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I Introduction: Types of Problems

In the control and protective circuits of come
plex electrical systems it 1s frequently necessary to
make intricate intercommections of relay contacts and
switches. Examples of these circuits occur in auto-
matic telephone exchanges, industrial motor control
equipment and in almost any circuits designed to per-
form complex operations automatically. Two problems
that occur in connection with such networks of switches
will be treated here. The first, which will be called
analysis, is to determine the operating characteris-
tics of a given circult. It is, of course, always pos=
gible to analyze any given circuit by setting up =2ll
possible sets of initial conditions (positions of
switches and relays) and following through the chain
of events so instigated. This method is, however,
very tedious and open to freguent error.

The second problem is that of synthesis.

Given certain characteristics, it is required to find
a circult incorporating these characteristics, The
solution of this type of problem is not unigue and it
is therefore additionally desirable that the circuit

requiring the least number of switch blades and relay



contacts be found. Although a solution can usually be
obtained by a "cut and try" method, first satisfying
one requirement and then making additions until all
are satisfied, the circuit so obtained will seldom

be the simplest. This method also has the disadvan-
tages of being long, and the resulting design often
contains hidden "sneak circuits."

The method of solution of these problems which
will be developed here may be described briefly as
follows: Any circuit is represented by a set of equa=
tions, the terms of the equations representing the
various relays and switches of the circuit. A cal-
culus is developed for manipulating these equations
by simple mathematical processes, most of which are
similar to ordinary algebraic algorisms, This cal-
culus 1s shown to be exactly analogous to the (Calcu-
lus of Propositions used in the sgymbolic study of
logic. For the synthesis problem the desired charac-
teristics are first written as a system of ecuations,
and the equations are then manipulated into the form
representing the simplest circuit. The circuit may
then be immediately drawn from the equations. By

this method it is always possible to find the simplest

circuit containing only series and parallel connec#%ions,



and for certain types of functions it is possible to
find the simplest circuit containing any type of con-
nection. In the analysis problem the equations repre-
senting the given circuit are written and may then be
interpreted in terms of the operating characteristics
of the circuit. It is also possible with the calculus
to obtain any number of circuits equivalent'to a given
circuit.

Phraseology will be borrowed from ordinary
network theory for concepts in switching circuits
that are roughly analogous to those of impedence

networks.



II Series-Parallel Two Terminal Circuits

Fundamental Definitions and Postulates. We shall

limit our treatment to circuits containing only re-
iay Qontacts and switches,'and therefore at any given
time the circuit between any two terminals must be
elther open (infinite impedance) or closed (zero
impedance). Let us associate a symbol Xab cr more
simply X, with the terminals a and b. This variable,
a function of time, will be called the hinderance

of the two terminal circuit a-b. The symbol O (zero)
will bé used to represent the hinderance of a closed
circuit, and the symbol 1 (unity) to represent the
hinderance of an open circuit. Thus when the cir-

cuit a=b is open Xop = 1l and when closed xa = 0,

b
Two hinderances Xab and Xcd will be said to be equal
if whenever the circuit a-«b is open, the circuit c-4
is open, and whenever a=-b is closed, c-d is closed.
Now let thé symbol +f{p1us) be defined to mean the
series connection of the two termlnal circuits whose

hinderances are added together. Thus Xa is

p * Xa
the hinderance of the circuit a=d when b and ¢ are
connected together. Similarly the product of two

hinderances (Xab . cd) will be defined to mean the



hinderance of the circuit formed by connecting the
circuits a=b and c-d in parallel. A relay contact
or switch will be represented in a circuit by the
symbol in Fig. 1, the letter being the corresponding
hinderance function. Fig. £ shows the interpreta-

tion of the plus sign and Fig.3 the multiplication sign.

xlb + X E
a——-—og;——qb —q§$q3;—-=-£fL32 .—[: ==__§;£_n
Fig. 1 Pig. 2 Fig. 3

This choice of symbols makes the manipulation of
hinderances very similar to ordinary numerical alge-
bra.

It is evident that with the above definitions

the following postulates will holds

Postulates

i B: Q0 8 O A closed circuit in parallel
with a closed circuit is a
closed circuit.

be 1 2131 An open &ircuit in seriess
with an open circuit is an
open circult.,

2. 8., 1920=20+¢ 18] An open circuit in series
with a closed circuit in
eilther order 1is an open
Giroulte

bse Osl 8 10 =2 0 A closed circuit in parallel
with an open circuit in
elther order is & closed
elirounlt.



3¢ 8, 0% 0 =0 A closed eircuit in series
with 8 elosed circuit is =
closed circuilt.
be 11 = 1 An open circuilt in parallel
with an open cireuit is an
open clrecuilt.

4., = At eany given time elther X =2 0
or X = 1.

