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Abstract

This thesis documents the origin, distribution, and fate of methane and several of its isotopic
forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how
the relative abundances of 12CH4, 13CH4, 12CH3D, and 13CH3D record the formation, transport, and
breakdown of methane in selected settings.

Chapter 2 reports precise determinations of 13CH3D, a “clumped” isotopologue of methane,
in samples collected from various settings representing many of the major sources and reser-
voirs of methane on Earth. The results show that the information encoded by the abundance
of 13CH3D enables differentiation of methane generated by microbial, thermogenic, and abiogenic
processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial
methane is identified and quantitatively linked to the availability of H2 and the reversibility of
microbially-mediated methanogenesis in the environment. Determination of 13CH3D in combi-
nation with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the
extent of C–H bond equilibration, enables fingerprinting of methane-generating mechanisms,
and in some cases, supplies direct constraints for locating the waters from which migrated gases
were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrother-
mal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and
ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane
forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 ◦C dur-
ing respeciation of magmatic volatiles, and is subsequently extracted during active, convective
hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane
is oxidized in the presence of O2 by the bacterium Methylococcus capsulatus strain Bath. The results
show that the clumped isotopologue abundances of partially-oxidized methane can be predicted
from knowledge of 13C/12C and D/H isotope fractionation factors alone.
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Chapter1
Introduction

Methane is the simplest and most abundant hydrocarbon. Figure 1.1 shows some statistics on the portions of

the methane cycle that this thesis touches upon.

1.1 ESSENTIAL DEFINITIONS

The isotopologues (or isotopic homologues) of a compound have the same elemental composition and

chemical structure, but differ only in the identity of the isotopes of one or more atoms. The word isotopologue
is also seen as isotopolog.

The goal of this thesis is to help map the distribution and behavior of the four most abundant methane

isotopologues at the Earth surface and in the crustal subsurface. These isotopologues are shown in Figs. 1.2

and 1.3 (approximate ranges of abundance for the singly-substituted methane isotopologues are shown in

Fig. 1.4) and written in the isotope exchange reaction below:

13
CH4 +

12
CH3D⇌ 13

CH3D +
12
CH4 (1.1)

In this reaction, one deuterium (D) is exchanged for one hydrogen (H), while leaving in place the

two different carbon (C) isotopes and the three other H’s to which each C is connected. The equilibrium

constant for this reaction is primarily a function of temperature (the effect of pressure is negligible at near-

surface conditions), and is shown in Fig. 1.3. The equilibrium constant for this reaction asymptotically

approaches unity as temperatures increase towards infinity. A sample of methane whose relative abundance

of isotopologues obey the relation (13CH4)(
12CH3D) = (13CH3D)(

12CH4) (i.e., has a reaction quotient equal

to unity) is said to have a stochastic distribution of isotopes among isotopologues. At lower temperatures, the

equilibrium constant is greater than one, albeit only slightly, by 0.6% or 6‰ (permil) at room temperature.

The origin of this clumpiness at equilibrium at lower temperatures arises from a disproportionate lowering of

zero-point energy upon clumping of two or more heavy isotopes (Fig. 1.5). For more on this topic, readers

are referred to Eiler (2007).

Attainment of equilibrium in CH4 clumped isotopologue abundances requires reordering of the C–

H bonds within molecules. This may occur by homogeneous (direct) exchange of H between two CH4

molecules, or by all CH4 molecules independently exchanging H with a second species (heterogeneous).

Understanding the mechanisms enabling exchange in various environments is vital for correct interpretation

of classical and novel stable isotope geothermometers. Figure 1.6 shows the many pathways by which several

single-carbon compounds can exchange isotopes with compounds in the C–O–H system.

1.2 PREVIEW OF THESIS CONTENT

Several labs are now able to make measurements of the reaction quotient of Reaction 1.1, to better than

0.05% (or 0.5‰). These include John Eiler’s lab at Caltech (Stolper et al., 2014b), Shuhei Ono’s lab at MIT

(Ono et al., 2014), and Ed Young’s lab at UCLA (Young et al., 2016). For those interested in the race towards

measuring intact methane isotopologues, readers are referred to Jones (2012).
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Figure 1.5 | Zero-point energy lowering and the

origin of non-stochastic clumped isotopologue

composition at equilibrium. The zero-point en-

ergy (the energy of the ground state, the quan-

tum state with the lowest possible energy) of a

molecule of methane is lowered upon substitu-

tion of heavy isotopes. The amount by which

the zero-point energy is lowered upon double-

isotope substitution (e.g., 12CH4 to
13CH3D) is

slightly greater than the sum of the effects of sub-

stituting only one heavy isotope (to make 13CH4

and 12CH3D). This deviation from the “rule of

the geometric mean” (Bigeleisen, 1955) is partic-

ularly pronounced at lower temperatures, and is

the origin of the preferential clumping at equilib-

rium shown in Fig. 1.3. For a detailed treatment,
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which the primary variable in most envi-

ronments is H2 concentration).

Chapters 2, 3, and 4 and Appendix A describe insights we have gleaned while studying the origin of C,

H, and carbon-hydrogen bonds in CH4 using measurements and models of the abundance and behavior of

methane isotopologues. Chapter 2 presents the first survey of the abundance of fully-resolved 13CH3D in

various environments on Earth, and shows how and why microbial methanogenesis occurring under high

H2 and low CO2 levels might leave a very distinct record in the isotopic composition of the CH4 produced

(Fig. 1.7). Chapter 2 also briefly touches on a potential for hydrogen exchange observed in high-maturity

thermogenic gases.

Chapter 3 presents a study that attempts to address the oft-contentious question of where and how

methane in seafloor hydrothermal systems forms. A diagram showing the several main proposed avenues

for methane formation in such systems is in Fig. 1.8. There is interest in knowing the answer to this question

because of potential implications for the origin of life at deep-sea hot springs.

Chapter 4 is an experimental and theoretical study that illustrates how one major sink of methane in the

environment, aerobic methanotrophy, affects the isotopologue abundances of leftover methane (Fig. 1.9).

The results and equations can be generalized to other major methane sinks (including oxidation by OH and

Cl in the atmosphere; Whitehill et al., 2017), and to other isotopologues (e.g., 12CH2D2).

Research on the behavior of methane isotopologues like 13CH3D have a natural alignment to many of

the questions that are important and possibly unanswered in assessment of petroleum systems, particularly

in poorly understood basins (Fig. 1.10). In particular, measurements of methane isotopologues can
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and Lipscomb, 1996). This means that the
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Chapter 4 and Whitehill et al. (2017)

show that fractionations are related by:
13CH3D/

12CH4 = γ × (13C/12C) × (D/H),

where γ is a number close to 1.000 (identical

within error for OH and aerobic methanotro-

phy, and slightly less than 1 for Cl). Together,

these fractionation factors constrain the ef-

fects on 13CH3D by the major methane sink

reactions in the atmosphere and in oxic mi-

crobial habitats on Earth.
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Figure 1.10 | Petroleum system applica-
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space of methane isotopologue geother-

mometry and geospeedometry include the

ability to link key hydrocarbon system el-

ements (particularly elements of source,

charge, and trap) in time and space, to cali-

brate and/or validate basin model predic-
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• place quantitative constraints on the stability and origin of C–H bonds in hydrocarbons in the Earth’s

subsurface;

• test interpretive models of natural gas composition and gas isotope systematics; and

• be used to help anchor the chemistry of natural gases to time and temperature.

Appendices A and B represent some initial efforts to read the hydrogen-isotope and clumped isotopologue

record of natural gases and define what those records mean.

Appendix C offers miscellaneous tricks, tips, and data that didn’t fit anywhere else.
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Chapter2
Nonequilibrium clumped isotope signals in microbial
methane

ABSTRACT

Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural

sources. While isotopic compositions of methane have traditionally aided source identification, the

abundance of its multiply-substituted “clumped” isotopologues (e.g., 13CH3D) has recently emerged as a

proxy for determining methane-formation temperatures. However, the impact of biological processes on

methane’s clumped isotopologue signature is poorly constrained. Here, we show that methanogenesis

proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic

control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We

demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry

can therefore provide constraints on the generation of methane in diverse settings, including continental

serpentinization sites and ancient, deep groundwaters.

A version of this chapter has been published as:

Wang, D. T.; Gruen, D. S.; Lollar, B. S.; Hinrichs, K.-U.; Stewart, L. C.; Holden, J. F.; Hristov, A. N.; Pohlman, J. W.;

Morrill, P. L.; Könneke, M.; Delwiche, K. B.; Reeves, E. P.; Sutcliffe, C. N.; Ritter, D. J.; Seewald, J. S.; McIntosh, J. C.;

Hemond, H. F.; Kubo, M. D.; Cardace, D.; Hoehler, T. M. & Ono, S. (2015) Nonequilibrium clumped isotope signals in

microbial methane. Science, 348, 428–431. doi:10.1126/science.aaa4326

Copyright © 2015, The Authors. AAAS maintains exclusive rights to use and authorize use of this article under its

License to Publish. Reproduction in this thesis is permitted under the terms of this agreement.
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Chapter 2. Survey of 13CH3D in theenvironment

2.1 MAIN TEXT

Carbon (13C/12C) and hydrogen (D/H) isotope ratios of methane are widely applied for distinguishing

microbial from thermogenic methane in the environment (Welhan and Lupton, 1987; Whiticar, 1990;

Sherwood Lollar et al., 2002; Flores et al., 2008; Sherwood Lollar et al., 2008; Pohlman et al., 2009; Baldassare
et al., 2014) as well as for apportioning pathways of microbial methane production (Whiticar et al., 1986;
Burke et al., 1988; McCalley et al., 2014). This bulk isotope approach, however, is largely based on empirical

observations, and different origins of methane often yield overlapping characteristic isotope signals (Schoell,

1988; Whiticar, 1990; Whiticar, 1999; Pohlman et al., 2009; Etiope and Sherwood Lollar, 2013). Beyond

conventional bulk isotope ratios, it has become possible to precisely measure the abundance of multiply-

substituted “clumped” isotopologues (e.g., 13CH3D) (Ono et al., 2014; Stolper et al., 2014b). In particular, the

abundances of clumped isotopes makes it possible to obtain information about the temperature at which

C–H bonds were formed or last equilibrated (Ono et al., 2014, and Fig. 2.5). Formation temperatures of

both thermogenic and microbial methane in natural gas reservoirs can be estimated on the basis of clumped

isotopologues (Stolper et al., 2014a). The mechanisms by which isotopologues attain distributions consistent

with thermodynamic equilibrium, however, remain unclear because bulk methane isotopes (δ13C and δD)

often reflect kinetic isotope fractionations (Whiticar, 1999; Valentine et al., 2004), and H-isotope exchange

between methane and water is sluggish (Reeves et al., 2012).
To test if clumped methane thermometry can be widely applied for methane sources beyond natural

gas reservoirs, we examined methane samples from diverse systems, including lakes, wetlands, cow rumen,

laboratory cultures of methanogenic microbes, and geological settings that may support abiogenic methane

production. We measured the relative abundances of four methane isotopologues (12CH4,
13CH4,

12CH3D

and 13CH3D) using a recently-developed tunable laser spectroscopy technique (Ono et al., 2014, and § 2.4).

Our measurements for dominantly-thermogenic gases from the Marcellus and Utica Shales (Burruss and

Laughrey, 2010; Baldassare et al., 2014) yielded ∆13CH3D-based temperatures of 147+25
−22 °C and 160+29

−25 °C,

respectively. The clumped-isotope temperature for the Marcellus Shale sample is comparable to, although

slightly lower than, estimates by Stolper et al. (2014a) of 179–207 °C (Fig. 2.1). In addition, microbial methane

in pore waters and gas hydrates from northern Cascadia margin sediments (Pohlman et al., 2009), and from

wells producing from coal seams in the Powder River Basin (Flores et al., 2008; Bates et al., 2011) yielded
∆13CH3D temperatures of 12–42 °C and 35–52 °C, respectively. These are consistent with their expected low

formation temperatures. Furthermore, thermogenic methane sampled from a hydrothermal vent in the

Guaymas Basin, Gulf of California (Welhan and Lupton, 1987), yielded a ∆13CH3D temperature of 326+170
−95 °C,

within error of the measured vent temperature (299 °C; Reeves et al., 2014). Therefore, our data provide

independent support of the hypothesis that 13CH3D abundance reflects the temperature at which methane is

generated in these sedimentary basins (Stolper et al., 2014a).
In contrast, we found that methane sampled from lakes, a swamp, and the rumen of a cow carry 13CH3D

signals that correspond to anomalously high ∆13CH3D temperatures (139–775 °C, Fig. 2.1A) that are well

above the environmental temperatures (<40 °C). Such signals are clearly not controlled by equilibrium.

Notably, a positive correlation between ∆13CH3D and the extent of D/H fractionation between methane and

environmental water [εmethane/water;
1 Fig. 2.2] suggests a strong link between isotopologue (i.e., 13CH3D) and

1
The abundance of

13
CH3D is captured by a metric, ∆

13
CH3D, which quantifies its deviation from a random distribution of

isotopic substitutions amongst all isotopologues in a sample of methane: ∆
13
CH3D = lnQ, where Q is the reaction quotient of

the isotope exchange reaction:
13
CH4 + 12

CH3D ⇌ 13
CH3D + 12

CH4, where the δ-values are conventional isotopic notation,

e.g., δD = (D/H)sample/(D/H)reference − 1. Mass spectrometric measurements yield ∆18, a parameter that quantifies the combined

abundance of
13
CH3D and

12
CH2D2 . For most natural samples of methane, ∆18 is expected to be directly-relatable to ∆

13
CH3D as

measured by laser spectroscopy. The D/H fractionation between methane and environmental water is defined as εmethane/water =

(D/H)methane/(D/H)water − 1.
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Figure 2.1 | Isotopologue compositions of methane

samples. (A) ∆13CH3D plotted against δD. The

∆13CH3D temperature scale corresponds to calibra-

tion in Fig. 2.5. Error bars are 95% confidence intervals

(Table 2.1). Data from Stolper et al. (2014a) were scaled
to their corresponding ∆13CH3D values (Stolper et al.,
2014b). The shaded area represents the temperature

range within which microbial life has been demon-
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represents ∆13CH3D = 0‰ (T → ∞); data plotting

below this line cannot yield corresponding apparent

temperatures. (B) δ13C plotted against δD, showing

characteristic fields for differentmethane sources from

Whiticar (1999).
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isotope (D/H) disequilibria. In contrast, the above mentioned methane samples from sedimentary basins

appear to have attained hydrogen-isotope equilibrium with associated waters at or near the temperatures

indicated by the ∆13CH3D data (Fig. 2.2).

To confirm these observations from the natural environment, we demonstrated that strong disequilib-

rium 13CH3D signals are also produced by cultures of methanogenic archaea in the laboratory (Fig. 2.3).

Thermophilic methanogens cultured at 40 to 85 °C produced methane with ∆13CH3D values from +0.5 to

+2.3‰ (corresponding to ∆13CH3D temperatures of 216–620 °C), and mesophilic methanogens cultured

at ambient temperature produced methane with conspicuously “anti-clumped” signatures (i.e., values of

∆13CH3D < 0‰, for which no apparent temperature can be expressed) as low as −1.3‰ (Fig. 2.3). Methane

from cultures is also characterized by large kinetic D/H fractionation with respect to water (Balabane et al.,
1987; Valentine et al., 2004). Because laboratory cultures are grown under optimal conditions (high H2 and

high CO2), these anti-clumped ∆13CH3D and low εmethane/water values are primarily expressions of kinetic

isotope effects. Consequently, the distribution of samples with ∆13CH3D and εmethane/water values in Fig. 2.2

can be explained by microbial methanogenesis operating on a spectrum between fully kinetic (low ∆13CH3D

and low εmethane/water) and equilibrium (high ∆13CH3D and high εmethane/water) end-members.

We constructed a mathematical framework to describe the controls on the correlation of ∆13CH3D and

εmethane/water signals from hydrogenotrophic methanogenesis. The model largely follows those developed for

microbial sulfate reduction (Rees, 1973; Wing and Halevy, 2014) and predicts the isotopologue compositions

of product methane as a result of a series of enzymatic reactions (Fig. 2.8 and § 2.4.7). Using isotope

fractionation factors estimated from theory, experiments, and observations as input parameters (Table 2.3),

our model reproduces the observed correlation between ∆13CH3D and εmethane/water of natural samples

(Fig. 2.2). The isotopologue compositions of product methane reflect the degree of metabolic reversibility.

Fully reversible reactions yield equilibrium end-members (Holler et al., 2011), while irreversible reactions
result in kinetic (disequilibrium) end-member signals. In this model, the reversibility is linked to available

free energy (Holler et al., 2011; Wing and Halevy, 2014), in this case expressed as H2 concentration ([H2]).

The model can explain the relationship among [H2], εmethane/water (Burke, 1993), and ∆
13CH3D via Michaelis-

Menten kinetics, and can predict the patterns observed in diverse settings ranging from marine sediments

(low [H2], high ∆13CH3D and εmethane/water) to bovine rumen (high [H2], low ∆13CH3D and εmethane/water)

(Fig. 2.4). We note that mixing of methane sources with different δ13C and δD values or oxidation of methane

could also alter the relationships over the primary signal of microbial methanogenesis (§ 2.5.1). Likewise,

inheritance of clumping signals from precursor organic substrates (e.g., via acetoclastic or methylotrophic

methanogenesis) cannot be entirely ruled out and awaits experimental validation.

We showed above that the combination of ∆13CH3D and εmethane/water values provides mechanistic

constraints on whether methane was formed under kinetic vs. near-equilibrium conditions. Next, we used

this framework to place constraints on the origins of methane at two sites of present-day serpentinization in

Phanerozoic ophiolites [The Cedars (Morrill et al., 2013) and Coast Range Ophiolite Microbial Observatory,

CROMO (Cardace et al., 2013)] in northern California, and in deep (> 2 km below surface) fracture fluids

with billion year-residence times in the Kidd Creek mine, Canada (Sherwood Lollar et al., 2002; Holland
et al., 2013).

Methane collected from groundwater springs associated with serpentinization at The Cedars yielded

anti-clumped ∆13CH3D signals (−3‰) with low εmethane/water values (Figs. 2.1A and 2.2). The data plot along

the microbial (kinetic) trend defined in Fig. 2.2, supporting a previous hypothesis that methane at The Cedars

is being produced by active microbial methanogenesis (Morrill et al., 2013). The exceptionally high H2

concentration (up to 50% by volume in bubbles) at The Cedars indicates the massive excess of electron donor.

This, along with severe inorganic carbon limitation [due to high pH (>11) and precipitation of carbonate

minerals (Morrill et al., 2013)], drives the formation of methane carrying strong kinetic imprints, consistent
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with the observed anti-clumped ∆13CH3D signals (Fig. 2.4).

Despite the similarity in geologic setting, methane associated with serpentinization at CROMO (Cardace

et al., 2013) revealed very different ∆13CH3D values that correspond to low apparent temperatures (42–

76 °C) and plot close to the equilibrium line (Fig. 2.2). While the conventional δ13C and δD values of

methane from CROMO are nearly identical to those of the Utica Shale sample (Fig. 2.1B), methane at

CROMO carries much higher ∆13CH3D values (Fig. 2.1A). The origin of methane at the CROMO site remains

unresolved (Cardace et al., 2013), but the comparably high ∆13CH3D values at CROMO suggest that methane

here could be sourced from a mixture of thermogenic and microbial methane. Alternatively, lower H2

availability at CROMO compared to The Cedars (Table 2.4), may support microbial methanogenesis under

near-equilibrium conditions (Fig. 2.4). Regardless, the different isotopologue signatures in methane from

CROMO vs. The Cedars demonstrate that distinct processes contribute to methane formation in these two

serpentinization systems.

Deep, ancient fracture fluids in the Kidd Creek mine in the Canadian Shield (Holland et al., 2013) contain
copious quantities of both dissolved methane and hydrogen (Sherwood Lollar et al., 2002). The Kidd Creek

methane occupies a distinct region in the ∆13CH3D vs. εmethane/water diagram (Fig. 2.2), due to strong D/H

disequilibria between methane and water (Sherwood Lollar et al., 2008) and low ∆13CH3D temperature

signals of 56–90 °C that are consistent with other temperature estimates for these groundwaters (Sherwood

Lollar et al., 2008). Although the specific mechanisms by which the proposed abiotic hydrocarbons at Kidd

Creek are generated remain under investigation (Sherwood Lollar et al., 2002; Sherwood Lollar et al., 2014),
the distinct isotopologue signals provide further support for the hypothesis that methane here is neither

microbial nor thermogenic.

Our results demonstrate that measurements of 13CH3Dprovide information beyond the simple formation

temperature of methane. The combination of methane/water D/H fractionation and 13CH3D abundance

enables the differentiation ofmethane that has been formed at extremely low rates in the subsurface (Pohlman

et al., 2009; Bates et al., 2011; Holler et al., 2011) from methane formed in cattle and surface environments in

which methanogenesis proceeds at comparatively high rates (Johnson and Johnson, 1995; Varadharajan and

Hemond, 2012).

note added during thesis preparation: I do not favor the use of the term formation temperature. This term has a distinct

and widely-accepted meaning in industries associated with subsurface resources (particularly within the disciplines of formation

evaluation, reservoir engineering, and petrophysics). Practitioners of isotope geochemistry can better communicate by using

less-ambiguous wording such as temperatures of methane generation and clumped isotopologue temperatures. The distinction

between these two concepts is important because—as this thesis demonstrates—apparent temperatures derived from equilibria

between methane isotopologues are often different from the temperatures at which methane was generated. Methane may also be

generated at one temperature, and later “scrambled” (its C–H bonds rearranged/equilibrated) at a different temperature; only the

temperature of last equilibration would be recorded by ∆
13
CH3D values.
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Figure 2.2 | Extent of clumped- and hydrogen-

isotopic disequilibria in methane. Symbols and verti-

cal error bars are the same as those in Fig. 2.1. Hori-

zontal error bars represent uncertainties on estimates

of εmethane/water
1 (Table 2.4). The solid green curve

represents isotopic equilibrium, with the εmethane/water

calibration given by Horibe and Craig (1995). Green

shading represents ranges of εmethane/water calibrations

from published reports (Fig. 2.7). Gray shading rep-

resents model predictions from this study for micro-

bial methane formed between 0 and 40 °C. Metabolic

reversibility (φ) increases from bottom (φ = 0, fully-

kinetic) to top (φ → 1, equilibrium) within this field

(see § 2.4.7).
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2.4 MATERIALS AND METHODS

2.4.1 Animal care

Sampling of methane from bovine subjects was conducted according to guidelines established by the Institu-

tional Animal Care and Use Committee at the Pennsylvania State University.

2.4.2 Cultivation of methanogens

We established batch culture incubations ofMethanocaldococcus bathoardescens,Methanocaldococcus jan-
naschii,Methanothermococcus thermolithotrophicus, andMethanosarcina barkeri under atmospheres con-

taining 80% H2 and 20% CO2. Cultures ofM. jannaschii (Jones et al., 1983) andM. barkeri (strain DSM-800)

(Balch et al., 1979) were purchased from the German Collection ofMicroorganisms and Cell Cultures (DSMZ,

Braunschweig, Germany). Methanocaldococcus bathoardescens (formerly known as strain JH146) is a recently-

isolated hyperthermophilic, obligate hydrogenotrophic methanogen exhibiting optimum growth at 82 °C

(Ver Eecke et al., 2013; Stewart et al., 2015). The growth medium forM. jannaschii,M. thermolithotrophicus,
andM. bathoardescens was prepared according to the recipe for DSMZ medium 282, amended with 1 g/L

NaS2O3. Aliquots of the medium (50 ml) were transferred into 160 ml glass serum vials stoppered with blue

butyl rubber septa, and the headspace was filled with 2 atm H2:CO2 (80:20). The growth medium forM.
barkeri was prepared according to the recipe for DSMZ medium 120, and the headspace was filled with 1.5

atm H2:CO2 (80:20). Cultures were incubated at ambient temperature (M. barkeri, in duplicate), at 40 and

60 °C (M. thermolithotrophicus), at 80 °C (M. jannaschii), or at 85 °C (M. bathoardescens).

2.4.3 Sample purification procedures

To extract methane quantitatively from gas samples, we applied a preparative-gas chromatography technique

modified from Alei et al. (1987). In brief, a sample is introduced into a stream of helium. Water is removed

by passing the sample through a U-trap cooled to −80 °C, and then CH4, air (N2, O2, Ar), CO, CO2, and C2+

are cryofocused onto a U-trap packed with activated charcoal and held at −196 °C. The condensed gases

are then released by rapid heating to 120 °C, passed through a packed column (Carboxen-1000, 5′ × 1/8′′,

Supelco) held at 30 °C under helium flow (~25 ml/min), andmonitored using thermal conductivity detection.

The methane peak is trapped on a U-trap packed with silica gel and held at −196 °C; this is analogous to

a “heart-cut” technique used previously for preparative separation of SF6 for isotopic analysis (Ono et al.,
2006b). After elution of methane, the column is baked at 180 °C under a reversed (backflushed) flow of

helium to remove CO2 and C2+.

This sample preparation procedure induces small fractionations in δ13C and δD of methane of 0.09 ±

0.06‰ and 0.20 ± 0.02‰, respectively (1s, n = 4); these effects are minor compared to the magnitude of δ13C

and δD variations in nature. Critically, our procedure does not discernibly alter the ∆13CH3D value; the

average difference between samples treated vs. not treated with this procedure was −0.09 ± 0.16‰ (1s, n = 4),

which is not significantly different from zero.

2.4.4 Reporting of δ13C and δD values

The δ13C and δD values we report have been calibrated relative to PDB and SMOW, respectively, bymeasuring

samples of NGS-1 and NGS-3. These reference values for δ13C and δD are, respectively, −29.0‰ and −138‰

for NGS-1, and −72.8‰ and −176‰ for NGS-3, as determined by several labs in the 1980s (Hut, 1987).

Results for the calibration samples are shown in Table 2.5.
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Figure 2.5 | Experimental calibration of the ∆13CH3D thermometer. Filled circles represent the mean ∆13CH3D

of gases heated at that temperature, and error bars represent 95% confidence intervals calculated from a normal

distribution (for the 150 °C sample, error bars represent the 95% confidence interval on the measurement cycles in a

single analysis, calculated from a t-distribution). For the 250 °C point, the error bars are smaller than the symbol. The

open circle represents our reference gas, AL1. The equilibrium curve (red line) was calculated following conventional

equilibrium isotope fractionation theory under the harmonic oscillator assumption (Bigeleisen and Mayer, 1947);

frequencies were calculated at the B3LYP level of theory using the 6-311G basis set as implemented in Gaussian 03

(Frisch et al.). For comparison, results from published computational studies (Ma et al., 2008; Cao and Liu, 2012; Webb

and Miller, 2014) are also plotted.

2.4.5 Heated gas calibrations

To confirm and extend a previously-published temperature calibration (Ono et al., 2014), Pyrex tubes

containing samples of methane with a range of δ13C (−82 to −34‰ vs. PDB) and δD (−615 to +220‰ vs.

SMOW) were prepared. These samples were heated over Pt catalyst at temperatures of 150, 170, 250, and

400 °C (n = 1, 3, 28, and 7, respectively). Gases were heated for 110 d, 73–76 d, 2–24 d, and 16–60 h, respectively,

following a procedure described in Ono et al. (2014).
When the theoretical methane equilibrium line is aligned to samples heated at 150, 170, and 250 °C,

measurements of the samples heated at 400 °C yielded slightly lower ∆13CH3D temperatures (347+42
−36 °C),

perhaps because quenching the reaction may take longer than the time for exchange over catalyst at ~400 °C.

As a result, the data from the 400 °C heated gases were not used in aligning the calibration in Fig. 2.5.

The theoretical equilibrium line we calculated agrees well with published results from both path-integral

Monte Carlo simulations (Webb and Miller, 2014) and harmonic oscillator assumption-based approaches

(Ma et al., 2008; Cao and Liu, 2012; Webb and Miller, 2014). The results of results of calculations employing

an anharmonic correction, however, differ slightly from results of models assuming harmonic-oscillator

behavior (by ~0.3‰ near room temperature; Cao and Liu, 2012; Webb and Miller, 2014). Figure 2.5 shows

results from recent studies comparing multiple computational approaches for estimating the temperature-

dependence of the equilibrium ∆13CH3D value. We note that while the uncertainty in the theoretical curve

is similar in magnitude to our analytical uncertainty, particularly at temperatures <100 °C, these calibration

uncertainties do not affect the conclusions drawn in this study.
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Figure 2.6 | Demonstration of linearity in ∆13CH3D over a range of bulk isotope ratios. Shown are measurements

of methane heated over catalyst at three temperatures (170, 250, 400 °C). Solid red lines represent unweighted linear

least squares regressions through gases equilibrated at 250 °C, and gray lines denote the 95% confidence band. Error

bars represent 95% confidence intervals on multiple measurement cycles of a single analysis. Isotopic ratios are shown

relative to our reference gas, AL1. Results indicate no significant correlation between ∆13CH3D and (A) δ13CH3D over

an 800‰ range (the variation in δ13CH3D is driven mainly by differences in δD); and (B) δ13C over a 48‰ range.

