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Abstract
Offshore energy machines have great potential: higher capacity factors, more available
space, and lower visual impacts than onshore machines. This thesis investigates how com-
bining a wave energy converter (WEC) with a floating wind turbine (FWT) may produce
offshore renewable energy cost savings. Attaching the WEC to the FWT greatly reduces the
WEC’s steel frame, mooring lines, electric transmission lines, and siting/permitting costs,
which may comprise 56% of a standalone WEC’s cost. A 5 MW FWT currently requires
up to 1700 tons of platform steel and 5700 tons of ballast concrete for stabilization in the
ocean. This required material may be reduced if the WEC stabilizes the FWT.

This thesis addresses several challenges to designing a combined FWT-WEC.
First, parameter sweeps for optimizing ocean machine performance are limited by high

dimensionalities and nonlinearities, including power takeoff control and wave viscous forc-
ing, which normally require computationally expensive time-domain simulations. This
thesis develops a statistical linearization approach to rapidly compute machine dynamics
statistics while accounting for nonlinearities in the frequency domain. It is verified that
the statistical linearization method may capture significant dynamics effects that are ne-
glected by the traditional Taylor series linearization approach, while computing the results
approximately 100 times faster than time domain simulations. Using Morison’s equation
for wave viscosity and quasi-steady blade-element/momentum theory for rotor aerodynam-
ics, we find that viscous effects and nonlinear aerodynamics may increase the FWT motion
and tower stress by up to 15% in some wind-sea states compared the the Taylor series
linearized system.

Second, the WEC must stabilize rather than destabilize the FWT. This thesis inves-
tigates the dynamics statistics of different FWT-WEC configurations using a long wave-
length, structurally coupled model. It is shown that simultaneous targeted energy transfer
from both the FWT and waves to the WEC when the WEC and FWT are linked by a tuned
spring is unlikely. That being said, this thesis considers heave-mode oscillating water col-
umn WEC’s that are linked to the FWT platform by 4-bar linkages, so that the FWT and
WEC’s are uncoupled for small heave motions and rigidly coupled in all other degrees of
freedom. It is shown that this configuration allows the WEC to move with a large ampli-
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tude in its energy harvesting degree of freedom, and therefore harvest a significant amount
of power without significantly increasing the FWT motion in the same direction. In the
rigidly-connected modes, the WEC inertial resistance to motion must be greater than the
wave forcing, as these properties are transmitted to the FWT.

Third, the WEC requires power robustness in different sea states. Typical WEC’s re-
quire control schemes to maintain good power performance when the ocean wave dominant
frequency differs from the WEC resonant frequency. This thesis introduces a nonlinearity
into the WEC design that passively increases power adaptability in different sea states.
While the optimized nonlinear WEC requires 57% more steel than the optimized linear
WEC, the nonlinear WEC produces 72% more power on average, resulting in a 3% lower
levelized cost of energy. Further optimization of the nonlinear WEC may find improved
performance.

This thesis determines that attaching a single linear hinged floating spar oscillating wa-
ter column to the FWT reduces the levelized cost of energy from $0.31/kWh for the stan-
dalone system to $0.27/kWh (13%) without changing stress on the FWT tower. Attaching
a single nonlinear hinged floating spar oscillating water column to the FWT reduces the
levelized cost of energy to $0.26/kWh (16%) and reduces the lifetime equivalent fatigue
stress on the FWT tower from 32.4 MPa to 31 MPa (5%). A 6-unit array of the nonlinear
WEC’s encircling the FWT platform may generate an average of 400 kW while reducing
the FWT tower stress by over 50%.

In wave tank experiments, the response statistics of four different combined FWT-WEC
configurations are measured, verifying the FWT-WEC dynamics model.

Thesis Supervisor: Alexander H. Slocum
Title: Pappalardo Professor of Mechanical Engineering

Thesis Supervisor: Themistoklis P. Sapsis
Title: Associate Professor of Mechanical and Ocean Engineering

4



Doctoral Committee

Alexander Slocum, Ph.D.

Thesis Supervisor and Committee Chair

Pappalardo Professor of Mechanical Engineering

Massachusetts Institute of Technology

Themistoklis Sapsis, Ph.D.

Thesis Supervisor

Associate Professor of Mechanical and Ocean Engineering

Massachusetts Institute of Technology

Paul Sclavounos, Ph.D.

Professor of Mechanical Engineering and Naval Architecture

Massachusetts Institute of Technology

5



6



Acknowledgments

First and foremost, I would like to thank my advisors Dr. Alex Slocum and Dr. Themis

Sapsis for all their guidance and support that allowed my Ph.D. to become a reality. Alex’s

positive attitude, never-settling determination, and seamless work-life balance are inspira-

tional. Themis’s willingness to help work through research challenges, his vast knowledge

on all things nonlinear and stochastic, and his calm approach are equally appreciated and

inspirational. I feel very fortunate to have learned from them for 5 years. I’d like to thank

my third committee member Dr. Paul Sclavounos for his valuable feedback and construc-

tive advice.

It takes a village to get a Ph.D. Many members of the community helped me achieve

my goals. My PERG labmates provided many design reviews and experiment advice- es-

pecially Maha Haji, Kevin Simon, David Taylor, Douglas Jonart, Nathan Mills, Nevan

Hanumara, and Folkers Rojas. Amanda Hamlet, Dalia Leibowitz, Hilary Johnson, and

Stefhan Van Der Kemp all volunteered to be my safety buddy in the wave tank. Stefhan

walked through a blizzard so he could be there. My SAND labmates Han Kyul Joo and

Mustafa Mohamed provided encouragement and helped me overcome several simulation

challenges. The MIT Tow tank lab members Dixia Fan and Jacob Izraelevitz trained me

to use the wave tank and allowed me to use the wave tank amid a very in-demand tank

schedule. The undergraduate researcher Wesley Cox was very helpful fabricating and test-

ing the nonlinear load cells for my Ph.D. side-project. The undergraduate researcher Justin

Carrus made significant contributions designing the model-scale floating wind turbine, fab-

ricating it, and configuring the accelerometers used in the experiment. Ken Stone, Hayami

Arakawa, and Mark Belanger in the machine shops provided countless assistance and cre-

ative solutions for how to fabricate the prototypes. Irina Gaziyeva, Barbara Smith, Deborah

Alibrandi, and Leslie Regan provided critical administrative support.

I’m very thankful for the financial support I received from the National Science Foun-

dation Graduate Research Fellowship, the MIT Energy Initiative grant Energy harvesting

from broad-band vibrational sources by mimicking turbulent energy transfer mechanisms,

the Naval Engineering Education Research Center grant No. 3002883706, the MIT Energy

7



Initiative S.D. Bechtel, Jr. Foundation grant, and the generous support from the Pappalardo

and Martin Family fellowships.

I’m also very thankful for having great advisors at Cornell who mentored me as I

learned how to do research and applied to grad school; Dr. Francis Moon, Dr. Timothy

Bond, and Dr. Richard Rand.

My MIT friends Deepak Subramani, William Li, and Raghav Aggarwal turned many

Friday nights into great stress relievers and fun times. I’ve really enjoyed our adventures in

Boston.

I feel extremely fortunate to have been given the opportunity to study at MIT. I made it

here by standing on the shoulders of everyone who worked hard before me, especially my

parents who raised me. My Mom and Dad provided countless emotional support, encour-

agement, the occasional care package, and a lot of good times as we tackled the nuances

of wedding planning. Some of my happiest work breaks have been phone calls with my

Grandma Phyllis. All of my other relatives have also been very supportive.

Hannah and Dan provided much serious support and comic relief throughout this expe-

rience, especially during our occasional Sibling Night. Katie Aston is like a sister to me,

helping me in so many ways. I look forward to continuing to experience countless fun and

important events together.

Sam, the love of my life, has kept me going during this 5-year marathon; providing

logistic support (e.g. being my safety buddy in the wave tank for days on end), advice,

emotional support, and bringing me happiness every day. This thesis is dedicated to my

family.

8



Contents

1 Introduction 23

1.1 Survey of Wind and Wave Resources and Grid Integration Design Challenges 24

1.2 Survey of Floating Wind Turbines . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Design Challenges of Floating Wind Turbines . . . . . . . . . . . . 28

1.3 Survey of Wave Energy Converters . . . . . . . . . . . . . . . . . . . . . . 31

1.3.1 Design Challenges for Wave Energy Converters . . . . . . . . . . . 34

1.4 Survey of Combined Floating Wind Turbine- Wave Energy Converters and

Their Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Summary of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 Fundamental Contributions . . . . . . . . . . . . . . . . . . . . . . 36

2 Linear Dynamics Model for Coupled FWT-WECs 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Wave Elevation and Wind Modeling . . . . . . . . . . . . . . . . . . . . . 45

2.3 Linear Floating Wind Turbine Model . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Reduced order modeling of the tower bending dynamics . . . . . . 49

2.4 Linear Wave Energy Converters . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 Internal Tuned Mass Damper . . . . . . . . . . . . . . . . . . . . . 61

2.4.2 Parameters for a Spherical WEC Geometry . . . . . . . . . . . . . 63

2.4.3 Parameters for a Spar-like WEC Geometry . . . . . . . . . . . . . 65

2.4.4 Power Harvested . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4.5 Matrix Components . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Wells Turbine Effective Damping Coefficient Modeling . . . . . . . . . . . 73

9



2.6 Structural Coupling Between Floating Wind Turbines And Wave Energy

Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.6.1 Linkage Rotational Modes . . . . . . . . . . . . . . . . . . . . . . 81

2.6.2 Linkage Translation Modes . . . . . . . . . . . . . . . . . . . . . 83

2.6.3 Rotational Coupling of 2 Linkage System . . . . . . . . . . . . . . 85

2.6.4 Loading on the Links and Junctions . . . . . . . . . . . . . . . . . 86

2.6.5 Connections to the Nacelle . . . . . . . . . . . . . . . . . . . . . . 87

2.6.6 Power Harvested . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.6.7 Simplifications for a WEC and FWT aligned along the x-axis . . . 89

2.7 Platform modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.7.1 Parameters for a submerged cylindrical ballast . . . . . . . . . . . 93

2.7.2 Ideal Wells Turbine in the Spar . . . . . . . . . . . . . . . . . . . . 98

2.8 Final equations of motion matrices . . . . . . . . . . . . . . . . . . . . . . 100

2.9 Response Statistics in Stochastic Forcing . . . . . . . . . . . . . . . . . . . 102

2.9.1 Stress statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3 Statistical Linearization of Nonlinear FWT and WEC Dynamics 107

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2 Derivation of the Statistical Linearization Method . . . . . . . . . . . . . . 110

3.3 Nonlinear Floating Wind Turbine Dynamics . . . . . . . . . . . . . . . . . 114

3.3.1 Viscous wave forcing . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.3.2 Rotor Aerodynamics and Control . . . . . . . . . . . . . . . . . . 118

3.3.3 Mooring Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.3.4 Taylor Series Linearization . . . . . . . . . . . . . . . . . . . . . . 128

3.4 Results for the OC3-Hywind and OC4 semi-submersible Floating Wind

Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.4.1 Response Amplitude Operators . . . . . . . . . . . . . . . . . . . 131

3.4.2 Computed Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 Dynamics of a Wave Energy Converter with Cubic Nonlinear Hydrostatic Stiff-

ness 141

10



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2 Cubic Stiffness Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4 Statistical Linearization of the Cubic Nonlinear Hydrostatic Stiffness . . . . 149

5 Cost Model 151

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Capital Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.1 Structure Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.2 Power Takeoff Costs . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Fixed Charge Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Annual Energy Production . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Annual Operating Expenses . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.6 Final Cost Equation and Uncertainty . . . . . . . . . . . . . . . . . . . . . 157

6 System Optimization Under Stochastic Conditions 159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1 Common constraints for all computations . . . . . . . . . . . . . . 161

6.2 Ideal Hydrokinetic and Mass Inertia Elements Rigidly Attached to FWT . . 162

6.3 Linear Spherical WEC’s With Tuned Spring Coupling to the FWT . . . . . 164

6.3.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4 Heave-Mode Floating Oscillating Water Columns With Varied Coupling to

the FWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.1 Rigidly Attached Oscillating Water Column . . . . . . . . . . . . . 175

6.4.2 Linear Oscillating Water Column Attached by Hinges . . . . . . . 179

6.4.3 Nonlinear Oscillating Water Columns Attached by Hinges . . . . . 182

6.4.4 Oscillating Water Column Comparison . . . . . . . . . . . . . . . 186

6.4.5 Array of Nonlinear Heave-Mode Floating Oscillating Water Columns194

11



7 Wave Tank Experiments 199

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 Model Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2.1 Froude scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2.2 Orifice model for a Wells Turbine . . . . . . . . . . . . . . . . . . 200

7.3 Systems Tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8 Conclusions and Future Work 223

A Floating Wind Turbine Parameters 233

A.1 OC3-Hywind spar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.2 OC4-DeepCwind Semisubmersible . . . . . . . . . . . . . . . . . . . . . . 237

12



List of Figures

1-1 Annual average wind power in the United States, from the National Re-

newable Energy Laboratory Geographic Information System [105]. . . . . . 25

1-2 Annual mean wave power around the world, from Cornett, 2008 [28]. . . . 26

1-3 Annual mean currents around the world, from Lumpkin and Johnson, 2013

[93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1-4 Floating wind turbine platform concepts for varied water depth, image from

Barin-Gould, 2013 [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1-5 Strengths and weaknesses of different FWT platform designs, table from

James and Ros, 2015 [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1-6 Various wave energy converters, from Lopez et al., 2013 [92]. . . . . . . . 31

2-1 Thesis model overview: (blue) components considered, (red) modeling

challenges addressed, (green) modeling simplifications made. . . . . . . . 40

2-2 Floating wind turbines considered in this thesis: (Left) NREL OC3-Hywind

spar, image from [66]; (Right) NREL OC4-DeepCwind semisubmersible,

images from [118, 144]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2-3 Catenary moored spar floating wind turbine with head-on wind and inci-

dent waves. The wind turbine platform has 3 translational and 3 rotational

degrees of freedom. The model allows the tower to bend in its 2 lowest

fore-aft modes and two lowest side-side modes. . . . . . . . . . . . . . . . 50

2-4 Eigenshapes and von-Mises stress trends for the tower’s two lowest fore-

aft bending modes found by ANSYS c○ finite element modal analysis. (a)

Mode 1, u1(z), 0.42 Hz. (b) Mode 2, u2(z), 2.57 Hz. . . . . . . . . . . . . . 53

13



2-5 Illustration of an internal tuned mass damper in the FWT nacelle. . . . . . . 61

2-6 Illustration of a (Left) submerged sphere and (Right) floating sphere; used

as approximations in the WEC model. . . . . . . . . . . . . . . . . . . . . 63

2-7 Illustration of spar-like WEC with air Wells turbine: (Left) side view; (Cen-

ter) Top view with the Wells turbine; (Right) Top view with the air turbine

and turbine duct hidden. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2-8 Experimental data for a Wells turbine with unswept and 30-degree back-

ward swept NACA 0015 and unswept HSIM bladed rotor turbines, without

guide vanes. (a) efficiency, (b) pressure drop, (c) torque versus flow rate

coefficient. From Brito-Melo, Ocean Engineering 2002 [13]. . . . . . . . . 76

2-9 Air Wells turbine coefficients for varied radius and angular velocity. . . . . 77

2-10 Water Wells turbine effective damping coefficients for varied radius and

angular velocity. We assume a ratio of AInlet/ATurbine = 9. . . . . . . . . . . 77

2-11 Illustrations of FWT-WEC links: (a) surge-mode spherical form-factor WEC

placed next to FWT with horizontal links, (b) heave-mode spherical form-

factor WEC, (c) surge-mode spherical form-factor WEC placed in front of

FWT with a vertical link (d) spar with 1 hinge, (e) spar with 2 hinges. . . . 78

2-12 External cylindrical ballast rigidly attached to the FWT. . . . . . . . . . . . 94

2-13 Illustration of the linked FWT and a horizontal tube-like WEC. . . . . . . . 99

2-14 Calculation procedure for response statistics in the frequency domain. . . . 102

3-1 Calculation procedure for response statistics in the frequency domiain with

statistical linearization of the nonlinear terms. . . . . . . . . . . . . . . . . 110

3-2 The effective platform diameter using for computing the viscous loads of

the (Blue) OC3-Hywind spar and (Red) OC4-DeepCwind semisubmersible. 116

3-3 Torque versus speed response of the variable-speed rotor controller. Image

from Jonkman, 2009 [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3-4 Equilibrium values of generator speed, generator torque, generator power,

and blade pitch, among other variables. Image from Jonkman, 2009 [68]. . 120

3-5 NREL-Hywind power coefficient. . . . . . . . . . . . . . . . . . . . . . . 122

14



3-6 NREL-Hywind thrust coefficient. . . . . . . . . . . . . . . . . . . . . . . . 122

3-7 NREL-Hywind torque coefficient. . . . . . . . . . . . . . . . . . . . . . . 123

3-8 NREL-Hywind power coefficient. . . . . . . . . . . . . . . . . . . . . . . 127

3-9 Response amplitude operators computed using Taylor series linearization

and statistical linearization in the frequency domain for white noise wave

excitation, with significant wave height Hs = 0.01 m and wind speed

U = 0m/s. Thick lines: statistically linearized. Thin lines: Taylor series

linearized. Markers: time domain. . . . . . . . . . . . . . . . . . . . . . . 133

3-10 Response amplitude operators computed using Taylor series linearization

and statistical linearization in the frequency domain for white noise wave

excitation, with significant wave height Hs = 1 m and wind speed U =

8m/s. Thick lines: statistically linearized. Thin lines: Taylor series lin-

earized. Markers: time domain. . . . . . . . . . . . . . . . . . . . . . . . . 134

3-11 Response statistics for the OC3 spar and OC4 semisubmersible computed

using Taylor series linearization in the frequency domain, statistical lin-

earization in the frequency domain, and the nonlinear time domain, in a

Bretschneider sea state with Hs = 8 m, Tp = 12.5 s, U = 0 m/s. . . . . . . . 136

3-12 Response statistics for the OC3 spar and OC4 semisubmersible computed

using Taylor series linearization in the frequency domain, statistical lin-

earization in the frequency domain, and the nonlinear time domain, in a

Bretschneider sea state with Hs = 8 m, Tp = 12.5 s, U = 8 m/s. . . . . . . . 137

3-13 Response statistics computed for the OC3 spar and OC4 semisubmersible

using Taylor series linearization and statistical linearization in the frequency

domain over a 22 wind-sea state lifetime off the coast of Eureka, CA. . . . . 138

4-1 Steady state amplitude responses of a single degree of freedom oscillator

with the governing equation, z̈+bż+α
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Chapter 1

Introduction

Economic and climate change pressures have driven the development of renewable energy

technology. In 2015, renewable energy accounted for 64% of all new U.S. electricity ca-

pacity installations [85]. Offshore energy machines benefit from higher capacity factors

and lower visual impacts compared to onshore machines [91].

Wave power is a more predictable, constant, and energy-dense renewable resource com-

pared to wind power, which is highly erratic [12], [30], [49]. Predictability and low varia-

tion are beneficial to electric grid operation, which requires supply-demand matching. The

high energy density of wave power indicates that a smaller (cheaper) device may capture

the same power as a wind device. The energy resource in waves may be as high as 50-

60 kW/m average annually [30]. Despite these promising qualities, electricity from ocean

wave energy converters is currently much more costly than from other sources, with lev-

elized costs of energy ranging from $0.28-$1.00/kWh [15]-[90]. In comparison, on-land

wind power costs an average of $0.07/kWh. Natural gas and coal are as low as $0.05/kWh

[136].

Offshore wind is typically stronger and more constant than onshore wind, giving it the

potential for cheaper, more manageable electricity than onshore wind. Less visibility from

onshore is also a regulatory advantage of offshore wind. Despite these promising qualities,

offshore wind power has levelized costs of energy ranging from $0.19-0.23/kWh (predicted

for floating) [66, 100].

This thesis investigates a combining a floating wind turbine with a wave energy con-
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verter with the overall goal of reducing the cost of energy for both machines.

1.1 Survey of Wind and Wave Resources and Grid Inte-

gration Design Challenges

The U.S. Department of Energy estimates that the United States has currently installed 84

GW capacity of onshore wind farms, and it has the onshore resource potential to reach

11,000 GW. The United States has the resource potential for 4200 GW fixed-bottom off-

shore wind power and an additional 6,600 GW of floating wind power in 50 to 1,000 m

water depths [128].

The maximum theoretical annual power production from wave power is 100-140 GW in

the United States. The maximum theoretical annual power production from ocean currents

is much lower at 5-20 GW [33, 102].

Different locations around the United States and the world are more suitable for differ-

ent forms of ocean resource harvesting. Fig.s 1-1 to 1-3 show the wind, ocean wave, and

current resources around the world.

The western United States coast experiences an annual average of 50 kW/m power flux

from ocean waves while the Northeast United States coast experiences an annual average of

15 kW/m power flux from ocean waves [30]. While Florida’s eastern coast sees an average

power of nearly 3 kW/m from the Gulf Stream ocean current, the rest of the United States

sees less than 4 kW/m current power [29]. While small waves may make the East coast

unsuitable for a wave power device, the combination of small waves and strong winds

make it very suitable for an offshore wind turbine. The West coast has both strong winds

and strong waves. This makes the West coast a suitable location for a combined wave-wind

machine. Both the WEC and FWT would be exposed to a lot of environmental power, and

the WEC could reduce wave loads on a FWT.
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Figure 1-1: Annual average wind power in the United States, from the National Renewable
Energy Laboratory Geographic Information System [105].
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Figure 1-2: Annual mean wave power around the world, from Cornett, 2008 [28].

Figure 1-3: Annual mean currents around the world, from Lumpkin and Johnson, 2013
[93].
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1.2 Survey of Floating Wind Turbines

Fig. 1-4 shows the state of the art in offshore wind turbine platforms [9]. At ocean sites

with depths greater than 50 m, floating wind turbines are more economical than monopile

wind turbines (Myhr et al., 2014; Jonkman, 2010). The platforms are currently designed to

support turbines rated at 5-7 MW [66]. Floating platform design strategy is predominantly

governed by static stability. The strategies to achieve static stability include [16],

1. ballast stabilization by a deep-submerged center of mass (e.g. the OC3-Hywind

spar),

2. taut mooring line stabilization (e.g. the MIT/NREL tension leg platform),

3. buoyancy stabilization by a weighted water plane area (e.g. the ITI Energy Barge).

This thesis focuses on the the NREL/Statoil OC3-Hywind ballast stabilized spar be-

cause of its simplicity and readily-available documentation. This floating platform mass is

7,500 metric tons, with a tapered diameter ranging from 6.5-9.4 m [66].

Europe now has an installed offshore wind capacity of 12,631 MW from 3,589 wind

turbines in 10 countries. In 2016, 88% of the installed offshore wind turbines in Europe

had monopile foundations and 12% had jacket foundations. The average water depth for

these installations was 29 m, and the average distance from shore was 44 km, both slight

increases from 2015 and following the trend of the past decade [109].

The United States installed its first offshore wind farm near Block Island, Rhode Island

in the summer of 2016; 5 6-MW jacket-based wind turbines. There are currently plans for

21 new offshore projects totaling 15,650 MW, in varying stages of progress [5].

A number of demonstration floating wind turbines with scaled-down capacities of 2

MW are currently in operation around the world [63]: the OC3-Hywind spar in Norway,

the WindFloat semisubmersible in Portugal, and the Kabashima hybrid concrete-steel spar

in Japan. Farms with capacities of 12-50 MW are planned for Japan, the United Kingdon,

and France. A 30 MW WindFloat farm with 6-MW turbines is planned for the United

States Pacific coast.
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Fixed-bottom wind farms installed in Europe in 2012 had an average capital cost of

$5385/kW. This cost has been increasing since the year 2000, as farms are placed in deeper

water further offshore [36].

Figure 1-4: Floating wind turbine platform concepts for varied water depth, image from
Barin-Gould, 2013 [9].

1.2.1 Design Challenges of Floating Wind Turbines

Typical floating wind turbines have estimated levelized costs of energy (LCOE) ranging

from $0.12-0.27/kWh (Myhr et al., 2014; Jonkman, 2010), which is significantly higher

than the typical $0.07/kWh for onshore wind power (Tegen et al., 2013). Fig. 1-5, from

The Carbon Trust [63], lists the strengths and weaknesses of the different platforms.

Much of the FWT cost is due to the challenge of platform stabilization in the ocean.

FWT platform motion is undesirable because it complicates the rotor aerodynamics and

control. Pitch and yaw motions cause skewed flow and wind shear. Rapid velocity changes

and rotor-wake interactions cause transitional and turbulent states (Sebastian and Lackner,

2013; Tran and Kim, 2015) [124, 138]. The floating platform must restrain pitch, roll,

and heave motions within acceptable limits for the turbine (Butterfield et al., 2005) [16].

Furthermore, platform motion increases stresses on the blades, rotor shaft, yaw bearing,
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and tower base (Matha, 2009) [96]. It is possible that some FWT platform motion may be

desirable: when properly controlled, increased rotor motion may allow the rotor act as a

wave-motion damper with increased power output, but this idea has yet to be implemented

and tested (Christiansen et al., 2013) [20].

For stabilization, a semi-submersible requires a large steel mass, and sometimes an

active water ballast, both associated with high costs. A tension leg platform has expensive

taut moorings. A spar-buoy is constrained to deep locations and has a complex assembly.

The National Renewable Energy Laboratory (NREL) OC3-Hywind spar 5 MW concept

requires 1700 tons of platform steel and 5700 tons of ballast concrete to support the 285

ton tower and rotor. This large amount of steel contributes to an installed capital cost of

$22.8 million (Myhr et al., 2014; Jonkman, 2010).

Another challenge related to platform stability is floating wind turbine rotor control.

The gains of a standard wind turbine torque-rotational speed controller induce negative

damping on the platform pitch motion. An improved controller needs to stabilize the cou-

pled system while maximizing power collection [121]. One strategy is predictive control

to decrease fatigue loads [121, 122]. Nonlinear model predictive control can reduce tower,

shaft, and blade fatigue; and reduce variation in the power and rotor speed standard de-

viation up to 90% [121]. Model predictive control may be implemented using a LIDAR

preview of wind speeds for the feedforward control.

Many patents have been published regarding floating wind turbine platform stability.

Patents related to passive platform stabilization include,

1. horizontal water entrapment plates for pitch stabilization (US 2011/0037264 Rod-

dier),

2. fin stabilizers (US 2014/0345510 Li),

3. a deep-submerged ballast consisting of rocks exposed to the water to promote drag

(US 2013/0277984 Rozinitsky).

Patents related to realizing platform stabilization via active control include,

1. controlling rotor speed to damp the wave-induced surge, pitch, and yaw motions (US

2012/0098265, Skaare; US 2015/0354532, Nielsen),
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Figure 1-5: Strengths and weaknesses of different FWT platform designs, table from James
and Ros, 2015 [63].
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2. an active water ballast for redistributing mass to minimize pitch (US 2011/0037264

Roddier),

3. adjustment of tension leg platform buoyancy using ballasts (US 2015/0204045 Palo-

mas, US 2015/0044045 Alvarez),

4. underwater propeller thrusters (US 2013/0236309 Rossetti),

5. blade and rotor control to reduce tower vibration during installation (US 2008/0260514

Nielsen).

1.3 Survey of Wave Energy Converters

Figure 1-6: Various wave energy converters, from Lopez et al., 2013 [92].

Unlike the onshore wind industry, the wave energy industry has not converged on any one

general wave energy converter (WEC) design. This is due to the wave industry being in an
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earlier developmental stage than the wind industry, and also because different water depths

and locations (onshore, near-shore, and offshore) are better suited for different designs [39].

General WEC designs can be categorized as overtopping devices, oscillating bodies, and

oscillating water columns [12], [32], [39]. The most common types of WEC’s are shown

in Fig.1-6.

WEC designs are typically designed with smaller capacities than FWT’s. The NREL

reference surge converter is rated for 360 kW and operates at a 0.3 capacity factor. Con-

taining 800 tons of steel and fiberglass, it has an installed capital cost of $4.9 million (Yu

et al., 2015). These properties result in a LCOE of $0.67/kWh. 300 of the WEC’s 800 tons

of steel are for the support frame. While wave power is currently much more expensive

than wind power, waves have higher predictability and less variation than wind, which is

important for electric grid operation (Georgilakis, 2008) [49].

Overtopping devices allow waves to flow into a reservoir and then release the water

back to the sea through turbines. An example is the Wave Dragon. At 260 m wide, with

a reservoir capacity of 5,000 m3, and at a weight of 22,000 metric tons (including ballast),

the device can produce an estimated annual average power of 1.3 MW [84].

Oscillating bodies may generate power in heave, pitch, or surge, and may be floating

or submerged. The commercial-stage Pelamis WEC generates electricity by the relative

motion of four 35-m-long cylindrical segments that are connected by hydraulic cylinders

[30]. Rated at 750 kW with a capacity factor of about 20%, and weighing 700 tons, each

device has an initial capital cost of about $2.4 million and can produce power at a levelized

cost of $0.11-$0.16/kWh, depending on the location’s subsidies and the wave farm size

[31].

Oscillating water column (OWC) devices extract power from the fluid flow in a heaving

or surging column of water and air in a tube or chamber. A self-rectifying Wells turbine

placed in the tube rotates in the same direction regardless of the fluid flow direction. OWC’s

may be fixed near shore or as part of floating buoys [39]. OWC’s are an attractive technol-

ogy because of their simplicity, few moving parts, easy maintenance, and efficient use of

sea space [62].

Queen’s University Belfast and Voith Hydro Wavegen installed the LIMPET (Land In-
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stalled Marine Power Energy Transmitter) in a shoreline rock wall in Islay, Scotland in

2000. The device consists of three 6x6 m tubes inclined at 40o that feed into a 2.6 m diam-

eter counter-rotating Wells turbine with an installed capacity of 500 kW. While the device

collects an annual average pneumatic power of 100 kW, generator inefficiencies reduce the

power sent to the grid to 12 kW [23]. The equipment proved itself to be robust and reliable

after logging over 60,000 grid-connected operating hours in 10 years continuous operation

[62].

In 1996, a pilot OWC plant was built on the shore of the island of Pico, Azores, Por-

tugal. The column has a 12x12 m2 cross-section and the turbine is rated at 560 kW. The

project supplies about 108 kW average power to the island’s electrical grid [22].