These are sufficient to develop all the theo-
remé Which will be used in connection with circuits
cont2 ining only s=eries and pard 1€l connections. The
postulates are arreanged In peirs to emphasize a duality
relationship between the operations of addition end
miltiplication end the quantities zero and onse. Thus
if in any of the'a postulates the zefo's are replsced
by one's and the multiplications by @additions end vice
versa, the corresponding b Postulste will result.

This fact is of grest importance. It gives each theorem
8 dual, it being necessary to prove only one to esta=-
blish both. The only one of these postulates which
differs from ordinary algebra is 1b. However, this
enables g}ent simplifications in the menipula2tion of

these symbols.

Theorems. In this section a number of theorems gov-
erning the combination of hinderences will be given.
Inasmuch as any of the theorems may be proved by &

very simple process, the proofs will not be glven - 1%



except for an illu strstive example. The method of
probf is thet of "perfect induction," i.e., the veri-
fication of the theorem for all possible gases. Since
by postulete 4 each variable is limited to the values
O‘and l, this is 2 simple matter. Some of the theorems
mey be proved more elegantly by recourse to previous
theorems, tut the method of perfect induction is so uni=-
versal that it is probably to be preferred.
1i B T H'y Ry * X
e Xy = yx
Be ® 2% (y» 8} Gt ¥ 3] t»
b x(ye) = (xy)e
3. 8, X(y + 8) 8 xy + xB
be X+ y8 & (X +y) (x + 8)
4. a, l*x =2x
Bs 0¥ RPN
By Bs 1L+ Xx %]
| be Oex =0
For example, to prove theorem 48, note thet
X 1s either O or 1. If it is O, the theorem follows
from postulate 2b; if 1, it follows from postulate 3D.
We shall now define a new operation to be
called negation. The negative of 2 hinderance X will
b8 written Xt and is defined as a variable which is

equal to 1 when X equals O and equal to O when X



equals l. If X is the hindersnce of the make contacﬁs
of & relay, then X' is the hinderence of the break con=-
tacts of the same relay. The definition of the nega=
tive of 2 hinderence gives the following theorems:

8 8. TeR =]

b. XXt =0
Te 8 Oy &1
be 1t S0
=X

8. (xXe)!

Analogue with the Celculus of Propositions. We are

now in 2 position to demonstrate the equivalence of
this caleculus with certain elementary mrts of the
calculus of propositions. The algebre of logle (1),
(2), (3) origineted by Georgé Booleé, is a symboliec
method of investigating logical relationships. The
symbols of Boolean algebra admit of two loglcal inter-
pretations. If interpreted in terms of classes, the
variables are not limited to the two possible values

O and 1. This interpretation 1s known as the algebra
of classes. If, however, the terms 2re taken to repre-
éent propositions, we have the calculus of propositions

in which variabtles are limited to the values O and 1*,

*This refers only to the cleassicel theory of the cal-
culus of Propositions. Recently some work hes been
done with logical s?stems in whieh propositions mey
have more than two "truth values."
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as are the hinderande functions above. Usually the ﬁwo
gubjecte are developed simultaneously from the same set
of postulates, except for the addition in the case of
the Calculus of Propositions of a postulate equivalent
to postulate 4 zbove. E.V. Huntington (4) gives the
foliowing set of postulates for symbolic logic:

1. The class K contains at least two distinct

elements.
2. If a and b are in the class K then a+ b 1s
in the clase K.

3. a+b=z=Db+a

4, (a+Db)+ c=a+(b+ec)

. a+a=zzs

6. sb+ ab'= a where ab is defined as (a'+ b')!
If we let the class K be the class consisting of the
two elements O and 1, then these postulates follow from
those given on pages 5 and 6. Also postulates 1, 2,
and 3 given there can be deduced from Huntington's
postulates. Adding 4 and restricting our discussion
to the calculus of propositions, it is evident that a
perfect anzlogy existis between the calculus for switch-
ing circuits and tnis branch of symbolic logic.®* The

two interpretations of the symbols are shcwn in Table 1.

*This analogy may also be seen from a slightly different
viewpolnt. Instead of assoclating X, directly with the
circuit a-b let X,;, represent the proposition that the
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Due to this anslogy any theorem of thé caleulus
of Propositions is also a8 true theorem if interpreted in
terms of relay cirecuits. The remaining theorems in this
seétion are taken directly from this field.

De Morgen's theorem:

9. Be (X +X® ass]" 2 XYY .8 vai

B (X BB oae J 2 XY ¢ W1 4 89 #g.,
This theorem gives the negative of 2 sum or product in
terms of the negatives of the summands or factors. It
may he easily verified for two terms by substituting
8ll possible values and then extended to any number n
of variables by mathemetical induction.

