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Abstract

In many applications, robots have to bear large loads while moving slowly and
also have to move quickly through the air with almost no load. These type of bi-
modal tasks, with conflicting requirements in terms of operating speeds and desired
impedances, often lead to the use of oversized and inefficient actuators which are
inhibitory particularly for mobile robots. Multiple gear ratios, like in a powertrain,
address this issue by allowing an effective use of power over a wide range of output
speeds, by enabling significant changes to the reflected intrinsic actuator impedances
and by making possible the leveraging or attenuation of the natural load dynam-
ics. This thesis aims to develop the technological solutions needed to use variable
gear ratio actuators and exploit the advantages of variable transmissions in a robotic
context. First, by addressing the issue of how to make fast and seamless gearshifts
between two very different reduction ratios under diverse load conditions, with a so-
lution based on a dual-motor actuator architecture and a control scheme using the
null space. Second, by developing control algorithms that select optimal gear ratios
dynamically based on state feedback, to move with minimal motor torques and to
adjust the output impedance appropriately given a task. The proposed approach
exploit variable transmissions not merely for increasing maximum torque and speed,
but also to significantly alter the dynamic properties, including load sensitivity, ro-
bustness, and backdrivability. Simulations and experiments using a novel lightweight
robotic arm using three custom-built dual-speed dual-motor actuators are presented.
Results demonstrate very fast gear shifting in highly dynamic situations with dual-
speed dual-motor actuators, and show that actively changing gear ratios using the
proposed control algorithms can lead to an order-of-magnitude reduction of necessary
motor torque and power.
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Chapter 1

Introduction

"To have a great idea, have a lot of them."

– Thomas A. Edison

This thesis proposes an actuation technology and control schemes addressing the

fundamental problem of efficient power transmission in diverse situations. In many

robotic systems, actuators are often required to operate in distinctively different

torque-speed load conditions. Machine tools, for instance, are usually either mov-

ing at high speed unloaded during reaching phases, or moving slowly applying large

forces during manufacturing operations (see Fig. 1-1c). Also a legged robot, for ex-

ample, has to move its leg forward quickly through the air and, once touching the

ground, it has to bear a large load (see Fig. 1-1a), or a gripper needs to reach the

part quickly and then has to apply large holding forces (see Fig. 1-1b).

Leg on the ground
• Low speed
• Large forces

Leg in the air
• High speed
• Small forces

(a) Legged robot

Reaching phase
• High speed
• Small forces

Holding
• Low speed
• Large forces

(b) Gripper

Manufacturing
• Low speed
• Large forces

Reaching phase
• High speed
• Small forces

(c) Machine tool

Figure 1-1: Robotics system encountering very different load situations
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These two operating conditions, high speed at low torque vs. high torque at low

speed, are often an order of magnitude different, while the required output power is

similarly low. This discrepancy in requirements is problematic as most actuators will

be operating far for their optimal conditions with a gear ratio picked from a middle

ground. Electromagnetic actuators are not optimal in term of efficiency and power

output at extremum torque-speed conditions. This often leads to the use of over-

sized and inefficient actuators, when designing for such bimodal operations, which is

inhibitory particularly for mobile robots.

1.1 Proposed approach: variable transmissions

To meet the power requirement of all operating points with small actuators, it is

proposed to use electric motors coupled to a gearbox where the reduction ratio can

be drastically changed online, see Fig. 1-2. Using such Variable Gear-ratio Actua-

tor (VGA) on the many joint of robotic systems, leads to offering a wide range of

properties in terms of speed, force and impedance, see Fig. 1-3.

50:1

output

1:1

Motor
selector

(a) two drastically different gear ratios

Speed

Low-speed mode
(large reduction ratio)

Force

High-speed mode
(small reduction ratio)

(b) discrete operating modes

Figure 1-2: Variable gear ratio actuator with two discrete options

The two main advantage of the VGA approach are: good power output and

efficiency for a wide range of output speeds and radical changes of intrinsic

impedance (goes with the square of the reduction ratio).
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50:1

1:1

Motor

50:1

1:1

Motor

Variable gear-ratio actuators

Multiple Possible

Speed ellipsoids
Force ellipsoids

Reflected inertia

Figure 1-3: Robotic arm equipped with variable gear ratio actuators

1.1.1 Features of gear shifting in a robotic context

Power output and efficiency over a wide range of speed In many situations,

using multiple gear ratios allows for the downsizing of the motors while still meeting

required forces/speeds capabilities. A small lightweight actuator can generate large

torques and move at high speed if equipped with both a large and a small gear ratio.

Furthermore, by actively selecting gearing ratios to keep motors in efficient regimes,

the energy consumption of a robot can be greatly reduced.

Radical changes of reflected impedance The transmission has a radical effect

on the output impedance of a robot; the motor inertia and viscous damping are re-

flected to the output proportionally with the square of the reduction ratio. Gear

shifting can thus also be used as an alternative approach to variable impedance ac-

tuation. A robot joint could be made backdrivable by selecting a small reduction

ratio, to interact safely with the environment. Alternatively, a joint could be made

non-backdrivable by selecting a very large reduction ratio, to resist easily external

disturbances.
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Exploitation or attenuation of the external load dynamics Changing the

gear ratio has a radical effect on the natural dynamics of a system. By changing

dynamically the gear ratio, it is possible to select the natural dynamic behavior that

is most advantageous for a task. For instance, selecting a small reduction ratio to

exploit gravitational forces pulling the robot in a desired direction, or on the other

hand, selecting a large reduction ratio to hold a heavy weight with small actuator

torques.

Directionality of properties For a multiple degrees-of-freedom (DoF) mecha-

nism, the speed/force properties are directional. Typically the Jacobian (transfor-

mation from motor coordinates to task-space coordinates) of a mechanism is only

a function of the configuration 𝐽 = 𝐽(𝑞). For a mechanism using 𝑚 variable gear

ratio actuators with 𝑙 possible gear ratios, the Jacobian would also be function of the

selected gear ratios 𝑅 and thus dependent on control inputs 𝐽 = 𝐽(𝑞, 𝑅). Hence, for

a given configuration there is 𝑚𝑙 manipulability ellipsoid options. Fig. 1-4 illustrates

situations where gear ratios would be picked to meet the task requirements in terms

of load bearing, speed and impedance.

Directional high-force 
aligned with gravity load

Full high-speed 
mode

Full high-force mode

Locomotion Manufacturing

Speed ellipsoid

Force ellipsoid

Using a large 
gear-ratio

Using a small 
gear-ratio

Figure 1-4: Examples of advantageous gear selections with a multi-DOF robot

1.1.2 Differences from vehicle powertrain transmissions

Variable transmissions have been mostly explored in the context of vehicle power-

trains. Their usage in robotics raise different issues but also new opportunities, and

those distinctions are briefly presented in this section.
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Range of gear ratios For car transmissions, a typical gear ratio range start with a

3:1 reduction for the first gear and the last gear ratio is an overdrive of about 0.8:1.

For robotic applications, the explored idea in this thesis is a much wider range between

gear ratios (one order-of-magnitude and more). For instance, this thesis presents an

actuator prototype having a first gear with a 474:1 reduction and a second (and last)

gear with a 23:1 reduction.

Electromagnetic transducer vs. internal combustion engine characteristics

Internal combustion engines have an efficient power-output on a narrow range of

speed, hence transmissions require many gear ratio options (modern cars use up to

eleven [17]) to keep the engine at its optimal velocity for any vehicle speed. Moreover,

internal combustion engines cannot produce torque at low speed and car transmissions

must be equipped with a disengaging clutch. Electric motors are much more flexible

and there is less constraints for the design of adapted variable transmissions.

Car dynamics vs. robot dynamics For car powertrains the driven load is always

a large inertia and is thus naturally attenuating any discontinuity in torque during a

gear shift. However, this is not the case in a general robotic context.

Mutli-DoF systems Last and most fundamental difference, this thesis explores the

control of VGA in multi-DoF systems like robotic arms, while for vehicle powertrains

the system is always single-axis.

Solutions concepts All in all, as exemplified at eq. (1.2), this thesis explores vari-

able transmissions in multi-axis systems where gear ratios exhibit drastic variations.

This differs from typical car transmissions with small jumps between successive gear

ratios for a single-axis system, see eq. (1.1).

Car transmission: 𝑅 ∈ { 3 , 2 , 1.4 , 1 , 0.8 } (1.1)

Proposed robots: 𝑅 ∈
{︂[︂

474 0

0 474

]︂
,

[︂
474 0

0 23

]︂
,

[︂
23 0

0 474

]︂
,

[︂
23 0

0 23

]︂}︂
(1.2)
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1.2 Main challenges

How to make fast and seamless gearshifts? Gear shifting is more technically

challenging in robotics applications than in vehicle applications. For powertrains, the

load is mostly a large inertia, while for robots, the loads may exhibit a rich range

of dynamics including spring-like and damper-like loads. Hence, unlike vehicle appli-

cations, leaving the load free momentarily during transitions (from one gear ratio to

another) is not acceptable in the context of robotics. Moreover, many robotic applica-

tions would benefit from having order-of-magnitudes difference between the possible

gear ratios, i.e. a wider range of ratio than what is typical in vehicle powertrains.

Hence, an effective gear shifting methodology adapted to robotics is needed, allowing

for fast and seamless transitions between very different gear ratios under diverse load

conditions.

When to use what gear ratio? From the control perspective, automating the gear

ratios selection in a robotic context is a new and challenging problem. Gear shifting

is a very non-linear process and the plant becomes a hybrid dynamical system if the

usable gear ratios are a set of discrete values. Hence, no classical control approach

can be applied directly to handle the additional gear ratio selection control input. In

simple scenarios, the gear ratio selection can be based on simple principles. However,

to handle the generalized problem of the gear ratios selection for multi-DoF robots,

that experience diverse types of forces acting simultaneously and coupling between

each axis, new methodologies are needed to generate trajectories and feedback laws

that would use effectively all the gear ratios options and exploit their advantages.
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1.3 Original contributions

1.3.1 A gear shifting methodology adapted to robotics

The first major contribution of the thesis is an actuation technology capable of fast

and seamless gearshifts between two discrete order-of-magnitude different gear ratios.

This technology consist of a mechanical architecture, that will be refer as DSDM

(dual-speed dual-motor), used in conjunction with novel gear shifting control algo-

rithms. The key idea is exploiting the internal degree-of-freedom (DoF) of the actu-

ator to make possible transiting for one gear ratio to another while also always fully

controlling the output load.

1.3.2 Control algorithms to select gear ratios dynamically

The second major contribution of this thesis, is the development of intelligent auto-

matic gear ratio selection schemes for robotic systems. The key idea is using a model

to estimate intrinsic and extrinsic forces, to compute if it is more advantageous to

attenuate extrinsic forces with large gear ratios or alternatively to leverage them with

a small gear ratios. The method can be applied to arbitrary 𝑛-DoF fully-actuated

non-linear robotic systems using variable transmissions. Also, to the knowledge of

the author, the work in this thesis is the first exploration of closed-loop selection of

gear ratios for multi-DoF robotic systems.

1.3.3 A robotic arm using variable gear ratio actuators

This thesis also presents a novel 3-DoF robotic arm using a variable gear ratio actuator

at each joint, the first of its kind to the best knowledge of the author. This very

lightweight robotic arm can move at high speeds, apply large forces and exhibit a

wide range of impedance.
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1.4 Results

This thesis focused on demonstrating the viability and exploiting the advantages of

robotic systems using variable transmissions, with a vertical exploration of related

topics: actuator design, actuator controllers, robot controllers and motion planning

algorithms.

Prototypes Two generations of DSDM actuator prototypes were designed, man-

ufactured and tested. The first generation DSDM prototype consists of a linear

actuator using a ball-screw output. The second generation consists of two actuated

revolute joints equipped with the DSDM technology. A custom lightweight 3-DoF

robotic arm using the DSDM actuator prototypes was also built.

Software A Python library was developed for providing tools for planning trajec-

tories, controlling and simulating the behavior of robots using VGA. This library also

includes all the controllers proposed in this thesis. Additionally, ROS wrappers to

use those algorithms online to control prototypes were also developed. Both library

are open-source and available on Github at github.com/alx87grd/alexrobotics and

github.com/alx87grd/dsdm_robotics_ros.

Analytical Control laws exploiting the null space of DSDM actuators, leading to

independent control of the internal DoF are synthesized. A modeling approach and

representation for multi-DoF system with variable transmissions is proposed, with

a special emphasis on intrinsic vs. extrinsic dynamics. A closed-form solution of

optimal gear ratios for a class of 𝑛-DoF robotic systems on a known trajectory is

derived. Model-based control laws and optimal gear ratios selection algorithms are

proposed, and guarantees in terms of stability and chattering behavior are derived.

Simulations The advantage of dynamic gear-selection is demonstrated using simu-

lations of multi-DoF robotic arms. Comparisons to equivalent robotic systems using

fixed gear ratio actuators to accomplish the same motion show drastic improvement
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in terms of maximum necessary motor torque and integral cost metric.

Experiments Multiple experiments with actuator prototypes demonstrate the salient

features of VGA actuators and the ability of the DSDM technology to change gear

ratio quickly and seamlessly even in very dynamic situations. Experiments usign 1-

DoF and 2-DoF of the robotic arm prototype reproduce the advantageous behaviors

obtained in simulations and demonstrate the viability of the technology and control

schemes in real-world conditions.

1.5 Organization of the thesis

First, chapter 2 discusses manufacturing applications that would benefit from the

developed technologies in this thesis. Chapter 3 then presents a variable gear ratio

actuator technology, referred to as DSDM, using a gear-shifting methodology adapted

to robotics. Chapter 4 explores the generalized problem of dynamic selection of

gear ratios for a robotic systems equipped with variable transmissions, and present

control algorithms. Chapter 5 presents a novel robotic arm using three custom built

DSDM actuators, used in all experiments presented in this thesis, and discusses the

mechanical design and control system implementation.
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Chapter 2

Aircraft Manufacturing Automation:

Concepts and Challenges

"We need men who can dream of things that never were and ask why not?"

– John F. Kennedy

This chapter presents robotic concepts to automate the manufacturing of air-

planes, and discuss challenging actuator requirements motivating the work of this

thesis. Automating aircraft production requires robots going inside the fuselage, un-

like automobile production where the car can be on an assembly line and surrounded

by robots. The focus is on the production of commercial aircraft, but issues discussed

are relevant in the context of manufacturing any large objects (ships, buildings, etc.).

2.1 Current situation

Currently aircraft manufacturing is dependent on highly qualified manual workers

because of the complexity of tasks involved and the difficulty for accessing manu-

facturing sites. Currently, many temporary assemblies such as scaffolds are used to

assist human workers accessing the manufacturing sites. Hence, traditional robotics

systems hardly fit this type of environment; industrial robot arms are too heavy and

bulky to be used effectively inside the fuselage [44] [42].
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2.2 Solution concepts

Many concepts have been proposed to address this complex problem. Here, three class

of solutions are described: long snake-like articulated arms 2.2.1, wearable robots 2.2.2

and mobile robots 2.2.3.

2.2.1 Lightweight long manipulator arms

The first solution is a direct extension of the approach used in the automotive indus-

try: using robotic arms to reach inside the part. However, because of the size of the

fuselage and the highly constraint environment, robot arms needs to be very long and

highly articulated to be able to reach manufacturing sites. This type of robot arm is

usually refer to as snake-like robots [8]. Fig. 2-1 illustrates a concept of a long serial

robotic arm reaching inside the fuselage through a window hole.

Figure 2-1: Long lightweight arm concept for interior access

One of the main bottleneck of such concept is the weight and volume of the actu-

ation system [53]. With a highly-articulated serial arm, many actuator are required

and each of them needs to bear the weight of the payload and posterior links. More-

over, with a highly articulated arm, it is hard to design transmission mechanisms to

30



displace actuators from the joint toward the base of the robot where their mass would

be a lesser issue. Hence, typical snake-like arms using electric motor usually struggle

just to overcome their own weight and have very limited payload capabilities.

2.2.2 Wearable robots

Another possible solution to bring robots on site easily is to use the help of humans,

which unlike robot would have no problems navigating and moving inside a manu-

facturing site. The idea is to augment human capabilities with a wearable robotic

system. One approach is using exoskeleton to improve the strength and precision of

worker. An alternative, illustrated at Fig. 2-2, is supernumerary robotic limbs that

can be used to brace workers, assist them in complex tasks and others.

Figure 2-2: Wearable robot concepts and prototypes [6] [45] [62]

Because this type of robots is carried by a human, weight is also a critical char-

acteristic. It is still a challenge to design wearable robots sufficiently light to be an

asset and not a burden to the human wearer.
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2.2.3 Mobile climbing robots

Another approach, aiming at a higher level of automation, is to have mobile robots

walking or climbing inside the aircraft fuselage to reach manufacturing sites automat-

ically. Fig. 2-3 illustrates a spider-like mobile robot. The idea for this concept is

using local bracing for reaching the force and stiffness required for some manufactur-

ing tasks, and using the same legs for site-to-site locomotion inside the fuselage. Fig.

2-4 illustrates a climbing robot prototype that was built to demonstrate the idea.

Figure 2-3: Mobile climbing manufacturing robot concept

This type of robotic system would face many challenges regarding reaching the

required autonomy level. However one fundamental issue is still the weight, since

the robot would have to fully bear its own weight as it climbs around the fuselage.

Moreover, meeting the requirement of both locomotion and manufacturing tasks with

the same actuators, with mass and volume constraints, is also a big challenge.
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Figure 2-4: Climbing robot prototype

2.3 Technical challenges

All those concepts share the same difficulty regarding very challenging actuator re-

quirements. It all comes from the fact, that for any system that needs to reach manu-

facturing sites inside a fuselage, volume and weight are highly constrained. Moreover,

tasks related to reaching/transportation and manufacturing operations have very dif-

ferent requirement regarding force, speed and impedance. Hence, designing actuation

systems meeting a wide-range of requirements, when weight and volume are highly

constrained, is not trivial. The proposed idea, of using robot with actuators equipped

with variable transmission, directly addresses those practical challenges limiting many

robotic concepts. All the concepts presented in this chapter could hugely benefit from

the technology developed in this thesis.
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Chapter 3

A Variable Gear-ratio Actuator with

Fast and Seamless Transitions

"Simplicity is the ultimate sophistication."

–Leonardo da Vinci

This chapter presents an actuation technology, consisting of a mechanical archi-

tecture called DSDM (dual-motor dual-speed) used in conjunction with novel gear-

shifting control algorithms, that make possible fast and seamless transitions between

two radically different gear-ratios. Fig. 3-1 illustrates a DSDM actuator prototype.

Brake

High-speed motor

High-torque motor

Differential

Figure 3-1: DSDM actuator prototype
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This technology allows for improved power transmission over a wide range of out-

put speed, and reflecting radically different impedance at the output. Unlike alter-

native variable transmission approaches, this is achieved without requiring complex

or novel components, only proven technology (motor, brake and gears), which can be

greatly advantageous from a product development point-of-view.

3.1 Motivation

In many robotic systems, actuators are often required to operate in distinctively

different torque-speed load conditions. As illustrated on Fig. 3-2 for a typical elec-

tromagnetic (EM) actuator, extremum torque-speed conditions are not optimal in

term of efficiency and power output. This often leads to the use of oversized and

inefficient actuators, which is inhibitory particularly for mobile robots.
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Figure 3-2: Limitations of EM motors for extremum torque-speed operations

Automobiles with internal combustion (IC) engines use transmissions with mul-

tiple gear-ratios to match torque-speed conditions. IC engines have a very narrow

speed range in which they can effectively deliver power; a transmission with multiple

gear ratios is a necessity for the engine to work effectively for a wide range of output

speed. EM motors are more flexible than IC engines, but still far from ideal sources.

EM motors cannot output high power at low speed because of thermal dissipation

and magnetic flux limits related to material properties; are limited in speed by the

supply tension and others; and are very inefficient when producing large forces at low

speed [25]. In robotic, since it is often the extremums, i.e. maximum torque and

speed, that determine the actuator design instead of the power requirement, much
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can be gained with multiple gear ratios.

It will be a significant breakthrough if a type of multiple speed transmission can

be used effectively in robotics. Even a small, lightweight actuator can generate large

torques and move at high speed if equipped with both a large and a small gear-ratio.

Moreover, a multiple gear-ratio transmission can allow an actuator to work closer to its

optimal operating conditions, improving overall efficiency significantly. Furthermore,

gear shifting significantly changes the intrinsic impedance of an actuator, since the

impedance is proportional to the square of the gear-ratio. The actuator may be made

back-drivable while using its small reduction ratio, an important property in many

applications where the robot physically interacts with the environment [23]. Also

the same actuator may be made non-back-drivable while using its large reduction

ratio, allowing the actuator to support loads without consuming energy and enabling

high-stiffness position control.

3.2 Actuator and powertrain research

Classical Actuators Traditional robots generally use actuators that behave as

displacement-sources because of their high intrinsic impedance. These include geared

EM motors and hydraulics cylinders. Using a force sensor, it is possible to control

the output force with this type of actuators, but the bandwidth is rather limited.

To guarantee the stability of the force-feedback scheme only half the intrinsic inertia

can be canceled [23]. Since 70’s, roboticists have been attempting to build actuators

that can behave naturally as a force-source such as series-elastic actuators, pneu-

matic cylinder and air-muscles [19] [49]. However, because of the physical limitation

of compliant transmission materials, the achievable bandwidth is limited and pre-

cise position control is hardly achievable. Direct drive EM actuators are the best

force-source actuators with high fidelity, high bandwidth, and have been used for

high-speed robots [2] and more recently small legged robots [27]. However, the very

low force density [25] and low efficiency at low speeds make them impractical for

most mobile robot applications, just holding a payload with static torques require
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continuous currents in the motors leading to a large energy consumption even though

no mechanical work is done.

Regarding power-throughput, as briefly discussed before and illustrated at Fig.

3-3a, electromagnetic actuators are typically characterized by a flat force curve for

most of their range of speed, leading to maximum power been only available at high

velocity [14]. Fluidic actuators are typically characterized by a force curves dropping

quadratically with velocity (related to pressure losses in valves orifices), as illustrated

at Fig. 3-3b. All in all, EM and fluidic actuators are not perfect power sources

and could benefit from using variable transmissions to have their maximum power

available on a much wider range of speed.
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Figure 3-3: Typical force-speed curve of actuators

Some advance electric motor systems can extend their operation at high-speed by

weakening the magnetic flux. Such motors can thus transmit their maximum power

over a wider range of speed than basic DC motors, see Fig. 3-4. However, this

clever electromagnetic scheme cannot go around the fundamental force saturation

at low-speed, which is limited by material properties [25]. Hence, there is still a

big advantage of using multiple gear-ratio even for motor using advance flux control

schemes, see Fig. 3-5.

Variable Impedance Actuators Force-source type of actuators are desirable for

interaction tasks, for instance grasping, manipulation and locomotion, since the inter-

action force can be controlled. On the other hand, actuators with non-back-drivable
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Figure 3-4: Force-speed curve of an electric motor using flux weakening
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Figure 3-5: Force-speed curve of an electric motor using flux weakening with two
different reduction ratios

mechanisms have the advantage for pure position controlled tasks, disturbance rejec-

tion and statically bearing large load without any power consumption. Since both

small and large intrinsic impedances are advantageous in different scenario, several

group have developed variable intrinsic impedance actuators, such as based on variable

stiffness spring [60], antagonist non-linear devices [31], a series-compliance that can

be locked with a brake [35] and dual-motors in serial configuration [29]. Furthermore,

so-called macro-micro actuators, can improve the bandwidth of force-source type of

actuators by exploiting the high-bandwidth of a small actuator in parallel, allow-

ing for wider-range impedance control and improved position control [43]. Regarding

power throughput however, all these technologies are still limited by force-speed char-

acteristic of their main transducer (generally a geared electric motor). Hence, those

designs do not solve the problem of efficient power transmission over a wide range of

speed.
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Vehicle Powertrains While the actuator work in robotics have been focused on

impedance and bandwidth issues, in the powertrain field the torque-speed matching

issue is predominant, since power density and efficiency are critical for mobile sys-

tems. The idea of using multiple gear ratios with electric motors has been explored

occasionally, to improve efficiency and power density [40] [32] [48]. A twin motor con-

figuration has been proposed for smooth gear shifting, where each motor shifts at a

different timing [5]. Also, a dual motor configuration using a planetary coupling and

non-back-drivable worm-gears was proposed for a mobile robot powertrain [36]. Mul-

tiple gear-ratio powertrains provide effective solutions for torque-speed matching, but

are not adapted to the robotic context. First because powertrain shift mechanisms

are not adapted to make gear shifts while interacting with dynamic environments,

and second because they are designed to make shifts between gear-ratios much closer

to one another than what is investigated in this thesis.

Fig. 3-6 shows typical transmitted force profile during gear-shifts with powertrain

shifting mechanisms. The simplest manual transmissions using dog clutch do not

transmit torque at all during a shift, while more advance systems such as dual-clutch

transmission can supply torque during the transition, the fidelity is low compared

to what is typically expected from an actuator in a robotic context. For instance,

with a state-of-the-art two-speed dual-clutch transmission for an electric car [61],

experimental results shows output torque oscillations with amplitudes of about 100%

the nominal value during a period of 0.5 sec. However, this torque deviation only lead

to an undesirable car acceleration of about 0.05 g, and the effect is barely noticeable

on the output velocity curve. As illustrated at Fig. 3-7, force fidelity requirement for

vehicle powertrain are not very severe since the load is always a very large vehicle

inertia which will act as a very strong low-pass filter. However, robotic system can be

interacting with all kind of load without filtering characteristics. For instance, for a

robot fighting a gravitational load or compressing a spring, it would be catastrophic if

the force drop during a gear-shift. The output needs to be always fully under control

in those situations.

One other aspect is that power-train gear-shifting mechanisms are not adapted to
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Figure 3-7: Type of loads encountered by vehicle powertrains vs. robot actuators

make transition between drastically different gear-ratios. For instance, for dual-clutch

systems the ratio step between adjacent gear ratios should not exceed 1.8 to avoid

shift difficulties [11]. Furthermore, from a design perspective, advance power-train

systems are very complex machines (wet clutches, dry clutches, synchronizers, etc.)

leading to manufacturing, maintenance, wear and reliability challenges. Adding such

systems in all the many actuators of a robotic system might be especially hard to

justify when balancing all those practical issues. All-in-all, power-train gear-shifting

technologies are not adapted directly for use in a general purpose robotic actuator.

Variable Gear-ratio Actuators While variable gear-ratio actuators (VGA) have

been studied extensively for automobile power-trains, they have not yet been fully

investigated in robotics, despite significant potential gains. A few instance of research

in that direction were made for legged locomotion [21], grasping robotic hands [55] and

actuators [20] [28] [59]. While those works are promising, no gear shifting methodology
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for generic robot actuator in arbitrary dynamic situation are proposed.

Continuously variable transmissions (CVT) Continuously variable transmis-

sion have been used sporadically for car power-trains. Most common designs are

based on belts with variable-diameter pulleys or toroidal disks. Drawbacks compared

to regular transmission include higher transmission losses and complex dynamics [57].

Moreover, typical CVT have limited total ratio variation range (for instance 0.5:1 to

2:1), which makes them un-adapted for very large ratio variation. Some designs have

been proposed for infinite range variation, often called IVT. For instance the company

Torotrack claims to have a CVT that can reach an effective gear-ratio of zero [54].

However, since those designs rely on friction, maximum transmitted torque is limited

which limits the effective large reduction range. Moreover, such transmission systems

are highly complex and very large (requiring a hydraulics system to control the pre-

load forces for instance), which inhibit the potential use for smaller scale actuators

in robotic applications.

In the actuator field, lever mechanisms with variable attachment points that lead

to a very wide range of effective transmission ratio [59], even infinite range when

using a singular configurations [26], have been proposed. However, this type of CVT

implementation limits drastically the motion range, thus cannot be used for general

purpose actuator transmission. In the literature, those mechanisms are used in VSA

between the spring and the output, where their limited motion range is not an issue.

Many clever mechanisms have proposed to be used as CVT. However, all designs

have some major drawback regarding either: total variation range, constraints on out-

put motion, ratio-variation speed, allowable shift conditions, efficiency, etc. The best

indication of this is the automotive industry. Theoretically, there is a huge incentive

to use CVT with internal combustion engined because of their narrow peak of power

and efficiency. However, despite a century of development in one of the largest indus-

try, transmissions using many discrete gear-ratios are still the most widely adopted

solution. Even with the recent efforts to improve fuel economy, the trend in the in-

dustry is to use transmissions with a large number of discrete gear-ratios [47] [17].
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Furthermore, compared to the automotive field, the incentive of using CVT in robotics

is diminished because of more flexible torque curves of electric motor and the chal-

lenges are greater because of the wider desired range of ratios. To conclude, all the

limitations of CVT, especially the limited variation range for typical designs, make

this technology un-adapted for general purpose robotic actuators. However, a break-

through in term of IVT technology would be very interesting for the field of robotics.

3.2.1 Novel contribution

The presented DSDM actuator in this chapter, address the issue of improving avail-

able power and efficiency over a wide range of operating speeds, which has rarely been

addressed in the robotics literature. Also, the actuator enables order-of-magnitude

variation of the output impedance, which is also a highly desirable feature. The main

novel contribution is the methodology for gear shifting between two very

different gear-ratios seamlessly even in highly dynamic situations, which

is a key enabling feature for robotic applications. A mechanical architecture

where two motors are coupled using a 3-ports gearbox and a brake is used in con-

junction with novel control scheme to provide full control of the output during gear

shifting. The mechanical architecture is not new by itself as similar architectures

(using planetary and brakes) are used in hybrid car powertrains, automatic transmis-

sions and special actuators. However, here this architecture is used in conjunction

with a novel controller to provide full control of the output during gear shifting. A

preliminary version of this work has been published by the author in [14], but this

chapter includes a more throughout analysis and new algorithms for fast gear-shift

even during impacts.

To the knowledge of the author, no other technology meets all those requirements:

∙ Fast shifting between order-of-magnitude different gear-ratios

∙ High-fidelity control of the output during transitions

∙ Simple mechanical design enabling small and practical implementations
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3.2.2 Related works

Many dual-motor actuators have been proposed in the literature [58], with differ-

ent goals and architectures. So called macro-micro actuators, are essentially series-

elastic actuators equipped with an additional small motor directly attached to the

output [43]. Variable stiffness actuators (VSA) are also based on series elastic ac-

tuator architecture, where a small motor can modulate either the spring directly or

the transmission between the spring and the output [26]. Fig. 3-8 shows a general-

ized bond-graph actuator model illustrating the conceptual differences between many

approaches.
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Figure 3-8: Different approaches for variable impedance actuators

Variable stiffness actuators use a variable transmission placed between a compliant

element and the load, where it influence the reflected output stiffness but not the

steady-state power-transmission characteristics. Macro-micro actuators have a fixed

reflected output stiffness, but the advantage is that the additional direct-drive motor

on the output makes possible to emulate a wide-range of output impedance. The

proposed VGA actuators in this thesis are fundamentally differents, it

is the transmission between the motor and the load that is varied, like

in a car transmission. The main advantage of VGA is regarding efficient power

transmission, enabling small motors to make full use of their maximum power at

high speed and at low speed. Macro-micro actuators and VSA have no advantages

over a regular electric motor regarding the range of speed at which power can be
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transmitted. On the other hand, macro-micro and VSA have the ability to store

and release potential energy in their compliant element, which is not the case with

VGA. Regarding, natural reflected impedance, both VSA and VGA have the ability

to change it. One fundamental difference is that VGA can only attenuate or amplify

the natural inertia and friction of the rotor, while VSA can only modify its reflected

stiffness.

45



3.3 Dual-Speed Dual-Motor architecture

The proposed architecture, referred to as a Dual-Speed Dual-Motor (DSDM) actuator,

consists of a direct drive motor (M1) equipped with a locking brake and an geared

EM motor (M2) with a large reduction ratio coupled to the same output through a

differential, see Fig. 3-9. The differential can be viewed as a 0-type junction (taking

bond-graph terminology) where the speeds add up and the force is shared.

M1: Motor #1

M2: Motor #2

Output

Brake

3-ports gearboxLarge reduction stage

Figure 3-9: DSDM actuator concept

The envisioned implementation of the DSDM concept is to embed all the compo-

nents into a single compact unit, as illustrated by Fig. 3-10. A lot of weight and space

could be saved by combining the reduction and the differential gearing and having all

the components inside a single housing.