Several projects have worked on offshore floating OWC’s. In 1998, the Japan Marine

Science and technology Center installed the Mighty Whale in Gokasho Bay, Japan. The

device measures 50x30x12 m (8 m draft), comprises 1,290 tons steel and weighs 4,380 tons

with ballast water. It is located in water with a depth of 40 m, and its six mooring lines

are designed to withstand typhoon-strength wind and wave forces. Three turbines rated at

30-60 kW each supply electricity to instruments on the device. The Mighty Whale creates

a calm sea space behind it [17], [107].

In 1987, Masuda [95] studied the backward bent duct buoy (BBDB). The BBDB uses

an L-shaped water column that faces away from the incident wave directio. This allows the

device to be deployed in shallower waters and decreases drag. An 18-meter wide, 300 ton

prototype is estimated to produce an annual average power of 53 kW.

In 2010, Oceanlinx installed a 500 kW floating oscillating water column, the Mk3PC,

100 meters off a breakwater in Port Kembla Harbour, Australia. Designed for short-term

testing, adverse weather destroyed the prototype two months after installation. While com-

missioned, the $4.7 million Mk3PC contributed 500 kW power to the electrical grid while

simultaneously desalinating 2,000 L drinking water per day [2], [135].
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1.3.1 Design Challenges for Wave Energy Converters

The main challenge to making wave energy converters (WEC’s) cost effective is increasing

their power efficiency. At a given ocean site, the various sea states throughout the year

have dominant frequencies ranging from about 0.06 Hz for a severe storm to 0.16 Hz for

calm water [1], [15]. The optimal performance of a wave energy converter occurs when

its natural frequency matches the dominant frequency of the ocean wave spectrum [40],

[71]. Therefore, one of the main challenges of wave power devices is power robustness to

changes in the sea state.

One strategy for increasing the system power in various sea states is latching, where the

oscillating WEC is held at its maximum position until the wave has fallen away, and then

the device is held at its minimum position until the wave has risen. Latching is a nonlinear

method for maximizing device power by ensuring that the wave force and WEC velocity

remain in phase [12], [42], [43]. Another strategy for increasing the power robustness is to

vary the system mass because a heavier WEC resonates at a lower frequency and a lighter

WEC resonates at a higher frequency. [45] describes a Bipartite point absorber for which

the oscillating mass can have two values, depending on whether or not a rigid connection

with a fully submerged body is engaged. This strategy is implemented in the Wavebob

prototype [39].

Other optimization strategies control the power takeoff damping [14], [40]. For the

oscillating water column, this can be done by adjusting the Wells turbine rotational speed

[8], [19], [40], electrical impedance, or blade pitch [47]. Another OWC active control

approach is to use an air chamber relief valve, which prevents chamber overpressure and

underpressure, an important variable for turbine efficiency (too high a pressure causes a

severe drop in output power due to turbine stall) [22], [41], [108].

Introducing geometric nonlinearity or multiple degrees of freedom are other robustness

strategies for stochastic excitations [48], [132]. A nonlinear strategy may be used in con-

junction with control methods for optimal robustness. An additional benefit of nonlinear

geometry may be that a conical shaped hull minimizes the risk of slamming [45].
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1.4 Survey of Combined Floating Wind Turbine- Wave

Energy Converters and Their Design Challenges

Several previous studies have considered combined FWT-WEC concepts (Slocum, 2014).

The WindFloat FWT has a three-column semi-submersible platform. Two columns could

both be converted into 10 m diameter oscillating water columns and produce a total of 240

kW, based on tow tank experiments (Aubault et al., 2011) [7]. Muliawan et al. (2013) [7]

consider a theoretical 418 ton, 20 m diameter toroid heave-mode WEC that could encircle

a FWT and produce 350 kW. Kelly (2013) [77] considered a 250-m long V-shaped array

of 32 oscillating water columns that could support a FWT and possibly produce up to 700

kW, based on wave tank experimental measurements. Aubault and Kelly both concluded

that an attached WEC would increase the FWT pitch motion.

The hypothesis of this thesis is that combining FWT’s and WEC’s into one system

can significantly decrease the cost of energy for both systems. 56% of the NREL reference

surge converter capital cost is for the steel frame, mooring lines, electric transmission lines,

and siting/permitting costs, which can be greatly reduced when combined with a FWT. Si-

multaneously, it is important to understand the WEC’s effects on the FWT platform motion

because motion reduction is beneficial while motion increase is harmful [16, 96, 124, 138].

1.5 Summary of this thesis

The goal of this dissertation is to create methods and analysis techniques to help reduce

the cost of wave energy converters (WEC’s) and floating wind turbines (FWT’s). Three

principal strategies for reducing cost are investigated along with challenges to designing a

combined FWT-WEC.

First, parameter sweeps for optimizing ocean machine performance are limited by high

dimensionalities and nonlinearities, including power takeoff control and wave viscous forc-

ing, which normally require computationally expensive time-domain simulations. We de-

velop a statistical linearization approach to rapidly compute machine dynamics statistics

while accounting for nonlinearities in the frequency domain. We verify that the statisti-
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cal linearization method may capture significant dynamics effects that are neglected by the

traditional Taylor series linearization approach, while computing the results approximately

100 times faster than time domain simulations.

Second, the WEC must stabilize rather than destabilize the FWT. We investigate the

dynamics statistics of different FWT-WEC configurations using a long wavelength, struc-

turally coupled model. We make several conclusions about WEC design constraints regard-

ing its form factor and coupling modes with the FWT. We show that simultaneous targeted

energy transfer from both the FWT and direct wave forcing to the WEC is unlikely.

Third, the WEC requires power robustness in different sea states. Typical WEC’s re-

quire control schemes to maintain good power performance when the ocean wave dominant

frequency differs from the WEC resonant frequency. We introduce a nonlinearity into the

WEC design that passively increases power robustness in different sea states. This nonlin-

earity could reduce the financial and power costs of a controller.

In wave tank experiments, we measure the response statistics of four different combined

FWT-WEC configurations; verifying the FWT-WEC dynamics model.

In Chapter 2, we model the linear dynamics of coupled FWT-WEC’s. In Chapter 3,

we develop a statistical linearization method for rapidly and more accurately computing

the response statistics when the system has significant nonlinearities due to viscous wave

forcing, aerodynamics, and rotor control. In Chapter 4, we design and apply the statistical

linearization method to a wave energy converter with a nonlinear hydrostatic stiffness phys-

ically implemented by a varied cross-sectional area. In Chapter 5, we develop a cost model

for the WEC’s. In Chapter 6, we obtain the results of parameter optimization for various

combined FWT-WEC’s. In Chapter 7, we experimentally verify the dynamics model and

results. In Chapter 8, we make conclusions.

1.5.1 Fundamental Contributions

Fundamental contributions of this dissertation are,

1. Development of a statistical linearization method for FWT’s and WEC’s. The tra-

ditional frequency domain approach for parameter optimization at early stages of
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design uses Taylor series linearization and neglects system nonlinearities. The tradi-

tional time series approach for performance evaluation at later stages of design ac-

counts for nonlinearities but requires approximately 100 times longer to compute the

response statistics than the frequency domain. The statistical linearization method

used in this thesis accounts for nonlinear aerodynamics, rotor control, and viscous

wave forcing in the frequency domain. This method allows potentially more accurate

parameter optimization than the Taylor series lineariation approach, at approximately

100 times higher computational efficiency than the time domain. This thesis shows

that for some types of FWT’s, the Taylor series linearization approach may under-

estimate fatigue stress by up to 15% in extreme wind-sea states and by up to 7%

over the FWT’s lifetime. Ongoing work will finalize a comparison of the statistical

linearization, Taylor series linearization, and time domain results to verify accuracy.

2. Optimization of WEC’s attached to FWT’s. We show that static synergy is possi-

ble, whereby the wave energy converter has reduced cost and the FWT platform has

reduced motion. For the sea states and high capacity-factor WEC’s considered, the

WEC levelized cost of energy may be reduced from $0.31/kWh to $0.27/kWh (13%)

while the equivalent fatigue stress at the FWT tower root remains unchanged (32.4

MPa). The WEC harvests power in the heave-mode while adding both wave forcing

and inertia to the FWT surge mode. Simultaneous targeted energy transfer from both

the ocean waves and FWT to the WEC (the tuned mass damper effect), which would

result in increased synergy, is unlikely.

3. Design of a hydrostatic nonlinearity for a heave-mode WEC. A WEC with a cross-

sectional area that increases quadratically with its height acts like a cubic nonlinear

spring. We show that adding this modification to a floating oscillating water column

with a fixed 4-meter column radius both increases the WEC mass and improves the

WEC power performance. The net result is a levelized cost of energy reduction of

4% compared to the linear floating oscillating water column.

4. Experimental verification of the FWT platform stabilization effects for various com-

bined FWT-WEC’s.
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Chapter 2

Linear Dynamics Model for Coupled

FWT-WECs

2.1 Introduction

Modeling the dynamics and responses of floating wind turbines and wave energy con-

verters is important for optimizing the machine power output and cost [27, 35]. Float-

ing wind turbine (FWT) dynamics consists of many coupled subsystem dynamics: tur-

bulent aerodynamics; rotor control; tower, blade, and mooring line elastic deformations;

and stochastic linear and nonlinear platform hydrodynamics; as sketched in Fig. 2-1

[57, 68, 70, 66, 75, 99, 101, 103, 118]. Attaching a wave energy converter (WEC) to a FWT

adds additional hydrodynamic interactions, nonlinearities, control, and spring/damper cou-

pling effects to the system [106, 7, 13, 87]. There are multiple ways to model each of these

subsystems. Choosing a model normally involves a trade-off between detail and computa-

tion cost.

The most accurate subsystem models often involve nonlinearities. A FWT-WEC sys-

tem with nonlinearities is typically solved in time-domain simulations. These simulations

determine the system response by time-step integration using Euler or Runge-Kutta meth-

ods [3, 67]. With time steps of 0.1 seconds, computing the steady-state response of a

floating wind turbine requires a simulated time of about 8,000 seconds, which translates

into a computation time of approximately 13 minutes [67, 113, 79]. For a floating wind
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Figure 2-1: Thesis model overview: (blue) components considered, (red) modeling chal-
lenges addressed, (green) modeling simplifications made.
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turbine, these codes often consider over 100 degrees of freedom, including the discretized

motion and stress along the tower and each blade, and motion and stress in the rotor teeter,

rotor shaft, yaw bearing, nacelle, and platform. The motion of each component has 3 trans-

lational and 3 rotational degrees of freedom. The National Renewable Energy Laboratory

code FAST computes these system responses using a FORTRAN code [67]. FAST can

be linked to other subsystem programs such as MoorDyn for simulating the mooring line

dynamics [57]. WEC-Sim by the National Renewable Energy Laboratory simulates wave

energy converters [106]. HAWC2 by The Technical University of Denmark is another

freely downloadable FWT simulation program [86]. Common commercial nonlinear simu-

lators include the general multi-body system dynamics solvers MSC ADAMS, SIMPACK,

and MathWorks Simscape Multibody [3, 27].

Dynamics models typically consider hydrodynamic forces due to incident, diffracted,

and radiated linear Airy waves in nonviscous potential flow. It is normally assumed that

the body responses are small, so that the hydrodynamic forces are linear. The incident

wave force, hydrodynamic damping, and added mass are often numerically computed us-

ing a panel method program such as WAMIT [88, 104] . In addition to panel methods, the

diffracted wave velocity potentials may be theoretically computed using modal-type repre-

sentations satisfying boundary conditions; for example, on a submerged cylinder (McCamy

Fuchs theory) [123] or a submerged oscillating water column chamber [37, 50]. Diffraction

effects are negligible if,
D
λ
< 0.2, (2.1)

where D is the submerged body’s characteristic dimension and λ is the wave length. Jonkman

[66] shows that D
λ
< 0.2 in all but very calm sea states, when loads are small anyways, for

the OC3-Hywind floating wind turbine, which has characteristic dimensions in the range

D = [6.5, 9.4] m. This may not be the case for typical wave energy converters, which

typically have larger characteristic dimensions up to D = 30 m, or other FWT platforms

[143]. When diffraction effects are negligible, one may use long-wave length approxima-

tions rather than a panel method to compute the wave forcing, hydrodynamic damping and

added mass [123, 103].
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In addition to linear wave excitation forces, viscous effects are important when the

Keulegan-Carpenter number,

KC =
UWaveT

D
> 2, (2.2)

where UWave is the wave velocity amplitude and T is the wave period. KC > 2 indicates that

flow separation occurs. Jonkman [66] shows that KC < 2 in all but the most extreme sea

states, and then viscous effects are only significant near the top of the OC3 spar platform.

The nonlinear viscous effects are often accounted for with Morison elements based on

the incident potential flow [75]. Viscous effects may be more significant in wave energy

converters than floating wind turbines, because one typically wants to minimize the FWT

velocity but maximize the WEC velocity.

We model the stochastic ocean wave elevations by the Bretschneider spectrum. Since

the Bretschneider spectrum model takes the significant wave height and dominant wave

period as inputs, the model is not limited by a long-fetch assumption like the Pierson-

Moskowitz spectrum, and can be applied to sea states ranging from developing to decaying

[133]. In time domain numeric models, each discretized wave amplitude is associated with

a random phase [101]. In our frequency-domain computations, the linear system response

is the summation of its response to each wave component at each discretized frequency.

To model the tower and rotor blade continuous elastic bending, FAST employs modal

analysis, where the continuous vibration problem is approximated by several independent

single degree-of-freedom oscillators corresponding to the bending modes. With resonant

frequencies well above ocean wave frequencies, FAST considers the tower’s two lowest

bending modes in the fore-aft and side-side directions [67]. HAWC2 uses a finite element

formulation where the structure is divided into approximately 10 Timoshenko beams con-

nected to each other by constraints [67, 75, 86].

There are three typical methods for modeling the mooring line dynamics, another con-

tinuous subsystem. The most basic approach is to linearize the mooring line forces and

treat the mooring lines as massless springs. A more advanced model is to treat the moor-

ing lines as nonlinear springs. While catenary mooring lines have a negligible effect on

the platform dynamics in calm sea states, the mooring lines significantly stiffen for large
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platform displacements [68]. Taut mooring lines significantly affect the dynamics of ten-

sion leg platforms [16]. The most detailed approach is to discretize the mooring lines into

approximately a dozen lumped-masses with their own degrees of freedom, hydrodynamic

loading, and friction on the sea floor. This model is required for predicting mooring line

fatigue. In most sea states, the choice of mooring model has a small impact on the platform

dynamics [58].

Wind turbine aerodynamics include stochastic turbulence, wake interaction and skewed

flow due to platform pitching [138]. The highest-accuracy modeling method is solving

the Reynolds averaged Navier Stokes (RANS) equation in a computational fluid dynamics

approach to determine the air flow, rotor power, and rotor thrust [139]. This approach

is normally too computationally expensive for floating wind turbine simulations. FAST

and other time domain FWT simulation codes use the simpler quasi-static blade element

momentum theory with standard Prandtl tip-losses [64, 67, 75]. A lifting-line theory and

free vortex wake method is more closely related to the physical flow effects and may be

more accurate than the blade element method while more computationally efficient than

RANS [34, 60].

Wind turbines normally have generator-torque and blade-pitch control based on a rotor

speed input. The generator control is implemented in below-rated wind conditions to adjust

rotor speed for maximum aerodynamic efficiency. The blade-pitch control is implemented

in above-rated wind conditions to hold the power constant at the wind turbine’s power

capacity. While the control laws typically use standard linear proportional and integral

gains (PI), the aerodynamic responses make wind turbine control a nonlinear system. This

thesis uses the PI control strategy for the NREL reference 5-MW wind turbine, described

in [68]. Nonlinear model predictive control can reduce tower, shaft, and blade fatigue; and

reduce variation in the power and rotor speed by up to 90% [121].

The nonlinearities of wave energy converters are typically more significant than the

nonlinearities of floating wind turbines. One reason is that WEC motions are typically

larger than FWT motions, which makes viscous effects more significant. Another reason is

that the power takeoff may have nonlinear properties, such as hydraulics or Wells turbine

stalling [13, 38]. Additional power takeoff and structural nonlinearities are important for
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counteracting the linear system frequency mistuning problem (increasing power robustness

in different sea states). These power robustness strategies include latching control, where an

actuator holds the WEC fixed until the wave velocity exceeds a certain threshold; and varied

cross-section geometry, where cubic-spring hydrostatic stiffness increases robustness (Joo

and Sapsis, 2014; Kluger et al., 2014) [73, 80].

If nonlinearities are not significant or required in a preliminary analysis, then a more

computationally efficient approach than the time domain for computing system responses is

the linear frequency-domain (Newman, 1977; Ramachandran et al., 2013; Jonkman,2010).

In contrast to a typical 13-minute runtime using the time-domain, the frequency domain

can solve for the steady-state responses in 7.5 seconds [79]. For offshore machines, the fre-

quency domain considers linear wave forcing due to potential flow (Newman and Sclavounos,

1988). It ignores nonlinear effects related to wave viscous wave forcing or power takeoff

control.

Linear frequency-domain models capture the important characteristics of many FWT

platforms; however, they cannot compute transient effects and may inaccurately compute

extreme loads during storms (Jonkman, 2010, Wayman et al., 2006). Furthermore, lin-

earized systems may neglect significant resonances due to platform-flexible tower coupling

(Matha, 2009). On the other hand, even as advances are being made to accelerate the time-

domain simulations by substructuring and parallel processing, the intrinsic challenge of

time-domain simulations is high computation cost (Schafhirt et al., 2015). The purpose

of this thesis is to analyze significant changes to the FWT-WEC dynamics. Therefore, in

most cases, the linear frequency domain is sufficient. In Chapters 3 and 4, we implement

the method of statistical linearization to account for nonlinearities in the frequency domain

model, and consider when the nonlinearities are important. In Chapter 6, we use our model

to optimize the performance of a combined FWT-WEC.

In this Chapter, we describe the baseline linear model for a floating wind turbine in

the frequency domain, accounting for potential flow forcing, hydrodynamic damping and

added mass, and tower bending. We model and statistically linearize viscous wave forcing,

nonlinear rotor control, and nonlinear mooring lines in Chapter 3. We consider only tower

bending stress rather than stress at other vulnerable locations to simplify our model and
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because blade-root bending moment, low-speed-shaft bending moment, and yaw-bearing

bending moment all follow similar dependencies on platform surge and pitch [117]. We

first model linear WEC’s with form factors similar and then expand the model to include

floating oscillating water column spars. In Section 5, we describe the power takeoff model

and limitations of a Wells turbine. In Section connectionsSection, we model the coupling

between the FWT and WEC’s due to hinged links. In Section 7, we model the dynamics

effects of a modified FWT platform. In Section 8, we summarize how all these aforemen-

tioned systems combine into a matrix equation of motion. Finally, in Section 9, we describe

how the matrix equation of motion is combined with the Weinder-Khinchine theorem to de-

termine the system response statistics.

2.2 Wave Elevation and Wind Modeling

We model the stochastic ocean wave elevation by the Bretschneider spectrum. Since the

Bretschneider spectrum model takes the significant wave height and dominant wave period

as inputs, the model is not limited by a long-fetch assumption like the Pierson-Moskowitz

spectrum, and can be applied to sea states ranging from developing to decaying [133]. We

use the Bretschneider model for the system optimization of Chapter 6. In time domain

numeric models, each discretized wave amplitude is associated with a random phase [101].

In our frequency-domain computations, the linear system response is the summation of its

response to each wave component at each discretized frequency. We approximate the ocean

waves by 100 discrete frequencies evenly distributed between 0.01 Hz to 0.45 Hz for the

parameter optimization study in Chapter 6, and by 400 discrete frequencies over the same

range for the statistical linearization study in Chapter 3.

We use the single-sided Bretschneider spectrum with the standard form,

S +
U =

1.25
4

ω4
p

ω5 H2
S e−

5
4 (ωp

ω )4

, (2.3)

where HS is the significant wave height and ωp is the dominant wave period.

As mentioned in the Introduction of this chapter, we model steady, uniform wind at the
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Figure 2-2: Floating wind turbines considered in this thesis: (Left) NREL OC3-Hywind
spar, image from [66]; (Right) NREL OC4-DeepCwind semisubmersible, images from
[118, 144].

nacelle with the value,

U m/s. (2.4)

In this thesis, we assume that the wind and waves are aligned and approach the wind tur-

bine head-on. Future studies may easily consider the effect of non-head-on and misaligned

wind and waves using the model described in this chapter.
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2.3 Linear Floating Wind Turbine Model

The combined floating wind turbine-wave energy converter (FWT-WEC) optimization of

this thesis considers the OC3-Hywind spar floating wind turbine described by Jonkman

in the National Renewable Energy Laboratory (NREL) reports, [64], [66], [68]. The sta-

tistical linearization portion of this thesis considers both the OC3-Hywind spar and the

OC4-DeepCwind Semisubmersible, also described in detail by NREL [118]. These FWTs

are shown in Fig. 2-2.

We model floating wind turbine (FWT) dynamics using coupled linear equations of

motion in matrix form. As Jonkman describes in [67], the entire floating wind turbine may

be modeled with over 100 degrees of freedom.

We are interested in large effects on the system’s steady-state response to ocean waves.

Many of the FWT degrees of freedom responses increase proportionally with the platform

motion, so explicitly modeling them increases computation cost without adding a lot of

benefit for our purposes.

For simplicity in our analysis, we consider the coupled degrees of freedom that affect

nacelle motion and tower bending,

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~xPlat f orm

~x Tower
Bending

~xRotor

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

u1FA

u2FA

u1S S

u2S S

Ω

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)

47



~xPlat f orm = x1 − x6 are the rigid platform surge, sway, heave, roll, pitch, and yaw motions

about the mean water level, respectively, as labeled in Fig. 2-3. ~x Tower
Bending

= u1FA − u2S S are

the nacelle deflection due to the flexible tower’s bending modes. That is, u1FA is the nacelle

deflection due to bending in the first fore-aft mode, u2FA is the nacelle deflection due to

bending in the second fore-aft mode, u1S S and u2S S are the first and second tower bending

modes, respectively, in the side-side direction. ~xRotor = [Ω θ]′ are the rotor angular velocity

and blade pitch. Due to the large amount of nonlinearities in the rotor dynamics, the equa-

tions of motion for the rotor are described in Section 3.3.2 of the statistical linearization

chapter.

We model the linear dynamics of the floating wind turbine by the linear equation of

motion,

IFWT (ω)~̈x + BFWT (ω)~̇x + KFWT~x = ~fFWT (ω). (2.6)

IFWT (ω), BFWT (ω), and KFWT are inertia, damping, and stiffness matrices respectively.

Throughout this thesis, we refer to a coordinate system with an origin at the still water level,

so the matrices contain nondiagonal terms as per the parallel axis theorem and a platform

center of mass (CM) at a submergence of 90 m (for the OC3 spar).

We define the inertia matrix as

IFWT (ω) = MPlatform + MTower + AHydro(ω), (2.7)

where MPlatform and MTower are the mass matrices of the rigid platform and flexible tower, re-

spectively. MTower contains elements coupling the tower’s bending modes and tower’s rigid

heave motion with the platform, described in more detail below. AHydro(ω) is the floating

platform’s added mass obtained from the panel radiation/diffraction program WAMIT [88].

The values of MPlatform and AHydro(ω) for the OC3-Hywind and OC4-DeepCwind semisub-

mersible are given in Appendix A.

The damping matrix is

BFWT (ω) = BHydro(ω), (2.8)

where BHydro(ω) is the frequency-dependent platform hydrodynamic damping. The values
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of BHydro(ω) for the OC3-Hywind and OC4-DeepCwind semisubmersible are also given in

Appendix A.

The spring stiffness matrix is

KFWT = CHydro + KMooring + KTower, (2.9)

where CHydro contains the platform hydrostatic restoring coefficients, KMooring is the spring

stiffness matrix for the linearized the mooring lines, and KTower contains the tower stiffness

coefficients. The values of CHydro and KMooring for the OC3-Hywind and OC4-DeepCwind

semisubmersible are given in Appendix A. KTower is described below.

The forcing vector from the incident and diffracted wave potential is,

~fFWT = ~fHydro = Re
{︁
~Feiωt

}︁
= Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eiωt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.10)

~fHydro is the linear hydrodynamic forcing found by WAMIT and is listed in Appendix A for

the OC3-Hywind and OC4-DeepCwind semisubmersible.

2.3.1 Reduced order modeling of the tower bending dynamics

The differential equation for the transverse tower deflection relative to the floating platform,

u(zT , t), is

EI(zT )
∂4u
∂z4

T

+ ρA(zT )
(︃
∂2u
∂t2 +

∂2y(zT , t)
∂t2

)︃
= 0. (2.11)

49



Figure 2-3: Catenary moored spar floating wind turbine with head-on wind and incident
waves. The wind turbine platform has 3 translational and 3 rotational degrees of freedom.
The model allows the tower to bend in its 2 lowest fore-aft modes and two lowest side-side
modes.
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Table 2.1: Floating wind turbine properties

Parameter Value
Tower length, LTower 77.6 m
Distance from the SWL to the tower base, LSWL,Base 10 m
Distance from the SWL to the tower top, LSWL,Top 87.6 m
Tower base diameter 6.5 m
Tower base thickness 2.7 cm
Tower top diameter 3.87 m
Tower top thickness 1.9 cm
Tower top point mass, mTop 3.50 × 105 Kg
Tower elastic modulus, E 210 GPa
Tower density, ρS teel 8500 Kg/m3

Tower ultimate strength, S Ult 2260 MPa
Tower Wohler parameter, m 5
Rotor moment of inertia about SWL 4.32 × 108 Kgm2

Rotor diameter 126 m
Rotor swept area, S 1.25 × 104 m

For the NREL offshore 5-MW baseline wind turbine, the tower is a hollow tapered cylinder

with a radius and thickness dependent on the tower coordinate, zT , as described in Jonkman

et al. [66, 68],

rT = 3.25 − 0.0169zT m, (2.12)

tT = 0.0135 − 5.15 × 10−5zT m. (2.13)

The corresponding tower second moment of area, I(zT ), and cross sectional area, A(zT ) are,

IT = π
r3

T tT

4
. (2.14)

AT = 2πrT tT . (2.15)

We model the hub, nacelle, and rotor masses as a single point mass on the tower top

with a mass of 3.50 × 105 Kg, as listed in Table 2.1.

For head-on waves, lateral tower acceleration caused by the platform acceleration,

∂2y(zT , t)/∂t2, depends on the tower coordinate zT , because of the contribution of platform

pitch,
∂2y(zT , t)
∂t2 =

d2x1

dt2 +
(︀
LS WL,Base + zT

)︀ d2x5

dt2 , (2.16)
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where LSWL,Base = 10 m is the distance from the still water level to the tower base for the

OC3-Hywind system.

We use the Galerkin method to convert the continuous differential equation describing

the tower fore-aft bending dynamics, Eq. 2.11, to several discrete differential equations

based on the tower’s natural frequencies and corresponding eigenshapes. That is, we ap-

proximate a solution to the tower bending with the form,

u(t, zT ) ≈ α1(t)u1(zT ) + α2(t)u2(zT ) + ... (2.17)

Here, we consider the tower bending shapes, u1(zT ) and u2(zT ), corresponding to its two

lowest natural frequencies. The higher bending modes, with frequencies exceeding 10

Hz, have negligible impact on the structure dynamics when the structure is excited by sea

waves, which have frequencies less than 5 Hz.

We use the tower eigenmode deformations and frequencies predicted by the NREL code

BModes [10]. BModes disretizes the tower into 50 interconnected uniform beam elements

along the tower axis, each with 5 nodes that account for torsional, axial, fore-aft, and side-

side deformations. BModes fits the fore-aft mode nodal deformations to the curve,

ui(zT ) = a2z2
T + a3z3

T + a4z4
T + a5z5

T + a6z6
T . (2.18)

Eq. 2.18 represents the eigenshape’s neutral axis deformation. This eigenshape satisfies

the tower’s kinematic boundary conditions at the base of zero deformation (u(0) = 0)

and slope (∂u(0)/∂zT ) = 0). Table 2.2 lists the coefficients for the tower’s two lowest

frequency bending modes. The coefficients in Eq. 2.18 and Table 2.2 are normalized so

that ui(zT = lTower) = 1.

The normal stress along an Euler beam is,

s(zT )Euler−Bernoulli =
MrT

I
= −ErT

∂2ui

∂z2
T

. (2.19)

Since the tower exhibits both shell-like and beam-like behavior, we add a concentration
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(a) (b)

Figure 2-4: Eigenshapes and von-Mises stress trends for the tower’s two lowest fore-aft
bending modes found by ANSYS c○ finite element modal analysis. (a) Mode 1, u1(z), 0.42
Hz. (b) Mode 2, u2(z), 2.57 Hz.

factor to the stress along the tower,

s(zT )Euler−Bernoulli = Kci
MrT

I
. (2.20)

Applying Eq. 2.19 to stress at the tower root,

s(zT = 0)Euler−Bernoulli = −2EKcirT,z=0a2. (2.21)

We use ANSYS c○ finite element software modal analysis to determine the stress con-

centration factor, Kci. Relative von-Mises stress along the tower for the two lowest bending

modes is shown in Fig. 2-4. We find that Kc1 = 1.7 and Kc2 = 1.6, resulting in the expres-

sion for stress at the tower root due to the two lowest fore-aft bending modes,

sRoot,F−A = 330α1 + 15050α2 MPa. (2.22)

Having determined the tower bending shapes, u1(zT ) and u2(zT ), we substitute the as-
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Table 2.2: Coefficients for neutral axis line-of-best-fit for the tower bending modes, u1(z)
and u2(z).