A function of certain variables Xl, XoeaeaeX, 1s
any expression formed from the varisbles with the opera-=-
tions of addition, multiplication, and negation. The
notation f(xl, Xo, ses X,) will e used to represent a
function. Thus we might have f(X, Y, Z2)) = XY + X' (Y + 21).
In infinltesimal calculus it is shown that any function
(providing it is continuous and all derivetives are con=-
' tinuous) may be expanded in a Taylor Series. A somewhat
similer expansion is possible in the Calculus of proposi-

tions. To develop the series expansion of functions

(Footnote continued from preceding page)

¢ircuit a-b is open. Then all the symbols are directly
interpreted 2s propositions and the operations of addition
and multiplication will be seen to represent series and
parallel connections. :
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TABLE I

1 §

Analogue Between the Caleulus of Propositions

Symbol

b A 4

5

and the Symbolic

Interpretation in relay
circuits

The circuilt X.

The circult is closed,
The cirauit is open.

The series connection of
cireuits X and Y

The parallel connection
of eircuits X and Y

The circuit which is open
when X is closed, and
closed when X is open.

The circuits open and
close simulteneously.

Relay Analysis

Interpretation in the
calculus of Propositions

The proposition X.

The proposition is
false-

The proposition is
true.

The proposition which
is true if either X or
Y is true.

The proposition which
1s true 1f hoth X and
Y are true.

The contradictory of
proposition X.

Each proposition
implies the other.
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first note the followlng equations;
10. a. £(Xy Xp,ece Xp)2X A{1 XoeuuXp)) + X1 £(0,X50 0%, )
be L{EL "ava Xni = I2{0Xp vs X, ) + X1]°[f(1:X2"-Xn)+Xi]
The se reduce to identities if we let X, equal either

i
Qorle In these equations the function f is said to

be expanded a out Xl- The coefficients of Xl and Xi
in 5§§are functions of the (n-1) variables XgeesaXy

and may thus be expanded about any of these variatbles
in the same menner. The additive terms 1nl8$ielso may

be expanded in this manner. Thus we get:

+ Xixz £(0,1,Xz+0.X,) ¥ XlXé f(o,o,x5...xn)

Do £(XjeeeeX ) ® [X; + X5 + £(0,0,Xz...X,)] @ [X; +

Xp o+ £(0,1500.X )] ¢ IX] + Xy + £(1,0, 40eX))]

" [Xi * XL f(1,1,x5...xn)]

Continuing this process n times we will arive at the

complete series expansion having the form:;

I8 ma f(X....xn) = £(1,1,1...1) XiXgeooX ) + £(0;1,
Lsend) xixg...xn ¥issrssee ¥ £(0,0,04..0)
XiXé...Xﬁ
be £(Xye0eeX ) = [X] + Xp + .00 X, + £(0,0,0...0)]

* [X§ + Xpeee + X, ¢ f(l,OEO...O)]’...... [Xi

+ xs ¥ s xg ol g ) R )
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By 122, £ is equal to the sum of the products formed
by rermuting primes on the terms of xlxg....xn in all
Possible ways and glving each product a coefficient
equal to the value of the function when that product
is l. Similerly for 12b.

; As an application of the series expansion it
should be noted that if we wish to find & cirecuit
representing any given funcetion we can always expand
the function by elther 10a or 10b in such &8 way that
any given variable appears at most twice, once 8s a
make contact and once as & bresk contact. This is

shown in Fig. 4.

X f(O,X2ooxn) x1 f(o;-}fgl,..Xn)
2(X10Xp) | _E):}_“*]_ 5k I
—— —n 0 —
£(1,X54Xn) el xi_ £(1,X50.Xp)
Fig. 4

Similarly by 11 any other variable need appsar no more
then 4 times (two make and two brsak contacts) etc.

A generalization of De Morganh theorem is
represented symbolically in the following equation:

“l :
13. [f(xl,xg,...xn, & )] f(Xi’Xé""'Xﬁ"’*’)

By this we mean that the negative of any function may

4
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be obtained by replacing each variable by its neéative
and interchenging the + end * symbols. Explicit and
impliecit paréntheses will, of course, remain in the
same places. For example, the negative of X + Yo
(Z + WX') will be Xt'(Y' + Z'(W' + X)).

Some other theorems useful in simplifying

expressions are given below:

1%, B8, 2R I %X &YX+ X +2X atc.

B XSX X 2R +X +X T etes
15, 8. X + XY = X

b X(X +Y) =X
16. 8. XY + X3 = XY + X'3 + Y&

bee (X + Y)(X* + B) = (X + Y) (X! + B)(Y + B)
17. 8. X£(X) = x£(1)

be X + £(X) =X + £(0)
18. a. X!F(X) = X1£(0)

be X! + £(X) = Xt + £(1)

Any expression formed with the operations of
addition, multiplication, and negation represents
explicitly a8 circuit containing only series and
parellel comnections. Such a circuit will be called
& series-parallel circuit. Each 1ettef in an expres-
sion of this sort represents 8 make or break relay
contact, or & switeh blade and contact. To find the

¢lrcuit requiring the leaest number of contacts, it is
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therefore necessary to manipulate the expression into
the form in which the least number of letters appear,
The theorems given above are always suffiecient to do
this. A little practice in the menipuletion of these
s#mtols is 211 thet 1s required. PFortunately most of
the theorems ere exactly the same as those of numeri-
cal algebra--the associative, commutativse, and distrib-
utive laws of al gebra hold here. The writer has found
theorems 3, 6, 9, 14, 15, 16a, 17, and 18 to be es=~
pecially useful in the simplification of complex ex=-
pPressionse.