2.4.6 Spectroscopic procedures

Samples of purified methane were analyzed using a tunable-infrared laser direct absorption spectrometer

(Aerodyne Research, Billerica, Massachusetts) housed at MIT as described in Ono et al. (2014), with improve-

ments described here. All measurements reported in this paper were obtained at a nominal cell pressure of

ca. 1.0 Torr, instead of the 0.8 Torr used in Ono et al. (2014). We have found that this higher cell pressure

gave improved measurement stability. As suggested previously (Ono et al., 2014), there is a small offset in the

baseline underneath the 13CH3D absorption line, likely due to the insufficient accuracy of the Voigt profile

for describing the contribution from tailing of adjacent 12CH4 peak. We have used all 250 °C experiments

shown in Fig. 2.6 to generate a single set of correction factors, which show no observable drift during the

time period all measurements were made.

Long-term internal reproducibility was evaluated by repeated analysis of methane from a commercially-

sourced gas cylinder over a period of >4 months, yielding precisions for δ13C of ±0.02‰, δD of ±0.02‰,
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Figure 2.7 | Equilibrium hydrogen isotopic fractionation factors compiled from experimental and theoretical calibra-

tions. When appropriate, calibrations for H2O(g)/H2(g) have been converted using the H2O(l)/H2O(g) calibration

from Horita and Wesolowski (1994) to derive H2O(l)/H2(g) calibrations. HW94, Horita and Wesolowski (1994); S49,

Suess (1949); C54, Cerrai et al. (1954); BW76, Bardo and Wolfsberg (1976); R76, Rolston et al. (1976); HC95, Horibe

and Craig (1995). For any temperature, the CH4(g)/H2O(l) equilibrium composition is the ratio of the CH4(g)/H2(g)

line (HC95) to a H2O(l)/H2(g) line.

and ∆13CH3D of ±0.08‰ (1s, n = 13). As described in Ono et al. (2014), each measurement run consists of

multiple acquisition cycles (a cycle is defined as one comparison of a sample/standard pair). The number of

cycles (Ncycles) depends on sample size, but is typically greater than 5. In this paper, ∆13CH3Dmeasurements

are reported as mean ± 95% confidence intervals (CI) on the average of all isotope ratios obtained for each

acquisition cycle over a measurement run, calculated as: 95% CI = tinv (α, df ) ⋅ s /
√
Ncycles, where tinv is the

two-tailed inverse of the Student’s t-distribution for α = 0.05 with Ncycles − 1 degrees of freedom (df ), and
s ≥ 0.27‰ [this value is the standard deviation on measurements for which 24 or more cycles were taken

(0.27 ± 0.08‰, 1s on 1s, n = 7), and thus estimates the internal precision of the instrument]. The uncertainties

on ∆13CH3D values reported for samples in Tables 2.1, 2.2, and 2.5 also contain the propagated uncertainty

in the ∆13CH3D value of our methane reference gas (AL1). Based on the calibration shown in Fig. 2.5, we

determined that AL1 carries a ∆13CH3D value of +2.41 ± 0.08‰ (95% CI).

To enable analysis of small (ca. 1 cm3 STP) methane samples, we have developed a cold trap system to

recover and recycle methane samples for re-analysis. In the current study, the only sample for which this

recycling method was used was “Sally-1”, a sample from a bovine rumen (Table 2.1).

2.4.7 Model of isotopologue systematics during microbial methanogenesis

A mathematical model was constructed to describe isotopologue compositions of methane produced from

microbial methanogenesis (Fig. 2.8). To allow for the use of data from studies on experimental and natural
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Table 2.3 | Isotope fractionation factors (input parameters) used inmodel calculations formicrobialmethane generated

at 20 °C. A detailed description of the model setup and explanation of choices of fractionation factors is given in § 2.4.7.

forward backward equilibrium

13C/12C isotope effect (13α) 0.9600* 0.9771† 0.9824‡

D/H primary isotope effect (2αp) 0.600 to 0.750§ 0.751 to 0.939# 0.7989||

D/H secondary isotope effect (2αs) 0.8400¶ 0.8400¶ 1.0000¶

13C-D clumped isotope effect (γ) 0.9987 or 0.9965** 0.9928 or 0.9907†† 1.0059‡‡

* From Scheller et al. (2013) for the reduction of methyl-coenzyme M.

† Internally-consistent value. For comparison, Hermes et al. (1984) reported 0.96 for formate

dehydrogenase, and Scharschmidt et al. (1984) reported 0.979 for alcohol dehydrogenase.

‡ From Horita (2001), who determined 13αCH4/CO2
= 0.932 at 20 °C; this reported value is equal

to 0.9824 taken to the power of 4.

§ Free parameter. The range of values used here are similar to those reported for in vitro studies of
methyl-coenzyme M reductase (0.63 to 1.0) (Scheller et al., 2013) and from experimental cultures

of methanogens (0.70 to 0.86) (Valentine et al., 2004).
# Internally-consistent value. For comparison, Scheller et al. (2013) determined a value of 0.41 ±

0.04 (they reported a primary isotope effect of kH/kD = 2.44 ± 0.22 for the activation of methane;

the reciprocal of this value is 2αp).

|| From the value given by Horibe and Craig (1995) for the equilibrium D/H fractionation factor

between H2O(l) and CH4(g) at 20 °C.

¶ From Scheller et al. (2013) for the reduction of methyl-CoM. For comparison, Roston and

Kohen (2010) reported secondary D/H isotope effects associated with the reduction of an aldehyde

by alcohol dehydrogenase of 0.94 for the forward reaction and 0.81 for the reverse reaction.

** To fit the lowest ∆13CH3D values we have observed in methanogen culture experiments (0.9987,

corresponding to ∆13CH3D = −1.3‰, Table 2.2) or in nature (0.9965, corresponding to ∆13CH3D

= −3.5‰, Table 2.1). Calculations for the fields shown in Figs. 2.2 and 2.4 use the latter values.

See § 2.4.7 for explanation of choice, and Fig. 2.9 for comparison of model results using the two

different values.

†† Internally-consistent value. For comparison, Hermes et al. (1984) reported 0.999 for formate

dehydrogenase, and Scharschmidt et al. (1984) reported 0.995 for alcohol dehydrogenase.

‡‡ Computed equilibrium ∆13CH3D value at 20 °C (Fig. 2.5).

systems as input parameters, our model simplifies the representation of the biochemistry involved in the

microbial generation of methane, and only considers the production of methane via reduction of CO2.

The model describes methanogenesis in six steps, and using an assumption of steady-state intermediate

compositions, solves for the abundances of 13C- and D-substituted isotopologues of product CH4 and of

four intermediate species (Fig. 2.8). The first step (1) is the uptake of CO2 into the cell, and the last step (6) is

export of CH4 out of the cell; we assume that neither of these steps discriminates against isotopes or between

isotopologues. Inside the cell, the reduction of CO2 to CH4 is treated in four steps (steps #2–5), where each

step corresponds to the addition of one hydrogen (Thauer, 1998).

The main variable input in our model is metabolic reversibility, which is defined as the ratio of backwards

to forwards fluxes (φn = wn/vn) through an enzymatically-mediated reaction sequence (Rees, 1973; Hayes,

2001). The reversibility is constrained by two end-members, which represent fully-irreversible (φ = 0; fully-

kinetic) and fully-reversible (φ→ 1; equilibrium) conditions. We parameterize the reversibility as a simple

function of H2 concentration by assuming Michaelis-Menten kinetics for each H-addition step:

φn = 1 −
[H2]

KM + [H2]
(2.1)
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Table 2.4 | Methane/ethane ratio, hydrogen isotopic composition of water, current environmental temperatures, and

concentration of dissolved H2 for sites studied. References are provided for previously-published descriptions of the

field site; n.d., not determined.

Location C1/C2
|| δDwater (‰)¶ T (°C)# [H2]** Data Sources

Bovine rumen, Pennsylvania, USA n.d. −32 ± 10 39 ± 2 0.1–50 µM this study*,‡, [1]

Northern Cascadia Margin sediments >1000 +5 ± 10 3–17 2–60 nM [2]

Powder River Basin, Montana, USA >1000 −136 ± 5 18 ± 2 n.d. this study§

Cedar swamp, Massachusetts, USA n.d. −21 ± 10 16 ± 5 n.d. this study‡

Upper Mystic Lake, Mass., USA n.d. −39 ± 10 4 ± 2 n.d. this study‡

Lower Mystic Lake, Mass., USA >1000 −41 ± 10†† 6 ± 2 n.d. this study‡

The Cedars, California, USA >350 −37 ± 10 17 ± 1 120, 310 µM [3]

CROMO, California, USA >350 −33 ± 10†† 16 ± 4 60–130 nM this study†,‡

Kidd Creek Mine, Ontario, Canada 5.9–14 −34 ± 6 30 ± 2 0.8–8 mM [4]

Rebecca’s Roost vent, Guaymas Basin 140 +4 ± 2 299 ± 5 3.3 mM [5]

Marcellus Fm., Penn., USA 45 −44 ± 10 51 ± 10 n.d. [6]

Utica Fm., Penn., USA 84 −40 ± 15 93 ± 10 n.d. [7]

*H2 concentrationswere determined using gas chromatographywith thermal conductivity detection atMIT. Analytical

reproducibility is typically ±5%.

†H2 concentrations were determined using a reduced gas analyzer gas chromatograph at NASAAmes (Crespo-Medina

et al., 2014).
‡ The δDwater was measured at the Boston University Stable Isotope Laboratory using high-temperature conversion

gas chromatography isotope-ratio mass spectrometry. External reproducibility on replicate analyses of samples was ±

1–3‰ (1s, n = 3–4), with the exception of cow rumen fluid (±8‰, 1s).
§ The δDwater values were measured at the University of Arizona Environmental Geochemistry Laboratory via

isotope-ratio mass spectrometry.

|| Unless otherwise indicated, the C1/C2 ratio (i.e., the ratio of the concentration of methane to that of ethane in a gas

sample) was determined using gas chromatography with flame-ionization detection at MIT.

¶ The δDwater values are reported with respect to the VSMOW scale.

# At some sites ambient temperatures were not directly measured (in italics) and therefore were estimated; reasonable

uncertainties on those estimates are given. At all other sites temperatures were measured in situ.
** Dissolved H2 concentrations estimated from the literature are in italics.
†† At Lower Mystic Lake and CROMO, the waters in which methane was generated may have δDwater values different

from those in the water samples measured because of migration (see § C.3.1).

[1] Range of [H2] from Janssen (2010).

[2] For the Northern Cascadia Margin samples, an average D/H ratio of marine sediment porewater (+5‰, Friedman

andHardcastle, 1988) is assumed. The natural variability of ±10‰ is taken as the uncertainty of this estimate. Downhole

temperature measurements from Expedition 311 have been reported (Riedel et al., 2006). Concentrations of H2 were

assumed to be within the range of 2–60 nM, which is typical of marine sediments (Lin et al., 2012). The C1/C2 data are

from Pohlman et al. (2009).
[3] The [H2], δDwater and temperature data are fromMorrill et al. (2013). An uncertainty of ±10‰ is applied to δDwater

to account for potential interannual variability. Dissolved [H2] was estimated from the H2 mole % in the gas phase,

assuming equilibrium between gas bubbles and water at atmospheric pressure.

[4] Dissolved [H2] for Kidd Creek fluids was estimated using gas/water flow rate data from Holland et al. (2013) and
gas-phase H2 concentrations from Sherwood Lollar et al. (2008), and assuming that all dissolved H2 had completely

partitioned into the gas phase prior to sampling. The C1/C2 data are from Sherwood Lollar et al. (2002).
[5] Measured vent temperature and [H2] are from Reeves et al. (2014), and δDwater was assumed based on Shanks et al.
(1995).

[6] The δDwater values for formation water from the Marcellus Fm. in Pennsylvania are estimated from Rowan et al.
(2015). Uncertainty on reservoir temperature is estimated at ±10 °C.

[7] The δDwater values for formation water from the Utica Fm. are estimated using data for Appalachian Basin brines

from pre-Middle Devonian units presented in Warner et al. (2012). Uncertainty on reservoir temperature is estimated

at ±10 °C.
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2.4.7. Model of isotopologue systematics during microbial methanogenesis
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Figure 2.8 | Schematic of the model of deuterium substitution during microbial methanogenesis from CO2. Boxes

represent pools of cellular carbon involved in the methanogenic pathway, and the asterisk represents a compound

containing a deuterium substitution. Forward flows are represented by v, and backwards flows are represented by

w. The model setup is similar in concept to previously published models for microbial sulfate reduction (Rees, 1973;

Brunner and Bernasconi, 2005; Farquhar et al., 2007).
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where n represents the step number andKM is the effective half-saturation constant for H2 (assumed identical

for steps 2–5). In our model, φ1 is set at 1 (i.e., CO2 uptake is fully reversible).

Under an assumption of steady-state concentrations of intermediates, all fluxes for the 12CH isotopologues

are dependent upon the methane formation rate (v6, in e.g., mol cell−1 s−1) by:

vn = v6/(1 − φn), and wn = φnv6/(1 − φn) (2.2)

A series of continuity equations can be written for each 13C-substituted isotopologue. For example:

d13D
dt
=

13α+3 ⋅ v3 ⋅
13rC − (

13α+4 ⋅ v4 +
13α−3 ⋅w3) ⋅

13rD +
13α−4 ⋅w4 ⋅

13rE (2.3)

Here, 13D is the abundance of 13C-substituted isotopologues for the pool D (i.e., R=CH2; Fig. 2.8),

and 13rX is the isotopologue ratio of the pool X (where X = A, B, . . . , F), and 13αn+ and 13αn− are the
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Chapter 2. Survey of 13CH3D in theenvironment

13C/12C kinetic isotope effects associated with the forward and backward reactions, respectively. There are a

total of five continuity equations for pools 13B, 13C, 13D, 13E, and 13F. Under an assumption of steady-state

concentrations of intermediate species (i.e., d13X/dt = 0), we solve for the ratios of 13C-containing to 12C-

containing isotopologues in the product methane (F; i.e., 13CH4/
12CH4) and in the intermediates (B, C,D,

and E). The 13C/12C ratio of CO2 (i.e., rA) is assigned.
For the deuterated isotopologues, the continuity equations account for both primary isotope effects

(describing the rates at whichC–Dbonds are formed or broken relative to C–1Hbonds; fluxes shown vertically

in Fig. 2.8) and secondary isotope effects (describing the change in reaction rate resulting fromD substitution

at a site adjacent to that which is site of an 1H-addition or abstraction reaction; fluxes shown horizontally

in Fig. 2.8). For example for reservoir D, the continuity equation for the D-substituted isotopologue (i.e.,

R=CH2 or R=CHD) is:

d2D
dt
=

2α+3p ⋅ v3 ⋅
2rH +

2α+3s ⋅ v3 ⋅
2rC

− ( 1
2
⋅
2α−3s ⋅w3 +

1

2
⋅
2α−3p ⋅w3 +

2α−4s ⋅ v4) ⋅
2rD

+ 2

3
⋅
2α−4s ⋅w4 ⋅

2rE

(2.4)

Here, 2αnp and 2αns are primary and secondary deuterium isotope effects, 2rX are D-isotopologue ratios

for reservoir X, and 2rH is the D/H ratio of the hydrogen source (i.e., cellular water). The stoichiometric

factor corresponds to the probability of a primary versus secondary isotope-sensitive reaction occurring (in

this case, there is a 2/3 chance of removing H from R–CH2D). Again, there are five linear equations to be

solved simultaneously. Conversion between isotopologue ratios and isotope ratios requires consideration of

reaction stoichiometry. For example,

2rD =
[R=CHD]

[R=CH2]
= 2(

D

H
)
R=CH2

(2.5)

Clumped isotopologue ratios (e.g., [R=13CHD]/[R=12CH2]) can be solved for in a manner similar to that

used for D-substituted isotopologues above.

For simplicity, primary (αp) and secondary (αs) kinetic isotope fractionation factors for the four H-

addition steps are assumed to be identical at a given temperature (fractionation factors calculated for a

model temperature of 20 °C are shown in Table 2.3). The intrinsic (kinetic/forward) 13C/12C and D/H

fractionation factors are estimated from in vitro and culture studies (Hermes et al., 1984; Scharschmidt et al.,
1984; Valentine et al., 2004; Roston and Kohen, 2010; Scheller et al., 2013). The intrinsic 13CD fractionation

factor (γ, where 13Dα = γ · 13α · 2α) is taken to have the value required to generate a ∆13CH3D signature of

either −1.3‰ or −3.5‰ under fully-kinetic conditions (Main Text and Table 2.3). The 13C/12C, D/H, and
13CH3D equilibrium isotope fractionation factors are based on experimental and/or theoretical calibrations

(Figs. 2.2, 2.5, and 2.7) (Cerrai et al., 1954; Horibe and Craig, 1995; Horita, 2001; Ono et al., 2014). The

intrinsic fractionation factors for the reverse reactions (α−, Table 2.3) are constrained by the requirement for

consistency among equilibrium (αeq), forward (α+), and reverse reactions (i.e., αeq = α−/α+). We note that

varying the secondary isotope effect (αs, assumed to be 0.84 in either direction, for all steps) changes the

curvature of the modeled microbial trajectories, but does not change the endmember εmethane/water values

(which are set by the primary D/H isotope effect).

We initiated the model calculations at temperatures of 0, 20, and 40 °C. These temperatures bracket the

range of known or inferred environmental temperatures at which the microbial methane samples we studied

were generated (Table 2.4). The predicted isotopic compositions for microbial methane generated between 0

and 40 °C are shown in Figs. 2.2 and 2.4.
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2.5. Supplementary Text

Table 2.5 | Results of isotopic measurements of methane in samples of natural gas standards NGS-1 and NGS-3.

Uncertainties reported are 95% confidence intervals over all measurement cycles for a single analysis as described

in § 2.4.6. Values for δ13C, δD, and ∆13CH3D are reported relative to PDB, SMOW, and the stochastic distribution,

respectively.

Sample Name δ13C (‰) δD (‰) ∆13CH3D (‰) T13D (°C)

NGS-1 −28.73 ± 0.05 −137.47 ± 0.05 2.61 ± 0.29 186 +28/−24
−28.79 ± 0.07 −137.69 ± 0.07 2.53 ± 0.29 193 +29/−25
−28.91 ± 0.05 −138.07 ± 0.05 2.62 ± 0.24 185 +22/−19

NGS-3 −72.82 ± 0.06 −176.09 ± 0.06 5.08 ± 0.26 48 +10/−9
−72.71 ± 0.05 −175.82 ± 0.05 5.18 ± 0.26 44 +10/−9

NGS-3 + 150ml air * −72.99 ± 0.06 −176.21 ± 0.06 5.14 ± 0.49 45 +19/−17

* This sample was a subsample of NGS-3 that was intentionally-contaminated with 150ml of air,

to check for artifacts introduced from sample preparation and analysis of samples containing

large quantities of air. No significant difference was found compared to subsamples of NGS-3

that were not contaminated with air.

2.5 SUPPLEMENTARY TEXT

2.5.1 Evaluation of alternative mechanisms for isotopic disequilibria in microbial methane

There are several potential alternative mechanisms for the observed isotopic disequilibria in microbial

methane shown in Fig. 2.2. It is conceivable that these signals are due to mixing of multiple methane sources

with differing δ13C and δD values, as ∆13CH3D changes non-linearly upon mixing. The magnitude of non-

linearity in the mixing depends on the difference in both δ13C and δD values of the endmembers. It can be

shown, using a Taylor-series expansion (Ono et al., 2006a), that two-component mixing of endmembers (A

& B) produces a mixture with a ∆13CH3D value of:

∆
13
CH3Dmixture ≈ fA ⋅ ∆13

CH3DA + (1− fA) ⋅ ∆13
CH3DB

+ fA ⋅ (1− fA) ⋅ (δ13CA−δ
13
CB) ⋅ (δDA−δDB)

(2.6)

where fA represents the fractional contribution from endmember A. Accordingly, the observed ~6‰ negative

bias in ∆13CH3D values (from that expected for equilibrium at 0–40 °C, Fig. 2.1) requires mixing of two

methane sources with δ13C and δD values that differ by ±60‰ and ∓400‰, respectively; gases with these

isotopic compositions are unlikely to co-occur in the environments we studied (Whiticar, 1990).

Alternatively, under a commonly-used classification based on δ13C and δD values (Whiticar, 1999),

methane from these sites could be interpreted as derived from methyl-type fermentation (Fig. 2.1). If so,

the low ∆13CD values could be inherited from those of the C–H bonds in methyl groups of the organic

substrate(s). However, theoretical calculations predict consistent ∆13CD clumping effects of +6.2 ± 0.3‰ at

25 °C for the C–H bond of simple organic compounds (Table 2.6), which is not significantly different from

the equilibrium value for ∆13CH3D at 25 °C (+6.4‰). Thus, inheritance of equilibrium ∆13CD values from

organic precursors during methyl-type fermentation does not explain the observed disequilibrium ∆13CH3D

signatures. While inheritance of kinetically-influenced ∆13CD values from organic precursors is possible,

the ∆13CD values of acetate and other methyl-bearing methanogenic substrates are not currently known.

Furthermore, oxidation of methane can also be ruled out because the substantial deuterium enrichment

associated with methane oxidation (Whiticar, 1999) is not observed in the samples we studied.
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Table 2.6 | Partition function ratios (β-factors) for simple organic compounds calculated at 25 °C. Partition function

ratios were calculated using the method of Bigeleisen and Mayer (1947). Vibrational frequencies were calculated using

the Hartree-Fock method with the 6-31G* basis set. The partition function ratios listed below have been corrected

with symmetry factors to account for changes in symmetry upon isotope substitution (Bigeleisen and Mayer, 1947;

Urey, 1947). The average ∆13CD value calculated for methanol, formaldehyde, formate, methanethiol, and acetate is

+6.2 ± 0.3‰ (1s).

Species Formula* 13C/12C D/H 13CD/12CH ∆13CD (‰)

Methane CH4 0.123 2.647 2.777 6.4

Methanol CH3OH 0.150 2.812 2.968 6.3

Formaldehyde CH2O 0.165 2.591 2.763 6.7

Formate HCOOH 0.200 2.834 3.040 5.9

Methanethiol CH3SH 0.128 2.759 2.893 6.2

Acetate CH3COOH 0.147 2.775 2.927 6.0

* D/H and 13CD/12CH β-factors were calculated for D substitution at H sites shown

in bold letters.

2.5.2 The equilibrium hydrogen-isotopic fractionation between water and methane

We compiled previously-published equilibrium hydrogen-isotopic fractionation factors calibrated at var-

ious temperatures, either experimentally or theoretically, for the system CH4(g)-H2(g)-H2O(g)-H2O(l).
The H2O(l)/H2(g) fractionation factor is very large (α is ~4 at room temperature), and calibrations di-

verge substantially at lower temperatures (<100 °C, Fig. 2.7); this is the main source of uncertainty in esti-

mates of CH4(g)/H2O(l) equilibrium D/H fractionation, which is derived by combination of H2O(l)/H2(g),
H2(g)/H2O(g), and CH4(g)/H2(g) calibration curves. We used the Cerrai et al. (1954) calibration for H2O(l)/
H2(g) in the calculation of εmethane/water of the equilibrium endmember of our model for isotope effects

accompanying microbial methanogenesis (see § 2.4.7) because amongst the published calibrations, this is

likely most accurate at lower temperatures (Suess, 1949; Horibe and Craig, 1995; Roston and Kohen, 2010).

The uncertainty in calibration, as well as salt and pressure effects (Horita, 2005), could explain small apparent

offsets from the equilibrium line (Fig. 2.2) for some samples of thermogenic methane.

2.5.3 Field site descriptions and sampling methods

Bovine rumen, State College, Pennsylvania, USA. The bovine rumen gas samples obtained for this study were

collected from cannulated, lactating Holstein dairy cows at The Pennsylvania State University using methods

described previously (Tekippe et al., 2011). The samples were stored at room temperature in glass serum vials

stoppered with blue butyl septa. Bovine rumen fluid was also sampled for water isotope analysis (Table 2.4).

The fluid was centrifuged to remove large particulate material, filtered with a 0.2 µm filter, and distilled

to remove dissolved organic matter prior to isotope-ratio analysis. We note that the rumen fluid and gas

samples were not taken from the same animal at the same time. However, the temporal variation of δD of

tap water in the U.S. is expected to be small (generally <10‰ in any particular region over multiple seasons)

(Bowen et al., 2007).
Northern Cascadia Margin. Gas samples were collected from gas voids and hydrates in sediment cores

drilled during IODP (Integrated Ocean Drilling Program) Expedition 311 (Riedel et al., 2006). These gases

were interpreted to be dominantly microbial based on isotopic and compositional analyses (e.g., C1/C2 >

1000) (Pohlman et al., 2009). The gas samples were subsampled for previous analyses, and have remained in

archive since. Samples were contained either in serum vials sealed with blue butyl stoppers, or in Vacutainers®

(Becton Dickinson) sealed with orange septa and an additional silicone plug (in Table 2.1, these are denoted
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2.5.3. Field site descriptions and sampling methods

“SB” or “Vac”, respectively); these methods are standard IODP procedures. The sample ID’s for the samples

from the Northern Cascadia Margin listed in Table 2.1 are the same as those reported in Pohlman et al.
(2009).

Powder River Basin, Montana, USA. The Powder River Basin is a major source of coal and coalbed

methane. Gas samples were collected from multiple gas wells producing from the methane-rich Wall and

Canyon coal seams using a wellhead gas sampler and IsoTubes (from Isotech Laboratories, Champaign,

Illinois, USA). Water samples were collected concurrently from the same wells, filtered through 0.45 µm

nylon filters, transported to the lab on ice in deionized water-washed glass bottles with no headspace, and

kept at 4 oC prior to analysis.

Atlantic White Cedar swamp, Cape Cod, Massachusetts, USA. Atlantic White Cedar swamps are wetlands

found throughout the coastal northeastern United States (Laderman et al., 1989). We collected gases and

water from a swamp (“Swamp Y”, approximate coordinates 41°31′38.2′′N, 70°39′15.5′′W) on the campus of

the Marine Biological Lab (MBL) in Woods Hole, MA in May 2014. Gases were collected by trapping the

bubbles released when sediment on the bottom of the swamp was gently disturbed. The collected gases were

transferred via syringes to serum vials (either pre-evacuated or pre-filled with NaCl brine that was displaced

to make room for the gas sample) sealed with blue butyl septa, and stored at room temperature until analysis.

One sample (“SwampY-5”, Table 2.1) was subsampled and analyzed 3 days after sample collection, and again 3

weeks later. The measured ∆13CH3D values were indistinguishable within the precision of the measurements

(0.36 ± 0.34‰ and 0.27 ± 0.52‰, respectively).

Upper Mystic Lake, Arlington, Massachusetts, USA. Upper Mystic Lake is a freshwater lake in the Boston

metropolitan area. Ebullition of methane from this lake has been previously documented (Scandella et al.,
2011; Varadharajan and Hemond, 2012). We collected gas bubbles using inverted funnel-shaped bubble traps

[modified from an inverted-funnel design described previously (Varadharajan et al., 2010; Varadharajan and

Hemond, 2012)] deployed ~2 m above the lake floor (~18 m water depth) using a custom rope and buoy

structure.2 The deep deployment depth was chosen to minimize dissolution and/or oxidation of bubbles

during their transit from the sediment to the lake surface. The collected gases were transferred via syringes

to serum vials (either pre-evacuated or pre-filled with deionized water that was displaced to make room for

the gas sample) sealed with blue butyl septa, fixed with either saturated NaCl solution or 1 M NaOH, and

stored at either 4 °C or room temperature until analysis. The water sample from Upper Mystic Lake listed in

Table 2.4 was collected in September 2014.

Lower Mystic Lake, Arlington, Massachusetts, USA. Lower Mystic Lake (elevation 1 m above sea level,

maximum depth 24 m) is a meromictic glacial kettle lake. The sample of methane reported in Table 2.1 was

extracted from water we collected from 20 m water depth (mbll, meters below lake level) in August 2014.

The water sample was transferred into a 2 L media bottle, taking care to minimize bubbles, immediately

stoppered with a black rubber septum (Glasgerätebau Ochs, Germany), and transported to the laboratory. A

headspace was created using helium, and the sample was then stored at 4 °C until extraction and analysis.

The concentration of dissolved methane at 20 mbll was determined to be 4.2 mM (±5%). Field measurements

indicated that the water at 20 mbll was oxygen-depleted and had elevated conductivity relative to surface

water. The water sample listed in Table 2.4 was collected from 18 mbll, which is below the chemocline.

The Cedars, Cazadero, California, USA. Samples of bubbling gases were collected in June 2013 and July

2014 from sites in The Cedars as described in Morrill et al. (2013); the sites studied here were Barnes Spring

Complex (BSC), and Nipple Spring (NS). Gas samples were collected in inverted-bucket traps positioned

over seeps, and collected gases were transferred to serum bottles stoppered with blue butyl rubber septa.

Samples were fixed with HgCl2 or HCl to prevent microbial alteration of the methane.