Coefficient Mode 1, u1(z), 0.42 Hz Mode 2, u2(z), 2.57 Hz
a2 1.44 ×10−4 7.10 ×10−3

a3 4.72 ×10−7 -3.99 ×10−5

a4 -2.50 ×10−9 -5.61 ×10−7

a5 4.15 ×10−11 -8.27 ×10−9

a6 -5.28 ×10−13 9.47 ×10−11

Kc 1.7 1.6

sumed solution, Eq.s 2.17 and 2.18, into the governing equation, Eq. 2.11,

EI
(︁
α1uiv

1 + α2uiv
2

)︁
+ ρA (α̈1u1 + α̈2u2 + ÿ) = 0, (2.23)

where the roman numerals indicate derivatives with respect to space and dots with respect

to time. To find the governing equation of the first bending mode, we multiply Eq. 2.23 by

u1 and integrate along zT ,

∫︁ l

0
EI

(︁
α1uiv

1 u1 + α2uiv
2 u1

)︁
dzT +

∫︁ l

0
ρA (α̈1u1u1 + α̈2u2u1 + ÿu1) dzT = 0. (2.24)

Using the self-adjoint and orthogonality properties of the eigenshapes, and substituting in

Eq. 2.16 for ÿ, Eq. 2.24 reduces to,

α1

(︃∫︁ l

0
EI(uii

1)2 dzT

)︃
+ α̈1

(︃∫︁ l

0
ρAu2

1dzT

)︃
+ ẍ1

(︃∫︁ l

0
ρA(u1dzT

)︃
+ ẍ5

(︃∫︁ l

0
ρA(lS WL,Base + zT )u1dzT

)︃
= 0. (2.25)

We define new coefficients to express Eq. 2.25 as,

k1α1 + m1α̈1 + m1,p1 ẍ1 + m1,p5 ẍ5 = 0. (2.26)

Repeating the procedure from Eq. 2.23 for u2 produces the second tower bending mode

governing equation,

k2α2 + m2α̈2 + m2,p1 ẍ2 + m2,p5 ẍ5 = 0. (2.27)
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Table 2.3 lists the calculated coefficients. It is important to note that mi, mi,p1, and m1,p5

account for the tower end mass.

Table 2.3: Bending mode coefficients and natural frequencies derived by Galerkin projec-
tion.

Coefficient Mode 1, f1 = 0.42 Hz Mode 2, f2 = 2.57 Hz
mi 3.479 × 105 1.430 × 107

ki 2.44 × 106 3.731 × 109

mi,p1 3.625 × 105 1.323 × 106

mi,p5 3.091 × 107 8.185 × 107

Next, we determine the tower’s influence on the platform dynamics by using the Euler-

Lagrange approach for the tower-platform four coupled degrees of freedom; platform surge

x1, platform pitch x5, and two tower bending modes contained in u (Eq. 2.17). The system

potential energy is due to the tower bending,

V =
E
2

∫︁ l

0
I(uii)2dzT . (2.28)

The kinetic energy is

T =
1
2

mFWT1 ẋ2
1 +

1
2

mFWT5 ẋ2
5 + mFWT15 ẋ1 ẋ5+

1
2

∫︁ l

0
ρA

(︀
ẋ1 +

(︀
LSWL,Base + z

)︀
ẋ5 + u̇

)︀2dzT +

1
2

mTop(ẋ1 + ((LSWL,Base + LTower ẋ5 + u̇zT =LTower )
2 +

1
2

ITop
(︀
u̇′zT =LTower ẋ5

)︀2
, (2.29)

where mFWT1, mFWT5, and mFWT15 are the platform surge mass, pitch inertia, and product

of inertia, respectively, mTop is the combined hub, rotor, nacelle mass at the tower top, and

ITop is the rotor inertia about the SWL. Defining the Lagrangian as

ℒ = T − V, (2.30)
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and substituting Eq.s 2.28-2.30 into the equation,

d
dt

(︃
∂ℒ

∂q̇

)︃
−
∂ℒ

∂q
= 0, (2.31)

for q = x1 and q = x5 results in the rigid and flexible coupling terms between the platform

and tower. The final tower mass and stiffness matrices, coupled to the platform degrees of

freedom, are,

MTower =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.02 × 105 0 0 0 4.16 × 107 0 3.62 × 105 1.32 × 106 0 0

0 6.02 × 105 0 −4.16 × 107 0 0 0 0 3.62 × 105 1.32 × 106

0 0 6.02 × 105 0 0 0 0 0 0 0

0 −4.16 × 107 0 3.30 × 109 0 0 0 0 −3.09 × 107 −8.18 × 107

4.16 × 107 0 0 0 3.30 × 109 0 3.09 × 107 8.18 × 107 0 0

0 0 0 0 0 0 0 0 0 0

3.62 × 105 0 0 0 3.09 × 107 0 3.48 × 105 6.66 × 105 0 0

1.32 × 106 0 0 0 8.18 × 107 0 6.66 × 105 1.43 × 107 0 0

0 3.62 × 105 0 −3.09 × 107 0 0 0 0 3.48 × 105 6.66 × 105

0 1.32 × 106 0 −8.18 × 107 0 0 0 0 6.66 × 105 1.43 × 107

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.32)

where the units are standard SI Kg, Kgm, and Kgm2.
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KTower =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2.44 × 106 −4.92 × 106 0 0

0 0 0 0 0 0 −4.92 × 106 3.73 × 109 0 0

0 0 0 0 0 0 0 0 2.44 × 106 −4.92 × 106

0 0 0 0 0 0 0 0 −4.92 × 106 3.73 × 109

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.33)

where the units are standard SI N/m, N/rad, and Nm/rad. Coupling between the bending

modes shows numeric errors in the eigenmodes.

KTower is a sparse matrix because it represents just the dynamics of the tower bending

degrees of freedom (rows 7 - 10). This matrix is added to the 10x10 FWT platform stiffness

matrix, Eq. A.3, which defines stiffness terms for the platform in rows 1-6, as shown in

Eq. 2.9. Coupling between the lightly damped tower bending and platform is expressed by

nondiagonal terms in the tower mass matrix in Eq. 2.32.

2.4 Linear Wave Energy Converters

Here, we model wave energy converters using long wavelength approximations. Section

2.6 describes how the WEC’s and FWT are coupled together. In Chapter 6, we apply pa-

rameter constraints on the coupled FWT-WEC ’s and compute the system lifetime response

statistics.

We consider tuned mass dampers inside the FWT, spherically-shaped WEC’s, and spar-

like WEC’s with a vertical through-hole in which an air or water Wells turbine is placed.

These 3 WEC’s are illustrated in Fig.s 2-5 to 2-7. For simplicity in this analysis, we as-

sume that the WEC may translate in surge, sway, and heave directions relative to the FWT,
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but it is rigidly coupled with the FWT in the rotational roll, pitch, and yaw. This is the

case for a 2-bar linkage between the FWT and WEC. Linkages that pivot about torsional

springs and dampers on the FWT connect the WEC and FWT, as described in Section 2.6.

These links provide off-diagonal coupling between the FWT and WEC’s. Depending on

the equilibrium orientation of the links, the WEC and FWT may be rigidly coupled in a

translation mode. Nonzero values of these torsional springs and dampers cause moments

and forces on the FWT and forces on the WEC that are proportional to the FWT-WEC

relative translations. Incident wave pitch forcing on the WEC is rigidly transmitted to the

FWT. The WEC’s rotational (roll, pitch, and yaw) properties for inertia, hydrodynamic

added mass and damping, and hydrostatic stiffness are rigidly transmitted to the FWT. We

further assume that the WEC motions are small and can be linearized.

The WEC may harvest wave power using a horizontal axis hydrokinetic Wells turbine,

vertical axis hydrokinetic or air Wells turbine, or a resistance torque acting on a link be-

tween the WEC and FWT (discussed in more detail in Section 2.6). These are some of the

most common types of wave energy converter power takeoff mechanisms [40, 143].

We consider 5 degrees of freedom for the WEC,

~xWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xWEC

yWEC

zWEC

zCol

pC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WEC surge

WEC sway

WEC heave

Vertical water column heave relative to WEC

Vertical water column chamber pressure

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.34)

The coupled equations of motion for the general WEC are,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︀
mW + A11,W

)︀
ẍW + B11,W ẋW + dWellsX (ẋW − uWave)2 = F1,WEC(︀

mW + A22,W
)︀

ÿWEC + B22,W ẏWEC = 0(︀
mW + A33,W

)︀
ẍ3,W + B33,W ẋ3,W + C33nx3

3,W = F3,WEC + PCAColZ

PC +
IZCol
AColZ

(z̈WEC + z̈Col) +
B33,Col

AColZ
(żWEC + żCol) + ρg(zWEC + zCol) =

F3,Wave,Col

AColZ

pC +
kWellsVAir
γPAtm

ṗC − kWellsAColżCol = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.35)
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Parameter definitions are listed in Table 2.4. We calculate the parameter values in Eq. 2.35

from the WEC geometry based on long-wavelength approximations. The mathematical

expressions differ significantly depending on if the WEC has the form factor of a sphere or

vertical cylinder. Therefore, we derive the expressions separately.
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Table 2.4: WEC parameters

mW WEC mass

A11W WEC surge added mass

B11,W WEC surge hydrodynamic damping

F1,WEC WEC surge linear wave force

A33W WEC heave added mass

B33,W heave hydrodynamic damping

C33 WEC linear hydrostatic heave nonlinear stiffness coefficient

C33n WEC hydrostatic heave nonlinear stiffness coefficient

F3,WEC WEC heave linear wave force

PC air chamber pressure

ICol sum of the water column mass and heave added mass

B33,Col water column heave added mass

F3,Wave,Col linear heave wave forcing on the bottom of the water column

VAir volume of the air chamber

γ = 1.4 specific heat ratio of air

PAtm atmospheric pressure

ATube WEC tube cross-sectional area

AFloat WEC float cross-sectional area

LFloat float length

AColZ water column and chamber cross-sectional area

rTube tube radius

rFloat float radius

(LXW , LYW) spar center x and y axes

LZW float center depth

LTubeS ub tube keel depth

tS teel steel sheet thickness

ρS t steel mass density

a wave amplitude

VAir air chamber volume

dWellsX horizontal hydrokinetic Wells turbine damping coefficient

uWave horizontal wave velocity at the horizontal Wells turbine depth
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2.4.1 Internal Tuned Mass Damper

Figure 2-5: Illustration of an internal tuned mass damper in the FWT nacelle.

If the WEC is inside the FWT platform or nacelle, then many of the parameters in Eq.

2.35 are set to 0,

A11,W = A22,W = A33,W = B11,W = B22,W = B33,W = C33,W = 0,

F1,W = F3,W = F3,Wave,Col = kWellsX = kWells = AColX = AColZ = IZCol = B33,Col = PC = 0.

(2.36)

The only nonzero parameter that remains in Eq. 2.35 is mW . The other nonzero pa-
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rameters that affect the system dynamics are the linkage, torsional springs, and torsional

dampers connecting the mass mW to the FWT. Those parameters are described in Section

2.6, and relate to the center of mass (CM) of the WEC,

(LXW , LYW , LZW). (2.37)

As described in Section 2.6, the WEC may rotate rigidly with the FWT. In those equa-

tions,

A44,W = A55,W = A66,W = B44,W = B55,W = B66,W = C44,W = C55,W = F5,W = 0. (2.38)

The WEC mass moment of inertia about its CM is

I44 = I55 = I66 =
2mWr2

W

3
, (2.39)

For a steel sphere,

rW =

(︃
3mW

4πρS t

)︃1/3

, (2.40)

where ρS t is the steel density.

For neutral buoyancy, we subtract mW from the concrete ballast in the FWT. The un-

modified OC3-Hywind has 5950 Tons concrete ballast centered at a submergence of -98

m [100]. Therefore, to maintain neutral buoyancy, we add a negative mass to the FWT

platform,

−mW centered at (0, 0,−98) m. (2.41)

We use the procedure described in Section 2.7 to modify the FWT platform properties with

the ballast reduction.
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Figure 2-6: Illustration of a (Left) submerged sphere and (Right) floating sphere; used as
approximations in the WEC model.

2.4.2 Parameters for a Spherical WEC Geometry

For our most basic external WEC model, we assume that the WEC has a spherical form-

factor, as shown in Fig. 2-6. The sphere is centered at,

(LXW , LYW , LZW). (2.42)

The sphere has a radius,

rWEC. (2.43)

The corresponding submerged WEC volume is,

VWEC, Sub =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4
3πr3

WEC, if external submerged WEC,

2
3πr3

WEC, if external floating WEC.
(2.44)

We assume that the sphere is neutrally-buoyant,

mWEC = ρVWEC, Sub. (2.45)

We model the WEC hydrostatic stiffness as,

C3W =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if internal or fully submerged WEC,

ω2
Design(m + A33W), if floating external WEC,

(2.46)
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where we choose a design frequency based on the environmental site’s historically most

common ocean spectrum peak frequency,

ωDesign = 2π/TDesign. (2.47)

Due to its symmetry, the sphere rotational hydrostatic stiffnesses are,

C44W = C55W = 0. (2.48)

Using long-wave approximations, the spherical WEC added mass is [103],

A11W = A22W = A33W =
ρVWEC, Sub

2
, (2.49)

where ρ = 1025 Kg/m3 is the water density.

Due to its symmetry, the sphere rotational added masses are,

A44W = A55W = A66W = 0. (2.50)

The wave forcing from the G.I. Taylor approximation [103] is,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ f1,W

f3,W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ −(ρVS ub + A11W) igkcosh(k(LZW +H))
cosh(kH) eikLXW +iφ−iωt

−(ρVS ub + A33W)−gksinh(k(LZW +H))
cosh(kH) eikLXW +iφ−iωt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.51)

Using the Haskind relation, the hydrodynamic damping is,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ B11,W = B22,W

B33,W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ k
8ρgVg
| f1,W/a|2,

k
4ρgVg
| f3,W/a|2,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.52)

where ω is the wave excitation frequency and k is the wave number.

For the sphere approximation, we assume,

f5,W = B44,W = B55,W = 0. (2.53)
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For WEC’s with a hydrokinetic Wells turbine in the WEC body, the turbine force and

power depends on the relative velocity between the WEC and the ocean waves. We ap-

proximate the ocean wave velocity from the incident wave potential,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ uwave

vwave

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−agk
ω

cosh(k(LZW +H)
cosh(kH) eikLXW +iφ−iωt,

aigk
ω

sinh(k(LZW +H))
cosh(kH) eikLXW +iφ−iωt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.54)

where uwave is the horizontal velocity in thex direction, vwave is the vertical velocity, a is

wave amplitude, H is the ocean depth and k is the wave number.

For a simple spherical WEC without a Wells turbine, then many of the parameters in

Eq.s 2.35 are set to 0,

F3,Wave,Col = dWellsX = kWells = AColX = AColZ = IZCol = B33,Col = PC = 0. (2.55)

2.4.3 Parameters for a Spar-like WEC Geometry

Next, we consider a spar WEC with the geometry shown in Fig. 2-7. It has a submerged

float that 1. satisfies buoyancy, 2. provides a horizontal area subject to vertical wave

forcing beyond the tube alone, and 3. allows the WEC surface-piercing cross-sectional

area to remain small, which is necessary for a low natural frequency. The float is filled with

concrete ballast to satisfy neutral buoyancy. A hollow toroid with radius rOutS WL encircles

the tube from z = ±LOutS WL. The purpose of this toroid is to adjust the still waterline area,

which in turn adjusts the WEC hydrostatic stiffness and natural frequency.

The spar has a long water column tube exposed to heave wave forcing. The top of the

water column pushes air through a Wells turbine that generates electricity. The water in the

tube moves relative to the WEC spar, and the air may compress, which creates two degrees

of freedom relative to the WEC structure motion.

The spar is centered at,

(LXW , LYW). (2.56)

The float is centered at a depth,

LZW . (2.57)
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Figure 2-7: Illustration of spar-like WEC with air Wells turbine: (Left) side view; (Center)
Top view with the Wells turbine; (Right) Top view with the air turbine and turbine duct
hidden.

The tube keel is at a depth,

LTubeS ub. (2.58)

The total WEC submerged volume is,

VS ubW = VS ubS WL + VTubeS ub + VFloat, (2.59)

where the submerged volume of the still waterline (SWL) modification is,

VS ubS WL = LOutS WLAOutS WL, (2.60)

the submerged volume of the tube is,

VTubeS ub = LTubeS ubATube, (2.61)

66



and the submerged volume of the float is,

VFloat = LFloatAFloat. (2.62)

The cross-sectional areas of the SWL modification, tube, and float, respectively, are,

AOutS WL = π
(︁
r2

OutS WL − r2
Tube

)︁
, (2.63)

ATube = 2πrTubetS teel, (2.64)

AFloat = π
(︁
r2

Float − r2
Tube

)︁
, (2.65)

where rOutS WL is the radius of the SWL toroid, rFloat is the float radius, and rTube is the tube

radius.

The equilibrium submerged volume of the WEC, VS ubW , must satisfy neutral buoyancy,

ρVS ubW = mW , (2.66)

where mW is the structural mass,

mW = mS WL + mTube + mFloat + mBallast. (2.67)

The mass of the SWL modification is,

mS WL = ρS teeltS teelS AS WL, (2.68)

where surface area of the SWL modification is

S AS WL = 4πrTubeLOutS WL + 2πr2
OutS WL − πr2

Tube, (2.69)

which accounts for the SWL modification’s outer sides, top, and bottom. The mass of the

tube is,

mTube = 2ρS teeltS teelπrTubeLTube. (2.70)
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The steel mass of the float is,

mFloat = ρS teeltS teelS AFloat, (2.71)

where the surface area of the float is,

S AFloat = 2πrFloatLFloat + 2πr2
Float − πr2

Tube − πr2
OutS WL, (2.72)

which accounts for the outer sides, top, and bottom.

A mass of concrete ballast is added inside the float to satisfy neutral buoyancy, at an

approximated height of LZW .

The WEC center of mass is located at a height of,

z =
mTube (LTube/2 − LTubeS ub) + (mFloat + mBallast) LzW

mW
. (2.73)

The center of buoyancy is located at a height of,

zS ub =
−VS ubS WLLOutS WL/2 − VTubeS ubLTubeS ub/2 + VFloatLZW

VS ubW
. (2.74)

The surge added mass is found using strip theory,

A11W =

∫︁ 0

−LTubeS ub

πr2
Wdz, (2.75)

which accounts for the WEC outer radius due to the SWL modification, tube, and float,

rW =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
rOutS WL, if LZw − LFloat/2 < z < 0,

rFloat, if LZw − LFloat/2 < z < LZw + LFloat/2,

rTube, if − LTubeS ub < z < LZw − LFloat/2,

(2.76)

By symmetry, the sway added mass equals the surge added mass,

A22W = A11W . (2.77)
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The yaw added mass is,

A66W = 0. (2.78)

From strip theory, the roll and pitch added masses are,

A44W = A55W =

∫︁ 0

−LTubeS ub

z2πr2
Wdz. (2.79)

We approximate the heave added mass as,

A33W = 0.5
4
3
ρπ

(︁
r3

Float − r3
Tube

)︁
. (2.80)

which is the added mass of a half-submerged sphere with the same frontal area as the

float, (Newman) [103]. Using the G.I. Taylor long wavelength approximation, the heave

excitation force is [103],

f3 = − (ρ∀S ubW + A33W)
∂P
∂z

⃒⃒⃒⃒⃒
LZKW

. (2.81)

According to linear plan progressive wave theory, the pressure gradient is [103],

P = ρ
∂φi

∂t
= aRe

{︃
ρg

coshk(z + H)
coshkh

eikx−iωt

}︃
, (2.82)

where the incident wave velocity potential is

φi = aRe
{︃

ig
ω

coshk(z + H)
coshkh

e−ikx+iωt

}︃
. (2.83)

The incremental surge force acting along the WEC is,

d f1 =

(︃
2ρπr2

W
∂P
∂x

)︃
dz. (2.84)

The total surge force acting on the spar is,

f1 =

∫︁ 0

LTubeS ub

d f1. (2.85)
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Similarly, the pitch moment acting along the spar is,

f5 =

∫︁ 0

LTubeS ub

zd f1. (2.86)

Using the Haskind relation, the WEC heave hydrodynamic damping is,

B33 =
k

4ρgVg

⃒⃒⃒⃒⃒
f3

a

⃒⃒⃒⃒⃒2
. (2.87)

The WEC surge hydrodynamic damping is calculated by the 2D Haskind relation,

B11 =

∫︁ 0

LTubeS ub

|d f1|
2

2a2ρVg
dz, (2.88)

where the incremental surge force along the spar is given in Eq. 2.84.

The WEC pitch and roll hydrodynamic damping is,

B44 = B55 =

∫︁ 0

LzKW

z2|d f1|
2

2a2ρVg
dz. (2.89)

The WEC hydrostatic stiffness is,

C33,W = ρgAS WL, (2.90)

where the area at the still water line is

AS WL = ATube = 2πrTubetS teel. (2.91)

The WEC hydrostatic stiffness in roll and pitch about the WEC centroid z axis is,

C44,W = C55W = ρgVS ubWzS ub − mgz. (2.92)

For the water column and air pressure degrees of freedom, VAir is the volume of the air

chamber,

VAir = AColZLAbove, (2.93)
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where LAbove is the length of column above the still waterline.

From G.I. Taylor,

F3,Wave,Col = −
(︀
ρ∀Col + A33,Col

)︀ ∂P
∂z

⃒⃒⃒⃒⃒
LZK,Col

. (2.94)

The water column volume is,

∀Col = AColZLTubeS ub. (2.95)

Using the Haskind relation and a correction factor based on our experiments, the water

column heave hydrodynamic damping is,

B33,Col = 25
k

4ρgVg

⃒⃒⃒⃒⃒
f3,Wave,Col

a

⃒⃒⃒⃒⃒2
. (2.96)

2.4.4 Power Harvested

The instantaneous power harvested by the air Wells turbine is,

P = η
P2

C

kWells
, (2.97)

where η = 0.6 is the Wells turbine efficiency. The instantaneous power harvested by a

surge-mode hydrokinetic turbine is,

P = ηkWellsXA2
ColX (ẋWEC − uWells)2 . (2.98)
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2.4.5 Matrix Components

Now, we put the components of Eq. 2.35 into matrix form. In Section 2.6, we couple the

WEC and FWT matrices. We consider a WEC with the following degrees of freedom,

~xWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xWEC

yWEC

zWEC

zCol

pC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.99)

The WEC inertia, damping, and stiffness matrices, and forcing vector are,

IWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mW + AW11 0 0 0 0

0 mW + AW11 0 0 0

0 0 mW + AW33 0 0

0 0 IColZ
AColZ

IColZ
AColZ

0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.100)

BWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BW11 + kWellsXA2
ColX 0 0 0 0

0 BW11 0 0 0

0 0 BW33 0 0

0 0 B33,Col/AColZ B33,Col/AColZ 0

0 0 0 −kWellsAColZ
kWellsVAir
γPAtm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.101)

KWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 C33,WEC 0 −AColZ

0 0 ρg ρg 1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.102)

72



FWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1,WEC + kWellsXA2
ColXuWells

0

F3,WEC

F3,Col/AColZ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.103)

2.5 Wells Turbine Effective Damping Coefficient Model-

ing

As part of our first-order FWT-WEC performance model, we compare WEC’s with Wells

turbine power takeoff (PTO) mechanisms and electromagnetic junction PTO’s. We model

both PTO’s by linear damping coefficients.

Mechanical drivetrains can use gear boxes and hydraulic drivetrains can use varied

cross-sectional areas to increase the reaction force (effective damping coefficient) acting on

the WEC [129]. The Wells turbine is different in that its maximum reaction force is related

to the air or water that directly flows through it. Here, we relate the effective damping

coefficient to the Wells turbine parameters and describe limitations to the model.

A Wells turbine in a WEC harvests power proportional to the relative velocity between

the WEC and fluid flow. Here, we relate the Wells turbine parameters to the effective linear

damping coefficient and fluid flow rate at which stall begins, so that we may approximate

limitations in the WEC designs.

In an air Wells turbine, air is pushed or pulled through the turbine by the water column,

which is excited by heave wave forcing. For a horizontal-axis water Wells turbine, relative

motion between the turbine and incident wave velocity push water through the turbine. Our

model bases the effective damping coefficient and damping limitations on Wells turbine ex-

perimental data. We dimensionalize experimental nondimensional parameters that describe

the Wells turbine performance.

Typical experimental performance curves for the Wells turbine are shown in Fig. 2-8.

This data was collected by Brito-Melo et. al [13]. The nondimensional parameters are,
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∙ efficiency

η =
LΩ

qp
=

LΩ

V(1 − S )πR2 p
, (2.104)

where L is the turbine torque, Ω is the turbine angular velocity, q is the incident fluid

volume flow rate, V is the fluid velocity at the turbine, S is the turbine solidity (ratio

of total rotor planform area to total swept area), R is the turbine radius, and p is the

pressure drop over the turbine. The experimental data has S = 0.64.

∙ pressure drop

p* =
p

ρΩ2R2 , (2.105)

where ρ is the fluid density.

∙ flow coefficient

U* =
vTurbine

ΩR
, (2.106)

where vTurbine is the fluid velocity seen by the turbine.

∙ torque

L* =
L

ρΩ2R5 . (2.107)

Fig. 2-8b shows that the Wells turbine may have a linear nondimensional pressure/velocity

slope of,

k =
P*

U*
= 3.33. (2.108)

We define the Wells turbine coefficient for the air turbine as,

kWells =
p
q

=
ρΩ2R2 p*

AvTurbine
=

ρΩ2R2

ATurbineΩR
p*

U*
=

3.33
π

ρΩ

R
. (2.109)

We define a Wells turbine effective damping coefficient for the water turbine as,

F = pA = bWellsvWEC −→ bWells =
pA

vWEC
. (2.110)

.

We account for how duct taper may increase relative velocity at the turbine compared
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to relative velocity at the duct inlet. By flow continuity, we relate the two velocities by,

AInletvInlet = ATurbinevTurbine −→ vTurbine =
AInlet

ATurbine
vInlet. (2.111)

We relate the the effective damping coefficient to the experimental data and parameters,

bWells =
pA

vWEC
=
ρΩ2R2 p*πR2

ATurbine
AInlet

vTurbine
= ρπΩR3 AInlet

ATurbine

p*

U*
= 3.33ρπΩR3 AInlet

ATurbine
. (2.112)

The experimental data in Fig. 2-8 shows that avoiding turbine start-up and stall requires

flow coefficients,

U* > U*Start Up = 0.06 −→ vTurbine > 0.06ΩR. (2.113)

U* < U*Stall = 0.4 −→ vTurbine < 0.4ΩR. (2.114)

The main constraint to maximizing the Wells turbine coefficient is U*Stall. If the Wells

turbine spins to quickly, then the fluid flow will not generate a torque on it, and the Wells

turbine will slow down, which decreases the effective damping coefficient.

From Eq. 2.113, the upper limit on the turbine angular velocity is,

U* > 0.06 −→ Ω <
vTurbine

0.06R
=

AInletvInlet

0.06RATurbine
. (2.115)

To avoid choking the flow of a hydrokinetic Wells turbine, we limit the ratio of AInlet :

ATurbine to 9. We limit the flow of the air Wells turbine to 30.
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Figure 2-8: Experimental data for a Wells turbine with unswept and 30-degree backward
swept NACA 0015 and unswept HSIM bladed rotor turbines, without guide vanes. (a)
efficiency, (b) pressure drop, (c) torque versus flow rate coefficient. From Brito-Melo,
Ocean Engineering 2002 [13].

Fig.s 2-9 and 2-10 show the dimensionalized Air turbine pressure and water turbine

damping coefficients as functions of radius and RPM, accounting for the Ω limit to avoid

choking the flow. We note that based on feasible size and blade stress constraints, the largest

achievable damping coefficient is on the order of 1.5 × 107 Ns/m for the water turbine and
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800 Pa/(m3/s) for the air turbine. Real Wells turbine effective damping coefficients will

be further limited by wave diffraction (hydrokinetic turbine), stress, machine capital cost,

and electromagnetic generator torque:size limitations. There is an optimal Wells turbine

coefficient that maximizes power transfer from the WEC to electricity. Future work on this

study includes further refinements of the power takeoff model and design.

Figure 2-9: Air Wells turbine coefficients for varied radius and angular velocity.

Figure 2-10: Water Wells turbine effective damping coefficients for varied radius and an-
gular velocity. We assume a ratio of AInlet/ATurbine = 9.

The experimental data in Fig. 2-8 shows that the Wells turbine has a peak efficiency of
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η = 0.6. In a real system, careful control is required to keep the turbine operating in the

optimal flow regime. Such control strategies include a bypass valve [41].

2.6 Structural Coupling Between Floating Wind Turbines

And Wave Energy Converters

Figure 2-11: Illustrations of FWT-WEC links: (a) surge-mode spherical form-factor WEC
placed next to FWT with horizontal links, (b) heave-mode spherical form-factor WEC, (c)
surge-mode spherical form-factor WEC placed in front of FWT with a vertical link (d) spar
with 1 hinge, (e) spar with 2 hinges.

One of the main goals of this thesis is to determine what kind of FWT-WEC coupling

may reduce the FWT motion while still allowing the WEC to harvest wave power. To
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investigate this goal, we model hinged links connecting the FWT and WEC [126]. These

links allow relative motion between the two structures in some directions, since normally

one wants to maximize WEC motion and minimize FWT motion. We consider hinges

rather than translation interfaces because the larger surfaces of a translation mechanism are

much more vulnerable to biofouling than the more compact and easily sealed surfaces of a

rotational mechanism [137].

In this section, we describe the reaction forces on the FWT and WEC caused by the

link connections, and put these effects and the WEC properties into matrix form. Fig. 2-11

sketches several of the FWT-WEC link configurations considered:

1. idealized horizontal link for a surge-mode WEC,

2. idealized vertical link for a heave-mode WEC,

3. single horizontal link for a heave-mode spar,

4. two-bar horizontal linkage for a heave mode spar.

If the spar is stable in pitch and roll, then only a single link may be required to prevent

collision between the FWT and WEC. Two links rigidly couple the FWT and WEC rotation,

which may stabilize the FWT pitch. The two links may also be required to prevent a FWT-

WEC collision in storms.

We allow the junction point on the FWT to apply spring and damper torsional resistance

between the FWT and link. The spring loads may be tuned for resonances while the damper

loads may be used to harvest wave power. The load may be generated by a controlled

mechanical structure, hydraulic system, or electric generator [129]. We assume that the

junction point on the WEC does not have any torsional resistance between the link and

WEC. A machine design with electronic or hydraulic components located on the FWT

rather than on the WEC may simplify electric/hydraulic connections, and minimize wear on

components, since the WEC is designed for maximized motion while the FWT is designed

for minimized motion.

As this section shows, torsional springs located on the FWT with a moment arm effec-

tively act like translation springs on the WEC. We keep the locations and torques gener-
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alized for unconstrained spring and damping torques and WEC locations. We model just

a single effective link connection to simplify the analysis. We assume small, linearizeable

motions. We further assume that the linkage has negligible inertia compared to the WEC

and FWT. We express degrees of freedom as column vectors and location coordinates as

row vectors.

The derivation here applies to links that have equilibrium horizontal or equilibrium

vertical orientations, but neglects some dynamics effects of angled links.