Winding 1

Winding 2

Stator

Planetary differential

Brake

Output shaftReduction 
stage

Figure 3-10: Possible architecture of an integrated DSDM concept
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3.3.1 Principle

The DSDM can be used in two modes, high-force mode when the brake is closed

and high-speed mode when the brake is open. The result is like having two very

different reduction ratio you can choose from during operation. Fig. 3-11 conceptually

illustrates the principle with a leverage analogy, M1 acts like a force source connected

almost directly to the output and M2 acts like a displacement source with a large

lever arm relative to the output.

Output

M1: Force sourceM2: Displacement source

Locking
Brake

Figure 3-11: Dual inputs system

During the high-force mode, see Fig. 3-12a, the brake is closed and M2 drives the

output with a large mechanical advantage. The result is a low-speed displacement-

source type of actuation like a geared EM motor. During the high-speed mode,

see Fig. 3-12b, M1 drive the output almost directly, creating a high-speed force-

source actuator like a direct drive EM motor. Additionally, both motors can be used

simultaneously to drive the output even faster.

(a) High force mode (brake closed) (b) High speed mode (brake open)

Figure 3-12: Two modes of operation

Fig. 3-13 illustrates the operating range of the DSDM actuator plotted on the

standard torque-speed plane. The high-force mode region is determined by the per-
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formance of M2 alone, since M1 is locked. The high-speed mode region can exceed the

performance of M1 alone, as M2 can be used simultaneously to increase the output

speed. The fail safe zone indicates the guaranteed performance of the DSDM actuator

in case of failure in either motor.

Speed
M1 aloneM2 alone

High speed mode region, both 
motors operating at the same time

High force mode region, 
M2 + brake ON

Force

Fail safe 
zone

Figure 3-13: DSDM actuator operation regions

3.3.2 Weight advantage

A DSDM actuator will be lighter than a single motor for applications with a wide

range of operating speed. Suppose that an actuator must generate 10 W output power

at two operating points: 0.5 Nm of torque at a speed of 20 rad/sec and 0.1 Nm at

100 rad/sec. A single EM motor that satisfies these requirements at both operating

points tends to be oversized in terms of power, to reach both operating points, see

Fig. 3-14a. A DSDM actuator can reach the same operating points using two smaller

motors with appropriate gear ratios, see Fig. 3-14b. On the other hand the DSDM

actuator uses more components: two motors instead of one, more gearing and an

additional brake. The DSDM concept pays-off when the difference in speed between

two required operating points becomes larger. Fig. 3-15 shows the estimated weight

of actuators in relation to the ratio of operating speeds (𝜆 = 𝑤1

𝑤2
), while the required

power output is kept at 10 W. The actuator weight is computed assuming that the

mass of each component is proportional to its maximum output torque, with values

taken from commercially available Maxon motor components in the 10 - 100 watts
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range: 2 kg/Nm for motors, 0.1 kg/Nm for gearboxes and differentials and 0.2 kg/Nm

for brakes. As shown in Fig. 3-15, the DSDM concept becomes advantageous when

there is a large speed difference between the operating points. This is because only

the gearbox and brake need to be scaled up for the DSDM actuator to meet the high

torque requirement of the low-speed operating point, while the motor size must be

increased for the single motor solution.
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Figure 3-14: Case study of two actuator solutions for two 10 W operating points
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Figure 3-15: Weight of a single motor compared to the DSDM concept for two 10 W

operating points at different speeds 𝑤1 = 100 rad/sec, 𝑤2 = 𝑤1/𝜆

Note that a two-speed actuator using a single motor and a variable transmission

similar to the type used in car power-trains could have an even larger weight advan-

tage over a single-gear motor. However, this type of variable transmissions, using

components such as dog clutch, synchronizers and friction clutches, would not ex-

hibit the features required to change gear-ratio seamlessly in the dynamic situations

encountered by robots, unlike the DSDM architecture.
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3.3.3 Efficiency advantage

VGA actuators, including DSDM actuators, can transmit power more efficiently given

various operating conditions. Electric motor efficiency is a function of velocity and

applied torque. The efficiency map depends on the electric motor type (DC brushed,

AC induction, DC brushless, etc.). As a general rule, motors are typically more

efficient in the upper-end of their velocity range. Hence, by using multiple gear-

ratios, not only motors can be down-sized, but power transmission can be made more

efficient. For instance, switching to a large gear-ratio to use a motor at its most

efficient operating conditions with high rotor speeds. This efficiency advantage has

been studied for electric cars equipped with multiple speed transmissions [51] [24] [64]

[40]. This advantage is also of high interest for any mobile robots where on-board

energy is limited. Any quantitative analysis of this benefit depends heavily on the

specific of the type of motor used, the controller, the robotic system and the task

executed by the robotic system. Section 4.7 will offer some quantitative simulation

results regarding reduced energy consumption of robotic manipulator achieved using

VGA actuators.

Another significant efficiency advantage of DSDM actuators over single-gear mo-

tors, is that high-speed mode can be backdrivable for interaction tasks while the

high-force mode can be made non-backdrivable (using a irreversible large reduction

for M2) in order to be able to hold an object against gravity without having to con-

sume any electrical energy. A backdrivable single-gear motor will always have to

supply electrical power just to sustain gravity forces, leading to zero efficiency for

holding tasks. Hence, for a robot requiring backdrivability in some task and often

holding objects against gravity, the efficiency gain could be huge. Note that some

industrial robot arms use brake mounted on actuator outputs to address this type of

energy consumption issue [41].

An additional advantage of the DSDM architecture, is that during high-speed

operation, many combination of M1 and M2 velocity can lead to the same output

velocity. Hence, this internal degree of freedom can be used to further optimize
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efficiency by distributing motor speeds to minimize the overall energy consumption.

3.3.4 Reliability advantage

An additional secondary advantage of the DSDM architecture is that some minimum

performance, illustrated by the green area at Fig. 3-13, can be guaranteed even if

either motor fail. Here failures leading to either jamming (rotor and stator stuck

together) or freewheeling (motor cannot transmit any torque) are considered. Table

3.1 details how those failures mode can be addressed with the DSDM architecture.

Table 3.1: Safe failure modes of a DSDM actuator

Failure Mode Fail-safe Operation

Jamming of M1 If M1 jams, then the situation is the same as if the brake
would be engaged, and the capability of high-force mode is
still available.

Jamming of M2 If M2 jams, then M1 can still be used freely to move the out-
put. The capability of high-speed are almost fully available,
only the maximum speed is reduced as M2 is not available
to add-up speed.

Freewheeling of M1 If M1 is no longer able to transmit any torque, than if the
brake is engaged all the capability of high-force mode are
still available.

Freewheeling of M2 If M2 is no longer able to transmit any torque, M1 can
still be used to move the output. Assuming the reduction
stage of M2 is irreversible or barely backdrivable (meaning
its associated moving part in the differential is still fixed
and can sustain reaction forces) then the capability of high-
speed are fully available.
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3.4 Modeling

This section derives mathematical equations describing the behavior of a DSDM ac-

tuator for the purpose of designing adequate control laws.

3.4.1 3-ports planetary gear junction

Figure 3-16: Planetary gear-box used as a 3-port junction

A planetary gear box is used to implement the 3-port differential junction that

links the two motors to the output. As illustrated by Fig. 3-16, the planet carrier is

connected to the output, M1 to the sun gear and M2 to the ring gear. Note that in

typical gear-reducers using a planetary, the ring gear is usually fixed and there is a

single DoF in the gearing. Here the ring gear is also mounted on bearing and there

is 2 DoF in the gearing. The kinematic relation of the system is given by

𝑤𝑜 =

[︂
1

𝑁 + 1

]︂
⏟  ⏞  

1/𝑅1

𝑤1 +

[︂
𝑁

𝑟2(𝑁 + 1)

]︂
⏟  ⏞  

1/𝑅2

𝑤2 (3.1)

where 𝑟2 is the additional reduction of M2, 𝑁 is the ratio of gear teeth of the ring

gear over the sun gear, and 𝑤𝑜, 𝑤1 and 𝑤2 are angular velocities of the output shaft

(port 𝑜), M1 input shaft (port 1) and M2 input shaft (port 2). Neglecting internal

inertial forces in the gearing, the effort relation of the system is given by:

−𝑒𝑜 = [𝑁 + 1]⏟  ⏞  
𝑅1

𝑒1 =

[︂
𝑟2(𝑁 + 1)

𝑁

]︂
⏟  ⏞  

𝑅2

𝑒2 (3.2)

Hence, the 3-ports planetary coupling can be interpreted as a 0-junction, in the bond
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graph terminology, with different mechanical advantages (𝑅1 and 𝑅2) on each input

ports.

3.4.2 Dynamics

Fig. 3-17 shows a lumped-parameter dynamic model of a DSDM when the brake is

open (high-speed mode). 𝐼𝑖 and 𝑏𝑖 are the inertia and damping of the respective i-th

ports. It will be assumed here that low-level high-bandwidth current controllers are

used, and electromagnetic torques 𝜏1 and 𝜏2 are going to be considered directly as

inputs to the system. An equivalent bond-graph model is illustrated at Fig. 3-18.

𝐼1
𝑏1

𝐼2
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𝜏𝑒𝑥𝑡

M2

M1

𝜏2

𝜏1

Figure 3-17: Lumped-parameter dynamic model of a DSDM
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Figure 3-18: Bond-graph dynamic model of a DSDM
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Applying Newton’s law on each ports yields the following equations of motions:

𝜏𝑒𝑥𝑡 − 𝑒𝑜 = 𝑍𝑜(𝑠)𝑤𝑜 (3.3)

𝜏1 − 𝑒1 = 𝑍1(𝑠)𝑤1 (3.4)

𝜏2 − 𝑒2 = 𝑍2(𝑠)𝑤2 (3.5)

where 𝑍𝑖(𝑠) = 𝐼𝑖𝑠 + 𝑏𝑖 represents the mechanical impedance of the i-th ports in the

Laplace domain. Note that the system is coupled due to the constraint given by eq.

(3.1) and (3.2), and that there is only two degrees of freedom among the three ports.

Fig. 3-19, illustrate the coupled equations motion in block diagram form. It is then
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Figure 3-19: Dynamics of a DSDM illustrated with a block diagram

possible to eliminate one variable and express the dynamic as the following system of

two equations:

⎡⎣ 1 0 1
𝑅1

0 1 1
𝑅2

⎤⎦
⎡⎢⎢⎢⎣

𝜏1

𝜏2

𝜏𝑒𝑥𝑡

⎤⎥⎥⎥⎦ =

⎡⎣ 𝑍1(𝑠) + 𝑍0(𝑠)

𝑅2
1

𝑍0(𝑠)
𝑅1𝑅2

𝑍0(𝑠)
𝑅1𝑅2

𝑍2(𝑠) + 𝑍0(𝑠)

𝑅2
2

⎤⎦⎡⎣ 𝑤1

𝑤2

⎤⎦ (3.6)

The equation of motion can then be rearranged in the standard manipulator equation

form, using as generalized coordinates for more convenience the following:⎡⎣ 𝑤𝑜

𝑤1

⎤⎦ = 𝑤 = �̇� (3.7)
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Note that since there are no conservative forces in the actuator, all displacement co-

ordinates are ignorable and the dynamic equation is independent of rotor and output

angles.

⎡⎣ 𝐼𝑜+𝑅2
2𝐼2 −𝑅2

2
𝑅1

𝐼2

−𝑅2
2

𝑅1
𝐼2 𝐼1+(

𝑅2
𝑅1

)2𝐼2

⎤⎦
⏟  ⏞  

𝐻

⎡⎣ �̇�𝑜

�̇�1

⎤⎦
⏟  ⏞  

𝑞

+

⎡⎣ 𝑏𝑜+𝑅2
2𝑏2 −𝑅2

2
𝑅1

𝑏2

−𝑅2
2

𝑅1
𝑏2 𝑏1+(

𝑅2
𝑅1

)2𝑏2

⎤⎦
⏟  ⏞  

𝐷

⎡⎣ 𝑤𝑜

𝑤1

⎤⎦
⏟  ⏞  

𝑞

=

⎡⎣ 0 𝑅2 1

1 −𝑅2
𝑅1

0

⎤⎦
⏟  ⏞  

𝐵

⎡⎢⎢⎢⎣
𝜏1

𝜏2

𝜏𝑒𝑥𝑡

⎤⎥⎥⎥⎦
⏟  ⏞  

𝜏

(3.8)

The inverse of the inertia matrix is given by:

𝐻−1 =
1

𝐼𝑜 + 𝐼1𝑅2
1 + 𝐼𝑜

𝐼1
𝐼2

(𝑅1

𝑅2
)2

⎡⎣ 1 + 𝐼1
𝐼2

(𝑅1

𝑅2
)2 𝑅1

𝑅1
𝐼0
𝐼2

(𝑅1

𝑅2
)2 + 𝑅2

1

⎤⎦ (3.9)

The equations can be converted to linear state space form:

�̇�⏟ ⏞ 
�̇�

=
[︀
−𝐻−1𝐷

]︀⏟  ⏞  
𝐹

𝑤⏟ ⏞ 
𝑥

+
[︀
𝐻−1𝐵

]︀⏟  ⏞  
𝐺

𝜏⏟ ⏞ 
𝑢

(3.10)

Leading to the following after eliminating the external torque and the damping at

each motor port for brevity:⎡⎣ �̇�𝑜

�̇�1

⎤⎦ = 𝐹

⎡⎣ 𝑤𝑜

𝑤1

⎤⎦ + 𝐺

⎡⎣ 𝜏1

𝜏2

⎤⎦ (3.11)

with 𝐹 =
1

𝐼𝑇

⎡⎣ −𝑏𝑇 0

−𝑅1𝑏𝑜 0

⎤⎦ (3.12)

𝐺 =
1

𝐼𝑇

⎡⎣ 𝑅1 𝑅1
𝑅1𝐼1
𝑅2𝐼2

(𝑅2
1 +

𝑅2
1𝐼𝑜

𝑅2
2𝐼2

) −𝑅1𝐼𝑜
𝑅2𝐼2

⎤⎦ (3.13)

𝐼𝑇 =
[︂
𝐼𝑜+𝑅2

1𝐼1+
(︁

𝑅1
𝑅2

)︁2 𝐼1
𝐼2

𝐼𝑜

]︂
(3.14)

𝑏𝑇 =
[︂
𝑏𝑜+

(︁
𝑅1
𝑅2

)︁2 𝐼1
𝐼2

𝑏𝑜

]︂
(3.15)
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3.4.3 Inputs/Outputs equations

The variable of interest is the output 𝑤𝑜, and its dynamics can be expressed, going

back to the Laplace domain by:

[︂
𝑍1(𝑠)𝑍2(𝑠) +

𝑍1(𝑠)𝑍𝑜(𝑠)

𝑅2
2

+
𝑍2(𝑠)𝑍𝑜(𝑠)

𝑅2
1

]︂
𝑤𝑜(𝑠) = (3.16)[︂

𝑍2(𝑠)

𝑅1

]︂
𝜏1(𝑠) +

[︂
𝑍1(𝑠)

𝑅2

]︂
𝜏2(𝑠) +

[︂
𝑍2(𝑠)

𝑅2
1

+
𝑍1(𝑠)

𝑅2
2

]︂
𝜏𝑒𝑥𝑡(𝑠) (3.17)

When the brake on M1 of the DSDM is locked, the output equation is reduced, by

letting 𝑍1(𝑠) → ∞, to:

[︀
𝑍𝑜(𝑠) + 𝑅2

2𝑍2(𝑠)
]︀
𝑤𝑜(𝑠) = [𝑅2] 𝜏2(𝑠) + 𝜏𝑒𝑥𝑡(𝑠) (3.18)

When the brake is open, if the gear-ratio 𝑅2 of M2 is large, the equation can be

simplified. Assuming the reflected impedance of M1 is much smaller than that of M2,

and neglecting motor side damping, the equation is reduced to:

[︀
𝑍𝑜(𝑠) + 𝑅2

1𝑍1(𝑠)
]︀
𝑤𝑜(𝑠) = [𝑅1] 𝜏1(𝑠) +

[︂
𝑅1

𝑅1𝐼1
𝑅2𝐼2

]︂
𝜏2(𝑠) + 𝜏𝑒𝑥𝑡(𝑠) (3.19)

with 𝑍1(𝑠)𝑅
2
1 << 𝑍2(𝑠)𝑅

2
2 and

𝑍1(𝑠)

𝑍2(𝑠)
=

𝐼1
𝐼2

(3.20)

During high-speed mode the behavior of the output is also dominated by a first-

order linear behavior, but interestingly both input torques contributed to the motion

through inertial coupling. Note that this differ from a serial architecture, in both

case speed adds-up and effort is shared (0-type junction), but inertial properties are

different. Input/output differential equations are thus given by:

High-speed mode:
[︀
𝐼𝑜 + 𝑅2

1𝐼1
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 = [𝑅1] 𝜏1 +

[︂
𝑅1

𝑅1𝐼1
𝑅2𝐼2

]︂
𝜏2 (3.21)

High-force mode:
[︀
𝐼𝑜 + 𝑅2

2𝐼2
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 = [𝑅2] 𝜏2 (3.22)
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Note that, when a DSDM is connected to a robotic system, the left-hand side of

equations (3.21) and (3.22) would have terms reflecting other extrinsic load-side forces:

including coupled inertial effects, gravitation forces and others. However, the right-

hand side of the equation would stay the same: the motor torques transmission gains

would not be affected:

[︀
𝐼𝑜 + 𝑅2

1𝐼1
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 − 𝜏𝑒𝑥𝑡⏟ ⏞ 

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑓𝑜𝑟𝑐𝑒𝑠

= [𝑅1] 𝜏1 +

[︂
𝑅1

𝑅1𝐼1
𝑅2𝐼2

]︂
𝜏2 (3.23)

[︀
𝐼𝑜 + 𝑅2

2𝐼2
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 − 𝜏𝑒𝑥𝑡⏟ ⏞ 

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑓𝑜𝑟𝑐𝑒𝑠

= [𝑅2] 𝜏2 (3.24)

Also, although neglected in (3.21) and (3.22), motor damping could be reintroduce

easily by substituting motor torque 𝜏𝑖 with the effective torque 𝜏𝑖 − 𝑏𝑖𝑤𝑖 since those

forces are collocated.
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3.4.4 Hybrid Behavior

Fig. 3-20 illustrates the two different discrete modes of the system and possible

transitions. Table 3.2 gives references to the equations modeling each of the discrete

behaviors and transitions.

High-Speed Mode
𝑘 = 2

EoM:  𝒘 = 𝑓2(𝒘, 𝝉)

High-Force Mode
𝑘 = 1

EoM:  𝒘 = 𝑓1(𝒘, 𝝉)

𝒘+ = ℎ𝑑(𝒘
−)

𝒘+ = ℎ𝑢(𝒘
−) Open Brake

Close Brake

Output ImpactOutput Impact

𝒘+ = ℎ1(𝒘
−, 𝑝𝑒𝑥𝑡)𝒘+ = ℎ2(𝒘

−, 𝑝𝑒𝑥𝑡)

Figure 3-20: Discrete operating modes of the DSDM

Table 3.2: Hybrid model: Continuous equations and discrete jump maps

Situation Discrete Mode Mapping Equation of motions

Continuous differential equations

High-Force Mode 𝑘 = 1 �̇� = 𝑓1(𝑤, 𝜏 ) given by eq. (3.18)

High-Speed Mode 𝑘 = 2 �̇� = 𝑓2(𝑤, 𝜏 ) given by eq. (3.10)

Discrete gear-shift jump maps

Up-shift 𝑘 : 1 → 2 𝑤+ = ℎ𝑢(𝑤−) given by eq. (3.27)

Down-shift 𝑘 : 2 → 1 𝑤+ = ℎ𝑑(𝑤
−) given by eq. (3.28)

Output impact jump maps

Impact during HF 𝑘 : 1 → 1 𝑤+ = ℎ1(𝑤
−, 𝑝𝑒𝑥𝑡) given by eq. (3.35)

Impact during HS 𝑘 : 2 → 2 𝑤+ = ℎ2(𝑤
−, 𝑝𝑒𝑥𝑡) given by eq. (3.32)

During high-force mode (labeled 𝑘 = 1), when the brake is engaged, and high-

speed mode (labeled 𝑘 = 2), when the brake is open, the behavior of the system can

be described by discrete sets of continuous differential equations �̇� = 𝑓𝑘(𝑤, 𝜏 ). It is

also possible that during operation the actuator output hits an object leading to an
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impulsive behavior. This behavior is modeled by the appropriate reset map 𝑤+ =

ℎ𝑘(𝑤−), depending on the active mode. Also, at the moment the brake is opened

or closed, the discrete mode and the states also instantaneously change, according to

some mapping (up-shift 𝑤+ = ℎ𝑢(𝑤−) and down-shift 𝑤+ = ℎ𝑑(𝑤
−)).

3.4.5 Continuous differential equations

High-Force Mode 𝑘 = 1

From eq. (3.18), the continuous differential equation mapping during high-force mode

can be written as:⎡⎣ �̇�𝑜

�̇�1

⎤⎦ = 𝑓1(𝑤, 𝜏 ) =

⎡⎣ 1
𝐼0+𝑅2

2𝐼2
(−(𝑏𝑜 + 𝑅2

2𝑏2)𝑤𝑜 + 𝑅2𝜏2 + 𝜏𝑒𝑥𝑡)

0

⎤⎦ (3.25)

High-Speed Mode 𝑘 = 2

From eq. (3.10), the continuous differential equation mapping during high-speed

mode can be written as:⎡⎣ �̇�𝑜

�̇�1

⎤⎦ = 𝑓2(𝑤, 𝜏 ) =
[︀
−𝐻−1𝐷

]︀
𝑤 +

[︀
𝐻−1𝐵

]︀
𝜏 (3.26)

3.4.6 Gear-shift events

Up-Shift 𝑘 : 1 → 2

During high-force mode, the only DoF is described by the variable 𝑤𝑜. Opening

the brake release a constraint in the system and it does not lead to any impulsive

behavior. M1 rotor is simply suddenly free to move starting from rest. The mapping

is thus given by: ⎡⎣ 𝑤+
𝑜

𝑤+
1

⎤⎦ = ℎ𝑢(𝑤−) =

⎡⎣ 𝑤−
𝑜

0

⎤⎦ (3.27)
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Down-shift 𝑘 : 2 → 1

For a down-shift the system goes from 2-DoF to 1-DoF, hence the sudden addition

of a constraint (brake locked) can lead to an impulsive behavior. However, as it will

be discuss in the next section, the controller will always make sure that M1 is at zero

velocity before engaging the brake in order to avoid this impulsive behavior.

In normal operation, M1 velocity will be brought to zero before engaging the brake

and the mapping is thus smooth and given by:⎡⎣ 𝑤+
𝑜

𝑤+
1

⎤⎦ = ℎ𝑑(𝑤
−) =

⎡⎣ 𝑤−
𝑜

0

⎤⎦ if 𝑤−
1 = 0 (3.28)

If the brake would be engaged with non-zero 𝑤1 velocity the output would exhibit

an undesirable impulsive deceleration:

⎡⎣ 𝑤+
𝑜

𝑤+
1

⎤⎦ = ℎ𝑑(𝑤
−) =

⎡⎢⎣ 𝑤−
𝑜 − 𝑤−

1

𝑅1

(︂
𝐼𝑜

𝐼2𝑅
2
2
+1

)︂
0

⎤⎥⎦ (3.29)

The impulsive mapping of eq.(3.29) is derived using eq.(A.22), where the contact

Jacobian is defined by the zero velocity constraint on M1 when the brake closes:

0 = 𝐽𝑐𝑤 =
[︁

0 1
]︁⎡⎣ 𝑤0

𝑤1

⎤⎦ (3.30)

3.4.7 Output Impacts

During a contact, impulsive forces can create a sudden change of velocity. Hence, if a

DSDM actuator is used on a robotic system making contact with objects, its internal

velocities can suddenly change. Since there is no impulsive forces on the motor side,

the effect of a contacts on a DSDM actuator can be reduce to an impulsive torque

applied to the output. The output impulse 𝑝𝑒𝑥𝑡 (integral of the impulsive external

torque during the impact) is thus sufficient to characterized the internal velocity
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jumps:

𝑝𝑒𝑥𝑡 =

∫︁ 𝑡+

𝑡−
𝜏𝑒𝑥𝑡𝑑𝑡 (3.31)

Section A.3.3 discusses how such impulsive forces can be computed with a dynamic

model of a robotic system.

During High-speed Mode

During high-speed mode, applying eq. (A.18), it leads to impulsive map:

⎡⎣ 𝑤+
0

𝑤+
1

⎤⎦ = ℎ2(𝑤
−, 𝑝𝑒𝑥𝑡) =

⎡⎣ 𝑤−
0

𝑤−
1

⎤⎦ + 𝐻−1

⎡⎣ 1

0

⎤⎦ 𝑝𝑒𝑥𝑡 (3.32)

If the reflected inertia of M2 is much greater than that of M1 (𝑅2
2𝐼2 >> 𝑅2

1𝐼1), than

the impulsive reaction can be simplified to⎡⎣ 𝑤+
0

𝑤+
1

⎤⎦ =

⎡⎣ 𝑤−
0

𝑤−
1

⎤⎦ +
𝑝𝑒𝑥𝑡

𝐼𝑜 + 𝐼1𝑅2
1

⎡⎣ 1

𝑅1

⎤⎦ (3.33)

Hence, M2 velocity will be unchanged and the velocity discontinuity of the output is

transmitted directly to M1 during an impact:

∆𝑤𝑜 =
𝑝𝑒𝑥𝑡

𝐼𝑜 + 𝐼1𝑅2
1

∆𝑤1 = 𝑅1∆𝑤𝑜 ∆𝑤2 = 0 (3.34)

During High-force Mode

During high-force mode, assuming the brake is strong enough not to slip during the

impact, the impulsive mapping is given by :⎡⎣ 𝑤+
0

𝑤+
1

⎤⎦ = ℎ1(𝑤
−, 𝑝𝑒𝑥𝑡) =

⎡⎣ 𝑤−
0 + 𝑝𝑒𝑥𝑡

𝐼𝑜+𝑅2
2𝐼2

0

⎤⎦ (3.35)
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3.4.8 Nullspace of the system during high-speed mode

Kinematic

During high-speed mode, from the kinematic input-output view point, the DSDM

actuator has one redundant degree of freedom. In other words, there is an infinite

number of combinations of 𝑤1 and 𝑤2 producing the same output speed 𝑤0, from

eq.(3.1):

𝑤𝑜 =
[︁

1
𝑅1

1
𝑅2

]︁⎡⎣ 𝑤1

𝑤2

⎤⎦ (3.36)

A vector perpendicular to the above coefficient vector forms the null space of the

DSDM actuator system. Any input combination in this direction produces zero out-

put speed: ⎡⎣ 𝑤1

𝑤2

⎤⎦ =

⎡⎣ 1

−𝑅2/𝑅1

⎤⎦
⏟  ⏞  
Nullspace Projection

𝑢 ⇒ 𝑤0 = 0 ∀𝑢 ∈ ℜ (3.37)

Dynamic

Interestingly, a similar expression can be obtained for the dynamics of the output in

response to electromagnetic torque inputs, from the first line of eq.(3.11):

𝐼𝑇 �̇�𝑜 + 𝑏𝑇𝑤𝑜 =
[︁
𝑅1 𝑅1

𝑅1𝐼1
𝑅2𝐼2

]︁⎡⎣ 𝜏1

𝜏2

⎤⎦ (3.38)

Hence, there is a one degree of freedom space of inputs 𝜏1 and 𝜏2 that do not affect

the output:⎡⎣ 𝜏1

𝜏2

⎤⎦ =

⎡⎣ 𝐼1

−𝑅2

𝑅1
𝐼2

⎤⎦
⏟  ⏞  

Nullspace Projection

𝑢 ⇒ 𝐼𝑇 �̇�𝑜 + 𝑏𝑇𝑤𝑜 = 0 ∀𝑢 ∈ ℜ (3.39)
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3.4.9 Equivalence to a two-speed transmission

If M1 and M2 are identical motors and additionally if M1 only is used during high-

speed mode and M2 only is used during high-force mode; then the behavior is equiv-

alent to a single motor actuator with a two-speed transmission.

From an input-output point of view, if the commanded torque 𝜏 to the DSDM

actuator is routed this way:

⎡⎣ 𝜏1

𝜏2

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ 𝜏

0

⎤⎦ if 𝑘 = 1

⎡⎣ 0

𝜏

⎤⎦ if 𝑘 = 2

(3.40)

Then the equation of motions for each operating mode, eq. (3.21) and eq. (3.22), are

simplified to:

[︀
𝐼𝑜 + 𝑅2

1𝐼1
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 = [𝑅1] 𝜏 if 𝑘 = 1 (3.41)[︀

𝐼𝑜 + 𝑅2
2𝐼2

]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 = [𝑅2] 𝜏 if 𝑘 = 2 (3.42)

and they can be reduced the same input-output structure :

[︀
𝐼𝑜 + 𝑅2

𝑘𝐼𝑘
]︀
�̇�𝑜 + [𝑏𝑜]𝑤𝑜 = [𝑅𝑘] 𝜏 𝑘 ∈ 1, 2 (3.43)

The same structure can also be found for the impulsive behavior in case of impacts:

𝑤+
0 = 𝑤−

0 +
𝑝𝑒𝑥𝑡

𝐼𝑜 + 𝑅2
𝑘𝐼𝑘

𝑘 ∈ 1, 2 (3.44)

Hence, if motors are identical (𝐼1 = 𝐼2), then the only parameter changing in those

equations is the reduction ratio 𝑅𝑘. Thus, from a high-level point of view, with the

commanded torque routed as described by eq. (3.40), the behavior of a DSDM is

equivalent to a single motor actuator with two gear-ratios.
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3.5 Control algorithms

3.5.1 Architecture

Fig. 3-21 shows the proposed hierarchical control architecture for a DSDM actuator.

As discussed in section 3.4, it is assumed that high-bandwidth current controllers

are implemented for each motors. Moreover, it is also assumed that motor velocities

𝑤1 and 𝑤2 measurement are available to the DSDM controller. The actuator-level

DSDM controller has the role of coordinating motors M1 and M2 to make the actuator

gear-shift seamlessly between the two operating modes. The idea is to encapsulate

DSDM actuators with simple control inputs: a desired motor torque 𝜏𝑑 and a desired

gear-ratio 𝑘𝑑, like a semi-automatic transmission in a car. The high-level controller,

analogous to the driver using again the car analogy, then only have to specify those two

desired values and is released of the low-level management of the gear-shift process.

With this architecture, a multi-DoF robotic system using multiple DSDM actuators

could have a single centralized high-level controller and independent actuator-level

controller for each actuators.

M1
PWM

Current Sensor

Motor positions
Encoders

Hardware

M2

Current Sensor

PWM

M2 current (𝑖2)

𝜏𝑑

Desired Torque

Brake

Actuator Controller

Robot 
Controller

Desired Mode

𝑘𝑑

Actuator Output 
Position & Speed

𝑤𝑜 𝑞𝑜

Hardware Controller

𝜏1

M1 Torque

𝜏2

M2 Torque

𝑤1

M1 velocity

𝑤2

M2 velocity

Brake State

Kinematic
/Filters

M1 current (𝑖1)

PWM

High-level Controller

𝑘𝑖
𝑠

𝑖𝑒1

𝑘𝑚

Current 
controllers

Figure 3-21: Control architecture of a DSDM controller

This section discusses the design of the actuator-level controller, focusing on gear-

shift transitions. Chapter 4 will discuss extensively the design of centralized high-

level controllers, and one implementation of the whole control system is presented in

chapter 5.
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3.5.2 State-machine

The proposed control scheme for the DSDM actuator-level controller has three discrete

operating modes, described by a state machine illustrated at figure 3-22. There is one

set of control laws for each discrete mode 𝑘 (brake on/off), and also a special case of

control laws (synchronization mode) for making sure M1 speed is zero before closing

the brake, when a down-shift is desired. Fig. 3-23 shows the resulting closed-loop

hybrid behavior.

