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Abstract

Autonomous (self-driving) vehicles are increasingly being tested on highways and city
streets. But there is also a need for robots that can navigate through environments
like sidewalks, buildings, and hallways. In these situations, the robots must interact
and cooperate with pedestrians in a socially acceptable manner. The "rules of the
road" no longer apply – there are no lanes or street signs, and pedestrians don’t use
turn signals when cutting through crowds. This thesis describes the hardware and
software architecture of a robot that was developed for this application. This thesis
also proposes a 2nd generation robot with tighter budget and size constraints. Finally,
this thesis presents a novel collision avoidance method that extends the Reciprocal
Velocity Obstacle (RVO) framework to consider the impact of planning decisions on
future world states.
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Chapter 1

Introduction

Autonomous (self-driving) vehicles are increasingly being tested on highways and city

streets. But there is also a need for robots that can navigate through environments

like sidewalks, buildings, and hallways. In these situations, the robots must interact

and cooperate with pedestrians in a socially acceptable manner. The "rules of the

road" no longer apply – there are no lanes or street signs, and pedestrians don’t use

turn signals when cutting through crowds. This thesis presents a robot capable of

socially acceptable navigation.

This chapter provides motivation, literature review, and a concise list of the con-

tributions in this thesis.

Chapter 2 describes the sensor suite and other hardware components of the first

generation socially acceptable robot.

Chapter 3 describes the software system of the robot, including the Localization,

Perception, Path Planning, Control, and Goal Selection systems.

Chapter 4 presents the design of a second generation robot with tighter budget

and size constraints. It also presents results on the robot’s ability to generate and

localize to a map with different lidar sensors.

Chapter 5 presents a novel motion planning strategy that extends the VO frame-

work to account for future impact of current planning decisions. This algorithm,

Topology Aware Reciprocal Collision Avoidance, is compared to existing approaches,

such as Optimal Reciprocal Collision Avoidance (ORCA), and Progressive Hindsight

17



Optimization (PHOP).

Chapter 6 concludes the thesis with a summary and some ideas for future work.

Appendix A presents very detailed explanation of the robot for someone. This

resource is provided specifically for future users of the device. It includes labeled

hardware diagrams, input/output diagrams for each software subsystem, and other

general notes.

1.1 Motivation

Humans have a natural intuition for how to navigate through busy places like airports

and malls, such as how much space to leave between one another and when to pass

people that are moving slowly. Robots, on the other hand, are not good at this task.

According to a recent news article [6], “Robots don’t do well in crowds...robots are

really awkward." Some existing approaches are presented in the next section, but in

general, a robot that can drive quickly through pedestrian-rich environments is still

an open research area.

There are many applications where a robot that can maneuver through crowds

could be beneficial. For example, a robot that follows a person and carries heavy

luggage would be make airport travel much more convenient. Or a robot that delivers

packages or food to people’s doorsteps would reduce the need for humans to do such

a repetitive task.

This type of robot could be used in emergency situations where a medical team

must navigate through a crowd of people or vehicles to assist a patient. In this

scenario, the robot must carefully optimize for both speed and safety.

There is also an application in shared personal transportation devices like bike

sharing. Nearly 60,000 people used the Hubway station at Mass Ave and Beacon St

in Boston in 2015 [7]. However, these devices become unevenly distributed throughout

the city each day. In the morning, the first customers drive into the city, and by the

time the later customers arrive, there are no transportation devices left. Currently

the customers are either out of luck, or the transportation company must manually

18



re-distribute the vehicles to the peak customer location. For example, Hubway drives

4-5 vans around the city from 6am to 10pm 7 days a week for this purpose [7]. If the

bikes were able to drive autonomously, a customer could ride a bike into the city for

work, and it could drive itself back to be available for someone else to use, instead of

sitting idly until the end of the day when someone rides it back out of the city.

Existing autonomous vehicles do not solve the problem of personal and cargo

transportation through crowded environments for several reasons. First, the robots

typically use expensive sensors. While these sensors may be safety-critical on a vehicle

that will drive on a highway at 70mph, they are not necessary and cost-prohibitive for

this application. Second, many of the robots simply are not designed to carry both

people and cargo. Third, the robots do not navigate with pedestrians naturally. So,

a robot that uses inexpensive sensors, can carry people and cargo, and can navigate

through crowded environments would be novel and could be used for the several

applications mentioned earlier.

There is no published research into the impact of high-level design decisions on

robot performance for this application. Researchers typically build one robot that

suits their needs and adheres to their budget. But, nobody has analyzed how the

performance of the system could be improved if the budget were increased or a sensor

were placed in a new location. Further, with a limited budget, each remaining com-

ponent must be used to its full potential. Therefore, a solid understanding of how

the system’s performance is affected by these early design decisions would be useful

to anyone building a robot for autonomous navigation in the future.

A robot in a pedestrian-rich environment should behave appropriately for each

type of obstacle. That is, a robot should take extra care to not interfere with a

human, whereas a robot could get very close to another robot because the other

robot can not get annoyed or frustrated like its human counterpart.

The robot should be aware of different human behaviors, such as where people are

looking. The robot should leave extra room for people who are staring at their cell

phones, as opposed to a person who is clearly aware of the robot’s presence.

This ability to plan intelligently around different types of agents does not ad-

19



(a) Obelix [8] [9] (b) Jackrabbot [10]

(c) MAGIC [11] (d) Starship [12]

Figure 1-1: Some robots that operate in pedestrian-rich environments

equately exist in the literature, so a new motion planning algorithm is created in

Chapter 5.

1.2 Literature Review

There are many companies and academic groups that are currently developing robots

for use in public places with many pedestrians. Some are shown in Fig. 1-1.

1.2.1 Academic Research

A group at Stanford led by Savarese is developing a socially aware robot called

Jackrabbot. Their approach learns social etiquette by observing humans. Since a

large amount of data is required for machine learning, they propose methods of data

collection [13] and a method for pedestrian path prediction [14]. The robot wears

a necktie and sometimes a cowboy hat to look more "human." In videos published

a couple months prior to the writing of this thesis, the researchers explain that the

20



robot is either driven manually or has a simple collision avoidance algorithm run-

ning onboard. There is also a collection of sensors including at least 2 Lidars, stereo

cameras, and RGB-D cameras.

A group led by Burgard developed a robot for this environment called Obelix [9].

The robot recently drove several kilometers through downtown Freiburg, Germany

autonomously, with an entire news crew following behind to document the event.

The robot is 1.6m tall and has a maximum speed of 1m/s. Four lidars are used, as

well as GPS, to map the area ahead of time. They present novel methods including

calibration of the several sensors, and SLAM with such a large map. They track

dynamic obstacles by comparing changes between 1s worth of successive occupancy

grid maps. They monitor the IMU to limit the robot’s speed if it is driving over a

bumpy surface to prevent tipping over. Their planner has three layers: one to connect

the local maps, one to run Dijkstra’s algorithm on a local map, and one to determine

a safe velocity given the dynamic obstacles in the area. The cost of each node in

the local map is pre-computed as a sum of travelled distance and free space, and if

the perception system deems an edge un-traversable during execution, it is assigned

infinite cost. The robot’s impressive trek through the city was fully autonomous,

except for at crosswalks and once due to localization loss. Some stated limitations of

their approach include navigating around pedestrians, sensing blind spots, and areas

with few features for the laserscan-based localization strategy.

A group at University of Michigan led by Olson developed a robot called MAGIC

that was shown driving through a hallway with several pedestrians. The path planning

algorithm by Mehta et al. dynamically switches between three options to navigate

through crowds: stop and wait, follow someone moving in the same direction, or go

solo [15]. Further demonstrations show the robot driving in a grassy field with several

people wandering around [16]. The MAGIC robot uses a VLP-16 lidar (described in

Chapter 2) for perception.

A group at Duy Tan University in Vietnam developed a robot to help pedestrians

cross streets, like a human crossing guard. The robot uses ultrasonic sensors to detect

objects.
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1.2.2 Commercial Robots

On the commercial side, a company called Starship has logged over 20,000km with

their robot for local delivery of goods. Starting a few months before the writing of this

thesis, the robots have begun making deliveries autonomously, with a person nearby

for safety. Their public videos do not show the robot driving through pedestrian-rich

environments.

Another start-up, Dispatch, has a ground robot for local delivery as well. Their

sensing suite includes a VLP-16 lidar. Again, the limited public information and

videos focus on the robot’s delivery capabilities, and do not demonstrate performance

in crowded areas.

Even Domino’s Pizza is building a robot to replace their delivery drivers. The

robot seems to still be in an early development phase by a military contractor.

1.2.3 Summary

Many of these robots have led to interesting publications that push forward the state-

of-the-art in robotics. However, it is not clear from the demonstrations of these robots

that they are truly capable of autonomous navigation in real, crowded environments.

Often a robot is shown navigating in a laboratory setting next to the researchers that

created it. In the case of Obelix, the distance travelled is impressive, yet the robot is

driving on an empty sidewalk for a great deal of the journey [17]. The capability of

the commercial robots is difficult to gauge, since the videos often focus on the robot’s

appearance with brief clips of the robot driving. The literature lacks a robot that

has been clearly demonstrated to drive in a realistic environment autonomously for

an extended period of time, at the average human walking speed.

In addition, many of the robots do not use commercially-viable sensor suites.

Many use extremely expensive sensors, like the Velodyne VLP-16, or a combination

of several Hokuyo lidars. The sensors alone on these devices cost close to $10,000. It

has not been shown that a robot can still navigate autonomously at high speed with

less expensive sensors.
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Lastly, the utility of the robot depends on its ability to carry people or cargo. The

academic robots are not designed with this application in mind, but the commercial

robots certainly do.

1.3 Contributions

The main contributions of this work are

1. A thorough description of a fully autonomous ground robot that can drive

through pedestrian-rich environments at the average human walking speed

2. An analysis of some performance trade-offs of a 2nd generation robot design

with tighter size and budget constraints - specifically the ability to generate

and localize to a map

3. A novel motion planning algorithm, TARCA, that considers the impact of pass-

ing other agents on different sides to achieve more socially acceptable navigation

4. Documentation for future users of the robot, including detailed software archi-

tecture diagrams, labeled hardware diagrams and operation instructions
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Chapter 2

Generation 1 Hardware

This chapter presents the hardware of the 1st generation socially acceptable robot. It

describes the chassis, sensors and onboard computers.

2.1 Chassis

The robot is built on a Clearpath Jackal, pictured in Fig. 2-1, which is a differential-

drive ground vehicle capable of driving on indoor and some outdoor terrain. This

robot can be purchased for about $12,000.

The chassis contains 2 motors which drive the 4 wheels using a belt drive, meaning

the speed of the wheels on each side of the vehicle can be commanded independently.

There are encoders on the motors. There is also an internal tray to hold extra

Figure 2-1: Clearpath Jackal (unmodified)
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computers, electronics, or for cable management. The Jackal provides an IMU and

GPS but these are not very useful for this application. The IMU is too noisy and

GPS is unavailable indoors, and inconsistent in urban environments.

There is a main circuit board which contains most of the control and power elec-

tronics for the robot. There is a mini-USB jack which can be used to connect any

external computer. The Jackal simply shows up as a USB device on the external

computer. There is also a user power board with 5, 12, and 24V lines which is useful

for the various sensors that require these voltages.

Clearpath Robotics provides open-source ROS packages which handle the mo-

tor control, battery voltage monitoring, and other low-level tasks. This means the

external computer must simply supply std_msgs/Twist commands through ROS

containing a desired linear speed and desired angular speed. This is converted into

wheel speed commands at the software level (described in Section 3.1.5), and then

the robot’s on-board electronics control the motors to those reference speeds using

feedback from the encoders.

In experiments for this thesis, it became clear that speed is a critical aspect

of a robot that navigates around humans. If the robot drives very slowly, people

will do all of the collision avoidance and simply walk around the robot. That is

both uninteresting (from a research standpoint) and not useful for the application of

carrying cargo nearby a human. Since humans walk at an average speed of 1.2m/s [18],

the robot must be able to drive at least this fast. The robot must carry computers,

sensors, and a battery, so a large payload capacity is also a requirement.

Some alternatives to the Jackal are described in Table 2.1. All 3 robots are similar

in size. The Jackal is the only one that can drive fast enough, and it has the highest

payload capacity. It is also the more expensive than the other robots.

1The advertised max speed is 0.6m/s. By changing firmware parameters, it is possible to drive
up to 0.9m/s, but the vehicle does not stop consistently above the advertised speed.
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Table 2.1: Vehicle Specs. Only the Jackal can drive faster than human walking speed
(1.3m/s). All of these robots are similar size.

Clearpath Jackal Pioneer P3-AT Turtlebot2
Max Speed [m/s] 2.0 0.61 0.65
Max Payload [kg] 20 12 5.0

Size [mm x mm x mm] 508 x 430 x 250 508 x 497 x 277 354 x 354 x 420
Price [$] 12,000 4,000 1,000

Table 2.2: Typical commercially-available sensors for autonomous systems. Price is
correlated with range.