Section 2.6.1 derives FWT-WEC coupling from the link’s rotation. Section 2.6.2 de-

rives FWT-WEC coupling along the link’s rigid length. Section 2.6.5 expands the linkage

model to a tuned mass damper in the nacelle. Section 2.6.6 mathematically expresses the

power harvested by the junction damping element. Section 2.6.7 simplifies the model for a

FWT-WEC aligned with incident waves.

The effective junction point where the link contacts the FWT has equilibrium coordi-

nates with respect to the still water line,

~LJF = [LXJF , LY JF , LZJF]. (2.116)

The effective junction point where the link contacts the WEC has equilibrium coordi-

nates with respect to the still waterline,

~LJW = [LXJW , LY JW , LZJW]. (2.117)

~LLink is the link equilibrium vector pointing from the FWT junction point to the WEC

junction point,

~LLink = ~LJW − ~LJF =

[︂
LxLink LyLink LzLink

]︂
(2.118)
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In this section, we consider the FWT-WEC degree-of-freedom vector,

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~xFWT

~xWEC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

xW

yW

zW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.119)

2.6.1 Linkage Rotational Modes

We assume that the junction point on the WEC freely allows all rotations and that the

junction point on the FWT has rotational stiffness,

Kθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K4 0 0

0 K5 0

0 0 K6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.120)

and power take-off damping,

dθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d4 0 0

0 d5 0

0 0 d6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.121)

corresponding to the FWT roll, pitch, and yaw directions, respectively.

xRel is the displacement of the WEC relative to the junction point on the FWT,

~xRel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xW − x1JF

yW − x2JF

zW − x3JF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = ARel~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 −LZJF LY JF 1 0 0

0 −1 0 LZJF 0 −LXJF 0 1 0

0 0 −1 −LY JF LXJF 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~x.
(2.122)
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Link rotation counterclockwise about each axis due to ~xRel is,

~θLink = JxRelToθ~xRel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −1

LZ,Link

1
LY,Link

1
LZ,Link

0 −1
LX,Link

−1
LY,Link

1
LX,Link

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~xRel. (2.123)

To avoid a mathematical singularity, infinite values in the JxRelToθ matrix are set to 0. Rela-

tive rotation between the link and FWT is,

~θLink,Rel = ~θLink − ~θFWT , (2.124)

where

~θFWT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = ARot~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~x. (2.125)

The torque acting on the FWT due to the torsional springs and dampers is,

~τ = −~Kθ
~θT

Link,Rel −
~dθ~̇θT

Link,Rel. (2.126)

The force acting on the WEC due to the torsional springs is [6],

~FWEC,Rot = −JxRelToθ~τ. (2.127)

In summary, the rotational springs affect the equation of motion matrices by adding a

spring matrix with a form,
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KRot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−FFWT,Rot,K~x−1

−τFWT,Rot,K~x−1

−FWEC,Rot,K~x−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JxRelToθKθ (JxRelToθARel − ARot)

−Kθ (JxRelToθARel − ARot)

−JxRelToθKθ (JxRelToθARel − ARot)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.128)

By an analogous derivation, the rotational dampers lead to the damping matrix,

DRot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−FFWT,Rot,D~̇x−1

−τFWT,Rot,D~̇x−1

−FWEC,Rot,D~̇x−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−JxRelToθDθ (JxRelToθARel − ARot)

−Dθ (JxRelToθARel − ARot)

JxRelToθDθ (JxRelToθARel − ARot)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.129)

2.6.2 Linkage Translation Modes

We consider the forces transmitted along the direction of the link. If the link is a bar, then

it has a rigidity,

KLink = EA ≈ ∞, (2.130)

where E is the bar’s elastic modulus and A is its cross-sectional area. Some of our sim-

ulations use a tuned KLink and analogous power takeoff damping dLink for relative motion

between the FWT-WEC as a simplified model.

The spring stiffness, KLink acts in the direction of the link axis. The components of the
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spring stiffness in each of the translation directions are,

~KLink = KLink

~LLink

‖ ~LLink ‖
=

[︂
K1 K2 K3

]︂
, (2.131)

where ~LLink is the link distance vector from the FWT to the WEC and is defined in Eq.

2.118. In matrix form, the link spring stiffness is,

KLink =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~KT
Link =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K1 0 0

0 K2 0

0 0 K3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.132)

FWT displacement at the FWT-link junction point is,

~xFWT,J = ~xTranslate + JS WL,J~θFWT = ~xTranslate +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 LZJF −LY JF

−LZJF 0 LXJF

LY JF −LXJF 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦~θFWT , (2.133)

where the FWT rotational motion is defined in Eq. 2.125 and the FWT translation

motion at the still waterline is,

~xTranslate = ATranslate~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~x. (2.134)

WEC displacement at the FWT-link junction point is,

~xWEC = AWEC~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xW

yW

zW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~x. (2.135)

The spring force acting on the FWT is

~FLink = KLink(~xWEC − ~xFWT,J), (2.136)
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The spring force acting on the FWT at the junction also causes a moment about the still

water line [6],

~τFWT = −JS WL,J ~FLink. (2.137)

The spring force acting on the WEC is equal and opposite the force acting on the FWT.

In summary, the rigid link contribution to the equation of motion spring stiffness matrix

has the form

KRigid =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−FLink~x−1

−τLink~x−1

FLink~x−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KLink
(︀
AWEC − ATranslate − JS WL,JARotate

)︀

JS WL,JKLink
(︀
AWEC − ATranslate − JS WL,JARotate

)︀

KLink
(︀
AWEC − ATranslate − JS WL,JARotate

)︀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.138)

2.6.3 Rotational Coupling of 2 Linkage System

For the FWT-WEC system shown in Fig. 2-11e, the 2-bar linkage prevents the WEC from

rotating relative to the FWT. In this case, the WEC pitch forcing and rotational parame-

ters are transmitted to the FWT. This is in contrast to the system in 2-11d with 1 hinge,

where the WEC may move in pitch without affecting the FWT. For rotationally coupled

systems, we add the pitch force F5W , rotational inertia [I44, I55, I66] rotational added mas,

[A44, A55, A66], rotational hydrodynamic damping [B44, B55, B66], and rotational hydrostatic

stiffness [C44,C55], to the FWT matrix. Nondiagonal cross-coupling terms (e.g. A15) are

already accounted for in the link translation-mode matrix.
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2.6.4 Loading on the Links and Junctions

The force and moment loadings on the links and junctions are important for sizing and

stress design. Both the junction point on the FWT and the linkage bar have the following 3

sources of loading acting on them:

1. The rotational dampers and rotational springs cause a moment loading on both the

junction point and link, ~τ from Eq. 2.126,

2. The rotational springs cause a force loading on the junction point, − ~FWEC,Rot from

Eq. 2.127. This force vector creates bending moments on the the link. To derive this

bending moment, we first define the component of the force that acts along the link,

~FWEC,Rot‖ = ~FWEC,Rot ·
~LLink

|~LLink|
. (2.139)

Then, the components of the force that act perpendicular to the link are,

~FWEC,Rot⊥ = ~FWEC,Rot − ~FWEC,Rot‖. (2.140)

The bending moment acting on the link is,

~MLink = ~FWEC,Rot⊥|~lLink|, (2.141)

where |~lLink| is the magnitude distance along the link away from the FWT junction

point.

3. A force loading acts along the link axis, ~FLink from Eq. 2.136.

The normal stress loading along the link is,

σLink =
| ~FLink|

ALink
+
| ~MLink + ~τ|r

I
, (2.142)

where ALink is the cross-sectional area of the link. Assuming an axisymmetric link, r is the

maximum cross-section radial distance. I is the link area moment of inertia.
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2.6.5 Connections to the Nacelle

In Chapter 6, we consider an internal tuned mass damper attached to the nacelle on top of

the flexible tower. A WEC connection to the flexible tower adds a small complexity beyond

a WEC connection to the rigid platform because of tower bending. We use a simplified link

model that considers just translational tower-WEC coupling.

We consider the degrees of freedom,

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~xFWT

~u

~xWEC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

u1x

u2x

u1y

u2y

x1W

y1W

z1W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.143)

For springs [K1J,K2J,K3J] connecting the WEC and nacelle in the surge, sway, and

heave directions respectively, the spring junction matrix is,
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KLink,Nac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1J 0 0 0 LNacK1J 0 K1J 0 K1J 0 −K1J 0 0

0 K2J 0 −LNacK2J 0 0 0 K2J 0 K2J 0 −K2J 0

0 0 K3J 0 0 0 0 0 0 0 0 0 0

0 −LNacK2J 0 L2
NacK2J 0 0 0 −LNacK2J 0 −LNacK2J 0 LNacK2J 0

K1J LNac 0 0 0 L2
NacK1J 0 LNacK1J 0 LNacK1J 0 −LNacK1J 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

K1J 0 0 0 LNacK1J 0 K1J 0 K1J 0 −K1J 0 0

0 K2J 0 −LNacK2J 0 0 0 K2J 0 K2J 0 −K2J 0

K1J 0 0 0 LNacK1J 0 K1J 0 K1J 0 −K1J 0 0

0 K2J 0 −LNacK2J 0 0 0 K2J 0 K2J 0 −K2J 0

−K1J 0 0 0 −LNacK1J 0 −K1J 0 −K1J 0 K1J 0 0

0 −K2J 0 LNacK2J 0 0 0 −K2J 0 −K2J 0 K2J 0

0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.144)

The damping junction matrix has the same form but uses the damping coefficients,

[d1J, d2J, d3J] in place of the spring coefficients KJ.

2.6.6 Power Harvested

For the rotational dampers at the FWT-link junction, the instantaneous power harvested is,

P = ηdθ~̇θLink,ReldT
θ , (2.145)

where dθ is the matrix of the junction rotational damper, given in Eq. 2.121. ~θLink,Rel is

the relative rotation between the link and the FWT, given in Eq. 2.124, and η is the power

takeoff efficiency.

If the WEC is an internal tuned mass damper in the nacelle, then the instantaneous

power harvested depends on the relative translation motion between the nacelle and WEC,

P = ηd1J (ẋ1 + LNac ẋ5 + u̇1x + u̇2x − ẋ1W)2

+ ηd2J

(︁
ẋ2 − LNac ẋ4 + u̇1y + u̇2y − ẏ1W

)︁2
. (2.146)

We model the junction power takeoffs as having efficiency η = 0.82 [143].
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2.6.7 Simplifications for a WEC and FWT aligned along the x-axis

For some of the optimization results, we consider a WEC and FWT aligned along the x-axis

(wave travel direction). In this case, we can reduce the terms in the model and explicitly

check the results. The torsional spring coefficients reduce to,

~Kθ = [0,K5, 0]. (2.147)

We also assume that the junction point on the FWT alignes with the FWT vertical axis,

~LJF = [0, 0, LZJF]. (2.148)

Then, the coupling matrices reduce to,

KRot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K5
L2

z
0 −K5

LxLz
0 K5LZJF

L2
z

+
K5
Lz

0 −K5
L2

z
0 K5

LxLz

0 0 0 0 0 0 0 0 0
−K5
LxLz

0 K5
L2

x
0 −K5LZJF

LxLz
+

K5
Lx

0 K5
LxLz

0 −K5
L2

x

0 0 0 0 0 0 0 0 0
K5
Lz

0 −K5
Lx

0 K5LZJF
LZ

+ K5 0 −K5
Lz

0 +K5
Lx

0 0 0 0 0 0 0 0 0
−K5
L2

z
0 K5

LxLz
0 −K5LZJF

L2
z

+
−K5
Lz

0 K5
L2

z
0 −K5

LxLz

0 0 0 0 0 0 0 0 0
−K5
LxLz

0 −K5
L2

x
0 K5LZJF

LxLz
+
−K5
Lx

0 −K5
LxLz

0 K5
L2

x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.149)
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KRigid =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 K1LZJF 0 −K1 0 0

0 0 0 0 0 0 0 0 0

0 0 K3 0 0 0 0 0 −K3

0 0 0 0 0 0 0 0 0

K1LZJF 0 0 0 K1L2
ZJF 0 −K1LZJF 0 0

0 0 0 0 0 0 0 0 0

−K1 0 0 −K1LZJF 0 0 K1 0 0

0 0 0 0 0 0 0 0 0

0 0 −K3 0 0 0 0 0 K3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.150)

In addition to Eq.s 2.149 and 2.150, if the FWT-WEC has 2 links preventing rotation

between the FWT and WEC, we add the pitch force, F5W , rotational inertia, I55 rotational

added mass, A55, rotational hydrodynamic damping B55, and rotational hydrostatic stiffness

C55 to the FWT matrix. Nondiagonal cross-coupling terms (e.g. A15) are already accounted

for in the link translation-mode matrix.

2.7 Platform modifications

Combining a wave energy converter with a floating wind turbine requires rigidly attach-

ing some components to the platform, such as the linkage frame or an external ballast.

The WEC frame mass may not be negligible compared to the WEC. This was the case for

the experimentally tested 3-OWC system. In this same experiment, we also attached an

external cylinder to the platform to simultaneously resist platform horizontal motion and

provide buoyancy. Adding a neutrally buoyant external ballast to the platform can coun-

teract destabilization caused by an attached WEC. We also consider an idealized damping

element attached to the platform, which can be used to determine some performance limits

of a WEC attached to the FWT.

Here, we describe how a rigidly attached object affects the FWT inertia M, added mass

A, hydrodynamic damping B, and hydrostatic stiffness K matrices. For the specific case of
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a submerged cylindrical ballast encircling the platform, we relate the cylinder geometry to

the FWT matrix equation of motion parameters.

The matrices here correspond to the floating wind turbine degrees of freedom,

~xPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.151)

We assume that the structure has a known inertia matrix about its center of mass (CM).

This CM may not match the FWT CM. We further assume that the structure is symmetrical

about its CM so that its products of inertia are 0.

The structure’s mass matrix about its CM is,

MS ,CM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1S 0 0 0 0 0

0 m2S 0 0 0 0

0 0 m3S 0 0 0

0 0 0 I44S 0 0

0 0 0 0 I55S 0

0 0 0 0 0 I66S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.152)

The structure’s center of mass (CM) in the SWL coordinates is located at,

~LS = [LXS , LYS , LZS ]. (2.153)

Standard strip theory and the parallel axis theorem transform the inertia matrix coordi-

nates from the structure’s CM to the floating wind turbine coordinate system origin at the

still waterline [44, 76]
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MS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1S 0 0 0 LZS m1S −LYS m1S

0 m2S 0 −LZS m2S 0 LXS m2S

0 0 m3S LYS m3S −LXS m3S 0

0 −LZS m2S LYS m3S I44S + L2
ZS m2S + L2

YS m3S LXS LYS m3S −LXS LZS m2S

LZS m1S 0 −LXS m3S LXS LYS m3S I55S + L2
XS m3S + L2

ZS m1S −LYS LZS m1S

−LYS m1S LXS m2S 0 −LXS LZS m2S −LYS LZS m1O I66S + L2
YS m1S + L2

XS m2S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.154)

The derivation of this matrix is very similar to the derivation for FWT-WEC coupling by

a link described in Section 2.6. A similar matrix transforms the structure’s hydrodynamic

added mass and damping, when m is replaced by A or B, respectively. While inertial mass

in all 3 translational directions for an object is always equal, m1S = m2S = m3S , this may

not be the case for the hydrodynamic coefficients.

The hydrostatic parameters follows a similar coordinate system transformation [64],

CHydrostatic
i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ρgAS WL −ρg
∫︀ ∫︀

AS WL
ydA −ρg

∫︀ ∫︀
AS WL

xdA 0

0 0 −ρg
∫︀ ∫︀

AS WL
ydA

(︁
ρg

∫︀ ∫︀
AS WL

y2dA + ρg∀zS ub − mgz
)︁

0 0

0 0 −ρg
∫︀ ∫︀

AS WL
xdA 0

(︁
ρg

∫︀ ∫︀
AS WL

x2dA + ρg∀zS ub − mgz
)︁

0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.155)

where AS WL is the structure’s area at the still waterline. z refers to the inertial center of

the component. zS ub refers to the center of the submerged section of the component. z

is measured positive upwards from the still water line. Eq. 2.155 shows that the frame

changes the floating platform’s center of mass, which affects the pitch hydrostatic restoring

coefficient.

Similarly, we consider the wave forces acting on the structure due to unidirectional

92



waves traveling in the x direction,

~fS ,CM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

0

f3

0

f5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.156)

The forces transmitted to the FWT due to the rigidly attached structure are,

~fS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

0

f3

LYS f3

f5 + LZS f1

LXS f1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.157)

2.7.1 Parameters for a submerged cylindrical ballast

For the submerged cylinder, we model the parameters similarly to those for a cylindrical

spar WEC geometry, as described in Section 2.4.3, using long wavelength approximations

[103].

The submerged cylinder has the shape and location shown in Fig. 2-12. We assume

that it encircles the FWT platform, with a centroid location,

[LXCyl, LYCyl, LZCyl] = [0, 0, LZCyl]. (2.158)

The cylinder length is hCyl, so it extends over the z coordinates,

zCyl = [LZCyl,Keel, LZCyl,Top], (2.159)

The cylinder outer diameter is DCyl, and its mass is mCyl.
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Figure 2-12: External cylindrical ballast rigidly attached to the FWT.
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For the toroid shape encircling the FWT, the cylinder cross-sectional area is,

ACyl =
π

4
(D2

Cyl − D2
FWT ), (2.160)

where we subtract the FWT cross-section from the cylinder outer cross-section.

The total submerged cylinder volume is,

VS ubCyl = ACylhCyl, (2.161)

Assuming the cylinder has an evenly distributed mass, its mass moment of inertia about the

FWT still waterline coordinate system is,

I44Cyl = I55Cyl =
mCylh2

Cyl

12
+ mCylL2

ZCyl. (2.162)

For neutral buoyancy, we set,

mCyl = ρVS ubCyl. (2.163)

The effective surge added mass is found using strip theory,

A11Cyl = ρ

∫︁ LZCyl,Top

LZCyl,Keel

π
D2 − D2

FWT

4
dz = ρπhCyl

D2 − D2
FWT

4
. (2.164)

Similarly, the pitch added mass is,

A55Cyl = ρ

∫︁ LZCyl,Top

LZCyl,Keel

π
D2 − D2

FWT

4
z2dz = ρπhCyl

D2 − D2
FWT

12

(︁
L3

ZCyl,Top − L3
ZCyl,Keel

)︁
.

(2.165)

The surge-pitch added mass coupling is,

A15Cyl = ρ

∫︁ LZCyl,Top

LZCyl,Keel

π
D2 − D2

FWT

4
zdz = ρπ

D2 − D2
FWT

8

(︁
L2

ZCyl,Top − L2
ZCyl,Keel

)︁
. (2.166)
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We approximate the heave added mass as,

A33Cyl =
1
6
ρπ

(︁
D3

cyl − D3
FWT

)︁
, (2.167)

which is the added mass of a submerged sphere with the same frontal area as the cylinder,

(Newman) [103].

Using the G.I. Taylor long wavelength approximation, the heave excitation force is

[103],

f3Cyl = −
(︁
ρVCyl + A33Cyl

)︁ ∂P
∂z
|LZCyl . (2.168)

According to linear plan progressive wave theory, the pressure gradient is [103],

P = ρ
∂φi

∂t
= aRe

{︃
ρg

coshk(z + H)
coshkh

eikx−iωt

}︃
, (2.169)

where the incident wave velocity potential is

φi = aRe
{︃

ig
ω

coshk(z + H)
coshkh

eikx−iωt

}︃
. (2.170)

The effective incremental surge force along the cylinder is due to the frontal area it adds

to the FWT platform,

d f1 =

(︃
2ρπ

D2 − D2
FWT

4
∂P
∂x

)︃
dz. (2.171)

The surge force acting on the spar is the summation of the incremental surge force,

f1 =

∫︁ LZCyl,Top

LZCyl,Keel

d f1. (2.172)

The pitch moment is,

f5 =

∫︁ LZCyl,Top

LZCyl,Keel

zd f1. (2.173)

Using the Haskind relation, the cylinder heave hydrodynamic damping is,

B33Cyl =
k

4ρgVg

⃒⃒⃒⃒⃒
f3

a

⃒⃒⃒⃒⃒2
. (2.174)
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Similarly, the surge and pitch hydrodynamic damping are calculated by the 2D Haskind

relation,

B11 =

∫︁ LZCyl,Top

LZCyl,Keel

|d f1|
2

2a2ρVg
dz, (2.175)

B15 =

∫︁ LZCyl,Top

LZCyl,Keel

z
|d f1|

2

2a2ρVg
dz, (2.176)

B55 =

∫︁ LZCyl,Top

LZCyl,Keel

z2 |d f1|
2

2a2ρVg
dz, (2.177)

where the incremental surge force along the cylinder is given by Eq. 2.171.

The submerged cylinder does not have a hydrostatic stiffness since it is submerged.

The parameters relate to the FWT system equation of motion matrices by

MCyl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mCyl 0 0 0 LZCylmCyl 0

0 mCyl 0 −LZCylmCyl 0 0

0 0 mCyl 0 0 0

0 −LZCylmCyl 0 I44Cyl + L2
ZCylmCyl 0 0

LZCylmCyl 0 0 0 I55Cyl + L2
ZCylmCyl 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.178)

ACyl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11Cyl 0 0 0 A15Cyl 0

0 A11Cyl 0 −A15Cyl 0 0

0 0 A33Cyl 0 0 0

0 −A15Cyl 0 A55Cyl 0 0

A15Cyl 0 0 0 A55Cyl 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.179)

BCyl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11Cyl 0 0 0 B15Cyl 0

0 B11Cyl 0 −B15Cyl 0 0

0 0 B33Cyl 0 0 0

0 −B15Cyl 0 B55Cyl 0 0

B15Cyl 0 0 0 B55Cyl 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.180)
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The forcing vector on the cylinder is,

~fCyl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1Cyl

0

f3Cyl

0

f5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.181)

2.7.2 Ideal Wells Turbine in the Spar

Next, we consider the effects of an ideal horizontal damping element on the FWT. Studying

the effects of a damping element along the spar is useful for understanding how the WEC

affects the FWT dynamics. This damping element could be implemented by the hydroki-

netic Wells turbines shown in Fig. 2-13, which harvest wave power proportional to the

relative velocity between the Wells turbine and incident waves.

We consider a Wells turbine with a damping coefficient, dWellsX, at a submergence depth

of, L3W . Then, similarly to Section 2.7.1, the Wells turbine adds damping to the FWT

platform 6 degrees of freedom damping matrix according to,

BWells =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dWellsX 0 0 0 L3WdWellsX 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

L3WdWellsX 0 0 0 L2
3WdWellsX 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.182)
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(a) (b)

(c)

Figure 2-13: Illustration of the linked FWT and a horizontal tube-like WEC.

99



The ideal damping element adds forcing to the FWT platform,

~fWells =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dWellsXuWellsX

0

0

0

dWellsXL3WuWellsX

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.183)

where uWellsX is the incident horizontal wave velocity at the depth of the damping ele-

ment,

uWellsX =
−agk
ω

cosh(k(L3W + H)
cosh(kH)

eikLXW +iφ−iωt. (2.184)

The instantaneous power harvested is,

P = ηdWellsX (ẋ1 + L3W ẋ5 − uWellsX)2 . (2.185)

A real attached WEC affects the FWT dynamics similarly to a combined idealized

damping element and inertia element.

2.8 Final equations of motion matrices

The equation of motion for the entire coupled FWT-WEC system has the form,

I(ω)~̈x + B(ω)~̇x + K~x +

∫︁ t

0
L~xdt = ~f (ω). (2.186)

Here, we introduce the matrix, L, which contains coefficients used in integral control for

the wind turbine rotor. Section 3.3.2 describes details of L, and the rotor angular velocity

Ω, and collective blade pitch, θ.
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The degrees of freedom are

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~xFWT

~u

Ω

θ

~xWEC1

~xWEC2

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

u1x

u2x

u1y

u2y

Ω

θ

x1W

y1W

z1W

x2W

y2W

z2W

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.187)

The structural mass and frequency-dependent added mass are accounted for in the in-

ertia matrix,

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IFWT + IS tructure 0 0 ...

0 IWEC1 0 ...

0 0 IWEC2 ...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.188)
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The damping matrix is,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BFWT + BS tructure + BRot,WEC1(1 : 6, 1 : 9) + BRot,WEC2(1 : 6, 1 : 9) 0 0 ...

0 BWEC1 + BRot,WEC1(7 : 9, 1 : 9) 0 ...

0 0 BWEC2 + +BRot,WEC2(7 : 9, 1 : 9) ...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.189)

The stiffness matrix includes the summation of,

K = KFWT +CS tructure +KRot,WEC1 +KRigid,WEC1 +KθRel
WF ,WEC1 +KWEC1 +KWEC2 + ...., (2.190)

where 0 submatrices are added to each matrix term according to which degrees of freedom

the term affects, following the pattern shown in Eq. 2.189.

The forcing vector is,

~f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~fFWT + ~fS tructure

~fWEC1

~fWEC2

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.191)

2.9 Response Statistics in Stochastic Forcing

Figure 2-14: Calculation procedure for response statistics in the frequency domain.

Fig. 2-14 outlines the calculation procedure for computing the system response statis-

tics when excited by the stochastic wave forcing. Eq. 2.186 is the combined FWT-WEC

equation of motion. Section 2.2 describes the continuous ocean wave elevation power spec-

trum. Section 2.3.1 reduces the continuous bending problem of the tower to 4 degrees of

freedom corresponding to the tower’s lowest-frequency bending modes and relates those

bending modes to stress at the tower root. In this Section, we use the Weiner Khinchine
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theorem to relate the equation of motion and ocean wave elevation power spectrum to the

system response statistics.

The complex frequency response function of the system with the equation of motion

defined in Eq. 2.186 for waves with amplitude a and frequency ω is,

α(ω) =
~X
a

= (−ω2I + jωB + K)−1
~F
a
. (2.192)

Using the Wiener-Khinchine theorem for a joint stationary process, the power spectrum

matrix of the system response is [116],

S +
xi x j

(ω) = αS +
uα

T*, (2.193)

where αT* is the conjugate transpose of α. S +
xi x j

(ω) are the cross-spectral density functions

between two degrees of freedom. S +
u is the single-sided wave forcing matrix,

S +
u =

⎛⎜⎜⎜⎜⎜⎝ℐ ~fa
⎞⎟⎟⎟⎟⎟⎠ S +

u

⎛⎜⎜⎜⎜⎜⎝ℐ ~fa
⎞⎟⎟⎟⎟⎟⎠T*

, (2.194)

where ℐ is the identity matrix, transforming the forcing vector into a forcing matrix.

The standard deviation in the response of a degree of freedom, xi, is [116],

σxi =

√︃∫︁ ∞

0
S +

xi xi
(ω)dω. (2.195)

2.9.1 Stress statistics

Traditional time-domain simulations rainflow-count the alternating stress cycles over a

structure’s lifetime to determine the equivalent fatigue stress (EFS) [96, 117]. The Na-

tional Renewable Energy Laboratory provides several programs to rainflow count the loads

based on loading time series [61]. We use the approach described in [101] to compute the

equivalent fatigue stress based on dynamics response statistics found using the frequency-

domain approach.

As the tower vibrates in its two lowest frequency bending modes, the maximum stress
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at the tower base, as given in Eq. 2.22 based on ANSYS analysis, is,

sBase,Max = 330α1(t) + 15050α2(t) MPa, (2.196)

where α1 is the nacelle deflection due to the first fore-aft bending frequency and α2 is the

nacelle deflection due to the second fore-aft bending frequency. Using results from ANSYS

static analysis, the thrust force on the rotor due to steady wind causes an additional mean

stress on the tower base,

sBase,Thrust = s = 9.03 × 10−2FThrust (VHub) MPa, (2.197)

where the rotor thrust force, FThrust, in units of kN, is a function of the hub-height wind

speed as given in [68].

For a given sea and wind state, the tower bending is considered a stationary, narrow-

banded Gaussian process, allowing us to approximate the fluctuating stress peaks, sP, from

Eq. 2.196, with a Rayleigh probability density,

fS p(sp) =
sp

σ2
S p

e
−s2

p
2σ2

S p , sp > 0, (2.198)

where σS p is the standard deviation of the stress. We approximate the stress cycle period

as,

Tz = 2π
σS p

σ̇S p

, (2.199)

where

σ̇S p =

√︃∫︁ ∞

0
ω2S +

S p(ω)dω. (2.200)

The wave-induced stress power spectral density is,

S +
S p(ω) = |330Hα1(ω) + 15050Hα2(ω)|2S +

u , (2.201)

where Hα1(ω) and Hα2(ω) are the transfer functions of the tower bending coefficients and
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S +
u is the ocean power spectral density. We approximate the number of cycles of a certain

stress amplitude and mean (sp, s) during each wind/sea state as,

nState,sp,s ≈ fS p(sp) ∆S p
TState

Tz
, (2.202)

where ∆S p is the stress peak step-width used in our numerical summation, and the time

spent in a given sea state over the device lifetime is,

TState = pStateTLife. (2.203)

pState is the fraction of the device’s lifetime, TLife, when the structure is in a certain wind-sea

state based on historical site data.

From Basquin’s equation, the number of cycles to fatigue failure for a stress mean/peak

pair is (Dowling, 2007),

NF =
1
2

(︃
sUlt − |s|

sp

)︃m

, (2.204)

where for the steel material properties, we use ultimate stress, sUlt = 2260 MPa, and Wohler

parameter m = 5, which are limits used by Matha (2009). Using the Palmgren-Miner Rule,

the damage incurred over the device lifetime is,

DLife =
∑︁
States

∑︁
sp,s pairs

nS tate,sp,s

NF
, (2.205)

where D ≥ 1 indicates likely device failure.

The equivalent fatigue stress (EFS) is the constant peak-peak stress amplitude applied

over the entire turbine lifetime that causes the same accumulated damage as caused by the

stochastic loads. Rearranging Eq.s 2.202-2.205 shows

EFS = 2
(︃

DLife

2nLife

)︃1/m

(σUlt − |sLife|) , (2.206)
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where nLife is the total stress cycles over the device’s lifetime,

nLife =
∑︁
States

TState

Tz
, (2.207)

and sLife is the weighted mean stress over the device’s lifetime,

sLife =
∑︁
States

pStatesState. (2.208)
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Chapter 3

Statistical Linearization of Nonlinear

FWT and WEC Dynamics

3.1 Introduction

Many concepts have been considered for improving offshore wind turbine performance:

different platform designs, tower and rotor types, controls, and hybrid systems with wave

energy converters [96], [127]. Dynamics studies aid in assessing these different wind tur-

bine concepts. Wind turbines are complex systems, comprising of coupled aerodynamic,

hydrodynamic, elastic, and control subsystems, which themselves contain stochasticities

and nonlinearities. There are two traditional approaches to modeling wind turbine dynam-

ics.

