment. The signal is collected from the sensor nodes which is 270
meters from the source. Spectrogram is created by taking the Short Time
Fourier Transform in conjunction with the Blackman window function. X-
axis indicates the time in HH:MM:SS and Y-axis indicates the frequency in
Hz. The color of each point represents the intensity of spectral energy.

the area under the energy spectral density curve is equal to the
squared magnitude of the energy. Therefore, the spectrogram
(Equation 4) of the signal can be estimated by computing the
squared magnitude of the STFT of the signal.

Spectrogramx[t] ≡ |X(τ, ω)|2 (4)

The resultant spectral density is displayed on the spec-
trogram. Figure. 8 depicts the spectrogram of the pressure
transients during a set of a controlled leak-off experiment
where the horizontal axis represents time, and the vertical axis
is frequency. The color of each point indicates the amplitude
of a particular frequency at a particular time. Due to the
symmetric property of the Fourier transform, only the first half
of the spectrum is used to compute the spectrogram. As seen in
Figure. 8, the noise tends to spread evenly over the entire joint
time-frequency domain, and the signal energy is concentrated
in the lower frequency band. Therefore, the Gabor transform
with threshold T (Equation 5) is used as an adaptive filter
to remove the unnecessary portion of the spectrogram. We
used the Blackman-windowed Gabor transform to de-noise. To
predict the noise components of the spectrogram, an estimate
of the standard deviation σ̂ of the noise is calculated.

T = 0.55σ̂
√
N logN (5)

As seen in Figure. 8 and Figure. 9, the Gabor Transform
simplifies the interpretation of the spectrogram, and the fea-
tures representing the emulated bursts can be seen clearly.
Afterthat, an optimum frequency range is selected to detect
the leak-induced transients. The frequency range of 15-25Hz
is selected because higher frequency suffers more attenuation,
the lowest frequencies (1-3 Hz) are fundamental frequencies
and frequencies within 4-15 Hz are composed of ambient noise
of individual sensor node. Finally, a moving average function
is applied to smooth the results (Figure. 10).

This technique has a trade-off between the spectral and
temporal resolution. A wider Blackman window gives better

Fig. 9. After denoising using the Gabor transform. Spectrogram is denoised by
applying Gabor transform in conjunction with the Blackman window function.
X-axis indicates the time in HH:MM:SS and Y-axis indicates the frequency
in Hertz. The color of each point represents the intensity.

20:35:00 20:36:00 20:37:00 20:38:00 20:39:00 20:40:00

51

52

53

54

55

56

57

58

59

Time (HH:MM:SS)

A
m

pl
itu

de
 o

f f
re

qu
en

cy
 b

an
d 

15
−

25
 H

z 
(d

B
)

Result of JTFA on pressure signal captured at Sensor node M1 during a leak−off experiment

Fig. 10. Joint Time Frequency Analysis of simulated pressure transients
on WaterWiSe@SG test-bed during the leak-off experiment. The signal is
collected from the sensor nodes which is 270 meters from the leak

spectral resolution, whereas a narrower window gives im-
proved temporal resolution.

IV. ENERGY ATTENUATION FOR LEAK LOCALIZATION

Leak localization is a fundamental issue of pipe failure
monitoring using wireless sensor networks.

In this paper, we propose energy-based localization ap-
proach and exploit the strength of range-based approaches
using JTFA. Ranging-based localization is an approach that
identifies the positions of a leak in a network based on
estimates of the distances between known measurement points
and unknown leak.

When a wave travels through a junction of two or more
pipes, part of the wave is reflected back. In a system without
friction or tanks, transients could persist indefinitely. However,
due to friction and loss of momentum in tanks, transients
attenuate within seconds to minutes. This dispersion of the
wave can be estimated using the transmission coefficient

s =
4Hs

4H0
=

2A0

a0∑n
i=0

Ai

ai

(6)

, where s is dimensionless transmission factor, Hs and H0

are head of transmitted and incident pulses, A0 and a0 are
pipe area and wave-speed. The reflection coefficient may be
obtained from Equation 7.