2
A description of the apparatus appears in Delwiche et al. (2015).
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Coast Range Ophiolite Microbial Observatory, Lower Lake, California, USA. The Coast Range Ophiolite

Microbial Observatory, located at the McLaughlin Natural Reserve (UC Davis), was established in 2011 with

the completion of eight ultramafic-hosted groundwater monitoring wells drilled using a mud-free technique

(Cardace et al., 2013; Crespo-Medina et al., 2014). Water was sampled from well “N-08A” in December 2013

using a bladder pump into 1–2 L bottles, stoppered immediately as described above for the LowerMystic Lake

sample, transported to the laboratory, and stored at 4 °C until extraction and analysis. We also collected water

in July 2014 from an electrically-pumped non-potable groundwater well in the Core Shed area (“CSWold”,

approximate coordinates 38°51′42.53′′N, 122°24′53.05′′W). For this sample, dissolved gases were extracted

on-site via equilibration with a helium headspace and stored in a stoppered serum vial fixed with 0.5 ml

1 M HCl. The water sample for which the δDwater value is reported in Table 2.4 was collected from CSWold

in December 2013. The range of H2 concentrations reported in Table 2.4 from CROMO are minimum and

maximum values of [H2] observed over multiple sampling trips during a long-term (~3 years) sampling

campaign.

Kidd Creek Mine, Timmins, Ontario, Canada. In subsurface mines in the Canadian Shield, exploration

boreholes intersecting extensive fracture networks release waters rich in reduced gases (H2, CH4, C2+) and

noble gases, which exsolve upon depressurization. Sampling and characterization of fracture fluids from

Kidd Creek have been described in previous studies (Sherwood et al., 1988; Sherwood Lollar et al., 2002;
Sherwood Lollar et al., 2007; Sherwood Lollar et al., 2008; Holland et al., 2013). We analyzed methane

sampled from boreholes at the 7850′- and 9500′-levels (Table 2.1). These samples were taken between 2007

and 2014, and stored in glass serum vials stoppered with blue butyl rubber septa. The δ13C values of these

gases were previously measured by GC-IRMS at the University of Toronto. No evidence of any effects of

long-term storage on the δ13C of methane in these samples has been observed; the average difference between

δ13C determined via TILDAS compared to GC-IRMS was 0.09 ± 0.60‰ (1s, n = 9), and shows no correlation

with the length of time the sample had been stored.

Guaymas Basin hydrothermal system (Rebecca’s Roost vent), Gulf of California. Guaymas Basin in the

Gulf of California hosts an active sediment-hosted mid-ocean ridge hydrothermal system (Simoneit and

Lonsdale, 1982; Simoneit, 1985; Didyk and Simoneit, 1989). We analyzed methane from a sample of a 299 °C

vent fluid emanating from Rebecca’s Roost, a flange-like vent structure. The sample was taken in 2008 using

a isobaric gas-tight sampler (Table 2.1) and poisoned with mercuric chloride (Seewald et al., 2002). Fluid
properties and geochemical data associated with this sample have been previously published (Reeves et al.,
2014). We assumed a value of +4 ± 2‰ for the δDwater of the vent fluid based on previous observations of

Guaymas Basin hydrothermal fluids (Shanks et al., 1995).
Northern Appalachian Basin, Central Pennsylvania, USA. Gases were sampled from gas wells producing

from the Marcellus Formation (Middle Devonian) and Utica Formation (Upper Ordovician) in central

Pennsylvania using standard wellhead sampling techniques. Gases produced from these geologic units are

dry (<5% C2+/∑C1–5) thermogenic gases of high thermal maturity (Baldassare et al., 2014; Stolper et al.,
2014a). The C1/C2 ratios of the gas samples from the Marcellus and Utica Shales we analyzed were <100

(Table 2.4), which is within the range expected for thermogenic gases (Bernard et al., 1976; Bernard et al.,
1978).
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Chapter3
Temperatures and timescales of methane synthesis and
hydrogen exchange at oceanic spreading centers

ABSTRACT

Hot-spring fluids emanating from deep-sea hydrothermal systems hosted in unsedimented mafic and

ultramafic rock commonly contain high concentrations of methane. Multiple hypotheses have been

proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic

carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions formed in

plutonic rocks at depth. To further resolve the mechanism(s) responsible for methane generation in these

systems, we determined the relative abundances of several methane isotopologues (including 13CH3D,

a “clumped” isotopologue containing two rare isotope substitutions) in geochemically diverse fluids

sampled at the Rainbow, Von Damm, Lost City, and Lucky Strike hydrothermal vent fields.

The methane clumped isotopologue data indicate relatively uniform apparent equilibrium tempera-

tures (averaging 310+53−42 °C) across the suite of endmember fluids, with no apparent relation to the wide

range of fluid temperatures (96 to 370 °C), chemical compositions (pH, [H2], [∑CO2], [CH4]), and

geologic settings represented. Combined with similar stable isotope ratio (13C/12C and D/H) of methane,

all available geochemical and isotopic data suggest a common mechanism of methane generation at

depth, independent of actively-circulating hydrothermal fluids. Apparent isotopologue equilibrium at

temperatures of ca. 270 to 360 °C indicates that hydrogen-isotope exchange is sluggish for methane at

temperatures below 270 °C here. The isotopologue data are compatible with the thermodynamically-

favorable reduction of CO2(g) to CH4(g) at temperatures below ca. 500 °C under redox conditions

characterizing intrusive rocks derived from subridge melts. These results provide further evidence that

low temperature (<200 °C) water rock reaction does not contribute significantly to the quantities of

methane venting at the seafloor in mid-ocean ridge hot springs, and suggest that methane forms from

respeciation of magmatic volatiles occluded in plutonic rocks of the oceanic crust, and are later leached

during convective hydrothermal circulation.
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Chapter 3. Mid-ocean ridge hydrothermal systems

3.1 INTRODUCTION

Dissolved methane (CH4) is ubiquitous in hot spring fluids emanating from submarine hydrothermal vents,

and is a potential carbon source for microbial communities living at and below the seafloor and in the

water column. Constraining the sources of carbon (C) and hydrogen (H) for the production of CH4, as

well as the depths and temperatures at which CH4 is generated in these hydrothermal systems, is critical

for understanding the origin of methane (Welhan, 1988b; Charlou et al., 2002; Proskurowski et al., 2008;
McDermott et al., 2015). The abundance and isotopic composition of methane venting from submarine

hydrothermal fields that are relatively free of sediment cover has been described at oceanic spreading centers

characterized by a range of spreading rates (e.g., Welhan, 1988b; Charlou et al., 2002; McCollom and Seewald,

2007; Proskurowski et al., 2008; Cannat et al., 2010; Charlou et al., 2010; Proskurowski, 2010; McDermott

et al., 2015; McDermott, 2015). In general, fluids that have interacted with ultramafic rocks are substantially

enriched inCH4 relative to fluids that have reactedwithmafic rocks (Keir, 2010), although there are exceptions

in which high-CH4 fluids are associated with apparent mafic substrates (e.g., basalt) (Charlou et al., 2000).
Several distinct geochemical processes have been proposed to account for the presence of abiotic CH4

in submarine hydrothermal fluids. Some have proposed that CH4 is formed by reduction of aqueous

inorganic carbon (i.e.,∑CO2) in subsurface reaction zones during convective circulation of seawater-derived

hydrothermal vent fluids in response to the highly reducing (H2-rich) conditions that result from extensive

fluid-mineral interactions during serpentinization of ultramafic rock (Charlou et al., 2002; Proskurowski
et al., 2008). Experimental studies showed, however, that aqueous reduction of∑CO2 to CH4 is slow under

conditions thought to occur naturally in ultramafic hydrothermal systems (McCollom and Seewald, 2001;

McCollom, 2016).

Earlier studies have shown that plutonic (gabbroic) rocks from the ocean floor contain copious amounts

of methane (Kelley, 1996; Kelley, 1997; Kelley and Früh-Green, 1999). These authors suggested a model

involving entrapment and respeciation of fluids that contained mantle-derived CO2 into fluids rich in

CH4 (± graphite) within gabbros, and subsequent extraction of the CH4 during hydrothermal circulation

(McDermott et al., 2015). Leaching of basalt-hosted gas vesicles that contain CH4 may also be a source of

CH4 in fluids venting at fast-spreading ridges such as the East Pacific Rise (Welhan and Craig, 1983; Welhan,

1988a).

To constrain the origin of methane in unsedimented submarine hydrothermal systems, we determined

the relative abundance of four stable isotopologues of methane (12CH4,
13CH4,

12CH3D, and
13CH3D, a

doubly-substituted or “clumped” isotopologue) in a diverse set of fluids collected from four hydrothermal

vent fields: Rainbow (36°13′48′′N, 33°54′09′′W, Mid-Atlantic Ridge), Von Damm (18°22′36′′N, 81°47′54′′W,

Mid-Cayman Rise), Lost City (30°07′24′′N, 42°07′12′′W,Mid-Atlantic Ridge), and Lucky Strike (37°17′30′′N,

32°16′42′′W, Mid-Atlantic Ridge). Fluids from these fields span a wide range of temperatures (96 to 370 °C)

and represent distinct geochemical regimes and geological settings.

Data presented in this study provide constraints on the sources of C and H in methane, as well as tem-

perature(s) associated with the formation or equilibration of the C–H bonds. Carbon- and hydrogen-isotope

ratios encode signals related to the sources of C and H, respectively, as well as isotopic fractionations incurred

during the synthesis of methane. Complementary to such information, measurement of methane clumped

isotopologues provides an independent estimate of the temperature at which the C–H bonds in methane

were formed or last equilibrated (Stolper et al., 2014a; Wang et al., 2015). Constraining the temperatures

at which methane synthesis occurs within oceanic crust has direct implications for the distribution and

availability of reduced carbon substrates and energy sources that may support a deep biosphere, as well as

for the transfer of mantle-derived carbon to the Earth’s surface.

Determination of temperatures from carbon or hydrogen isotope ratios of methane alone requires

knowledge of or assumptions regarding the isotopic composition of other species with which methane
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3.2. Methods

has exchanged C or H (e.g., CO2 or H2O). In contrast, temperatures determined from the abundance of
13CH3D do not require information regarding such coexisting species. Thus, clumped isotopologue data

in conjunction with carbon- and hydrogen-isotope ratios of methane can be used to constrain the isotopic

compositions of C- and H-bearing species associated with the methane source when independent constraints

are unavailable. In the following discussion, we show how clumped isotopologue temperatures of methane,

together with bulk 13C/12C and D/H isotope ratios, fluid chemistry, and thermodynamic considerations,

collectively indicate that methane in unsedimented hydrothermal systems originates at high temperatures of

(ca. 250 to 400 °C) and constrain possible environments of methane generation.

3.2 METHODS

3.2.1 Vent fluid samples

The fluid samples studied herein were collected by ROV Jason II using isobaric gas-tight samplers (Seewald

et al., 2002) during cruises to the Mid-Atlantic Ridge in 2008 and Mid-Cayman Rise in 2012. During

subsampling of the vent fluids from the samplers, fluid samples were stored in pre-evacuated serum vials and

sealed with blue butyl rubber stoppers that were boiled in 2 M NaOH for 2–4 hours and rinsed in deionized

water prior to use. When necessary, sample aliquots in multiple serum vials were combined (“pooled”) prior

to purification to obtain enough CH4 for clumped isotopologue analysis. When possible, aliquots from the

same fluid sampler were used. In some cases, however, it was necessary to combine aliquots from duplicate

samples collected in separate samplers deployed in the same hydrothermal fluid during a submersible dive

(Table 3.1). Due to the exceedingly low concentration of dissolved CH4 in ambient bottom seawater (<10−8 M,

Reeves et al., 2014; McDermott et al., 2015) relative to concentrations in endmember vent fluids (samples

regressed to zero Mg content) (Table 3.2), inadvertent entrainment of seawater during fluid collection has no

effect on the isotopic composition of vent-fluid derived methane measured during this study.

3.2.2 Analytical techniques

Samples of methane were purified via cryofocusing–preparative gas chromatography (Wang et al., 2015). The

relative abundances of the methane stable isotopologues 12CH4,
13CH4,

12CH3D, and
13CH3D were measured

using a tunable infrared laser direct absorption spectroscopy technique described previously (Ono et al.,
2014; Wang et al., 2015). Due to the small amounts of CH4 (ca. 1 cm

3 STP) in samples analyzed as part of this

study, a cold trap system was employed to recover and recycle gas samples for re-analysis (Wang et al., 2015).
A set of samples with previously-determined isotopologue ratios was also re-measured using the recycling

technique, to verify accuracy.

The abundance of 13CH3D relative to a random distribution of isotopes among the isotopologues (stochas-

tic distribution) is tracked using the metric ∆13CH3D, which is defined as: ∆13CH3D = ln Q (or nearly

equivalently, Q – 1), where Q is the reaction quotient of the isotope exchange reaction:

13
CH4 +

12
CH3D⇌ 13

CH3D +
12
CH4 (3.1)

Values of ∆13CH3D > 0‰ are used to calculate apparent equilibrium temperatures (T13D) using the

calibration of Wang et al. (2015), which is based on quantum chemical predictions for methane isotopologues

in the gas phase and anchored by measurements of methane samples heated in the presence of catalyst at

temperatures between 150 and 400 °C.

Isotope values are reported using standard delta-notation, i.e., δ13C = (13C/12C)sample/(
13C/12C)VPDB − 1,

and δD = (D/H)sample/(D/H)VSMOW – 1. The permil (‰) symbol represents multiplication by 10−3; hence,

we have omitted the factor of 1000 commonly seen in definitions of δ and other isotope values. The δ13C and

δD values are calibrated against community reference gases NGS-1 and NGS-3 (Wang et al., 2015).
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Table 3.1 | Carbon and hydrogen isotope ratios and clumped isotopologue abundances of methane in studied hy-

drothermal fluids.

Field Vent Sample(s) δ13C (‰) δD (‰) ∆13CH3D (‰) T13D (°C)

Rainbow Guillaume J2-352-IGT4 −17.6 −97.7 0.95 ± 0.60 450 +298/−136
CMSP&P J2-354-IGT3 −17.5 −97.8 1.50 ± 0.60 322 +142/−85
Auberge J2-352-IGT3 −17.4 −97.9 1.73 ± 0.60 285 +114/−73

Von Damm Old Man Treea J2-612-IGT6/-IGT8 −16.2 −107.4 1.71 ± 0.35 288 +60/−47
Ravelin 1 J2-617-IGT6 −16.4 −106.6 1.56 ± 0.60 312 +134/−82
East Summit J2-612-IGT2 −16.4 −106.5 1.35 ± 0.60 350 +167/−95

Lost City Beehive J2-361-IGT5/-CGTWu −10.9 −126.6 1.84 ± 0.60 270 +104/−68
Lucky Strike Medeaa J2-359-IGT2/-CGTY −14.2 −99.3 1.63 ± 0.40 301 +75/−55

Isabela J2-357-IGT5/-CGTY −12.6 −100.4 1.85 ± 0.30 269 +45/−37

Values for δ13C, δD, and ∆13CH3D are reported relative to Vienna Pee Dee Belemnite (VPDB), Vienna Standard

Mean Ocean Water (VSMOW), and the stochastic distribution, respectively. Analytical uncertainties for δ13C and

δD are both ca. ±0.1‰ (95% confidence intervals). Uncertainties listed for ∆13CH3D and T13D are 95% confidence

intervals; the last digit in each (hundredths and ones places, respectively) is not significant.
a Samples analyzed in duplicate. Uncertainties listed are 2 s.e.m. (standard error of the mean) of the replicate

measurements (n = 2).

3.3 RESULTS

Results of stable carbon (13C/12C) and hydrogen (D/H) isotope ratio measurements are shown in Table 3.1.

These results are in general agreement with previously-published methane isotopic data for these samples or

systems (Proskurowski et al., 2008; Charlou et al., 2010; Pester et al., 2012; McDermott et al., 2015). Similar

values were observed across the different hydrothermal fields, ranging from −18‰ to −11‰ in δ13C and

−127‰ to −98‰ in δD. Variation between vents in the same field (generally <1‰ in both δ13C and δD) is

significantly smaller than variation across different fields. The consistency of stable isotope data within each

field is added evidence for the interpretations previously drawn of conservative mixing of CH4 between

bottom seawater and a single CH4-bearing endmember fluid at Rainbow (Charlou et al., 2002) and Von

Damm (McDermott et al., 2015). A common source fluid has also been suggested for Lucky Strike (Pester

et al., 2012) and Lost City (Seyfried et al., 2015) based on the compositions of fluids there.

Also shown in Table 3.1 are results of methane clumped isotopologue analyses. All samples yielded values

of ∆13CH3D > 0‰, from which apparent equilibrium temperatures can be derived (Fig. 3.1C and Table 3.1).

The unweighted mean of the ∆13CH3D values across all nine vent fluids studied was 1.57 ± 0.28‰ (standard

deviation, 1s), corresponding to a ∆13CH3D temperature of 310+53
−42 °C. Data for individual vent fluids were

analytically indistinguishable from this narrow range (Fig. 3.2B).

3.4 DISCUSSION

3.4.1 Decoupling of vent fluid chemistry and temperatures from conditions responsible for CH4
synthesis

The four unsedimented submarine hydrothermal fields investigated in this study include on- and off-axis

vent fields at slow- to ultraslow-spreading ridges, with host rock lithologies ranging from mafic to ultramafic.

Compositions of fluids from these sites partially reflect this geological diversity. Supporting data for vent

fluid composition are shown in Table 3.2. Concentrations of CH4 in endmember fluids are high and lie

within a range of 0.86 to 2.81 mM (Fig. 3.3B). Such high concentrations are typical of many ultramafic-hosted
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Figure 3.1 | Comparison of (A) δ13C, (B)
δD, and (C) ∆13CH3D values of methane

across vent sites. Data and error bars (95%

confidence interval) are from Table 3.1. In

all panels, points are plotted against mea-

sured vent temperature (Table 3.2). The

isotopic compositions of inorganic carbon

(A) and hydrogen (B) in seawater and in

the mantle are shown (Javoy et al., 1986;
Blank et al., 1993; Clog et al., 2013). In (C),

the green line represents the clumped iso-

topologue composition at equilibrium. The

∆13CH3D temperature scale corresponds

to the calibration fromWang et al. (2015).

mid-ocean ridge hydrothermal fields, whereas basalt-hosted fields tend to have lower CH4 contents (~0.1

mM; McCollom and Seewald, 2007; Keir, 2010). In this respect, concentrations of CH4 in fluids at the

Lucky Strike field (~0.9 mM, Table 3.2), as well as at a similar basalt-hosted field, Menez Gwen on the

Mid-Atlantic Ridge (~1.7 mM, Charlou et al., 2000), appear to be anomalously elevated relative to those in

other basalt-hosted settings such as those on the fast-spreading East Pacific Rise, where CH4 concentrations

of ~0.1 mM are more typical (McCollom and Seewald, 2007; Keir, 2010).

Contents of low-molecular weight hydrocarbons are also similar between the studied fields, with high

C1/C2 ratios (Fig. 3.3B) observed in fluids from Rainbow (~2300, Charlou et al., 2002), Von Damm (~4500,

McDermott et al., 2015), Lost City (~1100, Proskurowski et al., 2008), and Lucky Strike (>3000, Charlou

et al., 2000). Such high C1/C2 ratios are typical of fluids from unsedimented mid-ocean ridge hydrothermal

systems (McCollom and Seewald, 2007).

Except for the Lost City fluids, total dissolved inorganic carbon (∑CO2 = CO2(aq) + HCO−3 + CO2−
3 )

concentrations are comparable to or higher than CH4 and are characterized by a wider range of values (1.9
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Figure 3.2 | Constraints on methane formation and stability from thermodynamics and clumped isotopologue data.

(A) Plot of fugacity of H2 as a function of temperature at 500 bar, after Shock (1992). Red line represents the fugacity of

H2 at equilibrium, according to the reaction CO2(g) + 4H2(g)⇋ CH4(g) + 2H2O(l), when the fugacities of CH4 and

CO2 are equal, and assuming unit activity for H2O(l). Grey lines represent equilibrium H2 fugacities buffered by the

mineral assemblages fayalite-magnetite-quartz (FMQ), pyrite-pyrrhotite-magnetite (PPM), and hematite-magnetite

(HM). Red shaded area represents the intersection of regions corresponding to geologically-relevant H2 fugacity and

where CH4 is thermodynamically stable relative to CO2. The black bar represents the temperature range in which the

evidence explored in this study suggests that methane synthesis is both favorable and facile on timescales of relevance

to hydrothermal systems. (B) A “Caltech plot” of the clumped isotopologue temperatures of methane from studied

vents (data and error bars from Table 3.1). Equivalent ∆13CH3D values are plotted on the bottom axis, and are derived

from the calibration of Wang et al. (2015). The dotted line and gray hatching represent the mean ± 1s of the ∆13CH3D

values across all studied vents (+1.57 ± 0.28‰, n = 9). The × symbols mark measured vent temperatures (Table 3.2).

52



3.4.1. Decoupling of vent fluid chemistry and temperatures from conditions responsible for CH4 synthesis

0 100 200 300 400 500

0.01

0.1

1

10

100

0 100 200 300 400 500
0.01

0.1

1

10

100

0 100 200 300 400 500

0.01

0.1

1

10

100

0 100 200 300 400 500

−100

−50

0

50

100

CO2(aq) + 4H2(aq)         CH4(aq) + H2O(l)

Δ
rG

 (k
J/

m
ol

)

H
2 (

m
M

)
∑C

O
2 (

m
m

)

CH
4 (

m
M

)

vent temperature (°C)

vent temperature (°C) vent temperature (°C)

vent temperature (°C)

C

A B

bottom seawater

∑CO2 elevated in �uid sample
due to seawater entrainment

ma�c-hosted

ultrama�c-hosted
4500

>3000~1100

2300

approximate C1/C2 shown in italics

pH (25 °C, 1 bar) shown in italics

pH 5.6

pH 3.8

pH 10.2

pH 3.3 D

EQUILIBRIUM

Lucky Strike

Rainbow

Lost City

Von Damm

Figure 3.3 | Composition of vent fluids and energetics of methane synthesis in aqueous phase. Concentrations of

(A) H2, (B) CH4, and (C)∑CO2 are plotted against measured vent temperatures (data from Table 3.2). Also shown

are molar ratios of methane to ethane (C1/C2, see § 3.3) in (B), and pH values of endmember fluids in (C). (D) Gibbs

energy of reaction for methane formation from CO2 and H2 in aqueous solution (Reaction 3.2), calculated at vent T
and P conditions (∆rG, Table 3.2). Gray hatching represents thermodynamic equilibrium (taken as ∆rG = 0 ± 5 kJ/mol).

Methane formation in aqueous solution is thermodynamically favorable for points plotting below the hatched area.

Symbol colors are the same as those in Figs. 3.1 and 3.2.

53



Chapter 3. Mid-ocean ridge hydrothermal systems

Table 3.2 | Fluid compositionsa used in thermodynamic calculations and calculated Gibbs energy of reaction (∆rG)
for abiotic methane formation via Reaction 3.2 at studied vent sites.b

Field Vent T (°C)c P (bar) pHd
∑CO2 (mm) H2 (mM) CH4 (mM) ∆rG (kJ/mol)e

Rainbow Guillaume 361 230 3.33 24.3 16.5 2.13 −22

CMSP&P 365 230 3.36 21.9 15.9 2.05 −16

Auberge 370 230 3.35 22.8 15.7 2.16 −11

Von Damm Old Man Treef 115 235 5.81 1.80 10.5 1.97 −121

Ravelin 1f 145 235 5.83 2.52 13.4 2.02 −113

East Summit 226 235 5.56 2.80 18.2 2.81 −83

Lost City Beehive 96 70 10.20 0.18g 10.4 1.08 −85

Lucky Strike Medea 270 170 3.81 98.0 0.063 0.89 +20

Isabel 292 170 3.81 112.0 0.034 0.86 +45

Analytical uncertainties (2s) are ±2 °C for T; ±5% for H2,∑CO2, and CH4; and ±0.05 units for pH. Abbreviations: mm,

mmol/kg fluid; mM, mmol/L fluid.
a All concentrations shown are extrapolated to endmember fluid composition (regressed to zero Mg content), except

where noted. Data are from Reeves et al. (2014) and McDermott et al. (2015).
b For each vent fluid, the energetic favorability of methane formation via this reaction was assessed by calculating the

Gibbs energy of reaction (∆rG), defined by the relationship: ∆rG = RT ln(Q/K), where R is the universal gas constant, T
is measured fluid temperature in kelvin, Q is the reaction quotient, and K is the equilibrium constant at T and seafloor

pressure P. Equilibrium constants were calculated using thermodynamic data and standard states from Shock and

Helgeson (1990) and Johnson et al. (1992). For all calculations, the activity of H2O(l) was assumed to be unity. Activity

coefficients were assumed to be unity for neutral dissolved species. For all fluids except for that from Lost City,g the

concentration of CO2(aq) was assumed to be equal to ∑CO2, a reasonable approximation given the low measured

shipboard pH values and calculated equilibrium speciation of dissolved carbonate species at in situ temperatures and

seafloor pressures.
c Maximummeasured vent temperature.
d Shipboard pH measurement (25 °C and 1 atm).
e A negative value of ∆rG indicates a thermodynamic drive for the reaction to proceed as written from left to right

(i.e., methane formation favored). Given uncertainties associated with chemical analyses and thermodynamic data,

calculated ∆rG values within ±5 kJ/mol of zero are interpreted to indicate that the reaction has approached or attained a

state of thermodynamic equilibrium (Seewald, 2001a).
f Concentrations for fluids from Old Man Tree and Ravelin 1 at Von Damm not extrapolated to zero Mg; Mg contents

for these fluids are 14.0 and 15.0 mmol/kg fluid, respectively, indicating that endmember fluid has already mixed with

seawater in the subsurface prior to discharge at the seafloor (McDermott et al., 2015).
g An arbitrary CO2(aq) concentration of 1 nmol/kg was used in thermodynamic calculations for the Lost City fluid,

similar to Reeves et al. (2014). The actual concentration value is subject to substantial uncertainty due to difficulties in

determining the near-zero endmember∑CO2 content in vent fluids, given that some entrainment of∑CO2-replete

seawater always occurs during sampling (Proskurowski et al., 2008). Varying this value by as much as ten orders of

magnitude would not affect the conclusion that methane formation is thermodynamically favorable in the fluid, due to

the high H2 content and the power of 4 to which the activity of H2(aq) is raised in the mass action expression.

to 112.0 mmol/kg, Fig. 3.3C). Endmember fluids from Rainbow, Von Damm, and Lucky Strike contain 2

to 50 times as much total carbon as is in bottom seawater (~2.2 mM; Reeves et al., 2014; McDermott et al.,
2015), such that ∑CO2 in recharging seawater cannot be the sole source of carbon to venting fluids. The

Lost City fluid contains very low amounts of∑CO2 (~0.18 mmol/kg), the majority of which is likely derived

from seawater entrainment during sample collection (Reeves et al., 2014). Given the high pH (10.2), the

concentration of CO2(aq) in endmember Lost City fluids must be very low (see footnote g in Table 3.2). At

the relatively low pH of the other fluids (3.33 to 5.81), the majority of∑CO2 is in the form of CO2(aq).
The concentration of dissolvedH2 is high and varies from 10.4 to 18.2mM in endmember andmixed fluids
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from the Rainbow, Von Damm, and Lost City fields, whereas fluids from Lucky Strike have approximately

three orders of magnitude lower concentrations (34–63 µM, Fig. 3.3A). At Rainbow, Von Damm, and Lost

City, serpentinization of ultramafic rock in subsurface reaction zones with concomitant production of H2 is

thought to be a major control on fluid compositions (Kelley et al., 2001; Charlou et al., 2002; McDermott

et al., 2015). In contrast, the Lucky Strike field is hosted in basaltic rock, and vent fluids there encounter

much more oxidizing conditions (Charlou et al., 2000; Pester et al., 2012).
The stoichiometry of the reaction

CO2(aq) + 4H2(aq)⇋ CH4(aq) + 2H2O(l) (3.2)

indicates that the abundance of CH4(aq) at thermodynamic equilibrium in vent fluids should be highly

sensitive to the concentration of H2 because of the fourth-power dependence on the activity of H2(aq) in
the corresponding mass action expression. At Lucky Strike, formation of CH4(aq) in endmember fluids

is thermodynamically disfavored due to the low H2 contents (Table 3.2). In all other vent fluids studied, a

thermodynamic drive for methane synthesis is present at varying magnitudes (Fig. 3.3D).

Methane 13C/12C and D/H ratios are similar across fluids from all four unsedimented hydrothermal fields

studied (Fig. 3.1). The δ13C values (−18‰ to −11‰) are within the range of those determined for methane at

more than a dozen other basalt- and ultramafic-hosted submarine hydrothermal systems studied to date

(−24‰ to −6‰), including Kairei on the Central Indian Ridge, TAG, Broken Spur, and Logatchev on the

Mid-Atlantic Ridge, and 17–19°S, 9°50′N, 13°N, and 21°N on the East Pacific Rise (see McCollom and Seewald,

2007; Keir, 2010, and references therein). Published data for δDofmethane aremore limited; however, the δD

values we measured (−127‰ to −98‰) are similar to those determined at Logatchev (−109‰ Proskurowski

et al., 2006) and 21°N on the East Pacific Rise (−126‰ to −102‰Welhan and Craig, 1983).