The first, simpler approach is a linear frequency-domain analysis [103]. This approach

considers linear wave forcing while ignoring nonlinear effects related to viscosity or wind

thrust. The main advantage of this approach is its very fast runtime for computing steady-

state responses. The limitation is that it does not capture nonlinear dynamic characteristics.

The second approach is a nonlinear time-domain simulation using a software such as

FAST [70]. This approach can consider nonlinear wave viscous forcing and wind turbine

thrust in addition to linear wave forcing. The main advantages of time domain simulations

over linearized frequency domain models are the ability to compute transient effects and

responses when nonlinear effects are significant, such as during storms [70]. The intrinsic
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challenge of time-domain simulations is high computation cost. The number of Monte

Carlo simulation runs required for the results to converge to the theoretical statistic values

may be on the order of 10-100 [113, 116].

The two methods are appropriate for different stages of design and machines with dif-

ferent degrees of nonlinearity. The linear approach will always be the fastest for basic

design analysis, while only time domain simulations are rigorous enough to verify if a

wind turbine meets design standards. Some machines, such as the OC3-Hywind FWT be-

have predominantly linearly, even in rough seas. On the other had, floating wind turbines

with large near-surface volumes or wave energy converters with large frontal areas can have

more significant nonlinear viscous effects [118, 143].

In between the Taylor series linearized frequency domain and nonlinear time domain

are an array of other methods for computing nonlinear dynamics effects with better effi-

ciency than simulation time-stepping. These approaches are summarized in [72]:

1. Statistical linearization replaces nonlinear terms with equivalent linear terms in the

equation of motion. The values of the linear terms are chosen so that they minimize

the statistical difference between the true solution and approximation. Restrictions

on this approach are that one must make assumptions about the response probabil-

ity distribution: normally one assumes it is Gaussian. This is the case for offshore

structures that are weakly nonlinear [4]. The approach can easily be generalized to

multiple degrees of freedom, non-white excitations, and non-stationary excitations

and responses [116].

2. Perturbation methods can solve the nonlinear equation when the nonlinearities are

of a sufficiently smaller order than the linearities. Then the system response can be

expanded into a series where the dominant term is linear and the nonlinear terms

depend on that dominant term.

3. The stochastic averaging method reduces the stochastic dynamics to fluctuating am-

plitude envelopes and phases. An added advantage of stochastic averaging is that it

often reduces the dimensionality of the problem. The method is limited to broadband

excitations, light damping, and small nonlinearities [72, 115].
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4. Moment closure schemes make assumptions about the response probabilistic mo-

ments to solve the nonlinear stochastic differential equations. That is, they ignore

higher moments or assume the response is Gaussian distributed. While this approach

is more complex than statistical linearization, it can compute the responses of sys-

tems with non-Gaussian statistics, such as bimodality and heavy tails [72].

5. The Fokker-Planck-Kolmogorov equation models the diffusion of probability in state

space, analgously to the heat equation. It usually requires a finite element approach

to solve for multiple degree-of-freedom systems.

Based on the above list, statistical linearization is the most computationally efficient

and simplest approach for machines in the ocean environment, where the wave forcing

is largely Gaussian, the system has many degrees of freedom, and the system is weakly

nonlinear.

Statistical linearization was first developed independently by Booton for control engi-

neering [11] and Caughey [18] for structural nonlinearities. Applications that have used

statistical linearization in the past include the sliding motions of a structure on a randomly

moving surface [25], nonlinear soil-structure interaction during building vibration (Chu,

1985) [21], large amplitude responses of clamped plates and skin structures (Mei and Paul,

1986) [98], the motion of a vehicle traversing rough ground (Harrison and Hammond,

1986) [59], and the sloshing of liquids in tanks subject to earthquake excitation (Sakata,

1984) [119].

In the field of offshore engineering, Gumestad and Connor (1983) [55] apply statistical

linearization to solve the problem of viscous wave force on a long piled steel platform,

which resonates with the harmonics of the dominant wave frequency. Gumestad and Con-

nor compute more accurate responses when using a cubic probability distribution instead

of a Guassian distribution. Spanos and Agarwal [130] apply the method to the response of

a tension leg platform in rough seas. Leira [89] considers viscous drag forces on multiple

degree-of-freedom systems. Grigoriu and Alibe [54] show that Taylor series linearization

of the viscous drag force underestimate an offshore platform’s motion while statistical lin-

earization is sufficient. Shao et al. [125] compare the statistical linearization method to
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experimental results of platform heave, and find good agreement in moderate sea states.

In this chapter, we apply the method of statistical linearization to a floating wind turbine

to account for nonlinearities in the frequency domain. First, we briefly derive the statisti-

cal linearization method. Then, we describe three nonlinear effects on the floating wind

turbine: viscous wave forcing, nonlinear aerodynamics acting on a nonlinearly controlled

rotor, and nonlinear mooring lines. In Section 3.3.4, we describe the traditional Taylor

series linearization that may be used for some nonlinear forces, so that we may compare

these traditional linear results with the statistically linearized results. In Section 3.4, we

compare the response amplitude operators and response statistics found using Taylor series

linearization, statistical linearization, and time domain simulations. We show that statisti-

cal linearization accounts for nonlinear effects neglected by Taylor series lineraization and

computes the responses with over 100 times higher computational efficiency than the time

domain simulations.

In Chapter 4, we model and statistically linearize a wave energy converter (WEC) with a

hydrostatic cubic nonlinear nonlinearity. In Chapter 6, we optimize this WEC for maximum

power robustness and compare it to linear WEC’s.

3.2 Derivation of the Statistical Linearization Method

Figure 3-1: Calculation procedure for response statistics in the frequency domiain with
statistical linearization of the nonlinear terms.

The statistical linearization procedure is sketched in Fig. 3-1. To illustrate the method,

we first consider a single degree-of-freedom oscillator with a nonlinear forcing function, f ,

ẍ + βẋ + αx = f (t, x, ẋ), (3.1)

where β and α are constants, and f (t, x, ẋ) is a nonlinear function.

110



Statistical linearization replaces the nonlinear system of Eq. 3.1 with the equivalent

linear system,

ẍ0 + (β + βeq)ẋ0 + (α + αeq)x0 + αmx = f0(t) + m f . (3.2)

The first step to deriving Eq. 3.2 is to decompose the general problem into a mean

component which is readily solvable, and a zero-mean fluctuating component which can

undergo statistical linearization. To simplify the derivation, we assume that the forcing f ,

and response x, are stationary processes. We define,

x(t) = mx + x0. (3.3)

f (t) = m f + f0. (3.4)

mx and m f are the mean components and x0 and f0 are the 0-mean components. Taking the

expectation of both sides of Eq. 3.1 shows,

αE{x} = αmx = E{ f (t, x, ẋ)} = m f . (3.5)

We substitute Eq.s 3.3 and 3.4 into Eq. 3.1 and subtract Eq. 3.5,

ẍ0 + βẋ0 + αx0 = f (t, x, ẋ) − m f . (3.6)

The final solution will have the form,

x(t) = x0 + mx, (3.7)

where

mx =
E{ f (t, x, ẋ)}

α
. (3.8)

This decomposition is relevant for the nonzero-mean wind thrust on the floating wind

turbine, which causes a mean response of the rotor angular velocity and blade pitch, and

platform surge and pitch displacement.
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Now, we consider the 0-mean nonlinear process,

ẍ0 + βẋ0 + αx0 − f0(x0, ẋ0, t) = 0, (3.9)

which we will linearize to,

ẍ0 + (β + βeq)ẋ0 + (α + αeq)x0 = 0. (3.10)

Nonlinear forcing is incorporated into the equation of motion as negative equivalent stiff-

ness or damping.

The error between the equivalent linear system and nonlinear system is Eq. 3.9 - Eq.

3.10,

ε = − f0(x0, ẋ0, t) − βeq ẋ0 − αeqx0. (3.11)

Traditionally, one chooses values of βeq and αEq that minimize the expectation of the

squared error,
∂E{ε2}

∂βeq
= 0. (3.12)

∂E{ε2}

∂αeq
= 0. (3.13)

Substituting Eq. 3.11 into Eq.s 3.12 and 3.13,

∂E{ε2}

∂βeq
= E{−2ẋ0

(︁
− f0(x0, ẋ0, t) − βeq ẋ0 − αeqx0

)︁
} = 0. (3.14)

∂E{ε2}

∂αeq
= E{−2x0

(︁
− f0(x0, ẋ0, t) − βeq ẋ0 − αeqx0

)︁
} = 0. (3.15)

A stationary process with zero mean has the property,

E{xẋ} = 0. (3.16)

The variances of the process are defined as,

E{ẋ2} = σ2
ẋ, (3.17)
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E{x2} = σ2
x. (3.18)

Substituting Eq.s 3.16-3.18 into Eq.s 3.14 and 3.15 results in,

βEq =
E{−ẋ0 f0(x0, ẋ0, t)}

σ2
ẋ

(3.19)

αEq =
E{−x0 f0(x0, ẋ0, t)}

σ2
x

. (3.20)

A Gaussian process has the property,

E{ f (~x)~x} = E{~x~xT }E{∇ f (~x)}. (3.21)

Applying Eq. 3.21 to Eq.s 3.19 and 3.20 results in the final forms,

βEq = E
{︃
−∂ f0(x, ẋ, t)

∂ẋ0

}︃
, (3.22)

αEq = E
{︃
−∂ f0(x, ẋ, t)

∂x0

}︃
. (3.23)

As shown in [116], the formulas in Eq. 3.22 and 3.23 are readily generalizable to

multiple degrees of freedom.

Finding the expectations of the nonlinear functions requires the joint probability density

functions (p.d.f.’s) of the different degrees of freedom. We assume that the responses are

Gaussian, so that the joint p.d.f.’s have the form [116],

f (~x) =
1

(2π)n/2|V|
exp

(︃
−1
2

(~x − ~mx)T V−1(~x − ~mx)
)︃
, (3.24)

where the covariance matrix, which includes the variances and covariances of the FWT-

WEC responses is found using the Weiner-Khinchine theorem, Eq. 2.193,

V = S +
xi,x j

. (3.25)

To summarize the derived results, computing the statistically linearized responses re-

113



quires,

1. Solve the linear system while neglecting nonliearities, according to Eq. 2.193.

2. Use the covariance values of the linear system response to estimate the probability

density functions according to the Gaussian process assumption, Eq. 3.24.

3. Use these p.d.f.’s to estimate the linear terms, Eq. 3.22, 3.23, in the statistically

equivalent linear equation of motion, Eq. 3.10.

4. Repeat the Weiner-Khinchine process, Eq. 2.193 for the equivalent linear system.

5. Repeat steps 2-4 until the solution converges within an acceptable limit.

This procedure is illustrated in Fig. 3-1.

3.3 Nonlinear Floating Wind Turbine Dynamics

We consider 3 nonlinearities of the floating wind turbine: viscous wave forcing, nonlinear

wind thrust on the nonlinearly controlled rotor, and nonlinear mooring lines.

3.3.1 Viscous wave forcing

Viscous forces play a significant role in rough sea states for some FWT’s [66, 118]. We

consider the effects of viscous forcing on the OC3-Hywind spar and OC4-DeepCwind

semisubmersible platforms shown in Fig. 2-2.

We consider the degrees of freedom,

~xPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.26)
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Using Morison’s equation, the instantaneous viscous surge force and pitch moment

acting on the FWT are,

~FVisc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FV1

0

0

0

FV5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2ρCD

∫︀ 0

T
D q̇ |q̇| dz

0

0

0

−1
2ρCD

∫︀ 0

T
zD q̇ |q̇| dz

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.27)

D is the effective platform diameter, plotted in Fig. 3-2 for the OC3-Hywind spar and OC4-

DeepCwind semisubmersible platforms. The OC3-Hywind has a diameter of 6.5 m at the

still water line, and a bottom diameter of 9.4 m. The OC4-DeepCwind semisubmersible

has a main column with a diameter of 6.5 m, and 3 columns with diameters of 12 m at the

still water line and bottom diamters of 24 m. The diameters of these 4 columns are summed

to create the effective platform diameter plotted in Fig. 3-2.

We use the viscous drag coefficient, CD = 0.6 [66].

We define the total horizontal velocity of the water relative to the platform as

q̇ = Vwater − Vplatform

=

n∑︁
j

Re

(︃{︃
−a jk jg
ω j

cosh k j(z + h)
cosh k jh

− iω jX1 j − izω jX5 j

)︃
ei(ω jt+φ j)

}︃
, (3.28)

where h is the water depth and q̇ is a function of the depth below the water, z. Future work

could increase the accuracy of Vwater by accounting for radiation and diffraction effects.

We sum n ocean wave and platform response harmonics. For each ocean wave frequency

harmonic, i, φ j is a random variable with a uniform distribution for 0 ≤ φ j ≤ 2π. The

Central Limit Theorem guarantees that q̇ will be a Gaussian stochastic process for large

n. As derived in Section 3.2, we may determine statistically equivalent linear damping
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Figure 3-2: The effective platform diameter using for computing the viscous loads of the
(Blue) OC3-Hywind spar and (Red) OC4-DeepCwind semisubmersible.
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coefficients in the surge and pitch modes of the form

BVisc,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E
{︁
∂FV1
∂ẋ1

}︁
0 −E

{︁
∂FV1
∂ẋ5

}︁
0 0 0

0 0 0 0 0 0

−E
{︁
∂FV5
∂ẋ1

}︁
0 −E

{︁
∂FV5
∂ẋ5

}︁
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.29)

where E{} is the expectation of the Gaussian process. Substituting Eq.s 3.27 and 3.28 into

Eq. 3.29, we obtain,

BVisc,eq = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρCD

∫︀ 0

T
D(z) E {|q̇(z)|} dz 0 ρCD

∫︀ 0

T
zD(z) E {|q̇|} dz 0 0 0

0 0 0 0 0 0

−ρCD

∫︀ 0

T
zD(z) E {|q̇|} dz 0 −ρCD

∫︀ 0

T
z2D(z) E {|q̇|} dz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.30)

We re-emphasize that this damping matrix, which affects the platform surge and pitch

damping, is added to the platform damping matrix, Eq.s 2.8 as per Eq. 2.189. The platform

damping matrix has nonzero damping terms for the platform degrees of freedom.

The Gaussian process q̇ has a probability density of the form,

fQ̇(q̇) =
1

√
2πσq̇

e
−

(q̇−q̇)2

2σ2
q̇ , (3.31)

where σq̇ is the random variable’s standard deviation and q̇ = 0 is its mean. Then, the

expected value of |q̇| is

E {|q̇|} =

∫︁ ∞

−∞

|q̇| fQ̇(q̇) dq̇ =

√
2σq̇
√
π
. (3.32)

117



BVisc,eq on the left-hand-side of the equation of motion accounts for the external forcing

of the incident water velocity on the platform.

In our frequency-domain method of calculating the floating wind turbine response, we

iteratively solve for BVisc,eq and ~FVisc,eq until the system response, σ~X converges to within

0.1%, which typically requires less than 7 iterations for the OC3 spar.

3.3.2 Rotor Aerodynamics and Control

Thrust forcing on the rotor is a more complex problem than the wave viscous forcing. We

model it as function of the platform surge and pitch, and rotor speed and blade pitch angle.

We add two degrees of freedom to the FWT model; rotor speed in rad/s and collective

blade pitch (all 3 blades pitch identically),

(IRotor + N2
GearIGen)Ω̇ = QAero − NGearQGen, (3.33)

θ = KPNGear(Ω −ΩTarget) + NGear

∫︁ t

0
KI(Ω −ΩTarget)dt, (3.34)

where NGear = 97 is the high-speed to low-speed gearbox ratio, IRotor = 867, 637, 000Kgm2,

and IGen = 534 Kgm2. The target speed for blade pitch control is, ΩTarget = 122.9 rad/s.

QAero is the aerodynamic torque and QGen is the generator torque. It is assumed that the

drive shaft is sufficiently stiff that torsional deformation does not significantly affect the

dynamics. These two equations of motion (rows) and degrees of freedom (columns) are

added to the FWT-WEC matrix equation of motion in Eq. 2.186. Before statistical lin-

earization, the only linear coefficients added to the EOM matrices for these two equations

are (IRotor + N2
GearIGen) for the rotor inertia and 1 for the rotor blade pitch, θ.

We use the control algorithm described by Jonkman in [68] to adjust QGen. As described

in [68], the National Renewable Energy Laboraty (NREL) reference 5-MW wind turbine
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control law for the generator torque as a function of its speed is,

QGen(Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Nm, if Ω < 70.2 rad/s, Region 1

922(Ω − 70.2) Nm, if 70.2 < Ω < 91.2 rad/s, Region 1.5

2.332Ω2 Nm, if 91.2 < Ω < 121.7 rad/s, Region 2

3896(Ω − 111) Nm, if 121.7 < Ω < 122.9 rad/s, Region 2.5

43, 529 Nm, Ω > 122.9 rad/s, Region 3

(3.35)

This control law is plotted in Fig. 3-3.

Figure 3-3: Torque versus speed response of the variable-speed rotor controller. Image
from Jonkman, 2009 [68].

The NREL reference wind turbine uses blade pitch control in region 3 (when Ω >

122 rad/s) to try to maintain Ω = 123 rad/s. The control law for the blade pitch is the

proportional-integral control in Eq. 3.34. Found by control optimization in [68], the control

gains depend on the blade pitch according to,

KP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0 if Ω < 122 rad/s, Regions 1-2.5
0.00628
1+ θ

0.110
, if Ω > 122 rad/s, Region 3,

(3.36)
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KI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0 if Ω < 122 rad/s, Regions 1-2.5
0.0008965

1+ θ
0.110

, if Ω > 122 rad/s, Region 3,
(3.37)

where θ is in units of radians.

In Fig. 3-4, we reproduce the plots by Jonkman [68] that show the equilibrium values

of Ω and β.

Figure 3-4: Equilibrium values of generator speed, generator torque, generator power, and
blade pitch, among other variables. Image from Jonkman, 2009 [68].

In addition to the nonlinear control of the generator torque and blade pitch, the rotor
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aerodynamics are nonlinear. The power coefficient, thrust coefficient, and torque coeffi-

cients are defined as,

∙ power coefficient,

CP =
PRotor

1
2ρaS q̇3

W

, (3.38)

∙ thrust coefficient,

CT =
FThrust

1
2ρaS q̇2

W

, (3.39)

∙ torque coefficient,

CQ =
QAero

1
2ρaS Rq̇2

W

, (3.40)

where ρa is the air density, R is the rotor radius, S is the rotor swept area, and q̇W is the

wind velocity relative to the nacelle,

q̇W = U − ẋ1 − LNac ẋ5. (3.41)

U is the steady, uniform wind speed and LNac is the elevation of the nacelle above the still

waterline.

Fig.s 3-5 to 3-7 show the power coefficient, thrust coefficient, and torque coefficient as

functions of the blade pitch, β, and tip-speed ratio,

TS R =
RRotorΩ

q̇W
. (3.42)

The values in Fig.s 3-5 to 3-7 were computed using the NREL blade element momentum

program AeroDyn [69].

Statistically Equivalent Matrices

The 5 nonlinear forces related to the rotor as described in the previous section are,

1. Rotor aerodynamic thrust, FThrust, implicitly defined in Eq. 3.39 and plotted in Fig.

3-6. The thrust force multiplied by the nacelle height causes a pitch torque.

2. Aerodynamic torque, QAero, implicitly defined in Eq. 3.40 and plotted in Fig. 3-7.
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Figure 3-5: NREL-Hywind power coefficient.

Figure 3-6: NREL-Hywind thrust coefficient.
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Figure 3-7: NREL-Hywind torque coefficient.

3. Generator torque, NGearQGen, defined in Eq. 3.35 and plotted in Fig. 3-3.

4. Blade pitch proportional control, KPNGear(Ω −ΩTarget), defined in Eq. 3.36,

5. Blade pitch integral control, NGear

∫︀ t

0
KI(Ω −ΩTarget), defined in Eq. 3.37.

These nonlinear forces are functions of the 4 degrees of freedom,

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x5

Ω

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

platform surge

platform pitch about SWL

rotor angular velocity

rotor blade pitch

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.43)

The statistically equivalent linear matrices defined below are added to the full equation

of motion matrices in Eq. 2.186 (when additional columns and rows are added for the two

degrees of freedom, Ω and θ).

As per Eq.s 3.22 and 3.23, we determine statistically equivalent damping and stiffness

matrices by taking the expectations of the partial derivatives of the nonlinear forces with

respect to each degree-of-freedom’s velocity and displacement.
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Each degree of freedom is directly affected by the nonlinear forces according to,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x5

Ω

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (FThrust)

LNac f (FThrust)

f ((QAero,NGearQGen)

f
(︁
KPNGear(Ω −ΩTarget),NGear

∫︀ t

0
KI(Ω −ΩTarget)

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.44)

The 5 nonlinear forces are functions of each degree of freedom according to,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FThrust

QAero

NGearQGen

FP,Pitch = −KPNGear(Ω −ΩTarget)

FI,Pitch = −NGear

∫︀ t

0
KI(Ω −ΩTarget)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ẋ1, ẋ5,Ω, θ)

f (ẋ1, ẋ5,Ω, θ)

f (Ω)

f (Ω, θ)

f (Ω, θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.45)

where we define FP,Pitch and FI,Pitch to simplify Eq.s 3.49 and 3.50 below.

Accordingly, the statistically equivalent linear terms are

BRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E
{︁
∂FThrust
∂ẋ1

}︁
−E

{︁
∂FThrust
∂ẋ5

}︁
0 0

−LNacE
{︁
∂FThrust
∂ẋ1

}︁
−LNacE

{︁
∂FThrust
∂ẋ5

}︁
0 0

−E
{︁
∂QAero
∂ẋ1

}︁
−E

{︁
∂QAero
∂ẋ5

}︁
0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.46)

KRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −E
{︁
∂FThrust
∂Ω

}︁
−E

{︁
∂FThrust
∂θ

}︁
0 0 −LNacE

{︁
∂FThrust
∂Ω

}︁
−LNacE

{︁
∂FThrust
∂θ

}︁
0 0 −E

{︁
∂(NGearQGen)

∂Ω

}︁
− E

{︁
∂QAero
∂Ω

}︁
−E

{︁
∂QAero
∂θ

}︁
0 0 −E

{︁
FP,Pitch

∂Ω

}︁
−E

{︁
FP,Pitch

∂θ

}︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.47)
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LRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 −E
{︁

FI,Pitch

∂Ω

}︁
−E

{︁
FI,Pitch

∂θ

}︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.48)

BRotor,eq, KRotor,eq, and LRotor,eq can be further expressed as,

BRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρaS E {CT q̇W} −LNacρaS E {CT q̇W} 0 0

−LNacρaS E {CT q̇W} −L2
NacρaS E {CT q̇W} 0 0

−ρaS RE
{︀
CQq̇W

}︀
−LNacρaS RE

{︀
CQq̇W

}︀
0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.49)

KRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1
2ρaS E

{︁
q̇2

W
∂(CT )
∂Ω

}︁
−1

2ρaS E
{︁
q̇2

W
∂(CT )
∂θ

}︁
0 0 −LNac

1
2ρaS E

{︁
q̇2

W
∂(CT )
∂Ω

}︁
−LNac

1
2ρaS E

{︁
q̇2

W
∂(CT )
∂θ

}︁
0 0 −E

{︁
∂(NGearQGen)

∂Ω

}︁
− 1

2ρaS RE
{︂
q̇2

W
∂(CQ)
∂Ω

}︂
−1

2ρaS RE
{︂
q̇2

W
∂(CQ)
∂θ

}︂
0 0 NGearE

{︁
Kp

}︁
NGearE

{︁
∂Kp

∂θ

(︁
Ω −ΩTarget

)︁}︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.50)

LRotor,eq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 NGearE {KI} NGearE
{︁
∂KI
∂θ

(︁
Ω −ΩTarget

)︁}︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.51)

The statistically linearized damping, stiffness, and integral matrices described here are

added to the linear FWT damping and stiffness matrices described in Section 2.8.

To determine the coefficients in Eq.s 3.49, 3.50, and 3.51, we numerically determine the

Gaussian p.d.f.’s, f~x, for grids of possible (rotor velocity, blade pitch, wind speed relative

to the rotor) values using Matlab’s built-in function mvnpdf.m. We correspond values of

the nonlinear functions to the p.d.f. using Matlab’s interp3.m function to numerically in-

terpolate values over pre-computed grids of the nonlinear function. Then, we numerically
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sum,

E{h} =

∫︁ ∞

0
f~xh∂~x, (3.52)

for the nonlinear function, h. Statistically linearizing the wind thrust-rotor problem typi-

cally requires less than 8 iterations to converge.

Additionally, the steady-wind causes a mean force on the rotor,

FThrust =
1
2
ρaCT

⎛⎜⎜⎜⎜⎝RΩ

U
, θ

⎞⎟⎟⎟⎟⎠ S U2. (3.53)

As derived in Eq. 3.8 and shown Fig. 3-4, this force and wind speed results in a mean

platform surge and pitch, tower deflection, rotor angular velocity, and blade pitch.

3.3.3 Mooring Lines

Our mooring lines model is simpler than the viscous wave forcing and rotor aerodynam-

ics/control. As described in [58], modeling the mooring lines as quasi-static springs (rather

than accounting for their viscous forces, damping, and inertia) is usually sufficient for de-

termining their effect on platform motion. Except for at the extreme platform deflections,

catenary mooring lines apply a negligible force on the platform and therefore have a negli-

gible effect on the dynamics. Nevertheless, here we demonstrate how one could statistically

linearize this nonlinear force.

We consider just the lateral fairleads force, which affects the platform surge and pitch.

Accordingly, if the degrees of freedom considered are part of the vector,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1

x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ platform surge

platform pitch

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (3.54)

then the mooring line force affects those degrees of freedom by

FMooring =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 LFL

LFL L2
FL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ F S urge
Mooring

, (3.55)

where LFL = −70 m is the fairleads depth for the OC3 platform, and F S urge
Mooring

is the fairleads
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force in the surge direction.

We numerically compute the fairleads force in the surge direction as a function of the

fairleads horizontal displacement (which accounts for platform surge and pitch) using the

NREL multi-segment quasi-static model, MAP++ [94]. Fig. 3-8 plots the results.

Figure 3-8: NREL-Hywind power coefficient.

As per Eq. 3.23, the statistically equivalent mooring line stiffness matrix is,

KMooring,eq = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 LFL

LFL L2
FL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂F S urge

Mooring

∂qFL

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3.56)

where qFL is the platform horizontal deflection at the fairleads accounting for platform

surge and pitch,

qFL = x1 + LFLx5. (3.57)

In our Matlab code implementation of the FWT model, we compute the statistics (standard

deviation) of qFL by summing the transfer functions of the platform surge and pitch for

each discretized wave frequency, and then multiplying by the wave power spectrum. This

is computationally more efficient than adding an additional degree of freedom to the model
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to track qFL.

3.3.4 Taylor Series Linearization

The traditional frequency domain dynamics computation uses linearized terms and only 1

iteration of the Weiner-Khinchine equation, Eq. 2.193. In this procedure, one linearizes

nonlinear terms using the first-order terms of Taylor series expansion,

fNon(x1, x2, ...) ≈ fNon(x1,Eq, x2,Eq, ...) +
∂ fNon

∂x1

⃒⃒⃒⃒⃒
~xEq

(︁
x1 − x1,Eq

)︁
+
∂ fNon

∂x2

⃒⃒⃒⃒⃒
~xEq

(︁
x2 − x2,Eq

)︁
...

(3.58)

where (x1,Eq, x2,Eq, ...) are the equilibrium d.o.f. values. Eq. 3.58 shows that a nonzero Tay-

lor series linear term exists if the first derivative of the function is nonzero when evaluated

at its equilibrium value.

Viscous wave forcing

Without a mean fluid flow (current), equilibrium values of the viscous force and its deriva-

tives equal 0. That is, Taylor series linearization cannot account for the viscous forcing

effects.

Rotor aerodynamics and control

We define the wind thrust force, based on the definition in Eq. 3.39 as,

FThrust =
1
2
ρaS CT (U − ẋ1 − LNac ẋ5)2 , (3.59)

which is a nonlinear function of the platform surge x1, pitch x5, rotor angular velocity Ω,

and collective blade pitch θ. The mean wind speed corresponds to a mean set of,

~xEq = (x1Eq, x5Eq,ΩEq, θEq), (3.60)

as shown in Fig. 3-4. By definition of a equilibrium vibration, the mean platform velocities

ẋ1Eq and ẋ5Eq are zero.
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We linearize the wind thrust force as,

FThrust, Taylor ≈
∂FThrust

∂ẋ1

⃒⃒⃒⃒⃒
~xEq

ẋ1+
∂FThrust

∂ẋ5

⃒⃒⃒⃒⃒
~xEq

ẋ5+
∂FThrust

∂Ω

⃒⃒⃒⃒⃒
~xEq

(︁
Ω −ΩEq

)︁
+
∂FThrust

∂θ

⃒⃒⃒⃒⃒
~xEq

(︁
θ − θEq

)︁
,

(3.61)

which can be expressed as,

FThrust, Taylor ≈ −ρaS CT (U)ẋ1 − ρaS CT (U)LNac ẋ5

+
1
2
ρaS U2∂CT (U)

∂Ω

(︁
Ω −ΩEq

)︁
+

1
2
ρaS U2∂CT (U)

∂θ

(︁
θ − θEq

)︁
. (3.62)

For the degrees of freedom,

~x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x5

Ω −ΩEq

θ − θEq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

platform surge

platform pitch about SWL

rotor angular velocity

rotor blade pitch

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.63)

the linearized wind thrust damping and stiffness matrices are,

BRotor,Taylor = ρaS CT (U)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 LNac 0 0

LNac L2
Nac 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.64)

KRotor,Taylor =
1
2
ρaS U2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.65)

Eq.s 3.64 and 3.65 show that the Taylor linearized matrices neglect how dynamically

changing rotor angular velocity and blade pitch affect the platform surge and pitch. They

neglect other cross-coupling terms accounted for in the statistically linearized Eq.s 3.49

and 3.50, as well. Eq.s 3.64 and 3.65 do account for the negative platform damping effects
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due to blade pitch [65]: as shown in Fig. 3-6, ∂CT/∂θ may be negative. This agrees with

the negatively-sloped equilibrium CT versus wind speed in Fig. 3-4 at large wind speeds

when blade pitch control is applied.