High-Speed 
Controller

High-Force 
Controller

High-Speed Controller with 
Synchronization

Synchronization Completed

𝑘𝑑 = 1
𝑤1 < 𝜀

Up-shift command  received

𝑘𝑑 = 2

Down-shift command received

𝑘𝑑 = 1
Close Brake

Release 
Brake

Down-shift aborted

𝑘𝑑 = 2

Figure 3-22: State machine of discrete control modes

High-Speed Mode
𝑘 = 2

EoM:  𝒘 = 𝑓2𝑐(𝒘)

High-Force Mode
𝑘 =1

EoM:  𝒘 = 𝑓1𝑐(𝒘)

𝒘+ = ℎ𝑑(𝒘
−)

𝒘+ = ℎ𝑢(𝒘
−)

Brake Open

Output Impact

Output Impact

𝒘+ = ℎ1(𝒘
−, 𝑝𝑒𝑥𝑡)𝒘+ = ℎ2(𝒘

−, 𝑝𝑒𝑥𝑡)

Synchronization
𝑘 = 2

EoM:  𝒘 = 𝑓3𝑐(𝒘)

𝑤1 < 𝜀

𝑘𝑑 = 2

Brake Close

𝑘𝑑 = 2

𝑘𝑑 = 1

𝑘𝑑 = 1

Output Impact

𝒘+ = ℎ2(𝒘
−, 𝑝𝑒𝑥𝑡)

Figure 3-23: Hybrid behavior in closed-loop
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3.5.3 High-force mode controller

During high-force mode, the role of the DSDM controller is simple: keeping M1 locked

with the brake closed and directly transmits the desired torque 𝜏𝑑 to M2, see Fig.

3-24.

3.5.4 High-speed mode controller

During high-speed mode, the role of the DSDM controller is to: keep the brake open,

transmit the desired torque 𝜏𝑑 to M1 and optionally track a secondary objective,

see Fig. 3-25. Exploiting the nullspace of eq. (3.39), a secondary objective can be

achieved without influencing the output behavior. Note that the nullspace projection

vector, see eq.(3.39), depends only on parameters associated with the motors. There-

fore, it is possible to project the secondary controller inputs on the output nullspace

even if the output dynamic parameters that include the load inertia and damping are

unknowns. The nullspace can be used for many possible objectives. In case the first

motor is overloaded, for example, the second motor can reduce the load by projecting

inputs through the null space, producing no effect upon the output, but changing the

proportion of the two input commands. The secondary objective could also be used

for maximizing efficiency, avoiding speed saturation of M1, etc. This chapter focus is

on using the secondary objective to achieve fast and seamless gear-shifts.

3.5.5 Fast and seamless transitions (gearshifts)

This section addresses transition control between the two discrete operating modes.

Up-shift: 𝑘 : 1 → 2

In this case, the transition is simple because the system goes from 1 DoF to 2 DoF. As

described by eq. (3.27) opening the brake at anytime does not lead to any undesirable

impulsive behavior. As described by the state machine, as soon as an up-shift is

commanded, the locking brake can be released, M1 is then instantaneously freed and

the controller can immediately switch to the high-speed control mode.
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Figure 3-24: High-force mode: Controller
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Figure 3-25: High-speed mode: Generic controller
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Figure 3-26: High-speed mode: Synchronization controller
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Figure 3-27: High-speed mode: Impact preparation controller
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Down-shift: 𝑘 : 2 → 1

In this case, the transition is harder because the system goes from 2 DoF to 1 DoF,

and some synchronization work is needed. As described by eq. (3.29), closing the

brake will lead to an undesirable impulsive behavior if M1 velocity is not zero. M1

speed 𝑤1 must thus be brought to zero so that the locking brake can be engaged

smoothly without any impact. Hence, as illustrated at Fig. 3-22, when a down-shift

is commanded, and intermediary synchronization control mode is activated, and the

brake is only closed after M1 as reach zero velocity (a small value when implemented

in practice).

3.5.6 Synchronization controller

First, a solution from a kinematic point-of-view is considered, then more flexible

dynamic approach is proposed. Assuming the two motor velocities 𝑤1 and 𝑤2 can be

treated as control inputs, then using the nullspace projection vector from eq.(3.37),

the kinematic control law can be written as⎡⎣ 𝑤1

𝑤2

⎤⎦ =

⎡⎣ 1

−𝑅2/𝑅1

⎤⎦
⏟  ⏞  
Nullspace Projection

𝑢1 +

⎡⎣ 0

𝑅2

⎤⎦𝑢0 (3.45)

leading to

𝑤𝑜 = 𝑢0 with 𝑤1 = 𝑢1 (3.46)

Therefore during transitions, using 𝑢1 velocity 𝑤1 can be driven to zero, while fully

controlling the output velocity using 𝑢0. The kinematic control law is valid only when

high fidelity velocity controls are available and is only compatible with a situation

where the high-level controller would specify a speed target instead of a torque target.

Alternatively a dynamic approach is more flexible. As illustrated at Fig. 3-26,

while running the general high-speed controller, a braking law for 𝑤1 can be used in
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parallel as the secondary objective projected on the output nullspace:⎡⎣ 𝜏1

𝜏2

⎤⎦ =

⎡⎣ 𝐼1

−𝑅2

𝑅1
𝐼2

⎤⎦
⏟  ⏞  

Nullspace Projection

−𝐶𝑤1⏟  ⏞  
Braking Law

+

⎡⎣ 1

0

⎤⎦ 𝜏𝑑 (3.47)

leading to independent output dynamics controlled with 𝜏𝑑:

𝐼𝑇 �̇�𝑜 + 𝑏𝑇𝑤𝑜 =𝑅1𝜏𝑑 (3.48)

and a 𝑤1 closed-loop dynamic converging exponentially to zero if the synchronization

gain 𝐶 is large:

�̇�1 = −𝐶𝑤1 +

[︂
𝑅2

1

𝐼𝑇
+

𝑅2
1𝐼𝑜

𝑅2
2𝐼2𝐼𝑇

]︂
𝜏𝑑 −

[︂
𝑅1𝑏𝑜
𝐼𝑇

]︂
𝑤𝑜⏟  ⏞  

Undesirable coupling from main loop

(3.49)

Hence, the output is not influenced by the braking law due to orthogonality, and is

only controlled by the desired torque 𝜏𝑑. On the other hand, 𝑤1 is directly influenced

by the braking law but also by the output speed and the desired output torque 𝜏𝑑.

Mathematically, it would be possible to also fully uncouple �̇�1 equation, but the con-

trol law would not be practical in the scenario of 𝑅1 << 𝑅2 when considering torque

and speed saturation. The other advantage of this approach over fully uncoupling the

equations, is that the nullspace projection only requires motor-side parameters and

is valid even when load-side dynamic is unknown.

Increasing the gain 𝐶 will lead to faster braking of 𝑤1, however motor torque will

saturate if the gain is too large. A large synchronization gain 𝐶 can still be used for

faster braking at a cost of deviation from the desired torque 𝜏𝑑. There is thus a trade-

off in practice, passed the torque saturation point, between fast braking of 𝑤1 for fast

transition and fidelity to desired motor torque. Moreover, when considering the finite

range of motor torques and speeds, there are situations where the synchronization

controller won’t converge. For instance, if the main loop ask for acceleration of the

output with a large 𝜏𝑑 at high-speed while also asking for a down-shift, the situation
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is not feasible. In those conflicting infeasible situations there is also a trade-off with

prioritizing the main-loop with a small 𝐶 but failing to synchronize M1, or prioritizing

the down-shift command with a large 𝐶 but failing to track the main loop command.

To resolve this, the approach that was implemented is using a complex PI compensator

( 𝐶(𝑠) = 𝑘𝑝+ 𝑘𝑖
𝑠
). Hence that way, at first the gain 𝐶 is small and the synchronization

controller doesn’t affect the main loop. If the main loop behavior is conflicting with

the down-shift, and synchronization doesn’t converge at first, the gain 𝐶 will slowly

increase and eventually shift the priority to down-shifting. Eventually, when the 𝐶

becomes very large and both motor torques would eventually saturate:

𝐶 → ∞ ⇒

⎡⎣ 𝜏1

𝜏2

⎤⎦ →

⎡⎣ −𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥

⎤⎦ (3.50)

which lead to the behavior:

𝐼𝑇 �̇�1 = − (𝑅1𝑏𝑜)𝑤𝑜 −
(︂
𝑅2

1 +
𝑅2

1𝐼𝑜
𝑅2

2𝐼2
+

𝑅1𝐼𝑜
𝑅2𝐼2

)︂
𝜏𝑚𝑎𝑥 (3.51)

If 𝑤1 is a positive value, then 𝑤𝑜 is usually positive too and at worst a small negative

value (due to kinematic constraints and motor speed saturations). Hence, the damp-

ing term is either negative, and thus helping the process, or negligibly small. Hence

𝑤1 is guaranteed to continuously decrease and to eventually cross zero where the brake

can be engaged. This is assuming no external forces overpower the the second term

in eq.(3.51). Note that if the high-level controller is planning only feasible gear-shifts,

than no down-shift in impossible situations should be commanded. Hence, in normal

operation the down-shift controller should never reach this drastic synchronization

mode. This mode is however useful when the DSDM controller receive commands

directly from a human operator.

3.5.7 Preparation in the nullspace for faster down-shifts

Here a control scheme is proposed to prepare the actuator for a possible incoming

down-shift command, using the secondary objective during regular high-speed oper-
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ation, in a way that will make the synchronization process faster. The idea is that

there is no need to wait to receive a down-shift signal to adjust velocities.

The condition for engaging the brake is :

𝑤1 = 0 ⇔ 𝑤2 = 𝑅2𝑤𝑜 (3.52)

Hence the ideal situation, to be prepared for a down-shift, is having M2 alone provid-

ing the output velocity. This is however only possible for low output velocity, due to

motor velocity constraints. When possible to use this approach, the synchronization

is done in advance and the down-shift operation is faster, since only limited by the

time the brake takes to close. More generally, matching eq.(3.52) as close as possible

will improve gear-shift time since synchronization error will be smaller to start with.

This idea can be also extended to a more complex impulsive behavior situations.

As illustrated by Fig. 1-1, down-shifting can be particularly useful in contact situa-

tions happening in the context of manipulation or locomotion, where large forces must

be bear rapidly after contact. For instance a robotic leg approaching the ground with

high-speed mode, then making contact with the ground and transitioning to high-

force mode to bear the weight of the robot. For this situation, where motor velocity

will suddenly change right before the desired down-shift, the preparation condition

takes this form:

𝑤+
1 = 𝑤−

1 + ∆𝑤1 = 0 ⇔ 𝑤+
2 = 𝑅2𝑤

+
𝑜 = 𝑤−

2 (3.53)

Hence, if the impulsive behavior is expected and can be estimated, then the prepara-

tion scheme can also be used to improve gear-shift time during a contact. Two control

schemes implementing this preparation are presented, first a kinematic approach and

then a more flexible dynamic approach. Equation are derived for the case where an

impact is expected, but the simpler control laws for non-impulsive situation can be

extracted simply by setting the expected impulse to zero.

Rearranging the results of section 3.4.7 to express the two variables of interest

(approaching speed 𝑤−
0 and M1 velocity post-impact 𝑤+

1 ), as a function of controllable

71



inputs (from a kinematic point of view), lead to:

⎡⎣ 𝑤−
0

𝑤+
1

⎤⎦ =

[︃
1
𝑅1

1
𝑅2

1 0

]︃⎡⎣ 𝑤−
1

𝑤−
2

⎤⎦ +

⎡⎣ 0

𝑅1
𝑝𝑒𝑥𝑡

𝐼𝑜+𝐼1𝑅2
1

⎤⎦ (3.54)

Hence it is possible to set both motor velocities so that the approaching output speed

𝑤−
𝑜 and post-impact M1 velocity 𝑤+

1 can be set arbitrarily and independently using

the nullspace, by determining velocity set-points as:⎡⎣ 𝑤−
1

𝑤−
2

⎤⎦ =

[︃
𝑅1

0

]︃
𝑢0 +

⎡⎣ 1

−𝑅2

𝑅1

⎤⎦
⏟  ⏞  

Nullspace projection

(︂
𝑢1 −𝑅1

𝑝𝑒𝑥𝑡
𝐼𝑜 + 𝐼1𝑅2

1

)︂
(3.55)

leading to

𝑤−
𝑜 = 𝑢0 and 𝑤+

1 = 𝑢1 (3.56)

Therefore, if an impact is expected and the upcoming impulsive impact reaction

𝑝𝑒𝑥𝑡 =
∫︀
𝜏𝑒𝑥𝑡𝑑𝑡 can be computed, using this control law lead to independent control

of the approaching speed of the actuator output 𝑤−
𝑜 , which would be used for the

primary objective (for instance making contact with the object at the right place and

time), and resulting velocity of M1 post-impact 𝑤+
1 , which would be set to zero to

allows for instantaneous down-shift.

Alternatively, as for the braking law used for synchronization during the down-

shift process, this problem can be approached from a dynamic point of view. A desired

velocity for M1 is defined as a function of the expected impulsive contact reaction:

𝑤1,𝑑 = −𝑅1
𝑝𝑒𝑥𝑡

𝐼𝑜 + 𝐼1𝑅2
1

(3.57)

Then, while using the regular high-speed controller to control the output, the sec-

ondary objective loop can be used to track M1 velocity set-point 𝑤1,𝑑 in the nullspace.

This is analogous to the synchronization controller of eq. (3.47) but with a non-zero
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set-point for M1:⎡⎣ 𝜏1

𝜏2

⎤⎦ =

⎡⎣ 𝐼1

−𝑅2

𝑅1
𝐼2

⎤⎦
⏟  ⏞  

Nullspace Projection

𝐶(𝑤1,𝑑 − 𝑤1)⏟  ⏞  
Speed controller

+

⎡⎣ 1

0

⎤⎦ 𝜏𝑑⏟ ⏞ 
Main Loop

(3.58)

As discussed before, this will lead to independent output dynamics controlled with 𝜏𝑑

which would be used by the main output control loop:

𝐼𝑇 �̇�𝑜 + 𝑏𝑇𝑤𝑜 =𝑅1𝜏𝑑 (3.59)

and a 𝑤1 closed-loop dynamic converging exponentially to 𝑤1,𝑑 if the synchronization

gain 𝐶 is large:

�̇�1 = 𝐶 (𝑤1,𝑑 − 𝑤1) +

[︂
𝑅2

1

𝐼𝑇
+

𝑅2
1𝐼𝑜

𝑅2
2𝐼2𝐼𝑇

]︂
𝜏𝑑 −

[︂
𝑅1𝑏𝑜
𝐼𝑇

]︂
𝑤𝑜⏟  ⏞  

Undesirable coupling from main loop

(3.60)

If the velocity controller is able to track the velocity set-point and the collision is

perfectly predicted, then immediately after the impact, M1 velocity will be zero:

𝑤+
1 = 𝑤−

1 + ∆𝑤1 ≈ 𝑤1,𝑑 + 𝑅1
𝑝𝑒𝑥𝑡

𝐼𝑜 + 𝐼1𝑅2
1

= 0 (3.61)

Hence, it would be possible to engaged the brake and switch to high-force mode almost

instantaneously. In practice, because of speed saturation it won’t always be possible

to perfectly track the desired speed 𝑤1,𝑑 in the nullspace, or to perfectly predict

the contact impulse 𝑝𝑒𝑥𝑡. However, by running this control scheme and bringing 𝑤+
1

as close as possible to zero, gear-shift will nonetheless be achieved faster because

synchronization error will be smaller at the start of the down-shift process. The

preparation controller is illustrated at Fig. 3-27. Note that the expected impulse

would need to be computed by an high-level controller aware of the general system

situation. Section A.3 present techniques to compute impulsive contact forces with a

model for multi-DoF robots, that could be used by the high-level controller.
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3.6 Experimental results

This section presents experimental results with the wrist DSDM prototype of the

DSDM-Arm. Information regarding the mechanical design and controller implemen-

tation is presented in Chapter 5. In experiments where the output is controlled in

closed-loop for position or velocity tracking, the high-level control loop is a simple PID

controller (recall Fig. 3-21). Set-points are commanded from a joystick controller.

3.6.1 DSDM dynamic behavior
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Figure 3-28: DSDM actuator with torque and mode commands set from a joystick

Fig. 3-28 gives an overview of how a DSDM actuator works. Before 𝑡 = 2.5, the

brake is engaged and only M2 is used to drive the output. When is brake is engaged,

the DSDM is in high-force mode and the effective gear-ratio is 474. At 𝑡 = 2.5, the

brake is released and M1 start contributing to the motion. Releasing the brake will be
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referred to as an up-shift. Between 𝑡 = 2.5 and 𝑡 = 6.5, the brake is open, both motor

contribute to the output speed; the DSDM is in high-speed mode and the effective

gear-ratio is 23. At between 𝑡 = 6.5, a down-shift is manually commanded. Between

𝑡 = 6.5 and 𝑡 = 7, the synchronization controller then apply torques to brake M1 to

zero speed and the brake is engaged at 𝑡 = 7 when M1 speed is detected to be null.

Note that here the down-shift was commanded from an infeasible high-velocity by

the user driving the system, and the output speed had to first be slowed down to a

speed reachable by high-force mode. This process of braking M1 and then engaging

the brake will be referred as a down-shift.

Fig. 3-29 shows the DSDM tracking position set-points. This experiment illus-

trates that the high-force mode is slow and with a highly damped behavior, while the

high-speed mode is fast and with an under-damped second order behavior, because

of smaller dissipative forces in the motor.
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Figure 3-29: DSDM actuator tracking position commanded from a joystick
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Fig. 3-30 shows the DSDM tracking speed set-points. Note that the noisy behavior

during high-speed mode is only due to an implementation limitation. At low speed

there is a quantization problem: there is a too small amounts of encoder ticks per

control loop interval. This limited the controller gains for closing the loop in speed

when using high-speed mode.
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Figure 3-30: DSDM actuator tracking output velocity commanded from a joystick

3.6.2 Nullspace

Fig. 3-31 illustrates the internal DoF of DSDM actuators. Here the DSDM tracks a

constant output speed while motor speeds are varied by projecting additional torques

in the nullspace. This experiment demonstrates that the internal DoF can be con-

trolled independently of the output using the proposed nullspace projection scheme.
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Figure 3-31: Experimental demonstration of independence of the output with respect
to the secondary controller input, with the DSDM actuator tracking constant output
velocity while sending manual commands in the nullspace

3.6.3 Seamless transitions

Constant Speed

Experiments here show gear-shifts execution while controlling the output to track

a fixed speed. With the DSDM-Arm wrist tracking a 1 rad/s velocity, the average

synchronization time for a down-shift, which is about 250 msec without preparation,

is improved to 30 msec with the preparation scheme. Faster synchronization times of

less than 20 msec were also achieved with another experimental set-up [14]. Hence

while those experiments demonstrated that very fast gear-shifts in the range of 20

msec are possible, even faster synchronizations could be possible, since the bottleneck

here is implementation factors, not fundamental aspects.

Fig. 3-33 illustrates the DSDM actuator maintaining a constant output speed

while shifting back-and-forth between high-speed and high-force mode. Fig. 3-34
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Figure 3-32: Smoother output velocity control during gear-shifts, with a DSDM con-
troller implemented at high sampling rate on a FPGA

illustrates how the idea of preparation, by adjusting M2 velocity in the nullspace,

improves the gear-shifting time. Note that the undesirable disturbances in the output

velocity at Fig. 3-33 and Fig. 3-34, actually happens during up-shifts (no impacts,

the brake is opening) and are caused by the transient response of the high-speed PID

controller. This undesirable transient response was limited by implementation issues

of the experimental set-up. Fig. 3-32 shows the same experiments when the DSDM

controller is implemented on a FPGA at a higher sampling rate, which shows a much

smoother output speed throughout the gear-shifting processes.
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Figure 3-33: DSDM actuator tracking constant output velocity while shifting back
and forth between high-speed mode and high-force mode (no preparation)
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Figure 3-34: DSDM actuator tracking constant output velocity while shifting back
and forth between high-speed mode and high-force mode (with preparation)
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Contact with a Compliant Load

An experiment of the actuator making contact with a spring-like compliant load and

making a smooth down-shift as soon as contact is detected is illustrated at Fig. 3-35.

Results show that the controller is successful at down-shifting without any kick-back

from the spring-like load (output velocity is always positive). In the experiment, the

actuator output arrives with high-velocity and compresses the compliant load using

its momentum, then the large gear-ratio is engaged seamlessly and larger forces are

applied to compress the load further.

Impact with a Stiff Load

Fig. 3-36 illustrates an experiment where the DSDM is making a quick down-shift

after impacting a stiff heavy object. Contact detection is done based on encoder

measurements only, which is possible during high-speed mode because of the small

reduction ratio leading to good actuator-transparency properties. The contact de-

tection then trigger automatically the down-shift commands. Results show that the

DSDM actuator is able to engage high-force mode within 25 msec of the impact, and

seamlessly continue its motion pushing the heavy load with large torques.

Video of those down-shifts experiments, for the compliant load and the stiff load,

are available at the following link: https://youtu.be/mUVrkDZr0kU.
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Figure 3-35: Fast downshift during a contact with a compliant load
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Figure 3-36: Fast downshift during a contact with a heavy stiff load
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3.7 Summary

In this Chapter, an actuation technology capable of fast switching between two operat-

ing modes, equivalent to a small and a large reduction ratio, is presented. Advantages

in term of weight, efficiency and reliability are discussed. Equations of motions for the

hybrid behavior of the system are derived. A control scheme leveraging the internal

DoF of the system to allow for fast and seamless transitions is proposed and exper-

imentally validated. Prototypes DSDM actuators are found to meet performances

requirements in real-world conditions.

3.8 Potential directions of further development

Here are a few possible axis of further development:

∙ Developing a product-like actuator system:

– Embedded mechanical design using frameless motors;

– Dedicated power-electronics and low-level controllers.

∙ Architecture ideas:

– Multi-domain transducers, ex.: M1 → pneumatic and M2 → hydraulic;

– Clutch system to reconfigure motors so both of them can always actively

transmit torques (M1 is deadmass during high-force mode).

∙ Exploiting more thoroughly the nullspace:

– Secondary controller maximizing efficiency based on an electrical model;

– Formulating a multi-objective optimal control problem including speed

limits, torque limits, efficiency and other criteria.

∙ Exploring the new possibilities for robotic tasks:

– Using DSDM for legged locomotion;

– Using DSDM for manipulation of large heavy objects.
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Chapter 4

Optimal Dynamic Selection of

Gear-ratios

"He will win who knows when to fight and when not to fight."

– Sun Tzu

The transmission gear-ratio that couples an actuator to a load has a significant

effect on the behavior of the actuator-load system. With a large reduction ratio, the

load-side dynamics has no significant effect because it is attenuated by the factor

of the square of the gear-ratio. The net load acting on the actuator is mostly its

own intrinsic load, including rotor inertia and friction. In contrast, with a small

reduction ratio or a direct drive system [2], the behavior is usually dominated by

the load-side dynamics which consist of highly non-linear inertial and gravitational

forces for robotics manipulators. Sometime it can be advantageous to exploit the

load-side dynamics: gravity may push the robot in a desired direction; the robot may

coast with small dissipative torques induced at the actuator side; or the robot joints

become backdrivable to comply to an external force. In other situations, however,

it may be advantageous to isolate the actuators from the load-side dynamics and

external disturbances: using a large gear-ratio to bear a large load or moving it

slowly against gravity, for example.
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This chapter aims to explore the potentials of actuator transmissions that can

be switched dynamically, such as the technology presented in chapter 3, to either

attenuate or leverage the natural dynamics of the system. Robots using lightweight

VGA have the potential for achieving fast motions, high load-bearing, compliance

and high-impedance, as required by diverse load conditions encountered by robotic

systems. However, to truly exploit those salient features of VGA, control laws to

select dynamically gear-ratios based on the current situation and task of the robot

must be developed. Here in this chapter, feedback laws for robot control including

gear-ratios selection are thus explored. The variable gear-ratios are used not merely

for increasing maximum torque and speed, but also to significantly alter the dynamic

properties, including load sensitivity, robustness, and backdrivability, advantageously

given the situation.

In section 4.0.1, the principle of load leveraging and attenuation is delineated

for a simple 1-DoF manipulator. Section 4.0.2 discuss related works and technical

challenges and section 4.0.3 details the main original contributions. Section 4.2 in-

troduces a formal mathematical representation and propose a dynamic model for

robotic systems using VGA. Two different control approaches are explored, a model-

based control laws synthesis in section 4.4, and a computational approach in section

4.6. The advantage of actively changing the gear-ratios are then illustrated with sim-

ulations in section 4.7, and with experiments using a robotic arm using custom-built

variable gear-ratio actuators in section 4.8.

4.0.1 Illustration of the principle for a 1-DoF manipulator

Fig. 4-1 illustrates a simplified 1-DoF robotic manipulator where an electric motor

is coupled to a pendulum through a gearbox with a gear-ratio 𝑅. As illustrated by

phase portraits in Fig. 4-2, if 𝑅 is small then the dynamic behavior of the system

is dominated by the non-linear pendulum dynamics (Fig. 4-2a), but if 𝑅 is very

large, the behavior is dominated by the intrinsic inertia of the actuator, leading to

the double-integrator behavior (Fig. 4-2b).

The vector fields of Fig. 4-2 illustrates the natural evolution of the system with
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actuator dynamic 

Highly geared 
𝑅 → 𝐿𝑎𝑟𝑔𝑒
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𝑅 → 𝑆𝑚𝑎𝑙𝑙

𝐼
𝑅

𝜏
𝑞

Load dynamicsActuator dynamics

g
Variable gear-ratio

Figure 4-1: Effect of the gear ratio on the dynamics

𝑞

 𝑞 Switching point

A

B
C

(a) Reduction ratio 𝑅=1

𝑞

 𝑞 Switching point

A

BC

(b) Reduction ratio 𝑅=10

Figure 4-2: Phase portraits illustrating the dynamical behavior

no actuator torques. Suppose that we want to move from state A to state B on

the phase plane. Starting off state A with the gear-ratio of 1:1 brings the system

along the curved trajectory shown in Fig. 4-2a. Switching the gear-ratio to 1:10 at

state C will change the trajectory to the one in Fig. 4-2b, and bring the system to

the destination state B. Note that no actuator torque is necessary for following this

trajectory. A salient feature of actively changing the gear-ratio is that, the natural

vector field behavior can be altered, in order to move in the desired direction with

small torques.

4.0.2 Challenges and related works

This chapter investigates closed-loop control scheme for robots equipped with variable

gear-ratios actuators. While variable transmissions have been studied extensively for
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automobile power-trains, they have not yet been fully investigated in robotics, despite

significant potential gains. Variable gear-ratio transmissions for electric motors have

been proposed for legged locomotion [21], grasping robotic hands [55] , propulsion

system [36] [40] and actuation systems [14] [20] [59]. Some of those works address the

issue of how to change the gear-ratio, but there is no general approach to the high-

level control of automatically selecting the right gear-ratios for non-linear, coupled

multi-DoF robotic systems.

From the control perspective, automating the gear-ratios selection in a robotic

context is a new and challenging problem. Gear-shifting is a very non-linear process

(gear-ratios variables multiply other inputs and states in the equations of motion) and

moreover the plant becomes a hybrid dynamical system if the usable gear-ratios are

a set of discrete values. Hence most control engineering tools are not suited to tackle

this problem. In simple scenarios, the gear-ratio selection can be based on simple prin-

ciples. For instance, for a system running at a steady speed and load, the best gear-

ratio can be selected based on efficiency maps. Alternatively, for rapid acceleration,

the gear-ratios may be selected based on the actuator-load inertia matching [13] [9].

A robot, however, experiences diverse types of forces acting simultaneously. These

include gravity, friction, and inertial forces as well as Coriolis and centrifugal forces.

Hence, it is challenging to find a general control policy for selecting gear-ratios for

the multitude of dynamically interacting actuators in the robotics context.

Trajectory planning In robotic, the generation of good reference trajectories is

usually formulated as an optimization problem. Most optimal control techniques are

based on either variational approaches or some form of gradient descent to find a

trajectory that minimizes a cost function [4]. Hence those techniques cannot be used

directly to optimize discrete variables. An interesting approach to get around this

problem is to use the switching instants as optimization parameters instead [63] [39].

However, to use this approach a sequence of operating modes must be predefined first.

Mixed-integer programming can be used to generate optimal open-loop trajectories

of dynamical system with both continuous and discrete input variables [52]. For
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instance, mixed-integer programming has been used to generate optimal open-loop

trajectories for a car with both a continuous torque and a discrete gear-selection

input [12]. Computation time was however in the order of hours for a 6 sec trajectory.

Sample-based planning scheme can also be used to find efficient trajectory [34].

These algorithms work generally better then optimization approaches when tackling

highly-constrained system and when the goal is only to find a feasible trajectory

and not necessary the optimal solution. The other advantage is that discrete control

actions, like the selection of a gear-ratio in a discrete set, can be considered without

complications since these algorithm works with discretized models.

Open-loop trajectories can be unstable and if the system deviates from the original

plan, due to uncertainty, the optimized gear-ratios sequence might be completely un-

adapted after some time. For a robotic system to really leverage the advantage offered

by multiple gear-ratios, it would be advantageous if gear-ratios are selected actively

based on the actual conditions of the system. This chapter focuses on finding closed-

loop policies for the gear-ratios selection.

Feedback control One possible approach for closing the loop would be simply to re-

plan trajectory continuously online. However, the rate at which this would be possible

for hybrid robotic systems would not be sufficient. Here we aim at having control

policies that can react to a situation in a matter of milliseconds, for instance down-

shifting as a robotic leg touch the ground. Most of the analytical results regarding

feedback control of hybrid systems are for specific cases, for instance the optimal

feedback laws for linear hybrid systems with linear constraints and a quadratic cost

function have been shown to have a particular form [7]. One computational technique

that generate feedback laws and that can be used for non-linear systems with any kind

of constraints is dynamic programming [30]. Two disadvantages of the techniques are

however that it is only computationally tractable for low-dimensional systems (so

called curse of dimensionality) and also that the resulting feedback laws are in the

form of a look-up table. This approach is investigated in section 4.6, which is an

extension of work published by the author in [15].
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4.0.3 Original contributions

The main original contribution of this chapter, is an alternative model-based approach

(section 4.4) with the advantage of scaling to high-dimensional robotics system, and

easily applicable to trajectory tracking problems. The main idea was introduced

by the author in [16] and this thesis chapter presents improved algorithms and new

results. The main ideas to make tractable closed-loop control of this type of multi-

DoF non-linear hybrid systems are 1) Using a simple modeling approach for variable

transmissions that does not augment the number of state variables. 2) Exploiting

the structure in the equations of motion when expressed in the inverse-dynamic form.

3) Using an outer-loop first specifying an instantaneously desired acceleration �̈�𝑟,

similarly to feedback linearization, which fix locally the trajectory and makes possible

computation of optimal instantaneous gear-ratios.

To the best knowledge of the author, this is the first exploration of closed-loop

selection of gear-ratios for multi-DoF robotic systems. Many conceptual insight re-

garding gear-ratios selection when fighting different type of forces and unknown dis-

turbances are explored. The treatment also encompass the very wide class of 𝑛-DoF

mechanical system with EoM that can take the form of so-called manipulator equa-

tions (eq. (A.1), and is valid for many type of variable transmissions. The main

restriction is that each joint of the system must be actuated, although it could also

be extended to under-actuated systems when using a partial feedback linearization

approach.
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4.1 Control architecture

This chapter proposed control schemes to dynamically select the optimal gear-ratios

online. The focus is on feedback policies that can react quickly to the states of the

robot, and engage the appropriate gear-ratios with minimal delays (in the order of 20

msec). Two approaches are investigated and illustrated at Fig. 4-3.