The data described above support the general consensus that the methane in the studied hydrothermal

fluids is of dominantly abiotic origin (e.g., Welhan, 1988b; Charlou et al., 2002; Proskurowski et al., 2008;
McDermott et al., 2015), and that contributions of thermogenic or microbial sources of methane are limited

or insignificant. Because the four sites studied lack substantial sediment burdens, organic carbon from

which thermogenic hydrocarbons or microbial methane can be generated is in scarce supply (Welhan, 1988b;

Reeves et al., 2014). Furthermore, high C1/C2 ratios (~1000 to 4000), along with high methane δ13C values

(−18‰ to −11‰), are distinct from thermogenic or microbial sources, which typically have lower C1/C2

ratios or lower δ13C values, respectively (McCollom and Seewald, 2007).

The methane δ13C data alone do not unambiguously exclude contributions of microbial methanogenesis,

because high methane δ13C values could be a result of near-quantitative conversion of∑CO2 to CH4, partic-

ularly under∑CO2-limited and/or high-pressure conditions such as those present at Lost City (Brazelton

et al., 2006; Takai et al., 2008; Bradley and Summons, 2010). However, radiocarbon (14C) abundances for

methane from Lost City and Von Damm are very low [fraction modern (Fm) averaging 0.004–0.006, near
the limit of detection (Fm ~ 0.003)] (Proskurowski et al., 2008; McDermott et al., 2015), whereas 14C contents

of endmember∑CO2 at Von Damm are ~5× higher (McDermott et al., 2015). Had CH4 been derived from

reduction of∑CO2, the younger
14C age of the∑CO2 would have been transferred to CH4. McDermott et al.

(2015) further showed that∑CO2 in the vent fluids at Von Damm is likely seawater-derived, because both

concentrations and δ13C values of endmember∑CO2 match those of local bottom seawater. The apparent

conservation of ∑CO2 during convective circulation at Von Damm indicates that ∑CO2 in recharging

seawater at Von Damm has not been converted to CH4 via any process—microbial or otherwise—despite

high energetic favorability for CH4 synthesis (Fig. 3.3D). Similar carbon isotopic compositions of CH4 and

contents of C2+ alkanes at Lost City, Lucky Strike, and Rainbow (as well as at other unsedimented fields

studied to date), despite marked differences in geologic setting, fluid composition, and thermodynamic drive

for CH4 synthesis, are consistent with a common abiotic origin for methane at many, if not all, sediment-poor

seafloor hydrothermal systems.
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Figure 3.4 | Half-exchange timescales

(τ1/2 = ln(2)/k) for hydrogen exchange
between CH4 &H2O (red symbols) and

H2 &H2O (blue) based on experiments

done in the absence of added catalyst

(Crist andDalin, 1933; Gould et al., 1934;
Hall et al., 1934; Koepp, 1978; Lyon
and Hulston, 1984; Lécluse and Robert,

1994; Campbell et al., 2009; Reeves et
al., 2012). Reactions were assumed to be

first order in CH4 or H2. When rate con-

stants were not provided by the authors

or when exchange was not observed,

the reported duration of the experiment

was taken as an estimate of the timescale

of exchange. Downward- and upward-

pointing triangles are, respectively, max-

imum and minimum estimates of the

exchange timescale. The τ1/2 for CH4–

H2O exchange from Reeves et al. (2012)
comes from Fig. 3.8. Second-order rate

coefficients for H2–H2O exchange from

Lécluse and Robert (1994) were con-

verted to first-order rate coefficients by

multiplying by the equilibrium vapor

pressure of H2O calculated at temper-

atures T and a pressure of 1 kbar. Un-

certainties in exchange rates are difficult

to estimate, but are probably one order

of magnitude or greater. Clumped iso-

topologue temperatures for CH4 from

the present study (red bar) and tempera-

tures fromD/H geothermometry of H2–

H2O in endmember fluids at the Lost

City site (blue bar) (Proskurowski et al.,
2006) are also shown. See text for inter-

pretation of these data with respect to

timescales of fluid circulation.
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Measured ∆13CH3D values (averaging 1.57 ± 0.28‰, 1s) and corresponding apparent equilibrium tem-

peratures (310+53
−42 °C) are strikingly uniform in the context of the large natural variations (up to ca. 10‰)

previously observed in ∆13CH3D values carried by methane sampled from different settings (Wang et al.,
2015). Furthermore, the studied fluids vented at a wide range of temperatures, ranging from 96 to 370 °C. Had

the methane in these samples attained isotopologue equilibrium at measured vent temperatures, ∆13CH3D

values from 4.0 to 1.3‰, respectively, would be expected. The observed range of clumped isotopologue

data is much smaller than this predicted range (Fig. 3.1C), with ∆13CH3D temperatures generally equal to

or higher than fluid temperatures (Fig. 3.2B). In lower-temperature (<250 °C) fluids, including fluids that

have mixed in the subsurface (venting with non-zero Mg) such as those from Ravelin 1 (145 °C) and Old

Man Tree (115 °C) vents at Von Damm (McDermott et al., 2015), ∆13CH3D temperatures higher than fluid
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temperatures indicate that ∆13CH3D values have not been affected by cooling below ~250 °C. In higher

temperature fluids (>270 °C) however, ∆13CH3D temperatures are analytically indistinguishable from mea-

sured fluid temperatures. Experimental data suggest that hydrogen exchange between methane and water

in hydrothermal fluids may be observable at temperatures of ~325 °C on relatively short timescales (years;

Reeves et al., 2012, and Fig. 3.8) relevant to hydrothermal systems (Fig. 3.4). Hydrogen exchange between

CH4 and H2Omay explain the uniformity of both δD and ∆13CH3D values of methane in high-temperature

fluids (Fig. 3.5); the implications of this are discussed below (§ 3.4.2). The ∆13CH3D values indicate that

CH4 experienced temperatures of at least 300 °C during its residence within the oceanic crust. Our methane

clumped isotopologue data indicate that temperatures and compositions of hot-spring fluids at the time

of venting are decoupled from the conditions responsible for the formation of CH4 in these fluids. The

following sections discuss how the 300 °C or greater inferred temperatures are compatible with models

invoking respeciation of magmatic volatiles at those temperatures to form CH4 in plutonic layers of the

oceanic crust.

3.4.2 Hydrogen exchange and the origin of hydrogen in CH4

Hydrogen isotope ratio measurements provide constraints on the origin of the major H-bearing species

within vent fluids. Apparent temperatures derived from D/H equilibria in the systems H2–H2O and H2–

CH4 were first used as geothermometers in studies of geothermal or volcanic gases and waters (Árnason

and Sigurgeirsson, 1968; Gunter and Musgrave, 1971; Arnason, 1977; Panichi et al., 1977; Panichi and
Gonfiantini, 1977; Kiyosu, 1983; Lyon and Hulston, 1984), and later examined with respect to data from

seafloor hydrothermal fluids (Welhan and Craig, 1983; Horibe and Craig, 1995; Proskurowski et al., 2006;
Bradley and Summons, 2010; Kawagucci et al., 2010; Kawagucci et al., 2011; Kawagucci et al., 2013), shield-
hosted groundwaters (Sherwood Lollar et al., 1993; Sherwood Lollar et al., 2007; Sherwood Lollar et al.,
2008), and continental springs, seeps, and well fluids influenced by serpentinization (Neal and Stanger,

1983; Coveney et al., 1987; Abrajano et al., 1988; Fritz et al., 1992; Etiope et al., 2011a; Suda et al., 2014).
Temperatures returned from H2–H2O and H2–CH4 equilibria often agree with each other and with realistic

geologic and hydrologic scenarios for geothermal fluids exiting at high temperatures, but these relationships

do not necessarily hold for lower-temperature fluids.

Proskurowski et al. (2006) showed that D/H-based temperatures derived from H2–H2O and H2–CH4 in

high-temperature vent fluids (>270 °C) are concordant and match measured fluid temperatures at discharge.

At the low-temperature Lost City site, however, H2–H2O and H2–CH4 yielded discordant temperatures of

70–110 °C and 110–150 °C, respectively. Proskurowski et al. (2006) reconciled these data by suggesting that

serpentinization of ultramafic basement rocks beneath the Lost City vent field occurs at low temperatures of

110–150 °C, concomitant with production of both H2 and CH4, and that H2 maintained isotopic equilibrium

with H2O during slow cooling of root-zone fluids to ca. 70–110 °C prior to rapid ascent to seafloor while

the higher temperature signal recorded by H2–CH4 was presumably not reset during cooling. In contrast,

the ∆13CH3D temperature of 270+104
−68 °C we obtained for the Beehive vent fluid argues for a much higher

temperature of last exchange for the C–H bonds in methane, and does not support suggestions of CH4

production at lower temperatures. The clumped isotopologue temperature is consistent with estimates from

heat balance considerations, δ18O values, and alkane-alkene and mineral-fluid equilibria all suggesting that

Lost City fluids experienced temperatures as high as 250 °C at depth (Allen and Seyfried, 2004; Foustoukos

et al., 2008; Reeves et al., 2012; Seyfried et al., 2015). Discrepancies betweenmeasured ∆13CH3D temperatures,

temperatures from D/H geothermometry, and fluid exit temperatures at Lost City indicate that rather than

directly recording the temperatures of H2 and CH4 synthesis, each geothermometer records a different

portion of the time-temperature history of the fluids.
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Chapter 3. Mid-ocean ridge hydrothermal systems

Comparison of temperatures indicated by these H2–H2O and H2–CH4 geothermometers are only

meaningful if H2–H2O, H2–CH4, and CH4–H2O have all attained equilibrium at a single temperature,

and no further isotopic exchange has occurred during cooling. These temperatures cannot be considered

in isolation because a shift in the D/H ratio of one species induces disequilibrium in two of the three

reactions. Stated another way, the inferences drawn by Proskurowski et al. (2006) implicitly required that

hydrogen exchange processes among H2O, H2, and CH4 have similar kinetics and closure temperatures. This

assumption may not hold at temperatures <300 °C. In particular, H2–H2O exchange occurs at substantially

higher rates than does CH4–H2O (Lyon and Hulston, 1984; Lécluse and Robert, 1994; Horibe and Craig,

1995). In Fig. 3.4, we show timescales for exchange at temperatures between 0 and 600 °C, determined from

published data for experimental isotopic exchange in the systems CH4–H2O and H2–H2O. This compilation

indicates that although the exact rate of exchange is highly uncertain, H2–H2O exchange occurs much faster

than CH4–H2O exchange. The rate coefficients of Lécluse and Robert (1994) were obtained in vapor-phase

experiments where H2 was exchanged with D2O. They observed no discernible difference in rates of exchange

when several different catalysts were added to increase available surface area for reaction. The plotted blue

curve shows their data converted to rates that are first-order in [H2]; whether the converted rate coefficients

accurately reflect real kinetics of H2–H2O exchange where H2 is dissolved in liquid H2O remains to be

evaluated. Lyon and Hulston (1984) reported D/H exchange of H2 with liquid H2O on timescales of ~10

minutes at 225 °C in a stainless steel reaction vessel. Their rate is faster than those we calculated from the

data of Lécluse and Robert (1994), suggesting either that rates of H2–H2O exchange may be faster than

projected by the blue curve, or that catalytic effects of stainless steel enhanced rates of exchange in Lyon and

Hulston’s experiment. In comparison to the H2–H2O data, the experimental data for CH4–H2O exchange

(red symbols in Fig. 3.4) provide a surprisingly good fit, though alignment of the limited data could be

fortuitous. However, the experiments of Reeves et al. (2012) were conducted in a gold-titanium reaction

cell in the presence of mineral phases typical of those found in hydrothermal deposits, and may simulate

natural conditions fairly well. It is not known if factors such as pH, redox state, minerals, or concentrations

of sulfur, H2, or carbon species affect hydrogen exchange rates. Regardless, CH4–H2O exchange is at least

several orders of magnitude slower than H2–H2O exchange.

Across many low- and high-temperature hydrothermal systems globally, δD of H2 varies systematically

(between −700‰ and −330‰) with measured fluid temperature (40 to 370 °C, respectively), whereas δD of

CH4 falls within a much narrower range (−140‰ to −95‰) and shows no correlation with fluid temperature

(Fig. 3.5). Within the Lost City site, δD of H2 varies by up to 80‰while δD of CH4 showsmuch less variation

(a 40‰ range) (Proskurowski et al., 2006).1 Hydrogen-isotope ratio data of H2–CH4 here indicate spurious

temperatures that do not reflect recent exchange between these two species.2 Part of the problem is that

H2–CH4 will always give a temperature that is close to H2–H2O if δD of H2O and CH4 are within a few

hundred permil because the δD of H2 directly controls the calculated temperature for both. This means that

temperatures derived from H2–CH4 may not be meaningful unless they can be confirmed by something else

such as clumped isotopes. Decoupling of D/H data of CH4 from H2 at Lost City suggests that these species

have not recently interacted with each other, and are more appropriately interpreted as recording separate

temperatures at which these species independently equilibrated with water (H2 at ~110 °C in endmember

fluids, and CH4 at much higher temperatures of >240 °C). An origin of CH4 that is separated in time, space

and/or temperature from that of H2 is compatible with the fluid inclusion-leaching hypothesis (§ 3.4.3) and

is corroborated by our ∆13CH3D data.

1
At lower-temperature vents, isotopic compositions of CH4 may reflect admixture or removal of minor amounts of CH4 due to

biological activity (Brazelton et al., 2006; Proskurowski et al., 2006; Bradley and Summons, 2010).
2
While rates of D/H exchange between dissolved H2 and CH4 have not been experimentally studied, the discordant temperatures

from D/H geothermometry in low-temperature fluids (described above) strongly suggest that direct H2–CH4 exchange is also

much slower than H2–H2O exchange.
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3.4.2. Hydrogen exchange and the origin of hydrogen in CH4

Given the rate of CH4–H2O isotope exchange of 10 to 100 years at 300 °C (Fig. 3.4), it is likely that

the clumped methane isotopologue temperatures represent closure temperatures below which exchange

becomes sluggish relative to cooling rate. The δD values of methane might constrain the source of water with

which CH4 equilibrated at that temperature. Measured δD values of CH4 (−149 to −99‰) and H2O (−104

to −6‰) in the gabbro-hosted inclusions from the Southwest Indian Ridge (Kelley and Früh-Green, 1999)

are consistent with predictions from a model of a fluid containing mantle-derived H that partitioned into

CH4 and H2O at ~310 °C (Fig. 3.5). The δD values of CH4 in the inclusions overlap the observed ranges in

vent fluids shown in Fig. 3.5 and Table 3.3 (−141 to −93‰). Partial or total re-equilibration of C–H bonds in

CH4 during extraction by seawater heated to >300 °C during active hydrothermal circulation would pull the

δD values of CH4 towards an equilibrium value of −130 to −110‰ (depending on the calibration), consistent

with the narrow range of data from high-temperature endmember fluids (Fig. 3.5).

It is worth noting thatwhile serpentinization of olivine and orthopyroxene in oceanic peridotites generates

large quantities of H2 (Klein et al., 2009; McCollom and Bach, 2009; Klein et al., 2013), methane synthesis

does not necessarily require serpentinization of peridotite. At temperatures of ~400 °C, oxygen fugacities at

or below FMQ are sufficiently reducing for CH4 to be stable relative to CO2 (Figs. 3.2 and 3.7). Rocks derived

from the partial melting of the suboceanic upper mantle, including gabbros and mid-ocean ridge basalts, are

typically characterized by fO2
within ±1 log unit of FMQ at temperatures and pressures of the upper mantle

(Bryndzia and Wood, 1990; Cottrell and Kelley, 2011). Cooling of these rocks along an fO2
trajectory parallel

to those of typical oxygen buffers may allow for respeciation of mantle-derived CO2 to CH4 to occur in

the presence of mafic minerals (olivine and orthopyroxene) deep within the oceanic crust (Mathez et al.,
1989; Kelley and Früh-Green, 1999). Serpentinization occurring distal to the rocks from which CH4-rich

fluids are extracted may explain why CH4 and H2 concentrations are not tightly correlated across seafloor

hydrothermal systems (Keir, 2010; Kawagucci et al., 2013).

Models of convective hydrothermal circulation at Lost City indicate that the bulk of actively-venting

fluids have migrated along a narrow range of flow paths that are surrounded by already fully-serpentinized

rock with little additional potential for H2 generation, suggesting that H2 in vent fluids may have instead

formed by serpentinization occurring in meandering flow paths away from the main flow channels, and later

diffused or mixed into the ascending fluid (Titarenko and McCaig, 2016). Assuming that equilibration of the

methane isotopologues proceeds through CH4–H2O exchange, ∆13CH3D temperatures for CH4 from the

present study (red bar in Fig. 3.4) suggest that the time taken by actively-circulating hydrothermal fluids (after

extracting CH4 from plutonic rocks) during ascent from the ~270 °C isotherm to temperatures below ~200 °C

(at which further equilibration is no longer possible on any relevant timescale) is ~102 years or less. This

compares favorably with estimates for fluid residence times in hydrothermal systems, which generally suggest

that the bulk of vent fluids in several high-temperature systems resided in the reaction zone (>200 °C) for

years to decades prior to venting (Kadko, 1996; Fisher, 2003). Projection onto the blue bar in Fig. 3.4 showing

temperatures from D/H geothermometry of H2–H2O in endmember fluids at Lost City (Proskurowski et al.,
2006) shows that these timescales for fluid transit are also consistent with estimated kinetics of D/H exchange

between H2 and H2O. Timescales inferred here may also be compared with constraints on upflow velocities

from 1D reactive transport models of fluids ascending from ~750 mbsf and cooling via conduction (Seyfried

et al., 2015). Actual timescales of circulating fluid may vary widely due to significant contributions of both

on- and off-axis recharge and circulation (Hasenclever et al., 2014).

This study emphasizes that the use of bulk and position-specific D/H ratios and clumped isotopologues

abundances of small organicmolecules as geothermometers or geospeedometers requires an understanding of

the factors controlling hydrogen exchange rates (Eiler, 2013). Rigorous exchange experiments under simulated

natural conditions may yield broadly-applicable insights into interactions of CH4 or other hydrocarbons

with minerals or water. Substantial hydrogen isotopic exchange of C2 to C5 alkanes with D-enriched and
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D-depleted water occurs during hydrothermal experiments lasting several months at 323 °C (Reeves et al.,
2012). In contrast, hydrogen exchange between CH4 and H2O proceeds much more slowly than hydrogen

exchange between C2+ hydrocarbons and H2O, likely because double-bond formation—which leads to

metastable equilibrium between alkanes and alkenes (Seewald, 1994)—cannot occur for CH4. Timescales

determined for CH4–H2O exchange provide a maximum estimate of the stability of C–H bonds of organic

molecules in nature, which in turn sets bounds on the integrity of interpretations that require δD values to

be primary in origin (Sessions et al., 2004; Schimmelmann et al., 2006).

3.4.3 Magmatic volatiles in the oceanic crust and the origin of carbon in CH4

At Von Damm, constraints from δ13C and 14C data of∑CO2 and CH4 indicate that reduction of seawater-

derived∑CO2 to CH4 is not occurring to an appreciable extent in the actively convecting hydrothermal

fluids (see § 3.4.1), despite the energetic favorability of reduction of CO2(aq) to CH4(aq) (Fig. 3.3D). Instead,
metastable equilibrium is established between∑HCOOH (= formate + formic acid) and∑CO2 as a result of

kinetic limitations on CH4 production (McDermott et al., 2015). McDermott et al. suggested that hydrocar-

bons here might instead be derived from leaching of fluids occluded in plutonic rocks of the Mount Dent

oceanic core complex that originally contained magmatic CO2 and which respeciated to form hydrocarbons

at temperatures at or below 400 °C, as suggested by several studies of gabbros from the Southwest Indian

Ridge (Kelley, 1996; Kelley and Früh-Green, 1999). The ∆13CH3D temperatures we obtained for fluids from

three vents in the Von Damm field (averaging between 288 and 350 °C, Table 3.1) are significantly higher

than the fluid temperatures measured at discharge (115 to 226 °C, Fig. 3.2B), but lower than 400 °C. The data

presented here are compatible with the inclusion-leaching hypothesis of McDermott et al. (2015).
Proskurowski et al. (2008) invoked abiotic reduction of aqueous ∑CO2 to explain the presence of

high (~1 mmol/kg) concentrations of CH4 and minor quantities (~1 µmol/kg or lower) of C2+ alkanes in

vent fluids from the Lost City hydrothermal field. They postulated a scenario that involves leaching of

primordial inorganic carbon from mantle host rocks, and subsequent reduction of∑CO2 to CH4 and C2+

in circulating fluids at relatively low temperature (<150 °C; Proskurowski et al., 2006). However, Lost City
fluids contain vanishingly small amounts of∑CO2 because the highly alkaline pH and high concentrations

of Ca2+ favor precipitation of carbonates, a process that proceeds rapidly at temperatures experienced by the

circulating fluids (Kelemen et al., 2011; Grozeva et al., 2017). The production of methane via CO2 reduction

in an aqueous fluid depleted of ∑CO2 is therefore problematic in that it requires the addition of mantle-

derived CO2 that is quickly reduced to form CH4 (up to 56% conversion based on magmatic C/3He ratios;

Proskurowski et al., 2008), and the remainder of which is then subsequently scavenged (presumably by

carbonate precipitation), leaving no evidence of its addition. Rates of∑CO2 reduction must be comparable

to or faster than carbonate precipitation in order for CH4 synthesis to proceed in alkaline,∑CO2-poor fluids

such as those at Lost City. Carbonate precipitation occurs rapidly during alteration of peridotite (Grozeva

et al., 2017). In contrast, laboratory studies consistently find sluggish reaction kinetics for the reduction of

∑CO2 to CH4 in the presence and absence of powdered peridotite or mafic mineral phases (McCollom and

Seewald, 2001; McCollom and Seewald, 2003; Seewald et al., 2006; Reeves, 2010; McCollom, 2016; Grozeva

et al., 2017). Certain transition metal catalysts can enhance rates of CH4 production (Horita and Berndt,

1999; Foustoukos and Seyfried, 2004), but H2 concentrations several orders of magnitude higher than those

found in vent fluids are required to render native Fe-Ni alloys stable (Frost, 1985; Charlou et al., 2002; Sleep
et al., 2004; McCollom and Bach, 2009). Furthermore, rates of CH4 synthesis in fluids deprived of∑CO2

are poorly-constrained, but generally too low to be reliably detected on timescales of laboratory experiments

(Fu et al., 2007; McCollom, 2012; McCollom, 2013).

Data from other vent fields are also inconsistent with synthesis of CH4 on timescales associated with

actively-circulating fluids. At the basalt-hosted Lucky Strike field, synthesis of methane within the low-H2
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Figure 3.6 | Composition of flu-

ids formed by mixing of a CH4-

poor actively-circulating seawater-

derived hydrothermal fluid (Fluid 1)
with a CH4-rich fluid such as those

observed in inclusions in plutonic

rocks on the Southwest Indian Ridge

and on the Mid-Atlantic Ridge

(Fluid 2) (Kelley, 1996; Kelley, 1997;
Kelley and Früh-Green, 1999). Mix-

ing curves are plotted for CH4 con-

centrations in the Fluid 1 endmem-

ber ranging from 1 to 100 µmol/kg.
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of species other than CH4 have a
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the high-CH4 fluid. The black and

white bars show CH4 concentrations

in vent fluids from this study (Ta-

ble 3.2) and from mid-ocean ridge

hydrothermal systems globally (Keir,

2010).

fluids discharging at the Medea and Isabel vents is thermodynamically disfavored at in situ temperatures

(270–292 °C; Table 3.2 and Fig. 3.3D). With increasing temperature, methane formation becomes even more

unfavorable (Fig. 3.2A), and thus aqueous CO2 reduction at the higher temperatures (possibly as high as

475 °C) the fluids have experienced here (Pester et al., 2012) is also unsupported. Concentrations of CH4

shows no relation to either∑CO2 or H2 in the Lucky Strike fluids here (see discussion and Fig. 2 in Pester et
al., 2012). These data indicate that CH4 did not form from reduction of∑CO2 during migration of magmatic

CO2 between degassing from the magma chamber at ~3000 mbsf (meters below seafloor) and venting at

the seafloor. Taken together, this evidence suggests that CH4 originates not within an actively-convecting

hydrothermal fluid, but is produced elsewhere and entrained into the circulating fluid.

The magmatic volatiles fromwhich CH4 forms may be sourced from gabbroic rocks formed from cooling

of volatile-bearing melts beneath mid-ocean ridges. Oxidized carbon (as CO2) is generally considered to

exhibit near-perfect incompatibility, such that during decompression melting, nearly all carbon originally

in the suboceanic mantle partitions into the melt fraction, leaving very little behind in residual peridotite.

Estimates of the amount of carbon in the mantle suffer from large uncertainties, but are typically in the

range of 20 to 300 ppm carbon (Dasgupta and Hirschmann, 2010). Serpentinitized oceanic peridotites from

several mid-ocean ridges contain up to 1500 ppm carbon, and are therefore a sink for carbon (Alt et al., 2013).
Carbon in these rocks is thought to exist mostly as condensed phases (Früh-Green et al., 2004), consistent
with more recent observational and theoretical considerations (Ménez et al., 2012; Pasini et al., 2013; Milesi
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Chapter 3. Mid-ocean ridge hydrothermal systems

et al., 2016). In contrast, gabbros from the same areas contain less carbon (up to 300 ppm), primarily hosted

in inclusions bearing CO2, CH4 and/or graphite (Früh-Green et al., 1996; Kelley and Früh-Green, 1999;

Kelley and Früh-Green, 2001). These petrological constraints suggest that magmatic volatiles entrapped in

gabbros, but probably not fresh peridotites, are a potential source for carbon in CH4 at oceanic spreading

centers. Additionally, migration of magmatic volatiles out of melts directly into layers of gabbro or peridotite

may also enable carbon to come in contact with reducing conditions conducive to methane synthesis.

The occurrence and composition ofmethane-rich aqueous fluids within the sub-oceanic ridge lithosphere

is recorded by secondary fluid inclusions hosted in plutonic rocks. Kelley (1996), Kelley (1997), and Kelley

and Früh-Green (1999) documented several types of abundant volatile-rich inclusions in gabbros recovered

from the slow-spreading Southwest Indian and Mid-Atlantic Ridges by several Ocean Drilling Program

(ODP) expeditions. A common type of inclusion occurring along healed microcracks in plagioclase grains

contained up to 47% CH4 (with balance of H2O). Temperatures indicated by CO2–CH4 carbon isotope

geothermometry (300–600 °C) and homogenization temperatures of the Southwest Indian Ridge fluid

inclusions (350–370 °C, corresponding to entrapment at in situ temperatures of ca. 400 °C) (Kelley and

Früh-Green, 1999) agree with clumped isotopologue temperatures, and are compatible with formation

of CH4 during re-speciation of occluded magmatic volatiles as the host gabbros cooled to below 400 °C

(Fig. 3.2A). While δ13C values of CH4 measured in fluid inclusions are somewhat lower (−34 to −20‰; Kelley

and Früh-Green, 1999) than observed values in vent fluids (−18 to −9‰; Table 3.3), carbon isotopic data

for inclusions may be affected by potential background sources either endogenous to the crushed mineral

separates, introduced during sample handling, or formed during the stepped heating experiments. These

background sources of carbon typically have relatively low δ13C values of −25 to −30‰ (Des Marais, 1986;

Miller and Pillinger, 1997).

Graphite is stable under conditions characterizing many hydrothermal settings (Luque et al., 2009;
Rumble, 2014). At isotopic equilibrium, graphite is ~10‰ enriched in 13C relative to CH4 at temperatures of

300 to 400 °C (Bottinga, 1969). It is worth noting that in all mid-ocean ridge hydrothermal fluids, δ13C values

of CH4 are lower thanmantle-derived CO2 (−5‰, Fig. 3.1A). Relatively uniform δ13C values (−19‰ to −9‰)

are observed in vent fluids with high (millimolar) CH4 contents (McCollom and Seewald, 2007; Keir, 2010).

Furthermore, CH4/
3He ratios in vent fluids (see Keir, 2010) indicate less-than-quantitative conversion (~0.2%

to 50%) of mantle carbon to CH4 (C/
3He ~ 1×109, Marty and Tolstikhin, 1998). Precipitation of graphite

from a CH4-rich fluid entrapped in plutonic rocks may explain both the missing carbon (McDermott et al.,
2015) and the observed δ13C values (Luque et al., 2012).