R = (s− 1) =
HJ −HW

HW −H0
(7)
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where H0 is the initial head at the junction, HJ is the head
at the junction after the wave has interacted with it and HW

is the magnitude of the initial wave.
In general, a leak-induced pressure wave can be described as

a transient wave propagated from the leak along the pipeline in
both upstream and downstream direction. During the leak, the
transient wave is generated due to the changes of flow in the
pipe. These transient phenomenon can be seen during the water
distribution system operations such as opening and closing
the valve and pump operations. The faster the operation the
larger the magnitude of the transients. These are also known
as water hammer phenomenon. In order to simulate the leak,
a transient wave is simulated by maneuvering the valve in the
pipe network.

In order to model the relationship of the intensity of pressure
signal with the distance between sensor and the leak, the
raw data were processed to obtain the intensity value for
each of the frequency. The mean intensity value obtained at a
given distance was calculated and variance and the standard
deviation from the mean were determined. Then the intensity
values are plotted against the distance and inverse relationship
is verified. It is shown that the intensity and distance share
an inverse relationship such that intensity decreases with the
increases in distance. Then the linear regression is applied to
generate a standard curve for each pipe diameter. After that,
the intensity values from the real pipeline leakage are applied
to approximate the distance between sensor nodes and the leak
and to validate the relationship formulation. Once we obtain
the distance matrix between detected sensors and leak, the
sensors will be ranked according to their distance values. The
nearest sensor will be ranked with the highest score. After
that we indicate the distances from sensors along the pipeline.
However, there could be more than one location with the
same distance if the sensor node is connected to more than
one pipe. In this case, we select the locations in the direction
of the highest scored sensor as the candidate locations. The
candidate location that satisfies all the distances from different
sensors is identified as leak location. If more than one satisfy
the conditions, the pipe section between then is chosen as the
leak area.

As the characteristics of water transmission in the pipeline is
guided transmission, the localization method used graph theory
to search the most probable leak localization. Graphs can be
conveniently represented as matrices, which is ideal for use
with computers. Therefore, the graph is manipulated using the
matrix computations.

To develop a matrix for a simple graph:
1) A square matrix is developed with vertices as both rows

and columns (vertices in the same order).
2) If two vertices are joined together the number of edges

joining them is entered in the matrix, if they are not
joined by an edge then 0 is entered.

3) For simple graph, adjacency matrix uses zero-One rep-
resentation of edges

4) In other words, for an adjacency matrix A = [aij],
5) aij = 1 if i, j represents an edge of the graph aij = 0

otherwise.
6) For any undirected graph, the matrix is symmetrical
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The section of the network containing all the detected
sensor nodes is represented with a weighted graph. Sensor
nodes and junctions are represented with vertices and the
connecting pipes with edges. The distance between the nodes
are represented with weight.

Let vi and vj be the numbered vertices for 1 ≤ i, j ≤ N
(N is the number of vertices).

Let wij be the weight of edge if there existe an edge e =
(vi,vj), wij ≥ 0.

Let M [i, j] be an adjacency matrix where M[i,j]=wij if
there exists an edge e = (vi, vj).

For each vertex i in the graph, M [i, j] = 0 and where no
path exists, M [i, j] =∞. Johnson’s algorithm is used to find
the shortest paths.

1) Johnson’s algorithm: Johnson’s algorithm works by
using the BellmanFord algorithm to compute a transformation
of the input graph that removes all negative weights, allowing
Dijkstra’s algorithm to be used on the transformed graph. This
algorithm has a time complexity of O(n*log(n)+n*e), where n
and e are number of nodes and edges respectively. It is named
after Donald B. Johnson, who first published the technique in
1977.

Johnson’s algorithm consists of the following steps.
This is useful when the shortest distance between any given

node to any other node is to be found out. This method is
useful to find out the route to transfer chemical, food products
or manufacturing products from one point to another. It can
also be useful to find out the shortest route between the
distributor centre to the retailer stores.

In this case, this code uses distance estimates of the leak
at multiple sensor nodes and attempts to determine the most
probable pipe burst location.

11 shows the graphical representation of the network. A
vertex S is chosen as starting point.