As an example of the simplification of ex-

pressions consider the e¢ircuit shown in Fig. 5.

J:ji;._. 4

X ¥ z!
——CO—OOT
a.———-owc—-—i —0&40'——00—'“-——-.b
g wm Z
wt 0 O——p Ot

Fig. 5

The hinderance function X for this circuit will be:

ab
WHWE (X+Y) + (X+B)(SHWI+R)(Z1+Y+3tV)

Xab

& \N;
WHXHY+(X+8) (S+1+3) (Z1+Y+31V) v

WHX+Y+R(2'+3'V)

These reductions were made with 17b using first W, then X and
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Y as the "X" of 17b. Now multiplying out:

Xab W+ X +Y + BRY + (@stY

W+ X+Y + 83V
The circuilt corresponding to this expression
is shown in Fig. 6. Note the large reduction in the

number of elements.

Z
p—,
4 i
a ‘—-—Ow': :xc Q% _os: b

Fig. 6

It is convenlent in drawing circuits to 12 bsl
a relay with the same letter as the hinderance of
meke contacts of the relay. Thus if a relay is con-
nected to & source of voltage through & network whose
hinderance function 1s X, the reley and eny make con-
tacts on 1t would be labeled X. Bresk contacts would
be labeled X'. This assumes that the relay operates
instantly end that the make contacts c¢lose snd the
break contects open simultaneously. Cases in which
there is a time delay will be treated later.

It 1s also possible to use the analogy between
Boolelan algebra and relay circuits in the opposite

direction, i.e., to represent logical relations by
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means of electric circuits. Some interesting results
have been obtained along this line, tut 8re of no im-

portance here.
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III Multi-terminal and Non=-series-parallel Circuits

Equivalence of n-Terminal Networks. The usual relay

control circuit will take the form of Fig. 7, where
Xl,Xz, .la ke Xn are relays or other devices controlled
by the circuilt and N is a network of relay contsets and

awi tchese.

+ 2 o

PFlg. 7

It is desireble to find transformations that mey be
applied to N which will keep the operation of all
the relays xl"‘xn the same. So far we have only
considered transformations which may be epplied to
8 two-=terminal network keeping the operation of one
relay in ssries with this network the same. To
this end we shall define egquivalence of two n-term=-
in2l networks as follows:

Definition: Two n~terminal networks M and N will

be s8id to be equivalent with respect to these
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terminals if and only if Xjk = ij J; B3 L, 2, 8.0
where Xjk is the hinderance on network N between termi-
nals j and k, and ij is that for M between the cor-
responding terminsls.

Thus under this definition the egquivelenceas
of the preceding sections were with respect to two

terminal s.

Star-Mesh and Delta-Wye Transformations., As in ordi-

nary network theory there exist star to mesh end delta
to wye transformations. The delta to Wwye transforms-
tion 1s shown in Fig. 8. These two networks are
equivalent with respect to the three terminals s,
b, eand ¢, since by the distributive law X, = R(S + T)
28 RS + RT and similarly for the other pesirs of termi-

nals a-¢ and b-c.

: i %
5 " & | la-s
| ‘ R*T *s-T
Viae g4
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The wye to delta trensformation is shown in

Fig. 9. This follows from the fact that X

ab “R+8

R+ SHR+ THT + 8)y

J\

= (R*S) (T+s

e

Fig. ©

An n point star also has &8 mesh equivalent

with the central node eliminated,:. This is formed

exactly as in the simple three point star, bv con-

necting each pair of terminals of the mesh through

8 hinderance which is the sum of the corresponding

erms of the star.
b

|

Forn = 5 this is shown in.-Mg. 10.

Pig. 10
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Hinderance PFunction of 2 Non=-Series-Parallel Networke.

The methods of Part II were not sufficient to hendle
circuits which contained connections other than those
of a series-parallel type. The bridge of Fig. 11, for
example, is a non-series-pareallel network. These net-
works will be handled by reducing to &n equivalent
series-parallel circult. Three methods have been

" developed for finding the equivalent of a network

such as the bridge.

Plg. 11

The first is the obvious method of applying
the transformations until the network is of the
series-parallel type and then writing the hinderance
function by inspection. This process is exactly
the seame as is used in simplifying complex impedance
networks. To apply this to the circuit of Fig. 11,
first eliminate the node ¢, by g2pplying the star
to mesh trensformation to the star a-c, b-c, d-c.