Fig. 3.7 shows predictions from a thermodynamic model of an ideal graphite-saturated C–O–H vapor

with oxygen fugacity given by the fayalite-magnetite-quartz (FMQ) mineral buffer assemblage and a total

pressure of 1 kbar. Calculations show that precipitation of graphite concomitant with methane formation

is favored at ca. 400 °C and under water-poor conditions, consistent with many previous investigations

(French, 1966; Eugster and Skippen, 1967; Ohmoto and Kerrick, 1977; Holloway, 1984; Früh-Green et al.,
2004). Predicted C1/C2 ratios are also consistent with measured values in vent fluids (McDermott, 2015, and

Fig. 3.7). Propane (C3) is in excess by two orders of magnitude compared with thermodynamic equilibrium

at ~300 °C (McDermott, 2015, and Fig. 3.7). To explain the relative proportions of ethane and propane

(and butanes) at this temperature requires both a high CH4 fugacity and (paradoxically) a low H2 fugacity

of several log units below (more oxidized than) FMQ. Generation of small amounts of C2+ hydrocarbons

(~1 µM or less) from the thermal breakdown of dissolved organic matter carried in recharging seawater

(~40 µM) may account for the excess propane and butanes relative to ethane and methane. Alternatively,

the C2+ hydrocarbons may not have equilibrated at a uniform temperature (McDermott, 2015), or may be

formed via low-yield, kinetically-throttled reactions occurring in circulating fluids (Foustoukos and Seyfried,

2004). Regardless of their specific origins, similarities in the abundances and isotopic compositions of low
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molecular weight hydrocarbons in vent fluids at Von Damm and other hot-spring systems at slow-spreading

ridges suggest that they may share common origins.

Concentrations of CH4 in the gabbro-hosted inclusions from the Southwest Indian Ridge and from

other slow-spreading areas can be several orders of magnitude greater than those observed in corresponding

vent fluids (Kelley, 1996; Kelley, 1997). Mass-balance considerations suggest that extraction of CH4-rich

fluids occluded in gabbros can explain CH4 concentrations at all known sediment-free mid-ocean ridge

hydrothermal fields. Mixing curves plotted in Fig. 3.6 show that addition of less than 0.1% of a CH4–H2Ofluid

of similar composition to those indicated by the inclusions (Fluid 2 in the figure) to a CH4-poor circulating

hydrothermal fluid (Fluid 1) is sufficient to match even the highest CH4 concentrations seen in vent fluids.

Assuming carbon contents ranging from 30 to 300 ppm in the gabbro (Kelley and Früh-Green, 1999), water-

to-rock ratios between 0.8 and 8 are required to explain CH4 concentrations of up to 3 mmol/kg in vent

fluids assuming all carbon in gabbro existed as leachable CH4. Lower water-to-rock ratios are necessary if

conversion efficiency is less than 100% (e.g., due to graphite precipitation) or if lower initial carbon contents

are assumed. Constraints from mobile inorganic elements (e.g., Li, Rb, Sr) generally indicate that water/rock

ratios are substantially lower than ~10 in many mid-ocean ridge hydrothermal systems (Von Damm et al.,
1985; Berndt et al., 1989) with values of 0.4 to 6 calculated for the subsurface at Von Damm (McDermott,

2015) and 2 to 4 at Lost City (Foustoukos et al., 2008) for example.

While only slow-spreading environments were investigated in this study, we hypothesize that the same

origin of methane applies at sites on the fast-spreading East Pacific Rise, particularly given the similar δ13C

values of methane there (Welhan and Craig, 1983). The fact that these hydrothermal fluids contain low C2+

along with low CH4 concentrations (Welhan, 1988b; Keir, 2010) suggests a genetic link between CH4 and the

C2+ hydrocarbons. Differences in axial structure and tectonismmay account for the difference in hydrocarbon

content of vent fluids at fast- and slow-spreading ridges. At magma-poor slow-spreading ridges, extension is

accommodated primarily by detachment faulting, as opposed to magmatic emplacement of new crust that

characterizes fast-spreading ridges (Buck et al., 2005; Dunn, 2007). Low-angle, large-offset, and long-lived

(>1 Myr) normal faults near vent fields at slow-spreading ridges allow for fluid penetration deep into plutonic

rocks of layer 3, enabling access to fresh gabbroic material and/or inclusions to be leached (Kelley, 1996;

Schroeder et al., 2002; Schlindwein and Schmid, 2016). In contrast, in fast spreading environments such as

the East Pacific Rise, shallow melt lenses at 1 to 2 km below seafloor may limit the depth of circulation (e.g.,

Hasenclever et al., 2014; and references in Alt, 1995).

3.5 CONCLUSIONS

Methane clumped isotopologue data obtained for fluids venting from diverse unsedimented mid-ocean

ridge hydrothermal systems uniformly indicate temperatures of last equilibration of ca. 300 °C. Taken in

combination with geochemical and geologic observations and reaction rates determined in experiments,

the ∆13CH3D data provide evidence that abiotic reduction of ∑CO2 at low temperatures (<200 °C) is

not a significant source of methane over timescales characterizing convective hydrothermal circulation

at oceanic spreading centers. Furthermore, consideration of volatile contents and C–O–H speciation in

melt-derived plutonic rocks and residual peridotites suggests that temperature, pressure, fO2
, and fH2O

conditions conducive to methane synthesis may be widespread in the oceanic crust.

Two hypotheses were considered for explaining the origin of CH4 in hydrothermal fluids: (i) aqueous
synthesis of CH4 during active circulation and (ii) extraction of CH4-rich fluids occluded in plutonic

rocks. While both are conceivably compatible with the methane isotopologue data when taken in isolation,

clumped isotopologue temperatures indicate that formation of CH4 from ∑CO2 at Lost City does not

occur at temperatures <200 °C in the upflow. Furthermore, the former scenario is not compatible with

thermodynamic, radioisotopic, and mass balance constraints at several sites. These lines of evidence lead
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us to favor the latter hypothesis, which invokes a more straightforward scenario wherein vent fluids with

millimolar quantities of CH4 represent mixtures of a minute amount of a CH4-rich fluid (of hypogene origin)

with a large volume of an actively-circulating, CH4-poor fluid. Proportions of mixing may be determined by

the relative access that circulating fluids have to magmatic volatile-bearing rocks of the plutonic foundation.

This could also explain apparent relationships of CH4 concentration in vent fluids to tectonic setting and

host rock lithology. Efforts to distinguish between the CH4 contributed via these pathways will benefit from

rigorous interrogation of factors governing fluid flow and chemical kinetics in hydrothermally-influenced

settings.

The new data also provide constraints on the closure temperature of hydrogen exchange betweenmethane

andwater. The observation of sluggish or indiscernible exchange ofH amongmethane isotopologues below ca.

270 °C on timescales of ~102 years is relevant not only to the application of clumped isotope measurements as

a novel geothermometer, but also provides information about the stability of the C–H bond in hydrocarbons

in nature. Given the increasing appreciation of hydrocarbon-water-mineral interactions in economically

important settings (Seewald, 2003), insights of this nature may find utility in studies of the origin and

composition of aqueous and organic fluids in the Earth’s subsurface.
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Figure 3.7 | Equilibrium composition of a graphite-saturated C–O–H fluid at 1000 bar (A) with oxygen fugacity ( fO2
)

given by the fayalite-magnetite-quartz (FMQ) redox buffer (B). The modeled fluid is an ideal gas consisting of CO,

CO2, H2, H2O, O2, ethane, and propane. The model is essentially that of French (1966), with the addition of C2+

compounds (as also considered by Kawagucci et al. (2013) andMcDermott (2015), with different assumptions regarding

redox, water activity, and total mass of carbon). To calculate the composition of the fluid, equilibrium constants

were computed at various temperatures using CHNOSZ (Dick, 2008) from tabulated standard molal thermodynamic

properties and equation of state parameters (Kelley, 1960; Helgeson et al., 1978; Wagman et al., 1982; Johnson et al.,
1992; Shock, 1993; Helgeson et al., 1998), the fugacities of CO and CO2 were calculated, and then the fugacities of

all other gaseous species were solved iteratively under the constraint that∑f = 1000 bar (a pressure typical of those

indicated by fluid inclusion studies; Vanko, 1988). Graphite is unstable above ~500 °C, as shown by the equilibrium

fugacities of CO+CO2 exceeding the pressure of the system (dashed lines in A). Ratios of fugacities of selected species

show that CH4 is the dominant gas-phase species below ~400 °C (C), and that predicted ratios of C1/C2 and C2/C3 are

~103 to 104 between 200 and 400 °C (D, E). Dotted lines in (D) and (E) mark the range of C1/C2 and C2/C3 measured

in hydrothermal fluids from the four vent fields we studied (Charlou et al., 2000; Charlou et al., 2002; Proskurowski
et al., 2008; McDermott et al., 2015). The vapor pressure curve of water at 1000 bar is shown in blue in (A). Values

of log fH2O that plot above this curve are inaccessible because the presence of liquid water sets the fugacity of H2O

and causes the fugacities of O2 and all other species to adjust accordingly. Therefore, values of log ( fCH4
/ fH2O) > 0 do

not necessarily indicate that total CH4 content exceeds total water content when multiple fluid phases coexist. Liquid

water has been neglected in our model, but calculations in which H2O(l) is explicitly considered show that graphite, an

H2O-dominated liquid, and a CH4-rich gas phase can coexist at ~400 °C and fO2
close to FMQ (Holloway, 1984).
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CH4 (A) remain indistinguishable within analytical error (±5%, 2s) in Experiment 2, but not in Experiment 1, perhaps

due to calibration or operator error as noted by those authors. Measured pH was ~4.2, and concentrations of H2 and

∑H2S were 0.26–0.7 mmol/kg fluid and ~11 mmol/kg fluid, respectively, consistent with predictions for a Fe–S–O–H

fluid buffered by PPM at experimental conditions (Reeves et al., 2012). Panel (B) shows measurements of D/H of

CH4 compared against modeled kinetics for D/H exchange with varying half-exchange time (τ1/2 = ln(2)/k). The

modeled kinetics assume that CH4 concentration is constant, the rate of isotopic exchange is first order in CH4, and

the equilibrium D/H fractionation factor [ε = (D/H)methane/(D/H)water – 1] is −130‰ (see Fig. 3.5). We take τ1/2 =
24 yr (black curve) as a best-guess estimate of the rate of true isotopic exchange; this value is shown in Fig. 3.4.
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Chapter4
Fractionation of the methane isotopologues 13CH4,
12CH3D, and 13CH3D during aerobic oxidation of
methane byMethylococcus capsulatus (Bath)

ABSTRACT

Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the

atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph,Methylococcus
capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4,

13CH4,
12CH3D,

and 13CH3D (a doubly-substituted, or “clumped” isotopologue of methane) to characterize the clumped

isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane

became enriched in 13C andD relative to startingmethane, with D/H fractionation a factor of 9.14 (Dε/13ε)
larger than that of 13C/12C. As oxidation progressed, the ∆13CH3D value (a measure of the excess in

abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual

methane decreased. The isotopologue fractionation factor for 13CH3D/
12CH4 was found to closely

approximate the product of the measured fractionation factors for 13CH4/
12CH4 and

12CH3D/
12CH4

(i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane

oxidation pathway. Based on the experimental data, a mathematical model was developed to predict

isotopologue signatures expected for methane in the environment that has been partially-oxidized by

aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to

distinguish between aerobic methane oxidation and alternative methane-cycling processes.

A version of this chapter has been published as:

Wang, D. T.; Welander, P. V. & Ono, S. (2016) Fractionation of the methane isotopologues 13CH4,
12CH3D, and

13CH3D

during aerobic oxidation of methane byMethylococcus capsulatus (Bath). Geochim. Cosmochim. Acta, 192, 186–202.
doi:10.1016/j.gca.2016.07.031

Copyright © 2016, Elsevier Ltd. Reproduction here is authorized under the journal’s Publishing Agreement.
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Chapter 4. Aerobic oxidation of methane

4.1 INTRODUCTION

Methane is an important long lived (well-mixed) greenhouse gas whose atmospheric concentration has more

than doubled (~720 ppb to >1800 ppb) since pre-industrial time (Wahlen, 1993; IPCC, 2013). Important

sources of atmospheric methane include natural wetlands (up to one-third of emissions), agriculture (in-

cluding paddy rice fields and ruminant animals), and fossil fuel usage (Bousquet et al., 2006; Dlugokencky
et al., 2011). Methanogenic archaea are responsible for the majority of emissions, with thermogenic sources

accounting for most of the remainder. The primary methane sink in the atmosphere is reaction with tro-

pospheric hydroxyl radicals (OH). Despite rigorous bottom-up accounting and top-down estimates based

on remote sensing data and high-frequency measurements, the flux of methane from sources and to sinks

remains poorly constrained (e.g., Kirschke et al., 2013).
Emissions from natural and human-made wetlands and other aquatic environments account for nearly

two-thirds of all methane sources, though substantial uncertainty is associated with source strength estimates

(Kirschke et al., 2013). Methanotrophic processes consume over half of the methane produced in aquatic

environments prior to emission into the atmosphere (Reeburgh, 2007). It is estimated that a large fraction

of methane produced in freshwater sediments, as much as 90% at some sites (Oremland and Culbertson,

1992), is removed via the aerobic oxidation of methane. In addition, soil-dwelling aerobic methanotrophs are

responsible for oxidation of a small fraction (~2%) of methane from the atmosphere (Kirschke et al., 2013).
Furthermore, activity of methanotrophic bacteria with high affinity for atmospheric methane in Arctic soils

has been reported (Lau et al., 2015). Thus, understanding the magnitude and dynamics of methanotrophic

sinks is important for global methane cycle budgets and constraining inputs to climate simulations.

The bacteriumMethylococcus capsulatus (Bath), an obligate aerobic methanotroph, is a model organism

for studies of the genetics, physiology, and geomicrobiology of aerobic methane oxidation in sediments

and water columns (Whittenbury et al., 1970; Bowman, 2014). This organism uses the enzymes soluble

methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO) to oxidize methane

to methanol, which is further oxidized to CO2 as an end product (Hanson and Hanson, 1996). Carbon

derived from methane can also be assimilated into cellular biomass. The overall reaction is thus described by

the stoichiometry:

CH4 + 2O2 Ð→ bCcell + (1 − b)CO2 + 2H2O (4.1)

where Ccell represents cellular carbon and b is the fraction of carbon assimilated into biomass.

In experiments with pure and enrichment cultures, microbes utilizing this pathway have been shown to

generate large and correlated carbon (13C/12C) and hydrogen (D/H) isotope fractionations during aerobic

methane oxidation (Coleman et al., 1981; Kinnaman et al., 2007; Powelson et al., 2007; Feisthauer et al., 2011).
Measurements of 13C/12C and D/H ratios in environmental methane samples can be used to assess whether

they have experienced partial oxidation (Hornibrook et al., 1997; Chanton et al., 2005).
Recently, methods were developed to determine the abundance of multiply-substituted “clumped” iso-

topologues (e.g., 13CH3D) in methane samples to sub-permille precision (Ono et al., 2014; Stolper et al.,
2014b; Young et al., 2016). Measurements of the abundance of multiply-substituted isotopologues are of

geochemical interest because of their potential for use as an isotopic geothermometer that can be accessed

via analyses of a single compound (Wang et al., 2004; Eiler, 2007). Furthermore, clumped isotopologue data

provide another dimension for probing kinetic and equilibrium isotope effects and for constraining isotope

exchange processes in natural settings (e.g., Eiler and Schauble, 2004; Yeung et al., 2012; Yeung, 2016). For
example, the isotope exchange reaction

13
CH4 +

12
CH3D⇌ 13

CH3D +
12
CH4 (4.2)

has an equilibrium constant K that varies between ~1.007 at 0 °C to 1.000 at temperatures approaching

infinity (at which isotopes are randomly distributed amongst all possible isotopologues, i.e., the stochastic
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Figure 4.1 | Measured CH4 concentrations and optical densities (OD) during preliminary experiments at 37 °C (left)

and 30 °C (right) with starter cultures ofM. capsulatus (Bath).

distribution) (see Wang et al., 2015, and references therein for details regarding calculations from which K is

obtained).

Subsequent surveys ofmethane in the environment revealed that inmethane ofmicrobial origin produced

in both natural settings and pure cultures, the reaction quotient (Q, see also § 4.2.2) of Reaction 4.2 varies

between 0.997 and 1.007 (Stolper et al., 2014a; Inagaki et al., 2015; Stolper et al., 2015; Wang et al., 2015;
Douglas et al., 2016), a range that is much larger than that expected for thermodynamic equilibrium (ca.

1.004 to 1.007) at temperatures at which microbial life is possible (~0 to 120 °C; Takai et al., 2008) (Wang

et al., 2015). The nonequilibrium isotope signatures were attributed to intrinsic clumped isotopologue effects

expressed during biological methanogenesis under conditions of low reversibility (Stolper et al., 2015; Wang

et al., 2015). Using inferences based on δ13C and δD data, methane oxidation was excluded as a significant

origin of the nonequilibrium isotope signals (Wang et al., 2015). However, experimental constraints on the

fractionation of 13CH3D during biological methane oxidation are lacking in the clumped isotope literature.

In this paper, we report experimental measurements of the fractionation of 13CH3D during aerobic

methane oxidation by cultures of the bacteriumMethylococcus capsulatus (Bath). It is demonstrated that

aerobic methanotrophy affects the abundance of 13CH3D in a predictable fashion relative to δ13C and δD; the

directionality and magnitude of these effects depend on whether oxidation occurs in a closed or open system.

We present simple models to illustrate the expected shifts in 13CH3D abundance under different scenarios,

and review available environmental clumped isotopologue data in light of the new experimental constraints.

4.2 METHODS

4.2.1 Cultures

Methylococcus capsulatus strain Bath cultures were grown in 10 ml of nitrate mineral salts medium supple-

mented with 5 µM CuSO4 (Welander and Summons, 2012). Serum bottles (160 cm3) were inoculated with

2%(v/v) inoculum from a starter culture that had grown for ca. 30 hours, stoppered and sealed without

removing ambient air, and injected with 20 cm3 SATP (~810 µmol) of methane from commercially-sourced

cylinders using a gas-tight syringe. Tests indicated that the starting gas compositions were consistent within

analytical error (±5%) between serum bottles. Multiple serum bottles were inoculated for each of the two

experimental temperatures (Table 4.1). Cultures were incubated at 30 or 37 °C while shaking at 225 rpm
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Chapter 4. Aerobic oxidation of methane

and sacrificed at given times by adding 1 ml of 1 M hydrochloric acid. Each row in Table 4.1 shows the

composition of one serum bottle at the time at which the experiment was stopped. Experimental timepoints

were selected based on monitoring of growth during preliminary incubations of starter cultures (by tracking

optical density, see Fig. 4.1). However, to minimize puncturing of the serum bottles during the isotopic

fractionation experiments, optical densities were not measured for the samples analyzed for isotopologues

shown in Table 4.1. The combination of constant agitation, a large headspace volume relative to liquid volume,

and high initial CH4 partial pressures (>0.1 atm) ensures that diffusion into the liquid from the headspace

does not limit the rate of methane consumption (Templeton et al., 2006; Nihous, 2008).

4.2.2 Analytical techniques

Concentrations of headspace gases, including CH4 and CO2, were determined via gas chromatography (GC)

using a Shimadzu GC-2014 gas chromatograph configured with a packed column (Carboxen-1000, 5′ × 1/8′′,

Supelco, Bellefonte, Pennsylvania, USA) held at 140 °C and argon carrier gas, and thermal conductivity and

methanizer-flame ionization detectors. Subsamples of the headspace (0.20 cm3 at laboratory temperature,

~23 °C) from each serum bottle were taken via a gas-tight syringe and injected onto the column. Gas

concentrations were determined directly as partial pressures. Accuracy of the analyses, evaluated from

standards, was ±5%. The fraction of initial methane remaining, f, in each batch culture was calculated from

these measurements (Table 4.1), with uncertainties propagated following Ku (1969).

Samples of methane were purified via cryofocusing–preparative gas chromatography through a packed

column (Carboxen-1000, 5′ × 1/8′′, Supelco) held at 30 °C with helium carrier gas, and cryotrapping of

the eluted methane on activated charcoal at liquid nitrogen temperature (Wang et al., 2015). The relative

abundances of the methane stable isotopologues 12CH4,
13CH4,

12CH3D, and
13CH3D were measured using a

tunable infrared laser direct absorption spectroscopy technique described previously (Ono et al., 2014; Wang

et al., 2015).
Isotope values are reported herein using standard delta-notation.1 In accordance with IUPAC recom-

mendations (Coplen, 2011), we have omitted the factor of 1000‰ from the definition of δ and other isotope

values (including ∆13CH3D, below). Carbon and hydrogen isotope values were calibrated against community

reference materials NGS-1 and NGS-3 (Wang et al., 2015).
The abundance of 13CH3D is tracked via the ∆13CH3D value, defined according to Ono et al. (2014) as:

∆
13
CH3D = lnQ, where Q =

[13CH3D][
12CH4]

[13CH4][
12CH3D]

(4.3)

Here, Q is the reaction quotient for Reaction 4.2, and ∆13CH3D ≈ Q − 1 because Q is close to unity in the

natural and experimental systems studied herein.2 For a methane sample that has attained a distribution of

isotopes among all isotopologues consistent with equilibrium at a given temperature,Q = K. The temperature

dependence of the equilibrium ∆13CH3D value was theoretically estimated and experimentally calibrated

previously (Wang et al., 2015).
Methane samples with a wide range of δD values (−480‰ to +500‰ vs. SMOW) were prepared and

thermally-equilibrated over platinum catalyst at 300 °C to correct for the nonlinearity in the spectroscopic

analysis described by Ono et al. (2014).

1
Definitions: δ

13
C = (

13
C/

12
C)sample/(

13
C/

12
C)PDB − 1, and δD = (D/H)sample/(D/H)SMOW − 1 [for natural samples of methane,

δ
13
C ≈ (

13
CH4/

12
CH4)sample/(

13
CH4/

12
CH4)PDB − 1 and δD ≈¼ (

12
CH3D/

12
CH4)sample/(D/H)SMOW − 1].

2
From the approximation ln (1 + x) ≈ x for values of x close to zero.
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4.2.3 Calculation of isotope and isotopologue fractionation factors

The MMO-catalyzed reaction between methane and O2 to produce the intermediate product methanol is the

first in a sequence of enzymatic reactions involved in aerobic methanotrophy (Sirajuddin and Rosenzweig,

2015). We focus on this reaction because it is the most important isotopically-fractionating step in this

sequence as it is considered to be both rate-limiting and isotope-sensitive (Nesheim and Lipscomb, 1996)

under the studied experimental conditions. Limitation of the rate of methane consumption by this step

requires that methane diffusion into and out of the cells be rapid relative toMMO catalysis. Following Nihous

(2010), we assume that isotopic fractionation associated with transfer of methane across cell membranes is

negligible.

The reaction scheme for the first step of the aerobic oxidation of the methane isotopologues 12CH4,
13CH4,

12CH3D, and
13CH3D can be described by the following six chemical reactions:

12
CH4 Ð→

12
CH3OH (4.4)

13
CH4 Ð→

13
CH3OH (4.5)

12
CH3DÐ→

12
CH3OH (4.6)

12
CH3DÐ→

12
CH2DOH (4.7)

13
CH3DÐ→

13
CH3OH (4.8)

13
CH3DÐ→

13
CH2DOH (4.9)

4.2.3.1 Carbon isotope fractionation

Assuming that the reaction is irreversible, follows first-order kinetics, and occurs in a closed system, the

following differential equations can be written for 12CH4 and
13CH4:

d12CH4

dt
= −k ⋅ [12CH4] (4.10)

d13CH4

dt
= −

13α ⋅ k ⋅ [13CH4] (4.11)

where k is the rate constant for 12CH4 consumption (Reaction 4.4), and 13α is the fractionation factor for
13C/12C (ratio of rate constants for Reactions 4.5 and 4.4).

Combining Eqns. 4.10 and 4.11, eliminating dt, and integrating from f = 1 (initial) to f yields the equation:

ln
⎛
⎜
⎝

[13CH4] f

[13CH4]init

⎞
⎟
⎠
=

13α ⋅ ln
⎛
⎜
⎝

[12CH4] f

[12CH4]init

⎞
⎟
⎠

(4.12)

By subtracting ln ([12CH4] f/[
12CH4]init) from each side of Eqn. 4.12, and applying the approximations

f ≈ [12CH4] f/[
12CH4]init and [13CH4]/[

12CH4] ≈ [
13C]/[12C], we obtain a form of the classic “Rayleigh

equation” (Mariotti et al., 1981):

ln
δ13C + 1

δ13Cinit + 1
= (

13α − 1) ln f (4.13)

4.2.3.2 Hydrogen isotope fractionation

For the D-substituted isotopologue 12CH3D, there are two ways to break a carbon-hydrogen bond. These

two pathways are described by Reactions 4.6 and 4.7. The former involves the breakage of the C–D bond
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Chapter 4. Aerobic oxidation of methane

(accompanied by a primary isotope effect, described by the fractionation factor Dαp), while the latter involves
the breakage of any of the three C–H bonds adjacent to the C–D bond (incurring a secondary isotope effect,
Dαs). Thus, the overall rate of the oxidation of 12CH3D to methanol can be described by:

d12CH3D

dt
= − 1

4
⋅ Dαp ⋅ k ⋅ [12CH3D] −

3

4
⋅ Dαs ⋅ k ⋅ [12CH3D] (4.14)

By lumping together Dαp and Dαs, the rate equation can be simplified to:

d12CH3D

dt
= −Dα ⋅ k ⋅ [12CH3D] (4.15)

where Dα = 1

4
Dαp + 3

4
Dαs.

This parameterization of D/H fractionation is attractive in that it allows for apparent overall isotopic

fractionation factors to be constrained by cell culture experiments and measurement with conventional

geochemical techniques (e.g., isotope ratio mass spectrometry), without measurement of the individual

reaction products. Applying the same logic used in § 4.2.3.1, the following expression is obtained:

ln
δD + 1

δDinit + 1
= (

Dα − 1) ln f (4.16)

Combining Eqns. 4.13 and 4.16 yields an equation describing the correlation between carbon and

hydrogen isotope fractionation:

ln
δD + 1

δDinit + 1
= (

Dα − 1
13α − 1

) ln
δ13C + 1

δ13Cinit + 1
(4.17)

4.2.3.3
13
CH3D fractionation

The rate of oxidation of 13CH3D can be described by:

d13CH3D

dt
= − 1

4
⋅ γp ⋅ 13α ⋅ Dαp ⋅ k ⋅ [13CH3D] −

3

4
⋅ γs ⋅ 13α ⋅ Dαs ⋅ k ⋅ [13CH3D] (4.18)

Here, we have introduced the terms γp and γs to characterize deviations of the clumped isotopologue

fractionation factor from the product of the 13C/12C and D/H fractionation factors (α values). When there is

no deviation from this product (i.e., primary and secondary isotope fractionation factors for bond breakage

in 13CH3D follow what is referred to hereafter as the “product rule”), both γp and γs are unity. Deviations
from the product rule represent a “clumped isotopologue effect” on bond breakage that arises from the

substitution of both 13C and D in the substrate methane. To simplify the treatment of clumped isotopologue

effects in the absence of literature data for γp and γs, we adopt the following form of the rate equation:

d13CH3D

dt
= −γ ⋅ 13α ⋅ Dα ⋅ k ⋅ [13CH3D] (4.19)

Here, the “gamma-factor” (γ) is an empirically-constrained term that describes an effective clumped

isotopologue fractionation factor. Implicit in the use of Eqn. 4.19 is that γ ⋅ Dα = 1

4
⋅ γp ⋅ Dαp + 3

4
⋅ γs ⋅ Dαs

(from the definition of Dα in § 4.2.3.2; also see discussion in § 4.4.1.2). This condition is satisfied, although

not uniquely, when γ is equal to both γp and γs.
Equation 4.19 is convenient because it allows for γ to be constrained by measurements of the methane

isotopologues in experiments conducted at natural abundance without the use of isotopically labeled sub-

strates or measurement of individual isotopically-substituted products. Integration of Eqn. 4.19 combined
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with Eqn. 4.10, subtraction of the isotopologue-ratio forms of Eqns. 4.13 and Eqn. 4.16 from the result, and

substitution of the definition of ∆13CH3D (Eqn. 4.3) yields:

∆
13
CH3D = ∆

13
CH3Dinitial + (γ ⋅

13α ⋅ Dα − 13α − Dα + 1) ⋅ ln f (4.20)

Adopting this greatly simplified treatment necessarily means that differences in primary and secondary

isotope effects for different forms of the enzyme in different methanotroph species are masked and lumped

into an “effective” fractionation factor. A similar line of reasoning was used by Stolper et al. (2015) to simplify

the representation of a model methanogenic system.

4.3 RESULTS

During the course of the experiments at 30 and 37 °C, the concentration of methane in the headspace

decreased and the concentration of CO2 increased (Table 4.1). The bottles incubated at 37 °C exhibited a

lag phase (observed in preliminary experiments with starter cultures, Fig. 4.1), with a rapid transition into

active methane consumption around 41 hours after inoculation (Table 4.1), whereas in the 30 °C experiments,

methane consumption began immediately after inoculation, but at an apparently lower rate. Based on mass

balance of measured CO2 and CH4 concentrations relative to initial CH4 (Table 4.1), ~7% to 41% of carbon

was not accounted for; this fraction of carbon was likely incorporated into cellular biomass (b in Eqn. 4.1).