Price [$] Range [m] Data Format
3D Lidar 8-60k 2-100+ 3D Pointcloud
2D Lidar 500 0.15-16 2D Plane of Ranges

Realsense (RGB-D) 100 0.5-3 3D Pointcloud & RGB Image
Sonar 5-50 1-5 Single Range Value

Monocular Camera 20-500 N/A RGB Image

2.2 Sensors

The robot uses sensors to perceive the surrounding world and make intelligent deci-

sions about where to drive. There is no single sensor today that can measure every

signal required for navigation. Thus, a suite of sensors is necessary.

The sensors on this robot are organized in Table 2.2 for convenience and compari-

son. Clearly, as the price of the sensor decreases, the range and quality of information

provided by the sensor decreases as well. Each of the sensor types are described in

the following subsections. At the end of this section, some other common sensors that

do not suit this application are mentioned for completeness.

2.2.1 Lidar

Arguably the most important sensor in the recent advancement in autonomous vehi-

cles is Lidar. Almost every company testing vehicles today has at least one Velodyne

Lidar on their car, because of its field of view and robustness to changes in the envi-
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(a) Different sizes of Velodyne Lidars [19].
The rightmost one, VLP-16 is used on the 1st

generation robot.

(b) Example pointcloud from a 3D Lidar [20]

Figure 2-2: Velodyne Lidar examples

ronment like lighting and inclement weather. The sensor consists of 1 or more lasers

spinning on an axis. The range is calculated by the known speed of light, divided by

the time elapsed between the light being emitted and being reflected back to the sen-

sor. If a single laser spins, a 2D laser scan is generated, with a distance measurement

at many points along a plane. If multiple lasers are mounted at different angles along

the spinning axis, a 3D pointcloud is created. The 3D pointcloud of high-end Lidar is

close to a perfect representation of the entire scene (out to >100m), showing details

as fine as people’s hands. Both types of Lidar sensors are commercially available,

with the 3D ones being much more expensive.

Lidar is useful for two common tasks for a robot:

∙ seeing walls, so the robot can estimate its position on a map, and

∙ seeing obstacles, so the robot can plan a path which avoids them.

Velodyne

For the socially acceptable robot, a Velodyne VLP-16 (also known as the Puck) is

mounted in the center of the robot. This sensor has a horizontal field of view of 360∘, a

maximum range of 100m, and a ±15∘ vertical field of view. This means the Velodyne

can see objects in 3D all around the vehicle out to 100m, which explains why it is

such a popular sensor. A downside is the $8,000 price tag. Another limitation is the

minimum range and vertical field of view, which creates a circular blind spot with

radius 1-2m around the vehicle.
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(a) Sensor is only 2" tall [21] (b) Example laserscan from a 2D Lidar [21]

Figure 2-3: RPLidar A2

Table 2.3: Lidar Specs. Velodyne VLP-16 costs almost 20x as much as the RPLidars,
but its maximum range is much greater. The RPLidars have better minimum range
though.

Velodyne VLP-16 RPLidar A2M4 RPLidar A2M6
Advertised Observed Advertised Observed Advertised Observed

Max Range [m] 100 - 6 7.0 16 14
Min Range [m] - 1 0.15 0.14 0.2 0.2
Frequnecy [Hz] 5-20 10 5-15 12.5 5-15 10

Horiz Resolution [∘] 0.1-0.4 - 0.9 1.0 0.9 1.0
Weight [g] 830 >1200 190 200 190 200
Power [W] 8 - 2.3 - 2.3 -
Voltage [V] 9-18 12 5 5 5 5
Price [$] 8,000 - 450 - 560 -

RPLidar

An alternative Lidar sensor is produced by the Chinese company Slamtec. Its main

advantage is its low cost of $450, nearly 20x cheaper than the Velodyne VLP-16. The

compromise, however, is its sensing performance. The RPLidar only outputs a 2D

laser scan, as shown in Fig. 2-3b. Other companies produce 2D Lidars for >$1,000.

The specs of the two Lidars are compared in Table 2.3. Note that the weight of

the Velodyne is advertised with only the sensor, but the observed weight includes the

required electronics box, and a custom aluminum mount.
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Figure 2-4: Genius F100 Webcam [1]

2.2.2 Monocular Camera

While Lidar is good at measuring distance to and shape of obstacles, it is not as

useful for actually inferring what type of obstacle it is. For example, a person and a

pillar do not look very different to a 2D Lidar that simply sees the cross section. But

those two types of obstacles have very different implications for path planning, since

the person might move over time, while the pillar is going to stay still.

The computer vision community has successful methods for this task, namely

object classification. Given a camera’s image, the objects in the image can be labeled.

However, with a monocular camera (similar to a human using only one eye), depth

cannot be perceived. The combination of monocular cameras with Lidar was covered

thoroughly in [22], and a brief overview of the pedestrian detection strategy on this

robot is presented in Section 3.1.3. Some object classification methods require the

camera to be mounted horizontally, so the images are not too skewed. However,

state-of-the-art machine learning algorithms can still classify objects when there is

skew.

For the 1st generation robot, 4 Genius F100 Webcams are mounted (3 in the front,

1 in the back) to cover a large amount of the area around the vehicle. Their 120∘
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(a) Camera with US quarter for scale [23] (b) Example pointcloud from a Realsense [24]

Figure 2-5: Realsense R200 RGB-D Camera

field of view reduces the number of cameras needed, as compared to other typical

webcams that have smaller fields of view. The price tag of this camera is $40 each -

two orders of magnitude lower than the Velodyne Lidar.

2.2.3 Intel Realsense

While the cameras augment the Lidar by labeling the blobs it sees, there is still the

issue of the Lidar’s 1-2m blind spot around the vehicle. This is arguably the most

critical region for a robot that avoids collisions with obstacles. In a static, unchanging

world, one can assume that any obstacles will be seen by the Lidar when outside of the

blind spot, and then remembered even if the robot gets very close. However, in the

environments that the socially acceptable robot operates in, there are people moving

around all the time, and that assumption is invalid. It is imperative to perceive the

world in all directions that the robot would consider driving.

The blind spot is filled in by three Intel Realsense R200 cameras, which are RGB-

D sensors. The Realsense calculate depth of points in the image and generates a 3D

pointcloud by using infrared stereo cameras. There is also an infrared transmitter

that projects texture to make the stereo registration problem easier. This is an en-

hancement on the monocular camera which has no depth information. The Realsense
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(a) Top View of Bumper (b) Side View of Bumper

R200 cost $100 each, and are very slim and lightweight. They are smaller and less

expensive than the Microsoft Kinect, another common RGB-D sensor. There is also

an RGB camera on the R200, which is not used in the 1st generation robot.

The sensors are mounted similarly to the webcams, but pointed slightly downward.

The position is chosen so that the sensors can see both the front of the robot, and as

far as the minimum sensing range of the Lidar. The R200 has a maximum range of 3-

4m, although some users have seen ranges closer to 20m [25]. Regardless, because the

sensor is angled toward the ground, the maximum range is sufficient. Furthermore,

this mounting position makes filtering of the somewhat noisy depth measurement

easier, because the floor is a known reference that can be assumed as a flat plane.

2.2.4 Bumper

A custom bumper is designed for the front and back of the Jackal. It is shown in

Section 2.2.4. This bumper contains touch sensors that act as an open/closed switch

when relaxed/compressed. This is the final safety measure for the Jackal, because if

any of the touch sensors are compressed, an emergency stop command is issued. This

is in case there was a failure to detect an obstacle by other means.

The design shown in Section 2.2.4 includes an RPLidar (8m) and 4 touch sensors.

The bumper also allows for mounting of other sensors such as sonars, or could be a

place for Realsense cameras in the future. The advantage of a modular bumper is that

it can be removed from the Jackal chassis, redesigned at low cost, and re-attached,

as opposed to drilling many permanent holes in the vehicle.

The bumper has an area for its own microcontroller (currently an Arduino Mega)

which processes the touch sensors and outputs an emergency stop command if nec-
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(a) Scene with obstacles at different distances
from robot

(b) Sensor data of the scene in (a)

(c) Zoomed in: carboard box and white pole in green rectangles, seen by Realsense
and Velodyne, respectively

Figure 2-7: Raw perception data

essary. The microcontroller could run ROS, using the open-source Arudino ROS

software, but with the low amount of data being processed, it is easier to communi-

cate simply with serial commands.

Theoretically, this bumper could be manufactured and sold to Jackal customers, as

it is completely modular and requires only a USB connection for power. A significant

portion of the bumper design was done by undergraduate Justin Chiu ’18, as part of

a UROP.

2.2.5 Sensor Hub

The sensors are arranged in such a way that maximizes each sensor’s strength, while

filling in blind spots. In the Sensor Hub (i.e., 1st generation) design, all of the sensors
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Figure 2-8: 1st Generation Robot (with Sensor Hub)

(except the bumper) are mounted in the center of the robot, as seen in Fig. 2-8.

The Velodyne is mounted about 0.6m above the ground in the center of the robot.

The height is necessary for two reasons. First, if placed lower, some of the lasers

would be angled such that they intersect with the robot, which is a complete waste

of photons. Second, there is much more clutter near the floor, such as chair legs, feet,

etc. and it is necessary to see the walls and other permanent features that help the

robot recognize where it is on the map.

The Realsenses are mounted right below the Velodyne, angled downward so that

they see the front of the robot, and the edge of the Velodyne’s blind spot. A good

example of this is in Fig. 2-7c’s green rectangle, where the cardboard box is too close

to the vehicle to be seen by Velodyne, but is seen by the Realsense, and vice versa for
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the white pole that is slightly further away. In the image on the right, the deformed

white pixels in the bottom corner of the green rectangle represent the cardboard box,

and the cylinder of points near the top of the green rectangle represents the pole.

To keep the cameras relatively horizontal (not pitched up or down), they are also

mounted on the Sensor Hub so their overlap is minimal, and coverage is maximal.

There is also a camera facing backward to detect pedestrians that are behind the

robot.

An advantage of the Sensor Hub design is a central structure containing all major

sensors. There is space to mount computers discreetly as part of the Hub. A limitation

of this design becomes clear when considering an application of the socially acceptable

robot, a package carrier, since the main cargo area of the robot is occupied by sensors.

This problem is addressed in the 2nd generation robot.

2.2.6 Other Sensors

There are of course other sensors than the ones mentioned in the preceding sections.

Each have issues that limit their utility on this robot.

High-quality monocular cameras are becoming useful for state-of-the-art SLAM

and collision avoidance methods, but they require a significant amount of compu-

tation and often a GPU. On this robot, the even the inexpensive webcam image

is downsampled to reduce computation and USB data flow. So, a more expensive

monocular camera would not necessarily improve performance for the current soft-

ware architecture. The performance of monocular-SLAM algorithms is not yet very

robust [26], compared to Lidar localization methods.

Stereo cameras are commonly used because they can measure depth in the image

frame. The Realsense R200 is actually an IR stereo camera, but this paragraph focuses

on RGB stereo cameras. A company recently released the Zed stereo camera2 for $500,

but it requires significant computation on the host computer. The Realsense, on the

other hand, does the stereo registration on its own chip, easing the computation load

on the host computer. The Zed camera is advertised to measure depth up to 20m.
2https://www.stereolabs.com/
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Lidar, on the other hand, can measure up to 16m (albeit only in 2D) at the same price

point with practically no computation required by the vehicle computer Finally, the

drawback of all vision systems is the lack of robustness to changing lighting conditions.

Some autonomous vehicles use radar for obstacle detection and others use Lidar.

Radar provides a much coarser measurement than Lidar (Fig. 2-2b) which is sufficient

for large autonomous vehicles that spend the majority of their time driving in the same

direction as other vehicles, and simply need to maintain a safe following distance. On

the other hand, a robot that navigates through pedestrian-rich environments requires

very fine detail about the objects around it, because people walk in every direction.

A robot needs an accurate estimate of the pedestrians’ positions and velocities to

navigate with the strategy presented in this thesis. Also, there aren’t many radar

systems for this type of robot that are commercially available today. This level of

accuracy and availability makes Lidar a better choice for this application.

2.3 Computers

There are 2 external computers used (in addition to the Jackal’s onboard control

unit). One requirement for the object recognition software is a discrete graphics

card (GPU), and state-of-the-art computer vision algorithms often require a GPU

manufactured by NVIDIA. Along with obvious size and power limitations, the GPU

constraint severely limits what computers are useful for the socially acceptable robot.

One such computer is the Gigabyte BRIX Pro GB-BXi7G3-760 with an i7-4710

and GTX760 GPU. This computer’s size (60 x 128 x 116mm), discrete GPU, and

internal power electronics make it a great choice for this robot. The Brix costs about

$800 in total. However, the company has stopped making computers of this form

factor.