This gives the network of Pig. 12,



a \\\b %ﬁ'%: J/i////f *b
it G e
U

d

Fig. 12

The hinderance function may be written down from
inspection for this network.

Tan W K *ia)imin +2) «'% (v §))
Simplifying by the theorems gives;

xab 2 RU + 8V + RTV + STU

The second method of analysis is to draw

81l possible paths betwaen the points under consid-
eration through the network. These paths are drawn
along the lines represen ting the component hinder-_
ance elements of the circult. If any one of these
paths has zero hinderesnce, the required function
mast b zero. Hence if the result is written as
a product, the hinderance of each path wlill be a
factor of this product. The required result may
therefore be written as the product of the hinderpr-
eances of all possible pesths between the two polints.

Paths which touch the same point more than once need

22



not be considered. In Flig. 13 this method is applied

to the bridse. The paths are marked in red.

AN
A

Fig. 13

The function 1is therefore given by:
xab S (R* 380 * VIR * T+ ¥)(U +# 7 + 8)
2 RU + S¥ + BEV % U178
The same result 1s thus obtained as with the first
method.

The third method, the duel of the second, is
to draw all possible lines which would bresk t he cir-
cult between the points under consideration, making
the lines go through the hinderences of the circuit.,
The result is written as a sum, each term corres-
ronding to & certain line. These terms are the prod-
ucts of 2ll the hindersnces on the line. This method
is applied to the bridge in Fig. 14, the lines being

drawn in red.

P¥

23
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This again gives for the hinderance of the network:

+
' Xab = RUt SY + RTV = 3%

‘ The third method is usually the most convenient
and rapid, for it gives the result directly as a2 sum,
It.seéms much easier to handle sums than products due;
no doubt, to the fact that in ordinary algebra we
have the distritutive law X(Y + Z) = XY + XZ, but not
its dual X + YZ = (X + ¥Y)(X + Z). It is, however,
sometimes difficult to apply the third method to non-
rlenar networks (networks which cannot be drawn on a
plane without crossing lines) and in this case one of

the other two methods may be used,

Simaltaneous Equations. If there are n dependent

variables, there will be n simulteneous equations de-
fining the system. Any additive terms which are common
to several of the functions may be factored out in the
menner illustrated by the following exsmple. These

terms need only be realized onee to take cers of all

the functions in which they apmar. C v

W=A+B+CW * i w:

X =2A+B+ WX ] K

Y’A"‘CY A Wj——/‘rﬂ—

2 “E® + f —0 ot .

W= +|CW e} ¥

X oa o2 *hx e

Y = cY 'y

% SEg + f i

sy U -

—Lig ,

Pig. 15
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Sometimes the relation ab' = 0 obtains between
two relays & and b. This is true, for example, in a
sequential system where each relay of the sequence
1pcks itself in and a precedes b in t he sequence,
Whenever b is operasted & is operated. In such & case
the following simplifications may be made:
If abt =0
Then &8'b! = gth! + ab! = p!

ab + abht = g

ab
at + b =1
(at + bt) = (at + b')(a' + b) = at

(2 + b) = (a + b)(a?t + b) = b

Matrix Methods. It is 8lso possibvle to treat multi-

terminal networks by means of matrices. Although use-
ful fér theoretical work ths method is eumbersome for
practical problems and will therefore only be briefly
sketched. We shall assume the same rules of manipulation
of matrices as usually defined in works on higher alge-
bra, the only difference being that the elements of

our métrices will be hinderance functions rather than
ordinary algebraic numbers or variables. The X' matrix
of a network'with.n nodes will be defined 2s the fol-

lowing array:



26

! ¥ :
1 Xlz xls C-...-oolooox:ln

! ! i
le 1 xzs o..o.ooo--ooX2n

where X;k is the negstive of the hindersnce common to

nodes j and k.

Theorem: The X! matrix of a network formed by con-
necting two n node networks in perallel (correspond-
~ ing nodes together) is the sum of the individual X!
matrices. This theorem is more general tham might
appear at first since any interconnection of two net-
works may be considered as a parallel connection of
two networks with the same number of nodes by 2dding
nodes as needed whose mutual hinderances to the other
nodes is one.

Now define 8 matrix to be called the U' ma-

trix of a naetwork as follows:




27

where U3k is the negative of the hinderance function
from node j to k, the network considered as a two term-
inal circuit. Thus for the three node network of

Fig. 16 the X! and U!' matrices are as shown at the

ri ght .
)
d//\\\ 1 x! gf 1 XxXtyta' ztex'y!
1 15!
% ¥ ! y! xteytgt 1 ylex'z
i R z'+x'y! ylaxtz! i
1 3

z

Meg. 16 X' Matrix | U!' Metrix

Theorems: Any powsr of the X' matrix of a network
gives a network which is edquivalent with respect
to a1l nodes. The matrix is raised to a powsr by

the usual rule for multiplication of matrices.