Global feedback policy
𝝉, 𝑅 = 𝑓(  𝒒, 𝒒)

Local actuator controller

 𝑞1, 𝑞1 𝜏1, 𝑅11

Local actuator controller

 𝑞𝑛, 𝑞𝑛 𝜏𝑛, 𝑅𝑛𝑛⋯

Goal 𝒒𝑡𝑎𝑟𝑔𝑒𝑡

(a) Dynamic programming approach

Trajectory Generation

Trajectory following controller
𝝉, 𝑅 = 𝑓(  𝒒, 𝒒, t )

Local actuator controller

 𝒒𝑑(: ),  𝒒𝑑(: ), 𝒒𝑑(: )

 𝑞1, 𝑞1 𝜏1, 𝑅11

Local actuator controller

 𝑞𝑛, 𝑞𝑛 𝜏𝑛, 𝑅𝑛𝑛⋯

Goal 𝒒𝑡𝑎𝑟𝑔𝑒𝑡

(b) Model-based approach

Figure 4-3: Proposed control architectures

The architecture of both control approaches is designed so the control signal is a

torque and a gear-ratio for each actuator. Note that in the case of discrete gear-ratios

options, instead of transmitting the actual gear-ratios 𝑅, the control signal can be a

label 𝑘 indexing the discrete 𝑅𝑘 options. Hence, it is assumed that low-level VGA

controllers handle tracking the motor torque setpoint and the gear-shifting process.

This is analogous to automating a car equipped with a semi-automatic transmission,

and designing control policies replacing the driver for which the two control inputs

are a throttle level a and shift-up/shift-down signal. The low-level VGA controllers

would be specific to the type of actuator used in the system. For the particular case

where the VGA are DSDM actuators, the low-level controllers would be the control

laws described in Chapter 3. The architecture difference is that, for the dynamic

programming approach given a goal, a global feedback policy is synthesized directly.

However, for the model-based approach the high-level controller is separated into two

levels. A feedback policy for trajectory tracking and an open-loop motion planning

algorithm that generate a reference trajectory to reach the goal.
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Trajectory generation Algorithm synthesizing a dynamic trajectory that meets

performance requirements for reaching the target robot configuration starting at the

actual robot configuration:

�̈�𝑑(:), �̇�𝑑(:), 𝑞𝑑(:) = 𝑓𝑝𝑙𝑎𝑛𝑛𝑒𝑟(𝑞𝑡𝑎𝑟𝑔𝑒𝑡, 𝑞) (4.1)

Computation time is in the order of 1-10 sec depending the robot complexity. Hence,

this step is done offline in advance, or alternatively in closed-loop by re-planning

continuously but at a very low rate.

Low-level actuator controller Independent actuator controllers executing low-

level hardware commands in response to a torque and a gear-ratio set-points. For the

particular case of a DSDM actuator the controller computes:

𝜏1, 𝜏2, 𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑓𝐷𝑆𝐷𝑀(𝜏𝑖, 𝑅𝑖𝑖) (4.2)

Trajectory following controller A function that compute torques and gear-ratios

as a function of the robot actual states and the time:

𝜏 , 𝑅 = 𝑓𝑐𝑡𝑙(�̇�, 𝑞, 𝑡) (4.3)

The function is synthesized based on a dynamic model of the robot and a desired

trajectory. This function is to be executed in closed-loop at a high sampling-rate in

the order of 1 kHz.

Global feedback policy A function that compute torques and gear-ratios as a

function of the robot actual states. This function is to be executed online in closed-

loop at a high sampling-rate in the order of 1 kHz. However synthesis of the policy

require a learning phase that require multiple hours of computation.

𝜏 , 𝑅 = 𝑓𝑐𝑡𝑙(�̇�, 𝑞) (4.4)
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4.2 Modeling variable gear-ratio actuators

"With four parameters I can fit an elephant, and with five

I can make him wiggle his trunk." – John von Neumann

In this section, a simple approach is proposed for modeling robots using variable

gear-ratio actuators. Variable transmissions are modeled as variable transformer el-

ements, using the bond-graph terminology. This representation allows for a clear

physical understanding of the effect of gear-ratios even for non-linear 𝑛-DoF systems.

Furthermore, this modeling approach facilitates the implementation of a real-time

optimization in the proposed controller. Limitations are discussed at section 4.2.3.

4.2.1 1-DoF system

First, a generic 1-DoF robot with a variable transmission is considered for simplicity.

If the actuator’s intrinsic resistive forces 𝜏𝐼 (rotor inertia and friction) are approxi-

mated to a linear quantity, the equations of motion (EoM) can be written as:

𝐻𝑞 + 𝐷𝑞 + 𝑔(𝑞) = 𝑅 [𝜏 − 𝐼�̇� −𝐵𝑤] (4.5)

[𝐻𝑞 + 𝐷𝑞 + 𝑔(𝑞)]⏟  ⏞  
𝜏𝐸(𝑞,𝑞,𝑞)

= 𝑅𝜏 −𝑅2 [𝐼𝑞 + 𝐵𝑞]⏟  ⏞  
𝜏𝐼(𝑞,𝑞)

(4.6)

𝜏 =
𝜏𝐸(𝑞, 𝑞, 𝑞)

𝑅
+ 𝑅 𝜏𝐼(𝑞, 𝑞) (4.7)

where the effect of the gear ratio can be seen clearly; increasing 𝑅 attenuates the

external dynamic terms 𝜏𝐸 but amplify the intrinsic actuator losses 𝜏𝐼 for a given

trajectory. Variable gear-ratios can be modeled as variable transformer elements,

using the bond-graph terminology. Fig. 4-4 shows a bond-graph representation.

4.2.2 Generalization to n-DoF manipulators

To generalize the above model to a 𝑛-DoF system with 𝑛 actuators, the load-side

dynamics is considered as a generic form of manipulator equations where each port

91



1𝑆𝑒: 𝜏

𝐼

𝐵

𝜔
𝑡𝑓: 𝑅 1

𝐻

𝐷

 𝑞

𝜏𝐼 𝜏𝐸
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𝑔

Figure 4-4: Model of a 1-DoF robot with a variable gear-ratio actuator

is connected to an independent actuator through a network of transformers. The

network of transformers can be view as a type of coordinate transformation relating

effort (force or torque) and flow (velocity or angular velocity) on the load side (𝑓 ,�̇�)

to those on the actuator output side (𝜏 ′,𝑤):

𝑓 = 𝑅𝑇𝜏 ′ 𝑅�̇� = 𝑤 (4.8)

where 𝑅 is a 𝑛 by 𝑛 matrix consisting of all the transformer ratios.

𝒇,  𝒒 : Robot coordinates𝝉′, 𝒘

𝑡𝑓: 𝑅111𝜏1

𝐼11

𝐵11

𝜔1
1

𝜏′1

1𝜏𝑛

𝐼𝑛𝑛

𝐵𝑛𝑛

𝜔𝑛

0
𝜏′𝑛

Rigid body 
dynamics

𝐻  𝒒 + 𝐶  𝒒 +
𝐷  𝒒 + 𝒈 = 𝒇

𝑓1

 𝑞1

1
𝑓𝑗

 𝑞𝑗

1
𝑓𝑛

 𝑞𝑛
𝑡𝑓: 𝑅𝑛𝑛

⋮
⋮

⋮
⋮

0

: Actuator coordinates

Intrinsic actuator dynamics Extrinsic load dynamics

Figure 4-5: Model of a 𝑛-Dof robot with variable actuator-joint coupling

The EoM are then given by:

𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔⏟  ⏞  
𝜏𝐸(�̈�,�̇�,𝑞)

= 𝑅𝑇 [𝜏 − 𝐼�̇� −𝐵𝑤]⏟  ⏞  
𝜏 ′

(4.9)

A very wide range of mechanical systems and robots can be represented with this

form. Note that, in the case of locomotion or manipulation where the robot interacts

with the environment by physically contacting it, the dynamic model 𝜏𝐸 must reflect
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the contact conditions, either by computing contact forces using constraint equations

(see section A.3.2) or by formulating 𝜏𝐸 as a hybrid dynamical system.

In most practical cases, each actuator has its independent variable transmission

and, thereby, the 𝑅 matrix will be diagonal and each diagonal value can be selected

independently. Assuming this situation, the EoM can be simplified to a form, similar

to the scalar case, illustrating the effect of the gear ratios matrix 𝑅:

𝜏 = 𝑅−1 𝜏𝐸(�̈�, �̇�, 𝑞)⏟  ⏞  
External load dynamics

+𝑅 𝜏 𝐼(�̈�, �̇�)⏟  ⏞  
Intrinsic losses

(4.10)

𝜏𝐸 , 𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔 (4.11)

𝜏 𝐼 , 𝐼𝑞 + 𝐵�̇� (4.12)

The derivation of this simplified form is available in the Appendix B.1.

4.2.3 Limitation of the simplified model

The main assumption of the proposed model is that gear-ratios are considered as

independent control inputs, neglecting all the dynamics and delays associated with

changing the gear-ratios. For a system with discrete gear-ratio, transient behaviors

from one gear-ratio to another are thus neglected. Physically this implies that the

kinetic energy of the system may be discontinuous at a gear-shift since the energy

necessary for the transition is not considered. In the case of a car transmission for

instance, this model would not keep track of the energy used for accelerating or

braking the engine during the synchronization process. This model can be used if the

gear-shift process is fast compared to the dynamics of the robots and if the energetic

losses due to the gear-shift are negligibly small. Note that, for the DSDM-Arm

presented in this thesis, this modeling assumption is supported by the characteristic

of DSDM actuators, which can change gear-ratios quickly and seamlessly. For a robot

equipped with continuously varying transmissions (CVT), this model would neglect

forces associated with the rate of change of the gear-ratios �̇�, a type of quasi-steady

assumption. In addition, this model also assumes that all motor rotors are in an
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inertial reference frame, neglecting gyroscopic effects, which may be induced when

the axes of motor rotors are rotated.

4.2.4 Uncertainty

Here, two observations are made regarding the effect of the gear-ratios on distur-

bances. First, considering modeling errors and external forces on the extrinsic side

as unknown generalized forces 𝑑, the EoM given by eq. (4.10) becomes:

𝜏 = 𝑅−1𝜏𝐸(�̈�, �̇�, 𝑞) + 𝑅𝜏 𝐼(�̈�, �̇�) + 𝑅−1 𝑑⏟ ⏞ 
Disturbances

(4.13)

where it is assumed that the actuators are accurately modeled. Note that the effect of

the disturbances is inversely proportional to the gear-ratios, and thereby attenuated

when using large gear-ratios.

Second, large gear-ratios also decrease the sensitivity of the system to uncertainty.

The error on accelerations computed with the inverse dynamic model, will be atten-

uated with large gear-ratios because of the larger actuator inertia reflected to the

extrinsic side:

𝑞𝑒 = 𝑞 − 𝑞𝑟 =
[︀
𝐻 + 𝑅𝑇 𝐼𝑎𝑅

]︀−1
𝑑 (4.14)

Hence, selecting large gear-ratios makes the system less sensitive to uncertainty on

the extrinsic side.

4.2.5 Hybridness with discrete gear-ratios

When the variable transmissions have discrete configurations, the gear-ratios matrix

can only take a set of discrete value:

𝑅𝑘 ∈ {𝑅1, 𝑅2, ..., 𝑅𝑙} (4.15)
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where the variable 𝑘 is a label indexing the different hybrid operating modes of the

system, and 𝑙 is the total number of discrete operating modes. The subscript 𝑘 will

be used to specify a variable specific to a discrete gear-ratios mode. The inverse

dynamics equation takes the form:

𝜏 𝑘 = 𝑅−1
𝑘 𝜏𝐸 + 𝑅𝑘𝜏 𝐼 + 𝑅−1

𝑘 𝑑 ∀ 𝑘 (4.16)

Where 𝜏 𝑘 represent the torque 𝜏 when using gear-ratios 𝑅𝑘. Note that the defined

sum of extrinsic forces 𝜏 𝐼 and extrinsic forces 𝜏𝐸, are not function of gear-ratios and

are thus the same for every discrete mode 𝑘.

The equations of motions thus now have a hybrid nature. With the assumption

that transitions are seamless however, states are continuous when gear-ratios changes,

and the system is called a switched system [37]. The differential equations are dis-

continuous, but there is no instantaneous jumps in states. The forward dynamics

equation takes the following form:

𝑞 = 𝐻−1
𝑘 [𝑅𝑘𝜏 − 𝑐𝑘(�̇�, 𝑞) + 𝑑] ∀ 𝑘 (4.17)

where

𝐻𝑘 = 𝐻 + 𝑅𝑇
𝑘 𝐼𝑅𝑘 (4.18)

𝑐𝑘 =
[︀
𝐶(�̇�, 𝑞) + 𝐷 + 𝑅𝑇

𝑘𝐵𝑅𝑘

]︀
�̇� + 𝑔(𝑞) (4.19)

Note that here the discrete mode 𝑘 is considered a control input, since it represent

the gear-ratios selection.
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4.3 Optimal gear-ratios along a trajectory

This section analyzes the optimal gear-ratios at each instant along a known trajectory.

By looking backward at the situation, i.e. by evaluating necessary torques and other

properties dependent on gear-ratios on a given trajectory, the situation is simplified.

For any point on a given trajectory, accelerations �̈�, speeds �̇� and positions 𝑞 are

known, and then necessary torques 𝜏 are only a function of the gear-ratios, which are

the only remaining free parameters.

4.3.1 Selection criteria

The two main advantages of changing gear-ratios are 1) lowering the necessary torque

to follow a trajectory, 2) modifying the effective impedance reflected on the environ-

ment and 3) avoiding rotor-speed limits.

Torque Optimization for reducing torque can be done by minimizing 𝜏 𝑇𝜏 at each

point along the trajectory, over all possible gear-ratios. More generally a quadratic

function 𝜏 𝑇𝑄𝜏 could be used to weight each actuator differently.

Impedance Optimization for reflected impedance can be done by minimizing the

difference between desired task-space impedance and the actual one, which is directly

affected by the matrix 𝑅. The end-point inertia matrix contains the gear ratios:

𝑀 = [𝐽(𝑞)𝑇 ]−1
[︀
𝐻(𝑞) + 𝑅𝑇 𝐼𝑅⏟  ⏞  

Actuator contribution

]︀
𝐽(𝑞)−1 (4.20)

The natural viscous damping reflected to the end-point is also influenced by gear-

ratios:

𝑉 = [𝐽(𝑞)𝑇 ]−1
[︀
𝐷 + 𝑅𝑇𝐵𝑅⏟  ⏞  

Actuator contribution

]︀
𝐽(𝑞)−1 (4.21)

Constraints Another point of practical importance is that 𝑅 should be constrained

to values not leading to rotor velocities𝑤 = 𝑅�̇� exceeding their maximum speed. This
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is to avoid solutions with infeasible gear shifts, for example using the low gear at a

high speed is impossible. Motor torque saturation could also be included by adding

domain constraints on motor torques.

4.3.2 Optimization Formulation

The optimal gear-ratios are determined by minimizing the total actuator torques and,

optionally, the difference in end-point impedance:

𝑅*(�̈�, �̇�, 𝑞) = argmin
𝑅

[︀
𝜏 𝑇𝜏 + 𝛼1‖𝑀𝑑 −𝑀‖ + 𝛼2‖𝑉𝑑 − 𝑉 ‖

]︀
(4.22)

s.t 𝑅�̇� ≤ 𝑤𝑚𝑎𝑥 (4.23)

where 𝛼𝑖 are parameters to set the trade-off between minimizing motor torques and

matching the desired impedance. Note that torques 𝜏 can be substituted by the EoM

in the inverse dynamic form (eq. (4.10)), and the minimized cost is a function of

gear-ratios 𝑅, accelerations �̈�, speeds �̇� and positions 𝑞.

4.3.3 Minimal Torque Solution

For a 1-DoF system, the optimal gear ratio leading to minimal torque, not considering

any constraints, at a given instant on a trajectory is given by

𝑅* = argmin
𝑅

[︀
𝜏 2
]︀

=

√︃⃒⃒⃒⃒
𝜏𝐸(𝑞, 𝑞, 𝑞)

𝜏𝐼(𝑞, 𝑞)

⃒⃒⃒⃒
(4.24)

The derivation is available in the Appendix B.2.1.

Similarly for a multi-DoF system, if 𝑅 is a diagonal matrix, the optimal gear-ratios

can be obtained independently for each axis:

[𝑅*]𝑖𝑖 =

√︃⃒⃒⃒⃒
[𝜏𝐸(�̈�, �̇�, 𝑞)]𝑖

[𝜏 𝐼(�̈�, �̇�)]𝑖

⃒⃒⃒⃒
(4.25)

The derivation is available in the Appendix B.2.2.
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Note that large gravitational forces or external disturbances, only present in 𝜏𝐸,

will usually lead to larger optimal gear-ratios, unless they cancel-out other forces in a

way that makes 𝜏𝐸 smaller. If inertial or viscous forces, present both in 𝜏𝐸 and 𝜏 𝐼 ,

dominate, then the optimal gear-ratios will be a compromise such that extrinsic and

intrinsic forces are balanced, a form of impedance matching. The optimal gear ratio

given by (4.25) includes both gravity, inertial and viscous effects as well as all other

effects, hence it can be applied to any arbitrary dynamic situations.

4.3.4 Reduction to impedance matching

In simplified situation where there is only one type of force acting on the system, the

general solution reduce to a case of impedance matching. For instance if only inertial

forces are involves:

𝑅* =

√︃⃒⃒⃒⃒
𝐻𝑞

𝐼𝑞

⃒⃒⃒⃒
=

√︂
𝐻

𝐼
⇒ 𝑅*2𝐼 = 𝐻 (4.26)

Hence the optimal gear-ratio is the one for which the external load inertia is equal to

the reflected actuator inertia. Also, if only linear dissipative forces are involves:

𝑅* =

√︃⃒⃒⃒⃒
𝐷𝑞

𝐵𝑞

⃒⃒⃒⃒
=

√︂
𝐷

𝐵
⇒ 𝑅*2𝐵 = 𝐷 (4.27)

Then the optimal gear-ratio is the one for which the external damping coefficient is

equal to the effective actuator damping coefficient reflected to the output. Note that

those optimal solutions are only valid locally. In general for robotic systems, 𝐻 and

𝐷 are state dependent.
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4.3.5 Examples of optimal gear-ratios in simple scenarios

Here eq. (4.24) is applied to the robot in Fig. 4-1, an inverse pendulum with an

actuators equipped with a CVT, in simple scenarios.

Acceleration from rest When the robot accelerates from rest with no viscous

forces, the optimal gear ratio at the up-right position, where no gravity acts, is given

by:

𝑅* =

√︃⃒⃒⃒⃒
𝐻𝑞

𝐼𝑞

⃒⃒⃒⃒
=

√︂
𝐻

𝐼
(4.28)

In this situation, the problem is reduced to impedance matching for two inertial loads.

The optimal gear ratio minimizing the torque for a given acceleration is the one for

which the load inertia and the motor reflected inertia are the same.

Supporting gravity without moving In the situation where the robot is not

moving and fighting against gravity, then the optimal gear ratio is:

𝑅* =

√︂⃒⃒⃒𝑔
0

⃒⃒⃒
→ ∞ (4.29)

In this static case, the largest possible gear-ratio is the optimal choice.

Coasting In the situation where a robot maintains a constant speed, assuming the

output load is purely inertial and not dissipative (𝐷 = 0), but that there is friction

in the motors:

𝑅* =

√︃⃒⃒⃒⃒
𝐷𝑞

𝐵𝑞

⃒⃒⃒⃒
=

√︂
𝐷

𝐵
→ 0 (4.30)

In this situation, to avoid dissipative motor forces it is best to have the smallest

possible gear-ratio. In the limit, this corresponds to completely disconnecting the

load from the actuator.
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4.4 Model-based Controllers

"If you know the enemy and know yourself, you need

not fear the result of a hundred battles." – Sun Tzu

In this section, control algorithms relying on a dynamic model of a robot and its

load are proposed. Methodologies are proposed to synthesize feedback laws, for both

the torques and gear-ratios input variables, to follow a trajectory with minimal effort.

4.4.1 R* Computed Torque

The proposed closed-loop controller, shown in Fig. 4-6, is based on the Computed

Torque technique (see any robotic textbook such as [1]), but includes an optimization

step to compute and select the optimal gear-ratios. As explored in section 3.6, when

accelerations, speeds and positions are given, locally optimal gear-ratios can be com-

puted. The idea is thus as follow, first compute a desired instantaneous acceleration

�̈�𝑟 leading to guaranteed convergence to the desired trajectory:

�̈�𝑟 = �̈�𝑑 + 𝐾𝐷(�̇�𝑑 − �̇�) + 𝐾𝑃 (𝑞𝑑 − 𝑞) (4.31)

Then given the actual position 𝑞, actual speed �̇� and desired instantaneous accelera-

tion �̈�𝑟, extrinsic and intrinsic forces for this dynamic state are computed:

𝜏𝐸 = 𝐻𝑞𝑟 + 𝐶�̇� + 𝐷�̇� + 𝑔 𝜏 𝐼 = 𝐼𝑞𝑟 + 𝐵�̇� (4.32)

Then the controller computes and executes the locally optimal gear-ratios 𝑅*, as

described previously for a known trajectory, and execute the corresponding motor

torques:

𝑅* = argmin
𝑅

[︀
𝜏 𝑇𝜏

]︀
where 𝜏 = 𝑅−1𝜏𝐸 + 𝑅𝜏 𝐼 (4.33)

𝜏 * = (𝑅*)−1𝜏𝐸 + 𝑅*𝜏 𝐼 (4.34)
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𝒒𝑑 𝒒𝑑 𝒒𝑑

 𝒒𝑟
𝑅∗

𝝉𝐸(  𝒒𝑟 ,  𝒒, 𝒒)
Extrinsic force estimation

Intrinsic force estimation
𝝉𝐼(  𝒒𝑟 ,  𝒒)

𝜏∗

State feedback:{  𝒒, 𝒒 }

𝝉𝐸

𝝉𝐼

Model Online Gear-ratio 
Optimization

𝑅∗ = argmin
𝑅

[ 𝝉𝑇𝝉]

𝝉 = 𝑅−1𝝉𝐸 + 𝑅𝝉𝐼

Plant

 𝒒𝑟 =  𝒒𝑑
+ 𝑘𝑑  𝒒 −  𝒒𝑑
+ 𝑘𝑝(𝒒 − 𝒒𝑑)

Desired Acc.
Ref. Trajectory

Gear-ratios:

Torques:

Figure 4-6: R* Computed Torque controller

Note that here a simple minimum torque square objective is illustrated for simplicity,

but more complex cost functions can be used. As discussed in sec. 4.3, more com-

plex objectives for optimizing gear-ratios are possible, for instance including motor

constraints, desired impedance, etc.

The salient feature of the R* Computed Torque controller is that the optimal gear-

ratios is selected based on state-feedback, i.e. even in situations not foreseen in the

planner that generated the nominal trajectory. For instance, if a disturbance pushes

the robot in a state where the robot faces a large gravitational force requiring a large

gear-ratio, the controller will automatically select it. Similarly if facing a contact

force, that is included in the model, the R* controller will automatically select the

appropriate gear-ratio. Fig. 4-7 offer a graphical interpretation of the R* algorithm

in the phase plane.

𝑞

 𝑞  𝑞𝑟

 𝑞(𝜏 = 0, 𝑅 = 1)

 𝑞(𝜏 = 0, 𝑅 = 10)

Desired 
trajector
y

Figure 4-7: The R* algorithm can be interpreted graphically, as selecting the gear-
ratios for which the natural acceleration vector is the closet to the desired instanta-
neous acceleration vector 𝑞𝑟 (after scaling the distance with the inertia), in order to
minimize the necessary torques to apply on the system.
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4.4.2 R* Sliding Mode Control

In general Computed Torque Control is susceptible to modeling uncertainties and

disturbances. This section presents an approach based on sliding mode control [56], to

improve robustness and guaranteeing performance despite uncertainty. Moreover, the

presented control algorithm leverages the gear-ratios options to decrease sensitivity of

the robot to disturbance when uncertainty is large. The control scheme is illustrated

at Fig. 4-8.

First, the following intermediary variables are computed:

𝑞𝑒 = 𝑞 − 𝑞𝑑 �̇�𝑒 = �̇� − �̇�𝑑 (4.35)

𝑠 = �̇�𝑒 + 𝜆𝑞𝑒 𝑞𝑟 = �̈�𝑑 − �̇�𝑒 (4.36)

As for the R* Computed Torque, intrinsic and extrinsic forces are then computed for

this dynamic state:

𝜏𝐸 = 𝐻𝑞𝑟 + 𝐶�̇� + 𝐷�̇� + 𝑔 𝜏 𝐼 = 𝐼𝑞𝑟 + 𝐵�̇� (4.37)

The instead of simply using the inverse dynamic equation to compute torques, a

discontinuous gain is added:

𝜏 = 𝑅−1𝜏𝐸(�̈�𝑟, �̇�, 𝑞) + 𝑅𝜏 𝐼(�̈�𝑟, �̇�) −𝑅−1𝐺𝑠𝑔𝑛(𝑠) (4.38)

Then the controller computes and executes the locally optimal gear-ratios 𝑅*, mini-

mizing the sliding mode torque that depends on selected gear-ratios, and execute the

corresponding motor torques:

𝑅* = argmin
𝑅

[︀
𝜏 𝑇𝜏

]︀
where 𝜏 = 𝑅−1𝜏𝐸 + 𝑅𝜏 𝐼 −𝑅−1𝐺𝑠𝑔𝑛(𝑠) (4.39)

𝜏 * = (𝑅*)−1𝜏𝐸 + 𝑅*𝜏 𝐼 − (𝑅*)−1𝐺𝑠𝑔𝑛(𝑠) (4.40)

To guarantee convergence despite uncertainty, the discontinuous gain are set as a
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𝝉𝐼

Model

Online Gear-ratio 
Optimization

𝑅∗ = argmin
𝑅

[ 𝝉𝑇𝝉]

𝝉 = 𝑅−1 𝝉𝐸 + 𝝉𝐷 + 𝑅𝝉𝐼

Plant

 𝒒𝑟 =  𝒒𝑑 −  𝒒𝑒
𝒔 =  𝒒𝑒 + 𝜆𝒒𝑒

Desired Acc.Ref. 
Trajectory

Gear-ratios

Torques

𝒔
Discontinuous torque

𝝉𝐷 = 𝑮 𝑠𝑔𝑛(𝒔)

𝝉𝐷

Uncertainty Knowledge

𝒅 𝒎𝒂𝒙

Figure 4-8: R* Sliding Mode controller

function of the bounds on uncertainty:

𝐺 =
[︀
𝐻 + 𝑅𝑇 𝐼𝑅

]︀
𝐾 (4.41)

𝐾𝑖𝑖 > max
𝑑

⃒⃒⃒(︁[︀
𝐻 + 𝑅𝑇 𝐼𝑅

]︀−1
𝑑
)︁
𝑖

⃒⃒⃒
+ 𝜂 (4.42)

where 𝑑 is an unknown generalized force vector, representing modeling uncertainty

in the extrinsic dynamics and external disturbances, see section 4.2.4. Note that the

discontinuous gain is a function of the state-dependent inertia matrix, bounds on

disturbances and the selected gear-ratios. The interesting features of the R* Sliding

Mode Controller is that with gear-ratios selected to minimize the sliding mode torque,

then naturally, larger gear-ratios are selected in response to large uncertainty.

1-DoF system exemplified

To clarify the behavior of R* Sliding Mode, the simplified control laws for a 1-DoF

system are analyzed. The feedback law for torque in 1-DoF is reduced to

𝜏 =
𝜏𝐸(𝑞𝑟, 𝑞, 𝑞)

𝑅
+ 𝑅𝜏𝐼(𝑞𝑟, 𝑞) − 𝐺𝑠𝑔𝑛(𝑠)

𝑅
(4.43)

and the discontinuous gain reduced to

𝐾 =
𝑑𝑚𝑎𝑥

𝐻 + 𝑅𝑇 𝐼𝑅
+ 𝜂 (4.44)

𝐺 =
[︀
𝐻 + 𝑅𝑇 𝐼𝑅

]︀
𝐾 = 𝑑𝑚𝑎𝑥 +

[︀
𝐻 + 𝑅𝑇 𝐼𝑅

]︀
𝜂 (4.45)
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Rearranging the torque law gives:

𝜏 =
𝜏𝐸(

𝑞𝑎⏞  ⏟  
𝑞𝑟 − 𝜂𝑠𝑔𝑛(𝑠), 𝑞, 𝑞) − 𝑑𝑚𝑎𝑥𝑠𝑔𝑛(𝑠)

𝑅
+ 𝑅𝜏𝐼(

𝑞𝑎⏞  ⏟  
𝑞𝑟 − 𝜂𝑠𝑔𝑛(𝑠), 𝑞) (4.46)

Minimizing the torque computed with this sliding mode control law over possible 𝑅

values, also have an enlightening analytical solution:

𝑅* = argmin
𝑅

[︀
𝜏 2
]︀

=

√︃⃒⃒⃒⃒
𝜏𝐸(𝑞𝑎, 𝑞, 𝑞) + |𝑑|𝑚𝑎𝑥 𝑠𝑔𝑛(𝑠)

𝜏𝐼(𝑞𝑎, 𝑞)

⃒⃒⃒⃒
(4.47)

If no disturbance is expected (|𝑑|𝑚𝑎𝑥 = 0) then the solution is, as before, a com-

promise between extrinsic and intrinsic forces. However, knowledge of uncertainty

in the form of disturbances bound modifies the optimal gear-ratios solution. When

large disturbances are expected (|𝑑|𝑚𝑎𝑥 is large) the solution is biased toward larger

gear-ratios, which is consistent with the sensitivity analysis that concluded that larger

gear-ratios attenuate the effect of disturbances. All in all, minimizing torque com-

puted with the sliding mode law, is a way to naturally improve the decision regarding

the best gear-ratios, in function of some knowledge of the expected uncertainty.

4.4.3 Adaptation

If the uncertainty is structured as unknown model parameters in the extrinsic dy-

namics, the term represented by 𝜏𝐸, then traditional adaptation schemes can be used

for estimating the unknown parameters. Then, if adaptation converges to the correct

computed torque, then the computed best gear-ratios will also converge to the true

optimal gear-ratios:

𝜏𝐸 → 𝜏𝐸 ⇒ �̂�* → 𝑅* (4.48)

If used in conjunction with the R* Computed Torque controller, decisions regarding

the optimal gear-ratios would improve as adaptation converges. Note that correct

gear-ratios decision depends on the correct estimation of extrinsic torque, not model
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parameters explicitly, which are harder to estimate since requiring condition related

to sufficient excitation.

As an example, for a 1-DoF robot with the following EoM:

[︀
𝐻 + 𝑅2𝐼

]︀
𝑞 +

[︀
𝑅2𝐵

]︀
𝑞 + [𝑚𝑔 sin(𝑞)] = 𝑅𝜏 (4.49)

the regression to identify unknown extrinsic parameters 𝐻 and 𝑚, could be built this

way:

𝜏𝐸⏞  ⏟  [︁
𝑞
𝑅

𝑔 sin(𝑞)
𝑅

]︁
⏟  ⏞  

𝜑

⎡⎣ 𝐻

𝑚

⎤⎦
⏟  ⏞  

𝜃

= 𝜏 −
𝜏𝐼⏞  ⏟  

𝑅𝐼𝑞 −𝑅𝐵𝑞⏟  ⏞  
𝑦

(4.50)

where 𝜃 is a vector of unknown parameters, 𝜑 is a known regressor vector (the

controller is always aware of the selected gear-ratio 𝑅) and 𝑦 is a known scalar output.

Adaption on both the extrinsic and intrinsic dynamic parameters could also be

conducted, with a regression constructed this way:

[︁
𝑞
𝑅

𝑅𝑞 𝑅𝑞 𝑔 sin(𝑞)
𝑅

]︁
⏟  ⏞  

𝜑

⎡⎢⎢⎢⎢⎢⎢⎣
𝐻

𝐼

𝐵

𝑚

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝜃

= 𝜏⏟ ⏞ 
𝑦

(4.51)

However, care would need to be used since the first two terms in the regression vector

would be fully correlated if data using a single gear-ratio is used, which makes the

solution ambiguous in term of possible 𝐻 and 𝐼 parameters. If data with multiple

different gear-ratios is used, then all terms could be independently identified.
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4.4.4 Generalization to more complex models

Many modeling assumption, for instance leading to extrinsic vs. intrinsic force separa-

tion, were assumed to hold during the control algorithm presentations mainly because

it gives many physical insight. However, this restricted class of model is not necessary

to implement the proposed algorithms, the minimum needed is to have a model of

the inverse dynamic, which could include any non-linearity, in the form:

𝜏 = 𝑓(𝑞𝑟, �̇�, 𝑞, 𝑅) (4.52)

to compute necessary torque 𝜏 to achieve a specified acceleration 𝑞𝑟, given actual

states (�̇�, 𝑞) and selected gear-ratios 𝑅.