Another popular computer for mobile robots is the Intel Nuc. A recent version of

this is called the Skull Canyon, consisting of a i7-6770HQ CPU and powered USB3.0

ports. However, there is no discrete NVIDIA GPU on the Nuc.

For the 1st generation robot, a Brix and a Nuc are mounted on the outside of the
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chassis. This position handles heat management by default, instead of cutting holes

into the Jackal’s chassis and installing fans to keep the temperature at a safe level for

the computers. The Brix runs most of the software, while the Nuc runs the Realsenses

and has plenty of computation left for future expansion. The two computers are

connected with an Ethernet cable. The Brix also does all communication with the

Jackal hardware, and is called the ROS Master3.

Another option considered is a computer built on a mini-ATX motherboard with

desired components. The computer could go inside the chassis’ computer tray, as the

Jackal was initially designed. However, the size of the power supply needed to power

a modern GPU and other components is the same size as the Brix, so the Brix+Nuc

option is preferable at this time.

Other computation options are explored for the 2nd generation robot, including a

laptop and other GPUs.

2.4 Summary

This chapter described the hardware of the 1st generation robot. The chassis, sensors,

and computers were presented.

3Information about running ROS with multiple machines is found at http://wiki.ros.org/
ROS/Tutorials/MultipleMachines. The two computers can run different versions of Ubuntu and
ROS (i.e. 14.04/Indigo on Brix and 16.04/Kinetic on Nuc)
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Chapter 3

Software

This chapter presents the software on the socially acceptable robot. The backbone of

the software is the Robot Operating System (ROS), which is an open-source library

for C++ and Python. It is mainly used to handle communication between different

files and computers. Some of the best features of ROS are

1. the extensive library of open-source packages

2. the ability to write C++ and Python, and have these files communicate

3. launch files, so many scripts can run at once with the proper parameter

For a brief explanation of ROS terminology, files are called nodes, which can either

publish or subscribe to topics, which are pieces of information like sensor data or

variable estimates. A much more thorough description is found online1.

3.1 Software Architecture

The system is designed to convert inputs,

∙ Task (e.g. "Follow Person A", "Go To Position X", etc.)

∙ Sensor Data

into wheel commands.
1http://wiki.ros.org
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Figure 3-1: Software Block Diagram

3.1.1 Block Diagram

The block diagram in Fig. 3-1 shows the main components of the socially acceptable

robot’s software architecture.

3.1.2 Localization

Localization is the problem of inferring where an object is in the world. For the

socially acceptable robot, the problem is to estimate the robot’s pose (position &

orientation) in a map. A map of the environment is made ahead of time, and then

during execution, the robot uses Lidar and odometry to estimate where in that map

the vehicle is.

The ROS package AMCL2 is used for this task. AMCL implements a particle filter

for localization. Initially, a set of particles is distributed throughout the map, which

represent each of the possible poses the robot could have. The algorithm executes an

update step, where for each particle, the current 2D laser scan (from the Lidar) is

compared to what the map says the robot should see at that pose. Particles where

the laser scan matches well with the map are kept, and the remaining particles are

discarded. The probability distribution of poses goes from uniform across the map,

to a series of peaks in areas where the robot is likely to be.
2http://wiki.ros.org/amcl
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As the robot drives, the wheel encoders report odometry estimates, roughly cor-

responding to the robot velocity. These estimates have some noise associated with

them, indicated by their covariance. With each new odometry estimate, the exist-

ing particles are projected forward according to the odometry, and new particles are

added around the existing particles to account for noise. The higher the covariance

in the odometry estimate, the more the new particles are spread out.

Thus, the particles are spread out by the odometry, and narrowed down by the

laser scans, in a repeating loop. After several seconds of driving, particles will hope-

fully converge, and only exist near the robot’s true position on the map.

This approach is useful because it handles the uncertainty associated with the

sensors. A limitation of it is the possibility of narrowing down to the wrong set of

particles, because there is no way to recover except re-sampling the whole map again.

This limitation is rarely seen in experiments conducted for this thesis. There are

existing approaches to recognize when the localization procedure has converged to

the wrong position, but those are not discussed here.

The main parameters that can be tuned in AMCL are the 4 odom_alphas that set

how much particles spread out. If they are set too low, the algorithm trusts the wheel

encoders too much, and will not have diverse enough particles to select from. Over

time, the robot’s estimated pose may drift from the true pose, and there will not be

diverse enough particles to correct for it. Conversely, if the parameters are set too

high, two issues arise. First, a spurious laser scan could cause a particle far from the

vehicle to appear as the most likely robot position, causing a jump in the vehicle’s

pose estimate. While spurious laser scans occur independently of the choice of this

parameter, the impact of a bad measurement would be less significant if all of the

particles were limited to a small region than if the particles were spread out. Second,

the particles will never converge to a small area around the vehicle, because they will

spread out faster than the laser scan can narrow them down. This makes it difficult to

accurately estimate the vehicle’s pose, which is required for other tasks as indicated

in Fig. 3-1.

The procedure is visualized in Fig. 3-2. At the beginning (top left), red particles
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Figure 3-2: Particle Filter Localization [2]. Initially in the top left, red particles
are spread throughout the map. As the robot drives (panels to right), particles
concentrate. By final panel (bottom right), particles have converged to one pose.

are evenly spread out around the map. The blue lines represent range measurements

(like a very discretized Lidar). As the robot moves, the red particles pool in certain

regions. Near the end (bottom middle), there are only a handful of particle groups.

Finally (bottom right), the robot is well-localized in the map since all particles are

near the robot.

3.1.3 Perception & Costmap

Each sensor has its own data format (e.g. point cloud, laser scan, range measurement).

To combine all of these into one coherent structure, an occupancy grid map is used.

A ROS package called costmap_2d3 implements the occupancy grid map. A single

parameter file defines all of the sensor types and formats for the costmap node.

Note that the costmap_2d package has many detailed features that are not used for

this application, such as probability (cost) in each grid cell, unknown space, obstacle

persistence, etc. For this planning architecture, it is only important that a grid cell

is occupied or free.

3http://wiki.ros.org/costmap_2d
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Pedestrian Detection

As mentioned briefly in Section 2.2, and thoroughly in [22], pedestrians are detected

by a combination of Lidar and camera data.

A 2D laser scan (either from a true 2D Lidar, or by extraction of a 2D slice

from a 3D Lidar pointcloud) undergoes a few operations to begin this procedure.

First, the scan is filtered against the map, so that points that line up with walls and

pre-known static objects are discarded from consideration as pedestrians. Then the

Dynamic Means clustering algorithm [27] is applied to the remaining points, which

finds clusters in the data according to tunable birth/death rates, minimum cluster

size, and other parameters. This list of clusters is now just a list of blobs that could

be a wide range of things, like chairs, desks, people, or even other robots.

Simultaneously, the Very Fast pedestrian detector [28] operates on the camera

images to find bounding boxes around people. The bounding boxes are transformed

from the image plane to angles around the robot using geometric constants, like angles

and positions of sensors.

The two processes are then merged. Each cluster is assigned a likelihood of being

a pedestrian, based on a calculation of how well a person in the image plane lines

up with the cluster position. These likelihoods are updated each time step, so over

time clusters that never align with pedestrians in the image frame will have very low

likelihood values, and vice versa for clusters that are very likely pedestrians.

Above a certain likelihood threshold, and with the requirement that the cluster

has some velocity (because people who are not moving are just normal static objects),

a list of pedestrians is generated. This list of pedestrians is continually growing and

shrinking as people move in and out of the robot’s surrounding area.

Some useful data are also measured by the pedestrian detection subsystem. The

size (maximum distance between points in the cluster), position (mean of cluster

points), and velocity (derivative of cluster position over time) are easily calculated.

Further, a list of past positions is kept for each pedestrian, which can be used to

predict future motion. Each of these pedestrian data are used in the path planning
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procedure.

3.1.4 Path Planning

The path planning strategy is what makes this robot socially acceptable. While

perception, control, and localization are necessary to sense obstacles, follow paths, and

understand position in a global sense, the motion planning framework is the central

area of innovation that allows this robot to drive at such high speed in pedestrian-rich

environments.

Many existing motion planning algorithms assume the world is static. This is

obviously not the case in environments with many pedestrians and other dynamic

objects, but it turns out the assumption is still valid if either the robot or the obstacles

are moving much faster than one another. To consider the two extremes, imagine a

robot that drives at a snail’s pace through a crowd. The people will generally move

around the robot to get to their destinations. So, the robot can simply plan its path

ignoring the pedestrians because they will be long gone by the time the slow robot

actually gets close to them. On the other hand, an fast, agile drone flying 100mph

through a crowd of pedestrians can treat the people as static obstacles, because their

speeds are so slow compared to the drone’s.

The regime that is even more interesting to study is that of the robot and dynamic

obstacles which have similar speeds. For a robot that is designed to drive alongside

humans, this is the exact regime of operation.

Path Planning Overview

In this robot’s motion planning strategy, a fixed set of motion primitives is generated

ahead of time. Each motion primitive is a short path, consisting of several points

spaced out along a direction starting at the vehicle and ending a few meters ahead.

The motion primitives are all of the possible paths that the robot will consider driving.

Fig. 3-3 shows the blue motion primitives emanating from the vehicle.

During execution, the planner operates in three main steps in a Receding Horizon
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Figure 3-3: Motion Primitives: blue lines extending from yellow robot represent all
possible directions to consider traveling.

Control (also known as Model Predictive Control) framework. In this framework,

a detailed plan for a short distance in front of the vehicle is generated, and the

remaining distance to the global goal is estimated, known as the cost-to-go. The

RHC framework fits nicely into systems with a limited sensing horizon, because there

is little reason to plan a path all the way to a goal position miles away if the robot

can only see a few feet ahead. The robot chooses an action with the intention of

executing it indefinitely, but the planning cycle repeats so that each action is only

truly executed for a fraction of a second. In this way, the planning horizon is always

moving forward along with the robot, giving rise to the name Receding Horizon.

The RHC implementation on this robot in three steps. First the robot finds all of

the dynamically-feasible motion primitives that do not collide with static obstacles.

Then it selects a subgoal a few meters ahead of the robot, choosing from the safe

motion primitives with the lowest cost-to-go. Finally, it uses the information about
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nearby pedestrians and its goal to select a desired heading angle and speed. Each of

these steps are described in the following subsections.

Static Motion Primitive Pruning

The motion primitives are straight lines, evenly spaced every 10∘. Other existing

motion planners use motion primitives that are known to be dynamically feasible

using a vehicle dynamics model, either ahead of time [29] or online. As it will become

clear, this dynamic feasibility constraint is helpful for ensuring that the robot does

not bother considering paths that it can’t follow. As later described in Section 3.1.5,

for example, the robot can’t drive straight laterally without first turning in place.

However in this implementation of the robot, the motion primitives are limited to

straight lines in order to more easily interface with the dynamic obstacle planner.

This limitation is sure to be addressed in future work.

The next step in narrowing down which of the paths is the best is called pruning.

The vehicle’s dimensions are projected along the motion primitive, simulating how

much space the vehicle will occupy if it does indeed drive down a particular motion

primitive. Starting at the vehicle’s current position, the future positions of vehicle

are queried on the costmap (described in ) to check for collision with obstacles. If

at any point a future position collides with a position that is considered occupied,

the motion primitive is pruned, or cut, at that point, and the algorithm moves onto

the next motion primitive. If there is no collision along the entire motion primitive,

then there is no need to prune. After iterating through each of the primitives, a set

of primitives that only extend as far as is safe to travel without collision with static

obstacles has been generated. Fig. 3-4 shows the motion primitives overlayed on the

costmap, where black areas represent occupied space, white is free space, and it can

be seen that the blue primitives only extend to the nearest obstacle.

The next step is to determine which of these pruned motion primitives is actually

beneficial in terms of getting the robot to its goal position. The metric that is used is

Diffusion distance, from [29], which approximates the distance between any two po-

sitions in a known, static map. As opposed to simply using Euclidean distance, which
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Figure 3-4: Pruned Motion Primitives: Blue lines only extend to first obstacle (purple,
black regions).
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Figure 3-5: Diffusion Map Transformation

is not a good indicator of path length when there are walls and strange floorplans,

the Diffusion distance takes into account these features to give a better cost-to-go

estimate. This concept is depicted in Fig. 3-5 from the paper by Chen et al. where

points in the occupancy grid map are transformed into a new Diffusion space that

captures the effect of walls on path length between any two points in the map.

In a motion planning strategy that simply treats the world as static, the point in

the set of pruned motion primitives with lowest diffusion distance to the final goal

would be selected. The performance of this strategy is pretty good, as described in

the beginning of this section, but only in the regime where the robot is driving very

slowly or there are not many pedestrians. This is because at every planning cycle,

the path that gets the robot closest to the goal is selected, and over time this leads

to a path that tends toward the goal.

