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Abstract

Supernumerary Robotic Limbs (SRLs) are a recent form of robot that augment natu-
ral human abilities through the addition of body-mounted robotic appendages which
can move independently of the wearer. This thesis provides a detailed analysis of
the MantisBot, an SRL morphology that provides a wearer with two torso-mounted
limbs that support the body in crawling- and kneeling-like positions, such that the
wearer's natural arms are free to do useful work near the ground. First, the concept
and its motivations are discussed, followed by a biomechanical analysis of the human-
robot system. Two full-scale prototypes are then introduced, and control laws used in
supporting a wearer's body both statically using impedance control, and dynamically
using predictive models of natural crawling gaits, are developed. Finally, the system
is experimentally validated, and it is concluded that SRLs for near-ground work are
a valid and useful tool for improving worker comfort and productivity.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering

3



4



Acknowledgments

First, thank you to my parents, Gaby and Jorge, and my sisters Sandra and Laura.

My successes in life begin with your love and encouragement.

I would like to thank Professor Asada for his support throughout my career at

MIT - your passion for innovation in research has been a powerful source of motiva-

tion. In addition, thanks to all members of the d'Arbeloff Lab. The camaraderie and

positivity through countless all nighters have made my experience in the d'Arbeloff

Lab positive and unforgettable.

Finally, cheers to the Esteemed Squad and all the friends I've made during my

time at MIT.

5



6



Contents

1 Introduction 15

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 C oncept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Biomechanical Analysis 21

3 Prototype Design 25

3.1 First Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Second Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Control Design 35

4.1 Planar Quasistatic Impedance Control . . . . . . . . . . . . . . . . . 35

4.1.1 Sagittal Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Frontal Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Data Driven Gait Characterization for Implicit Control in Robot-Assisted

C raw ling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental Validation 45

5.1 Planar Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Predictive Gait Modeling using PLSR . . . . . . . . . . . . . . . . . . 48

5.2.1 Discrete Window PLSR . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Rolling Window PLSR . . . . . . . . . . . . . . . . . . . . . . 52

7



6 Conclusion and Future Work 57

A Extended Results from PLSR Analysis of Human Crawling 59

8



List of Figures

1-1 Ergonomically challenging tasks near the ground. In (a) a contruction

worker uses a passive dolly to support him as he cuts through concrete.

In (b), a farmer bends down into an uncomfortable posture. A welder

leans over a workpiece near the ground in (c). . . . . . . . . . . . . . 16

1-2 MantisBot design concept using Supernumerary Robotic Limbs (SRLs).

Robotic limbs extending from the upper torso allow the wearer to as-

sume more comfortable positions near the ground and actively provide

tuneable impedance in multiple directions. . . . . . . . . . . . . . . . 18

2-1 Sagittal plant projection of hybrid human-robot system . . . . . . . . 22

2-2 Maximum supported range of forward leaning for given actuator torques,

expressed in angular deviation of the SRLs and assuming a maximum

range of 100 N of shear applied at the knees . . . . . . . . . . . . . 23

2-3 Range of forces and torques borne by robotic limb over 30 cm of

head displacement. Above, ground shear refers to the component of

the ground reaction force parallel to the ground . . . . . . . . . . . . 24

3-1 Prototype of the MantisBot used to test impedance control law. . . . 26

3-2 (a) Body-fixed axes used to describe actuator motion. The person

modeled faces the reader. (b) A structural ball joint relieves the motor

of radial stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-3 Second prototype in operation with static legs . . . . . . . . . . . . . 28

3-4 Rendering of 2-input bevel gear differential used in second MantisBot

prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9



3-5 Simplified representation of differential kinematics . . . . . . . . . . 30

3-6 MantisBot v2 in a retracted position . . . . . . . . . . . . . . . . . . 31

3-7 Rendering of actuated clamp mechanism used to lock SRLs (design

and figure courtesy of Laura Treers) . . . . . . . . . . . . . . . . . . 32

3-8 Front view of MantisBot v2 . . . . . . . . . . . . . . . . . . . . . . . 32

3-9 Back view of MantisBot v2 . . . . . . . . . . . . . . . . . . . . . . . 33

3-10 Closeup of differential mechanism used in MantisBot v2 . . . . . . . 34

4-1 Projection of human-robot system onto the sagittal plane. . . . . . . 36

4-2 The human body may be removed from the problem and replaced by

the desired task-space forces. . . . . . . . . . . . . . . . . . . . . . . . 37

4-3 Projection of human-robot system onto the xz plane. . . . . . . . . . 39

4-4 Proposed system architecture for implicit controller used in and as-

sisted crawling mode of operation . . . . . . . . . . . . . . . . . . . . 43

5-1 Impedance controller performance in the sagittal plane. . . . . . . . . 46

5-2 Impedance controller performance in the frontal plane. . . . . . . . . 47

5-3 Array of IMUs used to gather data for gait characterization and modeling 49

5-4 Average motion profile of ten manually identified single-cycle wrist tra-

jectories compared to an exact minimum-square-jerk trajectory of the

sam e tim e-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5-5 Normalized longitudinal wrist and knee acceleration profiles overlaid

with minimum-jerk trajectories at moments of peak correlation, using

a 20 Hz sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5-6 Gait discretization based on cross-correlation with minimum-jerk ac-

celeration trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5-7 Predicted vs actual arm trajectories using discrete window PLSR model 52

5-8 Predicted vs actual acceleration of left wrist during rolling window

PLSR for forward crawling . . . . . . . . . . . . . . . . . . . . . . . . 54

5-9 Cumulative variance explained in output training data Y by latent

variables in input training space, using 3 second rolling window . . . 55

10



A-1 Predicted vs actual acceleration of left wrist during rolling window

PLSR validation for backward crawling, sampled at 20 Hz . . . . . . 59

A-2 Cumulative variance explained in backward crawling output training

data Y by latent variables in input training space, using 4 second rolling

w indow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A-3 Predicted vs actual acceleration of left wrist during rolling window

PLSR validation for right translation, sampled at 20 Hz . . . . . . . . 61

A-4 Cumulative variance explained in right translation crawling output

training data Y by latent variables in input training space, using 4

second rolling window . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11



12



List of Tables

5.1 Results of Impedance Control Tests . . . . . . . . . . . . . . . . . . . 47

5.2 Forward crawling rolling window PLSR results . . . . . . . . . . . . . 54

A.1 Backward crawling rolling window PLSR results . . . . . . . . . . . . 60

A.2 Right translating crawling Rolling Window PLSR Results . . . . . . . 60

13



.1



Chapter 1

Introduction

1.1 Motivation

Manual tasks in manufacturing and industrial settings often require workers to assume

uncomfortable and fatiguing positions near the ground. When performing these tasks,

workers must kneel or crouch in potentially painful postures, sometimes using their

arms to stabilize and support themselves. Taking such an ergonomically challenging

posture for long periods of time may lead to injuries in the lower back, knees, and

ankles.