4.4.5 Closed-loop selection of discrete gear-ratios

So-far the proposed control schemes made no assumption regarding the different gear-

ratios options, and analytical solutions assumed that gear-ratio have continuous do-

mains. However, many variable transmission mechanisms, such as the DSDM actuator

technology proposed in this thesis, offer only a discrete set of possible values. In that

situation, the optimization step in the proposed control algorithms would then be a

combinatorial optimization problem. However, if the number of options 𝑙 is reason-

ably small, then every possible options can be computed quickly to find the optimal

discrete option:

𝑘* = argmin
𝑘

[︀
𝜏 𝑇
1 𝜏 1, ..., 𝜏

𝑇
𝑘 𝜏 𝑘, ..., 𝜏

𝑇
𝑙 𝜏 𝑙

]︀
(4.53)

In practice this brute force approach is usually feasible. For instance, for the robot

presented in this thesis, there is 3 actuators each with 2 gear-ratios options, leading

to only 𝑙 = 23 = 8 possible matrix 𝑅.
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Point-by-point

In theory if the controlled robotic system would behave exactly like the proposed

model, then selecting optimal gear-ratios at each time steps would be the optimal

behavior. However, because the control effort associated with gear-shifts is neglected

in the model and the basic gear-selection scheme does not penalize mode transitions,

using the proposed controller can lead to rapid switching between gear-ratios (chat-

tering) in certain situations. In practice, this is not desirable since for most type of

variable transmissions, since changing the gear-ratio: 1) is not really instantaneous

2) the shifting process would require some effort/energy 3) fast switching can lead to

mechanical wear and also excite un-modeled vibration modes.

Hysteresis

To avoid undesirable rapid switching behaviors, hysteresis can be added to the gear-

selection logic. Instead of simply executing the optimal gear-ratios command at each

time step, a logical step is added, which only allows mode change if a minimal amount

of time ∆𝑡 as elapsed since the last mode change. This thus directly guaranteed a

minimal period between gear-shifts. However, this technique is clearly sub-optimal

in certain situations. For instance, imagine a system with two modes, on a trajectory

where 𝑘 = 1 is optimal for all time except for the interval 𝑡 ∈ [1, 1.1]. If a hysteresis of

∆𝑡 = 1 is used in the controller, then 𝑘 = 2 will be selected for the interval 𝑡 ∈ [1, 2].

Hence, not gear-shifting at all would have been better (sub-optimal during 0.1 sec)

compared to shifting with hysteresis (sub-optimal during 0.9 sec), from the whole

trajectory point of view.

Minimax optimization for sliding mode

When optimizing the torque computed with the sliding mode, chattering can be very

severe as components of 𝑠𝑔𝑛(𝑠) can oscillate rapidly between values of ±1. One

approach to alleviate this is to reformulate the optimization to treat variables 𝑠𝑔𝑛(𝑠)
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Figure 4-9: Rollout with Computed Torque Control as base policy

as random disturbances and optimize for the worst-case scenario:

𝑅* = argmin
𝑅

max
𝑠𝑔𝑛(𝑠)

[︀
𝜏 𝑇𝜏

]︀
where 𝜏 = 𝑅−1𝜏𝐸 + 𝑅𝜏 𝐼 −𝑅−1𝐺𝑠𝑔𝑛(𝑠) (4.54)

The result of this optimization is independent from the position of states with respect

to the switching surface 𝑠 = 0, and would remove this source of rapid change of

optimal gear-ratios solutions. Also, the sliding mode controller could be implemented

with smoothing techniques for the discontinuous torque, many techniques exist [56]

[46]. This would also alleviate one source of chattering for the gear-ratios selection.

4.4.6 Rollout gear-ratios selection

A better approach to the problem of avoiding fast gear-shifting, is to associate a

one-time cost with transitions and optimize over a time-horizon. This way a trade-

off between changing gear-ratios quickly to minimize torques and minimizing the

number of gear-shifts can be formalized. The proposed approach to implement this

idea in a closed-loop control scheme, is to use predictive simulations over a receding

time-horizon, analogous to the model predictive control (MPC) approach. Predicted

trajectories are computed by simulating the robotic system under the control of a

base policy that consist in 1) keep the gear-ratios fixed 2) motor torques controlled

with the computed torque or sliding mode feedback law. The approach is illustrated
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Figure 4-10: Rollout with Sliding Mode Control as base policy

used in conjunction with a Computed Torque at Fig. 4-9 and sliding mode at Fig.

4-10.

An integral cost 𝐽𝑘 for each of those 𝑙 simulated trajectories with fixed gear-ratios

is computed:

𝐽𝑘 =

∫︁ 𝑡+ℎ

𝑡

𝜏 𝑇
𝑘 𝜏 𝑘𝑑𝑡 (4.55)

where 𝑡 is actual real time, ℎ is the horizon, 𝑡 is the simulation time and 𝜏 𝑘 are the

torques computed with the base policy in the simulations. Once those simulations

and integrals are computed, the gear-ratios are selected by conducting the following

optimization:

𝑘* = argmin
𝑘

[𝐽𝑘 + 𝑄[[𝑘 ̸= 𝑘𝑙𝑎𝑠𝑡]]] (4.56)

where 𝑄 is the cost penalty for gear-shifting. Hence, optimal gear-ratios, computed

at time 𝑡, are the optimal ones considering an integral cost over the future horizon ℎ.

Note that state errors are not penalized in the integral cost, because the base policy

for motor torques already enforces trajectory tracking. The scheme is illustrated at

Fig. 4-11.

This scheme is closely related to the Rollout control approach [3], and it will thus

be refer to as the Rollout gear-ratios selection. However here the optimization is
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𝑥(𝑡)

𝑥1(  𝑡)
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Optimization over all possible 
gear-ratios 𝑘 at time 𝑡

Time Horizon

𝑥𝑘(  𝑡)

⋮

Figure 4-11: Rollout gear selection

conducted only over the gear-ratios options, not all possible control actions at time 𝑡

like in the original technique. The two reasons for not implementing a full scale opti-

mization including also many possible torque inputs at time 𝑡 are: 1) computational

limitations and 2) by applying the base policy torques at time 𝑡, convergence to the

desired trajectory can be guaranteed.

Advantageous features of the Rollout gear-selection scheme are 1) filtering-out fast

un-desirable gear-shifts 2) commanding gear-shifts in advance, which can compensate

for gear-shift delay in the physical system (situation just entering the horizon at time

𝑡 + ℎ influence the gear-ratios selection at time 𝑡).

Extension from Rollout to Model Predictive Control (MPC)

The proposed control scheme requires simulating 𝑙 trajectory at each time steps, which

is usually tractable computationally. However, this is sub-optimal in the sense that

gear-ratios are fixed on each trajectory. With more computational power, additional

options of more complex sequences of discrete gear-ratios could be included. Each

option of a predetermined sequence of gear-ratios could be seen as a form of motion

primitive, a proposed approach to simplify control/planning when the number of

possible action is too large to fully explore [18]. This would also connect with the

idea of family of modes proposed to simplify MPC control of hybrid systems [22].

The proposed Rollout gear-selection scheme, can thus also be seen as optimizing over

𝑙 motion primitives consisting of using fixed gear-ratios for the next ℎ seconds.

Furthermore, if the optimization would also be conducted over all possible motor

110



torques, instead of constraining them to always follow a given feedback law, then

the control scheme would correspond to full scale MPC. However, MPC is in general

very hard to implement at satisfactory fast rate for non-linear multi-DOF robotic

systems, especially when the system is hybrid [22]. All in all, depending on the

complexity of the controlled robotic system and the available computational power,

the proposed control scheme can be adapted from a very easy-to-compute point-

by-point optimization with hysteresis, to more optimal but computationally-heavy

predictive schemes with a variety of level of complexity.

4.4.7 Stability

Here stability properties of the proposed control laws are discussed. The main in-

teresting conclusion is that complex gear-selection schemes, such as Rollout, can be

implemented in conjunction with the proposed base feedback laws for torques (com-

puted torque or sliding mode), without affecting the stability results.

R* Computed Torque Convergence to the desired trajectory, with the R* Com-

puted Torque controller, is guaranteed assuming the model used by the controller is

exact. Interestingly this results is valid for any arbitrary sequence of gear-ratios as

long as the feedback law computing the continuous torques 𝜏 is aware of the dis-

crete operating mode 𝑘, see details in sec. B.3.1. Hence, any gear-ratios selection

scheme can be used, without compromising the convergence to the desired trajectory,

including hysteresis, Rollout optimization, etc.

R* Sliding Mode Guaranteed convergence to the desired trajectory, with the R*

Sliding Mode controller, can be extended to situation where the uncertainty can be

bounded, assuming gains 𝐺 are chosen accordingly, see details in sec. B.3.2. Stability

is also guaranteed for any sequence of discrete gear-ratios 𝑘 and thus would not be

affected by the closed-loop gear-ratios selection scheme.
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4.4.8 Chattering and high-frequency switching

This section discusses results regarding the chattering behavior when using the pro-

posed control schemes.

Decision boundaries

Chattering (quickly selecting back-and-forth) between two discrete mode 𝑖 and 𝑗 can

occur when the system stay in a dynamic state for which optimized cost is equal

for two or more gear-ratios options. For instance with the quadratic torque criterion

when:

𝜏 𝑇
𝑖 𝜏 𝑖 = 𝜏 𝑇

𝑗 𝜏 𝑗 (4.57)

If the policy for motor torque 𝜏 𝑘(𝑥) is substituted in the cost equality equation, the

result is a decision boundary in the state-space, in the form:

𝑟𝑖𝑗(𝑥) = 0 (4.58)

If 𝑟𝑖𝑗 > 0 then the decision is 𝑘 = 𝑖, while if 𝑟𝑖𝑗 < 0 the decision is 𝑘 = 𝑗. When

using the R* Computed Torque controller for a 1-DoF system, the decision boundary

between 𝑘 = 𝑖 and 𝑘 = 𝑗 takes the form

0 = 𝑟𝑖𝑗(𝑥) =

[︃
𝑅2

𝑖 −𝑅2
𝑗

1
𝑅2

𝑖
− 1

𝑅2
𝑗

]︃
− 𝜏𝐸

𝜏𝐼
(4.59)

Boundary decision could also be created by the inequality constraints in the optimiza-

tion. The most relevant example is motor speed saturation which can create decision

boundaries of the type:

0 = 𝑟𝑖𝑗(𝑥) = 𝑤𝑚𝑎𝑥 ±
𝑞

𝑅𝑖

(4.60)
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Figure 4-12: Situations leading to fast gear-ratios switching. 𝑟𝑖𝑗 is a decision boundary
between 𝑘* = 𝑖 and 𝑘* = 𝑗

Situations leading to fast gear-ratios switching

Fig. 4-12 illustrates different possible class of situations leading to fast switching.

The theoretical closed-loop behavior, when exactly on the boundary decision is a

degenerative case of ambiguous infinitely fast jumps between gear-ratios. In practical

implementations, because decision are delayed, staying in the vicinity of the decision

boundary 𝑟𝑖𝑗 ≈ 0 could lead to chattering, with a period depending on implementation

aspects such as computing delay, sampling time and hysteresis in the gear-selection

logic.

Fig. 4-12a and 4-12b illustrate two possible class of behavior for which the system

stay in the vicinity of the decision boundary and would lead to chattering behavior.

A situation of type (a) represent a case where the system trajectory coincide with the

boundary decision and a situation of type (b) represent a more severe case where all

trajectory would be attracted to the decision boundary, i.e. a type of undesired sliding

mode. Those two types of situation can be ruled-out as impossible, if conditions

guaranteeing convergence to the desired trajectory are met. By contradiction, state

cannot both converge on the desired trajectory and stay on the decision boundary,

unless for very special cases where the desired trajectory is in the sub-domain defined

by the decision boundary.

Example of gear-shift chattering with a car going up-hill In practice, a sit-

uation of type (b) can be a typical failure mode of switched system. This section

explore with a simple example of how this situation can arise and how the proposed
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control schemes make sure this is avoided. Imagine a car with an automatic trans-

mission going up-hill, with a gear-selection scheme only based on a velocity decision

boundary. The car starts from rest with its low-gear 𝑘 = 1 and accelerate. After

reaching reaching a threshold velocity, the automatic transmission then engage the

high-gear 𝑘 = 2. With the high-gear however, the effect of gravity is much larger

and the car slow down until it cross again the threshold velocity. The low-gear 𝑘 = 1

is then engaged again and the car starts accelerating. The car then cross again the

threshold and the cycle would continue forever. What is happening here is that the

car converge toward its velocity goal when 𝑘 = 1 but diverge when 𝑘 = 2. With the

proposed R* Computed Torque controller, this could happen if gravity forces were

underestimated in the model. However, if gravity forces are either correctly modeled,

or alternatively included in the uncertainty bounds with the sliding mode controller,

then convergence would be guaranteed for both modes, and enough torque to continue

accelerating toward the target velocity would have been applied.

So far, situations of chattering in the vicinity of decision boundary of type (a)

and (b), have been ruled-out impossible if the controller is designed to guarantee

convergence for all discrete mode 𝑘. However, situations of type (c), illustrated at

Fig. 4-12c and called high-frequency switching, is still possible and un-desirable.

The decision boundary can very complex for highly non-linear systems, hence even a

simple trajectory can cross decision boundaries at undesirable high-frequencies.

Minimum cycle time with Rollout

The Rollout approach is efficient to avoid situations of type (c), high-frequency switch-

ing. By optimizing over a time horizon, the Rollout gear-selection scheme is acting as

a low-pass filter. Moreover, with the Rollout approach, a minimum value for the cycle

period of gear-shifting back-and-forth between two gear-ratios can be guaranteed.

The cycle time ∆𝑡 of gear-shifting from arbitrary mode 𝑖, to another arbitrary

mode 𝑗, and back to the initial mode 𝑖, is lower bounded. If the system follows the
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desired trajectory exactly, the minimum value is:

∆𝑡 ≥ 𝑄

𝐶𝑚𝑎𝑥
(4.61)

where 𝑄 is the cost penalty for changing the gear-ratio, 𝐶𝑚𝑎𝑥 is the maximum in-

stantaneous cost. With the usual quadratic torque criterion:

𝐶𝑚𝑎𝑥 = max
[︀
𝜏 𝑇𝜏

]︀
(4.62)

In an arbitrary situation the minimum value is:

∆𝑡 ≥ 𝑄

𝐶𝑚𝑎𝑥 + �̇�𝑚𝑎𝑥ℎ
(4.63)

where the variable ℎ is the time horizon and �̇� represents the sensitivity of computed

costs due to changes of trajectories in the predictive simulations. When the system

has reach the desired trajectory, the real trajectory and all simulated trajectories

follow the desired one, and this sensitivity term vanish. Details of those derivations

are available in appendix B.4.

4.4.9 Parameters selection guidelines

R* Computed Torque The only parameters with the computed torque controller

are matrices 𝐾𝐷 and 𝐾𝑃 . Those can be understood as multi-DoF proportional and

derivative gains. Stability is guaranteed for any positive definite matrices.

For simplicity, matrices can be diagonal and parametrized by:

𝐾𝐷
𝑖𝑖 =

2

𝜏
𝐾𝑃

𝑖𝑖 =

(︂
1

𝜏

)︂2

(4.64)

where 𝜏 is a time constant parameter driving the desired exponential error convergence

rate.

115



R* Sliding Mode For the sliding mode controller, there is two parameters to tune

the convergence rate, 𝜆 which is inversely proportional to error convergence time

constant after reaching the sliding surface, and 𝜂 which is inversely proportional to

the guaranteed time for reaching the sliding surface. The discontinuous gain should

then be set based on disturbance bounds as follow:

𝐾𝑖𝑖 = max
𝑑

[︀
𝐻−1

𝑘 𝑑
]︀
𝑖
+ 𝜂 (4.65)

in order to guarantee convergence.

Rollout gear-selection For the Rollout gear-selection scheme, there is two free

parameters, the time horizon ℎ and the gear-shift penalty 𝑄. If the VGA used by the

robot have a gear-shift switching delay of ∆𝑡𝑠ℎ𝑖𝑓𝑡, then the 𝑄 value can be set, using

eq. (4.61), to guaranteed that the robot-level controller never ask its actuators for

gear-shifts faster the physical limit:

𝑄 = ∆𝑡𝑠ℎ𝑖𝑓𝑡 max
[︀
𝜏 𝑇𝜏

]︀
(4.66)

For the time horizon ℎ it is not necessary a case of larger is better, since the cost

computed with fixed gear-ratios over a long simulated period does not represent well

the real future cost, since gear-shift are possible in the real future. Very short time

horizon would largely inhibit gear-shifting since gain of changing the gear-ratios on a

short period would be small compared to the gear-shift penalty.

A rule of thumbs, as a starting point, is to set the time horizon to the expected

average amount of time spent between two gear-shifts. This is motivated by the

fact that in that case, most predicted trajectories with fixed gear-ratios will be rep-

resentative of the real future trajectory. Simulations and experiments can be used

to experimentally adjust this parameter. Alternatively, the cost function could also

be discounted: putting more weight on immediate cost and less weight on far ahead

uncertain cost.
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4.5 Trajectory planning

Although not the focus of this thesis, this section briefly discusses a motion planning

algorithms, that is an important piece of the global control solution for the model-

based control architecture. The proposed model-based controllers are theoretically

globally stable; given a fixed goal 𝑞𝑑, the closed system should converge on it starting

from any initial conditions. However, this not considering:

∙ Motor torque saturation (more generally input constraints)

∙ Possible obstacle on the path (more generally state constraints)

Moreover, when simply given a fixed goal 𝑞𝑑 to the R* Computed Torque controller,

while the gear-ratios selection is locally optimized, the overall trajectory is given by

𝑞(𝑡) = (𝑞0 − 𝑞𝑑)𝑒
− 𝑡

𝜏 + 𝑞𝑑 (4.67)

if the controller is parametrized as described by eq. (4.64). Hence, the followed

trajectory would be simply a decreasing exponential function of time for each joint

angles, which can be clearly highly inefficient and sub-optimal. Hence the role of the

motion planning algorithm is to find a feasible reference trajectory away from state

and inputs constraints, and ideally an optimal trajectory in term of an integral cost.

As discussed in section 4.0.2, the two class of algorithm that are suited to solve a

motion planning problem for a hybrid robotic systems are:

∙ Mixed-integer programming

∙ Sampling-based search algorithms

In general, mixed-integer programming is better suited to find optimal solution to

simple situations, while sampling-based approach are more efficient at finding feasible

sub-optimal solutions in complex situations (many constraints), for instance finding a

path in a maze. The approach that was implemented here, focuses on finding feasible

low-torque trajectories quickly, and is based on rapidly-exploring random trees.
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4.5.1 RRT algorithm for Robots with Discrete Gear-ratios

Rapidly-exploring random trees (RRT) have been highly popular over the past decade

as a sampling-based approach to quickly identify feasible trajectories in complex mo-

tion planning problems [33] [34]. Its main feature is its property of biasing the random

search toward un-explored regions of the state space. This technique also naturally

works with discretized action-space, which makes a good fit for switched dynamics

system where the discrete mode is a control input.

Action set To implement the algorithm for robot using variable gear-ratios actua-

tors the action space is parametrized into a finite set of possible actions at each time

steps. Each actuator torque is split into 𝑝 possible level:

𝜏𝑖 ∈ 𝑇 : {−𝜏𝑚𝑎𝑥, ..., 0, ...,+𝜏𝑚𝑎𝑥} (4.68)

where 𝑝 is an odd number bigger or equal to 3. Possible gear-ratios modes, are already

a discrete set, but the possible selectable gear-ratios set 𝐾 is state-dependent:

𝑘 ∈ 𝐾(�̇�) :
{︀
𝑘 ∈ {0, .., 𝑙} |𝑤 = 𝑅𝑘�̇� ∈ 𝑊

}︀
(4.69)

in order to satisfy rotor-velocity constraints. Hence the global possible action set 𝐴

at each time step is the combination of all those possible 𝑝 torque levels for the 𝑚

actuators and the available state-dependent gear-ratios options:

𝑎 ∈ 𝐴(�̇�) :
{︀

(𝜏 , 𝑘) | 𝜏1 ∈ 𝑇 , ..., 𝜏𝑚 ∈ 𝑇 , 𝑘 ∈ 𝐾(�̇�)
}︀

(4.70)

The maximum number of possible discrete actions at each step is thus 𝑙 𝑝𝑚.

State-space The search is then conducted in the full dynamic state space of the

robotic system (as opposed to simply searching in the configuration space):

𝑥 = (�̇�, 𝑞) (4.71)
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hence the dimension of the state-space is 2𝑛. The state constraints are defined by:

𝑥 ∈ 𝑋 :
{︀

(�̇�, 𝑞) | 𝑞 ∈ 𝐶𝑓𝑟𝑒𝑒 , �̇� ∈ 𝑉
}︀

(4.72)

The constraints on joint positions are defined by the free configuration space domain

𝐶𝑓𝑟𝑒𝑒 [38], which exclude configuration leading to collision with obstacles. The con-

strains on joint velocities are defined as the set for which there exist at least one

gear-ratios configuration 𝑘 leading to allowable rotor velocities:

𝑉 :
{︀
�̇� | ∃𝑘 ∈ {0, .., 𝑙} ⇒ 𝑅𝑘�̇� ∈ 𝑊

}︀
(4.73)

Note that 𝑊 is the allowable rotor velocity set defined as:

𝑊 :
{︀
𝑤 | − 𝑤𝑚𝑎𝑥 < 𝑤𝑖 < 𝑤𝑚𝑎𝑥 ∀ 𝑖

}︀
(4.74)

System evolution The discrete state evolution of the system can be modeled with

proposed dynamical model presented in section 4.2, projecting in the future with a

small time step ∆𝑡:

�̇�𝑡+1 = 𝐻−1
𝑘 [𝑅𝑘𝜏 − 𝑐𝑘(�̇�𝑡, 𝑞𝑡)] ∆𝑡 + �̇�𝑡 (4.75)

𝑞𝑡+1 = �̇�𝑡∆𝑡 + 𝑞𝑡 (4.76)

Implementation With the discrete action set, the state-space constraints and the

discrete time system evolution, the RRT algorithm can be applied to search for feasi-

ble solutions. The other steps are a textbook application of the RRT algorithm [34]

and are omitted here. After execution the algorithm return both a trajectory of

states and control inputs. However, the proposed model-based controllers, R* Com-

puted Torque and R* Sliding Mode, only required the trajectory to use as a reference

and control inputs are fully computed online in closed-loop. Details on the software

implementation used for the experimental robotic system is discussed in Chapter 5.

119



4.6 Dynamic programming approach

"The true logic of this world is in the calculus of probabilities."

– James Clerk Maxwell

This section explores an alternative approach to synthesize feedback laws. The

idea is to discretize the continuous control problem into a graph search problem, with

transition probabilities, where the discrete input actions can be considered naturally.

Dynamic programming approaches can then be used to find global optimal feedback

policies. This is exemplified here for two simple systems.

4.6.1 Problem formulation

The control problem of obtaining the global desired behavior is formulated as mini-

mizing a scalar cost 𝐽 that is a function of the state trajectory 𝑥(:) and the inputs

trajectory 𝑢(:), while constraining both states and inputs to be in their respective

domains:

min
𝑢(:)

𝐽(𝑥(:),𝑢(:)) (4.77)

𝑠.𝑡. �̇� = 𝑓(𝑥,𝑢) 𝑢 ∈ 𝑈(𝑥) 𝑥 ∈ 𝑋 (4.78)

4.6.2 Constraints

The input set 𝑈(𝑥) is defined by allowable motor torques respecting saturations and

gear-ratios that are feasible given actual joint velocities:

𝑈 (𝑥) :

⎧⎨⎩ 𝜏𝑖 ∈ [−𝜏𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥] ∀ 𝑖

𝑘 ∈ {0, ..., 𝑙} | 𝑤 = 𝑅𝑘�̇� ∈ 𝑊
(4.79)

where 𝑊 is the set of allowable rotor velocities. The state set 𝑋 include a range of

acceptable states and could exclude some regions if desired.
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4.6.3 Cost function

Here cost function is defined as additive instantaneous costs 𝑔 over an infinite horizon.

This form leads to simpler time-independent control policies [3].

𝐽 = lim
𝑡→∞

∫︁ 𝑡

0

𝑔(𝑥(𝑡),𝑢(𝑡))𝑑𝑡 (4.80)

Two different additive cost functions are investigated; a quadratic cost function where

error is weighted against control effort:

𝑔(𝑥,𝑢) =
∑︁

𝑤𝑥
𝑖𝑖 𝑥

2
𝑖 +

∑︁
𝑤𝑢

𝑖𝑖 𝜏
2
𝑖 (4.81)

where 𝑤 are weighting factors (note that there is no penalty for either gear ratio

options); and a function corresponding to the minimal time problem:

𝑔(𝑥,𝑢) =

⎧⎨⎩ 1 if target not yet reached

0 if target is reached
(4.82)

Note that in this section, the goal is fixed and set to 𝑥𝑑 = 0.

4.6.4 Value Iteration

A dynamic programming algorithm, also known as value iteration, is then used to

solve for almost exact optimal infinite-horizon policies.

Discretization and conversion to a Stochastic Shortest Path problem

An evenly spaced grid of nodes is used to represent the state space. The discrete

state evolution of the system is computed by projecting in the future with a small
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𝑥(𝑡)

𝑓𝑑(𝑥(𝑡), 𝑢 𝑡 , 𝑑)

𝑥1(𝑡 + 1) 𝑥2(𝑡 + 1)

𝑥3(𝑡 + 1)

𝑤2
𝑤1

𝑤3

(a) Interpolation

𝑥(𝑡)

𝑥1(𝑡 + 1) 𝑥2(𝑡 + 1)

𝑥3(𝑡 + 1)𝑝1(𝑥 𝑡 , 𝑢 𝑡 , 𝑑)

𝑝2(𝑥 𝑡 , 𝑢 𝑡 , 𝑑)

𝑝3(𝑥 𝑡 , 𝑢 𝑡 , 𝑑)

(b) Agregation probabilities

Figure 4-13: Approximation of the cost-to-go: two interpretations

time step ∆𝑡, using the continuous time EoM of the robotic system:

𝑥(𝑡 + 1) = 𝑓𝑑(𝑥(𝑡),𝑢(𝑡),𝑑(𝑡)) (4.83)⎡⎣ �̇�(𝑡 + 1)

𝑞(𝑡 + 1)

⎤⎦ =

⎡⎣ 𝐻−1
𝑘 [𝑅𝑘𝜏 (𝑡) − 𝑐𝑘(�̇�(𝑡), 𝑞(𝑡)) + 𝑑(𝑡)] ∆𝑡 + �̇�(𝑡)

�̇�(𝑡)∆𝑡 + 𝑞(𝑡)

⎤⎦ (4.84)

However, the equations of motion of the system can lead the system to a future

state that will not be exactly on a grid point corresponding to a discrete node, see

Fig. 4-13a. To solve this problem, the cost-to-go of the next point is computed

by interpolating the cost-to-go of the neighboring grid points, based on geometric

interpolation weight:

𝐽(𝑥(𝑡 + 1)) ≈
∑︁

𝑤𝑗𝐽(𝑥𝑗(𝑡 + 1))
∑︁

𝑤𝑗 = 1 (4.85)

The interpolation can also be interpreted as computing an expected value with prob-

abilities 𝑤𝑗 of arriving on a neighboring node 𝑗:

∑︁
𝑤𝑗𝐽(𝑥𝑗(𝑡 + 1)) = 𝐸 [𝐽(𝑥(𝑡 + 1))] (4.86)

if 𝑝
(︁
𝑥(𝑡 + 1) = 𝑥𝑗

⃒⃒⃒
𝑥(𝑡),𝑢(𝑡),𝑑(𝑡)

)︁
= 𝑤𝑗 (4.87)
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Thus the value iteration updates have the form:

𝐽(𝑥𝑖) ⇐ min
𝑢

[︁
𝑔(𝑥𝑖,𝑢) +

∑︁
𝑤𝑗𝐽(𝑥𝑗(𝑡 + 1))

]︁
(4.88)

and the optimal control policy 𝜋 : 𝑥 ↦→ 𝑢 is computed for all nodes as:

𝜋(𝑥𝑖) = argmin
𝑢

[︁
𝑔(𝑥𝑖,𝑢) +

∑︁
𝑤𝑗𝐽(𝑥𝑗(𝑡 + 1))

]︁
(4.89)

or equivalently with the probabilistic view:

𝐽(𝑥𝑖) ⇐ min
𝑢

𝐸
[︁
𝑔(𝑥𝑖,𝑢) + 𝐽(𝑥𝑗(𝑡 + 1))

]︁
(4.90)

𝜋(𝑥𝑖) = argmin
𝑢

𝐸
[︁
𝑔(𝑥𝑖,𝑢) + 𝐽(𝑥𝑗(𝑡 + 1))

]︁
(4.91)

As illustrated at Figure. 4-13b, this scheme can also be interpreted as aggregating

the continuous space state into discrete nodes with the weight factors correspond-

ing to aggregation probabilities. Hence, the problem that is solved corresponds to a

stochastic shortest path problem. Knowledge regarding stochastic distribution of dis-

turbances could be included easily with this formulation. However here, disturbances

are fixed to their expected value of zero, the certainty equivalence assumption [3].

Even if the uncertainty of the system is not modeled directly, the interpolation scheme

has an effect equivalent to including a disturbance leading to an uncertainty on the

state evolution of roughly the size of the grid.

4.6.5 Example systems

Numerical results of feedback policy to reach a fixed-target are presented for two

simple robotics system using VGA. The first system, see Fig. 4-14a, is a single-axis

linear actuator with two gear-ratios, the output dynamic is considered to be a linear

mass-damper and rotor-velocity saturations are included. The second system, see

Fig. 4-14b, is a non-linear inverted pendulum with no rotor-velocity saturation.

123



𝐼

𝑅 ∈ {𝑅1, 𝑅2}

𝜏
m

𝑥

(a) Linear mass-damper

𝐼

𝑅 ∈ {𝑅1, 𝑅2}

𝜏
𝑞

g

(b) Inverted pendulum

Figure 4-14: Two studied robotic systems

4.6.6 Implementation

The discretization parameters used are as follow: the state space is discretized into

a 101 x 101 grid (101 equally spaced positions and 101 equally spaced speed values)

leading to 10201 possible nodes, the actuator torque is discretized into 21 possible

torque values, leading to a total of 42 possible control actions including the gear ratio

selection. The state transition is computed using a time discretization of ∆𝑡 = 0.05

sec. The interpolation weights are computed using a bivariate spline approximation.

The value iterations are stopped manually when the maximum difference between 𝐽𝑘

and 𝐽𝑘+1 are many orders of magnitude smaller than the variations of 𝐽 across the

state space. The computation takes on average 200-500 iterations and 2-5 minutes.

4.6.7 Numerical results

System 1 - Linear mass-damper robot

Fig. 4-15 to 4-17 illustrate the numerical results for system 1. Three different cost

functions are explored, a quadratic cost function, a minimum time cost and minimum

energy case which is simply a special case of the quadratic cost where weight are sets

to drastically penalize control inputs over state error. The absence of color indicates

states with no solution (a constraint will be violated for any possible control actions).

Fig. 4-18 shows the closed loop behavior of the system in the phase plane when the

optimal policy is applied.
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(a) Minimum time (b) Quadratic cost (c) Minimum energy

Figure 4-15: Optimal cost-to-go 𝐽*

(a) Minimum time (b) Quadratic cost (c) Minimum energy

Figure 4-16: Optimal policy for the continuous torque command 𝜏 [Nm]

(a) Minimum time (b) Quadratic cost (c) Minimum energy

Figure 4-17: Optimal policy for the gear-ratio mode selection 𝑘
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(c) Minimum energy

Figure 4-18: Closed loop behavior with the optimal policy illustrated in the phase
plane
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Minimum time For the minimum time problem, the optimal policy is a bang-bang

law for the torque and always using highly-geared mode when possible. Note that

the bang-bang switching curve accounts for the fact the large gear ratio will be used

during the final part of the trajectory.