Theorem:
! 1 ! !
1 Ulz L A Uln l X12 . s Xln S
i ! ! U
U 1 . . U x 1 LI X
21 2n - 21 2n s a n-1
1
U;’ll .. LI I l x1n - . l

Theorem: Any node, say the kth, may be eliminated
leaving the network equivalent with respect to 2ll

remaining nodes by adding to each element X} of the
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X' matrix the product of the elements X and X's, and

1
rk k
striking out the kth row and column.

Thus elimineting the 3rd node of Fig. 16 we get:

Laz'z! xt+z'y! 1 xte+ylz!

"

xlfylz'l 1+yly| xl.‘.!'zl 1
The proofs of these theorems are of a simple
nature, t qﬁite long eand will not be given.

Special Types of Relays and Switches. In certain types

of eircuits it is necessary to preserve 8 definite

sequential relation in the operation of the contacts
of a relay. Thls is done with make-before-break (or
continuity) end bresk-make (or transfer) contacts.
In handling this type of cireuit the simplest method
gseems to be to assume in setting up the equations
that the meke and bresk contacts operate simul tene-
ously, and after all simplifications of the equations
have been made and the resulting circuit drawn the
required type of contact sequence i1s found from in-
spection.

Relays having a time delay in operating or

deoperating may be treated simllarly or by shifting
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the time axis. Thus if a relay coil 1s connected to e
battery through a hinderance X, and the relay has a
delay of p seconds in operating and releasing, then
the hinderence function of the contacts of the relay
will also be X, but 2t 2 time p seconds later. This
may be indicated by writing X(t) for the hinderance in
series with the relay, and X(t-p) for that of the re=-
lay contacts.

There are many special types of relays and
switches for psrticulsr purposes, such @2s the stepping
switches and selector switches of various sorts,
multi-winding releys, cross-bar switches, etc. The
operation of al1ll these types may be described with
the words “or," "and," "if," "operated," and "not
operated." This is a sufficient condition that may
be described in terms of hinderence functions with
the operations of addition, multiplication, nega-
tion, end equality. Thus a two winding relay might
be so constructed that it is operated if the first
or the second winding is operated (activated) and
the first and the second windings are not operated.
Ususally, however, these special relays occur only at
the end of a complex circuit and may be omitted en~-
tirely from the calculations to be added after the

rest of the eircuit is designed.
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Sometimes a relay X 1s to operate when a cir-

cuit r closes and to remain c¢losed independsent of r
until a c¢ircuit S opens. Such a circuit is known as
a lock=in circuit. Its equation is;

XSrX +8
Replacing X by X' gives:

X! = pXt! + 8§
or

X = (r* + X)3°
In this case X is opened when r closes and reméins

open until S opens.
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IV Synthesis of Networks

Some General Theorems on Networks and Functions. 1t

has been shown .that eany function may be expanded in a
sefies consisting of a sum of products, each product
being of the form XXp....X, wlith some permutation of
primes on the letters, and each product having the co~
efficient O or 1. Now since each of the n varisbles
may or may not have a prime, there is a total of 20
different products of this form. Similerly each prod-
uct may have the coefficlent O or the coefficlent 1
80 there are 22n possitle sums of this sort. Each of
these sums will represent @ unique function, but some
of the functions may actuslly involve less fhan n veri-
ables (i.e., they are of such a form that for one or
more of the n variables, say Xk’ we have identically
f(Xl,...Xk_l, 0, xk+1”“xn) = f(XqeeeeXpays 1, X412
eeeXn) so that under no conditions does the value of
the function depend on the value of Xk.

Hence we have the theorem:
Theorem: The number of functions of n variables or
less is 22n.

To find the number of functions which actually

involve n variasbles we proceed as follows. Let ¢(n) be

the required number. Then by the theorsm just given:
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n
2 =233 (B (1)

where (E) z nl/k t(n-k)! is the number of combinations
of n things taken k at a time. Solving for ¢(n) gives:
n n-
d(n) = 22" 2 5 (yd(k)
k%0

By substituting for ¢(n-1) on the right the similar
expression found by replacing n by n-1 in this equetion,
X then similarly substituting for ¢(n-2) in the expres-
sion thus obtained, etc, &an equation may be obtained
involving only ¢(n). This equation mey then be sim-
plified to the form;

g(n) = f—{; ()22 (-1)7™)

k=

As n increases this expression approaches 1ts leading
term 22n asymptétically. The error in using only this
term forn = 5 is less than .01%.

We shall now determine those functions of n
variables which require the most relay con tacts to re-
8lize, end find the number of contacts required. 1In
order to do this, it is necessary to define a function
of two variables known as the Qum modulo two or dis-
junet of the varisbles. This function is written

x10x2 end is defined by the equation:

= T+ X!
xlpxz x1x2 xlxz
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It is easy to show that the sum modulo two obsys the
commtative, associative, and the distrimtive lew
with respect to multiplication, 1i.e.