The location of the leak is searched with the minimization
of the difference between the expected distances and the
calculated distance from energy attenuation method. For each
candidate nodes (measurement points and junctions), a score
is calculated using 8.

score =

k−1∑
i=1

k∑
j=2

∣∣ωMij − ωTij

∣∣ , ∀ε[1, N ] (8)
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TABLE I
PSEUDOCODE OF JOHNSON’S ALGORITHM

Algorithm 1 Johnson’s Algorithm

JOHNSON(G)
1 Compute G’, where V[G’] = V[G] U {s},

E[G’] = E[G] U {(s, v) : v ∈ V [G]}, and
ω(s, v) = 0 for all v ∈ V[G]

2 if BELLMAN-FORD(G’,ω, s) = FALSE
3 then print ”the input graph contains a negative-weight cycle”
4 else for each vertex v ∈ V[G’]
5 do set h(v) to the value of δ(s, v)

computerd by the Bellman-FOrd algorithm
6 for each edge (u, v) ∈ E[G’]
7 do ω̂(u, v)←− ω(u, v) + h(u)− h(v)
8 for each vertex u ∈ V [G]
9 do run DIJKSTRA (G, ω̂, u) to compute δ̂(u, v) for all v ∈ V [G]
10 for each vertex v ∈ V [G]
11 do duv ←− δ̂(u, v) + h(v)− h(u)
12 return D

Node with the minimum score is selected as the nearest node
to the burst event. If two or more nodes have identical scores
which is also the minimum score, then the burst location will
be on the edge connecting those two nodes. After that, the
search is refined to find the leak location on the pipe sections
connecting to the nearest node. The virtual nodes are added
along pipe section with equally spaced. Dijkstra’s algorithm is
used to re-compute shortest distance matrix and scores at each
of the new nodes inserted in the graph are computed using 8.
The node with minimum score is chosen as the most probable
location of the leak.

V. LEAK-OFF EXPERIMENT

A number of techniques have been exploited to create and
capture pressure transients to detect the presence of leaks. We
have carried out a series of leak-off experiments to test the
feasibility of the leak detection algorithm and to calibrate it
accordingly. The in situ leak-off experiment is carried out on
our WaterWise@SG test-bed.

In this section, we present the experimental validation of the
Joint Time Frequency Domain Analysis approach for pipeline
leak detection. The presence of leaks within the pipe imposes
peaks on the spectrogram. Therefore, the peaks can be used
as an indicator of the leaks.

The proposed methodology is verified with emulated leak-
off experiments through the use of the WaterWiSe@SG test-
bed. The experiments were performed within the operational
water distribution system. Figure. 12 shows the local pipe
network, covering an area of approximately 1km2 where the
experiments were performed. These tests were carried out to
verify the sensitivity of the pressure sensors for detecting leaks
from afar, as well as the applicability of the leak detection
algorithm on a real water distribution network. The leak-off
experiment was carried out from 20:00 to 22:00 hours on
March 16, 2010. The transients of the bursts were created
using a solenoid valve attached to a fire hydrant. There were

Fig. 12. Network layout for a portion of the WDS. Sensor nodes M1, M2
and M3 are the three measurement points and B is actual location of the burst
events.

Fig. 13. Fire Hydrant that is used to create simulated bursts during the leak-off
experiment
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Amplitude of frequency band (15−25 Hz)  for pressure transients during leak−off experiment on 16−March−2010
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Fig. 14. Experimental results of the simulated burst events at sensor node
M1, M2 and M3 where M1,M2 and M3 are located 270 m, 580 m and 700
m from the source respectively.

two flow rates created during experimentation, 8-10 l/s and
5-7 l/s. The first four bursts were generated at 8-10 l/s while
the rest at 5-7 l/s. To create the transient, a solenoid valve
was attached to one end of the hydrant, as shown in Figure.
13 while a globe valve was used to control the discharge
rate of the bursts. When the solenoid valve was triggered
to open, the water flowed out of the hydrant. As a result,
a pressure transient wave was generated and propagated along
the pipe. These pressure transients were acquired with the
pressure transducers connected to the water distribution pipes.
The sensor nodes sampled and collected these signals at 2
kHz. These signals were then transmitted to the central server
for leak detection and localization processes and archived for
future reference. A total of nine events with two different flow
rates were created during this experiment. The pipe network
for the test-bed covered an area of 1km2 and consisted of 500
mm steel and 300 mm ductile iron pipes with estimated wave
speeds of 1030.3 ms−1 and 1088.7 ms−1, respectively. Bursts
were simulated at location B, and the three sensor nodes M1,
M2, and M3 within range acquired pressure transient signals
from the tests.