Quadratic cost For the quadratic cost, the gear-ratio selection optimal policy is

almost as simple as the minimum time problem except for small features in quadrant

II and IV. The more interesting result comes from the continuous torque control

law, the gains when using the large reduction ratio are larger than those when using

the small reduction ratio. This results in the controller taking action mainly at low

speed when its actions have the biggest impacts on the system, and lead to a highly

non-linear closed-loop behavior.

Minimum energy For the minimum energy controller, interestingly the mode se-

lection policy is not trivial even for this simple linear model. This shows that it does

not take much complexity to have non-trivial optimal policies for hybrid systems.

Here, the large reduction ratio is used almost only for braking, and in quadrant II

and IV the small reduction ratio is used even at low speed to coast with low viscous

resistance. Also globally the gains are much lower than the other controllers except

for zones where it is necessary to use energy to stay in the state-domain.

System 2 - Inverted pendulum robot

Figure 4-19 illustrates the computed optimal cost-to-go for the inverted pendulum

system for both a minimal time goal and a quadratic cost minimization. Figure 4-20

shows the optimal torque policy and Figure 4-21 shows the optimal gear selection

policy. The resulting closed loop behavior is illustrated in the phase plane at Figure

4-22. Figure 4-22 also shows closed-loop state trajectories and control inputs for a

simulation starting at 𝑞 = -2 rad.

For both cost functions the optimal policy for the discrete gear-ratio mode 𝑘 is

quite complex. This illustrates that optimal solutions for this type non-linear hybrid

126



(a) Minimum time (b) Quadratic cost

Figure 4-19: Optimal cost-to-go 𝐽*

(a) Minimum time (b) Quadratic cost

Figure 4-20: Optimal policy for the continuous torque command 𝜏 [Nm]
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(a) Minimum time (b) Quadratic cost

Figure 4-21: Optimal policy for the discrete gear selection 𝑘 ∈ {1, 2}

(a) Minimum time (b) Quadratic cost

Figure 4-22: Closed loop behavior with the optimal policy illustrated in the phase
plane. Two trajectories starting at 𝑞 = −2 are illustrated, blue is open-loop, red is
closed loop
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system representative of robotic systems are not trivial, even for a single axis. One

observation regarding the gear-ratio selection policy, is that the larger second gear-

ratio is used often in situation where the robot needs to be drastically deviated from

its natural motion, and the small second gear-ratio is used when the controller let the

robot move in the natural direction. This connects back with the idea of attenuating

the load-dynamics, with a large gear-ratio when it is advantageous, or leveraging the

load-dynamics, with a small gear-ratio when the natural motion is advantageous.

4.6.8 Advanced dynamic programming techniques

Value iteration is a powerful tool, but computations are intractable for high-dimensional

systems. However, there exist many approximate techniques that can be used; approx-

imate dynamic programming is also known as reinforcement learning. The approach

proposed in this section, of formulating the control of hybrid robot as a stochastic

shortest path problem, could thus be used in conjunction with many approach de-

rived in the field of artificial intelligence such as Q-learning. However, the problem of

approximating the cost-to-go, the state-space or the policies in a lower dimensional

space, to make computation tractable, is not trivial for non-linear robotic system.
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4.7 Simulation Results

4.7.1 Model-based approach

Here, the advantages of dynamically changing the gear-ratios, using the R* computed

torque controller, are illustrated using simulations of two robots: first a 1-DoF pen-

dulum, then a 3-DoF arm. Both robots are considered having VGA with two possible

gear-ratios: 1:1 or 1:10. Reference low-torque trajectories to reach target positions are

computed with a RRT algorithm. The first simulated experiment uses a single-axis

inverted pendulum equipped with a VGA, see Fig. 4-14b, with the task of reaching

the up-right position starting at the bottom. Fig. 4-23 shows the robot tracking the

reference low-torque trajectory, where at first the robot accumulates energy, using

the 1:1 gear-ratio, and then finishes the motion using the 1:10 gear-ratio. When the

gravitational forces are pushing advantageously toward the trajectory the controller

select the 1:1 gear-ratio, but when it is advantageous to fight the intrinsic actuator

dynamics instead, the 1:10 gear-ratio is selected. This can be seen by comparing the

trajectory to natural phase plane vectors as illustrated by Fig. 4-24.
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Figure 4-23: 1-DoF robot simulation: states and inputs trajectory
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(a) Reduction ratio 𝑅=1
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(b) Reduction ratio 𝑅=10

Figure 4-24: Trajectory superposed with natural dynamics vectors

In the second experiment, a 3-DoF manipulator is tasked with going from con-

figuration A to configuration B with the 3D trajectory shown at Fig. 4-25. For this

robot the controller is actively selecting the best gear-ratios matrix 𝑅𝑘 out of the

possible 23 = 8 options. Fig. 4-26 shows the control inputs activity. During the

initial falling-down phase, at around 𝑡 = 1, the robot is using 1:1 gear-ratios for all

actuators, leveraging gravitational torques. In contrast, during the final lifting phase,

at around 𝑡 = 6, the robot is using 1:10 gear-ratios for all actuators.

Configuration A

Configuration B

Figure 4-25: 3-DoF robot simulation: 3D trajectory
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Figure 4-26: 3-DoF robot simulation: control inputs trajectories

4.7.2 Comparison to fixed-gear performance

To evaluate the performance gain of actively changing the gear-ratio, simulations with

fixed gear-ratios are conducted where a regular computed torque controller tracks the

same trajectories. Results are summarized in Table 4.1, in terms of maximum absolute

torque, which relates to the required size and weight of motors, and integral of torque

squared, which relates to power consumption. Active gear-ratios selection is found

to greatly improve both metrics, especially for the 3-DoF robot trajectory where

the arm must both achieve high-speeds and also sustain a constant gravitational

load at the final configuration. Note that in those simulations high-velocity with

1:10 reductions is inhibited by friction in the motors, no maximum rotor velocity

is enforced. For the 3-DoF trajectory, active gear-shifting is found to reduce the

maximum torque required by a factor two and the integral of the torque square

by a factor 10, compared to any of the fixed-gear options. Those results show the

potential of using variable gear-ratio transmissions for huge improvements in terms of

actuator size and power consumption. Moreover, here in the simulations, the load was

always the same manipulator in different dynamic situations. If the load dynamics is

radically changing because of different contact situations with the environment, the

performance gain of changing the gear-ratios could be even greater.
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Table 4.1: Required torque comparison
Fixed gear Fixed gear Active gearshifting

1:1 1:10 1:1 or 1:10

Max Absolute Torque [Nm]

1-link robot 15 88 12
3-link robot 24 42 12

Torque squared integral
∫︀

(𝜏 𝑇𝜏 )𝑑𝑡

1-link robot 377 8133 226
3-link robot 2774 3617 295

4.7.3 Comparison to Value Iteration

For low-dimensional systems, numerical results obtained with the value iteration al-

gorithm, when discretization is very fine, can almost be seen as a ground truth for

the optimal trajectory and optimal global feedback policy. It is thus interesting to

compared the model-based approach (RRT planning + R* Computed Torque) to a so-

lution obtained with value iteration, to evaluate how far from the global optimum the

model-based control scheme is in some situations. Fig. 4-27 shows side-by-side results

for a pendulum swing-up task. The trajectory behavior of both solutions is roughly

similar, both solutions do a pumping motion to accumulate kinetic energy. The R*

Computed Torque controller however apply torques more aggressively, to track the

reference trajectory generated by the RRT algorithm which is a rough feasible but

un-optimized solution. In term of integral of torque-squared for the whole trajectory,

the value iteration solution leads to 72 (𝑁𝑚)2× 𝑠𝑒𝑐, compare to 180 (𝑁𝑚)2× 𝑠𝑒𝑐 for

the RRT with R* computed torque solution.

It is interesting that the model based approach can find a solution with a trajectory

and a gear-shifting pattern almost identical to the optimal solution found using value

iteration. However, the main drawback is the rough reference trajectory, which as

a lot of discontinuities (un-bounded jerk) because the RRT algorithm use a discrete

version of the world. A possible approach to alleviate this would be and intermediary

step: smoothing out the reference trajectory with a local optimization before it is

sent to the R* Computed Controller. By using the RRT trajectory solution as initial

conditions and also the gear shift sequence solution, a local optimization would now
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be much easier to conduct. Quadratic programming algorithms could then be used

efficiently to fine tune the reference trajectory solution.
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(a) Value Iteration
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(b) RRT with R* Computed Torque

Figure 4-27: Model based approach compared to Value Iteration

4.7.4 Fast gear-shifting inhibition

In the simulations presented so-far, fast gear-shifts were not inhibited by any of

the proposed fast-switching inhibiting schemes. Fig. 4-28 shows simulation results,

illustrating the gear-ratio command, for the same situation but with three different

controllers.

This figure shows that the hysteresis scheme is not necessary an improvement

over the point-by-point gear-ratio selection, since for the gear-shift at 𝑡 = 1.8, it

would have been better to avoid it completely. The Rollout approach is shown more

successful at filtering-out high-frequency switching. Furthermore, another interesting

advantageous side effect is observed: with the Rollout approach, the first gear-shift

is commanded slightly in advance. This can be advantageous when controlling a real

system where the gear-shift process is executed with a delay: the simulation can

model this delay and the controller can react in advance accordingly.
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Point-by-point 

Hysteresis 

Rollout 

Rollout time-horizon optimization filter-
out undesirable high-frequency gearshifts

Gear-shift are commanded 
in advance with Rollout

Figure 4-28: Fast gear-shifting inhibition

4.8 Experiments Results

This section presents experimental results, focusing on the high-level control aspect,

obtained with the experimental DSDM-arm presented in Chapter 5.

4.8.1 R* Computed Torque controller and RRT trajectory

First a trajectory following experiment using only the wrist joint of the robot is

presented. A 1.5 Kg load is mounted on the end-effector, and the task is to bring it

from the bottom position (𝑞 = −𝜋) to the up-right position (𝑞 = 0) using as little

torques as possible. This corresponds to the inverted pendulum swing-up problem.

An RRT trajectory planning algorithm is used to search for a feasible low torque

trajectory reaching the goal, see Fig. 4-29. Then the R* Computed Torque Controller

is used to track the reference trajectory. The experimental results are shown in Fig.

4-30. Results show that the robot is using its 1:23 gear-ratio to accumulate kinetic

energy by swinging the arm link back and forth. Also the R* controller selects the

1:474 gear-ratio automatically to attenuate the load dynamics, when the actuator has

to force the robot to stay with the trajectory. Interestingly, the reference trajectory
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Figure 4-29: RRT algorithm searching for a low torque solution
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Figure 4-30: Experimental trajectory and control inputs
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was planned so the robot would accumulate enough kinetic energy to swing straight

up with the last swing. However, in the experiment, the dissipative forces are greater

than anticipated by the planner, and the last swing is too small (the robot almost

stop at 𝑞 = −0.9 at 𝑡 = 2.6 in Fig. 4-30). Then, the R* controller automatically

engage the large 1:474 gear-ratio, to continue converging on the desired trajectory

with much smaller torques than those required if keeping using the 1:23 gear-ratio

in this situation (no momentum and a large gravitational force to overpower). This

illustrates that including the gear-ratio selection in the feedback loop also increases

the robustness of the system. Without the 1:474 gear-ratio option, tracking would

have failed as the computed torque with 1:23 in this situation was greater than the

maximum allowable motor torque.

4.8.2 R* Sliding Mode controller

Fig. 4-31 shows four additional experiments with the wrist demonstrating how dis-

turbance rejection can be improved by using the R* Sliding Mode controller. Here

the controller is only given a simple fixed point-target in all cases. First, when a

low uncertainty bound is given to the controller, the robot can reach its target when

unloaded (a) but failed when an unknown (to the controller) 0.4 Kg load is added to

the end-effector (b). However, when a larger uncertainty bound is given, the robot

can reach its target in both cases, unloaded (c) and loaded (d).

Note that the discontinuous torque required to guarantee convergence despite dis-

turbances is bigger for the case when the disturbance bound is increased, and is greatly

reduced when using the large gear-ratio at low speeds (since the required discontin-

uous gain is inversely proportional to the gear-ratio). In a practical implementation,

smoothing techniques should be implemented to avoid exciting the unmodeled high-

frequency modes with the torque chattering.
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Figure 4-31: Experiments with the R* Sliding Mode controller

4.8.3 2-DoF experiments

Fig. 4-32 and Fig. 4-33 show an experiment using 2-DoF, the wrist joint and the

elbow joint of the DSDM-Arm. The goal is a fixed joint configuration, and the R*

Sliding Mode controller, including the Rollout gear-selection scheme, is used. Results

shows success in tracking the goal for both DoF. Also, it is possible to observe that

the downshift at 𝑡 = 2.6 allows for a drastic reduction of the necessary discontinuous

torque to guarantee convergence, illustrating the advantage of isolating the motor

from the external load with a large reduction ratio in some situations.

Video of experiments and simulations presented in this chapter are available at the

following links: https://youtu.be/-jo6dzvtfY4 and https://youtu.be/rx6dt8TYXus.
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Figure 4-32: R* Sliding Mode controller tracking a target with 2 DoF: trajectory
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4.9 Summary

In this Chapter, feedback laws for controlling both the torques and gear-ratios of

robotic systems equipped with variable transmissions are proposed. A simple dynamic

model is proposed, and analytical solutions are derived for the optimal gear-ratios on

a known trajectory. The approach is extended to trajectory tracking control schemes

(R* Computed Torque and R* Sliding Mode), which can guarantee convergence on a

reference trajectory and execute locally optimal gear-ratios based on state feedback.

An approach (Rollout gear-selection) is also proposed to inhibit fast gear-shifting

by optimizing over a receding time-horizon. An alternative computational technique

(Value iteration) is also explored to generate global control policies for both torque

and gear-ratios for simple systems. Simulation and experimental results demonstrate

the effectiveness of the proposed controllers.

4.10 Potential directions of further development

Here are a few possible axis of further development:

∙ Improving the proposed control approaches:

– Using reinforcement learning to learn good gear-selection policies;

– Explore adaptive controllers;

– Decentralizing the gear-ratios selection decisions.

∙ Explore more specific applications:

– Legged locomotion or manipulation including contacts;

– Interaction tasks requiring a wide range of impedance.

∙ Open research questions not addressed:

– Controlling under-actuated robots using VGA;

– Efficient trajectory optimization for robots using VGA.

140



Chapter 5

The DSDM Lightweight Arm

Mechanical Design, Control and Software Architecture

"What I cannot create, I do not understand."

– Richard Phillips Feynman

This chapter present a novel 3-DoF robotic arm prototype using DSDM actuators,

see Fig. 5-1 and Fig. 5-2. The mechanical design of the DSDM actuators and the

robotic arm is discussed, as well as the control and software implementation.

Figure 5-1: Second joint of the DSDM-Arm
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Figure 5-2: DSDM-Arm: 3-DoF custom arm using 3 DSDM actuators
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5.1 Mechanical Design

This section describes the mechanical design of the arm. The goal was to develop a

research platform to validate experimentally the ideas proposed in this thesis, but also

to demonstrate the advantages of robotic systems with variable gear-ratio actuators.

This arm is thus design to be light-weight compared to robotic arm of similar size,

maximum speeds and forces.

5.1.1 DSDM actuator design

Three actuator prototypes were developed for the shoulder, elbow and wrist DoF of

the arm, with different mechanical advantages. The shoulder actuator is designed

to drive a ballscrew, for a large efficient reduction, and the others actuators are

embedded into revolute joints.

3-port differential gear-box

One of the main design challenge arising from the DSDM architecture, is the me-

chanical implementation of the differential junction between the two motors and the

output. In a car powertrain the differential (required to allow a single motor to trans-

mit torque to two wheels rotating at different velocities) is typically implemented

with bevel gears. The approach taken here is different, a planetary set of gear is

used, where the ring-gear (typically fixed) is mounted on bearing and connected to

a parallel shaft. The connection to the parallel shaft is done with a stage of spur

gears, with external gear teeth on the ring-gear assembly and another spur gear on

the parallel shaft, see Fig. 5-3a. This configuration allows for all the shafts in the

transmission and the motors to be parallel, which simplify the design. In all proto-

types, the correspondence between planetary ports and inputs/outputs is the same,

and described by Table 5.1. This correspondence is picked to match the kinematic

relationships arising from sizing constraints in the gearing. From eq. (3.1), with a

typical ratio in the planetary of 𝑁 = 3 (planet-gear size over internal ring-gear size),

and a reduction ratio of 𝑟2 = 4 for the parallel shaft connection (smaller 𝑟2 would
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require a large distance between parallel shafts leading to larger transmission volume

and larger 𝑟2 is difficult to achieve in a single spur-gear stage), it leads to:

𝑁 ≈ 3 𝑟2 ≈ 4 ⇒ 𝑅1 = 𝑁 + 1 ≈ 4 𝑅2 = 𝑟2
𝑁 + 1

𝑁
≈ 5 (5.1)

Hence, the largest reduction through the differential gearing is assigned to M2 and

the smallest reduction to M1. This choice is also motivated by the fact that the path

going through the ring-gear and the additional stage, would lead to more friction and

inertia which is less a concern for high-force mode than for high-speed mode.

Rotating assembly Role

Planet carrier assembly Actuator output
Parallel shaft (connected to the ring-gear) Motor M2 input (high-force)

Sun gear shaft Motor M1 input (high-speed)

Table 5.1: Planetary gearing inputs and outputs

(a) Linear Actuator (b) Revolute Joint

Figure 5-3: Differential gear-box implemented with a planetary

Fig. 5-3a shows the designed differential gearing for the linear actuator prototype

and Fig. 5-3b shows the designed differential gearing for the revolute actuators.

The first design (a) was using only off-the-shelf gears, which led to a big assembly.
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For the second design (b) a lot of effort was put into downsizing the assembly. For

instance, custom ring gears with both internal and external gear teeth were designed,

to minimize the diameter of the ring-gear assembly.

Brake

The second challenging mechanical component in a DSDM, is the brake. As discussed

in Chapter, 3 control schemes can be used to bring M1 velocity to zero before engaging

the brake, hence the brake only has to be a locking mechanism and does not have to

be able to dissipate power. However, during high-force mode, large holding torques

must be sustained. From eq. (3.2), the holding torque requirement can be computed

in term of desired maximum output force during high-force mode, or by the maximum

M2 motor torque:

𝜏𝑏𝑟𝑎𝑘𝑒 =
max [𝜏𝑜𝑢𝑡𝑝𝑢𝑡]

𝑅1

=
𝑅2

𝑅1

max [𝜏2] (5.2)

Hence, the design of the brake is coupled with the desired ratio between 𝑅1 and 𝑅2.

If the high-force mode gear-ratio 𝑅2 is 10 times greater than the high-speed mode

gear-ratio 𝑅1, than the brake must be able to hold torques 10 times greater than M2

maximum output torque.

Because it allows for simpler and modular designs, it was decided to use off-the-

shelf Maxon motor brakes that can be mounted directly on a motor assembly. All

actuator designs use the Maxon motor brake AB-28, which have a holding torque

capability of 0.4 Nm and weight 51 g.

Revolute joint actuators

Fig. 5-4 shows the prototype for a revolute DSDM actuator. The elbow and wrist

actuator have the same design with the exception of using different gear-head for

the motors, leading to overall different gear-ratios 𝑅1 and 𝑅2. The design for the

revolute actuator consists of a custom housing holding both the planetary differential

and support bearings for the output. Discrete Maxon motors with gear-heads of the
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Brake

High-speed motor

High-torque motor

Differential

Figure 5-4: Revolute joint prototype with DSDM actuation

series GP32 can be attached to the back of the gear-box. It is thus possible to attach a

wide-range of motor, from 20 watts to 200 watts, and with a wide range of additional

gear-head reduction. Fig. 5-5 shows the internal architecture of the system with

a section view of the CAD model, and Fig. 5-6 shows all the internal parts of the

actuator assembly.

A Maxon motor of the series RE-25, with maximum continuous power of 20 watts

and torque 0.03 Nm, is used for M2, and motor of the series RE-35, with maximum

continuous power of 90 watts and torque 0.1 Nm, is used for M1. The revolute

actuator prototypes use additional gear-head reduction for both motor, to increase

both value of total reduction 𝑅1 and 𝑅2, to reach useful range of torque and speeds,

as illustrated at Table 5.2.

Table 5.2: Specifications of revolute actuator prototypes
Role 𝑅1 𝑅2 M1 power M2 power Max. Torque Max. Velocity

𝑤1

𝑤𝑜

𝑤2

𝑤𝑜
Watts Watts Nm RPM

Wrist 23 474 100 20 14 220
Elbow 72 1225 100 20 37 70

Note that the ratio 𝑅2/𝑅1 is always keep at a factor of about 20, to match the

capability of the brake according to eq. (5.2). Also, the specifications of maximum
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Figure 5-5: Section view of the CAD model of the revolute actuator prototype

Figure 5-6: Internal components of the revolute actuator prototype
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torque, are given in term of very conservative continuous value advertised by Maxon.

Better performance could be obtained in term of peak torque during short time pe-

riods. The whole assembly of embedded DSDM actuator and support bearings for

the revolute joint weight about 1.5 Kg. About half of this weight is due to Maxon

motor assemblies (motors, gear-heads and brakes) and the other half is the custom

built transmission and joint support. This value should not be taken as a state-of-

art comparison reference to other actuation technologies since 1) no optimization for

weight has been conducted, 2) industrial DC Maxon motor are don’t have the best

available power density and 3) the design was focus on ease of implementation and

modularity.

Linear Actuator

To achieve the large reduction needed for the shoulder actuator of the robot, while

keeping the mechanism back-drivable during high-speed mode, a large-lead ballscrew

linear stage is used. Fig. 5-7 shows the linear actuator assembly, and Fig. 5-8 shows

the internal components.

Figure 5-7: Linear actuator assembly in a preliminary test configuration

The linear actuator assembly was initially designed as an experimental test bench

for the DSDM technology [14]. Unlike the revolute actuators, the transmission is

sealed and lubricated with oil and flexible coupling are used to connect all the com-
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Figure 5-8: Internal components of the DSDM linear actuator

ponents. The linear actuator is thus more heavy duty, bigger and heavier than the

revolute actuators. However, the linear actuator assembly is fixed to the ground and

not a moving part of the DSDM-Arm, hence drawback of its weight and volume are

limited.

Two Maxon RE-25 motors capable of continuous operation of 20 Watts and 0.03

Nm are used for both M1 and M2. Only M2 is equipped with a gear-head for the linear

actuator; the reduction provided by the ball-screw and the differential are sufficient

for the high-speed mode. Overall gear-ratios in the design and resulting specifications

are given at Table. 5.3.

Table 5.3: Specifications of the linear actuator prototype
𝑅1 𝑅2 Lead M1 power M2 power Max. Force Max. Velocity
𝑤1

𝑤𝑜

𝑤2

𝑤𝑜
mm/rev Watts Watts N m/s

4 72 20 20 20 600 0.7

It is interesting to note that any commercially available linear actuator match-

ing similar specifications of force and speed are much bigger and heavier than the

presented linear actuator prototype, even with this un-optimized design. With a

single gear-ratio, commercial actuator would need to use a DC motor of roughly

0.7 𝑚
𝑠
× 600𝑁 = 0.4𝑘𝑊 , almost 2/3 of a horsepower. A Maxon motor (in the same
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DC category) weight over 2 kg to meet those specifications, compared to two 20 W

motor weighting each about 130g. Of course, the linear actuator with a single big

motor would be much more powerful than the presented linear actuator, but such

power might be unnecessary. There is a need for actuators that can be both fast and

strong, not necessary powerful, and very lightweight.

5.1.2 Arm design

The DSDM-arm is built using very lightweight square tubing of carbon fiber. 3D

printed plastic (ABS) parts are designed to make the junction between revolute joint

assemblies and the tubes. The revolute joint assemblies are joined to printed parts

with a bolt pattern, and printed parts are simply clamped on the square tubes. This

allows for very quick reconfiguration of the arm, tubes of different lengths can be used

and revolute joints can be mounted at different angles on the tubes. The carbon fiber

tube between the shoulder and the elbow has a cross section of 2"x2" while the tubes

linking elbow-wirst and wrist-end-effector have a 1"x1" cross section.

Shoulder 4-bar mechanism

A 4-bar mechanism is designed to transmit the linear actuator motion to the revolute

shoulder joint, see Fig. 5-9. This combination of ballscrew with a 4-bar mechanism

allows for a very large mechanical advantage to be achieved, and with very good

transmission efficiency.

Figure 5-9: Shoulder 4-bar mechanism
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The geometry of the 4-bar mechanism has been designed to achieve the desired

range of angles for the shoulder, and keeping the kinematic relationship, between

linear displacement and shoulder angle, as linear as possible. Fig. 5-10 illustrates

the kinematic relationship of the designed mechanism. Note that in the software

controlling the arm, this kinematic relationship is computed explicitly for the inverse-

kinematic but the forward kinematic is approximated with a numerical interpolation

(when computing the shoulder position based on encoder measurements of the linear

actuator). The shoulder forward kinematic has a unique solution for the range of

physically possible linear actuator displacement.
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Figure 5-10: Shoulder 4-bar mechanism kinematic

The mechanical advantage between linear motion and shoulder rotation is thus

on average about 360 deg/m, or a ratio of 50:1 from ballscrew rotation to shoulder

rotation. This correspond to average total reduction ratios of 𝑅1 = 200 and 𝑅2 =

3600. Surprisingly, the shoulder joint mechanism is backdrivable, even during high-

force mode. This illustrates the efficiency of ballscrew-based reduction mechanisms.

During high-speed mode, a human can easily move the first joint of the robot with

almost no resistance. During high-force mode, the reflected inertia is very large, but

a human can still make the shoulder joint move very slowly by pushing hard (with

open circuit for the motor). However, if there is a small damping force at M2 motor
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shaft (by closing the motor electric circuit for instance), than back-driving the system

is almost impossible.

Arm Specifications

Table 5.4 shows the arm specifications at the joints in term of force, speed and reflected

motor inertia. Table 5.5, shows the DSDM arm joint specifications transposed to end-

effector space where they are more meaningful. For doing so, a configuration where

all link are aligned and tube lengths of 0.5 m, 0.25 m and 0.25 m is assumed, see Fig.

5-11. Then the maximum force, maximum speed and impedance at the end-point,

due to each actuator taken independently, are computed. All in all, with the designed

reduction ratios, during high-speed mode the end-point inertia due to reflected motors

inertia is negligible and speed can reach multiple meters per second. With the high-

force mode, the end-point force capability reach 50 N (limited by the wrist) even

in this most disadvantageous fully extended configuration, with the end-effector at

arms’ length.

Table 5.4: DSDM-Arm joint specifications
Range Reduction Max. Velocity Max. Torque Inertia
deg RPM Nm kg m2

HF HS HF HS HF HS HF HS
Wrist ∞ 474:1 23:1 10 220 14 2 0.22 0.004
Elbow ∞ 1225:1 72:1 4 70 37 7 1.5 0.04
Shoulder 120 3600:1 200:1 1 25 108 6 13 0.04

0.25m 0.25m 0.5m

Wrist Elbow Shoulder

End-point Coordinates

Figure 5-11: Arm configuration used to compute end-point specifications

Note that the DSDM-Arm is strong enough to sustain its own weight in all con-

figurations when using high-force (HF) modes. However, this is not the case when
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Table 5.5: DSDM-Arm end-point specifications with the configuration illustrated at
Fig. 5-11

Max. Velocity Max. Force Reflected Mass
m/s N kg

HF HS HF HS HF HS
Wrist 0.25 5 56 8 3.5 0.06
Elbow 0.2 3.5 74 14 6 0.16
Shoulder 0.1 2.5 108 6 13 0.04

using the actuators in high-speed (HS) mode.

5.1.3 Limitations and recommendations for improvements

The main limitations of the DSDM-Arm are due to 1) backlash in the actuator gearing

and 2) compliance in the structure. For the ease of implementation, the custom built

actuator transmissions use only standard spur gears. The flaw of this design is that

the output has a backlash of a few degrees. While it was not a critical issue for

demonstrating the proposed control scheme of this thesis, it would be problematic

for using the DSDM-Arm platform in task involving precise positioning of the end-

effector. The second issue is the arm compliance due to 3D printed plastic parts used

to connect the joints to the carbon fiber tubes.

Regarding the backlash in the gearing, this could be avoided by spending more

engineering effort to make thorough precision gear-box design. For the compliance

in the structure, using metal parts could solve the issue but would lead to a heavier

robotic system. Instead, it would be interesting to use 3D printed parts reinforced

with carbon fiber, such as the Markforged technology.
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5.2 Control and Software Architecture

This section discusses implementation of the control algorithms for the DSDM-Arm.

5.2.1 Global architecture

Fig. 5-12 illustrates the hierarchical control architecture for the DSDM-Arm. At the

very high-level an operator gives commands to the system using a wireless xbox-360

controller, and at the very low level, pwm signal are sent to motor power-electronic

circuits. The physical platforms include a desktop computer running Ubuntu 14.04

and ROS [50], and multiple micro-controllers.

Figure 5-12: Control software architecture

The high-level motion planning algorithm, the centralized robot controller is run-

ning on the desktop. Each motor as its own micro-controller handling the low-level

current control loop. The plan for the DSDM controllers, was to decentralize them

on one individual micro-controllers for each actuators. However, at the time of writ-

ing these lines, all three DSDM controllers are programs running on the desktop,

which communicates directly with the six motor boards. Communication between

the desktop and motor micro-controllers is done over USB connections.
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5.2.2 ROS architecture

Fig. 5-13 and 5-14 illustrates the software architecture in ROS, those figures were

generated directly from ROS using the rqt_graph command. Each ellipse, nodes us-

ing the ROS nomenclature, represent an independent program, and arrows represent

communication pipelines in between those programs, topics using the ROS nomen-

clature. All programs were written in python with the exception of the FlexSEA

drivers, handling the communication with motor micro-controllers, which are written

in C++.

Figure 5-13: ROS architecture for the full robot (feedback connections are omitted)

Figure 5-14: ROS architecture for controlling a single DSDM actuator directly
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5.2.3 Navigation

The joy node read button states of the wireless controller, and broadcast them when

button state changes. This program is available as an open-source ROS package.

The nav node then maps buttons to operating modes and desired goals. Multiple

operating modes are available: sending a configuration goal to the planner, sending

a reference directly to the robot controller, or manually controlling actuator torques

and gear-ratios.

5.2.4 Trajectory planning

The plan node implement the RRT algorithm, as described in sec. 4.5, to gener-

ate feasible trajectories. When receiving a new configuration goal, the node reads

the current states, search for a feasible trajectory, and then broadcast the reference

trajectory solution. Execution time of the search is stochastic, but is on the order

of about 1 sec for 1-DoF systems and 10 sec for 2-DoF systems, with the custom

implementation.

5.2.5 State feedback

The FlexSEA driver nodes are programed to continuously request and receive encoder

measurements from motor boards at a rate of 500 Hz. The DSDM controller nodes

then read those values, process them (kinematic relationship based on gear-ratios and

filtered differentiation to compute velocities), and broadcast position and velocity of

actuator output coordinates. The obs node then read all actuator measurements

and transposes them to joint coordinates. This step is trivial except for the 4-bar

mechanism of the shoulder joint for which an interpolation function synthesized offline

is used.

5.2.6 Robot controller

The master robot controller, loads a reference trajectory, and compute actuator

torques and gear-ratios in closed-loop based on state feedback at the rate of 500
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Hz. Multiple control policies from chapter 4 are implemented:

∙ R* Computed Torque controller

∙ R* Sliding Mode controller

∙ Rollout gear-selection

For controlling only 1-DoF with two gear-ratios options, the Rollout gear-selection

can run with a time horizon of 1-2 sec without slowing down the 500 Hz rate of

the controller. However, when running the controller for 2-DoF with four gear-ratios

options, the predictive simulations had to be simplified by using very rough integration

steps for the scheme to run at 500 Hz. This should not be taken as a computational

limit of the approach since here non-optimized inefficient python code was used.

5.2.7 DSDM actuator controllers

DSDM controllers are currently implemented as ROS nodes. They receive a torque

and a gear-ratio command from the master robot controller and send current set-

points and brake command to the motor drivers, also at 500 Hz. DSDM controller

nodes implement the control schemes described in Chapter 3.

5.2.8 Motor drivers

The motor are controlled by open-source FlexSEA Execute motor board [10]. Those

boards handle low-level high-bandwidth current loops and encoder signal processing.