In one example, a worker may use a roller or brush to apply paint to a new

ground surface. In such a task, the worker must sharply bend at the knee and back

to reach the ground and balance, or lean forward in a crawling position and support

himself with a free hand. In both cases, the painter's workspace is limited by the need

to balance and support himself, and sustaining either position can quickly become

tiring. This situation extends to a multitude of industries, including construction,

manufacturing, and agriculture.

According to the US Bureau of Labor Statistics, in 2014 there were over 190,000

workplace injuries in manufacturing sectors and 50,000 injuries in agriculture [6].
Overall, the cost of workplace injury amounted to over $190 billion and resulted in over

1.1 million lost days of work [4]. Out of all workplace injuries in 2014, approximately

one in three was a musculoskeletal disorder [7].
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K.

(a) (b) (c)

Figure 1-1: Ergonomically challenging tasks near the ground. In (a) a contruction
worker uses a passive dolly to support him as he cuts through concrete. In (b), a
farmer bends down into an uncomfortable posture. A welder leans over a workpiece
near the ground in (c).

Human augmentation via robotic systems provides a rich opportunity to address

these issues. Exoskeletons have been applied to support factory workers in carrying

heavy objects, assist nursing home caregivers in holding patients, and empower rescue

workers wearing heavy protection gear [10][2]. These exoskeletons, however, move in

parallel with the wearer's own limbs, and thus require the wearer to engage in all

tasks the robot assists in. Exoskeletons may succesfully brace the human body, but

they may also lock the wearer into specific configurations.

Supernumerary Robotic Limbs (SRLs) are a different type of wearable robot that

provide the wearer with extra limbs. Whereas exoskeletons are directly attached to

human limbs and move with them in parallel, SRLs branch out from the human body

and take an arbitrary posture that is most effective for supporting the wearer. SRLs

have the potential to be an especially effective solution for bracing the body of a

worker taking fatiguing postures such as crawling, stooping, kneeling, and crouching.

Perhaps most notably, they can provide this support while leaving the wearer's natural

limbs free to do useful work and, given the additional support, comfortably and stably

apply larger forces and torques than otherwise.

In the last several years various types of SRLs have been developed. These include

a pair of robotic arms attached around the waist for assisting aircraft assembly workers

16



when using heavy tools [8], extra fingers for assisting hemiplegic patients in performing

daily chores [9], and robotic arms sitting on the shoulder of a worker performing an

overhead task [5]. In all of these designs, SRLs provided the wearer with unique

physical supports, opening up new avenues of human augmentation.

In the current work, we aim to develop the MantisBot - a new SRL system designed

specifically to support the wearer's upper body when performing fatiguing tasks near

the ground. First, the basic design concept of the MantisBot is presented. Then

control algorithms for supporting the body with a desired impedance are obtained,

and a proof-of-concept prototype is designed and built. Finally experimental results

support the control design and effectiveness of the wearable robot.

1.2 Concept

To improve the ergonomics of ubiquitous ground-space tasks, passive supports may

be used to bear much of a worker's weight when working, as shown in Fig. 1-la.

The additional support alleviates some of the stress that would otherwise be applied

to the worker's joints, however such passive supports may still limit the user's range

of motion and offer little to no compliance if the worker wants to change his body

geometry.

By replacing passive supports with controllable actuators, the support provided

can be tuned to exactly meet the needs of the task at hand, alleviating joint stress

and fatigue, improving workspace, and increasing overall worker productivity. To this

end, the MantisBot is introduced, modeled in Fig. 1-2. The MantisBot is a wearable

robot that uses a pair of SRLs to actively and adaptively support its wearer. The

device is worn around the upper torso via a rigid plastic harness from which the two

SRLs extend and reach the ground when the user crouches or assumes a crawling

position. Each robotic limb has 2 active rotational degrees-of-freedom (DOFs) at its

shoulder and a passive linear DOF supported by an internal spring, though future

iterations may include an active articulated elbow joint of prismatic joint.

This combination of passive and active components may be used in concert to ap-

17



Figure 1-2: MantisBot design concept using Supernumerary Robotic Limbs (SRLs).
Robotic limbs extending from the upper torso allow the wearer to assume more com-
fortable positions near the ground and actively provide tuneable impedance in mul-
tiple directions.

ply a virtual mechanical impedance on the wearer. As the wearer moves away from an

arbitrary equilibrium position, the MantisBot provides a restoring force back towards

the chosen central posture. By modifying the robot's control law, the relationship

between restoring force and displacement can be tuned to exactly meet the needs of

any activity. Such an impedance controller, which is common among robots meant

to interact with humans, may also produce restoring forces based on the wearer's

velocity within the current workspace, thus simulating a spring-damper (which may

exhibit linear or nonlinear characteristics).

Revisiting the case of the painter, the MantisBot could provide support that al-

lows for long and efficient longitudinal brushstrokes while maintaining balance and

applying high stiffness and damping latitudinally. Overall, the painter could enjoy a

more comfortable, extended body posture and improved productivity.

Each leg itself is comprised of telescoping segments that house the internal springs.

As forces parallel to the limb axis vary, the limb shortens and extends. This allows the

wearer to control the limb length - and, subsequently, global position - by changing

the weight applied to the SRLs in addition to changing the SRL angles.