In this robot’s strategy, though, the output of the static motion planner must con-

sider the algorithm that handles dynamic obstacles. If the lowest Diffusion distance

path is chosen, there is no flexibility to avoid dynamic obstacles. Conversely, if all of

the pruned motion primitives are given as options, there is no way for the dynamic

obstacle planner to know which way will actually get the robot to its goal position.

Therefore a set of motion primitives is sent to the dynamic obstacle planner with

the following criteria:

∙ collision-free with static obstacles
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∙ have a strictly decreasing diffusion distance along the path

∙ have a pruned length of at least several meters

These criteria ensure a few conditions. Regardless of what the dynamic obstacle

planner decides is the best path, it is guaranteed to be safe, because it can’t select

from collision-causing paths4. In addition, the robot will make progress toward the

goal because the diffusion distance is decreasing. Finally, the robot will not consider

paths that drive it directly toward nearby obstacles, because those primitives will be

pruned below the critical length.

Motion Planning around Dynamic Obstacles

The dynamic obstacle planner is the subject of two papers by Chen et al. [30], [31].

The planner in those works is named Collision Avoidance with Deep Reinforcement

Learning (CADRL), and a Socially Aware extension, called (SA-CADRL). In this

thesis, the details of CADRL are omitted; it is described at a high level and mainly

considered as a system with inputs and outputs.

Briefly, at the core of CADRL is a policy that is generated with Reinforcement

Learning on simulated data of agents who have random start and goal positions. The

global objective is to develop a policy that minimizes the time to goal for every agent.

The value function represents the time until the agent reaches its goal, based on its

position, speed, heading angle, and those same states of the other agents in the world.

While each of those states can be measured, there are also hidden states such as other

agents’ goals that can not explicitly be measured. Since this value function has a very

high number of states, a deep neural network is used to store the many parameters.

Though it takes several hours to train the network to learn an optimal policy,

querying the value function is extremely fast - on the order of 10ms. The robot can

therefore calculate the expected time to goal if it takes any of its safe actions that

were determined earlier in real time. It will choose the action with highest value, and

will send that action to the controller to execute.

4Pedestrians within 1m of the vehicle are considered static obstacles so that this safety guarantee
holds.
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A benefit of the two-part planning strategy is that only actions that are guaranteed

to not collide with static obstacles will be considered by the value network query

operation. Therefore the dynamic planner need not know about static obstacles

explicitly. This is a convenient trick for the current version of the dynamic planner

that does not handle static obstacles, but in future work the planner will be expanded.

It is hypothesized that a planner that knows more about the environment will perform

better than one which is given only information about moving objects.

The SA-CADRL planner adds social norms into the training phase, so that agents

are penalized for passing one another on the wrong side. For example in the US, pedes-

trians walking in opposite directions pass on each person’s left, and when walking in

the same direction, the faster person passes on the slower person’s left. This subtle

penalty on simulated agents was shown to generate policies that follow the social

norms.

The combined static and dynamic path planners operate on the socially acceptable

robot in real time. The robot was shown successfully navigate autonomously at human

walking speed for nearly 1 hour without human intervention.

3.1.5 Control

There are two controllers running on the robot. The first calculates desired linear

and angular speed from a desired position or path, and the second controls the actual

wheel speeds to match the desired linear and angular speeds.

Point Tracking

The CADRL planner outputs a desired heading angle and speed (𝜓𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑣) at each

planning step (10Hz). Since the velocity controller accepts linear and angular speed,

the outer-loop controller outputs the linear speed exactly, and does proportional con-

trol on the heading angle to output an angular speed. So, at each control step (100Hz),
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the controller calculates

{︃
�̇� = 𝑣

�̇� = 𝑘 · (𝜓𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

(3.1)

(3.2)

and sends �̇� and �̇� to the velocity controller. 𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is estimated using the localization

method described in Section 3.1.2.

Path Following

An alternative control strategy is used when the planner outputs a path, which is

a list of positions. This controller was used with a previous version of the planner,

before CADRL. That planner is described in [32]. This path following control strategy

is from [3]. The performance of this controller is sufficient for path following at the

relatively low accuracy required for collision avoidance.

To summarize, at each control step (30 Hz), the algorithm finds the point on the

path that is at most 𝐿1 away. If nothing is found, the closest point on the path is

used. The speed 𝑉 , 𝐿1 distance, and angle 𝜂 define the lateral acceleration 𝑎𝑠,

𝑎𝑠 = 2
𝑉 2

𝐿1

sin 𝜂 (3.3)

according to the diagram in Fig. 3-6. This lateral acceleration defines the vehicle’s

turning rate, as seen in Fig. 3-7. The vehicle’s speed is whatever the path generator

decides (typically 1.2m/s for jackal) - the path follower isn’t modifying the speed.

If the vehicle is moving (positive speed), the 𝐿1 distance is extended to be pro-

portional to the speed (𝐿1 = 𝐿1𝑔𝑎𝑖𝑛 · 𝑉 ), instead of the default 𝐿1𝑛𝑜𝑚 . This means

the vehicle will look for nearby points when stopped, to try and get onto the path

quickly, but look far ahead when driving fast, to avoid oscillating on each side of the

path.

The only parameters to tune are therefore 𝐿1𝑛𝑜𝑚 and 𝐿1𝑔𝑎𝑖𝑛 . To tune parameters:

∙ 𝐿1𝑛𝑜𝑚 is set close to the vehicle. Increasing its value causes more corner-cutting,
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Figure 3-6: Pure Pursuit Diagram [3]

Figure 3-7: Pure Pursuit Kinematics [3]
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and decreasing its value causes less progress along the path when starting from

a stop.

∙ Increasing 𝐿1𝑔𝑎𝑖𝑛 causes further lookahead distance when driving. Since 𝐿1𝑔𝑎𝑖𝑛 =

𝐿1

𝑉
, 𝐿1𝑔𝑎𝑖𝑛 is the maximum distance the robot could travel while not on the

path, divided by the maximum speed. So if the robot is going to drive fast, the

designer can lower 𝐿1𝑔𝑎𝑖𝑛 for a given desired 𝐿1.

Velocity Control

The velocity controller takes in a desired linear and angular robot speed, (�̇�, �̇�), and

calculates the angular speed of the right and left wheels, (𝜔𝑙𝑒𝑓𝑡, 𝜔𝑟𝑖𝑔ℎ𝑡). This control

is directly done by the ROS package diff_drive_controller5, but it is useful to

describe how it works.

Because the two wheels must rotate around the center of rotation at the same

angular speed [33], �̇�, the linear speed of each wheel is defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣𝑙𝑒𝑓𝑡 = �̇�

(︂
𝑅𝐼𝐶𝐶 − 𝑑𝑤ℎ𝑒𝑒𝑙_𝑠𝑒𝑝

2

)︂
𝑣𝑟𝑖𝑔ℎ𝑡 = �̇�

(︂
𝑅𝐼𝐶𝐶 +

𝑑𝑤ℎ𝑒𝑒𝑙_𝑠𝑒𝑝

2

)︂ (3.4)

(3.5)

using the distance to the Instant Center of Curvature for the rotation, 𝑅𝐼𝐶𝐶 , and the

constant distance between wheels, 𝑑𝑤ℎ𝑒𝑒𝑙_𝑠𝑒𝑝.

Using the standard relation 𝑣 = 𝑟𝜔, (in the form of �̇� = �̇�𝑅𝐼𝐶𝐶 and 𝑣𝑙𝑒𝑓𝑡 =

𝑤𝑙𝑒𝑓𝑡𝑟𝑤ℎ𝑒𝑒𝑙), the two wheel angular speeds, 𝜔𝑙𝑒𝑓𝑡 and 𝜔𝑟𝑖𝑔ℎ𝑡 are calculated as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔𝑙𝑒𝑓𝑡 =

1

𝑟𝑤ℎ𝑒𝑒𝑙

(︃
�̇�− �̇� · 𝑑𝑤ℎ𝑒𝑒𝑙_𝑠𝑒𝑝

2

)︃

𝜔𝑟𝑖𝑔ℎ𝑡 =
1

𝑟𝑤ℎ𝑒𝑒𝑙

(︃
�̇�+

�̇� · 𝑑𝑤ℎ𝑒𝑒𝑙_𝑠𝑒𝑝

2

)︃ (3.6)

(3.7)

where 𝑟𝑤ℎ𝑒𝑒𝑙 is the constant wheel radius and �̇� is the desired linear speed.

Some possible motions of a differential drive robot are depicted in Fig. 3-8. Clearly,
5http://wiki.ros.org/diff_drive_controller
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Figure 3-8: Differential Drive possible motions [4]

the robot can track arcs of different radii, as well as straight and turn-in-place ma-

neuvers. It cannot, however, move laterally without turning first.

3.1.6 Task & Goal Selection

As described in Appendix A, the goal for the robot can be selected in several ways,

namely:

∙ a specific point on the map

∙ a random selection from a predetermined set of points on the map

∙ a specific selection from a predetermined set of points on the map

∙ the position of a particular person

The first three options are straightforward. A goal position is chosen and the robot

drives toward this static goal until it arrives. The fourth option is more interesting

and leads to the “Follow Me” mode of operation.

“Follow Me” Mode

This mode is a culmination of the many software systems described so far. A proto-

type of this behavior is demonstrated in video clips.

The person to be followed stands in front of the robot, and an operator looks for

that person’s ID on the computer monitor. After typing in the ID, the algorithm uses

the corresponding person’s position estimate (from the mean position of the cluster

of points in the laserscan labeled as the person) to calculate a goal position over time.

Instead of the exact position of the person, the goal is set to be 2m behind the person
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(along the line between the person and robot), so that the robot does not get too

close to the person it is following. There are two reasons for the 2m buffer: the robot

will lose track of the person (due to the 2m blind spot of the lidar) if it gets too close,

and a robot that is always trying to drive right up to someone’s feet looks unnatural.

It looks much better when the robot stops smoothly, leaving some personal space

for the person it is tracking. The dynamic goal automatically moves as the person

walks around, and the robot is able to follow along as long as the person walks at a

reasonable speed (below 1.2 m/s).

One obvious limitation of this system is the dependence on pedestrian ID. The

issue with following a single pedestrian ID is that if a person is occluded briefly, they

could be re-clustered under a new ID upon reappearance. Or, if two pedestrians cross

paths, their IDs sometimes swap because the clustering algorithm has no motion

model. To alleviate the first issue, if the pedestrian ID no longer exists in the list of

pedestrians, the algorithm looks through the positions of existing pedestrians and if

there is one that is close to the last known position of the lost pedestrian, that nearby

pedestrian takes over as the one that will be tracked.

This mode of operation was designed with the constraint that the person to be

tracked need not explicitly communicate its position to the robot. Many person-

following robots require the user to wear a wristband that relays information back to

the robot [34].

To further improve robustness with this constraint, future work on this mode of

operation will

∙ include an automated method to convey to the robot that a certain person

should be followed, such as a gesture, an app to begin the service, etc.

∙ include computer vision techniques to maintain a set of features unique to the

person to be tracked, which will improve the algorithm’s ability to correctly

re-gain a person it has lost sight of, and to correctly choose between multiple

people that have nearby positions

The two pieces could, for example, be combined so that a person walks up to the

device, uses their phone to pay for the service, and during this time, the cameras
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build up a set of features that can be re-used to disambiguate between pedestrians.

The “Follow Me” mode can be applied to any human-support task, where the

robot must follow the human autonomously. Some examples are a robot that carries

packages while a delivery person guides it from destination to destination, or a robotic

cameraman, which films a person as they try new skateboard tricks.

3.2 Summary

This chapter described the software system of the robot, including the Localization,

Perception, Path Planning, Control, and Goal Selection systems.
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Chapter 4

Generation 2 Robot

This chapter presents the 2nd generation robot that meets new budget and size con-

straints.

4.1 Constraints

While the robot presented in Chapters 2 and 3 meets the performance requirements

of a robot for socially acceptable navigation, it has three major limitations that are

addressed in this chapter.

The first is the position of the sensors. If the robot is to carry a person or some

other cargo, the sensors must be placed in positions that still leave space for the

cargo. The 1st generation robot has all of the sensors in the middle, and while they

are centrally located for maximum perception coverage, there is no space left for

cargo.

The second is the cost of the sensor package. The $8,000 Velodyne VLP-16 is

simply not economically practical for this robot. The $100 Realsense, $30 sonars,

and $500 RPLidar are much more reasonable price points. The four $40 webcams

can also be removed if the Realsense are mounted accordingly, because the Realsense

contains an RGB camera as well.