They also include a circuit to control a brake. All those functions are made available

from the FlexSEA driver nodes. Here the driver are set to request, receive and

broadcast all sensor information from the Execute boards constantly at 500 Hz, which

set the tempo for the feedback loops.

5.2.9 Limitations and recommendations for improvements

The initial control implementation for DSDM actuator prototypes used a NI compact

rio where feedback loops were running at very high-sampling rate on a FPGA and
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a real-time micro-controller [14]. This type of system was however poorly suited to

scale to multi-DoF systems, and implementing complex planning algorithms. Hence,

for the DSDM-Arm the architecture was design to: easily scale to multiple DoF,

make possible the use of high-level programming languages and facilitate connections

with motion planning algorithms. However this came at the cost of losing some

control on the low-level control loops implementations. The performance of actuator-

level DSDM controllers has decreased with the new implementation. To improve

the system, DSDM controllers should be implemented directly on micro-controllers,

handling all actuator-level functions, at a higher sampling rate. One implementation

issue that could also be improved, is that velocity measurements, at low speeds in

high-speed mode, are very noisy because of resolution problems. An encoder with

improved resolution, or direct an angular velocity sensor should be used to improve

the performance.
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Chapter 6

Conclusion

This thesis explored the idea of robotic systems using actuators with variable trans-

missions, i.e. where the reduction ratio can be dynamically changed online. Although

variable transmissions are used extensively in vehicle powertrains, this concept is

highly under-explored and under-exploited in the field of robotics, despite huge po-

tential gains as demonstrated in this thesis. Variable gear-ratios actuators can be

used not merely for increasing maximum torque and speed, but also to significantly

advantageously alter the dynamic properties of robots including load sensitivity, ro-

bustness and backdrivability. This thesis main contributions are 1) DSDM actuators:

a solution to make gear-shifting transitions adapted to a wide range of robotic tasks,

and 2) Control approaches to synthesized optimal closed-loop gear-ratios selection

policies, for a very generic class of robotic systems using variable transmissions.

Chapter 2 briefly discussed manufacturing applications, where actuators must

meet challenging requirements, which could hugely benefit from the proposed tech-

nologies developed in this thesis. Chapter 3 presented the DSDM actuation tech-

nology that can change its effective reduction ratio, between a small reduction and

a very large reduction, quickly and seamlessly even in highly dynamic situations.

Chapter 4 explored the idea of closed-loop selection of gear-ratios for multi-DoF

robotic systems, and proposed control schemes that leverage all the advantages of-

fered by variable transmissions. Analytical optimal solutions, for a class of robotic

systems, and guarantees in terms of stability and chattering behavior are also derived.
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Chapter 5 presented the DSDM-Arm, a novel lightweight robotic system using three

DSDM actuators, which was used for experimental validation of all the proposed

control schemes and also to demonstrate the advantages of robotic systems equipped

with variable gear-ratio actuators. Multiple experiments with the DSDM actuators

demonstrated the salient features and the ability of the DSDM technology to change

gear ratio quickly and seamlessly even in very dynamic situations, including impacts.

Simulations and experiments with the DSDM-Arm were presented and demonstrated

that actively changing gear ratios using the proposed control algorithms can lead to

an order-of-magnitude reduction of necessary motor torque and power.

The author would like encourage all researchers in the field of robotics, to question

the single-gear electric-motor actuation paradigm, and envisioning variable transmis-

sions for applications that require speed and force in a small package. The field is

appealing from both an engineering and a scientific perspective. On one hand, it

is a very practical solution to relevant power transmission problems: cars, bicycles,

electric drills, etc., use multiple speed transmissions. On the other hand, it makes the

problem of controlling non-linear robotic systems: even more non-linear and hybrid.

Exciting research questions are raised that are both challenging and worth solving,

and the author hopes you joint him in visiting this realm where there be dragons.
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Appendix A

Robot Dynamics Framework

In this appendix, the nomenclature and the mathematical equations, used to represent

the behavior of robotic systems in thesis, are presented. Table A.1 define all the

variables.

A.1 Equations of motions

The general form of the equations of motion of robotic systems (interconnected rigid

body driven by actuators) is:

𝐻(𝑞)𝑞 + 𝐶(𝑞, �̇�)�̇� + 𝐷�̇� + 𝑔(𝑞) = 𝐵(𝑞)𝜏 (A.1)

where 𝑞 is the generalized coordinates vector, 𝐻 is the inertia matrix, 𝐶 is the Cori-

olis/centrifugal force matrix, 𝐷 is a damping matrix, 𝑔 is the gravitational forces

vector and 𝐵 is a matrix mapping motor torques 𝜏 into generalized forces. On occa-

sion, dependence notation is dropped and 𝑐 is used to represent all state dependent

forces, leading to the short form:

𝐻𝑞 + 𝑐 = 𝐵𝜏 (A.2)
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Table A.1: Nomenclature
Scalars

𝑛 : number of DoF
𝑚 : number of actuators
𝑐 : number of contact constraints
𝑜 : number of end-effector coordinates
𝑙 : number of discrete operating modes
𝑖 : index for DoF
𝑘 : index for the operating mode

Vectors

𝜏 : Electromagnetic motor torques 𝑚
𝑞 : Joint coordinates position vector 𝑛
𝑥 : Dynamic state vector [�̇�; 𝑞] 2𝑛
𝑤 : Motor coordinates velocity vector 𝑚
𝑔 : Gravitational forces vector 𝑛
𝑐 : Sum of state-dependent generalized forces 𝑛
𝑑 : Unknown disturbance forces 𝑛
𝜏 𝐼 : Sum of intrinsic actuator forces 𝑚
𝜏𝐸 : Sum of extrinsic forces 𝑛
𝑎 : Actuator coordinates position vector 𝑚
𝜑 : Constraint vector 𝑐
𝑓 𝑐 : Contact forces vector 𝑐
𝑓 𝑒 : End-effector forces vector 𝑜
𝑝 : End-effector position vector 𝑜

Matrices

𝐻 : Inertia matrix 𝑛 x 𝑛
𝐷 : Damping matrix 𝑛 x 𝑛
𝐶 : Coriolis/Centrifugal forces matrix 𝑛 x 𝑛
𝐵 : Motor torques / generalized forces matrix 𝑛 x 𝑚
𝑅 : Gear-ratio matrix 𝑚 x 𝑚
𝐼 : Intrinsic actuator inertia matrix (diagonal) 𝑚 x 𝑚
𝐵 : Intrinsic actuator damping matrix (diagonal) 𝑚 x 𝑚
𝐽𝑎 : actuator coordinates / joint coordinates Jacobian matrix 𝑚 x 𝑛
𝐽𝑒 : task-space coordinates / joint coordinates Jacobian matrix 𝑜 x 𝑛
𝐽𝑐 : Contact constraints Jacobian matrix 𝑐 x 𝑛
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Figure A-1: Coordinate systems

A.2 Coordinate systems

Fig. A-1 shows all the used coordinates systems. The following equation represents

the most general case:

𝐻𝑘𝑞 + 𝐶𝑘�̇� + 𝐷𝑘�̇� + 𝑔 = 𝐽𝑇
𝑎 (𝑞)𝑅𝑇⏟  ⏞  
𝐵(𝑞)

𝜏 + 𝐽𝑇
𝑒 (𝑞)𝑓 𝑒 + 𝐽𝑇

𝑐 (𝑞)𝑓 𝑐 (A.3)

Where matrices with subscript 𝑘 include the motor-rotor dynamics contributions

when the gear-ratio configuration 𝑅𝑘 is used:

𝐻𝑘 = 𝐻 + 𝐽𝑇
𝑎 𝑅

𝑇
𝑘 𝐼𝑎𝑅𝑘𝐽𝑎 (A.4)

𝐶𝑘 = 𝐶 + 𝐽𝑇
𝑎 𝑅

𝑇
𝑘 𝐼𝑎𝑅𝑘𝐽𝑎 if 𝑅 and 𝐽𝑎 are diagonal (A.5)

𝐷𝑘 = 𝐷 + 𝐽𝑇
𝑎 𝑅

𝑇
𝑘𝐵𝑎𝑅𝑘𝐽𝑎 (A.6)

Coordinates transforms are defined by:

�̇� = 𝐽𝑒(𝑞)�̇� from joint-space to end-effector (A.7)

�̇� = 𝐽𝑎(𝑞)�̇� from joint-space to actuator-space (A.8)

𝑤 = 𝑅�̇� from actuator-space to rotor-space (A.9)

Note that the distinction between actuator output coordinates and joint coordinates,

useful for the DSDM-Arm shoulder mechanism, is omitted for brevity in Chapter 4.
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A.3 Contact

This section presents equations for representing contact situations.

A.3.1 Kinematic constraints

If a robotic manipulator enter contact with a fixed object, then some DoF are con-

strained. In the case of a bilateral constraint, the constraint can be expressed as:

𝜑(𝑞) = 0 (A.10)

The time-derivative of the constraint must also be equal to zero, which gives some

constraints in terms of velocity and acceleration:

𝑑𝜑(𝑞)

𝑑𝑡
= 𝐽𝑐(𝑞)�̇� = 0 (A.11)

𝑑2𝜑(𝑞)

𝑑𝑡2
= 𝐽𝑐(𝑞)𝑞 + 𝐽𝑐(𝑞)�̇� = 0 (A.12)

when 𝐽𝑐 is the constraint Jacobian:

𝐽𝑐(𝑞) =
𝑑𝜑(𝑞)

𝑑𝑞
(A.13)

A.3.2 Constraint forces

The constraint Jacobian can be used to map constraint forces 𝑓 𝑐 to generalized forces

in the EoM:

𝐻𝑞 + 𝑐 = 𝐵𝜏 + 𝐽𝑐(𝑞)𝑇𝑓 𝑐 (A.14)

Solving for 𝑞 in eq. (A.14) and substituting in eq. (A.12), it is possible to get and

expression for the constraint forces 𝑓 𝑐 as a function of states and applied torques:

𝑓 𝑐 =
(︀
𝐽𝑐𝐻

−1𝐽𝑇
𝑐

)︀−1
(︁
𝐽𝑐𝐻

−1[𝑐−𝐵𝜏 ] − 𝐽𝑐(𝑞)�̇�
)︁

(A.15)
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Alternatively, it possible to solve for acceleration 𝑞 and constraints forces 𝑓 𝑐 simul-

taneously by solving the following system of equations:⎡⎣ 𝐻 −𝐽𝑇
𝑐

𝐽𝑐 0

⎤⎦⎡⎣ 𝑞

𝑓 𝑐

⎤⎦ =

⎡⎣ 𝐵𝜏 − 𝑐

−𝐽𝑐�̇�

⎤⎦ (A.16)

A.3.3 Impact impulsive behavior

When the robot first enters contact with a fixed object, impulsive contact forces will

act on the system. Integrating eq. (A.14) over the short impact interval gives:

∫︁
(𝐻𝑞 + 𝑐)𝑑𝑡 =

∫︁
(𝐵𝜏 + 𝐽𝑐(𝑞)𝑇𝑓 𝑐)𝑑𝑡 (A.17)

𝐻�̇�+ −𝐻�̇�− = 𝐽𝑐(𝑞)𝑇
∫︁

𝑓 𝑐𝑑𝑡 (A.18)

where any non-impulsive forces are neglected during the short impact interval. Pro-

jecting onto constrained coordinates (multiplying by 𝐽𝑐𝐻
−1) gives:

𝐽𝑐�̇�
+ − 𝐽𝑐�̇�

− = 𝐽𝑐𝐻
−1𝐽𝑇

𝑐

∫︁
𝑓 𝑐𝑑𝑡 (A.19)

Then assuming a sticky inelastic impact (no bouncing), then the constraint is re-

spected after the impact (𝐽𝑐�̇�
+ = 0) and it is possible to solve for the impact force:

∫︁
𝑓 𝑐𝑑𝑡 = −

(︀
𝐽𝑐𝐻

−1𝐽𝑇
𝑐

)︀−1
𝐽𝑐�̇�

− (A.20)

and also for the velocity after the impact:

�̇�+ = −
[︁
𝐼 −𝐻−1𝐽𝑇

𝑐

(︀
𝐽𝑐𝐻

−1𝐽𝑇
𝑐

)︀−1
𝐽𝑐

]︁
�̇�− (A.21)

Or change in velocity:

∆�̇� =
[︁
𝐻−1𝐽𝑇

𝑐

(︀
𝐽𝑐𝐻

−1𝐽𝑇
𝑐

)︀−1
𝐽𝑐

]︁
�̇�− (A.22)
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Alternatively, it possible to solve for velocity �̇�+ and impulsive forces
∫︀
𝑓 𝑐𝑑𝑡 si-

multaneously by solving the following system of 𝑛 + 𝑐 equations:⎡⎣ 𝐻 −𝐽𝑇
𝑐

𝐽𝑐 0

⎤⎦⎡⎣ �̇�+∫︀
𝑓 𝑐𝑑𝑡

⎤⎦ =

⎡⎣ 𝐻�̇�−

0

⎤⎦ (A.23)

A.4 Hybrid system dynamics

Hybrid dynamical system can be represented in the general form:

Continuous evolution:
(︁
�̇�, �̇�

)︁
= ( 𝑓𝑘(𝑥,𝑢,𝑑) , 0 ) (A.24)

Discrete jumps:
(︀
𝑥+, 𝑘+

)︀
=

(︀
ℎ𝑖𝑗(𝑥

−,𝑢−), 𝑗
)︀

if (𝑥, 𝑘,𝑢) ∈ 𝐷𝑖𝑗 (A.25)

where 𝑥 is a continuous state vector, and 𝑘 is a discrete mode and 𝐷𝑖𝑗 is the domain

mapping conditions leading to a transition 𝑘 : 𝑖 → 𝑗. For robotic systems, the

discrete mode can represent discrete configurations of the robot , like gear-ratios in

this thesis, and contact/non-contact conditions. The jump map then represents the

impulsive response when contact is made.

A.4.1 Switched system

A restricted class of hybrid system, called switched system, are hybrid systems for

which the jump map for continuous state is the identify function:

Continuous evolution:
(︁
�̇�, �̇�

)︁
= ( 𝑓𝑘(𝑥,𝑢,𝑑) , 0 ) (A.26)

Discrete jumps:
(︀
𝑥+, 𝑘+

)︀
=

(︀
𝑥−, 𝑗

)︀
if (𝑥, 𝑘,𝑢) ∈ 𝐷𝑖𝑗 (A.27)

Switched system where the discrete mode is a control input

In the situation where the discrete operating mode 𝑘 is a control input, then there is

no need to keep track of discrete mode evolution and only the piece-wise continuous
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differential equations are sufficient to model the system evolution:

�̇� = 𝑓𝑘(𝑥,𝑢,𝑑) (A.28)

The model for robots using variable transmissions with discrete configurations, that

is used in Chapter 4, is of this category.
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Appendix B

Mathematical Derivations

B.1 Simplified equations of motion for diagonal R

Here the derivation of the simplified form of equations of motion, where intrinsic and

extrinsic forces are two separate terms, is derived for a class of 𝑛-DoF fully actuated

robots.

B.1.1 Assumptions

Three assumptions are necessary for this form. First, the robotic system is fully-

actuated, i.e. 𝑚 = 𝑛, so that the matrix 𝑅 is square and invertible. Second, that a

coordinates system can be selected so that the gear-ratio matrix 𝑅 is diagonal for all

possible configurations:

𝑅𝑖,𝑗 = 0 ∀ 𝑖 ̸= 𝑗 (B.1)

Third, that dynamic forces related to viscous damping and inertial forces in motor

rotor are linear with respect to rotor velocity:

𝜏 𝑟𝑜𝑡𝑜𝑟−𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐼�̇� 𝜏 𝑟𝑜𝑡𝑜𝑟−𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝐵𝑤 (B.2)

where matrices 𝐼 and 𝐷 are diagonal since motor rotors are not coupled directly.
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B.1.2 Derivation

Starting from the general eq.(4.9) the EoM are:

𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔 = 𝑅𝑇 [𝜏 − 𝐼�̇� −𝐵𝑤] (B.3)

Then substituting motor velocities with joint coordinates, using the kinematic relation

of eq. (4.8):

𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔 = 𝑅𝑇 [𝜏 − 𝐼𝑅𝑞 −𝐵𝑅�̇�] (B.4)

𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔 = 𝑅𝑇𝜏 −𝑅𝑇 𝐼𝑅𝑞 −𝑅𝑇𝐵𝑅�̇� (B.5)

Then because𝑅, 𝐼 and𝐵 matrix are diagonal, they can be permuted and also𝑅𝑇 = 𝑅.

Hence, the EoM can be rearranged:

𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔 = 𝑅𝜏 −𝑅𝑅𝐼𝑞 −𝑅𝑅𝐵�̇� (B.6)

Then, assuming the robotic system is fully actuated, the R matrix is square and

invertible. Then multiplying by 𝑅−1 from the left on both side:

𝑅−1 [𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔] = 𝜏 −𝑅𝐼𝑞 −𝑅𝐵�̇� (B.7)

Then rearranging:

𝑅−1 [𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔] = 𝜏 −𝑅 [𝐼𝑞 + 𝐵�̇�] (B.8)

and thus obtain the desired final form:

𝜏 = 𝑅−1 [𝐻𝑞 + 𝐶�̇� + 𝐷�̇� + 𝑔]⏟  ⏞  
𝜏𝐸

+𝑅 [𝐼𝑞 + 𝐵�̇�]⏟  ⏞  
𝜏 𝐼

(B.9)
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B.2 Optimal gear-ratio along a known trajectory

Assuming that the robot is fully actuated and viscous forces linear in speed, it is

possible to derive closed form expression for the optimal gear-ratios on a known

trajectory.

B.2.1 Single DoF

Starting with the EoM in inverse dynamic form (from eq. (4.7)):

𝜏 =
𝜏𝐸
𝑅

+ 𝑅𝜏𝐼 (B.10)

Using a quadratic cost function to minimize:

𝐽 = 𝜏 2 =
𝜏 2𝐸
𝑅2

+ 2𝜏𝐸𝜏𝐼 + 𝑅2𝜏 2𝐼 (B.11)

Finding the gear-ratio that minimizes this cost can be formulated as:

𝑅* = argmin
𝑅

𝐽 (B.12)

s.t. 𝑅 ∈ ℜ & 𝑅 > 0 (B.13)

A non-real value would have no physical sense. A negative 𝑅 value would be physically

possible, for instance the reverse gear in a car. However, for symmetric electric motors,

in the sense that they behave the same way for any sign of torque and speed, there

should be no gain obtained by changing the direction of the motor velocity. This is

consistent with cost function which is symmetric with respect to 𝑅:

𝐽(𝑅) = 𝐽(−𝑅) (B.14)

171



Derivation First finding the partial derivative of the cost 𝐽 with respect to 𝑅:

𝜕𝐽

𝜕𝑅
= 2𝜏

𝜕𝜏

𝜕𝑅
= 2

(︁𝜏𝐸
𝑅

+ 𝑅𝜏𝐼

)︁(︁
− 𝜏𝐸
𝑅2

+ 𝜏𝐼

)︁
(B.15)

𝜕𝐽

𝜕𝑅
= 2

(︂
𝑅𝜏 2𝐼 − 𝜏 2𝐸

𝑅3

)︂
(B.16)

Then the second derivative:

𝜕2𝐽

𝜕𝑅2
= 2

(︂
𝜏 2𝐼 + 3

𝜏 2𝐸
𝑅4

)︂
(B.17)

Hence, on the domain of interest, the second derivative is always positive:

𝜕2𝐽

𝜕𝑅2
≥ 0 ∀ 𝑅 ∈ (0,+∞) (B.18)

Thus the cost function 𝐽 is convex on the desired interval of possible 𝑅 values. The

minimum of the function can thus be found by solving for the point where the first

derivative is equal to zero:

0 =
𝜕𝐽

𝜕𝑅
= 2

(︂
𝑅𝜏 2𝐼 − 𝜏 2𝐸

𝑅3

)︂
(B.19)

𝑅𝜏 2𝐼 =
𝜏 2𝐸
𝑅3

(B.20)

Since 𝑅 > 0, it is possible to multiply both side by 𝑅3, leading to

𝑅4𝜏 2𝐼 = 𝜏 2𝐸 (B.21)

Then, assuming a non-degenerative case of 𝜏𝐼 ̸= 0, it leads to

𝑅4 =
𝜏 2𝐸
𝜏 2𝐼

(B.22)

𝑅2 = ±

√︃
𝜏 2𝐸
𝜏 2𝐼

= ±𝜏𝐸
𝜏𝐼

(B.23)

𝑅 = ±
√︂
±𝜏𝐸
𝜏𝐼

(B.24)
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Then, the only real and positive solution to this equation is given by:

𝑅 =

√︃⃒⃒⃒⃒
𝜏𝐸
𝜏𝐼

⃒⃒⃒⃒
(B.25)

Solution The minimal cost value is thus obtain with the optimal gear-ratio value:

𝑅* = argmin
𝑅>0

𝐽 =

√︃⃒⃒⃒⃒
𝜏𝐸
𝜏𝐼

⃒⃒⃒⃒
(B.26)

Which lead to the minimum cost:

𝐽* = 2𝜏𝐸𝜏𝐼 + 2 |𝜏𝐸𝜏𝐼 | (B.27)

Note that the the minimized cost is zero when extrinsic and intrinsic forces have

opposite signs.

Degenerative cases Here degenerative situations when the intrinsic forces or ex-

trinsic forces are equal to zero are investigated, based on (B.11). If the intrinsic forces

are equal to zero, then the cost tends towards zero as the gear-ratio 𝑅 tends toward

∞:

𝜏𝐼 = 0 & 𝑅 → ∞ ⇒ 𝐽 → 0 (B.28)

If the extrinsic forces are equal to zero, then the cost tends towards zero as the

gear-ratio 𝑅 tends toward zero:

𝜏𝐸 = 0 & 𝑅 → 0 ⇒ 𝐽 → 0 (B.29)

If both the extrinsic forces and intrinsic forces are equal to zero, then the cost is zero

for any gear-ratio:

𝜏𝐸 = 0 & 𝜏𝐼 = 0 ⇒ 𝐽 = 0 ∀𝑅 (B.30)
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B.2.2 Multiple DoF

Starting with the EoM in inverse dynamic form (from eq. (4.10)):

𝜏 = 𝑅−1𝜏𝐸 + 𝑅𝜏 𝐼 (B.31)

Using the following quadratic cost function:

𝐽 = 𝜏 𝑇𝜏 (B.32)

Finding the gear-ratios matrix 𝑅 that minimize this cost can be formulated as

𝑅* = argmin
𝑅

𝐽 (B.33)

s.t. 𝑅𝑖,𝑗 ∈ ℜ & 𝑅𝑖,𝑗 > 0 (B.34)

An analytic solution is available if the gear-ratios matrix 𝑅 is diagonal.

Derivation Using index notation, the EoM and cost function can be written as:

𝜏 = 𝑅−1𝜏𝐸 + 𝑅𝜏 𝐼 ⇒ 𝜏𝑖 =
∑︁
𝑗

[︀
𝑅−1

]︀
𝑖,𝑗
𝜏𝐸𝑗 + 𝑅𝑖,𝑗𝜏

𝐼
𝑗 (B.35)

𝐽 = 𝜏 𝑇𝜏 ⇒ 𝐽 =
∑︁
𝑖

𝜏 2𝑖 (B.36)

Note that here, superscript instead of subscript are used to identify extrinsic and

intrinsic forces, to avoid confusion with indexes. Then the properties due to the

diagonality of matrix 𝑅 can be used:

𝑅𝑖,𝑗 = 0 ∀ 𝑖 ̸= 𝑗 (B.37)[︀
𝑅−1

]︀
𝑖,𝑗

= 0 ∀ 𝑖 ̸= 𝑗 (B.38)[︀
𝑅−1

]︀
𝑖,𝑖

= (𝑅𝑖,𝑖)
−1 (B.39)
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Then the equations can be simplified to:

𝜏𝑖 = (𝑅𝑖,𝑖)
−1 𝜏𝐸𝑖 + 𝑅𝑖,𝑖𝜏

𝐼
𝑖 (B.40)

𝐽 =
∑︁
𝑖

[︀
(𝑅𝑖,𝑖)

−1 𝜏𝐸𝑖 + 𝑅𝑖,𝑖𝜏
𝐼
𝑖

]︀2
(B.41)

By inspection, it is possible to see that the cost 𝐽 is the sum of 𝑛 independent

terms (one per DoF), and that given the assumptions those terms are independent.

Hence, the cost 𝐽 can be minimized by minimizing individually each term with the

appropriate 𝑅𝑖,𝑖. The solution for minimizing each of those term is identical to the

one for a single DoF robot, see section B.2.1. Leading to

𝑅*
𝑖,𝑖 =

√︃⃒⃒⃒⃒
𝜏𝐸𝑖
𝜏 𝐼𝑖

⃒⃒⃒⃒
(B.42)

Solution The optimal gear-ratio matrix, is thus constructed from independent so-

lutions on each DoF:

𝑅* =

⎧⎪⎨⎪⎩ 𝑅*
𝑖,𝑗 =

√︂⃒⃒⃒
𝜏𝐸𝑖
𝜏𝐼𝑖

⃒⃒⃒
∀ 𝑖 = 𝑗

𝑅*
𝑖,𝑗 = 0 ∀ 𝑖 ̸= 𝑗

(B.43)

Leading to the following total minimum cost:

𝐽* = 2
∑︁
𝑖

[︀
𝜏𝐸𝑖 𝜏 𝐼𝑖 +

⃒⃒
𝜏𝐸𝑖 𝜏 𝐼𝑖

⃒⃒]︀
(B.44)
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B.3 Stability proofs

B.3.1 R* Computed Torque controller

In this section, the stability of motions when using the R* Computed Torque Con-

troller is demonstrated for any arbitrary sequence of selected gear-ratio. However,

here perfect knowledge of the equation of motions is assumed.

The equation of motions can take this simple but general form:

𝐻𝑘�̈� + 𝑐𝑘 = 𝑅𝑘𝜏 ∀𝑘 ∈ {1, ..., 𝑙} (B.45)

where subscript 𝑘 is used to emphasized the dependence to the discrete gear-ratio

selection. The total inertia matrix 𝐻𝑘 and state-dependent forces 𝑐𝑘 are given by:

𝐻𝑘 = 𝐻(𝑞) + 𝑅𝑇
𝑘 𝐼𝑅𝑘 (B.46)

𝑐𝑘 =
(︀
𝐷 + 𝑅𝑇

𝑘𝐵𝑅𝑘

)︀
�̇� + 𝐶(�̇�, 𝑞)�̇� + 𝑔(𝑞) (B.47)

In the computed torque scheme, it is assumed that based on state measurement those

term can be computed exactly. In addition here, it is assumed the controller is also

aware of the discrete gear-ratio state 𝑘.

The control law for motor torques takes the following form:

𝜏 = 𝑅−1
𝑘 (𝐻𝑘�̈�𝑟 + 𝑐𝑘) (B.48)

where the vector �̈�𝑟 represents instantaneous desired acceleration. The control law

for the gear-ratio selection takes the form of an optimization, however here stability

is demonstrated for the more general case of arbitrary gear-ratio sequence. Hence the

stability result can be extended for any type of gear-ratio selection scheme used in

conjunction with the computed torque.

When substituting the control law, eq.(B.48), in the equations of motion, eq.(B.45),
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then the resulting closed-loop behavior is simply:

�̈� = �̈�𝑟 ∀𝑘 (B.49)

Hence, the system is not only linear in behavior (form a �̈�𝑟 input point of view) but

also continuous, non-linearities and discontinuities are compensated by computing

the inverse dynamic of the system.

Specifying �̈�𝑟 based on state is equivalent to designing a controller for a lin-

ear second-order 𝑛-DoF system. For trajectory tracking the following proportional-

derivative control laws can be used:

�̈�𝑟 = �̈�𝑑 + 𝐾𝐷(�̇�𝑑 − �̇�) + 𝐾𝑃 (𝑞𝑑 − 𝑞)⏟  ⏞  
𝑞𝑒

(B.50)

leading to second order error dynamics:

0 = �̈�𝑒 + 𝐾𝐷�̇�𝑒 + 𝐾𝑃𝑞𝑒 (B.51)

Hence, convergence of error to zero is guaranteed if both gain matrix 𝐾𝐷 and 𝐾𝑃 are

positive definite:

𝑞𝑒 → 0 with 𝐾𝐷 > 0 , 𝐾𝑃 > 0 (B.52)
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B.3.2 R* Sliding Mode controller

In this section, the stability of motions when using the R* Sliding Mode Controller

is demonstrated for any arbitrary sequence of selected gear-ratio, in the presence of

bounded uncertainty.

The equation of motions can take this simple but general form:

𝐻𝑘�̈� + 𝑐𝑘 = 𝑅𝑘𝜏 + 𝑑 ∀𝑘 ∈ {1, ..., 𝑙} (B.53)

where 𝑑 is an unknown generalized force vector that can represent disturbance or

modeling errors.

The proposed control law for motor torques takes the form:

𝜏 = 𝑅−1
𝑘 (𝐻𝑘�̈�𝑟 + 𝑐𝑘 −𝐺𝑘𝑠𝑔𝑛(𝑠)) (B.54)

leading to the following closed-loop behavior:

𝐻𝑘(�̈� − �̈�𝑟) = 𝑑−𝐺𝑘𝑠𝑔𝑛(𝑠) ∀𝑘 (B.55)

which has two types of discontinuities: 1) discontinuous torque term introduced by the

sliding mode controller and 2) arbitrary selected gear-ratio 𝑘. The following variables

are then introduced:

𝑞𝑒 = 𝑞𝑑 − 𝑞 (B.56)

�̇�𝑟 = �̇�𝑑 − 𝜆𝑞𝑒 (B.57)

𝑠 = �̇�𝑒 + 𝜆𝑞𝑒 = �̇� − �̇�𝑟 (B.58)

�̇� = �̈�𝑒 + 𝜆�̇�𝑒 = �̈� − �̈�𝑟 (B.59)

where lambda is a positive constant. Then convergence to the desired trajectory can

be guaranteed if the sliding variables 𝑠 converge to zero [56]. The basic idea is that if

a Lyapunov-like quadratic function of the sliding variable is only decreasing in time,

178



then sliding variables will converge to zero, which also implies that the error will

converge to zero:

𝑉 = 𝑠𝑇𝑠 → 0 ⇒ 𝑠 → 0 ⇒ 𝑞𝑒 → 0 (B.60)

Note that here the Lyapunov-like function must be continuous and the same for all

discrete mode, and its derivative negative definite for all discrete modes 𝑘 for the

argument to hold for arbitrary sequence of gear-ratio 𝑘 [37]:

�̇�𝑘 < 0 ∀𝑘 ⇒ 𝑉 → 0 (B.61)

One way to guarantee the sliding condition is individually for each DoF 𝑖 and each

possible mode 𝑘:

𝑑(𝑠2𝑖 )

𝑑𝑡
< −𝜂|𝑠𝑖| ∀𝑖 ∀𝑘 (B.62)

where 𝜂 is a small positive constant. From eq.(B.55), sliding variable derivative is

given by:

�̇� = 𝐻−1
𝑘 (𝑑−𝐺𝑘𝑠𝑔𝑛(𝑠)) (B.63)

Substituting in the sliding condition equation leads to:

𝑠𝑖�̇�𝑖 = 𝑠𝑖
(︀[︀
𝐻−1

𝑘 𝑑
]︀
𝑖
−
[︀
𝐻−1

𝑘 𝐺𝑘𝑠𝑔𝑛(𝑠)
]︀
𝑖

)︀
< −𝜂|𝑠𝑖| (B.64)

If the matrix gain is parametrized in the following way:

𝐺𝑘 = 𝐻𝑘𝐾𝑘 (B.65)

where 𝐾𝑘 is a diagonal matrix. Then the discontinuous gain term is uncoupled in the
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sliding condition equation:

𝑠𝑖
(︀[︀
𝐻−1

𝑘 𝑑
]︀
𝑖
−𝐾𝑖𝑖𝑠𝑔𝑛(𝑠𝑖)

)︀
< −𝜂|𝑠𝑖| (B.66)[︀

𝐻−1
𝑘 𝑑

]︀
𝑖
𝑠𝑖 + 𝜂|𝑠𝑖| < 𝐾𝑖𝑖|𝑠𝑖| (B.67)

𝜂 ±
[︀
𝐻−1

𝑘 𝑑
]︀
𝑖
< 𝐾𝑖𝑖 (B.68)

which can be guaranteed if the gain are selected such that:

𝐾𝑖𝑖 = max
𝑑

[︀
𝐻−1

𝑘 𝑑
]︀
𝑖
+ 𝜂 (B.69)

Thus, if the gains are defined based on disturbance bounds and according to eq.(B.69),

the sliding condition is guaranteed for all gear-ratio mode 𝑘, and thus convergence to

the desired trajectory is guaranteed for any gear-ratio sequence. Note that the gain

𝐾𝑖𝑖 is a function of the discrete selected gear-ratio mode 𝑘.
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B.4 Chattering bounds with Rollout gear selection

This section computes lower bounds for the time interval between successive gear-

shifts when using the Rollout gear-selection scheme.