18



In Chapter 2 of this thesis, a biomechanical analysis of the proposed robotic sys-

tem is presented in order to find the expected stresses applied to the human body

and SRLs when the MantisBot is employed. Chapter 3 extends this analysis to the

SRLs themselves in order to guide the design of two proof-of-concept prototypes

used in quantitative experiments and qualitative field tests. Chapter 4 provides de-

tailed derivations of feedback control laws developed to provide the robot with linear

position- and velocity-based virtual impedance, and Chapter 5 validates the mechan-

ical and control designs with the results of laboratory experiments.

In designs that include a third DOF along the length of the SRL such that it can be

actively raised and lowered off of the ground, the MantisBot's abilities may possibly

be extended to assist and dynamic motion and crawling-like motion, allowing wearers

to move to new global positions without the use of their natural arms. In order for

the robot to act appropriately in such situations without requiring explicit input from

the wearer, the robot must be able to accurately predict the wearer's intention from

available sensor input. To this end, Chapter 4 further details the use of Partial Least

Squares Regression in order to form data-driven relationships between different parts

of the body during natural crawling using Inertial Measurement Units (IMUs).
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Chapter 2

Biomechanical Analysis

In this section a brief static biomechanical analysis of the hybrid human-robot system

is presented. Through this analysis the robot's range of motion for given actuator

effort limits are derived, and the corresponding forces and moments applied to the

human within those limits are found.

To start, we first assume that the limiting cases with respect to both the loads

transmitted to the wearer and the range of motion supported for a given range of

actuator effort occurs in the sagittal plane, as shown win Fig. 2-1. This assumption

may be justified with respect to the transmitted loads by referring to the prototype

designs found in Chapter 3, as the majority of the forces transmitted across the

frontal plane are borne by the compression of the base of the robot and harness, thus

relieving the torso of potential strain.

We further limit the analysis by assuming that the robotic is massless (though

the torso and upper leg are not). The system may therefore be modeled as a 4-bar

linkage with a controllable torque at the robot shoulder, and with an additional shear

force transmitted to the ground at the knee, produced by the human-controlled torque

applied at the hip. Finally, the assumption is made that the MantisBot's pair of SRLs

are collinear when projected onto the sagittal plane, and thus act as a single source

of actuation with total torque output divided evenly between them.

Given the location of the center of mass of the full system, as well as the locations

of of the human knee and SRL endpoint (shown at points 0 and R in Fig. 2-1), the

21
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Figure 2-1: Sagittal plant projection of hybrid human-robot system

vertical reaction forces at the knees and endpoint are:

foz =

fR,z

mg(yR - YcoM)

YR

mg(ycoM)

YR

(2.1)

(2.2)

where m is the mass of the torso, g is the acceleration due to gravity, and ycoM

is the y-coordinate of the center of mass.

Given a shear force at the knee fo,y, the torque produced at the hip is:

TA = ItYZ x o (2.3)

and fA,z and fA,y are equal and opposite to fo,z and fo,y. Finally,

Is = -fA

Tx = t,yz X fo - TA

(2.4)

(2.5)

where the subscript S denotes forces at the SRL shoulder and t,y is the vector

from the hip to the SRL shoulder. T2 is the total torque produced by both SRLs

together, and is the required torque to maintain the system at static equilibrium in

22
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a given configuration.

Using average male body geometry and weight values from [1], we can plot the

necessary ranges of SRL actuation required to maintain equilibrium as a function of

the system's deviation from its central position, thus giving a means of designing the

SRL for a desired range of motion.

The figures below assume a torso length of 0.533, upper leg length of 0.508, torso

mass of 45 kg, a combined upper leg mass of 18 kg, and that the system's central

position occurs at the point in which both the SRL and the upper leg are vertical.

Further, the SRL shoulder is located axially along the torso at a distance of 0.3075

m from the hip.

Shoulder Torque Magnitude vs Robot Arm Angle

1 Arm
300 - 2 Arms

200-

~150-

2100 -1 Range of actuator
0 -- 'torque required to*50-

-2 maintain given angle

CO 0 - -------------- --------- - - - --- - - - - -

-50 - Max stable range using 25 Nm actuators

-100
-100 -90 -80 -70 -60 -50 -40 -30 -20

Arm Angle from Y-Axis (dog)

Figure 2-2: Maximum supported range of forward leaning for given actuator torques,
expressed in angular deviation of the SRLs and assuming a maximum range of 100
N of shear applied at the knees

Finally, this model also provides a mean of calculating the loads born by each

SRL over a desired range of motion, which is useful in the design of the two full-scale

prototypes discussed in the following chapter.
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Figure 2-3: Range of forces and torques borne by robotic limb over 30 cm of head
displacement. Above, ground shear refers to the component of the ground reaction
force parallel to the ground
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Chapter 3

Prototype Design

To explore a practical implementation of the MantisBot concept, two full-scale pro-

totypes were designed and fabricated. The first proof-of-concept prototype (shown

in Fig. 3-1) uses pairs of gimbaled motors at each robotic shoulder two produce the

necessary degrees of freedom to actuate the robot. The second builds on this design

with a more robust, and stronger, differential configuration that uses the same motors

to double output torque in principe directions.

3.1 First Prototype

For the first prototype, the torso harness was made using formable thermoplastic

molded with a 3-D printed shell designed to approximate the shape of an average

adult male's chest. The inside surface of the harness is padded with high-density

memory foam to improve comfort and body-shape conformity. It extends roughly

3/4 of the way down the ribcage and its rigidity ensures that the torques applied

on the wearer by the robot do not strain the upper spine, which could result in

uncomfortable spinal hyperextension or hyperflexion.

An aluminum plate is bolted across the back of the harness to form a base plate

upon which the robotic hardware is mounted. Adjustable nylon straps worn over the

tops of the wearer's shoulders connect the front of the harness to the aluminum plate.

The front of the harness is split longitudinally, so that the wearable robot can be put

25



Figure 3-1: Prototype of the MantisBot used to test impedance control law.

on and removed like a jacket.