X 8%, = Xp@X,

(X,8X; )8xX, = xle(xzexs)

xltxzexs ) = xlx29x1x5

Also:

AN
(xloxz) = xloxé

X100 - Xl
€1 = x!
Xl Xl

Since the sum modulo two obeys the associative law,
we may omit parentheses in a2 sum of several terms
without embiguity. The sum modulo two of the m veri-

ables X ,X2....Xn will for convenienece be written:

1

n
x10X2OXS e oexn ‘x%xk

Theorems: The two functions of n vdriables which re-
quire the most elements (reley contacts) in a series-

n n
parallel realization ere }X.and (%%xk)r, each of which
1

requires (3'2“’1-2) elements.
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This will be proved by mathematical induction.
Pirst note that it is true forn = 2, There are 10
functions of 2 variebles, namely, XY, X+Y, X'y, X'+Y,
XXy X¥The RVXY, XTRYT . XYY + XY, XY+XvYr. Al of
these tut the lest two require two eleménts; the last
two require four elements and are X®Y and (X€Y)!
respactively. Thus the theorem is trmue forn = 2,
Now assuming it true for n-l1l, we shall prove it true
fér n and thus complete the 1ndﬁction. Any function

of n variables mey be written by (10a):

f(xl,xz,...xn) = xlf(l,xz,...xn) + xif(-o,xz...xn) (19)

Now the terms f£(1,Xy+..X ) and £(0,X,...X ) are func-
tions of n-l1l variables, and if they individually re-
guire the most elements for n-1 variables, then f will
require the most elements for n variables, providing
there is no other method of writing f so that less
elements are required. We heve assuméd thet the most
elements for these n-1 veriables are required by

n
géxk and.(gbxk)'- If we thersfore substitute for
! 4 n
£(1,Xg++.X ) the function };exk and for £(0,X,..X )

B
the funection (Z%Xk)' we geb:
2

n:. n n
£ = xlE‘a_xk +'X1(§2xk)* = (}.l'.‘gxk)'
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From the symetry of this function there is no other way
of expending which will reduce the number of elements.
If the functions are substituted in the other order,

we get:

n n n
rex Qon )+ 2i.x 32X

This completes the proof that these funetions require
the most elements. To show that each requires (3.2°71_2)
8lements, let the number of elements required be de-
noted by s(n). Then from (19) we get the difference
equation:

8(n) = 2s(n-1) + 8
with s(2) = 4. This is linear, with constant coeffi-
cients, and may be solved by the usual methods (5).
The solution is:

n--l__2

s(n) = 3.2
as may be easilﬁ verified by substituting in the dif-
ference equation and undary condition.

Note that the above only applises to &8 ssries-
parellel realization. In a later section 1t will be
shown that the function ixk and its negative may be
reslized with 4(n-1) eleéents using 2 more gesnéral
type of circuit. The function requiring the most
8lements using any type of circuit has not 8s yot

been determined.
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Dual Networks. The negativs of any network mev be

found by De Morgen's theorem, bﬁt'the ne twork must
first be trénsformed into an equivelent series-parallel
circuit (unless it is already of this type). A theorem
will ve developed with whieh the negative of any plsnar
two-terminal circult may be found directly. ,As & coro-
llary a method of finding a8 constant eurrent clrecuit
equivalent to @ given constant voltage circuit aﬁd
vice versa will be given.

Let N represent a planar network of hinder-

ances, with the function Xa between the tarminals

b
2 and b which are on the outer edge of the network.
For definiteness consider the network of mig. 17
(here the hinderances are shown merely as lines).
Now let M represent the dual of N, as found by the
following process; for each contour or mesh of N
assign a node or junction point of M. For each
element of N say Xy s separating the contours r snd
8 there corresponds an element Xé conneecting the
nodes r and s of M., The area exterior to N is to
b2 considered as two meshes, ¢ and d, corresponding

to nodes ¢ eand d of M. Thus the dual of Pig. 17 is
the network of Fig. 18.



mesh 4 d
Fig. 17 Pig. 18

Theorem: If M end N bear this duality relationship,
then Xg = Xiqe

To prove this, let the networks M sand N be
superimposed, the nodes of M within the corresponding
meshes of M and corresponding elements crossing. For
the network of Fig. 17, this is shown in PFig. 19,
with N in black and M in red., Incidentelly, the
easiest method of finding the dual of a network
(whether of this type or an impedance network) is to
draw the required network superimposed on the glven
network. Now, if Xab = 0, then there must be some
vath from @ to b along the lines of N such that every
element on this path equals zZero. But this path repre-
sents a patﬁ across M dlviding the eircuit from ¢ to d
along which evsry element of M is one. Hence X ® L