A. Results

Figure. 14 shows that all nine experimental burst events
were detected at each of the three sensor nodes. Table II shows
a summary of the outcomes of the analysis of the pressure
data during the leak-off experiment on March 16, 2010, for
measurement points M1, M2 and M3. These measurement
points were selected to analyze the data because they had the
closest proximity to the simulated bursts. As observed in Table
1, all three sensor nodes (within 1km2 of the emulated burst
source) were able to detect all nine emulated bursts. Moreover,
there were no false detections, i.e., detecting the events that
were not created. These results demonstrate that the proposed
technique can be used to detect leaks and bursts within a WDS.

As seen from the results (Figure. 14) of the leak-off exper-
iment, the leak signals exist at a frequency below 200 Hz. We
were encouraged to analyze the signal to reduce the sampling
frequency without affecting the leak detection process. We did
an assessment on sampling rate conversion using multi-scale
wavelets and time difference of arrival for localization. We
were convinced that we could achieve this at a sampling rate
of 250 Hz. Therefore, we modified our sampling rate from 2

TABLE II
RESULTS OF JTFA ALGORITHM APPLIED ON EXPERIMENTAL PRESSURE

PROFILE AT MEASUREMENT POINT M1,M2 AND M3

Measurement Measurement Measurement
Point (M1) Point (M2) Point (M3)

Total Number of Created Bursts 9 9 9

Total Number of Detected Bursts 9(100%) 9(100%) 9(100%)

Total Number of False Events 0(0%) 0(0%) 0(0%)

Total Number of Missed Events 0(0%) 0(0%) 0(0%)

kHz to 250 Hz. The frequency resolution (Equation 9) of the
spectrogram is coupled with the sampling rate and the number
of FFT points. We also modified the algorithm in accordance
with changed sampling frequency.

FrequencyResolution =
SampleRate

no.FFTpoints
(9)

VI. APPLICATION OF LOCALIZATION ALGORITHM ON
REAL PIPE FAILURES

In this section, the validation of the proposed leak local-
ization techniques is described and the results are presented.
In this paper, we estimate the distance between the leak and
the measurement sensor nodes by applying two methodologies
(TDOA and Energy Attenuation) and gave an illustrative
example using real pipe breakage in live water distribution
system in Singapore.

The techniques were tested with real pipe breakages on 800
mm diameter pipe in a live water distribution network. The
leak crack occurred on a live water pipeline during distribution.
The pipe was 800 mm in diameter and 50 to 1800 meters
away from our sensor nodes. The pressure measurements were
collected at a sampling frequency of 250 Hz.

The leak crack was perpendicular to the pipe, from the 9 o′

clock to the 6 o′ clock position. The leak-induced transients
were picked up by many of our sensor nodes. M3, M4, M5,
and M6 are the sensor nodes located within 2km2 of the source
of the leakage. The sensors detected two subsequent pressure
drops. The initial drop is rapid and the subsequent drop is less
rapid but more significant. This signature reflects the actual
pipe break (first pressure drop) and a reflection from the closed
valve (second drop). To estimate the distance from the source
of the pipeline leakage to the measurement sensor nodes, the
intensity of frequency at 15-25 Hz are calculated and TDOAs
are estimated using the proposed methods.

Table III shows TDOA estimations of the burst events at
the four measurement points. As we have the knowledge of
network topology of bursts location, the distances between
adjoining nodes and leak are calculated.

These values are then fed into localization algorithm, the
estimated burst location using TDOA is 107.15 meters from
sensor node M5 which is 32.85 meters from actual leak
location. Using EA, the estimated burst location is 120.35
meters from the sensor node M5, 19.65 meters from the burst
location.
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TABLE III
DISTANCE, TOA AND INTENSITY VALUE FOR NH1 LEAK

Sensor node ID Distance from leak location
(m) Time of Arrival (day) Intensity value (dB)

M5 121 0.697242 85.966070
M3 1098 0.697255 76.660764
M4 1587 0.697258 68.688850
M6 1605 0.697263 64.596517

The second event KR1 results a sink hole. The leak was
reported when the car was fallen into the sink hole. It happened
500-2000 meters from our deployed sensors. Three of our
sensors detected the leak induced transient at 4:35 am.

The second event KR1 occurred on a 300 mm pipe. The
leak transients were picked up by the sensor nodes M26, M12
and M31 which are 931 m, 1279 m, and 2357 m from the
leak respectively.