Third, the sensor and computation package for the 1st generation robot is very

intertwined with the chassis of this particular robot. If the chassis of the robot were
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(a) Front View (b) Side View

Figure 4-1: Sensor Plate Design

modified, many auxiliary components (like USB hubs, cables, etc.) would need to be

removed and re-positioned on the new robot. In the 2nd generation design, the sensor

and computation package will be a self-contained unit that only requires 2 types of

connections to the robot:

∙ USB to control wheel speed

∙ 5, 12, & 19V power connections

The power electronics can easily be incorporated into the vehicle’s MCU board that

controls the motor speeds, so this is a very reasonable requirement. The battery is

assumed to be included in the robot chassis along with other essentials like motors.

4.2 CAD Models

Several designs were created to satisfy the new constraints. One design, known as

the sensor post, serves as both a handlebar for passengers to hold onto, as well as

an elevated structure to mount sensors. Another design, known as the sensor plate,

compacts all computers and sensors into a thin plate only a few inches thick, spanning

the entire base of the robot. This allows unobstructed cargo space on top of the plate.

4.2.1 Sensor Plate Design

The front and side view of the sensors are shown in Fig. 4-1. The thin height is one

of the definining features of this design.
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(a) Lidar Top View (b) Lidar at shin height

Figure 4-2: Lidar FOV

(a) Realsense Top View (b) Realsense FOV

Figure 4-3: Realsense FOV

The low height of sensors in this design is the primary concern. Fig. 4-2 shows

that the 2D Lidar’s FOV (green) intersects with the engineer’s shins, so it is still well

within its field of view. If the Lidar is raised, it could intersect with the torso, but

the configuration shown seems sufficient for pedestrian detection.

The Realsenses must be pitched upward (as described in Section 4.3). Their FOV

(red) is sufficient to detect the engineer in Fig. 4-3, as his entire bottom half is within

the middle sensor’s perception region. The minimum sensing distance of 0.5m is

clearly shown in Fig. 4-3a.

The light purple in Fig. 4-4 show the FOV of the 8 sonar sensors. The maximum

range of these sensors is much lower, but so is the minimum range. When the engineer

is standing right in front of the robot, his lower half is within the sonar FOV, so he

will be seen by the robot.

The images in Fig. 4-5 show the FOV of the Realsense and sonars simultaneously,

making clear why the two are needed in tandem. The sonars fill in the region in
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(a) Sonars Side View (b) 8 Sonars

Figure 4-4: Sonar FOV

front of the robot where the Realsense cannot see. In Fig. 4-5b, the robot’s passenger

can ride with confidence that most obstacles in front of the vehicle will be within

one of the sensors’ FOV. While there is a blind spot right in front of the passenger’s

torso, only a strangely shaped obstacle would be able to enter that region without

intersecting with any of the FOVs.

4.3 Pedestrian Detection with Cameras near Ground

The cameras in this design are low to the ground and tilted upward. The Very Fast

pedestrian detector does not perform well when the image is skewed. It relies on the

cameras being mounted horizontally.

A more recent algorithm will be used instead, called the Single-Shot Detector[35].

Its advertised frame rate on a Titan X GPU is 46fps. To compare with the Very Fast

detector, the frame rate on the Gigabyte Brix is about 120fps (30fps for 4 cameras),

whereas SSD runs at about 10fps. Therefore a computer with a better GPU than the

Brix’s NVIDIA 760 must be used. A modern laptop with a 10-series GPU can run

SSD at 30fps which should be sufficiently fast.
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(a) Realsense & Sonar (b) Passenger

Figure 4-5: Realsense & Sonar

4.4 Lidar Performance

This section investigates the performance impact of different Lidar mounting posi-

tions. Specifically, the sensor height and angular field of view are varied. The metrics

used to evaluate the system’s performance are the quality of the map produced by the

SLAM algorithm, and the error in localization compared to the 1st generation robot’s

sensor setup. For the purpose of relative comparison, the 1st generation robot’s sensor

setup (Velodyne VLP-16 mounted atop the sensor hub) is considered "ground truth,"

since it is not practical to install a motion capture system in an entire building.

Two uses of the Lidar are Mapping and Localization, and the Lidar’s performance

at these tasks is described in the following sections.

4.4.1 Mapping

In the mapping problem, a robot is driven manually around a large building (the first

floor of MIT’s Building 32) with a Velodyne on top. Data is collected from the Lidar

and the wheel encoders, and this data is processed offline on a different computer.

The data is processed by the ROS package SLAM_Karto1. This package solves the

SLAM problem to produce a 2D map of the environment as the robot drives around.

It includes standard capabilities such as loop closure.

1http://wiki.ros.org/slam_karto
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(a) 360∘ (b) 180∘

Figure 4-6: Maps Generated with Full and Limited Angular FOV (Velodyne)

Angular Field of View

Intuitively, a sensor that sees 360∘ should yield better performance than one that sees

180∘, because it produces more information. To test this hypothesis, the same dataset

is processed once as originally recorded, and then again after clipping the lidar data

to only report measurements within the frontward-facing 180∘.

As seen in Fig. 4-6, the two maps have the same general shape. However, the map

in Fig. 4-6b indicates poor performance because the walls do not overlap in the red

circled area. The map was generated by driving the robot from the top left corner,

all the way to the upper right, and back to the top left. Therefore on the return

trip, there was some drift in the measurement which led to the misaligned walls in

the map. The map in Fig. 4-6a resembles the floorplan of the building it was driven

in. This excellent performance justifies the use of the 360∘ Velodyne data as ground

truth as proposed earlier.

Sensor Type

In addition to varying the FOV and Height, the performance of the RPLidar is com-

pared to the Velodyne in this section.

Sensor Height

The RPLidar is placed at 4 different heights:

∙ on the front bumper
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(a) Post (b) Plate

(c) Bumper (d) Hub

Figure 4-7: 4 RPLidar Positions

∙ on the Jackal’s top plate

∙ in the same position as the Velodyne,

∙ and on a stick extending above the Velodyne

These locations are 0.1, 0.3, 0.6, and 0.9m above the ground, respectively. Note that

in the last two positions, it possible to use the full 360/𝑐𝑖𝑟𝑐 of the sensor, but in the

first two the sensor is blocked from behind by the rest of the robot. See Fig. 4-7 for

a diagram of the 4 positions on the robot.

The conjecture is that a sensor positioned higher off the ground will yield a better

map, because it will see permanent features like walls, and mostly miss items that

move, like tables, chairs, and people.

For each height, the map produced by the RPLidar is shown next to the map

produced by the Velodyne during the same drive.

As seen in Fig. 4-8, the maps made by the two sensors are very similar. Both

sensors fail on the loop closure in the bottom left, but the two maps have mainly

the same features otherwise. There was likely an issue with the odometry during this

particular run. At this height, the RPLidar seems to be a viable alternative to the
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(a) RPLidar (b) Velodyne

Figure 4-8: Map Generated with RPLidar at 0.9 m

Velodyne for mapping. Note that the entire 360∘ of the RPLidar was used.

In Fig. 4-9, the map is even further from the truth, with large drift in the bottom

of the map.

In Fig. 4-10, the map hardly resembles the ground truth. This was likely due

to the sensor’s vertical FOV intersecting with the ground, causing an artificially low

maximum range. The vertical FOV limits how close to the ground the sensor can

be positioned, although this could be augmented by pitching the sensor upward.

However, that complicates the data transformation process, and does not mesh well

with the construction of a 2D map.

In summary, for the mapping problem, these experiments indicate the RPLidar

is an ok substitute for the Velodyne if it is positioned above 0.6 m, but not very

useful at a lower height. The quality of the map (e.g., sharpness of walls) is slightly

worse when using the RPLidar, but the main geometry of the building is successfully

represented.
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(a) RPLidar (b) Velodyne

Figure 4-9: Map Generated with RPLidar at 0.3 m

(a) RPLidar (b) Velodyne

Figure 4-10: Map Generated with RPLidar at 0.1 m
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4.4.2 Localization

Although the RPLidar may not be able to make its own maps at the low height, it

has been proposed that a map could be made once with the expensive Velodyne, and

then during actual device execution, the RPLidar can be used to simply localize to

the Velodyne’s map. That problem is explored in this section.

There are a couple of localization evaluation methods to consider. If the ground

truth map made by the Velodyne is used for all lidars, then it decouples the localiza-

tion problem from mapping. Every sensor’s performance is evaluated on an identical

map. However, the Velodyne has an advantage because the map was recorded at

its exact height, so features in the map should perfectly line up with features seen

during localization. For the RPLidar, on the other hand, the features seen when it is

mounted near the ground will not be the same as the features in the map. Looking at

Fig. 4-8, there is not much difference between the maps made with different sensors

at different heights, so the first comparison strategy will be used.

One map is used for all tests (the one from Fig. 4-9b) For each position of the

RPLidar, the robot is driven in a loop around the building, starting in the bottom

left corner, driving to the right and up, then turning around and driving back. For

each sensor, the 360∘ and 180∘ are evaluated when applicable.

The estimated paths are shown in Fig. 4-11 for the RPLidar near the ground, at

0.1 m. There is only one area where the RPLidar’s estimated position differs much,

seen by the blue line near the (30, 15) point.

The error between the 360∘ Velodyne estimated position and the estimated posi-

tion using other sensors is shown in Fig. 4-12. There is some initial transient error

that dies off for all sensors. The 5m spike corresponds to the point mentioned in the

previous paragraph. Otherwise, the error is never above 1m, and it is even better for

the 180∘ Velodyne. This data indicates that localization on the scale required for this

application is very good with any sensor.

In Fig. 4-13, clearly the RPLidar position diverges near the end when the RPLidar

is mounted on the post. In Fig. 4-15 and Fig. 4-16, the RPLidar position diverges
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Figure 4-11: Estimated Path (RPLidar at 0.1 m)

Figure 4-12: Localization Error (RPLidar at 0.1 m)
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severely.

4.5 Summary

In summary, the robot is able to localize to the map very well with the Velodyne. The

ability to localize with the RPLidar depends on the sensor placement. Interestingly,

the ability to localize seems to be best with the RPLidar near the ground. However,

this needs to be evaluated with more trials to say anything definitive about sensor

height.

The common mode of failure is that none of the particles in the particle filter

correspond to the true robot’s position, so it attempts to re-distribute the particles.

A better strategy would be to use known, unique landmarks in the map and only try

to re-distribute particles if it sees a landmark and the estimated pose is not close to

the landmark’s known pose. With the current strategy, there is not much hope to

re-localize globally if localization is ever lost.

The main takeaway is that the RPLidar can localize to a map with little error

most of the time during drives of 100s of meters. However, the current localization

strategy must be slightly adjusted to account for scenarios where the sensor does

not see many walls due to its reduced range. In these scenarios, the robot’s position

jumps, which could likely be filtered out.
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Figure 4-13: Estimated Path (RPLidar at 0.9 m)

Figure 4-14: Localization Error (RPLidar at 0.9 m)
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Figure 4-15: Estimated Path (RPLidar at 0.3 m)

Figure 4-16: Localization Error (RPLidar at 0.3 m)
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Chapter 5

Topology Aware Reciprocal Collision

Avoidance (TARCA)

This chapter presents a novel motion planning strategy. It is an extension of Recipro-

cal Velocity Obstacles (RVO) and Optimal Reciprocal Collision Avoidance (ORCA),

which are two common geometry-based collision avoidance algorithms. This algo-

rithm aims to develop better motion plans using a prediction of the motion of nearby

agents.

5.1 Background

An autonomous robot that drives in a world with pedestrians has two main objectives:

it must make progress toward its goal and avoid collisions with other agents and

obstacles.

The robotics community has developed many motion planning strategies, how-

ever existing methods do not fully address this scenario of a robot in a world with

pedestrians.

One such class of motion planners assumes that the agents can communicate. For

this application, unlike in human-human and robot-robot interactions where commu-

nication can occur in a common language, there is no natural way for the human and

robot to communicate explicitly. Instead, the robot and human must infer what one
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another is thinking based on implicit signals such as relative positions, velocities, and

heading.

Other motion planning algorithms assume that a centralized entity with full knowl-

edge of the world is able to send instructions to everyone. This is obviously unrealistic

for this application because the pedestrians’ paths are not controllable. Full knowl-

edge of the world is also not obtainable, because the robot cannot know certain

pedestrian traits such as goal locations.

Many motion planning algorithms assume that every agent follows the same policy.

While not truly possible here, pedestrians can be modeled as agents using the same

policy as the robot, but with different tuneable parameters that could be estimated

online.

5.1.1 Geometric Approaches to Collision Avoidance

The definition of a collision is an intersection of two agents’ reserved area. In the

following methods, the agents are assumed to be round, however similar analysis can

be done for other shapes. The size of the agents can be the robot’s true size or include

a buffer region if desired.