Mooring Lines

The mooring lines can be linearized as constant stiffness coefficients for the platform surge

and pitch degrees of freedom,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1

x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ platform surge

platform pitch

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.66)

The corresponding Taylor series linearized mooring line force matrix is,

FMooring, Taylor =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 LFL

LFL L2
FL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂F S urge

Mooring

∂qFL

⃒⃒⃒⃒⃒
⃒⃒⃒
~xEq

, (3.67)

where F S urge
Mooring

(qFL) is plotted in Fig. 3-8.

3.4 Results for the OC3-Hywind and OC4 semi-submersible

Floating Wind Turbines

In this section, we compare the computed FWT response statistics for the 2 different plat-

forms (OC3 Hywind spar and OC4 semisubmersible) using the 3 different computation

approaches (Taylor series linearization in the frequency domain, statistical linearization in

the frequency domain, and nonlinear time domain) in several different wind-sea states.

The goal of this study is to determine if the response statics found using statistical

linearization in the frequency domain are more accurate than those found using Taylor se-

ries linearization in frequency domain. Response statistics computed from the nonlinear

equations of motion in the time domain are considered the most accurate. If the computed

platform motion, tower stress, or wind turbine power computed by the statistical lineariza-

tion approach are significantly more accurate than the Taylor linearized frequency domain
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approach, then statistical linearization is useful for FWT and WEC parameter optimiza-

tion. Unfortunately, the time domain results presented here still need to be more rigorously

debugged, so the results shown in this section are not be completely finalized.

While working on this thesis, we did compute some response statistics using the NREL

code FAST [67], but we suspect that differences in the physical models used by FAST

and this thesis resulted in different responses that can not be used to directly compare the

computation methods.

Our time domain computations simulated the system for 1000 seconds using ode45 in

Matlab with time steps of 0.1 seconds. We assumed uniform, steady wind and a wave

spectrum with stochastic phases approximated using the Box-Muller method [64]. The

statistics were computed based on the time series responses between 500-1,000 seconds.

The frequency domain results were computed using 400 frequencies between 0.001-0.45

Hz. Relative velocity between the platform and incident waves was discretized into 10

elements between the still waterline and platform keel for both platforms.

We note that these time domain results required a 660 second computation time (11

minutes), the statistical linearization results required 9 seconds, and the Taylor series lin-

earization required 3 seconds. At a computation time ratio of 76:1 with the time domain

approach and possible 7-15% more accurate lifetime stress prediction than the Taylor se-

ries approach, statistical linearization may be a promising parameter optimization method

for nonlinear FWT’s and WEC’s. We also note that a single sea state may have significant

nonlinear effects, but averaged over the system lifetime, these nonlinear effects may be less

significant. Therefore, a nonlinear computation method may be most useful for extreme sea

states rather than lifetime performance prediction. Future work will continue to investigate

this research question.

3.4.1 Response Amplitude Operators

Fig. 3-9 plots response amplitude operators (RAO’s) of the platform surge, platform pitch,

and tower bending stress in a wind-sea state that consists of a white-noise wave power

spectrum with a significant wave height Hs = 0.01 m and a wind speed U = 0 m/s. With
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small wave forcing and no wind, this RAO plots the linear responses computed by all 3

methods, serving as a baseline before adding nonlinearities. As expected, Taylor series

linearization in the frequency domain and statistical linearization in the frequency domain

agree perfectly for both the spar and semisubmersible in these conditions. Also as expected,

the time series RAO’s follow similar trends to the frequency domain RAO’s but show sig-

nificant noise. This noise could be reduced if the systems are simulated for longer times.

With a lot of noise, it is difficult to make confident conclusions about the time domain and

frequency domain agreement. In general, it seems that the spar time domain results agree

closely with the frequency domain results, except for predicting a larger response between

0.01-0.03 Hz. The time- and frequency-domain results for the semisubmersible also seem

to show general agreement except for at frequencies below 0.02 Hz.

Fig. 3-10 plots response amplitude operators (RAO’s) of the platform surge, platform

pitch, and tower bending stress in a wind-sea state that consists of a white-noise wave power

spectrum with a significant wave height of Hs = 0.5 m and a wind speed U = 8 m/s. With

large wave forcing and wind, we expect both nonlinear aerodynamic forcing and viscous

wave forcing to be significant. For both platforms, all 3 methods show minimal change in

surge between the U = 0, CD = 0 case (Fig. 3-9) and U = 8 m/s, CD = 0.6 case (Fig. 3-

10). Both the Taylor linearized and time domain results predict a larger surge response than

statistcial linearization at frequencies less than 0.02 Hz, which suggests that the statistical

linearization code might have an error or the approach might not work in these conditions.

In pitch, all 3 methods follow the same general trend: damping effects from the wind thrust

and wave viscosity smooth out peaks in the RAO plot. The spar peaks are more significantly

smoothed than the semisubmersible peaks. At frequencies greater than 0.16 Hz, the time

domain approach significantly overestimates the pitch response compared to the frequency

domain approaches. For tower stress, the time domain results generally show much larger

responses than the frequency domain results, which may be due to a code error. There

are significant differences between the statistically linearized and Taylor series linearized

responses, which is likely a significant result. For both the spar and semisubmersible,

the Taylor series computations underpredict stress compared to the statistical linearization

computations at some frequencies.
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Figure 3-9: Response amplitude operators computed using Taylor series linearization and
statistical linearization in the frequency domain for white noise wave excitation, with sig-
nificant wave height Hs = 0.01 m and wind speed U = 0m/s. Thick lines: statistically
linearized. Thin lines: Taylor series linearized. Markers: time domain.
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Figure 3-10: Response amplitude operators computed using Taylor series linearization and
statistical linearization in the frequency domain for white noise wave excitation, with sig-
nificant wave height Hs = 1 m and wind speed U = 8m/s. Thick lines: statistically
linearized. Thin lines: Taylor series linearized. Markers: time domain.

3.4.2 Computed Statistics

Fig. 3-11 plots the effective fatigue stress, root mean square platform surge, and root

mean square platform pitch computed by the different methods for the two platforms in

a Bretschneider wind/sea state that has Hs = 8 m, Tp = 12.5 s, and U = 0 m/s. With

U = 0 m/s, this plot compares the effects of viscous damping. The spar frequency domain

results agree closely, which is expected because a deep-draft platform is less sensitive to
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visocus wave forcing near the still waterline (the spar is a more linear system than the

semisubmersible). The spar time domain computation estimates a smaller response than

the frequency domain computations. For the semisubmersible, the statistical linearization

computation estimates a stress that is 15% higher than the Taylor linearized computation

and within 1% of the time domain stress. This apparent close agreement is probably a

result of statistical linearization computing a smaller platform pitch response and higher

stress sensitivity to pitch than both frequency domain approaches.

Fig. 3-12 plots the effective fatigue stress, root mean platform surge, and root mean

square platform pitch computed by the three different methods for the two platforms in a

Bretschneider wind/sea state with Hs = 8 m, Tp = 12.5 s, and U = 8 m/s. With nonlin-

ear aerodynamics, the statistically linearized computations tend to overpredict responses

compared to the time domain while the Taylor series linearized computations tend to un-

derpredict the responses compared to the time domain (with the exception of surge). The

wind power and tower stress are more sensitive to pitch than to surge.

In Fig. 13-3, we compute the system lifetime response statistics based on the 22 wind-

sea states listed in Table 3.1 for both platforms using the two frequency domain approaches.

There is little difference in the wind power computed by the two methods. For both plat-

forms, the statistical linearization approach predicts a lifetime equivalent fatigue stress

(EFS) that is 7% larger than the EFS predicted by the frequency domain. Fig. 13-3 shows

that in a storm state that occurs during these FWT lifetimes, statistical linearization may

predict a much larger surge and pitch response than the Taylor series linearization.
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Figure 3-11: Response statistics for the OC3 spar and OC4 semisubmersible computed
using Taylor series linearization in the frequency domain, statistical linearization in the
frequency domain, and the nonlinear time domain, in a Bretschneider sea state with Hs = 8
m, Tp = 12.5 s, U = 0 m/s.
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Figure 3-12: Response statistics for the OC3 spar and OC4 semisubmersible computed
using Taylor series linearization in the frequency domain, statistical linearization in the
frequency domain, and the nonlinear time domain, in a Bretschneider sea state with Hs = 8
m, Tp = 12.5 s, U = 8 m/s.
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Figure 3-13: Response statistics computed for the OC3 spar and OC4 semisubmersible
using Taylor series linearization and statistical linearization in the frequency domain over
a 22 wind-sea state lifetime off the coast of Eureka, CA.

138



Table 3.1: Sea and wind states used in the statistical linearization study that has response
statistics plotted in Fig. 3-13. These wind-sea states are based on data from a NOAA buoy
10 NM off the coast of Eureka, CA from 2005-2014. HS is the significant wave height,
TP is the dominant wave period, U is the mean wind speed, and p is the state occurence
probability. We model the sea conditions by the Bretschneider spectrum.

State HS (m) TP (s) U (m/s) p
1 0.5 31.4 2 7.1 × 10−3

2 0.5 15.7 2 2.1 × 10−2

3 0.5 10.5 2 1.2 × 10−2

4 0.5 7.85 2 1.3 × 10−2

5 1 31.4 4 4.0 × 10−2

6 1 15.7 4 2.2 × 10−1

7 1 10.5 4 1.7 × 10−1

8 1 7.85 4 9.8 × 10−2

9 2.5 31.4 10 2.9 × 10−2

10 2.5 15.7 10 1.9 × 10−1

11 2.5 10.5 10 9.1 × 10−2

12 2.5 7.85 10 2.7 × 10−2

13 4 31.4 16 8.5 × 10−3

14 4 15.7 16 4.7 × 10−2

15 4 10.5 16 9.5 × 10−3

16 4 7.85 16 1.1 × 10−3

17 5 31.4 20 5.2 × 10−3

18 5 15.7 20 1.2 × 10−2

19 5 10.5 20 1.5 × 10−3

20 5 7.85 20 5.0 × 10−5

21 6 31.4 24 6.6 × 10−5

22 6 15.7 24 5.0 × 10−5

139



140



Chapter 4

Dynamics of a Wave Energy Converter

with Cubic Nonlinear Hydrostatic

Stiffness

4.1 Introduction

In this chapter, we consider the design of a nonlinear heave-mode hydrostatic stiffness, that

may increase the WEC’s ability to absorb power when excited by different wave frequen-

cies, resulting in more power generation in a given sea state and more power robustness

over many sea states. While WEC parameter control will still be required in a real ma-

chine, this nonlinearity may reduce the required control and associated parasitic losses and

complexities.

As described in the Introduction chapter of this thesis, one of the main challenges for

WEC design is how to maintain good power performance in different sea states. Typical

uncontrolled linear WEC motion and power both decay when the ocean wave dominant

frequency differs from the WEC resonant frequency.

Many different approaches have been considered for increasing WEC power robustness

in different sea states. In the WEC industry, these approaches include,

1. An inertial trapping, to adjust the oscillating mass (and corresponding natural fre-
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quency) in different sea states [52],

2. Rigidly connecting or disconnecting a light floating mass from a submerged heavier

mass, allowing the WEC to have two distinct natural frequencies [45]

3. Varying the distribution of mass and length in a pendulum [53],

4. Varying the tension in a taut mooring line [51],

5. Controlling the generator power takeoff to produce reactive power that acts a like a

spring [112],

6. Using latching to hold and release the oscillating mass so that the wave force and

WEC velocity remain in-phase, the condition for maximum power extraction that

occurs when a system resonates [12], [43], [42].

Another robustness mechanism that has been studied in other environmental vibration

energy applications, but has not yet been extensively applied to wave energy harvesting, is

using a nonlinear spring. Essentially nonlinear springs (that is nonlinear springs without

linear stiffness components) do not have preferential linear frequencies. Therefore, they

are more robust to variations in the external excitation and preserve their good performance

level for a wide range of conditions, as described in Vakakis et al. [141], Gendelman et al.

[48], Sapsis et al. [120], and Quinn et al. [110]. We investigated the improved robustness

of a nonlinear human walking vibration energy harvester in [78, 80]. Fig. 4-1, reproduced

from [111], illustrates how introducing a cubic nonlinearity into an oscillator can increase

its response bandwidth.

A nonlinear spring may be physically realized in many different ways. One way to

implement a nonlinear cubic spring is for linear springs to support a proof mass at various

angles to its direction of travel, so that the springs have to increasingly stretch for increasing

transverse displacements of the mass. MacFarland et al. [97] investigates this configura-

tion using piano wire while Hajati et al. [56] investigates it with a doubly-clamped beam.

Kantor and Afanas’eva [74] expand this principle to a clamped circular plate with variable

thickness along its radius.
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Another way to implement a nonlinear spring is for the flexure to effectively increase in

thickness as the spring deflects. Freeman [46] does this by designing helical springs with

thickening coil wires and changing overall spring diameters. In leaf springs of automobile

suspensions, several layers of arc-shaped spring steel are clamped together. As the center

of the upper arc deflects, it contacts the arc below it, and both springs further deflect in

contact. As more and more arcs deflect, the spring effectively stiffens [46].

We have studied nonlinear springs implemented by beams that increasingly contact

curved rigid surface as they deflect. This shortens the effective beam length and causes it

to stiffen [81, 82, 83].

These structural implementations of a nonlinear spring may be useful for future WEC

studies, when the WEC reacts against a second body.

In this chapter, we consider another type of cubic nonlinear spring that can be used

for improved WEC power performance. We physically implement this spring by a varying

WEC cross section, so that as the WEC displaces, its cross-section at the still waterline

increases, and therefore its heave hydrostatic stiffness increases. We describe the dynamics

model of this nonlinear WEC in Section 4.3. In Section 4.4, we describe how the non-

linearity may be statistically linearized in WEC response computations. In Chapter 6, we

optimize the nonlinear wave energy converter (WEC) parameters for power performance.

Section 6.4.3 shows the optimization plots. Section 6.4.4 compares the nonlinear WEC per-

formance statistics and response amplitude operators to optimized linear WEC’s. Future

work on this project will be to experimentally verify the computed performance.

4.2 Cubic Stiffness Design

Our cubic-stiffness heave-mode wave energy converter with a floating oscillating water

column chamber is shown in Fig. 4-2. The nonlinear hydrostatic stiffness is physically

implemented by an increasing radius, ROut, in both the positive and negative z directions

away from the equilibrium still water line location on the WEC.
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Figure 4-1: Steady state amplitude responses of a single degree of freedom oscillator with
the governing equation, z̈ + bż + α

(︁
(1 − c)z + cz3

)︁
= Fcos(ωt). The red curve is the linear

system response, the blue curve is the essentially nonlinear system response, and the green
curve is a weakly nonlinear system response. Image and analysis from Quinn et al., 2011
[111].
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Figure 4-2: Diagram of a spar oscillating water column with a cubic nonlinear hydrostatic
stiffness: (a) side view, (b) top view with air Wells turbine, (c) top view with hidden Wells
turbine and air chamber top.
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The net instantaneous heave-mode buoyancy force on the WEC is,

FHydro,3Net = ρgVS ubWEC − mWg. (4.1)

At equilibrium, the buoyancy and gravity forces cancel out, leaving,

FHydro,3Net = ρg∆VS ubWEC, (4.2)

where ρ is the water density, g = 9.81 m/s2 is gravitational acceleration, ∆VS ubWEC is the

additional submerged volume compared to equilibrium. When the WEC travels downwards

(or upwards), the submerged volume increases and the hydrostatic force pushes upwards

(or pulls downwards). The change in submerged volume is,

∆VS ubWEC =

∫︁ −ζ3

0
A(z)dz, (4.3)

where z is the fixed coordinate along the WEC, ζ3 is the WEC heave displacement upwards,

and A(z) is the WEC cross-sectional area.

Instantaneous hydrostatic stiffness is defined as,

C33Inst =
−∂FHydro,3Net

∂ζ3
. (4.4)

Substituting Eq.s 4.2 and 4.3 into Eq. 4.4,

C33Inst = ρgA(z). (4.5)

We decompose the cross-sectional areas and corresponding hydrostatic stiffnesses each

into a linear and nonlinear component,

A(z) = ATube + AAdditional(z), (4.6)

C33Inst = C33Lin + C33Nonz2. (4.7)
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The tube cross-section at the still waterline generates the linear hydrostatic stiffness,

C33Lin = ρgATube = 2ρgπrTubetS teel, (4.8)

where rTube is the tube mean radius and tS teel is the tube steel thickness.

For the additional cubic hydrostatic stiffness, C33Non, the cross-sectional area needs to

increase proportionally to z2,

AAdditional(z) =
C33Non

ρg
z2. (4.9)

Increasing the radius dimension beyond the linear tube radius contributes to an addi-

tional area,

AAdditional = π (ROut(z))2
− πr2

Tube, (4.10)

where ROut is the an casing encircling the tube.

Equating Eq. 4.9 and 4.10,

C33Non

ρg
z2 = πR2

Out − πr2
Tube. (4.11)

Rearranging Eq. 4.11, the required ROut is,

ROut =

√︃
C33Non

ρgπ
z2 + r2

Tube. (4.12)

That is, the cross-sectional area increases proportionally to z2, and the radius increases

approximately linearly with z.

Other nonlinearities besides a cubic stiffness can be implemented. By a similar deriva-

tion as above, a fourth order nonlinear spring stiffness of the form,

Fnon4 = CN4z4, (4.13)
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may be implemented by an outer radius that varies according to,

ROut4 =

√︃
CN4

ρgπ
z3 + r2

Tube. (4.14)

4.3 Dynamics Model

The governing dynamics of this WEC are similar to those of a linear spar-shaped WEC with

a constant cross-section and hydrostatic stiffness, as described in Section 2.4.3. The main

difference between the two WECs’ equations of motion is the cubic nonlinear spring stiff-

ness in the heave-mode equation. Smaller differences arise in the surge and sway equations

of motion due to the varied frontal area seen by waves.

We consider 5 degrees of freedom for the WEC,

~xWEC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xWEC

yWEC

zWEC

zCol

pC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WEC surge

WEC sway

WEC heave

Vertical water column heave relative to WEC

Vertical water column chamber pressure

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.15)

The coupled equations of motion are,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︀
mW + A11,W

)︀
ẍWEC + B11,W ẋWEC = F1,WEC(︀

mW + A22,W
)︀

ÿWEC + B22,W ẏWEC = 0(︀
mW + A33,W

)︀
ẍ3,W + B33,W ẋ3,W + C33nx3

3,W = F3,WEC + PCAColZ

PC +
IZCol
AColZ

(z̈WEC + z̈Col) +
B33,Col

AColZ
(żWEC + żCol) + ρg(zWEC + zCol) =

F3,Wave,Col

AColZ

pC +
kWellsVAir
γPAtm

ṗC − kWellsAColżCol = 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.16)

The equations of motion and parameter definitions are identical to those in Sections 2.4

and 2.4.3 except for the 3rd row, which is the governing equation of the WEC heave motion

and is now nonlinear.
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Other differences between to the spar parameters are that Eq. 2.60 becomes,

VS ubS WL =

∫︁ 0

−LOutS WL

π
(︁
R2

Out − r2
Tube

)︁
dz. (4.17)

Eq. 2.69 becomes,

S AS WL =

∫︁ LOutS WL

−LOutS WL

2πROutdz + 2πr2
OutS WLMax − πr2

Tube, (4.18)

where the maximum radius of the SWL modification is,

rOutS WLMax =

⎛⎜⎜⎜⎜⎜⎜⎝
√︃

C33Non

ρgπ
z2 + r2

Tube

⎞⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒⃒
⃒⃒⃒
z=LOutS WL

, (4.19)

which accounts for the outer side, top, and bottom.

4.4 Statistical Linearization of the Cubic Nonlinear Hy-

drostatic Stiffness

As derived in Roberts and Spanos,(1999) [116], the nonlinear spring force,

g(x) = −C33nx3
3,W , (4.20)

results in the statistically equivalent stiffness,

CEq,33n = E
{︃
−∂g(x)
∂x3,W

}︃
= 3C33nσ

2
x3,W
, (4.21)

where σx3,W is the standard deviation of the WEC heave displacement, found using the

Weiner Khinchine theorem and statistical linearization procedures described in Sections

2.9 and 3.2 for a WEC excited by an ocean wave spectrum.

In Chapter 6, we use this statistical linearization procedure to optimize the nonlinear

wave energy converter (WEC) parameters for power performance. Section 6.4.3 shows the

optimization plots. Section 6.4.4 compares the nonlinear WEC performance statistics and
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response amplitude operators to linear WEC’s. Future work on this project will include

experimentally verifying the computed performance.
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Chapter 5

Cost Model

5.1 Introduction

As mentioned in the Introduction chapter, one of the main goals of this thesis is to reduce

the wave energy converter’s levelized cost of energy (WEC LCOE), or average dollars per

kWh. The LCOE is a useful normalizer for comparing the costs of different electricity

sources. The cost models in the Sandia National Laboratory report [102] are intentionally

kept basic for the purpose of transparency. We follow that approach here because our goal

is to identify significant energy cost effects correlated to the dynamics effects. We also

emphasize that as basic as this cost model is, it shows relative cost improvements among

the different WEC’s considered in this thesis.

We calculate the WEC LCOE as [134],

LCOEWEC =
(ICCWEC)(FCR) + AOEWEC

AEPWEC
. (5.1)

The LCOE accounts for the average machine installed capital cost ICC, fixed charge

rate FCR, annual operation expenses AOE, and annual energy production AEP.

In this thesis, we base the WEC capital cost on the cost models described in Sandia

National Laboratory reports, which break down the capital cost into different project com-

ponents [102, 143]. These project component costs correspond to a 100-unit array and are

proportional to the machine power capacity. We eliminate costs associated with the moor-

151



ing lines and infrastructure (maintenance facilities and vessels). We modify the WEC steel

cost to correspond to the amount of steel in each of our computed WEC designs. We as-

sume a typical fixed charge rate. We determine uncertainties in some of the cost parameters,

and compute high and low cost estimates for the ICC and LCOE.

5.2 Capital Cost

We base our installed capital cost (ICC) model on the Sandia National Laboratory and

national Renewable Energy Laboratory (NREL) cost models of WEC’s that are part of a

100-unit (36 MW) array [143, 102].

Fig. 5-1 shows the ICC for two reference WEC’s analyzed by Sandia National Labora-

tory [15], [143], [102]. One reference WEC is a surge-mode flap with a power capacity of

360 kW, ICC = $5.0M, and LCOE = $0.69/kWh. The other reference WEC is a heave-

mode point absorber that slides along an axis attached to a floating reaction plate, which

has a power capacity of 286 kW, ICC = $3.9M, and LCOE = $0.76. The point absorber

higher costs are due to a similar capital cost but lower power production.

As shown in Fig. 5-1, the average ICC breakdown for these WEC’s (in order of decreas-

ing contribution) is the structural components (46%), mooring lines (14%), installation cost

(9%), power conversion chain (9%), contingency costs (8%), infrastructure (electric ca-

bles, and docks and ships for maintenance; 5.8%), subsystem integration and profit margin

(5.4%), permitting and environmental compliance (1.5%), project design and management

(1.3%), and site assessment (0.1%).

This thesis investigates changes to the WEC structural components, power conversion

chain, mooring lines, and infrastructure, which comprise 74.8% of the standalone WEC

cost. We assume that all of the other cost components remain the same, and use their aver-

age cost per kWh values from the reference flap and point absorber. That is, we assume the

design and engineering costs, site assessment, permitting and environmental compliance,

installation, subsystem integration, and contingency costs are $3469/kW. We remove the

costs of mooring lines and infrastructure from our WEC because our WEC does not have its

own mooring lines, and it shares cables and maintenance ships/dockside facilities with the
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Figure 5-1: Installed Capital Cost Model based on Sandia National Laboratory flap and
point absorber WEC references.

floating wind turbine (FWT). Significantly, this equates to an immediate ICC cost reduc-

tion of $2688/kW (19%). Additional cost savings are achieved by eliminating a reaction

frame structure, as long as added linkage steel is small.

We model the structure costs in Section 5.2.1, and we model the power conversion chain

costs in Section 5.2.2.

5.2.1 Structure Costs

We consider the costs of steel and concrete in the WEC, links connecting the WEC and

FWT, and a ballast used to stabilize the FWT. We base the WEC structural cost predictions

on two different WEC’s described in Sandia National Laboratory studies. One WEC is a

300 kW capacity, 2,025 ton backwards bent duct buoy (L-shaped) floating oscillating water

column [15]. The other WEC is the 286 kW capacity, 208 ton point absorber float sliding

along a 470 ton floating column track and reaction plate [102].
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The reference WEC’s use A36 steel plates with stiffener bars [15, 102]. The plate thick-

ness, stiffener bar separation and size (along the vertical structure direction), and girder

separation and size (along the horizontal structure direction) are chosen to satisfy a safety

factor in stress during a predicted severe storm load. A severe storm load is conservatively

modeled as the hydrostatic pressure from a 6 m high wave in addition to a 19 m submer-

gence.

[15] and [26] ascertain that the backwards bent duct buoy requires a plate thickness

of 1.6 cm, stiffeners of 0.0048 m2 cross-sectional area spaced 0.75 m apart, and girders

of 0.0032 m2 cross-sectional area spaced 1.97 m apart. The assembly mass distribution

is approximately equivalent to a steel sheet with 0.0344 m thickness. The system has an

internal bulkhead wall in the middle of the 27 m wide chamber with an equivalent 0.047 m

thickness.

By similar calculation, [102] suggests that a floating toroid with a 20 m outer diameter,

6 m inner diameter, and height of 5.2 m has an equivalent steel plate thickness of 0.0232

m. The float is filled with concrete ballast to satisfy buoyancy stabilization.

In this thesis, we assume a steel thickness of 0.0288 ± 0.0056 m, which is the average

effective thickness of the backwards bent duct buoy and and point absorber toroid. We

assume that all additional required WEC mass is made up by concrete ballast, which has a

cost of $0.10/Kg, much lower than steel.

For the steel links connecting the FWT and WEC, we assume that the link must main-

tain a safety factor in stress, S .F. = 2 when subject to the force at the still water level from

an incident of amplitude amax = 6 m. This force magnitude is,

F1Max = −(ρVS ubWEC + A11WEC)amaxg, (5.2)

where ρ is the water density, g is gravitational acceleration, VS ubWEC is the submerged

volume, A11WEC is the surge added mass, and k is the wave number. We compute VS ubWEC

and A11WEC using the model described in Chapter 2.
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The axial stress along the link, σ, must satisfy,

σ =
F1Max

A
≤

σY

S .F.
−→ A =

(S .F.)F1Max

σY
, (5.3)

where we assume a steel yield stress of σY = 250 MPa and A is the link cross-sectional

area. We use the minimum allowable A to minimize cost. The link length corresponds to

the center-center distance from the FWT to the WEC.

For the link and WEC body steel, we assume that the steel material costs of $1.32 ±

0.47/Kg multiplied by a manufacturing factor of 2±1, based on cost modeling assumptions

in [100, 102].

We assume a concrete cost of $0.10±$0.05/Kg [24]. Most academic studies on offshore

wind turbines and wave energy converters neglect the cost of concrete ballast compared to

steel [100, 143]. The NREL OC3-Hywind floating wind turbine platform uses 1700 tons

of steel and 5700 tons of concrete, which results in an estimated steel cost of $22.4 million

and concrete cost of $570 thousand [66, 100]. That is, the concrete costs approximately

2% of the steel cost. The concrete cost of $0.10 ± $0.05/Kg is a negligible cost, especially

considering the steel cost uncertainty of $ ± 0.47/Kg. It may or may not have a significant

effect on the final FWT or WEC cost. A potential substitution of fly ash for concrete ballast

may be a synergistic use of the coal waste product that reduces the $570 thousand ballast

cost of a 5 MW floating wind turbine platform.

5.2.2 Power Takeoff Costs

This thesis considers WEC’s that use air Wells turbine power takeoffs, hydrokinetic Wells

turbine power takeoffs, and hydraulic junction power takeoffs.

We estimate costs for an air Wells turbine using the model described in the Sandia

report, [15]. Most of the cost for the power conversion chain is due to fabricated circular

parts ($1,100/kW) followed by fabricated rectangular components ($300/kWh). For a 100-

unit array, the total air Wells turbine power conversion chain has a cost of $1550/kW.

The Sandia report [102] estimates that a tidal current power takeoff mechanism costs

$1400/kW, and a river current power takeoff mechanism costs $1750/kW. The average cost
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of these is $1575.

The NREL report [143] describes the costs of a hydraulic power conversion chain. For

a 100-unit array, a hydraulic power conversion chain has a cost of $1500/kW, which is with

3% of the air Wells turbine cost. The main components that comprise this cost are 28%

for the reservoir, 21% for the hydraulic cylinders, 16% for plumbing, and 15% for high

pressure accumulators [143].

We use a cost of $1550±150/kW for the air turbine, water turbine, and hydraulic power

takeoff.

5.3 Fixed Charge Rate

We assume a fixed charge rate,

FCR = 0.117 ± 0.02, (5.4)

which accounts for the annual average cost of financing for the return on debt, return on

equity, taxes, depreciation, and insurance, as a percent of the capital cost. This is the typical

cost for offshore renewable energy projects [134].

5.4 Annual Energy Production

We calculate the WEC annual energy production from its power output in each sea state,

PWi, the occurrence frequency of each sea state, pi, and the number of hours in a year,

AEPWEC,kW =

⎛⎜⎜⎜⎜⎜⎝∑︁
State i

piPWi

⎞⎟⎟⎟⎟⎟⎠ 8766
hours
year

. (5.5)

5.5 Annual Operating Expenses

Operating costs during the project lifetime consist of environmental monitoring, insurance,

consumables, replacement parts, shoreside operations, and marine operations. The Sandia
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point absorber has AOE = $211/kW while the flap surge converter has AOE = $222/kW,

both for a 100-unit array [102, 143]. We use the mean value,

AOEWEC = $215/kW. (5.6)

5.6 Final Cost Equation and Uncertainty

Summarizing the above model, we estimate the WEC installed capital cost as,

ICCWEC, $ = (3470 + 1550)PCap,kW + 1.32(C.F.)MS teel,Kg + 0.10MConcrete,Kg, (5.7)

The parameters of this equation are listed in Table 5.1.