This range of b values is similar to ranges observed in previous studies (e.g., 0.1−0.5 in Templeton et al.,
2006).

The initial isotopic composition of the methane used was different between the two sets of experiments

(Table 4.1). As methane was consumed, the δ13C and δD values of the residual methane increased (Fig. 4.2),

indicating a preferential consumption of the lighter 12C and 1H by the bacteria. Conversely, ∆13CH3D values

of the residual methane decreased as methane was consumed, starting from initial values of ca. +2.6‰ and

+2.2‰, and decreasing to “anticlumped” (<0‰) values of ca. −1.5‰ and −1.9‰, respectively, at the last

time points sampled in the 30 and 37 °C experiments (Table 4.1).

Using Eqns. 4.13, 4.16, and 4.20, values of the fractionation factors 13α, Dα, and γ were calculated for each
time point after the initial (Table 4.1). All calculations used the initial timepoint as the reference starting

point; thus, the fractionation factors reported are averaged over the entire reaction occurring in the bottle,

and contain correlated errors linked to the uncertainty in data from the initial timepoint. Fractionation

factors were calculated for each timepoint, rather than over all bottles in an experiment, to avoid artifacts

from variable growth between bottles, particularly at the lower temperature of 30 °C (see Fig. 4.1). In the

earlier time points, the error in the calculated fractionation factors is large because of uncertainties in f and
in ∆13CH3D. For each set of experiments, the weighted-averages of the fractionation factors were determined,

and are listed in Table 4.1, and the corresponding trajectories (using experimental 13α and Dα values, and

variable γ) are depicted in Fig. 4.2.

Isotopic fractionation of D/H was substantially greater in magnitude than that of 13C/12C (Fig. 4.3a). In

general, a greater degree of both carbon- and hydrogen-isotope fractionation was observed in the bottles

incubated at 37 °C than at 30 °C (Fig. 4.3b). No systematic changes in the magnitude of isotope fractionation

were observed over the course of the experiments (Table 4.1). A similar, tight correlation of D/H and 13C/12C

fractionation is observed between the two sets of experiments (Fig. 4.3a).

Calculated γ values for each experimental timepoint are shown in Table 4.1. All values were close to

unity, and showed no systematic changes over the course of incubation. The weighted-average γ values for
the experiments were identical to unity within 2σ error (1.0005 ± 0.0006 and 1.0000 ± 0.0014 for the 30 and

37 °C experiments, respectively).

79



Chapter 4. Aerobic oxidation of methane

Figure 4.2 | Measured and modeled changes in

(a) δ13C, (b) δD, and (c) ∆13CH3D of residual

methane as a function of f, the fraction of ini-

tial methane remaining. Data points from the 30

and 37 °C experiments (Table 4.1) are shown with

black and red symbols, respectively. Horizontal

error bars represent propagated ±1σ uncertainties

from GC measurements, and vertical error bars

represent 95% confidence intervals from isotopo-

logue ratio analyses. Solid lines represent the mod-

eled values (from Eqns. 4.13, 4.16, and 4.20) based

on the calculated weighted-average carbon- and

hydrogen-isotope fractionation factors for each set

of experiments as listed in Table 4.1. Labels in ital-
ics represent 13α, Dα, & γ, respectively, in panels (a),
(b), & (c). Panel (c) shows model results calculated

assuming different values of γ varying between

0.9980 and 1.0020.
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Chapter 4. Aerobic oxidation of methane

4.4 DISCUSSION

4.4.1 Isotope and isotopologue fractionation during aerobic methanotrophy

4.4.1.1 Fractionation ofmethane
13
C/

12
C andD/H ratios

A wide range of carbon isotope fractionation factors [13ε (= 13α − 1) ranging from −38‰ to −3‰] have been

reported in culture- and field-based studies (see Templeton et al., 2006, and references therein). The variable

nature of the magnitude of observed carbon isotope effects complicates application of measurements of

individual carbon isotope ratios in diagnosing the presence and extent of methanotrophy in the environment.

As such, the use of paired δ13C and δD data has been suggested as a possible method of removing some levels

of ambiguity associated with the sole use of carbon isotopes (Elsner et al., 2005). Although the absolute

magnitudes of isotope fractionationmay vary due to “masking effects” from preceding isotopically-insensitive

steps such as transport across membranes or binding to an enzyme (Feisthauer et al., 2011), a correlation
between the fractionation of the carbon and hydrogen isotopes can be expected because both are principally

influenced by the breakage of the C–H bond. Such a correlation was first noted by Coleman et al. (1981), with
later studies by Kinnaman et al. (2007), Powelson et al. (2007), and Feisthauer et al. (2011) corroborating the
observations in pure culture and in enrichments from other environments. The published values of Dε/13ε,
corresponding to the slope of the gray lines in Fig. 4.3a, range from 5.9 to 14.9, with a mean of 8.9 ± 2.3

[standard deviation (1σ), n = 15]. The best-fit value of Dε/13ε for the data shown in Table 4.1 is 9.14, a value

which appears independent of the two growth temperatures tested, and which falls near the middle of the

published range.

The consistency of the determinedDε/13ε ratios with those in the literature provides confidence that results
regarding the behavior of ∆13CH3D (discussed below) during aerobic methane oxidation byM. capsulatus
(Bath) can be generalizable to other strains grown under other conditions. Further experiments with

these strains grown under different conditions to examine clumped isotopologue fractionation will help to

determine if this hypothesis is valid. In a previous study, various strains of bacteria (includingM. capsulatus,
which has twopMMOs and one sMMO;Ward et al., 2004) grown in batch cultures under different copper (Cu)
concentrations (with pMMO expressed under Cu-rich conditions and sMMO under low Cu) demonstrated

consistently correlated fractionations of carbon and hydrogen isotopes, without apparent correlation to

physiology or growth condition (Feisthauer et al., 2011). Values of Dε/13ε derived from that study range

from 7.3 to 8.8, and are close to the average Dε/13ε ratio from our dataset (9.14, Fig. 4.3a). In particular,

M. capsulatus grown at 45 °C induced isotopic fractionations of 13α = 0.972 ± 0.002 and Dα = 0.769 ± 0.030

(published uncertainties were listed as 95% confidence interval, approximately 2σ) under Cu-rich conditions,
and under Cu-poor conditions, similar values of 13α = 0.977 ± 0.003 and Dα = 0.808 ± 0.029 (Feisthauer

et al., 2011). The corresponding Dε/13ε ratios (with propagated ~2σ uncertainties) indicated by their data are

8.3 ± 1.1 and 8.4 ± 1.7 under Cu-rich and Cu-poor conditions, respectively. These values are indistinguishable

from the Dε/13ε ratio derived from regression through our experimental data (9.14 ± 0.14, 2σ ; see Table 4.2).
This correspondence of Dε/13ε ratios suggests that the proposed product rule for γ values (see § 4.4.1.2) could
be valid forM. capsulatus expressing either pMMO or sMMO, and may hold for many other methanotrophic

strains cultured under various conditions.

Insights into the origin of D/H fractionation during methane oxidation have been obtained from studies

which separately constrain the primary and secondary hydrogen isotope effects. Using molecular dynamics

simulations, Pudzianowski and Loew (1983) calculated the isotope effects associated with the abstraction of

H or D from CH4 or CH3D by atomic oxygen, O(3P), as an analog for the methane monooxygenase reaction.

Their results, expressed as fractionation factors, are Dαp = 0.0296 and Dαs = 0.763 (or 0.0179 and 0.759 when

tunneling correctionswere applied). Thus, the overall isotope fractionation, Dα (see Eqn. 4.15), would be 0.580.
This fractionation factor reflects a much larger magnitude of D/H fractionation than is observed in either
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Figure 4.3 | Relationship between fractionation of carbon and hydrogen isotopes. (a) Data from the 30 and 37 °C

experiments (Table 4.1) are shown with black and red symbols, respectively. Black line (y = 9.14 x) represents the best-fit
regression through the data. From Eqn. 4.17, the slope of this line is (Dα − 1)/(13α − 1), or Dε/13ε. Near the origin, the
x- and y-axes are approximately equal to δ13C − δ13Cinit and δD − δDinit, respectively; this approximation becomes

less accurate with increasing distance from the origin, particularly for hydrogen (Sessions and Hayes, 2005). Gray

lines represent previously-reported correlations between fractionation of carbon and hydrogen isotopes by aerobic

methanotrophs determined from experiments with pure cultures (Feisthauer et al., 2011) and enrichment cultures

(Coleman et al., 1981; Kinnaman et al., 2007; Powelson et al., 2007). (b) Fractionation factors (ε, defined as α − 1)
calculated for individual bottle incubations from this study (Table 4.1) plotted against fractionation factors reported in

the cited studies (gray). One point from the 37 °C experiment (41 h) was not plotted because of large uncertainties

arising from a minimal extent of reaction.

our experiments (Dα as low as 0.718) or those reported in other studies (plotted in Fig. 4.3b). Pudzianowski

and Loew (1983) note, however, that the transition state of the CH4/CH3D + O(3P) reaction they modeled

has only qualitative similarity to the transition state of the methane hydrogen abstraction/hydroxylation

reaction performed by methane monooxygenase. Such fundamental differences between the two processes

may explain the difference between their calculated fractionation and the experimental observations.

Multiple experimental determinations of the kinetic isotope effects for H or D abstraction have been

reported (e.g., Green and Dalton, 1989; Rataj et al., 1991; Wilkins et al., 1994, and references therein). Values

for the primary isotope effect (corresponding to Dαp = 0.73) and secondary isotope effect (Dαs = 0.93) have

been reported for methane oxidation by sMMO (Wilkins et al., 1994). The overall Dα calculated from these

values (0.88 via Eqn. 4.15) is not low enough to explain the observed D/H fractionations in culture (Fig. 4.3b).

More recently, in experiments with a series of multiply-deuterated isotopologues of methane, Nesheim and

Lipscomb (1996) determined that the isotopically-selective reaction of compound Q (the key intermediate

that oxidizes CH4) of the MMO hydroxylase (MMOHQ) has very large primary and much smaller secondary

kinetic isotope effects corresponding to Dαp = 0.01–0.02 and Dαs = 0.9–1.0. Via Eqn. 4.15, the corresponding

overall hydrogen isotope fractionation, Dα, is then between ~0.68 and ~0.76, a range which overlaps with the

largest D/H fractionation observed in our experiments (0.718, Table 4.1). Note that such a direct quantitative

comparison between isotope effects determined from pure cultures and those from in vitro experiments with

labeled substrates may not be meaningful, as in culture experiments the fractionation induced by MMO is
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not necessarily the only factor determining isotopic fractionation. Regardless, the very large primary kinetic

isotope effect implies that nearly all of the 12CH3D reacts via the abstraction of H, with only a minor fraction

reacting via the abstraction of D. This inference has potential implications for the interpretation of γ factors
constrained by clumped isotopologue measurements (see § 4.4.1.2).

Generally larger bulk carbon and hydrogen isotopic fractionations were observed in the 37 °C cultures,

compared to those grown at 30 °C (Table 4.1). This trend is an apparent reversal of the normally-expected

decrease of kinetic isotope effects with increasing temperature. Such an inverse temperature effect was

previously observed by Coleman et al. (1981) on enrichment cultures grown at 11.5 and 26 °C. They excluded

species differences as the source of the apparent trend, and speculated that the partial and differential

expression of a combination of kinetic and equilibrium isotope effects could explain their results.

In our experiments, only one strain of bacterium was cultured, thus also excluding species differences as

a reason for the observed inverse temperature trend. If some D/H exchange with cellular water occurs during

C–H bond breakage and re-forming, the overall Dε fractionation factor should be of smaller magnitude than

would otherwise be expected given the observed 13ε value (as the carbon does not exchange). [The δD of

water used in the cultures was not measured, but is estimated to be between −95‰ and −32‰ based on tap

water data from Bowen et al. (2007). Based on the calibration of Horibe and Craig (1995),3 methane at D/H

equilibrium with water at 30–37 °C would be expected to have δD < −200‰, which is lower than the initial

δD of methane in both sets of experiments.] The observation that the ratio Dε/13ε is nearly identical between
the two temperatures (Fig. 4.3a) therefore argues against C–H bond re-equilibration as an explanation

for smaller magnitudes of isotopic fractionation in the 30 °C experiments. Furthermore, our additional

measurements of ∆13CH3D indicate that γ values are indistinguishable (within 2σ , Table 4.1) between the

two experiments, lending additional support to the conclusion that kinetic isotope fractionation dominates

the observed isotope and isotopologue signals.

Given the above analysis, an alternate explanation must be sought to explain the observed apparent

inverse temperature trend. According to the theory of kinetic isotope fractionation (e.g., Bigeleisen, 1949),

predictions of decreasing kinetic isotope effects with increasing temperature are generally valid only for

elementary reactions. The aerobic oxidation of methane byM. capsulatus consists of multiple enzymatic

steps, and thus expression of intrinsic kinetic isotope effects may not be complete if the isotopically-sensitive

methane monooxygenase reaction is not fully rate-limiting. In particular, models proposed to explain

previously published experimental data point to the depletion of soluble methane concentrations below

threshold levels required to maintain rates of mass transfer into the cell as a control on the degree to which

kinetic isotope effects are expressed in culture (Nihous, 2008; Nihous, 2010; Vavilin et al., 2015). This behavior

is analogous to that observed for 34S/32S ratios during microbial sulfate reduction, where under low sulfate

conditions, sulfur isotope fractionation is suppressed due to rate limitation by the isotopically-insensitive

initial transport of sulfate into the cell (Harrison and Thode, 1958; Rees, 1973). Substrate limitation has also

been considered to explain trends associated with 13C/12C fractionation during methanogenesis under low

intracellular CO2 levels (e.g., Valentine et al., 2004), and has been extensively studied in relation to CO2 levels

during photosynthesis (e.g., Farquhar et al., 1982). Thus, the apparent inverse temperature trend in the data is

possibly a result of masking of intrinsic isotope effects ofMMOdue to limitation frommass transport into the

cell, although other explanations cannot be discounted. Experimental setups that allow rigorous accounting

of carbon budgets and biomass density may allow for quantitative models of isotopologue systematics, similar

to those created for δ13C (Templeton et al., 2006; Nihous, 2008; Nihous, 2010), to be used in evaluating the

potential effects of diffusion of methane to and through cells. Our data thus also encourages consideration of

3
Comparisons of the fractionation factor for D/H equilibrium between CH4(g) and H2O(l) derived from the calibrations of different

studies reveal a substantial range in estimates (up to 30‰ at 30–37 °C, see Wang et al., 2015). This is mainly due to uncertainty in

extrapolations of experimental calibrations of H2(g)/H2O(g) at >200 °C to lower temperatures. However, this level of uncertainty

does not impact the interpretation developed here.
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ing aerobic methane oxidation under closed sys-

tem conditions. Solid lines represent model pre-

dictions (from Eqns. 4.13, 4.16, and 4.20) based

on the calculated weighted-average carbon- and

hydrogen-isotope fractionation factors for each set

of experiments (black, 30 °C; red, 37 °C) as listed in

Table 4.1 and shown in Fig. 4.2. Labels in italics in
panel (a) represent γ values. Circles are marked at

intervals of 0.2 in f, the fraction of initial methane

remaining, and labeled in panel (b). For visual

clarity, the models were initialized at slightly differ-

ent δ13C and ∆13CH3D values. The initial isotope

values were chosen for illustrative purposes only

and do not represent any particular natural sample;

however, the chosen values are typical of modern

microbial methane generated in wetland and lake

sediments. Following Wang et al. (2015), the gray
field in panel (a) represents the temperature range

within which microbial life has been shown to oc-

cur (Takai et al., 2008), and the gray fields in panel

(b) represent empirical methane source fields sug-

gested by Whiticar (1999).

mass transport and bioavailable methane levels when evaluating methane isotope data in field settings where

oxidation may be occurring. Despite the particular mechanisms underlying apparent inverse temperature

trends remaining unclear, the general observation that the fractionation of 13C/12C and D/H ratios observed

in our study is consistent with previously reported experiments is key, as it suggests that the discussion

below regarding patterns of fractionation of 13CH3Dmay be generally applicable to experimental cultures of

aerobic methanotrophic bacteria.

4.4.1.2 Fractionation of
13
CH3D

In our batch culture experiments, the ∆13CH3D value of residual methane decreased with progressive

oxidation (Table 4.1). The weighted average γ values determined for the both the 30 °C experiment (1.0005 ±

0.0006, 2σ) and the 37 °C experiment (1.0000 ± 0.0014) are indistinguishable from unity. Thus, the results of

this study indicate that the overall kinetic fractionation factor for 13CH3D/
12CH4 can be closely approximated

as the product of the carbon and hydrogen isotopic fractionation factors (i.e., 13–Dα ≈ 13α ⋅ Dα). This product

rule can be used to model the ∆13CH3D value resulting from aerobic methane oxidation. If a higher level

of prediction is necessary, precise constraints on primary and secondary α and γ values are required (see
§ 4.2.3.3 and discussion below).

Given low enough γ values (depending on 13α and Dα), the ∆13CH3D value may actually increase over
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Chapter 4. Aerobic oxidation of methane

the course of the reaction in a closed system such as a batch culture. The break-even condition, under which

∆13CH3D does not change during a closed system process, occurs when γ = (13α + Dα − 1)/(13α ⋅ Dα) . For
the 30 and 37 °C experiments, the break-even γ values are 0.9986 and 0.9943, respectively. These values

are substantially less than those determined experimentally above (the latter by a considerable −0.0057 or

−5.7‰). Therefore, it should not be assumed that ∆13CH3D values are unaffected by closed system methane

oxidation. Otherwise, the apparent ∆13CH3D temperature may be substantially overestimated or become

imaginary, as shown in Fig. 4.4a.

There is no a priori reason that γmust be close to unity.4 The γ factor as defined in § 4.2.3.3 is empirically

useful in that it is a single number that expresses the reactivity of 13CH3D relative to the other isotopologues.

Because 13CH3D can react by two nonidentical hydrogen-abstraction reactions (Reactions 4.8 and 4.9), the

γ value expresses the summation of the products of the hydrogen-isotope effects (Dαp and Dαs) and the

“clumped isotopologue effects” (γp and γs) for D in both primary and secondary sites: γ ⋅ Dα = 1

4
⋅ γp ⋅ Dαp +

3

4
⋅ γs ⋅ Dαs. A conceptual exercise helpfully illustrates the relative weighting of D- vs. H-abstraction reactions

expressed in the γ factor. Assuming Dαp = 0.02 and Dαs = 0.9 (from § 4.4.1.1), and γ = 0.9990 (i.e., −1‰

from unity, which is at the lower edge of 2σ uncertainty on the weighted average γ values for the experiments

shown in Table 4.1), then Dα = 0.68 and 0.6786 = 0.0050 ⋅ γp + 0.6750 ⋅ γs. Assigning a value to either γp or
γs would constrain the other; hence, two extreme cases can be considered: (i) if γs = 1, then γp = 0.86; or

alternatively (ii) if γp = 1, then γs = 0.9990. The former case requires a large primary clumped isotopologue

effect because proportionally very few 13CH3D (and 12CH3D) molecules react through direct D-abstraction

rather than H-abstraction (see § 4.4.1.1), whereas the latter requires only a much smaller secondary clumped

isotopologue effect on H-abstraction from 13CH3D to explain a γ value that deviates slightly from unity.

Although insufficient constraints on either γp or γs are currently available, this exercise indicates that a small

secondary clumped isotopologue effect (i.e., γs ≠ 1 but is very close) could exist, but may be hardly detectable.

Given the uncertainties surrounding experimental determinations of Dαp and Dαs (discussed in § 4.4.1.1),

accurate values of γp and γs cannot yet be assigned. For geochemical applications, the γ factor is at present
best used as an empirically-fitted parameter, similar to the manner in which the overall D/H fractionation

factor Dα is typically treated.

Irrespective of the exact magnitude of the γ factor, it is clear that ∆13CH3D becomes less clumped with

progressive oxidation in a closed system under the growth conditions tested in this study. Because of the

consistency of our Dε/13ε results with previous experiments with organisms also using pMMO and/or sMMO

(Fig. 4.3a), it is not unreasonable to expect similar results on ∆13CH3D values for methane oxidation by other

strains of aerobic methanotrophic bacteria.

As mentioned above (§ 4.4.1.1), a possible explanation for the differences in the hydrogen isotopic

fractionation factor for the experiments at the two temperatures relates to partial expression of equilibrium

isotope effects in one or both experiments. Evidence against this explanation derives from the observation

that ∆13CH3D values of residual methane in both experiments follow the predictions of the product rule

(i.e., γ values are ~1); therefore it is unlikely that there is a greater degree of C–H bond re-equilibration

during the course of reaction in one experiment over another. Thus, clumped isotopologue data also assist in

diagnosing presence or absence of isotope exchange during enzymatic abstraction of H from methane by

MMO, and are consistent with a minor (not detectable) degree of reversibility for this process. The minor

degree of reversibility indicated by the data for aerobic methane oxidation here contrasts sharply with the

anaerobic oxidation of methane (AOM), an oxidation process in which much greater degrees of reversibility

4
For example, when methane effuses through a small orifice, γ (when defined as the ratio of the isotopologue fractionation factor

for
13
CH3D/

12
CH4 to the product of those for

13
CH4/

12
CH4 and

12
CH3D/

12
CH4) will not be unity. From the kinetic theory of

gases, the rate of effusion of an isotopologue is proportional to (mass)
−1/2

, such that γ = 1.00174. Escaping methane will have lower

(lighter) δ
13
C and δD, but higher ∆13

CH3D, than the residual methane. For a more thorough discussion, readers are referred to

Eiler and Schauble (2004).
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source

13α, Dα, γ

transport

δ13C, δD, Δ13CH3D

reservoir

δ13C
δD
Δ13CH3D

oxidation

α & γ = 1

Figure 4.5 | Representation

of a model open system in

which methane is transported

in and out via advection, and

in which aerobic methane ox-

idation is also occurring. The

fractional contribution of oxi-

dation to the total sinks is φox.

See Fig. 4.6 and discussion in

§ 4.4.2.1.

have been demonstrated using carbon and hydrogen isotopes (Holler et al., 2011; Yoshinaga et al., 2014). The

environmental implications are discussed in § 4.4.2.2.

4.4.2 Implications for biogeochemical systems

4.4.2.1 Methane isotope and isotopologue fractionation in open systems

In closed systems, e.g., batch cultures, no steady state is obtained because of the lack of mass transfer to

replenish the methane consumed by methane oxidation. However, in natural systems operating close to

steady state, there is replenishment of methane from lateral transport or diffusion, as well as methanogenesis,

and there may be multiple sinks, including methane oxidation and mass transport (Fig. 4.5).

Experimental alternatives to batch cultures, namely flow-through bioreactors (chemostats), have been

used tomore directly approach the calibration of isotopic fractionation factors due tomicrobialmetabolism in

natural settings. For example, Templeton et al. (2006) grew pure andmixed cultures of aerobicmethanotrophs

in chemostats to determine the carbon isotope fractionation between methane and product methanol as a

function of environmental and physiological conditions. In such an open system, there is a constant influx

of reactant methane, which at steady state is balanced by the sum of methane oxidation and methane carried

in the effluent out of the bioreactor (i.e., dilution).

In the simple limiting case where the fraction of methane removed by oxidation approaches 100% (i.e.,

no methane escapes the system intact), there is effectively one sink of methane, with fractionation factors
13α, Dα, and γ accompanying the removal process. At steady state, the isotopic values of methane in the

bioreactor would be δ13C = (δ13Cin + 1) / 13α − 1 and δD = (δDin + 1) / Dα − 1, where δin represents the
isotopic composition of the influent methane. For 13CH3D, it can be shown that

∆
13
CH3D = ∆

13
CH3Din − ln γ (4.21)

as presented in Joelsson et al. (2015). Since γ ≈ 1, this expression can be approximated by ∆13CH3D =

∆13CH3Din −(γ − 1). In our batch culture experiments at 30 and 37 °C, respectively, weighted-average values

for (γ − 1) of +0.5 ± 0.3‰ and 0.0 ± 0.7‰ (1σ) were obtained (Table 4.1). Although steady-state experiments

were not conducted in the current study, if it is assumed that these values are also characteristic of true

open-system isotopologue fractionation factors, then the above expression can be used to place bounds on

the isotopologue composition of methane in the limiting case outlined above. Examples of the calculated

methane isotopic/isotopologue compositions are shown for model scenarios in Fig. 4.6a (corresponding to

the endmember labeled “fully oxidative” on each curve).

Equation 4.21 also shows that in a system at steady state where methane is solely removed by one process

(here, oxidation), the ∆13CH3D value is determined solely by the ∆13CH3D value of the methane source
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Chapter 4. Aerobic oxidation of methane

Figure 4.6 | Modeled steady-state values of (a)
∆13CH3D vs. δD and (b) δ13C vs. δD of methane

in an open system (Fig. 4.5) consisting of a single

source and two sinks (aerobic methane oxidation

and advection). Advection is assumed to be non-

fractionating. Lines weremodeled using Eqns. 4.22

and 4.23, and the same fractionation factors for

aerobic methane oxidation as for those shown with

the same line style in Fig. 4.3. Labels in italics in
panel (a) represent γ values associated with aerobic
methane oxidation. Circles are marked at intervals

of 0.2 in φox, the fraction of methane removed via

oxidation, ranging from fully advective (φox = 0)

to fully oxidative (φox = 1), and labeled in panel

(b). When φox = 0, the isotopic composition of

methane in the reservoir is identical to that of the

source. For visual clarity, the calculations were

performed for slightly different δ13C and ∆13CH3D

values of input methane. For description of shaded

fields, see the caption for Fig. 4.4.
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and the γ factor, in contrast to closed systems where ∆13CH3D of residual methane is influenced also by the

isotopic fractionations for bulk 13C/12C and D/H. However, in more complex systems with multiple removal

processes and associated fractionation factors, the partitioning of flows among the removal processes must

be considered (Hayes, 2001).

One example of such an open system is shown in Fig. 4.5. Here, methane is carried into the system via

advection, and removed by both advection and oxidation. Oxidation of methane has associated fractionation

factors 13α, Dα, and γ, whereas transport processes are assumed to cause no fractionation (Alperin et al.,
1988), i.e., values of α and γ are unity. The fraction of methane removed via oxidation, φox, describes the

partitioning of flows among the twomethane sinks. It can be shown that at steady state, the hydrogen isotopic

composition of the methane in the reservoir is (Hayes, 2001):

δD =
δDin + 1

1 + φox (
Dα − 1)

− 1 (4.22)

An analogous equation (not shown) describes the carbon isotopic composition of methane in this system

at steady state. When the δ13C and δD values are plotted against each other, it can be seen that the trajectory

describing the continuum between the fully-advective (φox = 0) and fully-oxidative (φox = 1) endmembers is

slightly curved (though approximately linear at most scales of interest, Fig. 4.6b).
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4.4.2. Implications for biogeochemical systems

For this system, unlike in the simple fully-oxidative case described by Eqn. 4.21, the abundance of 13CH3D

is affected not only by the γ value, but also by the 13α and Dα values:

∆
13
CH3D = ∆

13
CH3Din − ln

1 + φox (γ ⋅ 13α ⋅ Dα − 1)
(1 + φox (

13α − 1)) (1 + φox (
Dα − 1))

(4.23)

This results in a parabolic curve connecting the fully-advective and fully-oxidative endmembers (Fig. 4.6a).

For aerobic methane oxidation, the curvature on Fig. 4.6a is always expected to be concave up, because both

the 13α and Dα values are less than unity. The relative position of the endmembers in ∆13CH3D space is

determined by the γ value. When φox = 1, Eqn. 4.23 reduces to Eqn. 4.21.

4.4.2.2 ∆
13
CH3Das an environmental tracer ofmethane sink processes

Both biological and chemical processes are important sinks in the methane budget. In terrestrial ecosystems

and oxygenated marine water columns, aerobic methanotrophy dominates, whereas in sulfate-rich marine

sediments and gas seeps, anaerobic consumption of methane becomes important (Cicerone and Oremland,

1988; Reeburgh, 2007; Valentine, 2011; Boetius and Wenzhöfer, 2013). In the atmosphere, the primary sink

(~90%) is the reaction with tropospheric OH, with small contributions from microbial oxidation in soils,

loss to stratosphere, and reaction with tropospheric Cl (Kirschke et al., 2013).
These methane-consuming processes impart distinct carbon- and hydrogen-isotopic fractionations. In

general, biological processes (including aerobic methane oxidation, anaerobic oxidation of methane, and

nitrite-dependent anaerobicmethane oxidation) have Dε/13ε ratios between 6 and 15, whereas the atmospheric

sinks, CH4 + OH and CH4 + Cl, have Dε/13ε ratios ~58 and ~5.5, respectively (Table 4.2). The consistent

and sizable differences in isotopic behavior among the two atmospheric processes vs. biological processes is

useful for constraining the balance of different sources and sinks of methane (e.g., Whiticar and Schaefer,

2007; Kai et al., 2011; Rigby et al., 2012).
The behavior of methane clumped isotopologues in atmospheric reactions has also been studied. Recently,

Joelsson et al. (2014) and Joelsson et al. (2016) reported the fractionation factor for 13CH3D in relative-rate

experiments on the reactions of Cl and OH, respectively. Their experiments were conducted with mixtures of
12CH4 and

13CH3D (and also 12CH3D in the OH study). Based on their measurements, the γ value associated
with methane oxidation by Cl was 0.980 ± 0.019, and by OH was 0.978 ± 0.028 (2σ , Table 4.2). The γ value for
Cl oxidation is slightly less than unity, implying that less of the 13CH3D is oxidized than would be predicted

by the product rule, whereas the γ value for OH oxidation is within error of unity. However, the uncertainty

on calculated γ values is large (ca. 20 to 30‰) due to limitations associated with the experimental setup and

detection technique. Because ∆13CH3D in the environment has a ca. 10‰ range (Wang et al., 2015), more

precise isotopologue-specific measurements of methane in experiments conducted at natural abundance

will be necessary in order to constrain clumped isotopologue fractionations in atmospheric contexts. These

experiments have been conducted, and the results are reported in a companion article (Whitehill et al., 2017);
a summary of their results are shown in Table 4.1.