Table IV shows distance estimations of burst events at
measurement sensor nodes M26, M12 and M31. It is clear
that the intensity sequence using energy attenuation technique
is corresponding to the relative proximity of sensor nodes from
the leak.

The most probable burst location using TDOA is 860.24
meters from node M26 towards node M12 which is 70.76
meters from the actual leak location. Using EA, the estimated
burst location is 890.46 meters from node M26 towards node
M12 which is 40.54 meters from the actual leak location.

The third event LVD1 occurred on a small pipe connecting
to a larger 800 mm diameter pipe. The leak transients were
picked up by M25, M35, M30 and M11 which are 245 m,
1244 m, 1500 m and 1890 m from the leak respectively.
Table V shows distance estimations of burst events at M25,
M35, M30 and M11. It can be perceived that the intensity
sequence corresponds to the distance sequence in a non-linear
relationship.

When these values are fed into localization algorithm, the
most probable burst location using TDOA is 180.56 meters
from node M25 which is 63.98 meters from the actual leak
location. Using EA, the estimated burst location is 198.82
meters from node M25 which is 45.72 meters from the actual
leak location.

The latest leak BCH1 occurred on a small pipe connecting
to a larger 800 mm diameter pipe in the late 2013. The leak
transients were picked up by M30, M11, M16, M22, M29 and
M25 which are 343.64 m, 747.92 m, 878.86 m, 1367.61 m,
1483.58 m and 1667.45 m from the leak respectively. Table VI
shows distance estimations of burst events at M30, M11, M16,
M22, M29 and M25. It can be perceived that the intensity
sequence corresponds to the distance sequence in a non-linear
relationship.

The most probable burst location using TDOA is 410.24
meters from node 30 which is 66.6 meters from the actual
leak location. Using EA, the estimated burst location is 382.46
meters from node 30 which is 38.82 meters from the actual
leak location.

According to Table III, IV, V, VI and VII , energy attenu-
ation technique for distance estimation has a clear advantage

over TDOA estimation.

VII. CONCLUSIONS AND FUTURE WORKS

Pipe failures and leakages could be expensive for multiple
reasons, including the loss of water, the cost and energy
for generating and treating the water, deteriorating the water
quality due to foreign particles intrusion and repaired cost.
Moreover, the risk for public safety and surrounding infras-
tructure damage is also important for water authority.

This paper has presented an algorithm for identifying leaks
and bursts within the water distribution network. The benefits
of this method, com- pared to conventional time-domain
methods (such as ITA [1] and WT [2]), are its simplicity
and its ability to provide more robust anomaly identification.
Moreover, the performance of the proposed method is less de-
pendent on the characteristics of the water distribution system.
As proof of the viability of the concept, our method has been
validated through emulated bursts on the WaterWiSe@SG [3]
test-bed.

In contrast to ITA, our technique does not require a pre-
calibrated water distribution system model, and it is a fast and
inexpensive technique that has been tested and successfully
applied to a real water distribution system in Singapore.
As shown by the results of both the experiments and the
real leakage phenomenon, our JTFA method is capable of
successfully identifying leaks.

To improve the detectability of the burst detection algorithm,
the use of a dynamic threshold will be integrated. In addition,
to obtain the most effective method, the proper integration
of different leak detection techniques will be incorporated
to complement the limitations of one another. Therefore, our
future work will focus on a hybrid approach that enables the
automatic detection and categorization of leaks/bursts within
the water distribution network and approximates the location
of these events.

Asset management is one of the important factors for the
sustainable water infrastructure. It is especially important in
urban areas to quickly detect and locate the leak to reduce the
cost as well as the damage to the surrounding infrastructure.
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TABLE IV
DISTANCE, TOA AND INTENSITY VALUE FOR KR1 LEAK

Sensor node ID Distance from leak location
(m) Time of Arrival (day) Intensity value (dB)
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TABLE V
DISTANCE, TOA AND INTENSITY VALUE FOR LVD1 LEAK

Sensor node ID Distance from leak location
(m) Time of Arrival (day) Intensity value (dB)
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TABLE VII
SUMMARY OF LOCALIZATION PERFORMANCE

Event ID Distance from actual location
using TDOA (m)

Distance from actual location
using EA (m)

NH1 32.85 19.65
KR1 70.76 40.54

LVD1 63.98 45.72
BCH1 66.6 38.82
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