In the coordinate system shown in Fig. 3-2a, both primary shoulder motors are

rigidly attached to the back of the torso harness with their shafts aligned with the

x-axis. These shafts are connected to the housing of their corresponding secondary

shoulder motors such that the entire secondary motor rotates about the x-axis, within

the sagittal plane. The motors are positioned so their shaft axes are co-planar and

orthogonal, simplifying control of these two rotational DOFs. The limb itself then

extends out from the secondary motor orthogonally relative to the output shaft.

The 2 DOF shoulder joint is supported by a ball-and-socket joint housing, shown

in figure 3-2b, so that any forces transmitted axially through the limb are borne by

a structural socket also attached to the harness, relieving the motor shafts of any

damaging radial strain.

All 4 shoulder motors are Maxon EC60 Flat 3-phase AC motors reduced by a ratio

of 81:1 via Maxon GP52C planetary gearheads, and driven by ESCON 50/5 motor

controllers. At the output, the actuators can produce up to approximately 30 Nm.
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(a) (b)

Figure 3-2: (a) Body-fixed axes used to describe actuator motion. The person mod-
eled faces the reader. (b) A structural ball joint relieves the motor of radial stress.

The length of the SRLs are telescoping carbon fiber tubes with internal springs

that provide an effective spring constant of 3236 N/m, and allow a travel of 10 cm,

giving the limbs' lengths an overall range of 0.72 - 0.82 m. Sharp GP2YOA41SK0F

infrared proximity sensors are used to measure limb lengths and provide information

on the compressive axial forces applied to the limbs. The bottoms of the SRLs are

capped with wide 3-D printed pads lined with high-density rubber, providing ample

traction with the laboratory floor.

UM7 9-DOF Inertial Measurement Units (IMUs) mounted on each SRL provide

roll and pitch information to a PC running Windows 10 via Bluetooth. An onboard

Arduino Due 32-bit microcontroller aggregates all encoder and proximity sensor data

and interfaces with the ESCON motor controllers.

Python scripts on the PC use the C-based Numpy linear algebra library to calcu-

late control efforts based on incoming data and send commands back to the onboard

Arduino.

3.2 Second Prototype

The second prototype improves upon the first by replacing the molded thermoplastic

harness with a modified motocross chest protector which provides better support

and more breathable padding across the chest and shoulders. Aluminum plates were
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Figure 3-3: Second prototype in operation with static legs

attached to the back of the harness for added rigidity and to provide a surface to

which the SRLs and electronics could be added.

After finding through experimentation that the shoulder actuators could benefit

from increased torque output, the robotic shoulders were redesigned to work in a

2-input bevel gear differential configuration, shown in Fig. 3-4. When both motors

rotate in the same direction, the differential unit rotates about the axis shared by

the input bevel gear shafts. When the motors are driven in opposite directions, the

output shaft upon which the middle bevel gear sits rotates about its own axis. Linear

combinations of these input modes can be used to produce torque about any axis that

then lies within the plane spanned by the bevel gears' axes. In this design, the motors

are offset using belt drives to save space and to easily vary the drivetrain reduction as

necessary. Further, such a design provides an increased range of motion, which allows

28



for a fully retracted limb position that does not interfere with the wearer's workspace

when the robot is not in use, as shown in Fig. 3-6.

Figure 3-4: Rendering of 2-input bevel gear differential used in second MantisBot
prototype

To derive this relationship, we refer to Fig. 3-5. Assuming the right and left input

shaft angles are given by Oi, and 0 i,2, the ouput angles are 0,,1 and 0,,2, and all bevel

gears have equal pitch radii, then:

00,1 = Oi,2 - 1 (3.1)

00,2 i,2 + Oi
2

-(3.2)

We may then differentiate these equations and invert the resulting Jacobian matrix

to derive the bevel gear's input-output relationship.
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Figure 3-5: Simplified representation of differential kinematics

d60  [-0.5 0.5 (3.3)

d6i 0.5 0.5

=i ut (3.4)

--11
Tin = rout (3.5)

Thus, assuming each motor can output a maximum torque of Tmax, the bevel gear

can produce a maximum output torque of 2Tma, about either output axis. Intuitively

the shoulder motors act to drive the output shaft in parallel, and thus their torques

are additive.

The first prototype's Maxon EC60 Flat 3-phase AC motors and corresponding

gearheads and drivers were reused in the second prototype, though the infrared re-

flectance proximity sensors used to measure leg length and spring compression were

replaced with STMicroelectronics VL53LOX time-of-flight sensors for improved noise

characteristics and signal linearity. UM7 IMUs with embedded Kalman filters were

again used to determine state estimates of each limb's orientation and position in

space.

For added adjustability, an additional telescoping stage was added along the length

of each limb, along with actuated clamps to lock them in place with the press of a

button located near the tip of the SRL. When locked, a Dynamixel MX-106 drives

the worm gear of a hose clamp mounted around the inner carbon fiber tube of the
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Figure 3-6: MantisBot v2 in a retracted position

telescoping limb, thus preventing relative motion between the tubes under axial loads.

Overall, the majority of components on the second prototype were water-jetted

or machined aluminum and steel, resulting in a much more mechanically robust, and

much heavier, final product compared to the first prototype, which used many 3D

printed components. Whereas the first prototype weighs 8.2 kg, the second weighs

18.4 kg.
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Figure 3-7: Rendering of actuated clamp mechanism used to
figure courtesy of Laura Treers)

Ll

U

lock SRLs (design and

Figure 3-8: Front view of MantisBot v2
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Figure 3-9: Back view of MantisBot v2
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Figure 3-10: Closeup of differential mechanism used in MantisBot v2
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Chapter 4

Control Design

4.1 Planar Quasistatic Impedance Control

In this section we aim to derive control laws for supporting the wearer with a desired

impedance. In [8] a feedback control algorithm for supporting the wearer is reported

for a general 6 DOF SRL system with 6 independent actuators. In the MantisBot, two

of the actuators are replaced by passive springs. While this underactuation simplifies

the physical design, it also limits the achievable impedance. The following analysis

will reveal the range of this achievable impedance, and synthesize a control law that

realizes a desired impedance within that range. Further, in the analysis and synthesis

below, the 6-dimensional space is divided into two 3-dimensional spaces: one within

the sagittal plane and the other in the frontal plane, simplifying this initial exploration

of the MantisBot's use cases. We assume motion is limited to within only of these

planes. Thus the system is symmetric and no principal axis of stiffness spans both

the sagittal and frontal planes, justifying this simplification.