In the present study, γ values for aerobic methane oxidation were determined (1.0004 ± 0.0006, 2σ ,
Table 4.2). These values indicate that the abstraction of H from methane by methane monooxygenase is

associated with little to no reversibility (see discussion in § 4.4.1.2). This interpretation is consistent with the

strong energetic favorability of methane oxidation to methanol and downstream products in the presence of

abundant O2, a strong electron acceptor (Cicerone and Oremland, 1988; Hanson and Hanson, 1996).

The new experimental constraints on clumped isotopologue fractionation during aerobic methane

oxidation also afford an opportunity to briefly evaluate whether aerobic methane oxidation has influenced

methane clumped isotopologue data available in the literature from various environments. In particular,

because methane oxidation demonstrably produces nonequilibrium clumped isotopologue signatures in
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Chapter 4. Aerobic oxidation of methane

Table 4.2 | Comparison of experimentally-determined ratios of carbon- and hydrogen-isotope fractionation factors

(Dε/13ε) and 13CH3D fractionation factors (γ) for different methane sink processes. Uncertainties quoted are ±2σ or

95% confidence interval.

Dε/13ε γ

Aerobic methane oxidation
Previous worka 5.9 to 14.9

This studyb 9.14 ± 0.14 1.0004 ± 0.0006

Anaerobic oxidation of methane (AOM)
Holler et al. (2009) 6.4 to 8.5

Nitrite-dependent anaerobic methane oxidation
Rasigraf et al. (2012) 7.8 ± 0.8

CH4 + OH
Saueressig et al. (2001) 58.5 ± 6.6

Joelsson et al. (2015; 2016) 0.980 ± 0.038

Whitehill et al. (2017) 41.3 ± 8.3 0.9997 ± 0.0012

CH4 + Cl
Tyler et al. (2000) 5.51

Saueressig et al. (1995; 1996) 5.50

Feilberg et al. (2005) 5.65

Joelsson et al. (2014) 0.978 ± 0.051

Whitehill et al. (2017) 5.56 0.9965 ± 0.0007

a See caption of Fig. 4.3a for references. Also see Rasigraf et al.
(2012) for a compilation of 13ε and Dε values determined for bio-

logical methane oxidation in cultures and in the environment.
b Derived from linear regression (Dε/13ε, Fig. 4.3a) or weighted
average (γ) of all timepoints in both experiments in Table 4.1.

both closed and open systems considered in this study (Figs. 4.4 and 4.6, respectively), the out-of-equilibrium

clumped isotopologue signatures in samples from Upper and Lower Mystic Lakes (Massachusetts, USA),

Swamp Y (Massachusetts, USA), and The Cedars (California, USA) are considered again here (Wang et al.,
2015), as well as a sample from a pond at Caltech for which a related parameter, the ∆18 value, was found to be

in disequilibrium (Stolper et al., 2015). At Upper Mystic Lake (a 20-m deep seasonally-stratified freshwater

lake), bubble traps were deployed ~2 m above the lake floor; the deployment of traps at such deep depths,

into the oxygen-depleted hypolimnion (Peterson, 2005), was designed to minimize the possibility of aerobic

methane oxidation (Wang et al., 2015). At LowerMystic Lake (a 24-m deepmeromictic density-stratified lake),

the monimolimnion (from which the reported sample was taken) is anoxic (Wang et al., 2015), rendering
aerobic methane oxidation unlikely. For Swamp Y and the Caltech pond, the redox state of the sediments

from which the methane bubbles were stirred and extracted is unknown. At The Cedars, the extremely

high levels of H2 in gases exsolving from the springs maintains O2 at vanishingly low levels (near the lower

bound of H2O stability; Morrill et al., 2013). Taken together, all methane samples from these four sites exhibit

narrow ranges of δ13C values between −59‰ and −71‰ and δD values between −265‰ and −342‰, but

carry a wide range of nonequilibrium ∆13CH3D values (from −3.4‰ to +3.2‰) that are consistent within
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sites but significantly different between sites (Wang et al., 2015), and exhibit isotopologue patterns that do

not discernably resemble those depicted in Figs. 4.4 and 4.6. Thus, although aerobic methane oxidation

cannot be fully discounted at these four sites, the experimental constraints provided in the current study do

not contraindicate the assumptions made by Wang et al. (2015) and are consistent with the hypothesis that

nonequilibrium ∆13CH3D values in microbial methane in the environment and in methanogenic cultures

studied to date originate primarily from intrinsic isotopologue effects during the assembly of C–H bonds

during methanogenesis (Stolper et al., 2015; Wang et al., 2015).
Alternative biological mechanisms for methane oxidation are also important in the environment. Of

particular interest is the sulfate-dependent anaerobic oxidation of methane (AOM), which is a major sink of

methane in anoxic marine sediments (Reeburgh, 1976). This process operates via a very different biochemical

pathway from that used by aerobic methanotrophs. While the biochemistry of AOM has not been fully

characterized, it is likely that the enzymatic pathway ofAOMis the reverse ofmethanogenesis, and involves the

same or similar key enzymes (e.g., methyl-coenzyme M reductase) for addition or removal of H from single-

carbon compounds (Scheller et al., 2010). Previously, it was found that as the reversibility of methanogenesis

decreased (controlled in part by levels of bioavailable H2), both the δD and ∆13CH3D values of the generated

methane became lower or more negative (Wang et al., 2015); similar behavior was found in ∆18 (Stolper et al.,
2014a; Stolper et al., 2015). From incubations of enrichment cultures of microbial consortia performing

AOM, Holler et al. (2009) determined substantial kinetic isotope fractionations associated with this process

(13ε = −12‰ to −36‰ and Dε = −100‰ to −230‰). The negative D/H fractionation factor results in the

residual methane becoming enriched in D. Because of the demonstrated high levels of reversibility of AOM

(Holler et al., 2011) and the re-equilibration of 13C/12C ratios between methane and inorganic carbon at

the sulfate-methane transition zone (Yoshinaga et al., 2014), it seems reasonable to speculate that AOM

may produce clumped isotope signatures distinct from those of methanogenesis (Stolper et al., 2015). In
particular, the expression of a combination of kinetic and equilibrium isotope effects may be observed, such

that the observed ∆13CH3D value may lie between that predicted by the product rule and that predicted

for thermodynamic equilibrium. If so, then measurement of ∆13CH3Dmay provide a way to differentiate

between AOM and aerobic methanotrophy. Alternatively, if AOM also generates ∆13CH3D approximating

the product rule, then the agreement of Dε/13ε between AOM (Holler et al., 2009) and aerobic methanotrophs

(Table 4.2) suggests that potentially, microbially-mediated oxidation of methane produces only a small and

predictable range of clumped isotopologue fractionations.

Another process, the recently-identified nitrite-dependent anaerobic methane oxidation (Ettwig et al.,
2010), may also be environmentally-relevant, though its global prevalence has yet to be established. The

bacteriumCandidatusMethylomirabilis oxyfera producesmolecular oxygen intracellularly from the reduction

of nitrite to nitric oxide (Ettwig et al., 2010), in the absence of environmental O2; the generated oxygen is

then consumed along with methane by membrane-bound pMMO through the aerobic pathway. Because of

the biochemical homology of the bond-breaking enzymatic step to that of aerobic methanotrophy, it is not

unreasonable to expect that nitrite-dependent anaerobic methane oxidation would produce isotopic and

clumped isotopologue patterns similar to those observed in this study. Indeed, carbon and hydrogen isotope

fractionation factors for this process, as determined from culture experiments (Rasigraf et al., 2012), correlate
in a manner that overlaps with aerobic methane oxidation (Table 4.2), lending support to this hypothesis.

4.5 CONCLUSIONS

Experimental investigation of the abundance of four methane stable isotopologues (12CH4,
13CH4,

12CH3D,

and a clumped isotopologue, 13CH3D) during oxidation of methane with O2 byMethylococcus capsulatus
(Bath) grown at 30 and 37 °C indicates that ∆13CH3D values of residual methane decrease systematically over

the course of reaction in batch culture. The isotopologue fractionation factor for 13CH3D/
12CH4 is closely
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approximated by the product of those for 13CH4/
12CH4 and

12CH3D/
12CH4. Based on the isotopologue data,

no significant degree of re-equilibration of C–H bonds in methane was detected.

Models were developed for simple scenarios involving variable fluxes of methane removed due to

advection and oxidation. In open systems operating at steady state, ∆13CH3D values depend on the ratio of

methane removed via different processes, as well as the isotoplogue fractionation factors associated with those

processes, whereas in closed systems, ∆13CH3D values depend also on the fraction of methane remaining.

Qualitative comparisons of model predictions with available environmental ∆13CH3D data indicate that

aerobic methane oxidation has only minor, if any, influence on microbial methane samples reported to date

to carry nonequilibrium ∆13CH3D values. In combination with recent experimental and theoretical work on

clumped isotopologue fractionation associated with other methane sinks, the results of this study provide

necessary constraints for the development of 13CH3D as a tracer of the biogeochemical and atmospheric

cycling of methane.
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Chapter5
Summary and Outlook

The preceding chapters presented a set of data (Fig. 5.1) that shows several insights into the origin and

fate of the methane stable isotopologues in the environment. As of the time of writing, methane clumped

isotoplogue data have appeared in at least a dozen articles (Ono et al., 2014; Stolper et al., 2014a; Stolper et al.,
2014b; Inagaki et al., 2015; Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Lopes et al., 2016; Wang

et al., 2016; Young et al., 2016; Whitehill et al., 2017; Young et al., 2017).
The ∆13CH3D data were shown to be independent of and complementary to δ13C and δD. A case was

built for why hydrogen (or free energy) exerts a major control on ∆13CH3D and D/H of methane; this and

several other controls are shown in Fig. 5.2. And several opportunities for advancement on the technical and

theoretical sides of the problem of methane origin have been highlighted (Fig. 5.3), including:

• refining the calibration at low temperatures (Larson and Hall, 1965; Robertson et al., 1975; Golden
et al., 2001; Naito et al., 2005);

• experiments to retrieve kinetics associated with the breaking and reforming of C–H bonds (Koepp,

1978; Lyon and Hulston, 1984; Reeves et al., 2012);
• construction of numerical models to test hypotheses regarding biophysical controls on isotopologue

abundances.

Through this work, we have also realized that there is much more information to be extracted from

simple gas chemistry and conventional stable isotope data than has perhaps been widely appreciated; or

that has been somewhat overlooked in the rush to develop and deploy new technologies. Measurements

of clumped isotopologues provide more dimensions of data to characterize methane samples, which, as

 6
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Figure 5.1 | Map showing locations of sites at which ∆13CH3D measurements on samples have been published or

presented fromMIT.
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Figure 5.2 | A survey of 13CH3D in the envi-

ronment. This figure is the same as Fig. 2.2,

with the addition of schematic vectors show-

ing basic controls on the isotopic signatures

of CH4, and data from Stolper et al. (2014a).
The position of their data along the x-axis
was calculated from estimated δD of forma-

tion waters, and for the y-axis, ∆18 values were

converted to ∆13CH3D by assuming equilib-

rium and applying the conversion shown in

Fig. C.1A.
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tories begin from a fully-reversible (equilibrium)

linewhose position is determined by assuming δ13C

of DIC or CO2 are 0‰ vs. PDB. (This assumption

is easily changed if, for example CO2 has a higher
13C/12C ratio than PDB.) The underlay in (B) is the

outline of the frequently-used plot fromWhiticar

(1990).

The plot indicates thatmodeled isotopic composi-

tions for the fully-kinetic endmember are enriched

in 13C and depleted in D relative to the equilibrium

endmember. The fully-kinetic endmember is re-

lated to high H2 concentrations (which yield a very

large (negative) ∆rG) (Burke, 1993). Therefore, hy-

drogenotrophic methanogens could produce CH4

with isotopic signatures indistinguishable from

those typically attributed to methylotrophic or ace-

toclastic methanogenesis (Whiticar, 1990; Vinson

et al., 2017). Whether this is true will require eval-

uation by experiments under low H2 conditions

(Valentine et al., 2004; Kawagucci et al., 2014; Oku-
mura et al., 2016) or in vitro (Scheller et al., 2013).
Caveats to this model include (i) the assumed frac-

tionation factors may not approximate reality well,

and (ii) the possibility that the H-addition steps

involved in methanogenesis may be differentially

reversible in nature.

this thesis shows, does provide additional constraints on certain Earth systems. However, instruments to

measure the doubly-substituted isotopologues will likely remain a novelty for the foreseeable future.

I suspect that the most significant advances for our understanding of the origins, transport, and fate of

methane are still yet to come. The biggest steps forward will come with moving away from straightforward

but often restrictive phenomenological representations of legacy data and towards predictive and quantitative

approaches to testing of well-defined and geologically-plausible hypotheses. Isotopologue data will certainly

play a large role in helping narrow the solution space of problems of geochemical nature. Figures 5.4 and 5.5

show some attempts at making such data more easily accessible.
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AppendixA
Abundances of methane isotopologues at the
Potato Hills gas field, southeastern Oklahoma

ABSTRACT

Wells in the Potato Hills region of the Ouachita Mountains, southeastern Oklahoma, produce dry natural

gas from fractured sandstone units of the Pennsylvanian-age Jackfork Group. Previous carbon- and

hydrogen-isotope measurements of the C1–C4 hydrocarbons of these gases revealed that methane is

enriched in 13C and D relative to the C2+ components (Seewald and Whelan, 2005). This pattern of

“isotopic reversal” is commonly-associated with high-maturity gases produced from unconventional

deep-basin and shale reservoirs (e.g., Burruss and Laughrey, 2010; Tilley et al., 2011), and suggests that

gases produced in the Potato Hills may have a deep source. However, because of the structural complexity

of this region, identifying potential source rocks and migration pathways has been difficult.

Here, we report additional constraints from tunable infrared laser direct-absorption spectroscopy

analyses (see Ono et al., 2014) of the abundance of 13CH3D (a methane “clumped” isotopologue) in

natural gas from the Potato Hills field. The measured isotopic signatures are similar across five different

wells drilled to 1.8–2.3 km depth, suggesting both a common source for the methane in these gas samples,

and preservation of the C–H bond across this >50 km2 reservoir system.

Our measurements suggest an apparent 13C–D isotopic temperature of ~150 ± 30 °C for methane

from the Potato Hills field. Application of a model for isotopic exchange suggests that migration of

thermogenic gases generated at temperatures below 200 °C should not result in any detectable reordering

of the C–H bonds in methane. We discuss uncertainties in the model calibration and implications for the

preservation of clumped isotopic signatures in methane. Results are further interpreted in the context

of the regional geology to highlight potential implications for natural gas occurrences in the Ouachita

overthrust belt and beyond.

Preliminary data from this chapter were presented in a talk at the 24th Annual V.M. Goldschmidt Conference in

Sacramento, California, USA, June 2014.

This work was done in collaboration with Jeff Seewald (and indirectly, Jean Whelan) of WHOI with oversight from

Shuhei Ono.
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A.1 INTRODUCTION

The subject of this study is produced gas sampled from the Potato Hills gas field in southeastern Okla-

homa. The Potato Hills is located in a structurally complex region of the Ouachita Mountains within the

frontal/central thrust belt (Fig. A.1).1 Wells in the Potato Hills gas field produce from repeated (subthrusted)

intervals of the fractured and porous sandstones of the Pennsylvanian-age Jackfork Group (Fig. A.2). The

field was discovered in the 1960s, but produced little gas and was soon abandoned. Several decades later, The

GHK Companies realized the Jackfork play concept and established several dozen wells in the area beginning

in 1997. The Potato Hills is one of the most significant recent conventional gas discoveries in Oklahoma

(Boyd, 2005), and has produced >300 BCF (~50 MMBOE) of gas.

Major tectonism and mountain building coincided with the collision of the South American Plate with

the North American continent (Laurentia) during the late Pennsylvanian and early Permian (ca. 300 Ma, the

Ouachita orogeny) (Hatcher et al., 1989). During the approach and leadup to the eventual collision, large

deposits of Silurian to Mississippian-age sediments derived from North American rivers filled the ocean

basin between the two continents. In the Ouachitas, these sediments are known as the Arkansas Novaculite,

an organic-rich (up to 4% TOC in drill cores, and possibly up to 15% originally), mixed shale-chert unit.2

While no data from source rocks in the Potato Hills could be located, the Arkansas Novaculite elsewhere in

the Ouachitas contains predominantly gas-prone Type III kerogen (Curiale, 1981).

Gases from the Potato Hills are dry (>95% C1/∑C1–4) and express a partially-reversed isotopic trend in

which the CH4 is enriched in 13C and D relative to C2 and higher hydrocarbon gases (Seewald and Whelan,

2005). This partial reversal is observed in all wells studied, with the exception of the deep (6.3 km) Mary

2-34 well which produces gases with reversed δ13C but normal δD (i.e., δD of CH4 < δD of C2) (Seewald and

Whelan, unpublished data). Notably, the δD signature of CH4 is highly uniform amongst all studied gases

(see Table A.1 for a partial listing), including the deep well.

These gases were studied for two reasons: (i) they were samples of opportunity that were associated

with an already-existing dataset comprising analyses of the chemical and isotopic composition of produced

gases, concentrations of aliphatic acids in coproduced formation waters, and cultivation-based and culture-

independent microbiological data (Seewald, Whelan, and Sievert, unpublished data); and (ii) to test if

migrated thermogenic gases that accumulated in low temperature reservoir units and were retained over

timescales of millions of years would record primary clumped isotopologue signals.

A.2 METHODS

A.2.1 Samples

Samples were retrieved from a dusty Pelican case underneath a desk in Fye 142A at the Woods Hole Oceano-

graphic Institution in October of 2013.

The studied samples were collected from the wellhead in the early 2000’s by GHK in stainless steel

cylinders equipped with high-pressure valves, and furnished to J. Seewald and J. Whelan for chemical and

isotopic analyses. Data on carbon and hydrogen isotopes of CH4 obtained circa 2003 at WHOI (Seewald

and Whelan, 2005) are shown in Table A.1.

1
The name is apparently due to the resemblance of the unevenly-eroded outcrops of the fractured Bigfork Chert (late Ordovician)

to the knobby mounds of a potato garden: http://www.ghkco.com/contact/index.php?page=Potato_Hills
2

The perhaps more familiar Woodford Shale (to the north of the Ouachitas, in the Arkoma Basin) is syndepositional to the Arkansas

Novaculite. The Arkansas Novaculite is the basinward extension of the Woodford Fm. (Houseknecht et al., 2014).
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Figure A.3 | Histogram of log-delta values (referenced to an arbitrary set of isotopologue ratios) for CH4 purified

from the Hicks #1 cylinder, measured on the TILDAS during a single sample run (~10 hours). Here, n represents

the number of measurement cycles made during this run; in each measurement cycle, samples are measured for 100

seconds, and each sample measurement is bracketed by measurements on the reference gas.

There was no evidence of compromised sample integrity when the samples were examined in 2013–2014.

All gas cylinders studied contained gas at high pressure, and analyses of δ13C and δD in 2014 yielded data

that matched those obtained ten years earlier (Table A.1).

One sample (Mary 2-34) was later mistakenly shipped to UCLA, where it resided for a year. The missing

sample was located and returned to MIT with the help of I.E. Kohl. All samples are now safely back at WHOI.

A.2.2 Analysis

These samples were the first “real” samples ever measured for clumped isotopologues of methane at MIT. At

the time these data were obtained, the Methane PrepLine (Appendix C) had not yet been built, so sample

purification was done manually in a cryogenic vacuum line interfaced with a gas chromatograph supplied

with helium carrier and a handmade packed column held near ambient temperature.

Analyses of the methane clumped isotopologue 13CH3D were made with a prototype tunable infrared

laser direct absorption spectrometer (TILDAS) developed by Aerodyne Research, Inc. (Billerica, MA) and

housed in the Hardcore Stable Isotope Laboratory at MIT. Analytical procedures are documented in Ono

et al. (2014). A histogram of isotopologue data obtained on multiple measurement cycles (n = 36) for one

sample is shown in Fig. A.3.
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Table A.1 | Isotopic composition of methane from the Potato Hills gas field. Data taken at WHOI soon after sampling

(Seewald and Whelan, 2005) are compared with data obtained on the same cylinders measured at MIT (via TILDAS)

one decade later. All isotope values are in permil (‰).

WHOI (c. 2003) MIT (January 2014)

Well Name TD (km) Tres (°C) δ13C δD δ13C δD ∆13CH3D
a N

Cedar Creek 1.78 45 −38.1 −134 −38.4 −136.8 3.10 ± 0.25 2

Stevens #1 1.86 50 −36.9 −139 −38.1 −136.6 3.08 ± 0.37 3

Hicks #1 2.29 51 −37.0 −135 −38.2 −136.8 3.17 ± 0.20 3

Koopmans #1 2.20 53 −39.5 −133 −40.9 −135.3 3.30 ± 0.12 5

Mary 2-34 6.29 126 −31.2 −136 −32.5 −139.7 2.94 ± 0.20 5

TD, total depth; Tres, reservoir temperature; and N, number of independent replicate purifications and

measurements.
a The uncertainty on the ∆13CH3D incorporates propagated 95% confidence intervals calculated assum-

ing a normal distribution, and also includes the error on ∆13CH3D of AL1.

A.3 RESULTS & DISCUSSION

A.3.1 Preservation potential of clumped isotopologue temperatures in migrated thermogenic
gases

Drilled depths and measured reservoir temperatures shown in Table A.1 were obtained from public records

on the website of the Oklahoma Corporation Commission. Comparison of bottom-hole temperatures to

depth for 16 wells in this area (data from GHK, not shown) suggests a local geothermal gradient between 15

and 25 °C per kilometer, consistent with the reported reservoir temperatures and known depths of those

reservoir intervals (Fig. A.2).

The ∆13CH3D values of gases from all wells were identical within error, although the deeper Mary

2-34 sample may carry a slightly lower value (by ~0.2‰). Samples yielded geologically-realistic apparent

equilibrium temperatures of ~150 ± 30 °C (Fig. A.4).

To test if these signals might be primary (i.e., if ∆13CH3D values are the same as those these gases

had at the time of their expulsion from the source rock), we modeled the kinetics of hydrogen isotopic

exchange (Fig. A.4). This model uses the rate of CH4–H2O isotopic exchange reported by Koepp (1978), and

assumes that rates scale with temperature according to the Arrhenius equation. These rates are subject to

large uncertainty; this is discussed in more depth in Chapter 3 and in reviews by Sessions et al. (2004) and
Schimmelmann et al. (2006). Furthermore, the model assumes that ∆13CH3D values will not reset unless

CH4 exchanges with H2O—that is, homogenous isotope exchange is implicitly excluded as a mechanism for

isotopologue reordering. It is unknown if mineral surfaces encountered by the hydrocarbons may serve as

catalysts for homogenous isotope exchange (Shipp et al., 2014); this would lower the activation energy and

allow isotopic reordering at lower temperatures than indicated.

Migration from source to reservoir is generally thought to be fast relative to the process of petroleum

generation in the source rock (England et al., 1991). A conservative estimate of rates of cooling during fluid

migration was applied (10 °C per Myr). The model results suggest that isotopic reordering of C–H bonds

within CH4 is sluggish or non-detectable on timescales relevant to petroleum migration at temperatures

below 200 °C (Fig. A.4). This suggests that if methane generation occurred in the source rocks at <200 °C, the

signature the methane carried at generation would have been preserved during its residence in the shallower

traps. The deeper traps may have exceeded this temperature, however (see § A.3.2). The uniformity of

δD but variation in δ13C with depth indicates that hydrogen exchange has occurred, either by CH4–H2O
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Figure A.4 | Model of migrating gases. The colored points on the model curves represent initial compositions of

natural gases that were generated at 350 Ma at temperatures from 100 to 250 °C. The gases were assumed to be carrying

∆13CH3D values equal to those expected for equilibrium at these starting temperatures. These model gases then

were cooled at a rate of 10 °C per Myr until 330 Ma, at which cooling ceased. Curves show the predicted clumped

isotopologue compositions of gases (x-axis) with temperature (y-axis). Clumped isotopologue reordering was treated

as a first-order reaction obeying the Arrhenius equation, with pre-exponential factor 6.1 × 109 s−1 and activation energy

209 kJ mol−1 (estimated from the data of Koepp, 1978). Data from Table A.1 are shown for comparison. The equilibrium

curve is that of Wang et al. (2015), for which the equation is listed in Appendix C (Eqn. C.2).
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directly, or more likely, between precursor kerogen and water (Clayton, 2003). Supporting this is evidence

that the Arkansas Novaculite in wells in the vicinity of the Potato Hills may have reached very high maturities

(vitrinite reflectance >4% Ro) (Guthrie et al., 1986).

A.3.2 C & H isotopes and the filling or fate of fluids in the Potato Hills reservoirs

With the exception of the deep well (Mary 2-34), all δ13C values for methane are quite homogeneous at

around −38‰. The methane fromMary 2-34 is characterized by a distinctly 13C-enriched value of −32‰,

whereas δD is nearly identical to those of the wells which produce from the shallower reservoir interval.

Because δ13C values of methane tend to increase with increasing thermal maturity (Hunt, 1996), the

marked 13C-enrichment in theMary 2-34 sample suggests that the deeper reservoir interval was filled by gases

that were, on average, generated at higher temperatures or at a later stage than the gases which accumulated

and were retained in the shallower structural traps. Several scenarios are possible: (i) the shallower trap
filled first, followed later by charging of the deeper trap by more mature gases; (ii) charging of the deeper
trap occurred first with enough gas to fill the deeper reservoir, and spilled over such that the shallower unit

received a vicarious, 13C-depleted charge; or (iii) C2+ gases in the deeper reservoir have experienced thermal

breakdown or stepwise oxidation such that the originally 13C-depleted signature of CH4 has been diluted by

heavier carbon-isotope signals derived from C2+.

Interpretations of mapped and extrapolated fault geometries suggest that thrusting in the frontal and

central thrust belts of the Ouachitas occurred in a break-forward style (Miser, 1929; Cemen et al., 2002).
This implies that crustal shortening, accommodated by development of the imbricate thrust sheet, was

characterized by the formation of new thrusts underneath older thrusts as the units in the hanging wall

moved forward along the detachment (Boyer and Elliott, 1982; Shaw et al., 1999). If break-forward thrusting

was responsible for the development of the structural traps of the Potato Hills field, the first scenario may

well be possible.

No information is available to evaluate the second scenario (fill-to-spill and tertiary migration).

The third scenario is supported by observations of high concentrations (tens of millimolar) of acetic acid

in reservoirs of the Potato Hills field (Seewald and Whelan, unpublished data). Such high concentrations

of short-chain carboxylic acids are not atypical of oilfield waters (Kharaka et al., 1973; Willey et al., 1975;
Carothers and Kharaka, 1978; Seewald, 2003), and may reflect stepwise oxidation of C2+ alkanes to carboxylic

acids during residence of the hydrocarbon fluids in the deep reservoirs (Shock, 1988; Seewald, 2001b).

Considering that temperatures in the lower reservoir exceed 120 °C currently, and were likely much higher

in the past given that several kilometers of overburden may have eroded since the Permian (Godo et al.,
2011), decomposition of C2+ alkanes at depth may also explain features of the isotopic reversals observed

(Burruss and Laughrey, 2010; Tilley et al., 2011; Zumberge et al., 2012; Tilley and Muehlenbachs, 2013).
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AppendixB
Incorporation of water-derived hydrogen into methane
during artificial maturation of kerogen under
hydrothermal conditions

ABSTRACT

To investigate the origin of H in hydrocarbons, particularly methane, we reacted a sample of organic-rich

Eagle Ford shale with D2Ounder hydrothermal conditions in a flexible Au-Ti cell hydrothermal apparatus

in a water:rock ratio of approximately 5:1. Temperatures were increased from 200 to 350 °C over the

course of one month, maintaining pressure at 350 bar, and the concentrations of aqueous species and

methane isotopologues produced were quantified. Production of H2, CO2, alkanes, and alkenes was

observed. Methane formed during the early stages of the experiment at 200 °C was primarily CH4 with

some CH3D, whereas at higher temperatures, increasing proportions of deuterated isotopologues were

produced, such that near the end of the experiment, the concentration of CD4 exceeded that of all other

isotopologues combined. These results suggest that competition between rates of kerogen-water isotopic

exchange and natural gas generation may govern the D/H ratio of thermogenic gases.