Problem setting First, using the Rollout approach, the optimal gear-ratio mode

𝑘* selection is done as follow:

𝑘*(𝑡) = argmin
𝑘

[𝐽𝑘(𝑡) + 𝑄 [[𝑘 ̸= 𝑘𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠]] ] (B.70)

where 𝐽𝑘(𝑡) is the computed cost over the simulated trajectory over the time horizon

ℎ using the gear-ratio mode 𝑘. An additional instantaneous cost 𝑄 is added when

the gear-ratio mode is changed. The integral cost is given by:

𝐽𝑘(𝑡) =

∫︁ 𝑡+ℎ

𝑡

𝐶𝑘(�̂�𝑘) 𝑑𝑡 (B.71)

where 𝐶𝑘 is the instantaneous cost, 𝑡 is the virtual time in the simulations and �̂�

the predicted trajectory. The virtual state trajectory is computed by simulating the

system in closed-loop, using the base-policy, and integrating forward starting from

the actual state at time 𝑡:

�̂�𝑘(𝑡, 𝑡) =

∫︁ 𝑡

𝑡

˙̂𝑥𝑘 𝑑𝑡 + 𝑥(𝑡) (B.72)

If both the real system and simulations are robustly staying on the desired trajectory,

then the virtual states in the simulation are independent of actual starting simulation

time:

�̂�𝑘(𝑡, 𝑡) = 𝑥(𝑡) = 𝑥𝑑(𝑡) (B.73)

In this thesis the instantaneous cost is usually taken to be squared actuator torques:

𝐶𝑘 = 𝜏 𝑇
𝑘 𝜏 𝑘 (B.74)
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where 𝜏 𝑘 is the computed torque in predictive simulation with the base policy when

using the gear-ratio mode 𝑘. It will be assumed that an upper bound can be found for

the instantaneous cost, at least in a domain of interest 𝐷, given the desired trajectory

and the feedback policy:

𝐶𝑚𝑎𝑥
𝑘 = max

𝑥,𝑡∈𝐷
𝐶𝑘(𝑥, 𝑡) (B.75)

Such a bound should always exist given reasonable assumptions:

∙ Domain of interest 𝐷 constraint all states to finite values

∙ Desired trajectory has bounded acceleration, speed and position values

∙ Absence of singularity where inertia matrix values can tend toward infinity

For instance, if using computed torque as base policy and a torque-squared criteria,

the maximum instantaneous cost value is given by:

𝐶𝑚𝑎𝑥
𝑘 = max 𝜏 𝑇

𝑘 𝜏 𝑘 ≤
∑︁

max [𝜏 𝑘]2𝑖 (B.76)

where max [𝜏 𝑘]𝑖 is the maximum value that can be computed for joint 𝑖 when using

the gear-ratio 𝑘.

B.4.1 On a trajectory

Here a minimum time delay for a back-and-forth gear-shift sequence is derived for

the situation where the robot has converged on a trajectory and is staying on the

trajectory. In that case, it is assumed that both the simulation trajectory and the

real system follow the same desired trajectory, see Fig. B-1.
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𝒙(𝑡)

𝑡
𝑡 + ∆𝑡

𝑡 + ℎ + ∆𝑡

𝑡 + ℎ

𝐽𝑘
𝐴 𝐽𝑘

𝐵 𝐽𝑘
𝐶

ℎ: 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∆𝑡: 𝑑𝑒𝑙𝑎𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠ℎ𝑖𝑓𝑡𝑠

Figure B-1: Rollout controller behavior on a given trajectory

Proof Without loss of generality, lets assume a gear shift sequence where the robot

is first using mode 𝑖, then shift to mode 𝑗 at time 𝑡 and then shift back to mode 𝑖

at time 𝑡 + ∆𝑡. If such a sequence happened while using the gear-ratio selection law

given by eq. (B.70), then the following inequality must have been satisfied:

𝑖 → 𝑗 at time 𝑡 ⇒ 𝐽𝑗(𝑡) + 𝑄 < 𝐽𝑖(𝑡) (B.77)

𝑗 → 𝑖 at time 𝑡 + ∆𝑡 ⇒ 𝐽𝑖(𝑡 + ∆𝑡) + 𝑄 < 𝐽𝑗(𝑡 + ∆𝑡) (B.78)

Then to simplify the notation, integral cost on the trajectory is given by the following

value for each three sections of interest:

𝐽𝐴
𝑘 =

∫︁ 𝑡+Δ𝑡

𝑡

𝐶𝑘𝑑𝑡 𝐽𝐵
𝑘 =

∫︁ 𝑡+ℎ

𝑡+Δ𝑡

𝐶𝑘𝑑𝑡 𝐽𝐶
𝑘 =

∫︁ 𝑡+Δ𝑡+ℎ

𝑡+ℎ

𝐶𝑘𝑑𝑡 (B.79)
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Then it is possible to express the computed cost of predictive simulation done at ∆𝑡

time difference by the sum of an identical part and a different part:

𝐽𝑘(𝑡) =

∫︁ 𝑡+ℎ

𝑡

𝐶𝑘𝑑𝑡 = 𝐽𝐴
𝑘 + 𝐽𝐵

𝑘 (B.80)

𝐽𝑘(𝑡 + ∆𝑡) =

∫︁ 𝑡+Δ𝑡+ℎ

𝑡+Δ𝑡

𝐶𝑘𝑑𝑡 = 𝐽𝐵
𝑘 + 𝐽𝐶

𝑘 (B.81)

The difference between computed costs separated by ∆𝑡 is:

∆𝐽𝑘 = 𝐽𝑘(𝑡 + ∆𝑡) − 𝐽𝑘(𝑡) = 𝐽𝐶
𝑘 − 𝐽𝐴

𝑘 (B.82)

Now assuming there is an upper bound on instantaneous cost 𝐶𝑚𝑎𝑥
𝑘 , an upper bound

also exist integral costs over a finite amount of time. Since the instantaneous cost is

always positive definite, the integral cost cannot be negative. Hence:

0 ≤ 𝐽𝐶
𝑘 ≤ 𝐶𝑚𝑎𝑥

𝑘 ∆𝑡 (B.83)

0 ≤ 𝐽𝐴
𝑘 ≤ 𝐶𝑚𝑎𝑥

𝑘 ∆𝑡 (B.84)

The cost variation is thus bounded is this range:

−𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 ≤ ∆𝐽𝑘 ≤ 𝐶𝑚𝑎𝑥

𝑘 ∆𝑡 (B.85)

Hence the time evolution of computed cost can be bounded:

𝐽𝑗(𝑡 + ∆𝑡) ≤ 𝐽𝑗(𝑡) + 𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 (B.86)

𝐽𝑖(𝑡 + ∆𝑡) ≥ 𝐽𝑖(𝑡) − 𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 (B.87)
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Finally it is possible to combine all those inequality, starting with the condition for

the second gearshift:

𝐽𝑖(𝑡) − 𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 + 𝑄 ≤ 𝐽𝑖(𝑡 + ∆𝑡) + 𝑄 < 𝐽𝑗(𝑡 + ∆𝑡) ≤ 𝐽𝑗(𝑡) + 𝐶𝑚𝑎𝑥

𝑘 ∆𝑡 (B.88)

𝐽𝑖(𝑡) + 𝑄 ≤ 𝐽𝑗(𝑡) + 2𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 (B.89)

𝐽𝑗(𝑡) + 2𝑄 ≤ 𝐽𝑗(𝑡) + 2𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 (B.90)

𝑄 ≤ 𝐶𝑚𝑎𝑥
𝑘 ∆𝑡 (B.91)

Hence resulting in the desired inequality relating instantaneous cost and time between

gear-shift:

∆𝑡 ≥ 𝑄

𝐶𝑚𝑎𝑥
𝑘

(B.92)

Note that if there is more than 2 discrete gear-ratio options, this analysis gives not

insight about possible sequences of gear-shift during this interval, but still guarantee

the minimum time for a full cycle (coming back to the starting gear-ratio).

B.4.2 Arbitrary

Fig. B-2 gives a graphical support illustrating the 2D space, where at all time virtual

trajectories branch-off the real robot trajectory.

𝒙(𝑡)
𝑡

 𝒙(  𝑡)
 𝑡

 𝒙(  𝑡)
 𝑡

Virtual trajectory in predictive simulations

Actual real 
trajectory

Figure B-2: Real and simulated trajectory in the Rollout controller

The time derivative of the cost 𝐽𝑘, representing how much the computed cost
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change if the simulation is conducted 𝑑𝑡 later in time, is given by:

𝐽𝑘(𝑡) =
𝑑

𝑑𝑡

∫︁ 𝑡+ℎ

𝑡

𝐶𝑘 𝑑𝑡 (B.93)

Using Leibniz’s rule:

𝐽𝑘(𝑡) = 𝐶𝑘(𝑡 + ℎ) − 𝐶𝑘(𝑡) +

∫︁ 𝑡+ℎ

𝑡

𝜕

𝜕𝑡
𝐶𝑘 𝑑𝑡 (B.94)

for which it is possible to find an upper bound:

𝐽𝑘(𝑡) ≤ 𝐶𝑚𝑎𝑥
𝑘 − 0 +

∫︁ 𝑡+ℎ

𝑡

�̇�𝑚𝑎𝑥
𝑘 𝑑𝑡 (B.95)

𝐽𝑘(𝑡) ≤ 𝐶𝑚𝑎𝑥
𝑘 + �̇�𝑚𝑎𝑥

𝑘 ℎ (B.96)

Note that compared to the last section analysis (fixed trajectory), there is an addi-

tional term �̇�𝑚𝑎𝑥
𝑘 ℎ representing sensitivity of states trajectory in simulations. Then,

most of the previous analysis is still valid, except that the bounds on cost variation

of eq. (B.85), are now given instead by:

−
[︁
𝐶𝑚𝑎𝑥

𝑘 + �̇�𝑚𝑎𝑥
𝑘 ℎ

]︁
∆𝑡 ≤ ∆𝐽𝑘 ≤

[︁
𝐶𝑚𝑎𝑥

𝑘 + �̇�𝑚𝑎𝑥
𝑘 ℎ

]︁
∆𝑡 (B.97)

And the final result is modified to be:

∆𝑡 ≥ 𝑄

𝐶𝑚𝑎𝑥
𝑘 + �̇�𝑚𝑎𝑥

𝑘 ℎ
(B.98)

Sensitivity of cost along simulated trajectories

Regarding the new term, the time derivative of instantaneous cost in the simulation

can be expressed as:

�̇�𝑘 =
𝜕𝐶𝑘

𝜕𝑡
=

𝜕𝐶𝑘

𝜕𝜏

𝜕𝜏

𝜕�̂�

𝜕�̂�

𝜕𝑡
(B.99)
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This term represent how much the computed cost can vary on simulated trajectories,

between two simulations computed with 𝑑𝑡 time interval.

Cost function sensitivity The term 𝜕𝐶𝑘

𝜕𝜏
is the sensitivity of the used cost function

with respect to computed torques. For a quadratic torque criterion 𝐶𝑘 = 𝜏 𝑇
𝑘 𝜏 𝑘, like

always used in this thesis, it is equal to:

𝜕𝐶𝑘

𝜕𝜏 𝑘

= 2𝜏 𝑇
𝑘 (B.100)

Control law sensitivity The term 𝜕𝜏
𝜕�̂�

is a Jacobian matrix representing the sen-

sitivity of computed torque with respect to states. This matrix could be computed

analytically with the feedback laws, for the computed torque control law:

𝜕𝜏

𝜕�̂�
=

⎡⎣ 𝐻−1
𝑘 𝐾𝐷 0

0 𝐻−1
𝑘 𝐾𝑃

⎤⎦ +

⎡⎣ 𝐻−1
𝑘 (𝐷 + 𝐶 + 𝑅𝑇

𝑘𝐵𝑅𝑘) 0

0 𝐻−1
𝑘

𝜕𝑔
𝜕𝑞

⎤⎦ (B.101)

For the sliding mode control law, because of the additional discontinuous term 𝜏 𝑑 =

𝐺 sgn(𝑠), the derivative 𝜕𝜏
𝜕�̂�

can be unbounded when 𝑠𝑖 ≈ 0. However, the difference

over a finite time interval ∆𝑡 is bounded since worst case scenario:

−2𝐺 ≤ [∆𝜏 𝑑]𝑖 ≤ 2𝐺 (B.102)

Lets assume, for simplicity, that the cost function would penalize independently the

continuous torque term and the discontinuous torque term:

𝐶𝑘 = 𝐶𝑐 + 𝐶𝑑 = 𝐶𝑐 + 𝜏 𝑇
𝑑 𝜏 𝑑 (B.103)

then the resulting modified lower bound on minimum delay would be:

∆𝑡 ≥
𝑄− max

[︀
𝜏 𝑇
𝑑 𝜏 𝑑

]︀
ℎ

𝐶𝑚𝑎𝑥
𝑐 + �̇�𝑚𝑎𝑥

𝑐 ℎ
(B.104)
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This shows that with large discontinuous gains, it would be harder to guarantee a

minimum delay. There is thus a double advantages for using a smoothing technique

(ex: boundary layer [56] or higher order sliding mode [46]) for which the control law is

not discontinuous. In addition to the advantage of smoothing the torque command, it

would also make it easier to design a rollout gear selection that guarantee a minimum

delay. Alternatively, as proposed in section 4.4.5, reformulating the cost function to

make it independent of the sign of 𝑠 it another approach to alleviate this problem.

Virtual trajectory sensitivity The term 𝜕�̂�
𝜕𝑡

represents by how much the states

at time 𝑡 (in the simulation) would change if the simulation would have started 𝑑𝑡

later. The virtual trajectory can be parametrized as the sum of the desired trajectory

and errors:

�̂�(𝑡, 𝑡) = �̂�𝑒(𝑡, 𝑡) + �̂�𝑑(𝑡) (B.105)

Because the desired trajectory is independent of starting simulation time 𝑡, the sen-

sitivity of the trajectory is only the sensitivity of this error term:

𝜕�̂�

𝜕𝑡
=

𝜕�̂�𝑒

𝜕𝑡
(B.106)

For the closed-loop system with the computed torque controller, the error dynamic is

stable and linear, hence:

�̇�𝑒 = 𝐴𝑥𝑒 ⇒ 𝑥𝑒(𝑡) = 𝑒𝐴𝑡𝑥𝑒(𝑡 = 0) (B.107)

Similarly for the sliding mode controller, after all sliding surfaces are reached (happens

in finite time) then the error dynamic is also linear and stable. Using this matrix

exponential solution for error trajectories in the simulations leads to

�̂�𝑒(𝑡, 𝑡) = 𝑒𝐴(𝑡−𝑡)𝑥𝑒(𝑡) (B.108)
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since initial error in the simulations is the real error at time 𝑡. It is then possi-

ble to compute the sensitivity of virtual state trajectory with respect to simulation

initialization time:

𝜕�̂�

𝜕𝑡
= −𝐴𝑒𝐴(𝑡−𝑡)𝑥𝑒(𝑡) + 𝑒𝐴(𝑡−𝑡)�̇�𝑒(𝑡) ≤ 𝑏 ∀ 𝑡 > 𝑡 (B.109)

Hence trajectory sensitivity can thus be bounded, because the closed-loop error dy-

namic is linear and stable in simulations (matrix A only has eigenvalues with negative

real parts).

Sensitivity conclusions All in all, it is thus possible to conclude that:

1. Sensitivity �̇�𝑘 is bounded (with a continuous control law)

2. Sensitivity �̇�𝑘 → 0 far ahead in simulations as 𝑡 → ∞

3. Sensitivity �̇�𝑘 = 0 if there is no tracking error (𝑥𝑒 = 0 �̇�𝑒 = 0)

Note that conclusion 3 is consistent with the previous analysis (sec. B.4.1) where it

was assumed a situation where all trajectories (real, desired and simulations) were all

identical. Also conclusion 2 suggest that the sensitivity of future cost would no grow

forever as the time horizon ℎ is increased, hence by using the following:

∫︁ 𝑡+ℎ

𝑡

�̇�𝑘 𝑑𝑡 ≤ �̇�𝑚𝑎𝑥
𝑘 ℎ (B.110)

the result is very conservative when the time horizon ℎ is large.

189



190



Bibliography

[1] H. H. Asada and J.-J. E. Slotine. Robot Analysis and Control. John Wiley &
Sons, 1986.

[2] H. H. Asada and K. Youcef-Toumi. Direct-Drive Robots: Theory and Practice.
MIT Press, 1987.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
2nd edition, 2000.

[4] J. Betts. Practical Methods for Optimal Control and Estimation Using Nonlin-
ear Programming. Advances in Design and Control. Society for Industrial and
Applied Mathematics, 2010.

[5] S. Bologna. Electric propulsion system for vehicles, June 2014. U.S. Patent.

[6] B. L. Bonilla and H. H. Asada. A robot on the shoulder: Coordinated human-
wearable robot control using Coloured Petri Nets and Partial Least Squares
predictions. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 119–125, May 2014.

[7] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari. Dynamic programming for
constrained optimal control of discrete-time linear hybrid systems. Automatica,
41(10):1709–1721, October 2005.

[8] R. Buckingham, V. Chitrakaran, R. Conkie, G. Ferguson, A. Graham, A. Lazell,
M. Lichon, N. Parry, F. Pollard, A. Kayani, M. Redman, M. Summers, and
B. Green. Snake-Arm Robots: A New Approach to Aircraft Assembly. In SAE
Technical Paper. SAE International, 2007.

[9] D. Z. Chen and L. W. Tsai. The generalized principle of inertia match for
geared robotic mechanisms. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1282–1287 vol.2, April 1991.

[10] J. F. Duval and H. M. Herr. FlexSEA-Execute: Advanced motion controller for
wearable robotic applications. In IEEE International Conference on Biomedical
Robotics and Biomechatronics (BioRob), pages 1056–1061, June 2016.

191



[11] B. Gao, Q. Liang, Y. Xiang, L. Guo, and H. Chen. Gear ratio optimization and
shift control of 2-speed I-AMT in electric vehicle. Mechanical Systems and Signal
Processing, 50–51:615–631, January 2015.

[12] M. Gerdts. Solving mixed-integer optimal control problems by branch&bound:
a case study from automobile test-driving with gear shift. Optimal Control Ap-
plications and Methods, 26(1):1–18, January 2005.

[13] H. Giberti, S. Cinquemani, and G. Legnani. Effects of transmission mechanical
characteristics on the choice of a motor-reducer. Mechatronics, 20(5):604–610,
August 2010.

[14] A. Girard and H. H. Asada. A two-speed actuator for robotics with fast seamless
gear shifting. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4704–4711, Hamburg, September 2015.

[15] A. Girard and H. H. Asada. A practical optimal control approach for two-
speed actuators. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4572–4577, Stockholm, May 2016.

[16] A. Girard and H. H. Asada. Leveraging Natural Load Dynamics with Variable
Gear-ratio Actuators. IEEE Robotics and Automation Letters, 2(2):741–748,
April 2017.

[17] G. Goleski, D. Hoffman, and R. Lippert. Multi-speed transmission, April 2015.
U.S. Patent.

[18] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli. Predictive
control for agile semi-autonomous ground vehicles using motion primitives. In
2012 American Control Conference (ACC), pages 4239–4244, June 2012.

[19] H. Hanafusa and H. H. Asada. Stable prehension by a robot hand with elastic
fingers. Transactions of the Society of Instrumentation and Control Engineers,
pages 361–368, 1977.

[20] S. Hirose, C. Tibbetts, and T. Hagiwara. Development of X-screw: a load-
sensitive actuator incorporating a variable transmission. In IEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 193–199 vol.1,
1999.

[21] S. Hirose, K. Yoneda, K. Arai, and T. Ibe. Design of prismatic quadruped
walking vehicle TITAN VI. In International Conference on Advanced Robotics,
pages 723–728 vol.1, June 1991.

[22] F. Hogan and A. Rodriguez. Feedback Control of the Pusher-Slider System: A
Story of Hybrid and Underactuated Contact Dynamics. CoRR, abs/1611.08268,
2016.

192



[23] N. Hogan and S. Buerger. Impedance and Interaction Control. In Robotics and
Automation Handbook. CRC Press, 2004.

[24] T. Holdstock, A. Sorniotti, M. Everitt, M. Fracchia, S. Bologna, and
S. Bertolotto. Energy consumption analysis of a novel four-speed dual motor
drivetrain for electric vehicles. In 2012 IEEE Vehicle Power and Propulsion
Conference, VPPC 2012, pages 295–300, Seoul Olympic Parktel, Seoul, S Korea,
2012.

[25] J. Hollerbach, I. Hunter, and J. Ballantyne. A comparative analysis of actuator
technologies for robotics. In The Robotics Review, volume 2, pages 299–342. Mit
press edition, 1992.

[26] A. Jafari, N. G. Tsagarakis, I. Sardellitti, and D. G. Caldwell. A New Actu-
ator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism.
IEEE/ASME Transactions on Mechatronics, 19(1):55–63, February 2014.

[27] G. Kenneally, A. De, and D. E. Koditschek. Design Principles for a Family of
Direct-Drive Legged Robots. IEEE Robotics and Automation Letters, 1(2):900–
907, July 2016.

[28] B. Kim, J. Park, and J. Song. Improved manipulation efficiency using a serial-
type dual actuator unit. In International Conference on Control, Automation
and Systems, pages 30–35. IEEE, 2007.

[29] B. Kim, J. Song, and J. Park. A Serial-Type Dual Actuator Unit With Plane-
tary Gear Train: Basic Design and Applications. IEEE/ASME Transactions on
Mechatronics, 15(1):108–116, 2010.

[30] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
Mineola, N.Y, 2004.

[31] K. Koganezawa, T. Nakazawa, and T. Inaba. Antagonistic control of multi-DOF
joint by using the actuator with non-linear elasticity. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2201–2207, May 2006.

[32] M.-O. Lacerte, G. Pouliot, J.-S. Plante, and P. Micheau. Design and Experi-
mental Demonstration of a Seamless Automated Manual Transmission using an
Eddy Current Torque Bypass Clutch for Electric and Hybrid Vehicles. SAE
International Journal of Alternative Powertrains, 5(1):13–22, May 2016.

[33] S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Technical report, 1998.

[34] S. M. Lavalle. Planning Algorithms. Cambridge University Press, Cambridge ;
New York, 1 edition edition, 2006.

193



[35] D. Leach, F. Gunther, N. Maheshwari, and F. Iida. Linear multi-modal actuation
through discrete coupling. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2437–2442, October 2012.

[36] H. Lee and Y. Choi. A New Actuator System Using Dual-Motors and a Planetary
Gear. IEEE/ASME Transactions on Mechatronics, 17(1):192–197, 2012.

[37] D. Liberzon. Switching in Systems and Control. Birkhäuser, Boston, MA, 2003
edition edition, 2003.

[38] T. Lozano-Pérez and M. A. Wesley. An Algorithm for Planning Collision-free
Paths Among Polyhedral Obstacles. Communications of the ACM, 22(10):560–
570, October 1979.

[39] N. Majdoub, A. Sakly, and M. Benrejeb. Hybrid approach for optimal control
problem of switched systems. In 2010 IEEE International Conference on Systems
Man and Cybernetics (SMC), pages 4161–4168, October 2010.

[40] N. McKeegan. Antonov’s 3-speed transmission for electric vehicles boosts effi-
ciency by 15 percent, July 2011. www.gizmag.com.

[41] D. Meike and L. Ribickis. Energy efficient use of robotics in the automobile
industry. In International Conference on Advanced Robotics (ICAR), pages 507–
511, June 2011.

[42] M. Menon and H. H. Asada. Design and Control of Paired Mobile Robots Work-
ing Across a Thin Plate With Application to Aircraft Manufacturing. IEEE
Transactions on Automation Science and Engineering, 8(3):614–624, July 2011.

[43] J. B. Morrell and J. K. Salisbury. Parallel-Coupled Micro-Macro Actuators. The
International Journal of Robotics Research, 17(7):773–791, July 1998.

[44] F. Parietti and H. H. Asada. Supernumerary Robotic Limbs for aircraft fuselage
assembly: Body stabilization and guidance by bracing. In 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1176–1183, May
2014.

[45] F. Parietti and H. H. Asada. Supernumerary Robotic Limbs for Human Body
Support. IEEE Transactions on Robotics, 32(2):301–311, April 2016.

[46] W. Perruquetti and J. Barbot. Sliding Mode Control In Engineering. CRC Press,
New York, 1st edition edition, 2002.

[47] A. W. Phillips, S. H. Wittkopp, J. M. Hart, and C. E. Carey. 10-speed trans-
mission, November 2010. U.S. Patent.

[48] G. Pouliot, M.-O. Lacerte, J.-S. Plante, and P. Micheau. Design of an Eddy
Current Torque Bypass Clutch for Seamless Automated Manual Transmissions
of Electric and Hybrid Vehicles. SAE International Journal of Alternative Pow-
ertrains, 4:388–397, 2015.

194



[49] G. Pratt and M. Williamson. Series elastic actuators. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1, pages 399–406 vol.1,
August 1995.

[50] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Ng. ROS: an open-source Robot Operating System, 2009.

[51] Q. Ren, D. Crolla, and A. Morris. Effect of transmission design on Electric
Vehicle (EV) performance. In IEEE Vehicle Power and Propulsion Conference,
2009. VPPC ’09, pages 1260–1265, September 2009.

[52] A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft Trajectory
Planning with Avoidance Constraints Using Mixed-Integer Linear Programming.
Journal of Guidance, Control, and Dynamics, 25(4):755–764, 2002.

[53] B. Roy and H. H. Asada. Nonlinear Feedback Control of a Gravity-Assisted Un-
deractuated Manipulator With Application to Aircraft Assembly. IEEE Trans-
actions on Robotics, 25(5):1125–1133, October 2009.

[54] B. Schoolcraft. Gear scheme for infinitely variable transmission, August 2011.
U.S. Patent.

[55] Y. J Shin, H. J. Lee, K. S. Kim, and S. Kim. A Robot Finger Design Using
a Dual-Mode Twisting Mechanism to Achieve High-Speed Motion and Large
Grasping Force. IEEE Transactions on Robotics, 28(6):1398–1405, 2012.

[56] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[57] N. Srivastava and I. Haque. A review on belt and chain continuously variable
transmissions (CVT): Dynamics and control. Mechanism and Machine Theory,
44(1):19–41, January 2009.

[58] N. L. Tagliamonte, F. Sergi, D. Accoto, G. Carpino, and E. Guglielmelli. Double
actuation architectures for rendering variable impedance in compliant robots: A
review. Mechatronics, 22(8):1187–1203, December 2012.

[59] K. Tahara, S. Iwasa, S. Naba, and M. Yamamoto. High-backdrivable parallel-link
manipulator with Continuously Variable Transmission. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1843–1848,
September 2011.

[60] G. Tonietti, R. Schiavi, and A Bicchi. Design and Control of a Variable Stiffness
Actuator for Safe and Fast Physical Human/Robot Interaction. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 526–531, April
2005.

[61] P. Walker, B. Zhu, and N. Zhang. Powertrain dynamics and control of a two
speed dual clutch transmission for electric vehicles. Mechanical Systems and
Signal Processing, 85:1–15, February 2017.

195



[62] F. Y. Wu and H. H. Asada. Hold-and-manipulate with a single hand being
assisted by wearable extra fingers. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 6205–6212, May 2015.

[63] X. Xu and P.J. Antsaklis. Optimal control of switched systems based on param-
eterization of the switching instants. IEEE Transactions on Automatic Control,
49(1):2–16, January 2004.

[64] Z. Zhang, C. Zuo, W. Hao, Y. Zuo, X. L. Zhao, and M. Zhang. Three-speed
transmission system for purely electric vehicles. International Journal of Auto-
motive Technology, 14(5):773–778, October 2013.

196


	Introduction
	Proposed approach: variable transmissions
	Features of gear shifting in a robotic context
	Differences from vehicle powertrain transmissions

	Main challenges
	Original contributions
	A gear shifting methodology adapted to robotics
	Control algorithms to select gear ratios dynamically
	A robotic arm using variable gear ratio actuators

	Results
	Organization of the thesis

	Aircraft Manufacturing Automation: Concepts and Challenges
	Current situation
	Solution concepts
	Lightweight long manipulator arms
	Wearable robots
	Mobile climbing robots

	Technical challenges

	A Variable Gear-ratio Actuator with Fast and Seamless Transitions
	Motivation
	Actuator and powertrain research
	Novel contribution
	Related works

	Dual-Speed Dual-Motor architecture
	Principle
	Weight advantage
	Efficiency advantage
	Reliability advantage

	Modeling
	3-ports planetary gear junction
	Dynamics
	Inputs/Outputs equations
	Hybrid Behavior
	Continuous differential equations
	Gear-shift events
	Output Impacts
	Nullspace of the system during high-speed mode
	Equivalence to a two-speed transmission

	Control algorithms
	Architecture
	State-machine
	High-force mode controller
	High-speed mode controller
	Fast and seamless transitions (gearshifts)
	Synchronization controller
	Preparation in the nullspace for faster down-shifts

	Experimental results
	DSDM dynamic behavior
	Nullspace
	Seamless transitions

	Summary
	Potential directions of further development

	Optimal Dynamic Selection of Gear-ratios
	Illustration of the principle for a 1-DoF manipulator
	Challenges and related works
	Original contributions

	Control architecture
	Modeling variable gear-ratio actuators
	1-DoF system
	Generalization to n-DoF manipulators
	Limitation of the simplified model
	Uncertainty
	Hybridness with discrete gear-ratios

	Optimal gear-ratios along a trajectory
	Selection criteria
	Optimization Formulation
	Minimal Torque Solution
	Reduction to impedance matching
	Examples of optimal gear-ratios in simple scenarios

	Model-based Controllers
	R* Computed Torque
	R* Sliding Mode Control
	Adaptation
	Generalization to more complex models
	Closed-loop selection of discrete gear-ratios
	Rollout gear-ratios selection
	Stability
	Chattering and high-frequency switching
	Parameters selection guidelines

	Trajectory planning
	RRT algorithm for Robots with Discrete Gear-ratios

	Dynamic programming approach
	Problem formulation
	Constraints
	Cost function
	Value Iteration
	Example systems
	Implementation
	Numerical results
	Advanced dynamic programming techniques

	Simulation Results
	Model-based approach
	Comparison to fixed-gear performance
	Comparison to Value Iteration
	Fast gear-shifting inhibition

	Experiments Results
	R* Computed Torque controller and RRT trajectory
	R* Sliding Mode controller
	2-DoF experiments

	Summary
	Potential directions of further development

	The DSDM Lightweight Arm 
	Mechanical Design
	DSDM actuator design
	Arm design
	Limitations and recommendations for improvements

	Control and Software Architecture
	Global architecture
	ROS architecture
	Navigation
	Trajectory planning
	State feedback
	Robot controller
	DSDM actuator controllers
	Motor drivers
	Limitations and recommendations for improvements


	Conclusion
	Robot Dynamics Framework
	Equations of motions
	Coordinate systems
	Contact
	Kinematic constraints
	Constraint forces
	Impact impulsive behavior

	Hybrid system dynamics
	Switched system


	Mathematical Derivations
	Simplified equations of motion for diagonal R
	Assumptions
	Derivation

	Optimal gear-ratio along a known trajectory
	Single DoF
	Multiple DoF

	Stability proofs
	R* Computed Torque controller
	R* Sliding Mode controller

	Chattering bounds with Rollout gear selection
	On a trajectory
	Arbitrary