Though gravitational forces are not explicitly handled in the derivations, length

measurements of the SRLs' internal springs serve as indirect measurements of gravity's

influence on the system.
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4.1.1 Sagittal Plane

First we examine the human-robot system projected onto the body-centered sagittal-

plane. As shown in Fig. 4-1, we assume that the robot's two SRLs are aligned.

Therefore when operating in this plane, the two primary shoulder motors act as a

single actuator producing one active DOF. The chosen goal, then, is to derive a control

law that defines a virtual impedance along the y-axis.

Both the knee-ground contact at point 0 and the robot-ground contact at point

R are rotationally free pin joints that do not slip along the ground.

z

y

A Oy

0 R

Figure 4-1: Projection of human-robot system onto the sagittal plane.

The influence of the robotic limb on the wearer's torso may be abstracted as a pair

of orthogonal translational forces F. and Fz, and a moment Me equal and opposite

to Tx. We can therefore remove the human body from the problem entirely and focus

exclusively on producing the desired forces, as shown in Fig. 4-2. As the length of

the leg acts as a rigid body in rotation, and considering only static balance, T, may

be moved to point R without loss of generality.

We must note that a necessary and sufficient condition for static balancing and

support is that the human applies forces and moments back onto the robot that are

equal and opposite to those produced by the robot itself. We therefore assume that

the human is able to adapt to meet this condition and maintain static equilibrium.

The goal is to derive a joint-space feedback control law:
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Fzt

lr,yz

r

Figure 4-2: The human body may be removed from the problem and replaced by the
desired task-space forces.

Tx = TX(Or, ilr,yz; Or,O, lr,yz,O, ) (4.1)

for some arbitrary equilibrium joint-space position (9 r,O, ir,yz,O), such that the desired

y-axis impedance is achieved. In this derivation, the goal impedance is equivalent to

a tuneable spring-damper system:

Fy = ky,pAy + kv,dAy (4.2)

where:

AY = lr,yz,OCO0Sr,O - lr,yzCOSOr (4.3)

Ap = lr,yzsinOrkr - Cosorir,yz (4.4)

Our analysis begins by deriving a static relationship between joint-space and task-

space forces via the Jacobian J. Starting with the forward kinematics:
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Z = lryzsinOr

We differentiate with respect to joint-space coordinates and produce the following

relationships.

r = JT F

F = [Fy, FZ]T

(4.6)

(4.7)

J - r,yzsinOr

L 1r,yzCOSOr

COSOr

sinOr ,
(4.8)

Above, Fily corresponds to the passive force produced by the SRLs' internal

springs, which act axially along the compound SRL created by projecting the aligned

limbs onto the sagittal plane. We denote the effective spring constant created by the

parallel SRLs as kspring.

We then solve for T, as a function of the measured spring force F, and the desired

impedance Fy.

TX = -1r,yzcscOrFy + lr,yzCOtOrF z (4.9)

Substituting in the force-length relationship F, = kspring Alspring where Alspring =

lr,yz,unsprung - ir,yz, and Eq. 4.2:

TX = - t r,yzCSC~r (kYIAy + ky,dAy)

+ rI,yz COtOrkspring A1 spring

(4.10)
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Finally, substituting in Eqs. 4.3 and 4.4 we produce the final joint-space control

law:

TX = - lr,yzCSC~r(ky,p(r,yz,0COS0r,0 - lr,yzCOS0r)

+ ky,d(lr,yzSinrjr - COSOrlr,yz)) (4.11)

+ lr,yzCOt~rkspring (lunsprung - lr,yz)

4.1.2 Frontal Plane

The system projected onto the frontal plane is shown in Fig. 4-3. Once again the

human body is replaced with the forces and moment applied by the MantisBot (here

at point B), Fx, Fz, and My. The two secondary shoulder motors comprise two

controllable DOFs in this plane. The robot can therefore apply a virtual impedance

on the wearer in two directions, chosen to be along the x-axis and rotation about the

y-axis.

z

B x sryR C ot-----
T y,L A B---- -_----_---_=:-:: -----

0 tr,R

LOtr,Lr,L :z rR

* 0 r,ROr,L G,

Dx

Figure 4-3: Projection of human-robot system onto the xz plane.

As before, the goal is to derive a set of joint-space control laws:

Ty,L = Ty,L( q; q0) (4.12)
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Ty,R Ty,R( q; qO) (4.13)

where:

q = [Or,Li ,r,Li Or,Ri ir,R -(.4

90= [r,L,O, 1r,L,O, Or,R,O, lr,R,O]T (4.15)

that satisfy the desired virtual impedances:

Fx = kx,pAx + kx,d/AiJ (4.16)

My = k4t,At + kot,dAt (4.17)

relative to some arbitrary equilibrium position, denoted by 0 subscripts.

Noting that the frontal plane projection is a closed kinematic loop, we begin with

the inverse kinematics, calculating joint-space coordinates from task-space coordi-

nates.