Collision Cone

Fig. 5-1[5] shows the simple case of 2 agents, A and B. The black dashed circle

around Agent B shows the sum of the two agents’ radii, at position 𝑝𝐵. If A’s center

is anywhere within that circle, there is a collision between the two agents. Therefore

the gray region represents the set of directions of travel that will cause collision. In

the velocity space, if A chooses a velocity anywhere within the gray triangle, there

will be a collision at some time in the future. This gray triangle is called a collision

cone.
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Figure 5-1: Collision Cone [5]: Gray area is set of blue agent velocities that lead to
collision with stationary red agent

Figure 5-2: Velocity Obstacle [5]: Dark gray area is set of blue agent velocities that
lead to collision with moving red agent

Figure 5-3: Velocity Obstacle [5]: Relative velocity 𝑣𝐴 − 𝑣𝐵 within light gray region
is equivalent to absolute velocity 𝑣𝐴 within light gray region
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Figure 5-4: Velocity Obstacle (Simplified): Relative position 𝑝𝑖𝑗 and sum of radii
𝑟𝑖 + 𝑟𝑗 define VO with inward normal vector 𝑛𝑖𝑗. 𝑑𝑖𝑗 is the shortest vector from the
relative velocity 𝑣𝑖𝑗 to the VO boundary.

Velocity Obstacle

If B is moving with velocity 𝑣𝐵, the collision cone is translated by the vector 𝑣𝐵, as

seen in Fig. 5-2. This shifted collision cone is known as the Velocity Obstacle (VO),

because it is the set of velocities for agent A, 𝑣𝐴 that will lead to collision with agent

B.

Fig. 5-3 shows that the condition that A’s absolute velocity 𝑣𝐴 is within the VO is

equivalent to the condition that their relative velocity, 𝑣𝐴 − 𝑣𝐵 is inside the collision

cone. It is often easier to visualize the VO than the CC because it involves absolute

velocities instead of relative ones, but they have the same ramifications.

The diagram and notation is now simplified by assuming agent A is at the origin,

so the relative position 𝑝𝑖𝑗 is what matters. The VO is the gray region in Fig. 5-4.

𝑟𝑖 + 𝑟𝑗 is the sum of the two agents’ radii. 𝑛𝑖𝑗 is the inward-facing vector normal to

the VO boundary. For a particular relative velocity 𝑣𝑖𝑗, the vector 𝑑𝑖𝑗 is the shortest

distance to the VO boundary, so it will face inward if the velocity is outside of the

VO (safe), and outward if the velocity is inside the VO (unsafe).
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Figure 5-5: Velocity Obstacle (Time Limited): VO from Fig. 5-4 is relaxed if colllisions
more than 𝜏 seconds in the future are ignored. The VO no longer includes the small
region near the origin.

Limited Time Velocity Obstacle

All of the preceding definitions considered collisions over an infinite time scale. To be

more realistic, often a guarantee of no collision within a certain time, 𝜏 , is sufficient.

This relaxes the Velocity Obstacle, shown in Fig. 5-5, and a small set of velocities

near the origin are now considered safe. This corresponds to a small relative velocity

between the two agents, such that it will take a long time for the two to collide.

Reciprocal VO

The VO and Collision Cone are calculations of the set of safe velocities, but provide

little guidance for how the agents should use the calculation. Consider two agents

who are traveling toward each other, so their desired velocities are within the VOs. A

simple idea is for each agent to add the minimum adjustment to its desired velocity

such that the new adjusted velocity is outside of the VO. However if both agents

apply this rule, they will both exert 100% of the collision avoidance effort, because

they do not expect the other agent to change its velocity.

75



[5] presents a more efficient strategy, where each agent applies 50% of the minimum

adjustment to its desired velocity such that the new adjusted velocity is outside of

the VO. If both agents effort adds to 100%, the collision will be avoided. Thus, it is

possible for one agent to do less of the avoidance, if the other agent does more. But

in the Reciprocal VO algorithm (RVO), the two agents each do 50%. This weighting

parameter is referred to as 𝜆.

Optimal Reciprocal Collision Avoidance (ORCA)

An optimal formulation of the RVO method is presented in [36], known as ORCA.

In the ORCA method, the VOs are linearized. The “pizza slice” VO is simplified

into a line that splits the plane into two halves. One half is safe and the other half is

unsafe.

Assuming the vehicle can achieve any velocity within a certain magnitude, 𝑣𝑚𝑎𝑥,

the safe velocity set begins as a circle with radius 𝑣𝑚𝑎𝑥. Each agent in the world’s

VO adds one linear constraint to this circle.

Multi-Agent Case

The preceding methods considered two agents. In general, a VO can be calculated for

every pair of agents in the environment. The set of safe velocities is then the every

velocity that is outside of every VO.

At the end, the set of safe velocities remains as a convex polygon remains, as seen

by the slashed region in Fig. 5-6 [36].

5.1.2 Limitations of ORCA

ORCA is extremely fast to calculate. Some other classes of motion planning algo-

rithms make predictions about future positions of other agents, which can be time-

intensive. ORCA, on the other hand, has been shown to handle scenarios with 1000s

of agents in real time. In theory, ORCA is the best decision rule if other agent’s

size, position, and velocity are known perfectly, and the other agent is also running
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Figure 5-6: ORCA (Multi-Agent): On the left, ORCA can avoid multiple agents
simultaneously. On the right, the original set of feasible velocites is a circle with
radius 𝑣𝑚𝑎𝑥. A single linear constraint is applied for each agent’s VO, resulting in the
slashed, convex polygon of safe velocities.

ORCA.

A limitation of ORCA is the number of tunable parameters that affect its output.

What started as a simple geometric argument has led to an algorithm where 𝜆, 𝜏 , 𝑟𝑖,

𝑣𝑚𝑎𝑥, etc. must be selected. These parameters certainly vary from person to person,

if the ORCA model is to be fit to pedestrians’ behaviors. As mentioned earlier,

pedestrian’s parameter values could be estimated online, as shown in [37] but by the

time enough data has been observed, the interaction with that agent may be over.

Another limitation is the assumption that all agents choose velocities simulta-

neously. With robots this may be feasible (albeit difficult to coordinate), but with

humans it is impossible.

Yet another limitation is that the agents behave in a reactive manner – it is baked

into the algorithm’s definition. The desired velocity is of secondary importance to

collision avoidance, so there is no guarantee that progress to the goal will be made.

In experiments, agents are often “pushed around” by one another, rather than the

desired cooperative behavior.
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5.1.3 Extension: Receding Horizon Control

So far, this chapter has focused on the calculation of a set of unsafe velocities, given

a particular relative position, velocity and size of pairs of agents. The underlying

assumption was that the agent selects a safe velocity based on the current world

configuration, with the intention of applying that velocity forever. Except for the 𝜏

parameter, there is no concept of execution time.

This is not a viable strategy for a real robot operating in a world with pedestrians

for many reasons. For one, the pedestrians are not following ORCA (or any determin-

istic planner), so their behavior can not be modeled indefinitely. More fundamentally,

they will certainly not maintain a constant velocity, and the VO is only valid for one

particular relative velocity. Another reason is the robot’s inability to perfectly track

the chosen velocity. Disturbances such as wheel slip and imperfect control algorithms

are not accounted for in the ORCA formulation. Yet another reason is field of view

limitations. The robot’s VO can be calculated using the pedestrians within the per-

ception radius, but if the robot drives and new pedestrians appear, they must be

accounted for.

For these reasons, the ORCA algorithm is often applied in a Receding Horizon

Control framework [38]. This means that at time 𝑡0, the safe velocity is calculated

using the world state as estimated by the sensors, and the velocity is executed for

𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒 seconds. Then, at time 𝑡0 + 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒, the new world state is estimated, a new

safe velocity is calculated, and that velocity is executed for another 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒 seconds.

This strategy is more robust to un-modeled changes in the environment.

In theory, the 𝜏 parameter could be reduced down to 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒, because the chosen

velocity only needs to be safe until a new velocity is chosen. To account for a safety

margin, however, this is usually not done in practice.

5.1.4 Extension: Forward Simulation

To improve the reactive behavior of ORCA, a method was proposed by [39] known

as Progressive Hindsight Optimization (PHOP). In the PHOP algorithm, each agent
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discretizes the feasible velocity space into 𝑛𝑣𝑒𝑙 velocities at fixed angles. It then sim-

ulates what would happen if the agent were to execute ORCA for a certain amount

of time, using one of the 𝑛𝑣𝑒𝑙 velocities as its preferred velocity. This forward simu-

lation also includes propagation of the other agents in the world, assuming that they

are running ORCA. Since ORCA is so fast to compute relative to the planning rate

required for real-time robotics, there is plenty of time to propagate many different

velocities for many time steps into the future.

After simulating the world for each of the 𝑛𝑣𝑒𝑙 velocities, PHOP selects the best

action using the cost function presented below in Eq. (5.1).

5.2 Avoidance Topologies

The strategy proposed in this thesis makes use of the forward simulation concept, but

differs in the selection of actions to propagate forward, and the evaluation metric to

determine the best action.

One characteristic of an interaction between two agents is the side on which they

pass one another. That is, an agent can pass the other on the right or left, or the

agent can choose to approach the other agent head-on, with the hope that the other

agent will move out of the way.

This notion of avoidance topologies can be naturally applied to the VO framework.

Recall that the time-limited VO looks like a truncated “pizza slice.”

The two linear and one round boundaries can be relaxed into three linear bound-

aries. The two linear boundaries remain as before, and the round boundary is replaced

by a tangent line. This is visualized in Fig. 5-7, by the lines with normal vectors nℎ
𝑖𝑗

for Head-on, n𝑙
𝑖𝑗 for Left side, and n𝑟

𝑖𝑗 for Right side.

Therefore, each side of the pizza can be used to constrain the passing topology.

This avoidance topology strategy can be applied
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Figure 5-7: Velocity Obstacle (with Topologies): The boundary of the VO now con-
sists

5.3 Forward Simulation Strategy

In this section, a novel strategy to simulate the world forward is presented. The

differences between the strategy and an existing approach are then compared.

5.3.1 TARCA

In Topology Aware Reciprocal Collision Avoidance (TARCA), the world is forward

simulated with each of the 3 topologies per nearby agent.

Algorithm 1 describes the strategy. If there is time left after the initial simulation

for every pair of neighbors and topologies, the loop is repeated with a finer-grain

simulation, where each time step is half as long. This strategy is designed so that

even if there are many agents, the algorithm will at least try each topology with a

coarse simulation once. Each time a plan is simulated forward, a cost function is

applied to the predicted world state
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Data: World state, planning_horizon
Result: Best action executed
preferred_velocity = max speed in direction of goal;
agent_ids = list of neighbors sorted by proximity;
simulation_step_size = planning_horizon / 10;
while time_used < time_limit do

for topo in topologies do
world = forward_simulate(action,simulation_step_size,
planning_horizon);

cost = calculate_cost(world);
costs[agent_id, topo] = cost;

end
agent_id = next item in agent_ids;
if done with all agents then

simulation_step_size *= 2;
reset to closest agent_id;

end
end
lowest_cost = min(costs);
best_action = [agent_id, topo] for lowest_cost;
safe_vel = rvo_with_topologies(preferred_velocity, agent_id, topo);
execute(safe_vel);

Algorithm 1: How to choose best action

5.3.2 Comparison to PHOP

Instead of forward propagation of a set of fixed angles, TARCA considers a set of

actions that changes based on the environment. For an extreme example, if there are

no other agents in the world, every velocity is safe, so the agent can safely execute its

preferred velocity. It would be wasteful for the agent to forward simulate any velocities

except the one that gives the optimal path to the goal (with respect to time, distance,

fuel, etc.), because the preferred velocity will be chosen with certainty.

For a less extreme example, consider the case of two agents moving toward each

other, so that their preferred velocities point directly at one another. The only safe

interactions are to pass on the left, pass on the right, or go head-on and slow down

before colliding. There is no reason to consider traveling in reverse in this example.

Also, the amount of adjustment to the preferred velocity, the 𝑑𝑖𝑗 vector, depends on

the distance to the other agent and each agent’s size.
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PHOP considers a fixed set of preferred velocities to simulate forward. It does

not change this set of velocities based on the environment. Therefore it does not

naturally capture the notion of passing on the left and right.

5.4 Evaluation Metric

Both TARCA and PHOP simulate the world forward to determine the future world

state given a chosen action at the current time step. To compare world states, an

evaluation metric is developed. The initial action that leads to the world state with

lowest cost is executed.

5.4.1 TARCA

In TARCA, the cost of a world state is based on the difference between each agent’s

end position, and the position they would have achieved had there been no other

agents around, based on a simulation for 𝑡𝑠𝑖𝑚 seconds.