This appendix contains preliminary results from experimental work conducted in collaboration with Jeff Seewald,

Eoghan Reeves, and Sean Sylva at WHOI with input from Shuhei Ono.
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B.1 INTRODUCTION

Controls on δDvalues of thermogenic natural gases are often attributed to kinetically-controlled fractionation

during pyrolysis of kerogen or oils. There are now several studies which have investigated D/H ratios of

methane and other hydrocarbons as a function of maturity (Sackett, 1978; Berner et al., 1995; Sackett and
Conkright, 1997; Tang et al., 2005; Ni et al., 2011). However, kinetic isotope effects involving hydrogen
addition or abstraction are often large and by themselves do not explain the geologically-reasonable apparent

equilibrium temperatures of ~150 to 220 °C obtained for reservoir gases that have been studied for their

clumped isotopologue compositions (Stolper et al., 2014a; Stolper et al., 2015; Wang et al., 2015; Young et al.,
2017). There is also evidence that δD values of CH4 approach values expected for isotopic equilibrium

between CH4 and H2O in formation waters at temperatures characterizing reservoirs and/or source rocks

(~150 to 250 °C) (Clayton, 2003; Wang et al., 2015), although findings of insignificant hydrogen exchange

occurring under these conditions also exist (Yeh and Epstein, 1981). In order for methane samples to have

approached or attained equilibrium values of ∆13CH3D and ∆12CH2D2, there must be a pathway by which

either (i) isotopes can be exchanged amongst methane isotopologues alone, (ii) methane isotopologues

exchange hydrogen with water or organic molecules, or (iii) methane isotopologues are derived from methyl

moieties which contain C–H bonds that have pre-exchanged with water prior to forming methane (Hoering,

1984; Smith et al., 1985; Schimmelmann et al., 1999; Lis et al., 2006; Schimmelmann et al., 2006).
Here, we study the origin of C–H bonds in thermogenic methane by heating kerogen in the presence of

D2O, and examining the degree of deuteration in the generated methane. This experiment is conceptually

very similar to those conducted by Hoering (1984), Lewan (1997), and Schimmelmann et al. (2001). However,
none of these workers quantified the extent of deuteration in the produced natural gases, though Lewan

(1997) mentioned that methane formed in his experiments contained deuterium.

B.2 METHODS

B.2.1 Experimental methods

Experiments were conducted in a gold-titanium reaction cell housed within a flexible cell hydrothermal

apparatus (Seyfried et al., 1987) at WHOI. The reaction cell was pre-treated prior to loading by an overnight

soak in acid.

A sample of Eagle Ford shale from Uvalde County, Texas, USA was used as the source material for this

experiment. The sample was kindly provided to J. Seewald by Keith F. M. Thompson (PetroSurveys, Inc.),

and was powdered to <250 µm and Soxhlet-extracted (by Carl Johnson, WHOI). After extraction, the rock

contained about 11% total carbon, about half of which is acid-dissolvable carbonate (Table B.1). The reaction

cell was loaded with 10.03 grams of the Soxhlet-extracted powder.

The starting fluid in Experiment EF-D2O-1 (“DIPPIE-1”) was heavy water (D2O, 99% purity, Cambridge

Isotope Laboratories, Inc.) containing some NaCl (0.497 mol/kg). The added NaCl allows for detection of

dilution of the fluid by deionized water from the pressure vessel in the case of a leak in the reaction cell. The

reaction cell was loaded with 55.03 g of this starting fluid.

B.2.2 Analytical methods

To monitor the fluid composition and the extent of deuteration, samples aliquots of fluid were withdrawn

through the capillary exit tube into gastight glass/PTFE syringes. Immediately prior to a sampling event, a

small amount (~0.5 g) of fluid was removed and discarded in order to flush the exit tube of any residues.

The concentration of molecular hydrogen (H2) was determined after headspace extraction using a gas

chromatograph supplied with nitrogen carrier gas, and equipped with a molecular sieve 5Å column and
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B.3. Results & Discussion

(wt%) UNEX EX* DECA

C 12.1 11.0 6.23

H 0.38 0.25 1.24

N 0.18 0.17 0.74

S 0.37 <0.2 2.3

* Used in the experiment.

Table B.1 | Elemental analysis of

Eagle Ford shale powder that was

either untreated (UNEX), Soxhlet-

extracted (EX), or extracted + de-

carbonated (DECA). Data from

C. Johnson, WHOI, 1996.

thermal conductivity detector. Analytical reproducibility of H2 data is ±10% or better (2s), however, accuracy
of reported concentrations is currently unknown, because the relative response of H2 and D2 (likely to be

the main form of molecular hydrogen) in the GC-TCD has not yet been determined. Residual liquid after

headspace extraction was diluted with MilliQ water and saved for analysis of major cations and anions,

or stored with dichloromethane in the fridge in a screw capped vial for analysis of non-volatile organic

compounds.

Concentrations of total dissolved inorganic carbon (∑CO2) and C1 to C6 alkanes and alkenes were

determined using a purge-and-trap cryofocusing device coupled to a gas chromatograph equipped with a

Porapak Q column and serially-connected thermal conductivity and flame ionization detectors. Analytical

procedures were as described in Reeves et al. (2012). Analytical reproducibility on duplicate samples was

±5% or better (2s). The C5 and C6 compounds could not be quantified accurately due to their semi-volatile

nature; however, C5 and C6 were detected at all sampling points.

At each sampling, a separate ~1 to 2 ml aliquot was injected directly into a pre-weighed, evacuated serum

vial capped with boiled blue butyl rubber stoppers, for analysis of the extent of deuteration of methane.

A Hewlett-Packard (HP) 6890 gas chromatography-mass spectrometry (GC-MS) system equipped with a

5Å molecular sieve column (HP-PLOT 30 m × 0.32 mm × 12.0 µm) and HP 5973 mass selective detector

was used to determine the amount of deuteration in CH4. Ion currents were monitored at integral masses

betweenm/z 10 and 50. Extracted ion currents were quantified atm/z 14 through 23 for methane. Expected

fragmentation patterns of each of the methane-d isotopologues were determined by analysis of commercial

synthetic standards (>98% purity, Cambridge Isotope Laboratories, Inc.).

B.3 RESULTS & DISCUSSION

B.3.1 Concentrations of aqueous species

Measured concentrations of aqueous species are shown in Fig. B.1. Concentrations of H2 increased from

undetectable (<10 µmol/kg) to up to 0.8 mmol/kg at the end of the experiment. Increasing concentrations

of H2 within temperature stages of the experiment suggests that generation of petroleum, as opposed to

a mineral redox buffer, is influencing the H2 concentration. H2 increased much more slowly during the

>300 °C stages compared to heating at 300 °C and below.

The concentration of ∑CO2 increased during the early stages of the experiment, and leveled off at

~50 mmol/kg at 350 °C. This might indicate that carbonate reached saturation and began to precipitate

(Seewald et al., 1998); to verify this, measurements of major cations are required. Production of CO2 as the

most abundant product of hydrothermal alteration of kerogen is also consistent with prior experimental

work (Seewald, 2003). Alternatively, carbonate could have been released from the rock as it had not been

decalcified prior to heating.

Concentrations of methane increased at all time steps, as did concentrations of detected n-alkanes.
Except for the beginning of the experiment, molar concentrations of C1 and∑C2–4 were very similar and

increased in near lock step.
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B.3.1. Concentrations of aqueous species
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Appendix B. Kerogen + D2O experiment

Figure B.3 | Estimated

relative and absolute

abundances of methane

isotopologues. Concen-

trations less than zero

are an artifact of uncer-

tainty in standardization

and may potentially be

corrected by applying

algorithms to account

for contributions of

fragment ions to peaks

in the lower range of

m/z. Note the log scale

on the y-axis in the

bottom panel.
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B.3.2 Production of deuterated methane

The relative abundance of methane-d isotopologues was quantified by GC-MS for all samples except the one

from timepoint #1, for which no methane peaks of usable size could be obtained (Fig. B.2).

Methane formed during the early stages of the experiment at 200 °C was primarily CH4 with some CH3D,

whereas at higher temperatures, the isotopologues produced consist almost exclusively of CD4, CH3D, and

CH2D2 (Fig. B.3). These results suggest that at relatively lower temperatures of ~200 °C, the rate of methane

generation approaches or exceeds the rate of D/H exchange between water and kerogen, whereas at higher

temperatures, extensive D/H exchange between kerogen (or oils, if they are also precursors of methane) and

water occurs prior to methane generation. CD4 became the dominant methane species at temperatures of

300 °C and above, suggesting that more than 50% of all labile, methane-generating sites on kerogen were fully

deuterated. Alternatively, the dominance of CD4 might be explained by direct CH4–H2O isotopic exchange

occurring after the generation of primarily non-deuterated methane. This is unlikely given the sluggish pace

at which D/H exchange occurs for methane (Reeves et al., 2012). Experiments in which normal water is

heated in the presence of CD4 while the D/H of water is monitored may yield a more sensitive determination

of the exchange rate constant for CH4–H2O.

Production of CH4 at the beginning of the experimenst indicates that the “capping” hydrogen was derived
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Table B.2 | Concentration of aqueous species during Experiment EF-D2O-1, heating of Soxhlet-extracted Eagle Ford

shale at 200 to 350 °C and 350 bar in the presence of saline D2O fluid.

Sample Time H2 CH4 ∑CO2
C1/C2–4

pD

# (h) (µmol/kg) (µmol/kg) (mmol/kg) (25 °C)

Experiment begun with 52.6 g fluid at temperature of 200 °C
1 19 BDL (<10) 1.2 4.8 0.11

2 164 BDL (<10) 3.8 10.8 0.37

Temperature raised to 300 °C
3 191 773 87 21.9 1.00

4 284 183 235 45.8 0.86

5 427 290 396 65.5 0.86

Injected ~18.3 g starting fluid and raised temperature to 325 °C
6 451 353 319 44.7 0.89

7 598 586 825 45.3 0.85

Raised temperature to 350 °C
8 617 718 1.32 × 103 54.4 0.89

9 836 821 3.47 × 103 51.2 1.00 5.90

a The listed pD value was calculated from pH measured with a glass electrode: pD

= pHmeasured + 0.41 (Glasoe and Long, 1960).

from kerogen or other H-containing species in the rock as opposed to water. Alternatively, the CH4 observed

at the first time point may have been sorbed to a solid phase and leached into the fluid. Production of CH4

and CH3D appeared to cease by midway through the 300 °C stage. Continued (though relatively minor)

production of methane that was not fully-deuterated (CHD3 and CH2D2, Fig. B.3, bottom panel) suggests

that kerogen or oil from which methane was generated did not fully exchange before methane formed.

While examining the total ion and extracted ion chromatograms to quantify the deuteration in CH4, an

unknown and unexpected peak was found eluting immediately following the CH4 and air peaks. This mystery

peak appeared to yield methyl fragments that were also progressively more deuterated with reaction time.

Re-analysis of several samples while scanning a higher mass range suggested that the mystery compound

had stable fragments nearm/z 45 to 50 (depending on degree of deuterium substitution). This was verified

by GC-MS analysis of a commercial isobutane standard (mostly isobutane-d0) which yielded a base peak at

m/z 43. No attempt to quantify the degree of deuteration in isobutane was made.
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AppendixC
Additional methodological details, data, and
site descriptions

This section provides additional, unpublished information regarding methods or field observations that

support the research presented in the preceding chapters.

C.1 EQUILIBRIUM ∆13CH3D VERSUS TEMPERATURE

Figure C.1B shows the calculated values of ln Keq vs. temperature for the reaction:

13
CH4 +

12
CH3D⇌ 13

CH3D +
12
CH4 (C.1)

A good fit to the curve is obtained with the expression:

1000 lnK = (1.68169 × 1014)(
1

T2
)
3

− (1.40754 × 10
10)(

1

T2
)
2

+ (6.72697 × 10
5)(

1

T2
) − 0.28671 (C.2)

where temperature T is in kelvin.

C.2 NOTES ON ANALYTICAL PROCEDURES

C.2.1 Isolation of CH4 using cryofocusing-preparative gas chromatography

Figure C.2 shows a schematic of the methane preparation system used to isolate CH4 for measurement

of ∆13CH3D by TILDAS at MIT from mid-2014 onwards (Inagaki et al., 2015; Wang et al., 2015; Lopes
et al., 2016; Wang et al., 2016; Whitehill et al., 2017). The system consists of a cryotrapping-preparative gas

chromatography system interfaced with a vacuum line and a helium supply. A software interface built using

National Instruments LabVIEW controls all pneumatically- and electronically-actuated valves, pistons for

dewars on cold traps, and heating coils. Operation is mostly automatic and hands-free. Preparation time is

<45 minutes for a typical sample of 1–15 cm3 SATP CH4 and <200 cm3 air. Air blanks in the purified gas are

typically <0.10 cm3 SATP.

The retention time of methane on the PrepLine column depends on the amounts of both CH4 and “air”

(O2, Ar, N2, CO) in the sample, as shown in Fig. C.3.

C.2.2 Correction of non-linearity in isotopologue concentration data

Data retrieved from TDLWintel (Aerodyne Research, Inc., Billerica, Mass.)1 are in the form of number

densities (ND) that the software calculates from line parameters in the HITRAN database (Brown et al., 2013;
Rothman et al., 2013). For all clumped isotopologue data collected in this thesis except those in Appendix A,

1
For a history of the development of TDLWintel for applications with tunable diode and quantum cascade laser instruments, see

Zahniser et al. (1995), Horii et al. (1999), Nelson et al. (2002), and Nelson et al. (2004).
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Figure C.1 | Equilibrium ∆ vs. T curves. (A) Conversion between equilibrium ∆18 values and equilibrium ∆13CH3D

values. Note that conversion of ∆18 to ∆13CH3D can only be done if it is known or can be assumed that methane

isotopologues have attained their equilibriumdistribution at the temperature indicated by both∆13CH3Dand∆12CH2D2.

Nonequilibrium ∆18 values cannot easily be converted to ∆13CH3D, particularly if ∆ < 0 ‰ (anticlumped). (B)
Comparison between equilibrium ∆13CH3D [= ln Keq for the isotope exchange reaction (Eqn. C.1), defined following

Ono et al. (2014) and calculated as in Wang et al. (2015)], and equilibrium ∆18 values from Stolper et al. (2014b).

the following correction scheme was applied. Isotopologue/isotope ratios reported were calculated from the

corrected number densities (NDcorr
6x ).

ND
corr
6x = ND

meas
6x + D6x ⋅ND

meas
61 +H6x ⋅ND

meas
61 ⋅ (1 −

NDmeas
61 /Pmeas

ND
pure

61 /Ptarget
) (C.3)

Here, NDmeas
6x are the number densities returned by TDLWintel in the STR files, Pmeas is the pressure of the

sample in the cell, Ptarget = 1.0383 Torr, and ND
pure

61 (= 3.88 × 106) is the number density of 12CH4 for a sample

of pure methane at the target pressure. Calibrated values for the correction factors D and H are listed in

Table C.1. Note that the D and H here are just variable names, and are not related to deuterium or hydrogen.

Numbering of isotopologues is from HITRAN.

I have found this correction scheme to sufficiently correct the observed non-linearity in δ13CH3D vs.

δ12CH3D over a wide range of δ12CH3D values (from −600 to +400‰ vs. AL1) (the D term), as well as any

air that might make its way into the system (up to 10%) (the H term; the portion enclosed in parentheses

Table C.1 | Correction factors for Eqn. C.3. Val-

ues were determined during 2014–2015. Val-

ues for D were derived from measurements of

methane heated to equilibrium over a catalyst,

and values for H were derived from measure-

ments of methane admixed with different per-

centages of N2 in the TILDAS cell.

# isotopologue D H

61 12CH4 0 0

62 13CH4 0 −0.0033

63 12CH3D 0 −0.0036

64 13CH3D 3.00 × 10−3 −0.0125
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C.2.2. Correction of non-linearity in isotopologue concentration data
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Appendix C. Additional methods and site descriptions

Figure C.3 | Dependence of the retention time

of CH4 (x-axis) on on-column volumes of CH4

(y-axis) and “air” (= O2 + Ar + N2 + CO) on the

PrepLine. The sample is heated off cold trap #2

and injected onto the column between 15 seconds

and 1 minute. Compounds in order of elution

are H2, air, CH4, and CO2 + C2+.
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represents an estimate of the percentage impurity in the methane sample).2 Part of the reason for the

nonlinearity is that the Voigt profile cannot accurately account for the tailing of one or more large 12CH4

peaks that are located immediately outside the wavelength region scanned by the laser.

C.2.3 Calibration of isotopic composition of in-house standards (AL1)

The δ13C and δD values we report have been calibrated relative to PDB and SMOW, respectively, bymeasuring

samples of NGS-1 (also known as NIST SRM 8559 and USGS-A) and NGS-3 (also known as NIST SRM 8561

and USGS-C), which are natural gas standards with published reference values for δ13C and δD, as listed in

§ 2.4.4 (supplementary materials in Wang et al., 2015). Samples of these natural gases were included in a set

of calibration samples distributed by the USGS to various laboratories in the U.S. in July 2014. These samples

were contained in IsoTubes (Isotech Laboratories, Illinois, USA) at pressures of ~3 bar. We subsampled

aliquots of these gases through a septum adapter fitting (available from Isotech) using a 25 ml gastight syringe

(SGE Analytical Science), and introduced the aliquots into our sample preparation system as described

above.

Data shown in this thesis for δ13C, δD, and ∆13CH3D assume that reference gas AL1 has the isotopic

composition −34.5‰, −147.7‰, and +2.41 ± 0.07‰ (95% CI) respectively, consistent with Wang et al. (2015)
and with the values we provided to the UCLA group (Young et al., 2016).3

C.3 MISCELLANEOUS UNPUBLISHED INFORMATION ON SELECTED SITES

This section contains miscellaneous data and ruminations that do not yet have a proper home in the literature.

2
The D term corrects the observation that measured ∆

13
CH3D values are lower than their true values when δD of the sample is lower

than that of the reference gas (and vice versa). The H terms correct an observed elevation in all three δ-values when impurities

(primarily air) are present in the sample (important for the recycling technique used on small samples because air can accumulate

in the sample due to small leaks in the TILDAS inlet system).
3

The values originally reported in Ono et al. (2014) are quite different in δD (by ~20‰) for reasons as yet undetermined. Anecdotal

experience suggests that this is probably related to a historical problem of poorly-anchored δD values for GC-IRMS analyses of

methane within the isotope community, with resultant differences in calibration between the several IRMS labs from which values

for δD of AL1 vs. SMOW were obtained. I favor the revised values listed above for reasons of consistency with the NGS gases and

the new USGS samples.
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C.3.1. Additional field notes and thoughts on selected localities studied by Wang et al. (2015)

C.3.1 Additional field notes and thoughts on selected localities studied by Wang et al. (2015)

C.3.1.1 LowerMystic Lake

The water sample from Lower Mystic Lake shown in Chapter 2 was sampled from the water column at a

depth of 18 mbll, which is below the chemocline. It should be noted that the isotopic composition of pore

waters in Lower Mystic Lake sediments, at the time(s) and depth(s) at which the methane was generated,

may be or have been significantly different than that of the water in the water column. This is because prior

to the implementation of water management practices, Lower Mystic Lake was tidally-influenced, and the

bottom waters were derived from seawater that flowed upriver along the bottom of the Mystic River. Dams

constructed in 1908 and 1966 slowed or stopped the influx of seawater, and initiated a gradual reduction

in the volume of anoxic and sulfidic bottom waters in the lake; the reduction in bottom waters was also

accelerated by intentional removal of bottom waters by pumping and treatment in the 1980s and 1990s (Duval

and Ludlam, 2001; Ludlam and Duval, 2001). Therefore, even though the δD of Lower Mystic Lake water at

18 mbll (−40.6 ± 1.0‰, 1s) was similar to that of Upper Mystic Lake (−39.2 ± 1.8‰, 1s), the Lower Mystic

Lake sediment pore waters may have an isotopic signature that is closer to that of seawater (~0‰). This trend

is observed in other coastal meromictic lakes in which seawater is trapped below the chemocline (Jeffries

et al., 1984). Assuming a value of 0‰ for the associated waters for methane generated in Lower Mystic

Lake sediments would not affect our conclusions; on the contrary, it would suggest that the field of primary

microbial methane could be constrained even more tightly than Fig. 2.2 indicates.

C.3.1.2 CROMO

The water sample from the Coast Range Ophiolite Microbial Observatory (CROMO) for which the δDwater

value is reported in Chapter 2 was collected from the CSWold well. This well is noted in publicly-available

reports on water quality monitoring in the area, but we do not presently have information on the depth(s) at

which the groundwater at CSWold is derived. However, the δD value of the water is consistent with mixing

between deep sedimentary-derived brines and meteoric waters (Peters, 1993).

At CROMO, the δ13C and δD data alone cannot conclusively distinguish between thermogenic, abiogenic,

and microbial origins of the methane. Specifically, the CROMO gases are highly similar in δ13C and δD to

the sample of natural gas from the Utica Shale (Table 2.1 and Fig. 2.1), where the gases are generally inferred

to have been generated by thermogenic processes. The ∆13CH3D values at each field site are very dissimilar,

however, with the Utica Fm. gases having an apparent temperature ~160 °C and the CROMO gases having

apparent temperatures of 42 to 76 °C. Therefore, the clumped isotopic measurement provides information

that is complementary to, and independent of, the bulk δ13C and δD data, a conclusion that is not obvious

from previous studies.

I suggest that at CROMO, the isotopic composition of the gases (δ13C, δD, and ∆13CH3D) is inconsistent

with a significant contribution from thermogenic sources of methane.4 Furthermore, the C1/C2 ratio

(measured using GC-FID) ranged from 360 to 1540 (Table 2.5) for samples of dissolved gases collected from

5 wells (including N-, CSW-, and QV- wells) sampled in July 2014; these C1/C2 ratios are within the range

expected for microbial gases (>100), and outside the range of values typically observed for thermogenic gases

(<100).

If the framework presented in Fig. 2.2 is correct, then a major source of uncertainty in differentiating

between the possible processes of methane generation is the δD of the associated waters from which methane

was produced. Specifically, meteoric water in the vicinity of CROMO generally has lower δD values (−70 to

−50‰) (Peters, 1993; Kendall and Coplen, 2001) than what was measured for water from the CSWold well

4
Note that this is somewhat different from what was written by Wang et al. (2015).
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Appendix C. Additional methods and site descriptions

Table C.2 | Isotopologue data for methane samples from a rice paddy in Sherrill, Arkansas, USA, and the Chimaera

seepage, Tekirova ophiolite, Turkey. Uncertainties reported are 95% confidence intervals. Values for δ13C, δD, and

∆13CH3D are reported relative to PDB, SMOW, and the stochastic distribution, respectively.

Site Sample Name δ13C (‰) δD (‰) ∆13CH3D (‰) T13D (°C)

Sherrill JTB-1-2 −56.40 ± 0.05 −336.47 ± 0.05 −0.47 ± 0.23 a.c.
Chimaera* S8_271949_4034797_12.10.2013 −11.41 ± 0.03 −119.50 ± 0.05 3.19 ± 0.18 141 +13/−12

S4 −11.62 ± 0.10 −119.57 ± 0.10 2.62 ± 0.54 185 +55/−42
S5 −11.37 ± 0.10 −119.42 ± 0.10 2.98 ± 0.43 156 +35/−29
S9 −11.38 ± 0.12 −119.49 ± 0.14 3.32 ± 0.34 133 +23/−21

* Samples from Chimaera were measured more than 6 months apart (May to December 2014). The data appear to be

unaffected by storage or instrumental drift over this period.

(−33‰; Table 2.5). Previous work on natural springs in the vicinity of the McLaughlin mine suggested that

groundwater in this region can be best characterized as a two-component mixture consisting of formation

brines derived from the Great Valley Sequence mixed with variable amounts of low-salinity meteoric water

(Peters, 1993). Parenthetically, I note that the ∆13CH3D-based temperatures for methane at CROMO (42 to

76 °C) would suggest isotopic equilibration with water that has a δD in the range of 0 to +20‰ (Fig. 2.2).

This range is consistent with the δD value (+11‰) of the most saline waters ([Cl−] ~ 580 mmol/kg) sampled

by Peters (1993) from springs in the vicinity of CROMO. The apparent temperatures of 42 to 76 °C for

methane at CROMO are within the accepted temperature limits of life (generally <80 °C, but up to 122 °C for

hyperthermophilic methanogens). Thus, based on the consistency of the observed isotopic signatures with

other geochemical parameters (namely, [H2], Fig. 2.3), I infer a dominantly-microbial origin of the methane

at CROMO originating from deep groundwater below the ophiolite body. Methanogenesis does not appear

to occur to any appreciable extent in the shallow (meteoric) groundwaters. More recent microbiological

work showing a total absence of archaea, including methanogens, from 16S sequences of the CROMO waters

(Twing et al., 2017) appears to support this conclusion.

C.3.2 Methane isotopologue data on assorted samples

C.3.2.1 Rice paddy, Sherrill, Arkansas, USA

A sample of gas was collected by J.T. Bird from a paddy rice field in Sherrill, Arkansas, USA in June of

2014. Bubbles of gas were released by gentle agitation of the submerged sediment, trapped in a funnel, and

transferred to serum bottles containing several milliliters of 1 M NaOH added to inhibit microbial activity.

On the day of collection, air temperature was 93 °F and skies were cloudy. Given that the daily lows had been

steady at 70 °F for five days and the water on the field had been standing for “a good two weeks” (Sherrill

local, via J.T. Bird, pers. comm.), estimated water temperatures are ~75 °F or about 25 °C.

Analysis of methane in the sample (Table C.2) yielded relatively low δ13C and δD values (−56‰ and

−336‰) typical of biologically-produced methane in wetlands. The ∆13CH3D value was anticlumped (ca.

−0.5‰). This is the lowest degree of 13C–D clumping we have observed in any natural methane sample aside

from seep gases at The Cedars.

C.3.2.2 Chimaera seep, Tekirova ophiolite, Turkey

Four samples of gases collected by H. Hoşgörmez from the Chimaera seep (Yanartaş, meaning “flaming

rock”, near the Gulf of Antalya, eastern Mediterranean Sea; also the source of the first Olympic flame) were

sent to us by G. Etiope. Samples arrived in glass vessels equipped with gas-tight stopcocks at both ends.
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C.4. Errata and corrigenda to published articles

Analyses of methane in these samples yielded relatively high bulk δ13C and δD values (−11‰ and −119‰,

Table C.2) consistent with those previously reported for the same site (Hosgörmez, 2007; Hosgormez et al.,
2008; Etiope et al., 2011b). The δ13C values lie outside the typical range of known thermogenic methane

(up to −20‰), and δD values are close to those required for D/H equilibrium with water of SMOW-like

hydrogen-isotope composition at temperatures upwards of ca. 200 °C (Fig. 3.5). The ∆13CH3D data indicated

apparent equilibrium temperatures averaging 153 °C. These temperatures are much higher than the <50 °C

temperatures at which abiotic methane was inferred by Etiope et al. (2011b) to be synthesized here. Recently-

published data obtained by the UCLA group on several other samples taken at Chimaera yielded ∆13CH3D

values (ranging from +3.3 to +3.6‰) in general agreement with ours, as well as ∆12CH2D2 values that are at

or near equilibrium at the same temperatures indicated by ∆13CH3D (Young et al., 2017). These data indicate

that methane carrying clumped isotopologue abundances similar to those of typical thermogenic gases

probably comprises a large fraction of the Chimaera seep gas and that such gases may contribute more to the

seepage flux than was previously suggested.

C.4 ERRATA AND CORRIGENDA TO PUBLISHED ARTICLES

The following mistakes have been found in the two articles published from this thesis.

Wang et al. (2015) (i) In Figure S4, the arrows denoting secondary isotope fractionation were labeled

incorrectly; this is corrected in Fig. 2.8. (ii) Several footnotes in Table S3 were incomplete or incorrectly

labeled; this is fixed in Table 2.3. (iii) Samples from the Powder River Basin were misstated as being

from Wyoming. These samples were actually taken from wellheads located in Montana, near the

border with Wyoming (API well numbers 25-003-22076, 25-003-22192, and 25-003-22074, in order

of appearance in Table 2.1). Also, well “3CA34” was completed in the Cook Coal as stated in the

paper, but produces from the stratigraphically-higher Canyon Coal according to information on the

Montana Board of Oil & Gas Conservation website. Chapter 2 contains the corrected information.

Several typographical errors have also been corrected.

Wang et al. (2016) In Table 2, citations to the Joelsson et al. papers were inadvertently switched. Joelsson
et al. (2015) and Joelsson et al. (2016) should be cited for CH4 + OH and Joelsson et al. (2014) for
CH4 + Cl. Table 4.2 lists the correct references.
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