= taV1  2z - lssinkt\Or,L = tan- 2z-1 io4.18)
2x - lcos(4

1r,L 2z - lsinot (4.19)2 sinr,L

( t2z + lsint(
2xD - 2x - iscos(

1rR= 2z + lsint (4.21)
2 sinO,,R

Differentiating with respect to task-space coordinates x, z, and #t we derive the

Jacobian J E 9zI . This satisfies the static relationship:

F = -jTr (4.22)
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r = [Tr,L, Fr,L, Tr,R, Fr,R]T

Rearranging the 4 linear equations represented in Eq. 4.22, we solve for Tr,L and

Tr,R from measured spring forces and the desired task-space impedance forces.

r * = J*T F* where J* . 9 14x2 (4.24)

r* = [TrL, Tr,R ]T F* = [F,, My, Fr,L, Fr,R ]T

We define the forces in F* in terms of displacements using the Laplace variable s:

F* = Kp*zAp*

Alr,L

Al r,R

kx,p + kx,ds

0

0

xo - X

OtO- q5t

rLAunsprung -
1 r,L

ir,,Aunsprung - 1r,R

0

kt,, + k4 ,,ds

0

0 0

0 0

4n 0

(4.26)

(4.27)

(4.28)

[ 0 0 0 kspringj

and finally we relate the input coordinate vector Ap* to joint space coordinates using

forward kinematic relationships such that Ap* = Ap*(q; qo).

AZX = XO - lr,LCOS(Or,L) - COS( t)
2

(4.29)

and
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Ap *

F=[Fx, Fz, MY]T (4.23)
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A -t = qt,o - t3

where

_= tan- (r,,Rsin(r,R) - r,Lsin (O, ) (4.31)
1,r,RCOS(Or,R ) -1 re,LCOS(r,L ) + XD

Alternatively, the right-hand joint coordinates may also be used to calculate the

end-point location.

Thus, the relationship:

= J*TK, _ Ap*(q; qo) (4.32)

achieves the desired task-space impedances while satisfying Eqs. 4.12 and 4.13.

4.2 Data Driven Gait Characterization for Implicit

Control in Robot-Assisted Crawling

Perhaps the most interesting potential mode of operation of the MantisBot and sim-

ilar robots is that in which the robot dynamically assists the wearer in supporting,

balancing, and possibly even propelling the wearer in large-scale motion, such as

crawling along the floor to an entirely new position in the global workspace. To do

this in such a way that maintains the benefits of allowing the wearer to remain phys-

ically and mentally engaged with the task at hand, the concept of implicit control is

introduced. It is proposed that rather than requiring the wearer to explicitly alert the

robot to his or her desired intention (e.g. crawling forwards, rotating about a vertical

axis, or stopping a crawling gait) through a hand-operated controller or voice control,

the robot could instead monitor a suite of motion and force sensors located around

the wearer's body and, via the use of data-driven predictive models of human mo-

tion, automatically determine the wearer's intention and correct corresponding SRL

trajectories.
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A proposed control system architecture is shown in 4-4. In this system, previously

produced predictive kinematic models derived from real crawling motion and force

data is used in a Support Vector Machine (SVM) to categorize the wearer's current

and short-term future intent into discrete categories of motion, such as forward or

reverse crawling, lateral translation, or rotation about a vertical axis. In parallel, a

continuous state-space predictive model derived using Partial least squares regression

(PLSR) predicts the trajectory the wearer's natural arms would have taken in normal

crawling. Based on the robot-human system's current state as estimated from a real

time body observer, these predicted trajectories would then be transformed into SRL

trajectories by determining specific endpoint positions that would produce equivalent

reaction forces on the wearer's body.

Planner Drivers

Body
Observer

PLSR Robot
Predictor Sensors

Kneepad
. Sensors

Predictor
Data Driven Model

---------------------------- I

Figure 4-4: Proposed system architecture for implicit controller used in and assisted
crawling mode of operation

Partial least squares regression is a statistical regression technique that, given n

samples of a p dimensional input data vector and an m dimensional output vector, a

linear relationship of the form:

Y = X,3 + 00 (4.33)

is produced where X is an n x p matrix of input data, Y is an n x m matrix of
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predicted output data, and # and /O are weighting and residual offset matrices. In

PLSR, the matrix # minimizes the error between Y and X3 by finding the directions

in X that explain the most variance in Y. Thus, PLSR produces up to n latent

variables in the space spanned by X that can be used to further predict output data

given new sets of input data. In datasets with highly structured covariance structures,

it often takes just of a few of these latent variables to explain most of the variance

in the output space. Latent variables that explain lesser amounts of variance in Y

often end up regressing on noise in the system, and thus may possibly be left out of

the resulting predictive model to avoid overfitting of data.

Partial least square regression was used in proof-of-concept experiments performed

to validate the foundation upon which the control architecture above is based, and

the methodology and results of these experiments are given in the following chapter.

44



Chapter 5

Experimental Validation

5.1 Planar Impedance Control

5.1.1 Procedure

To test the efficacy of the MantisBot and the control laws derived above, the forces

produced by the system were measured externally over a wide range of task-space

coordinates. Optoforce OMD-45-FH-2000N 3-axis optical force sensors were fixed

between the bottom of the SRLs and the ground such that the sensors' axes remained

aligned with global coordinates. A subject then put on the MantisBot (version 1) and

the robot was activated. The subject was asked to move slowly within a comfortable

range in either the sagittal or frontal plane.

In static equilibrium the reaction forces detected between the ground and SRLs

must be equal and opposite to those applied to the subject at each respective SRL

shoulder. Thus the force sensors provide a measure with which the target impedance

forces can be compared. Sagittal and frontal plane impedances were tested separately

using various virtual spring constants.

In all trials, the equilibrium position was chosen so that the SRL angles were

normal to the horizontal ground plane, and their equilibrium lengths were set at a

position comfortable to the wearer. Data points in which the wearer deviated from

the respective plane by more than 5 degrees were excluded from the results.
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Experiments were conducted with Institutional Review Board approval from the

Massachusetts Institute of Technology (Committee on the Use of Humans as Exper-

imental Subject (COUHES) Case No. 1606621285).

5.1.2 Results

Shown in Figs. 5-1 and 5-2 are the resulting force profile for y-axis impedance in the

sagittal plane, and x-axis impedance in the frontal plane, respectively. In both cases,

the tested desired stiffnesses are 0 N/m and 400 N/m.
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Figure 5-1: Impedance controller performance in the sagittal plane.

At 0 N/m, the actuators should work just enough to cancel out lateral reaction

forces transmitted via the SRLs, so that the wearer feels no net force along the x-

or y- directions. At 400 N/m, the force profiles should take on a negative, stable

slope as the reaction forces increasingly push the wearer in the negative direction as

displacement becomes more positive. As shown in the figures and in Table 5.1, the

controller succeeds in tracking the desired force-displacement profiles quite well.