The Sandia reports give their LCOE models a ±30% uncertainty range. This high

uncertainty is due to many machines not being fully implemented before. [15] assigns

high uncertainty to the cost of infrastructure (dock and vessel for maintenance), structural

components, installation, and contingency. [15] assigns low uncertainty to the cost of the

mooring and power conversion chain. We assign uncertainties to the different components

based on [26, 15, 100, 102], and compute cost uncertainty during the parameter optimiza-

tion. We emphasize that the level of uncertainty in the combined FWT-WEC cost is similar

to the level of uncertainty in the Sandia cost models. Even though there may be high un-

certainty in the exact cost, any significant reduction in the WEC mooring, infrastructure,

and structure costs will certainly have a significant relative cost reduction compared to the

standalone machines.
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Table 5.1: WEC cost model parameters

Parameter Assumed value Uncertainty considered
Steel thickness 0.0288 m ±0.006 m

Link cross-sectional area (S .F.)F1Max/250e6 m2 -
Link arm safety factor in stress, S .F. 2 +1

Steel density 7800Kg/m3 -
Raw steel material cost, 100-unit $1.32/Kg ±$0.47

Concrete density 2400Kg/m3 -
Concrete cost $0.10/Kg ±$0.05/Kg

manufacturing complexity factor, C.F. 2 ±1
Air Wells turbine $1550/kW ±$150/kW

Water Wells turbine $1550/kW ±$150/kW
Junction hydraulic power takeoff $1550/kW ±$150/kW

Fixed charge rate, FCR 0.117 ±0.02
Annual operating expenses, AOE $215/kW -
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Chapter 6

System Optimization Under Stochastic

Conditions

6.1 Introduction

As described in the Introduction of this thesis, the optimal design of a combined floating

wind turbine- wave energy converter (FWT-WEC) will,

1. Decrease the nacelle motion. Nacelle motion reduces wind turbine efficiency.

2. Decrease tower root stress. Reducing the tower stress increases the factor of safety

in stress.

3. Minimize the WEC levelized cost of energy. This is accomplished by minimizing

the WEC cost (a function of the power takeoff capacity and material mass) while

maximizing the WEC power efficiency.

Regarding items 1 and 2, if a FWT-WEC design reduces the OC3-Hywind nacelle mo-

tion and tower stress, then one could reduce the platform and tower material. This could

reduce FWT cost while maintaining the same wind power efficiency and safety factor in

stress as the original standalone FWT.

To investigate how well different FWT-WEC configurations accomplish these 3 design

criteria, we vary the system parameters and compute the performance statistics over a 20-
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year lifetime using the dynamics and cost models described in Chapters 2-5. We model the

environment by the 3 wind-sea states listed in Table 6.1.

The various statistics we consider include the platform maximum root mean square

surge X1RMS , heave X3RMS , and pitch X5,RMS motions among the 3 sea states, and the tower

equivalent lifetime stress. We also consider the WEC capital cost, average power, and

levelized cost of energy.

We consider the following configurations:

1. Ideal hydrokinetic turbine and mass inertia elements, rigidly attached to the FWT in

Section 6.2. We vary the damping and inertia magnitudes, and submergence depths.

These results indicate what general effects WEC or ballast placement has on the

FWT.

2. Ideal linear WEC’s, including internal tuned mass dampers (TMD) and external

spherically-shaped linear WEC’s in Section 6.3. We constrain the WEC to have a

mass of 500 tons (reducing the FWT ballast to maintain neutral buoyancy for the

internal TMD). We vary the energy-harvesting mode (surge or heave), power take-

off location (an ideal horizontal axis hydrokinetic Wells turbine in the WEC, ideal

vertical axis hydrokinetic Wells turbine in the WEC, or ideal junction power takeoff

mechanism). The only connection between the FWT and WEC is a junction spring

in the WEC energy-harvesting direction that is tuned for maximized WEC motion in

each sea state.

3. Linear heave-mode oscillating water column (OWC) that is rigidly attached to the

FWT in Section 6.4.1. The water column is the only WEC degree of freedom that is

not rigidly connected to the FWT.

4. Linear heave-mode floating oscillating water columns (FOWC’s) attached by hinges

to the FWT in Section 6.4.2.

5. Nonlinear heave-mode FOWC’s attached by hinges to the FWT in Section 6.4.2.

The nonlinearity is a nonlinear hydrostatic stiffness, implemented by a varied cross-

section, as described in Chapter 4.
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6. Multiple WEC’s attached to the FWT in Section 6.4.5. We consider arrays of the

nonlinear FOWC with the best performance.

We compare the water column system performance in Section 6.4.4. Table 8.1 in the

Conclusion chapter summarizes and compares the optimal performance of all the WEC

types.

6.1.1 Common constraints for all computations

We compute the average system responses over a simplified 20-year lifetime that consists

of 3 wind and sea states, listed in Table 6.1. We make this simplification to reduce the

computation time on the standard laptop computer used for this thesis. WEC optimization

is typically site-specific. An expansion of this work would include an optimization of the

systems over many site-specific wind-sea states.

Table 6.1: Basic sea and wind state distribution loosely based on Eureka, CA NOAA buoy
data. HS is the significant wave height, TP is the dominant wave period, U is the mean
wind speed, and p is the state occurence probability. We model the sea conditions by the
Bretschneider spectrum.

State HS (m) TP (s) U (m/s) p
1 3 8 8 0.33
2 3 11 16 0.33
3 3 16 20 0.33

We restrict the WEC masses to be less than or equal to approximately 500 tons, which

is similar to the National Renewable Energy Laboratory reference WEC’s [102, 143]. The

WEC’s are made neutrally buoyant by adding concrete ballast.

We constrain all of the WEC’s to have a capacity factor of at least 30% by reducing the

power in stormy sea states to match the power in less stormy sea states. For an air Wells

turbine, this could be accomplished by using a bypass relief valve [41].

We consider the National Renewable Energy Laboratory reference OC3-Hywind spar

and wind turbine [66].
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6.2 Ideal Hydrokinetic and Mass Inertia Elements Rigidly

Attached to FWT

Fig. 6-1 shows the effects of attaching an external cylindrical ballast with varied outer ra-

dius and submergence to the FWT spar. In general, larger radii increase the platform surge,

heave, and pitch response. Increasing the submergence depth beyond 20 m increases the

platform surge and pitch- and aligns their phase so that tower stress is increased. A submer-

gence depth of 20 m minimizes the FWT motion and stress. This submergence depth corre-

sponds to the point where the difference, [platform lateral motion]− [wave lateral motion],

is maximized, so that the cylinder has a larger damping effect than wave forcing effect.

Fig. 6-2 shows the effects of attaching a massless hydrokinetic Wells turbine with varied

effective damping and surbmergence to the FWT spar. A Wells turbine with large damping

generally increases the platform motion when it is submerged beyond 70 m and decreases

platform motion when it is submerged less than 70 m. The platform metacenter and center

of buoyancy is at z = −62 m. The platform center of mass is at z = −78 m. Placing the

Wells turbine below the center of mass causes inverted-pendulum behavior and decreases

platform stability.
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Figure 6-1: Response statistics for a neutrally buoyant external cylindrical ballast rigidly
attached to the FWT at varied depth.
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Figure 6-2: Response statistics for a massless damping element between the FWT and
incident waves at varied depth. The dashed line represents the unmodified FWT.

6.3 Linear Spherical WEC’s With Tuned Spring Coupling

to the FWT

Now, we consider WEC’s attached to the FWT platform by a spring tuned to maximize the

WEC power. We restrict the WEC types to neutrally-buoyant spherically-shaped WEC’s

attached only to the FWT (rather than also attached to the seafloor by mooring lines, which
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Table 6.2: Linear spherical WEC’s attached to FWT considered in this section

Linear WEC
configuration
number

Location relative to FWT Power
harvesting
motion

Power
take-off

mechanism
1 Internal, in nacelle Surge Junction
2 Internal, at still waterline Surge Junction
3 Internal, at still waterline Heave Junction
4 External, submerged 10 m Surge Junction
5 External, submerged 10 m Surge Wells turbine
6 External, submerged 10 m Heave Junction
7 External, submerged 10 m Heave Wells turbine
8 External, at still waterline Heave Wells turbine

would increase cost). We consider WEC’s with a power takeoff (PTO) mechanism that

uses the relative motion between the WEC and FWT, or a PTO that uses the relative motion

between the WEC and ocean waves [32]. The first PTO may be implemented by a linear or

rotary mechanism with a mechanical or hydraulic drive-train powering the generator [129].

The second PTO may be implemented by a Wells turbine [13]. Additionally, we consider

tuned mass dampers inside the FWT [131]. The various systems are listed in Table 6.2 and

illustrated in Fig. 6-3.

To simplify a parameter sweep optimization, we do a modal analysis on the model to

determine the required parameter relationship for maximizing WEC power. We use these

findings to investigate the power production, cost of energy, and effect on FWT motion of

the various WEC configurations.

6.3.1 Modal Analysis

In a real ocean environment, the FWT-WEC is excited by a continuous spectrum of fre-

quencies. For the modal analysis, we assume that the dominant behavior of the system

can be represented by its behavior at the dominant ocean wave frequency (Joo and Sapsis,

2014; Trimble, 2011) [71, 140]. Table 6.1 lists typical sea states based on NOAA buoy data

10 nautical miles NW of Eureka, CA over a ten year period (NOAA, 2016) [1].

It is important that one or more WEC parameters are adjustable in order to tune the

WEC resonant frequency to match the the sea state dominant frequency. Otherwise, the

well-known mistuned power decay phenomenon occurs [71]. Placed in between the rela-
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Figure 6-3: Sketches of combined FWT-WEC array concepts for the OC3-Hywind floating
wind turbine: (a) surge-mode internal surge tuned mass damper, (b) heave-mode internal
tuned mass damper, and (c) heave-mode external WEC.
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Table 6.3: Relation of vibration analysis parameters to FWT-WEC parameters

Analysis parameter Surge-mode WEC Heave-mode WEC
IW I11W I33W

IF I11F I33F

FW F1W F3W

FF F1F F3F

KW 0 C3W

KJ K1J K3J

KF C11F C33F

tively large FWT and WEC bodies, the junction spring KJ is likely the most easily tune-able

system parameter, as opposed to adjusting the WEC inertia. KJ may be implemented by a

mechanical or electromagnetic actuator [112].

Here, we develop an expression for the FWT-WEC junction spring, KJ, that maximizes

harvested wave power as a function of the other parameters. We determine the optimal KJ

value by analyzing the free body diagram shown in Fig. 6-4. This diagram represents the

governing dynamics of the various FWT-WEC configurations considered in this paper. xW

and xF represent the WEC and FWT, respectively. Table 6.3 lists the diagram’s relationship

to the FWT-WEC parameters.

To simplify the forced harmonic vibration analysis, we neglect the effects of damping.

After adding in the damping effects, we expect optimal power performance to occur for the

same KJ value and at the same corresponding WEC resonant mode as for the undamped

system [114]. The WEC power is maximized when the undamped WEC amplitude is maxi-

mized (for a Wells turbine PTO system) or undamped relative amplitude between the WEC

and FWT is maximized (for a junction PTO system). Therefore, we compute the steady-

state WEC amplitude and WEC-FWT relative amplitude and determine the parameters that

maximize both amplitudes.
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Figure 6-4: Idealized free body diagram for analyzing the mode shapes of the combined
floating wind turbine-wave energy converter.

The free body diagram in Fig. 6-4 corresponds to the coupled equations of motion,

IF ẍF + KF xF − KJ(xF − xW) = FF , (6.1)

IW ẍW + KW xW + KJ xxW−xF = FW . (6.2)

From Eq.s 6.1-6.2, the response amplitude operators for the FWT and WEC motion are,

XF =

(︁
−IWω

2 + KW + KJ

)︁
FF + KJFW

IF IW ω4 − (IF KW + (IW + IF) KJ + IW KF)ω2 + KJ (KW + KF) + KF Kw
, (6.3)

XW =
KJFF +

(︁
−IFω

2 + KF + KJ

)︁
FW

IF IW ω4 − (IF KW + (IW + IF) KJ + IW KF)ω2 + KJ (KW + KF) + KF Kw
, (6.4)

The relative amplitude between the WEC and FWT is,

XR = XW − XF . (6.5)

From the response amplitude operators in Eq.s 6.3 - 6.5, the junction spring, KJ, maximizes

the WEC absolute and relative amplitudes when it minimizes the denominator. This occurs

when KJ satisfies,

KJ =
−IF IWω

4 + (IF KW + IW KF)ω2 − KF KW

− (IF + IW)ω2 + KF + KW
. (6.6)

We use this value of KJ for each sea state and WEC type in our FWT-WEC dynamics
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Table 6.4: Floating wind turbine - wave energy converter properties

Parameter Value
FWT Platform mass 7.4 × 103 Tons
FWT Platform base diameter 9.4 m
FWT platform concrete ballast mass 5950 Tons
FWT platform concrete ballast submergence 98 m
Nacelle-rotor-hub mass 350 Tons
Nacelle height above still water line 87.6 m
Ocean depth 320 m
WEC mass 540 Tons
External WEC diameter 10 m
Submerged WEC depth 10 m
External WEC steel thickness 5 cm
Steel density 8500 Kg/m3

Steel cost per ton $2.8k
PTO Cost per kW $2.5k
WEC fixed cost component $340k
Junction PTO efficiency, ηJ 0.85
Wells turbine efficiency, ηW 0.6

computations. Using this KJ value, we parameter sweep the damping coefficient to identify

if certain parameters allow significant WEC power generation and minimized FWT motion.

6.3.2 Results

We use the previously described dynamics and cost model to compute the response statis-

tics for 8 different WEC-FWT configurations, listed in Table 6.2. We constrain all of the

WEC’s to have the same shared parameters listed in Table 6.4. For each WEC, we set

certain elements of I, K, D, and F to zero or infinity, according to the WEC definition (for

example, a submerged surge converter does not have a hydrostatic restoring coefficient,

C3W = 0).

We assume that a WEC moves rigidly with the FWT in its non-power harvesting degree

of freedom, so we set the corresponding junction spring value to KJ = 1012 N/m. We

assume that the junction spring, KJ, for the WEC’s flexible mode is adjusted by a control

mechanism to an optimal constant value in each sea state given by Eq. 6.6. We reduce

the FWT floating platform ballast mass for the internal WEC systems in order to maintain

buoyancy. Among the 3 sea states for each WEC, we reduce the power harvested during
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the most powerful sea states and replace it with the power harvested during the next less

powerful sea state, until the WEC capacity factor is greater than 0.3. The results for several

performance objectives are shown in Fig.s 6-5and 6-6.

Fig. 6-5 shows that the external heave WEC with a Wells turbine power takeoff coef-

ficient, dW = 106 Ns/m, generates the largest amount of electricity, 75 kW. This results in

the lowest cost of energy, $0.35/kWh. However, this large damping coefficient may not be

physically feasible based on space considerations [13]. We also note that the heave WEC’s

have an unfavorable effect on the FWT, increasing the tower root stress by 17% compared

to the standalone FWT.

The external heave WEC with a Wells turbine also produces significant power, 39 kW

for a small damping coefficient of dW = 104 Ns/m. This small damping coefficient makes

the system more practical, but the WEC has an impractically large amplitude of 2.7 m RMS.

We note that the external surge WEC with a Wells turbine PTO and effective damping

coefficient of dW = 106 Ns/m generates 51 kW, slightly less power than the heave WEC

with a Wells turbine.

The surge and heave external WEC’s with junction power takeoffs each generate less

power than their counterparts with Wells turbine power takeoffs. This is due to there being a

smaller motion difference between the WEC and FWT than between the WEC and incident

waves. The heave WEC with a junction PTO of dW = 7×104 Ns/m can generate an average

power of 46 kW, which may be an acceptable amount. As previously mentioned, a WEC

with a junction PTO may be able to achieve a larger effective damping coefficient, be more

efficient, and cost less than a WEC with both a controlled Wells turbine and controlled

junction spring (Raffero et al., 2014).

The internal WECs (tuned mass dampers- TMD’s) have the most favorable effects on

the FWT motion and stress. The TMD in the nacelle can reduce the FWT tower stress

from 32 MPa to as low as 23 MPa (28%). This is expected because the internal WEC

only extracts power from the FWT whereas the external WECs also receive power from the

ocean waves.
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The external surge WEC with small junction damping, dW = 7 × 104 Ns/m reduces

the FWT stress by 3%. This is due to the dynamics phenomenon where for carefully tuned

WEC motions, the force acting on the FWT due to the out-of-phase FWT-WEC mode shape

noticeably counteracts the wave excitation force on the FWT. Unfortunately, this effect only

occurs for careful tuning and light WEC damping, which does not produce significant WEC

power.

Adding a heave hydrostatic stiffness between the WEC and ground by making the

heave-mode WEC surface piercing can generate a maximum power of 52 kW when dW =

9× 104 Ns/m, which is the maximum power generated for dW < 1× 105 Ns/m. Therefore,

we conclude that the hydrostatic stiffness helps tune the WEC performance.

A surge-mode WEC has a rigid heave-mode connection to the FWT, and thereby in-

creases both the structure’s heave inertia and heave forcing. For these WEC form factors,

the WEC heave forcing exceeds the WEC resistance to forcing (inertia), which results in

an increase in heave motion.

While one system alone does not generate significant WEC power and decrease the

FWT motion, the results of this study suggest that two systems may be simultaneously

added to the FWT to reach these design goals. For example, placing a tuned mass damper

(that does not generate electricity) inside the FWT and adding an external WEC may allow

the tuned mass damper to offset the added forcing on the FWT due to the external WEC. In

such a system, the total cost of energy for the wave power may still remain less than for a

standalone WEC.
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Figure 6-5: Annual response statistics for various FWT-WEC’s attached by a spring KJ for
1 : −1 modal tuning.
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6.4 Heave-Mode Floating Oscillating Water Columns With

Varied Coupling to the FWT

In this section, we consider 3 types of oscillating water columns (OWC’s): an OWC that is

rigidly attached to the FWT in Subsection 6.4.1, a linear floating OWC that is coupled by

a hinge to the FWT in Subsection 6.4.2, and a nonlinear floating OWC that is coupled by a

hinge to the FWT in Subsection 6.4.3.

The parameters of each type of OWC are optimized separately, and then the optimum

OWC of each type are compared in Section 6.4.4. Each optimization study considers a

single OWC with a 4 meter radius attached to the FWT. For the rigidly-attached OWC, the

submerged tube length is varied. For the hinged linear floating OWC, the OWC still water

line area is varied. For the nonlinear hinged OWC, the nonlinear spring stiffness (severity

of the float outer radius variation) is varied. These parameters affect the system resonant

frequencies. Additionally, the Wells turbine coefficient is varied for all three systems. As

these parameters are varied, the Matlab code calculates the WEC surface area and assumes

a constant steel thickness over that area, to determine the WEC mass and steel cost. The

code also adjusts the concrete ballast in a float (toroid encircling part of the tube length)

to maintain neutral buoyancy. The fixed and optimum parameters for each OWC type are

listed in Table 6.5.

Finally, this section considers the effects of an array of nonlinear floating OWC’s in

Subsection 6.4.5.
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6.4.1 Rigidly Attached Oscillating Water Column

As mentioned in this thesis Introduction, previous studies have considered rigidly attaching

arrays of oscillating water columns to the FWT platform [7, 77]. Those studies consider

short-draft and large-radius OWC’s. In this study, we hold the OWC radius fixed at 4 m,

and vary the OWC tube draft and OWC Wells turbine coefficient.

Fig. 6-7 shows a CAD illustration of the system. Fig. 6-8 shows the heave-mode and

surge-mode free body diagrams of the coupled WEC and FWT. This simplified FBD does

not show the FWT platform coupling with other degrees of freedom, such as platform pitch

and the rotor. Like the other OWC systems considered in this thesis, the OWC tube is

rigidly attached to the FWT in surge and pitch. This WEC differs from the hinged WEC’s

by having a rigid spring connection between the WEC tube and FWT in the heave mode.

We compute the system response statistics as we vary the tube submergence length and

Wells turbine coefficient. The tube has a hollow toroid encircling it with a 5-m outer radius

and 5 m length. This volume is filled with air and varied amounts of concrete to maintain

neutral buoyancy. Fig. 6-9 shows the response statistics for the varied submerged tube

length and Wells turbine coefficient. Fig. 6-10 shows cost predictions and uncertainty.

Based on Fig. 6-9, increasing the submerged tube length increases the harvested power.

the optimal system has a submerged tube length of 30 m and Wells turbine damping coeffi-

cient of 400 Pas/m3. It generates 17 kW average, resulting in a levelized cost of energy of

$0.75/kWh, and increases the FWT tower fatigue stress by 12% and heave motion by 122%

(more than doubles). Fig. 6-9 shows that further increasing the Wells turbine coefficient

could increase the harvested power, but we set practical limits to the turbine coefficient, as

discussed in Section 2.5.
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Figure 6-7: CAD illustration of the rigidly-attach oscillating water column

(a) (b)

Figure 6-8: Representative free body diagrams of the rigidly attached oscillating water
column FWT-WEC system in a) surge and b) heave
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Figure 6-9: Response statistics of an oscillating water column rigidly attached to the FWT,
for varied submerged tube length and Wells turbine coefficient, for the 3 wind-sea states
representing a year in Eureka, CA
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Figure 6-10: Cost uncertainty of an oscillating water column rigidly attached to the FWT,
for varied submerged tube length and Wells turbine coefficient, for the 3 wind-sea states
representing a year in Eureka, CA
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6.4.2 Linear Oscillating Water Column Attached by Hinges

In this section, we consider an oscillating water column that is attached by a hinge rather

than rigidly attached to the FWT, as in the previous section. In the previous section, we

found that with the rigid tube connection, little power was generated even when the water

column resonated in the tube, and the FWT heave motion was doubled. In this section, we

investigate if the hinge attachment lessens these negative effects.

Fig. 6-11 shows a CAD illustration of the system. Fig. 6-12 shows the heave-mode

and surge-mode free body diagrams of the coupled WEC and FWT. This simplified FBD

does not show the FWT platform coupling with other degrees of freedom, such as platform

pitch and the rotor. Like the other OWC systems considered in this thesis, the OWC tube

is rigidly attached to the FWT in surge and pitch. Unlike the rigidly connected WEC, this

WEC has a hinge that we assume causes negligible resistance in the heave direction for

small WEC heave motions.

We compute the system response statistics as we vary the WEC still waterline area and

Wells turbine coefficient. The still waterline area is adjusted by adjusting the radius of a

hollow toroid that encircles the tube and extends ±3 m from the still water line. The tube

has an additional hollow toroid encircling it with a radius of 8.5 m and height of 1.5 m. This

toroid has a large cross-sectional area for wave heave forcing. The toroid volume is filled

with air and varied amounts of concrete to maintain neutral buoyancy. As in the previous

section, we hold the OWC radius fixed at 4 m.

Fig. 6-13 shows the response statistics for the varied still water line area and Wells

turbine coefficient. Fig. 6-14 shows cost predictions and uncertainty.

Based on Fig. 6-13, the maximum power is harvested for a still waterline area of 23

m2, which corresponds to a toroid outer radius of 4.8 m encircling the tube, and a Wells

turbine coefficient of 34 Pas/m3. This optimal system generates 51 kW average, resulting

in a levelized cost of energy of $0.27/kWh. It has a negligible effect on the FWT stress

and heave motion (neither an increase or decrease compared to the standalone FWT). The

WEC decreases the FWT surge by 10%.
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Figure 6-11: CAD illustration of the linear oscillating water column attached by a hinge to
the FWT

(a) (b)

Figure 6-12: Representative free body diagrams of the hinged linear oscillating water col-
umn FWT-WEC system in a) surge and b) heave
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Figure 6-13: Response statistics of a linear oscillating water column attached by hinges to
the FWT, for varied still waterline area and Wells turbine coefficient, for the 3 wind-sea
states representing a year in Eureka, CA
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Figure 6-14: FWT-WEC cost uncertainty for a floating oscillating water column with varied
still waterline area and Wells turbine coefficient.

6.4.3 Nonlinear Oscillating Water Columns Attached by Hinges

In this section, we consider an oscillating water column that is attached by a hinge to the

FWT and has a nonlinear hydrostatic stiffness rather than the linear hydrostatic stiffness

that was considered in the previous section. The nonlinearity is implemented by an outer

radius that linearly increases along the WEC vertical axis away from the still water line,

as described in Chapter 4. A linearly increasing radius results in a quadratically increasing
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cross-sectional area, which in turn, results in a cubicly increasing stiffness. We investigate

if the nonlinearity improves the power performance.

Fig. 6-15 shows a CAD illustration of the system. Fig. 6-16 illustrates the physical

implementation of an increasing nonlinearity. Fig. 6-17 shows the heave-mode and surge-

mode free body diagrams of the coupled WEC and FWT. This simplified FBD does not

show the FWT platform coupling with other degrees of freedom, such as platform pitch and

the rotor. Like the other OWC systems considered in this thesis, the OWC tube is rigidly

attached to the FWT in surge and pitch. Unlike the rigidly connected WEC, this WEC has a

hinge that causes negligible resistance in the heave direction for small WEC heave motions.

In addition to the linear hydrostatic stiffness, this WEC also has an nonlinear hydrostatic

stiffness due to the increasing cross-sectional area.

We compute the system response statistics as we vary the nonlinear stiffness and Wells

turbine coefficient. The nonlinear surface encloses a volume that is filled with air and varied

amounts of concrete to maintain neutral buoyancy. As in the previous sections, we hold the

OWC radius fixed at 4 m.

Fig. 6-18 shows the response statistics for the varied nonlinearity and Wells turbine

coefficient. Fig. 6-19 shows cost predictions and uncertainty.

Based on Fig. 6-18, the maximum power is harvested for a nonlinear stiffness of 3.25e5

N/m3. This corresponds to a nonlinear volume outer radius of 4 m at the still waterline

(matching the tube radius) and a linearly increased outer radius of 10.4 m at z = ±3 m above

and below the still waterline. This optimal system generates 87 kW average, resulting in

a levelized cost of energy of $0.26/kWh. It decreases the FWT stress by 5.2%, has a

negligible effect on the FWT heave, and decreases the FWT surge by 16%, compared to

the standalone FWT.
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Figure 6-15: CAD illustration of the nonlinear oscillating water column attached by a hinge
to the FWT.

Figure 6-16: CAD illustration of increasing hydrostitc stiffness nonlinearity.

(a) (b)

Figure 6-17: Representative free body diagrams of the hinged nonlinear oscillating water
column FWT-WEC system in a) surge and b) heave.
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Figure 6-18: Response statistics of a nonlinear oscillating water column attached by hinges
to the FWT, for varied nonlinear spring coefficient and Wells turbine coefficient, for the 3
wind-sea states representing a year in Eureka, CA.
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Figure 6-19: FWT-WEC cost uncertainty for varied nonlinear spring coefficient and Wells
turbine coefficient.

6.4.4 Oscillating Water Column Comparison

In Table 6.5, we list the optimized parameters of each type of OWC; the rigidly attached

OWC tube, the linear floating OWC tube attached by a hinge, and the nonlinear floating

OWC tube attached by a hinge. Fig. 6-20 compares the performance statistics of the 3

optimal systems and standalone systems (linear floating oscillating water column and the

baseline OC3-Hywind FWT). Fig. 6-21 lists the 4 systems’ cost uncertainty. Table 8.1 in
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the Conclusion chapter summarizes and compares the optimal performance of all the WEC

types.

From Fig.s 6-20 and 6-21, we see that the nonlinear system has the most favorable

statistics: the largest power production, lowest levelized cost of energy (LCOE), and great-

est reduction in FWT tower root stress compared to the standalone system. The nonlinear

WEC requires 57% more steel than the linear WEC but produces 72% more power on av-

erage. This combination results in a slightly more favorable LCOE for the nonlinear WEC,

the larger amount of steel more significantly decreases the FWT motion and tower root

stress.

It is likely that one could further increase the linear WEC parameters for better perfor-

mance: increasing the linear WEC mass and still waterline area, would maintain the same

WEC natural frequencies, and result in a larger ratio of total WEC mass:steel mass.

For a better understanding of the performance statistics, we plot the response amplitude

operators of the FWT platform and WEC’s in Fig.s 6-22 and 6-23, respectively. Fig. 6-22

shows that the rigidly attached WEC increases the platform surge resonant response at 0.04

Hz, and generally increases the platform heave and pitch response over all frequencies,

which agrees with the statistics findings. The linear and nonlinear floating oscillating water

columns slightly decrease the platform surge resonant response at 0.04 Hz, have negligible

effect on the platform heave, and generally decrease the platform pitch response over all

frequencies.

Fig. 6-23 illustrates how the nonlinear floating oscillating water column (nonFOWC)

peak frequency response adapts to the sea state. In sea state 1, the most energetic sea

state, which has a wave peak frequency of fp = 0.125 Hz, the nonFOWC peak response

matches the peak frequency. In the lower energy sea states 2 and 3, which have peak

wave frequencies of fp = 0.091 Hz and fp = 0.0625 Hz, respectively, the nonFOWC

peak response decreases to 0.05 Hz. The peak frequency of the nonFOWC depends on the

energy level in the response: larger amplitude responses of the nonFOWC correspond to

an effectively stiffer system. At low frequencies the nonFOWC frequency remains close to

the linearized WEC frequency, and the WEC adpatability is limited.

Future studies could further investigate the adaptability advantage of the nonFOWC
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over a larger number of sea states. The choice of how to limit the WEC capacity factor

has a significant effect on the WEC capital cost and levelized cost of energy. We chose to

set the WEC power in the most powerful sea state equal to the WEC power in the second

most powerful sea state if the original capacity factor was less than 0.3. This choice gave

the WEC’s extra high capacity factors at the expense of lower average power production.