For the user agent, the preferred velocity is known, so it can be used for the

calculation of user agent cost, 𝐽0. For other agents, the cost 𝐽𝑖 involves their current

velocity since the preferred velocity is unknown. Certain agents’ costs are weighted

more heavily than others, where agent 𝑖 has cost weight 𝑤𝑖. The agent costs are

𝐽0 = (p0(𝑡0 + 𝑡𝑠𝑖𝑚)− (p0(𝑡0) + v0,𝑝𝑟𝑒𝑓 (𝑡0) · 𝑡𝑠𝑖𝑚)) (5.1)

𝐽𝑖 = (p𝑖(𝑡0 + 𝑡𝑠𝑖𝑚)− (p𝑖(𝑡0) + v𝑖(𝑡0) · 𝑡𝑠𝑖𝑚) (5.2)

The total cost of the world state, 𝐽 is the weighted sum of all 𝑛𝑎𝑔𝑒𝑛𝑡𝑠 agent costs,

𝐽 =

𝑛𝑎𝑔𝑒𝑛𝑡𝑠∑︁
𝑖=0

𝑤𝑖 · 𝐽𝑖 (5.3)
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5.4.2 Comparison to PHOP

The PHOP reward function only considers the state of the host agent. A metric of

progress toward the goal Section 5.4.2 is divided by an energy metric Section 5.4.2 to

generate a total reward Section 5.4.2. The action with the biggest reward is executed.

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 = v · g − p
‖g − p‖ (5.4)

𝐸𝑛𝑒𝑟𝑔𝑦 = 1 + ‖v𝑝𝑟𝑒𝑓‖ (5.5)

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠

𝐸𝑛𝑒𝑟𝑔𝑦
(5.6)

The first limitation of this approach is that it only considers the host agent. The

agent will have no concept of its impact on other agents, which is critical in a robot

for socially acceptable navigation. It also does not allow for the agent to dynamically

adjust its agressiveness.

A second limitation is that over the duration of one simulation step, the average

reward for all actions converges to the same value. This is a result of PHOP’s average

reward strategy.

The agent using PHOP will simulate forward several different actions for a cer-

tain amount of time, 𝑡𝑠𝑖𝑚. At the start of each planning step, the agent calculates the

reward if each action is executed for the full simulation time. If there is still compu-

tation time remaining, the agent does a second iteration of forward simulation. This

iteration, the simulation is partitioned into 2 halves, and a plan is created for every

pair of actions (where action A is executed for 𝑡𝑠𝑖𝑚/2, and then action B is executed

for the remaining 𝑡𝑠𝑖𝑚/2). The reward associated with the world state at the end of

each plan is attributed to the first action in the plan. The reward is averaged with

the other plans that have the same first action. If there is still computation time

remaining, a 3rd iteration of simulation occurs, and so on.

Consider an example where there are only 3 actions (A,B,C). After several itera-

tions, the plans associated with action A include:

{𝐴}
{𝐴,𝐵},{𝐴,𝐶}

83



1 2 3 4 5 6 7 8
Iterations

0.44

0.45

0.46

0.47

0.48

0.49

0.50

R
ew

ar
d

PHOP 0◦

PHOP ±20◦

Figure 5-8: PHOP Average Reward for 3 Actions (0∘,+20∘,-20∘) converges over time

{𝐴,𝐵,𝐴},{𝐴,𝐵,𝐵},{𝐴,𝐵,𝐶},{𝐴,𝐶,𝐴},{𝐴,𝐶,𝐵},{𝐴,𝐶,𝐶},...
Clearly, as the number of iterations increases, the plan with action A for the full

simulation is only one of very many plans. And most of the plans are not really that

related to the action A, because A may only be executed briefly at the beginning of

the simulation.

This concept is plotted in Fig. 5-8, where an agent has 3 possible actions, and an

open path to the goal. The 0∘ action is clearly the best, because there is no reason

for the agent to go in a direction except straight to the goal. In the first iteration, the

average reward for 0∘ is much greater than the reward for ±20∘. But, after several

iterations, the 3 actions converge to a similar reward because they are diluted.

In conclusion, the partitioning strategy allows the agent to explore a diverse set

of paths, but the averaging strategy leads to an ambiguous choice for the best action.
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Figure 5-9: Varying Host Agent Weight

5.5 Results

5.5.1 Cooperation

Variation of Host Agent’s Cost Weight, 𝑤0

Consider the case of a pair of agents driving toward each other. The weight term

𝑤𝑖 for each agent’s cost can be varied to penalize the impact of a plan on an agent’s

preferred velocity. The two agent’s weights are set such that 𝑤0 + 𝑤1 = 1, and 𝑤0 is

varied from 0 to 1.

Fig. 5-9 demonstrates that the weight term has an effect on the two agents’ paths.

For low 𝑤0, the agent does not weigh its own weight much, so it chooses a plan to

minimize the disturbance to the other agent. It allows the the other agent to go

straight to its goal. Conversely, for high 𝑤0, the agent mostly ignores the impact its

plan has on the other agent, so the agent drives straight to the goal and indirectly

forces the other agent to do all of the collision avoidance.

When 𝑤0 is near 0.5, the two agents have almost the same time to goal, meaning

they distribute the collision avoidance task equally. Also note that the time to goal

for the slowest agent is minimized near 0.5 because neither agent has to do a large

collision avoidance maneuver.

This result implies that for standard operation where load should be shared

equally, 𝑤0 and 𝑤1 should be the same. In certain scenarios where the agent should
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Figure 5-10: Varying Time Horizon: 3 Algorithms Compared

not care about its impact on the environment and simply wants to achieve a minimum

time to goal, 𝑤0 should be very high. In other scenarios where the agent is not in a

hurry and does not want to affect other agents, 𝑤0 should be small.

Variation of Other Agent’s Time Horizon, 𝜏

Next, instead of 𝑤𝑖, the time horizon of the other agent is varied, and both agents

are given equal weight, 𝑤0 = 𝑤1 = 1. The time horizon of the other agent is varied

from slightly below the host agent’s time horizon, to slightly above. Recall that the

time horizon, 𝜏 is the amount of time an agent guarantees collision-free travel. If 𝜏

is small, the agent does not consider collisions until they are very close to occuring,

so it can be thought of as a highly reactive agent. Conversely, an agent with large 𝜏

is conservative and even agents very far away have an effect on the VO.

The time to goal for each agent is shown in Fig. 5-10 for each of the 3 algorithms

(ORCA, PHOP, TARCA).

Variation of Other Agent’s Radius, 𝑟𝑜𝑡ℎ𝑒𝑟

Next, instead of 𝜏 , the radius of the other agent, 𝑟𝑜𝑡ℎ𝑒𝑟 is varied. The time to goal

for each agent is shown in Fig. 5-11 for each of the 3 algorithms (ORCA, PHOP,

TARCA).

In ORCA, as the other agent’s radius grows, its time to goal also increases. For
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Figure 5-11: Varying Radius: 3 Algorithms Compared

TARCA and PHOP, this growth still exists but is less significant.

5.5.2 Planning Horizon

An important parameter in RHC is the planning horizon. A short planning horizon

only considers the impact of an action for a short duration, so locally optimal plans

will be selected. A long planning horizon allows some local suboptimality, if the long-

term effect of a plan is beneficial. For example, when crossing a busy intersection, it

may be worthwhile to stop and wait for a gap to open up, and then proceed at full

speed. But a planner with a short planning horizon would consider the stop and wait

action to be too costly, without understanding that it is useful in the long-term. Of

course, the tradeoff with a large planning horizon is the extra computation time it

requires.

TARCA includes a planning horizon parameter that can be adjusted. Future work

will show the impact this parameter has on performance.

5.6 Conclusions

The new method proposed in this chapter, TARCA, extends the VO framework to

select an action based on the predicted outcome of many actions. The original ORCA

work selects an action with the intention of executing it forever. Another existing
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approach, PHOP, was the first to extend VOs with predictions, but has several limi-

tations for the application of a robot that navigates autonomously in pedestrian-rich

environments.

TARCA improves on ORCA’s sensitivity to model parameters, as shown earlier in

Fig. 5-10 and Fig. 5-11. Its robustness to model parameters is comparable to PHOP.

TARCA improves on PHOP by adding an ability to weigh the agent’s impact

on others. Results in Fig. 5-9 demonstrate that the agent can dynamically adjust

how much it cares about its impact on others. This is essential in environments

with both robots and humans. A robot can impede another robot’s progress without

much concern, but if a robot gets in a human’s path, the human will be annoyed and

inconvenienced.

5.7 Future Work

There are a few areas of future work for TARCA. First, the algorithm should be

implemented on a real robot to test its performance with humans who are not exactly

ORCA agents. The estimation of the human agents’ ORCA parameters could possibly

be done online. Finally, it would be worthwhile to add non-holomic constraints to

the codebase, using [40]. This work reasons about the dynamic constraints of a

differential-drive robot, but there is no open-source implementation of the algorithm.

This type of robot cannot track every velocity perfectly, and adding these constraints

to the VOs would make the collision avoidance guarantees theoretically sound.

5.8 Summary

The new method proposed in this chapter, TARCA, extends the VO framework to

select an action based on the predicted outcome of many actions. The actions include

passing each of the nearby agents on the left, right, or head-on.
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Chapter 6

Conclusion & Future Work

This chapter summarizes the material presented in the thesis. It also proposes future

areas of research and development.

6.1 Summary

Chapter 1 introduced the need for a robot that can drive in pedestrian-rich environ-

ments in a socially acceptable manner. This technology can be applied to a wide range

of vehicles, including personal transportation devices and cargo delivery robots. There

are several academic and commercial groups working on a similar type of robot, but

none have publicly demonstrated an ability to drive a robot in a realistic, pedestrian-

rich environment, at human walking speed, for an extended period of time without

human intervention or teleoperation.

Chapter 2 described the hardware of the 1st generation robot designed for this

application. The choice of chassis, sensors, and computers is described.

Chapter 3 explains the software of the robot. A high-level block diagram is pre-

sented, as well as explanation of the Localization, Perception, Path Planning, Control,

and Goal Selection systems. While the Localization, Perception, and Control systems

use standard libraries, the Path Planning strategy is novel and allows the robot to

drive safely at such high speed.

Chapter 4 explains the design and budget constraints of the 2nd generation robot.
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It then presents a new robot sensing design that is sleeker and less expensive than

the 1st generation design. The performance tradeoff is briefly evaluated for the Lo-

calization system.

Chapter 5 proposed a new motion planning algorithm, TARCA, which extends the

VO framework to select an action based on the predicted outcome of many actions.

The actions include passing each of the nearby agents on the left, right, or head-on.

Comparisons to existing algorithms, ORCA and PHOP, are presented. This algorithm

allows the agent to dynamically adjust the extent which its planned paths impact

other agents. This is critical for a robot operating in pedestrian-rich environments,

where some pedestrians are paying attention, and others are distracted.

Appendix A contains detailed documentation for the 1st generation robot that will

be useful to anyone who uses the platform in the future. There are labeled pictures of

each region on the robot, information on power requirements, and other useful notes.

There is also a section on the software which includes instructions to put the robot

in a demo mode. There are block diagrams with input/outputs for each subsystem

in the software architecture. This is especially useful to someone who is interested in

writing a new version of a subsystem, while maintaining compatibility with the rest

of the codebase.

6.2 Future Work

There are many steps remaining to develop an even more robust, and commercially-

viable robot. Some of the next steps involve implementation of existing ideas, and

others involve creating new algorithms.

The next step in hardware development is to fully build the 2nd generation design,

and verify the sensor FOVs are as predicted in Section 4.2.1. Another future project

could involve mounting this system on a different robot chassis that is capable of

carrying a human passenger.

One of the next software challenges is to include vehicle dynamics in the path

planning strategy. Currently, the planner does not consider physical constraints such
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as stopping distance or maximum acceleration.

Another software challenge is to model the perception delay in the path planner.

There is up to 1 second delay in the system currently, and this negatively affects

performance because plans are generated on old information.

Another project is to add a multi-class object classifier into the perception system,

and to use that information in the planner. For example, a dog should be avoided

differently than a chair, but currently anything that is not detected as a pedestrian

is treated as a static obstacle.

From a system performance perspective, it would be beneficial to develop a metric

that captures how socially acceptable a robot’s interactions with pedestrians are.

Because there is not really a unit to describe this quantity, this will likely be a

statistical argument, such as Robot A had unacceptable interactions 10However the

definition of socially acceptable interaction must be fully described. One proposed

method is to use the same rules that the path planner’s neural network is trained on.

Data from the real robot can be passed through this same cost function to provide a

system level performance metric.
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Appendix A

Notes for Future Users of 1st

Generation Platform

A.1 Hardware

This section contains a series of notes that will be useful to anyone using the 1st

generation platform in the future.

There is a 14" monitor onboard for debugging and display. This monitor is op-

tional and can be removed. The monitor cuts off the edges of the screen when using

HDMI, so VGA is recommended.

The two computers are connected to a KVM switch, so that the user can have

one keyboard/mouse/monitor that switches between computers with the click of a

button.

The internal computer bay contains many components.