We note that due to actuator saturation, there is a finite range over which the

robot can stably support its wearer. Error calculations performed to determine the

controller's performance used data from within those ranges, which were approxi-
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Figure 5-2: Impedance controller performance in the frontal plane.

Table 5.1: Results of Impedance Control Tests

Test RMS Error (N) Standard Deviation (N) Range Along Axis (in)
Sag. Plane, ky, = ON/m 3.7 7.9 [-0.04, 0]

Sag. Plane, ky, = 400N/m 0.9 7.5 [-0.04, 0.04]
Fr. Plane, kxp = ON/m 3.2 14.3 [-0.05, 0.05]

Fr. Plane, kxp = 400N/m 3.7 10.5 [-0.05, 0.05]

mated graphically. We also note that the controller's feasible range in the frontal

plane is significantly larger than in the sagittal plane, which is attributed to the

different geometries of each pose. In the frontal plane, the body's projected center

of mass is suspended between the SRLs' ground contacts such that when moving

from side to side, the moment applied by the center of mass on one of the SRLs de-

creases over a few centimeters of motion. Further, the sagittal plane's feasible range

exhibits clear asymmetry - as the wearer (and center of mass) moves from back to

front, the fraction of body weight supported by the SRLs, rather than the wearer's

knees, increases. Thus, the magnitude of the moment resisted by the SRLs is larger

in forward-leaning positions.

Though the tested range of about 4-5 cm in the 400 N/m cases can be considered

relatively small, this can be extended by using stronger actuators or decreasing the

lengths of the SRLs. Further, it should be noted that while the actuators can only

track the desired force profile accurately over this range, the system provides some
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degree of support over a much larger range, reaching 8-10 in the 0 N/m cases.

Finally, we attribute larger errors near zero displacement to a combination of IMU

bias and backlash in the robot's drivetrain. Slight differences in measured and true

positions near the chosen equilibrium point can cause the SRLs to work with gravity

rather than against it over small ranges, and rapid changes from positive to negative

torque in the presence of backlash can create large dynamic forces measured by the

sensors used in the experiment.

5.2 Predictive Gait Modeling using PLSR

In order to validate the possibility of developing the predictive kinematic models

needed in the proposed architecture, partial least squares regression (PLSR) was used

with experimentally gathered Inertial Measurement Unit (IMU) data produced by live

subjects performing crawling gaits. UM7 IMUs were placed on subjects' ankles, knees,

chest, forehead, and wrists, and 3-axis acceleration angular velocity, and pitch/roll

Euler angle data was recorded from each unit, resulting in a 64-D data vector produced

at every sample. This vector was then split into a 48-D input vector containing

ankle, knee, chest, and head data, and a 16-D output vector containing wrist data.

These vectors were then temporally expanded by adjoining adjacent samples covering

approximately 10-4000 ms of IMU data, therefore mapping potentially large periods of

time to single points in extremely high-dimensional state spaces, and capturing large

quantities of current and past information at every point in time. In one form of this

analysis, a MATLAB program was used to identify individual gait cycles based on

wrist acceleration and then temporally normalize and reparameterize all data in each

individual cycle for further processing. In another form, the time-window of included

samples remained fixed and rolled forward continuously, shifting data within the input

vectors as it moved.
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Figure 5-3: Array of IMUs used to gather data for gait characterization and modeling

5.2.1 Discrete Window PLSR

[3] makes the observation that point-to-point human reaching tasks exhibit minimum-

squared-jerk acceleration profiles, which for a given period period T and position x,

is given by:

x(t) = XO + x10(t) -15 () 6 ( (5.1)

As can be seen in Fig. 5-4, this observation is, on average, also true for point-to-

point wrist motion in crawling gaits, and thus provides a convenient means of auto-

matically identifying and extracting individual crawling cycles from acceleration data.

By normalizing the longitudinal knee and wrist accelerations relative to each trial's

standard deviation and then cross-correlating the resulting signal with an appropri-

ately scaled minimum-square-jerk acceleration profile, the middle of each cycle can

be reliably captured when thresholding the resulting peaks in the correlation. Lift-off

and touchdown points for each limb can then be identified with further thresholding
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Figure 5-4: Average motion profile of ten manually identified single-cycle wrist trajec-
tories compared to an exact minimum-square-jerk trajectory of the same time-scale

of the acceleration profiles.
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Figure 5-6: Gait discretization based on cross-correlation with minimum-jerk accel-
eration trajectory

over its period and standard deviation, and then interpolated at 20 equally spaced

points in the individual cycle trajectory. Thus, gait motion profiles exhibiting varying

periods and magnitudes are recast to comparable dimensions assuming the trajectories

scale linearly with these changes.

Upon performing PLSR on the resulting normalized and discretized gait cycles

- now represented as single points in a high-dimensional state space - it becomes

clear that there is, in fact, a clear relationship between human arm motion during

crawling and the corresponding motion of the rest of the sensed points on the body.

The result shown in Fig. 5-7 was found after taking data from 10 cycles of forward

human crawling at a comfortable speed, automatically parsing and normalizing all

trajectories using cross-correlation with a minimum-jerk profile, and producing the

predictive linear model with MATLAB's plsregress( function. Data from 4 more

cycles were then parsed, and each input cycle, which includes data from everything

apart from the wrists, was used with the predictive model to produce an expected

arm trajectory which could be compared to the actual trajectory.

A clear limitation of this method for predicting arm motion during crawling is

that it cannot be used in real time. Since the entire predicted gait cycle must occur

before being parsed and fed into the PLSR model, the resulting prediction is no longer

useful. However, extensions of this method could likely include a prediction of future
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Figure 5-7: Predicted vs actual arm trajectories using discrete window PLSR model

gait cycles based on trajectories of previous parsed cycles.