Future studies could further optimize the capacity factor choice.
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Table 6.5: Final Parameters of Heave-Mode Oscillating Water Columns

Parameter Rigidly

attached

Hinge-

attached

Linear

Hinge-

attached

Nonlinear

Mass, mW (Kg) 1.7e5 3.5e5 6.6e5

Steel mass, mS teel (Kg) 3.0e5 2.1e5 3.3e5

Tube radius, rTube (m) 4 4 4

Toroid radius at still water line, rOutS WL (m) 0 4.8 0

Height of toroid at still water line, hOutS WL (m) 0 3 0

Still water line area, AS WL (m2) 0.73 23 5

WEC radius at z = 3 m (m) 4 4 10.4

Tube total length, LTube (m) 33 9 9

Tube submerged length, LTubeS ub (m) 30 6 6

Float radius, rFloat (m) 5 8.5 0

Float height, LFloat (Kg) 5 1.5 0

Wave forcing center, zForce (m) -5.5 -3.75 -3

Surge added mass, A11W (Kg) 1.7e6 6.6e5 6.5e5

Heave added mass, A33W (Kg) 2.1e3 2.0e5 5.6e5

Heave linear hydrostatic stiffness, C33W (N/m) 7.3e3 2.3e5 5.0e4

Heave nonlinear hydrostatic stiffness, C33Wn (N/m3) 0 0 3.2e5

Wells turbine coefficient, kWells (Pa/m3) 400 34 84

OWC air chamber volume, VChamber (m3) 151 151 151

Water column inertia, ICol (Kg) 1.7e6 4.4e5 4.3e5

Water column hydrostatic stiffness, C33Col (N/m) 5.1e5 5.1e5 5.1e5

Water column area, ACol (m2) 50 50 50

WEC x-coordinate, LxW (m) −13.5 −13.5 −13.5

WEC pitch mass inertia, I55W (Kgm2) 4.0e7 1.6e6 7.6e5

WEC pitch added mass inertia, A55W (Kgm2) 4.8e8 8.0e6 5.7e6

WEC pitch hydrostatic stiffness, C55W (Nm/rad) 1.0e7 1.8e6 7.0e6
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Figure 6-20: Performance comparison for linear and nonlinear floating oscillating water
columns, attached to the FWT in different ways.

190



0

1000

2000

3000

Lower Limit:

Capital Cost (k$)

435 555
948

660

0

1000

2000

3000

WEC Capital Cost (k$)

902 888

1473

1057

0

1000

2000

3000

Upper Limit:

Capital Cost (k$)

810

1599

2592

1902

0

0.5

1
Lower Limit: WEC LCOE ($/kWh)

0.62

0.23 0.22 0.21

0

0.5

1
WEC LCOE ($/kWh)

0.75

0.27 0.26 0.31

0

0.5

1
Upper Limit: WEC LCOE ($/kWh)

0.87

0.31 0.30

0.53

Rigi
d

LinF
OW

C

Non
FOW

C

Stan
da

lon
e

0

0.5

1

0.65
0.78 0.780.75

Rigi
d

LinF
OW

C

Non
FOW

C

Stan
da

lon
e

0

2

4

6

8
105
WEC total mass (Kg)

1.7e5

3.5e5

6.6e5

3.5e5

Rigi
d

LinF
OW

C

Non
FOW

C

Stan
da

lon
e

0

2

4

6

8
105

WEC steel (Kg)

3.0e5
2.1e5

3.3e5

2.1e5

Capacity Factor

Figure 6-21: Cost comparison for linear and nonlinear floating oscillating water columns,
attached to the FWT in different ways.
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Figure 6-22: Comparison of the response amplitude operators for linear and nonlinear
floating oscillating water columns, attached to the FWT in different ways. These RAO’s
are independent of the sea state.
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Figure 6-23: Comparison of the heave and pressure response amplitude operators for linear
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response changes for the different sea states. The 3 sea states considered are listed in Table
6.1.
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6.4.5 Array of Nonlinear Heave-Mode Floating Oscillating Water Columns

In this section, we investigate the FWT-WEC performance when multiple WEC’s are at-

tached to the FWT instead of just a single WEC, which was the case in all previous sections

of this chapter. Fig. 6-24 illustrates a 6-WEC circular array comprised of nonlinear floating

oscillating water columns, with the parameters listed in Table 6.5.

Fig. 6-25 shows the system performance statistics for an increasing number of WEC’s

in an array encircling the FWT. For each array, we placed the WEC’s in equal angular

spacing around the 360∘ circle around the FWT, with the first WEC placed in front of the

FWT as incident waves approached the structure. We considered only head-on waves.

Fig. 6-27 provides more details on these statistics by plotting the platform response

amplitude operators for an increased number of WEC’s. Fig. 6-27 shows that the platform

surge and pitch motions significantly decrease over the region of important frequencies for

the ocean, 0.04-0.1 Hz.

With our model, which does not consider hydrodynamic coupling, the average array

power increases linearly and the levelized cost of energy remains unchanged. As an in-

creasing number of WEC’s are added to the array, the FWT surge and pitch motion signifi-

cantly decreases. This is a result of the WEC contributing a larger inertia-stabilizing effect

than wave-forcing effect on the system. With 6 WEC’s, the array may produce an average

of 400 kW (18% of a 5 MW wind turbine’s average power), and stress on the FWT tower

may be reduced by up to 72%. These are promising results that could be further refined by

a more detailed model.
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Figure 6-24: CAD illustration of a nonlinear WEC array with 6 WEC’s
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Figure 6-25: Response statistics for an array of nonlinear oscillating water columns at-
tached by hinges to the FWT, for an increased number of WEC’s in the array. The WEC
uses the optimal nonlinear spring coefficient and Wells turbine coefficient for the 3 wind-
sea states representing a year in Eureka, CA.
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Chapter 7

Wave Tank Experiments

7.1 Introduction

The goal of these experiments is to verify the computed results, especially the effects of

different WEC configurations on the FWT platform motion. In Section 7.2, we Froude

scale the FWT and WEC’s by a factor of 150, and use a plate orifice to approximate the

scaled Wells turbine dynamics. In Section 7.3, we describe the 4 different WEC’s tested:

two rigidly-attached oscillating water columns, and two flexibly-attached oscilating water

columns. Section 7.4 plots and discusses the experimental results. Trends in the experi-

mental dynamics agree with the computed dynamics.

7.2 Model Scaling

7.2.1 Froude scaling

We Froude scale the floating wind turbine and wave energy converters to maintain similar

dynamics between the model and full scale systems. The Froude number measures the ratio

of fluid inertial force to fluid weight,

Fr =
u0√︀
gl0

, (7.1)
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Table 7.1: Froude scaling

Parameter, X Unit Power, n
Length m 1
Area m2 2
Volume m3 3
Mass Kg 3
Moment of Inertia Kgm2 5
Density Kg/m3 1
Time s 0.5
Frequency 1/s -0.5
Force Kgm/s2 3

where u0 is the fluid velocity, g is gravitational acceleration, and l0 is a characteristic length.

Maintaining the same Fr number when scaling l0 up by a factor λ requires increasing the

velocity, u0 by
√
λ, or equivalently decreasing the characteristic time by

√
λ. We scale by

the Froude number,

λ = 150, (7.2)

so that the FWT spar keel remains approximate 30 cm above the wave tank floor. The other

parameters are scaled according to,

XF.S . = λnXM.S ., (7.3)

where F.S . is for full scale and M.S . for model scale. The value of n depends on the

variable being considered, so that the model scale Froude number equals the full scale

Froude number, as listed in Table 7.1.

7.2.2 Orifice model for a Wells Turbine

We approximate a Wells turbine effective damping coefficient by an orifice in the top of the

air chamber. An orifice has the governing equation [142],

Q = αAOri f ice

√︃
2pc

ρ
, (7.4)
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where

α = f (β,ReD) =
Cd

(1 − β4)1/2 , (7.5)

β =
DOri f ice

DChamber
, (7.6)

Cd ≈ 0.6. (7.7)

q is the volumetric flow rate through the orifice, pC is the gauge pressure in the chamber, ρ

is the fluid density, Cd is the empirical drag coefficient, DOri f ice is the orifice diameter, and

DChamber is the chamber cross-sectional diameter. In these experiments, we approximate the

flow by a linear relationship from pc = 0 to pc = pcMax, where pcMax is measured during

the experimental trials,

Q ≈ αAOri f ice

√︃
2pcMax

ρ

pc

pcMax
, (7.8)

leading to an approximated effective Wells turbine coefficient,

kWells =
pc

Q
≈

pcMax

αAOri f ice

√︂
ρ

2pcMax
. (7.9)

7.3 Systems Tested

We tested a 1:150 Froude-scaled OC3-Hywind floating wind turbine with 4 different at-

tached WEC’s, shown in Fig.s 7-4 to 7-7. Throughout this chapter, we refer to these sys-

tems as,

∙ System 1: 3-OWC array, shown in Fig. 7-4,

∙ System 2: Large-OWC chamber, shown in Fig. 7-5,

∙ System 3: Linear floating oscillating water column (linFOWC), shown in Fig. 7-6,

∙ System 4: Nonlinear floating oscillating water column (NonFOWC), shown in Fig.

7-7.

For each system, we tested two configurations at up to 7 different monochromatic fre-

quencies: a freely floating configuration to determine the response amplitude operators,
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and a configuration where three load cells held the FWT fixed in the surge, heave, and

pitch directions to determine the forcing on the platform due to the incident waves and

WEC’s (the flexible WEC’s remained free to move). The experimental set-up is shown in

Fig.s 7-1 to 7-3. Wave probes measured wave elevation. A Sparkfun 9DOF accelerometer

was placed in the platform at the still waterline. For the tests with the flexibly-attached

WEC’s, the accelerometers malfunctioned, so videos of the experiments were used to track

the FWT and WEC motions.

For the 3-OWC-rigid array, an Omega 5 psig silicon pressure transducer measured the

pressure in the OWC air chamber. As shown in Fig. 7-4, a challenge of this approach was

that the Omega pressure gauges each weigh 153 grams, so mounting the pressure gages on

the WEC’s sunk the structure. The solution used for the 3-OWC-rigid array tests was to

mount the Omega gages on a cart next to the WEC’s, and measure the air pressure using

1/4-in diameter tubes. A challenge with doing that is that the tubes may affect the dynamics.

As shown in Fig.s 7-8 and 7-9, it fortunately seems that the FWT motion with and without

the tubes is very similar. For the other 3 systems tested, we used Honeywell MPX5010

silicon pressure sensors with a 10 kPa gauge range and 10 gram mass.

For the wave force tests, load cells were mounted on a stationary cart above the wave

tank and were each connected to the FWT via stinger rods: 0.086-in diameter, 5-in length

rods that transmitted loads only along their axes. Two horizontal-axis load cells, placed 8.5

inches apart, connected to the FWT tower and held the FWT fixed in surge and pitch. One

vertical-axis load cell connected to the top of the tower and held the FWT fixed in heave.
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Figure 7-1: Experiment set-up in the MIT Tow Tank.
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Figure 7-2: Freely floating experiment set-up.
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Figure 7-3: Fixed load cell experiment set-up.
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Figure 7-4: Experiment set-up for rigidly attached 3-OWC array.
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Figure 7-5: Experiment set-up for rigidly attached, large OWC chamber.
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(a) (b)

Figure 7-6: Flexibly attached linear floating OWC’s: (a) experiment set-up, (b) CAD ren-
dering with more details.
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(a) (b)

Figure 7-7: Flexibly attached nonlinear floating OWC’s: (a) experiment set-up, (b) CAD
rendering with more details.
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Table 7.2: Parameters of the experimental rigidly-connected WEC systems

3-OWC array Large OWC chamber

Parameter Full scale Model scale Full scale Model scale

OWC chamber outer radius, rTubeOuter 3.4 m 2.3 cm 11.9 m 7.9 cm

OWC chamber wall thickness, tTube 0.48 m 3 mm 0.48 m 3 mm

OWC chamber total length, LTube 32.4 m 0.22 m 32.4 m 21.6 cm

OWC chamber submerged length, LTubeS ub 25.5 m 0.17 m 25.7 m 17.1 cm

Polycarbonate tube density, ρPolycarbonate 1245 Kg/m3 1245 Kg/m3 1245 Kg/m3 1245 Kg/m3

Aluminum density, ρAluminum 2650 Kg/m3 2650 Kg/m3 N/A N/A

3D printed material density, ρ3Dprinted N/A N/A 403 Kg/m3 403 Kg/m3

WEC mass not counting frame, mW 3.6e5 Kg 107 g 5.9e5 Kg 175 g

WEC center of mass, zm -1.6 m -1 cm -11.4 m -7.6 cm

Submerged volume used for pitch, VS ub,Rotation 145 m3 43 cm3 9,346 m3 2,729 cm3

WEC center of buoyancy, zBuoy -7.8 m -5.2 cm -12.8 m 8.5 cm

WEC still water line area, AS WL 17.9 m2 7.95 cm2 34.0 m2 15.1 cm2

Water column cross-sectional area, ACol 34.9 m2 1.56e-3 m2 34.9 m2 1.56e-3 m2

Orifice diameter, Dori f ice 0.45 m 3.0 mm 0.3 m 2 mm

Wells turbine coefficient, kWells 2500 Pa/m3 5.6e7 Pa/m3 2500 Pa/m3 5.6e7 Pa/m3

Array arm L 17.2 m 0.115 cm 0 0

Array WEC angle spacing in x − y plane 120∘ 120∘ N/A N/A

Cylinder ballast depth -46 m 0.31 m N/A N/A

Cylinder ballast outer radius 9.0 m 6 cm N/A N/A

Cylinder ballast length 16 m 10.6 m N/A N/A

Cylinder ballast density 403 Kg/m3 403 Kg/m3 N/A N/A
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Table 7.3: Parameters of the experimental flexibly-connected WEC systems

Linear Floating OWC’s Nonlinear Floating OWC’s

Parameter Full scale Model scale Full scale Model scale

Float radius, rFloat 7.95 0.053 m 7.95 0.053 m

Float height, HFloat 2.7 0.01778 m 2.7 0.01778 m

Effective HFloat 3.75 .025 m 3.75 .025 m

Float submergence, LZ,Float -5.36 m -0.0357 m -5.36 m -0.0357 m

OWC chamber outer radius, rTubeOuter 3.81 0.0254 m 3.81 0.0254 m

OWC chamber wall thickness, tTube 0.477 m 3.17 mm 0.477 m 3.17 mm

Tube encasing radius at SWL, routSWLMod,SWL 4.10 m 0.027335 m 4.10 m 0.027335 m

Tube encasing maximum radius, routSWLMod,Max 4.10 m 0.027335 m 5.211 m .03474 m

Linear heave hydrostatic stiffness, C33Lin 1.80e5 N/m 12.3 N/m 1.80e5 N/m 12.3 N/m

Nonlinear heave hydrostatic stiffness, C33non 0 0 1.60e4 N/m3 1.60e4 N/m3

Tube encasing submerged length, LS WLMod,S ub 4.5 m 0.03 m 4.5 m 0.03 m

OWC chamber total length, LTube 22.5 0.15 m 22.5 0.15 m

OWC chamber submerged length, LTubeS ub 13.4 0.089 m 13.4 0.089 m

Polycarbonate tube density, ρPolycarbonate 1245 Kg/m3 1245 Kg/m3 1245 Kg/m3 1245 Kg/m3

3D printed material density,ρ3Dprinted 403 Kg/m3 403 Kg/m3 403 Kg/m3 403 Kg/m3

WEC mass, mW 5.2 × 105 Kg 153.8 g 5.2 × 105 Kg 153.8 g

WEC center of mass, zm -3 m -0.02 m -3 m -0.02 m

Submerged volume used for pitch, VS ub 3.37 × 102 m3 1.54 × 10−4 m3 3.37 × 102 m3 1.54 × 10−4 m3

WEC center of buoyancy,zBuoy -6.75 m -0.045 m -6.75 m -0.045 m

WEC still water line area, AS WL 17.9 m2 7.956 × 10−4 m2 17.9 m2 7.956 × 10−4 m2

Front WEC x-coordinate, LxW1 -13.5 m -0.09 m -13.5 m -0.09 m

Rear WEC x-coordinate, LxW2 13.5 m 0.09 m 13.5 m 0.09 m

Water column cross-sectional area, ACol 34.9 m2 1.56e-3 m2 34.9 m2 1.56e-3 m2

Orifice diameter, Dori f ice 0.45 m 3 mm 0.45 m 3 mm

Wells turbine coefficient, kWells 2500 Pa/m3 5.6e7 Pa/m3 2500 Pa/m3 5.6e7 Pa/m3

The full-scale mass rotational inertia about (0, 0, zm) for the large OWC chamber is,

IFull, Large OWC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
4.7e3 0 0

0 4.7e3 0

0 0 3.1e3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.10)

with units of Kgm2.

The full-scale mass rotational inertia about (LxW , 0, 0) for the 3-OWC array, including
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the aluminum frame and all 3 aluminum tube caps and polycarbonate tubes is,

IFull, 3-OWC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
4.9e12 −3.2e12 9.8e10

−3.2e12 2.1e12 −1.5e11

9.8e10 −1.5e11 7.0e12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.11)

with units of Kgm2.

The flexibly-connected WEC’s each have full scale mass rotational inertia about (LxW1, 0, zm),

IModel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.6e7 1.2e5 4.0e4

1.2e5 2.3e7 4.9e4

4.0e4 4.9e4 1.1e7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.12)

with units of Kgm2.

The added mass A, hydrodynamic damping B, and wave forcing ~F, are frequency-

dependent and computed using the Haskind and G.I. Taylor long wavelength approxima-

tions, described in Chapter 2.

7.4 Results and Discussion

Fig.s 7-8 to 7-13 compare the experimental and theoretical responses of the different sys-

tems.

Fig.s 7-8 and 7-9 shows the surge, heave, pitch, and pressure response amplitude oper-

ators for the two WEC systems that are rigidly attached to the FWT. Fig. 7-10 shows the

surge, heave, and pitch wave forces for the two WEC systems that are rigidly attached to

the FWT.

The theoretical and experimental trends agree at most frequencies: Both the large OWC

chamber and 3-OWC array decrease the surge and pitch resonant peak at 0.033 Hz. In

heave, the OWC chamber shifts the FWT heave resonant peak to a higher frequency: the

theoretical undamped natural frequency is 0.043 Hz. Both theoretically and experimen-

tally, large Wells turbine damping expands the resonant response peak width. The theory
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does not capture the increased heave responses of both the 3-OWC and large OWC system

between 0.033 and 0.06 Hz. At larger frequencies, the 3-OWC array decreases the surge,

heave, and pitch response while the large OWC chamber increases all three response ampli-

tudes. We note that the 3-OWC system is a lot heavier than the large OWC system and has

a submerged ballast- both of which contribute to a smaller response amplitude and larger

cost.

The large OWC system pressure measurements agree closely with the theory. The

3-OWC pressure measurements are off- possibly because of inaccuracies of the Omega

sensor set-up or because the large orifice diameter invalidates the theory used to estimate

the orifice damping coefficient.

The 3-OWC array and large OWC chamber both increase the surge force by nearly

identical amounts at frequencies below 0.08 Hz. At higher frequencies, the 3-OWC array

theoretically has less surge forcing than the large OWC chamber system. At large frequen-

cies, the theory underestimates the surge force on the large OWC and overestimates the

surge force on the 3-OWC array system, compared to the experiments. The experiment

and theoretical trends in pitch torque agree for the large OWC system, but the theory un-

derestimates the magnitude. Pitch torque was not measured for the 3-OWC system due

to a loosening of the epoxyed tower base during those trials. The theoretical and experi-

mental trends agree for heave forcing of both the 3-OWC and large OWC systems, but the

theory generally underestimates the 3-OWC forcing magnitude and overestimates the peak

frequency of the large OWC forcing.

Fig.s 7-11 and 7-12 show the surge, heave, and pitch response amplitude operators for

the two WEC systems that are flexibly attached to the FWT. Fig. 7-13 shows the surge,

heave, and pitch wave forces for the two WEC systems that are flexibly attached to the

FWT.

Some experimental and theoretical trends agree: the FWT surge resonant response at

0.033 Hz is reduced, and the surge response converges to match the FWT alone at larger

frequencies. In heave, the resonant response is shifted to a higher frequency and reduced

in magnitude. Rear nonlinear FOWC pressure measurements agree closely with the theory

while front nonlinear FOWC pressure measurements exceed the theory- possibly related to
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wave reflection and shielding by the FWT. The front linear FOWC pressure measurements

generally agree with the front nonlinear FOWC, while large over and under-performance is

shown for the linear WEC.

This experiment had several errors that should be avoided in future work: because of

buoyancy issues, the equilibrium angle of the links was not at 0, coupling between the

FWT and WEC heave modes was significant (the theory uses small angle assumptions

and assumes the heave coupling is negligible). Heave coupling may also have been due

to resistance at the pivot points. These issues contribute to the FWT and WEC’s having

similar responses rather than different responses, which is the goal of the joint coupling.

Another error was that the nonlinear FOWC did not have a sufficiently extreme increase

in the radius along its z axis. This error was due to an error in the computation and rapid

prototyping. The error causes the nonlinear FOWC to respond almost identically to the

linear FOWC.

Finally, a third error was that the accelerometers in the FWT and WEC malfunctioned,

so they did not record data. Fortunately, videos of the FWT-WEC’s served as back-up data,

but they did not have the same resolution as the accelerometers.

In terms of which FWT-WEC system shows the best results: we can conclude that

rigidly attaching a heavy WEC to the platform, with a submerged ballast significantly re-

duces the FWT motion, but we expect that this is not cost-effective, so it is not a good

option. Rigidly attaching a large OWC chamber to the platform is also not a good option

because it increases the FWT platform motion. We experimentally verified that flexibly

attaching WEC’s with a small frontal area that is aligned with the FWT frontal area de-

creases the surge motion. We expect that the WEC’s similarly decrease the pitch motion,

although we did not collect this data due to the accelerometer malfunction. While the ex-

periments show that the flexibly-attached WEC’s significantly increased the FWT heave

motion, the experiments also provide evidence that this occurred due to experimental set-

up errors: 1. the hinges were not at an equilibrium horizontal position, which we expect

would decrease the FWT-WEC heave coupling; 2. the FWT and WEC’s have almost iden-

tical heave motion, which suggests that the hinges did not work properly; and 3. the FWT

heave forcing data (Fig. 7-13 shows that the nonlinear WEC had only a small increase in
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the heave forcing. The heave forcing test may have had better adjusted WEC buoyancy

(and hinge equilibrium angle) than the heave motion test. For these reasons, we conclude

that a flexibly attached WEC that causes a minimal surge frontal area increase to the FWT

structure may decrease the FWT surge and pitch motion while having a minimal effect on

the FWT heave motion.
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Figure 7-8: Comparison of experimental motion results for the FWT alone and two rigidly
connected WEC arrays.
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the FWT alone and two rigidly connected WEC arrays.
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Figure 7-10: Comparison of experimental forcing results for the FWT alone and two rigidly
connected WEC arrays.
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Figure 7-11: Comparison of experimental motion results for the FWT alone and two flexi-
bly connected WEC arrays.
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Figure 7-12: Comparison of heave motion and chamber pressure experimental results for
the FWT alone and two flexibly connected WEC arrays.
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Figure 7-13: Comparison of experimental forcing results for the FWT alone and two flexi-
bly connected WEC arrays.
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Chapter 8

Conclusions and Future Work

This Ph.D. investigated optimizing the mechanical structure of a WEC attached to a FWT

with the goal of WEC power maximization and FWT motion minimization. Fig. 8-1 shows

the design flow chart used for determining the optimal WEC. Table 8.1 summarizes the

WEC’s considered and their performance results. Main findings of this Ph.D. include:

1. We developed a statistical linearization method for computing the FWT and WEC

response statistics with high computational efficiency (76 times better than time do-

main simulations) while accounting for nonlinearities (traditional Taylor series lin-

earization may underpredict tower fatigue stress by 15% in some sea states).

2. Using a long wavelength hydrodynamics model, we computed the dynamics statistics

of structurally coupled FWT-WEC’s. We found that the best structural coupling for

a heave-mode WEC is weak coupling in heave and rigid coupling in surge and pitch.

This is because the WEC can add inertial resistance to the FWT lateral motion, but

structural coupling in the heave direction adds more forcing than inertial resistance

to the FWT and increases the FWT’s resonant frequency.

3. We developed a simple WEC cost model and power takeoff constraints. Combining

the WEC to the FWT removes approximately 19% of the standalone WEC capital

cost associated with mooring lines and infrastructure (electric lines and maintenance

vessels).
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4. We found that linking a single linear floating oscillating water column (OWC) to the

FWT by a horizontal hinge had the positive effects of reducing the WEC levelized

cost of energy by 13%, reducing the FWT surge motion by 12%, reducing the FWT

maximum pitch motion by 13%, and having a negligible effect on the FWT tower

stress. This WEC has a water column radius of 4 m and submerged float radius of

8.5 m, and can generate 51 kW average power.

5. Adding a nonlinear hydrostatic stiffness of C33Wn = 3.2e5 N/m3 to the floating OWC

tube increased the WEC power performance to 87 kW (70% increase compared to the

optimized linear WEC). This added nonlinearity increased the heave forcing cross-

sectional area radius to 10.4 m, and increased the WEC steel from 210 tons to 330

tons (57%). This FWT-nonlinear-WEC design had a reduced levelized cost of energy

(16%), reduced FWT surge motion (16%), reduced FWT pitch motion (21%), and re-

duced FWT tower equivalent fatigue stress (6%) compared to the baseline standalone

FWT and standalone linear WEC.

6. Attaching multiple WEC’s to the FWT in an array continues the trends in WEC

power production and FWT platform motion found by attaching a single WEC.

7. We experimentally validated the FWT-WEC dynamics model in wave tank experi-

ments, for which different WEC configurations had different stabilizing or destabi-

lizing effects on the FWT platform motion.

Future work on this project could include:

∙ Applying the method of statistical linearization to improve FWT rotor control.

∙ Considering a WEC with a more optimized levelized cost of energy, such as a surge

converter, or the other WEC’s listed in Fig. 1-6.

∙ Considering a more detailed hydrodynamics model that incorporates FWT and WEC

hydrodynamic coupling.

∙ Experimentally testing a more mechanically robust and more strongly nonlinear WEC

model in the wave tank.
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∙ Considering other nonlinearities such as latching and Coulomb damping for im-

proved WEC power performance.

∙ Reducing the FWT platform steel of a combined FWT-WEC to achieve cost savings.

∙ Continuing to explore the parameter options for improved performance.

∙ Investigating the cost effects of a nonlinear structure versus electronic control. As

shown in Chapter 6, a WEC with a nonlinear hydrostatic stiffness can have an im-

proved levelized cost of energy compared to a linear WEC due to how its effective

linear stiffness adapts to different sea states. Using controls to adjust effective linear

stiffness in place of the nonlinearity to achieve adaptability may be more or less cost

effective.

∙ Considering the dynamics and cost effects of using fly ash as FWT platform ballast

instead of concrete. This could be a synergistic role for coal waste product to reduce

the FWT ballast cost and landfill.
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Figure 8-1: Thesis design flow chart.
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Appendix A

Floating Wind Turbine Parameters

This thesis uses floating wind turbine parameters for the OC3-Hywind spar described by

Jonkman et al. in National Renewable Energy Laboratory (NREL) reports, [66], [68], [64].

This thesis also considers the OC4-DeepCwind Semisubmersible in the statistical lineariza-

tion study of Chapter 3. Robertson et al. describe the OC4-DeepCwind semisubmersible

parameters in detail in the NREL report, [118]. These hydrodynamic parameters were

computed using the WAMIT panel method [88].

For dissertation completeness, those parameters are duplicated here.

For both platforms, the rigid platform degrees of freedom are,

~xPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

surge

sway

heave

roll

pitch

yaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.1)
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A.1 OC3-Hywind spar

For these 6 degrees of freedom, the platform inertia matrix about the still water line is,

MPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7466330 0 0 0 −671338795 0

0 7466330 0 671338795 0 0

0 0 7466330 0 0 0

0 671338795 0 64592993432 0 0

−671338795 0 0 0 64592993432 0

0 0 0 0 0 164230000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.2)

where the elements have standard International System (SI) Units of Kg, Kgm, and m.

The frequency-dependent potential flow added mass and hydrodynamic damping are

shown in Fig. A-1. The frequency-dependent wave forces noramlized by wave amplitude

are shown in Fig. A-2. These figures are reproduced from [66].
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Figure A-1: OC3-Hywind frequency-dependent hydrodynamic added mass and damping
from [66].
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Figure A-2: OC3-Hywind frequency-dependent wave force normalized by wave amplitude
from [66].

The OC3-Hywind has hydrostatic stiffness,

CPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 3.33e5 0 0 0

0 0 0 1.28e9 0 0

0 0 0 0 1.28e9 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.3)

where the elements have standard International System (SI) Units of N/m, Nm/rad.

The mooring lines are attached to platform fairleads at a submerged depth of 70 m. The

mooring lines have a linearized stiffness about the platform 0-deflection point,

KMooring =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41180 0 0 0 −2882600 0

0 41180 0 2882600 0 0

0 0 11940 0 0 0

0 2882600 0 201782000 0 0

−2882600 0 0 0 201782000 0

0 0 0 0 0 109900000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.4)

where the elements have standard International System (SI) Units of N/m, Nm/rad.
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A.2 OC4-DeepCwind Semisubmersible

For these 6 degrees of freedom, the platform inertia matrix about the still waterline is,

MPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13473000 0 0 0 −181346580 0

0 13473000 0 181346580 0 0

0 013473000 0 0 0

0 181346580 0 9267924967 0 0

−181346580 0 0 0 9267924967 0

0 0 0 0 0 12260000000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.5)

where the elements have standard International System (SI) Units of Kg, Kgm, and m.

The frequency-dependent potential flow added mass and hydrodynamic damping are

shown in Fig. A-3. The frequency-dependent wave force normalized by the wave amplitude

is shown in Fig. A-4. These figures are reproduced from [118].
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Figure A-3: OC4-DeepCwind semisubmersible frequency-dependent hydrodynamic added
mass and damping from [118].
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Figure A-4: OC4-DeepCwind semisubmersible frequency-dependent wave force noraml-
ized by wave amplitude from [118].

The OC4-DeepCwind semisubmersible has hydrostatic stiffness,

CPlat f orm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 3860000 0 0 0

0 0 0 1012500000 0 0

0 0 0 0 1012500000 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.6)

where the elements have standard International System (SI) Units of N/m, Nm/rad.

The mooring lines are attached to platform fairleads at a submerged depth of 14 m. The
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mooring lines have a linearized stiffness about the platform 0-deflection point,

KMooring =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.08e4 0 0 0 −1.08e5 0

0 7.08e4 0 1.08e5 0 0

0 0 1.91e4 0 0 0

0 1.07e5 0 8.73e7 0 0

−2882600 0 0 0 8.73e7 0

0 0 0 0 0 1.17e8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.7)

where the elements have standard International System (SI) Units of N/m, Nm/rad.
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