∙ several powered USB hubs that connect to the Brix

∙ 2x 19V, 10A regulators for the Nuc and Brix

∙ 2 screw terminal blocks for 5 and 12V

∙ the robot’s original user power board from that provides 5V @ 5A, 12V @ 10A,

and 24V @ 20A

Each device’s power consumption is detailed in Table A.1. The battery is 29V

fully charged, and 24V empty. The battery voltage can be checked with the command:

93



Figure A-1: 1st Generation Jackal (Side View)
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Table A.1: Power Consumption

Voltage [V] Current [A] Power [W]
Motors 24 2-5 50-100
Brix 19 10 190
Nuc 19 - -

Velodyne 12 0.6 8
Webcam 5 (USB) low low
Realsense 5 (USB) 0.3/camera 1.6/camera
Bumper 5 (USB) low low
Monitor 12 0.8 nom, 2 startup 10

$ r o s t op i c echo / s t a tu s

while the ROS service is running.

The robot has lights that indicate it is on and connected. A solid blue light means

the robot is on. A blinking blue light means it is turning off within a few seconds.

The robot turns off if the computer is disconnected, or if the power button is pressed.

The button on the far left is the motor switch. If solid green, the motors are on. If

solid off, the motors are off, which can be helpful to guarantee the robot won’t move.

There is a light to show that the ROS node is running on the computer and connected

to the robot. This is the light next to the two arrows. There is also a light to show

that the computer has internet connection.

Occasionally if the computer does not boot fast enough, the robot will turn itself

off because it thinks the computer was unplugged. This is freakishly annoying but is

usually fixed by trying once or twice again.

To switch which of the 2 computers is connected to the monitor and keyboard,

a KVM switch is installed on the sensor hub. The KVM switch connects to both

computers’ VGA outputs and USB ports, and the switch selects which signals are

connected from input to output. Fig. A-2 is labeled to show the important ports of

the KVM switch. There is a second USB port on the KVM switch input, but it is

not connected to either computer so its use is not recommended and it is taped over.
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Figure A-2: KVM Switch

Figure A-3: Velodyne Connectors
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(a) Under the Electronics Bay (b) Battery Connectors

Figure A-4: Jackal Sides Showing Connectors

The Velodyne is connected with 2 cables as shown in Fig. A-3. The tripod mount

allows the Velodyne to be stored in a safe place separate from the robot, and securely

added during robot execution.

A.1.1 Battery

The battery used is a 24V LiPo battery. Its nominal voltage is 24V, but it gets up

to 29V fully charged. When it is below approximately 24V, the Jackal powers down

automatically. It can be charged with a 29V power supply, but the recommended

charge rate is limited to 3A.

A.1.2 Internal Electronics Bay

USB

There are 3 USB 3.0 hubs in one corner of the electronics bay. The top two plug into

the Brix, and the bottom one plugs into the Nuc. The top one is labeled Brix Hub

A, the middle one is Brix Hub B, and the bottom is labeled Nuc Hub. Each hub

receives 5V from the terminal block so that it can power devices beyond the typical

USB spec.

The exact ports that the USB devices are plugged into is important. It is possible

to change the order of these, but not recommended.

Table A.2 describe the configuration of devices in ports, with the ports numbered
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Figure A-5: Labeled Electronics Bay

Figure A-6: USB Hubs
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Table A.2: USB Hubs

Port 1 Port 2 Port 3 Port 4
Top CFR CFM Brix KBM VEL

Middle CFL CBM RPLidar JACKAL
Bottom RFL RFM RFL Nuc KBM

(a) Side 1 (b) Side 2

Figure A-7: Jackal Sides Showing Connectors

as shown in Fig. A-6. The labels on the devices are shorthand for

∙ CFM = Camera Front/Back Middle/Left/Right

∙ RFM = Realsense Front Middle/Left/Right

∙ VEL = Velodyne

∙ JACKAL = Jackal’s motor control board

∙ x KBM = Keyboard+Mouse for computer x, connected to KVM switch

On the computer level, the USB devices and hubs should be plugged into the

exact ports as shown in Fig. A-7. There are a few unused ports as seen in Fig. A-7a,

which leaves room for future expansion such as new sensors.

If the ports are changed, a file should be updated, located at ~/ford_ws/src/

ford/jackal/usbCustomRulesJackalFord.rules. That file is linked to the /etc/udev

directory. Udev rules are a Linux concept that permanently set certain attributes to

USB devices. Normally when one plugs a device into USB, it is assigned a device

name, such as /dev/video0. A udev rule could name it /dev/usb_cam_front_left

instead. This rule could be assigned based on the exact port of the USB hub that
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the device is plugged into (using the KERNEL attribute), or many other attributes.

But in the case where there are many identical devices (like 4 identical webcams),

the only unique attribute is the USB port.

The other limitation for changing the USB ports is the available bandwidth. The

webcams are USB2.0, and only 2 can be plugged into any one USB hub. The uvcvideo

drivers for these inexpensive cameras are not great, and the cameras reserve excessive

bandwidth by default. The following command can be executed to allow multiple

webcams per USB hub, however 2 is still the upper limit:

$ sudo rmmod uvcvideo

$ sudo modprobe uvcvideo qu i rk s=128

. This instruction is added to uvcvideo module’s options file so that it is executed

once every time the computer boots up.

There are many issues with the Realsense R200 cameras and Ubuntu 14.04. There-

fore they are plugged into the Nuc which is runnning Ubuntu 16.04. It is not rec-

ommended to try multiple Realsense cameras with 14.04. It involves updating the

kernel and other steps, and was not demonstrated to run robustly for extended time

periods.

A.2 Software

A.2.1 Running the System

Start the Code

To start all of the processes for autonomous driving, run each of the commands in

separate terminals:

$ d r i v e # launches j o y s t i c k , connect ion to robot ’ s MCU board

$ con t r o l # launches sensors , l o c a l i z a t i o n , con t ro l , e t c .

$ nn # launches CADRL ( neura l network ) p lanner

These are aliases for roslaunch commands which can be found in the /.bashrc file.
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Then, to start the realsense sensors on the Nuc, run this in a new terminal:

$ ssh nuc−j a c k a l

$ r s # launch 3 r ea l s en s e cameras

Set a Goal Position

It is easy to set a new goal position for the jackal to drive to. After starting all the

nodes, it takes 10-20 seconds for the diffusion map to be loaded (since it is a large

file). Then, click the 2D Nav Goal button on the top bar, and click a position in

the white part of the map. If the goal was picked successfully, a set of blue lines will

extend from the yellow vehicle, indicating the pruned motion primitives. Sometimes

this process fails because

∙ the diffusion map hasn’t loaded.

– Wait longer

∙ a point outside of the diffusion map is selected

– Select a new point. A warning is shown in the terminal. Note that the

diffusion map does not perfectly line up with the white/black static occu-

pancy grid map, so some points near edges may not have a valid diffusion

cost.

There are other ways to set the goal position. The path planner subscribes to the

/move_base_simple/goal topic, so any node that publishes this can set a new goal.

A node is provided that randomly selects a goal from a set of pre-defined positions.

The positions are defined in the file ~/ford_ws/src/ford/jackal/goal_setter/

param/random_goals.yaml. The first indentation determines the map that the goals

are associated with (different areas of MIT campus, Ford campus, etc.). The letters

can be changed to strings that describe the goal if desired. The positions are [x,y]

positions on the map. The easiest way to set up new goal positions is to drive the

robot to a desired position, run:

$ r o s t op i c echo /JA01/pose / po s i t i o n

and add that position to the .yaml file. The random_goal node is started as:
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$ random_goal

This node demonstrates the robot’s ability to drive for extended periods of time

without any human input.

Instead of random goals, the user sometimes wants to manually set a new position

from that list of goals. A node for this purpose is run with:

$ goa l

A python script will prompt the user to enter one of the letters or strings associated

with a goal in the .yaml file, and after entering the name and pressing enter, it will

set that goal. When the robot gets close to the new goal, it will stop and prompt

the user for a new goal. This node is useful to demonstrate the robot’s ability to

navigate around a series of stations in a known area, according to instructions from

an external source.

In testing, the author found it much easier to enter a goal position by typing one

letter, than using rviz to scroll around the map and select an exact point. The former

method also guarantees the goal position will be on the diffusion map since it was

verified upon creation of the goals.yaml file.

Follow a Person

Since any node can set the goal by publishing to the /move_base_simple/goal, the

author created a node to follow a person by publishing the goal as a person’s current

position.

The node is run with the command

$ ros launch goa l_se t t e r fo l low_goa l . launch

The node’s algorithm is described in a previous section of this thesis. The node

has its limitations, because if the person is occluded it may lose track of them, or if

multiple people cross paths the robot may switch between which person it is tracking.
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In practice, the node works pretty well when there is one person in front of it

walking at a reasonable speed.

Further improvements could include computer vision techniques so the robot rec-

ognize certain features on a person that could limit the confusion between multiple

people in nearby position, and could help if the robot loses track of its leader.

Generate a Map

There are 3 steps to generate a new map. The first is the occupancy grid map,

which outputs a grayscale image. The second is to generate a diffusion map from the

occupancy grid map. The third is to update the launch file so that it points to the

new map.

Occupancy Grid Map

Run the following commands in new terminals:

$ d r i v e

$ ros launch ford_ros jackal_map_maker . launch

Then drive the robot around and build up a good map. The map_maker launch file

starts the sensors (velodyne) and the SLAM node, so be sure these are not commented

out in the launch file code.

After the area is mapped, save the map using the command:

$ roscd ford_ros /maps/<map_folder_name>

$ rosrun map_server map_saver −f <map_filename>

The map_saver command saves a .pgm grayscale image of the map, and a .yaml

file with map parameters such as the origin, resolution, and associated image filename.

Diffusion Map

The code to generate a diffusion map is written in MATLAB, and the files are con-

verted to python so that ROS can use them. This process is not fully automated,
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Table A.3: ROS Launch Files

Contents
jackal_control.launch path follower, costmap, diffusion map planner

jackal_localization.launch amcl, robot pose publisher
jackal_ped_tracking.launch laserscan map filter, scan clustering, VeryFast ped

detector, cluster classifier, ped manager, follow_me
jackal_rviz.launch rviz visualization software

jackal_sensors.launch webcams, velodyne, sonars, transforms

so the easiest method is to email the grayscale image to the author to generate the

diffusion map.

There is also a readme file located at ∼/ford_ws/src/diffusion_maps/readme.txt

which provides instructions to generate a diffusion map.

Launch File

The ∼/ford_ws/src/ford/ford_ros/launch/jackal.launch file should be updated

to include the new maps. A new arg can be created at the top of the file (using the

examples for MIT buildings). Then, a new entry for the map and diffusion map

filenames should be added.

A.2.2 ROS Launch File Structure

The launch files are organized so that related nodes are grouped together. Launch files

are contained in the directory ∼/ford_ws/src/ford/ford_ros/launch/jackal. See

Table A.3 for a description of what each launch file contains. The jackal.launch

file launches all the sub-launch files listed in the table, and the map server. It is

located at ∼/ford_ws/src/ford/ford_ros/vehicles/jackal.launch. The trans-

forms (between reference frames of sensors) file is also in the vehicles directory.
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Figure A-8: Software Diagram: Perception on Brix

A.2.3 Software Diagrams

The software diagrams in this section provide broad input/output descriptions of the

many software nodes. They are somewhat simplified to show how the data generally

transfers between systems. A true understanding of the software involves a thorough

read of the actual code. As an example, the robot’s position is often omitted from

the block diagrams, even though the code may use it for a minor calculation.

A.2.4 Miscellaneous Software Notes

The two computers are connected through an Ethernet cable, and are both on the

"Jackal Local" network with static IP addresses. Each computer can also be connected

to the Internet with wifi in addition to this local connection.

Each computer has these IP addresses in the /etc/hosts file, so the following

commands allow the user to open the other computer’s terminal:

$ ssh nuc−j a c k a l # from b r i x

$ ssh gigabyte−j a c k a l # from nuc
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Figure A-9: Software Diagram: Perception on Nuc

Figure A-10: Software Diagram: Pedestrian Tracking 1/3
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Figure A-11: Software Diagram: Pedestrian Tracking 2/3

Figure A-12: Software Diagram: Pedestrian Tracking 3/3
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Figure A-13: Software Diagram: Localization

Figure A-14: Software Diagram: Costmap

108



Figure A-15: Software Diagram: Planner (Static World)

Figure A-16: Software Diagram: Planner (Dynamic World)
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Figure A-17: Software Diagram: Control (Static World)

Figure A-18: Software Diagram: Control (Dynamic World)
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Table A.4: Computer Connection Info

IP Address user@hostname Ubuntu ROS
Brix 192.168.0.101 swarm@gigabyte-jackal 14.04 Indigo
Nuc 192.168.0.102 swarm@nuc-jackal 16.04 Kinetic

Since the computers have the same username, swarm, no username is necessary in the

ssh command.

The Brix connects to the Jackal hardware. The Nuc is onboard to process the

realsense and leave room for future computation. There are too many USB devices

to connect everything to one computer. Even though the Brix has 4 USB 3.0 ports,

they are all connected to the same bus.
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