5.2.2 Rolling Window PLSR

An alternative approach to predicting gait motion is to use a rolling time window of

data samples and continuously make predictions of instantaneous arm acceleration,

velocity, and angular position in space. More specifically, defining a row vector of

input data samples at time k as (tk), and a number of samples w to include in the

augmented input vector that covers a time window t., = wt, given a sampling rate of

1/t, Hz, the augmented input input vector is given by:

Xaugmented = [k k-1 -- k-w+1 Xk-w] (5.2)

Therefore the PLSR input matrix, given a total number of samples n, is:
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laugmented,w Xw !w-i ... t01 :o

Xaugmented,w+1 Xw+1 Xw --- X2 X1

Xaugmented,w+2 Xw+2 Xw+1 --- 3 t2

X (5.3)

Xaugmented,n Xn Xn-1 --- Xn-w+1 Xn-w_

and the corresponding output matrix of instantaneous arm-sourced data is:

Vw+1

Vw+2

Y = .(5.4)

where q(t) is a row vector of wrist accelerations, angular velocities, and Euler

angles.

PLSR was run on 1 minute of training data recorded at 50 Hz during trials where

a single subject crawling across the floor forward, backward, and translating to the

right. The data was then downsampled to 20 Hz to eliminate high frequency noise

and decrease the computational load required to regress onto the PLS model. The

data was then expanded as shown in eq. 5.3 using window sizes of 1, 5, 10, 20, 50,

60, and 80 samples, resulting in 7 separate potential prediction models per mode of

crawling.

For validation, each of these predictors then predicted the resulting arm motion of

an additional 5 seconds of crawling data using between 1 and 30 of the latent variables

produced during the regressions.

Forward-crawling results of this experiment are given in Figs. 5-8 and 5-9. Each
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set of plots shows the predicted vs actual normalized longitudinal (z) acceleration of

the left wrist as a representative visualization of the full 16-d prediction trajectory,

as well as the cumulative variance in output data captured by best regression's latent

variables. The root-mean-square error values given in the additional tables were

calculated by taking the average of the norm of the error between the prediction

vectors and ground truth vectors, normalized with respect to the standard deviation

of the ground truth data. Results for the backward and sideways crawling are similar

to those shown below, and can be found in Appendix A.
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Figure 5-8: Predicted vs actual
for forward crawling

acceleration of left wrist during rolling window PLSR

Table 5.2: Forward crawling rolling window PLSR results

Window Size (samples) Optimal number of latent variables Average RMS Error (Fraction of SD)

1 24 0.601
5 19 0.601

10 24 0.557
20 24 0.439
50 25 0.449
60 28 0.431
80 30 0.444

Qualitatively, as shown in Fig. 5-8, the PLSR predictor tracks the ground truth

arm trajectory reasonably well. However, high frequency noise in the prediction tends
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Figure 5-9: Cumulative variance explained in output training data Y by latent vari-
ables in input training space, using 3 second rolling window

to drive up the resulting root-mean-square error, which may be a result of the high

number of latent variables needed to predict the trajectory (as shown in Fig. 5-9). As

a preliminary conclusion, it appears from these experiments that using PLSR from

gait prediction is a feasible option, though likely requires further development for

practical use.
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Chapter 6

Conclusion and Future Work

In this thesis, a novel robot morphology using Supernumerary Robotic Limbs (SRLs)

was introduced and developed with the purpose of stably and comfortably supporting

the human body when performing tasks near the ground. A potential need for such

a device was established by examining work-related injury data and real-world issues

faced by workers in various injuries, and the general structure of such a device, known

as the MantisBot, was outlined. Then a brief biomechanical analysis of the MantisBot

was performed, showing that the MantisBot could support the human over a useful

range of motion while maintaining safe levels of force and torque application to the

human body, and with readily available actuators. Control laws were derived for

adjustable impedance control in a quasi-static mode of operation by decomposing

spatial motion of the human body into the sagittal and frontal body planes, and an

experimental validation of these control laws on full-scale prototypes was presented

to prove their ability to apply adjustable and linear spring-like restoring forces onto

the human torso. Finally, the possibility of using predictive, data-driven statistical

models of human crawling gaits to drive the implicit control of the MantisBot during

dynamic operation was found to be feasible.

The MantisBot - and SRLs in general - provide an exciting opportunity to discover

new modes of human-robot interaction in a largely unexplored branch of robotics. Fu-

ture iterations of the MantisBot can easily be designed to be lighter and stronger to

further extend the range of motion through which a wearer may be stably supported,
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and it is clear that the logical next step in the control design of the proposed sys-

tem is full 6 degree-of-freedom impedance control and stabilization. Finally, deeper

exploration of crawling gait characterization provides a rich breadth and depth of

methods with which to effectively plan SRL trajectories during various modes of dy-

namic motion along the ground, and may generalize to assist in the control of other

SRL morphologies.

Broadly, Supernumerary Robotic Limbs have the capacity to augment and assist

humans in countless ways, and it is the conclusion of this thesis that their development

as tools for industry will prove them to be indispensable in the future.
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Appendix A

Extended Results from PLSR

Analysis of Human Crawling
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Figure A-1: Predicted vs actual acceleration of left wrist during rolling
validation for backward crawling, sampled at 20 Hz

window PLSR
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Figure A-2: Cumulative variance explained in backward
data Y by latent variables in input training space, using 4

Table A.1: Backward crawling rolling window

26 30

crawling output training
second rolling window

PLSR results

Window Size (samples) Optimal number of latent variables Average RMS error (Fraction of SD)
1 7 0.858
5 27 0.736

10 26 0.665
20 29 0.618
50 27 0.557
60 28 0.540
80 30 0.527

Table A.2: Right translating crawling Rolling Window PLSR Results

Window Size (samples) Optimal number of latent variables Average RMS error (Fraction of SD)

1 26 0.725

5 24 0.642

10 30 0.589

20 27 0.560

50 30 0.522

60 30 0.553

80 30 0.490
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Figure A-3: Predicted vs actual
validation for right translation,

acceleration of left
sampled at 20 Hz

wrist during rolling window PLSR
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Figure A-4: Cumulative variance explained in right translation crawling output train-
ing data Y by latent variables in input training space, using 4 second rolling window
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