Similarly, if Xcd = 0, then xab =1, and it follows that

Xap = Xbq*

Fig. 19
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In a eonstent-voltage relsy system all the
relays are in parallel across the line. To open &
relay a serles connection is opened. The general con=-
stant-voltage system is shown in Fig. 20, 1In a constant-
current system the relays are all in series in the 1lins.
To de~operate a relay it is short ecircuited. The gen-
eral constant=-current cirecuit corresponding to Fig. 20

is shown in Fig. 21. If the relay Yk of Plg. 21 is

to be operated whenever the relay X, of FPig. 20 is

k
operated and not otherwise, then evidently the hin-
derance in parellel with Y; which shorts it out must

be the negative of the hinderence + = in series with

Xk whiceh connecets it across the voltage sourcse. If

this 1s tme for gll the relays, we shall say that the
constant-current and constant-voltage systems are equiv-
glent. The &bove theorem may be used to find equivalent
eircuits of this sort. For, if we make the networks

N and M of Figs. 20 and 21 duels in the sense described,_
then the condition will be satisfied.

]
E % Y;
congtant voltage
source.
: N
e j §
X Constant 3
- - . I current M [
N PR SR, gsource. |
T
2 é In
Al |

Fig. 20 L e 81
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A simple exemple of this is shown in Figs. 22 and 23.

Sl
X l P
amm 1 J“%‘_ $
U 9 R oI
) r———aT Xg
vl
! 'Y
X ]
—-—-OQQ—I—OLTPI\— |
Z
Pig. &8 Me. 23

‘ Synthesis of the General Symetric Function. As hes

been shown, any function represents explicltly a
series-parallel circult. The series-parallel reallza-
tion may require more elements, however, than some
other circuit representing the same function. 1In
this section a method will be given for finding a cir-
cult representing 8 certain type of function which
in general is much more economicel of elements than
the best series-parallel circuit. This type of func-
tion frequently appears in relay circuits and is of
much importancs.

A function of the n veriables xl, Xa""'xn
is said to be symmetric in these wvariables if any

interchenge of these variables leaves the function
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identicelly the same. Thus XY + XZ + YZ is symmetric
in the variables X, Y, and Z. Since any permutation
of variatles may be obtained by successive interchanges
of two variables, @ necessary and sufficient condition
that a funetion be symmetric is that any interchange
of two variables leaves the function unaltered.

We now give a theorem which forms the bvasis
of the method of synthesis to be described.
Theorem:; The necessary and sufficlent condition
that & function be symmetric 1s that it may be speci-
fied by stating a set of numbers a,, Bopeeesely such
that if exactly 23 (j =1, 2, 3,...k) of the variatbles
are zero,then the funetion is zZero and not otherwise.
This follows easily from the definition. For the ex-

ample given these numbers are 2 and 3.

Theorem: There are 2011 Symmétric functions of n
variables. For every selection of a set of numbers

from the numbers 0, 1, 2,....n corresponds to one and
only one symmetric function. Since there are n+l numbsrs
each of which may be either taken or not in our selec-
tion, the total number of functions is 2n+1. Two of
these functions are trivial, however, namely the se-

lections in which none and 2ll of the numbers are

taken. These give the "funections"l and O respectively.
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By proper sselection of the varialbes many

apprarently unsymmetric functions may be made symmetric.
For exemple, XY'Z + X'YZ + X'Y'Z', although not symmetric
in X, Y, and Z, 1s symmetric In X, ¥, and 2°%,

The set of numbers al, 82""'ak will for con=-
venience be called the a-numbers of the function.
The theorems concerning combinations of symmetric
functions are most easily stated in terms of the
classes of a-numbers. For this reason We denote the
cless of a-numbers by & single letter A. If two differ-
ent sets of a-numbers a8re under consideration they will
be denoted by Al end Ag. The symmetric function of n
variables having the sa-numbers 85 8pesely will be
written sn(al, 8g...8,) oOr S,(4).
Theorem: sn(Al). Sn(A2) - Sn(Al + Ag)

where Al + Ao means the logical sum of the classes Ay

and A2 1.9., the eclass of those numbers which 2re members
of either A, or Ay or both. Thus Sg4(1, 2, 3). 84(2, 3, 5)
is equal to 36(1’ 2: 3, 5)

Theorem; Sn(hl) "' S,(Ag) = S, (Ajeap)
where Ajsig is the logical pxnducﬁ of the ¢lasses l.e.,
the class of numbers which are common to Aq end Age. Thus

8g(1, 2, 3) + sg (2, 3, 5) = s4(2, 3).

These theorems follow from the fact that & product is
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zero if either factor 1s zero, while &8 sum is zZero only

i1f both terms are zero. The negative of a set of a-numbers
will be written A' and means the class of all the numbers
from O to n inclusive which ar® not members of A. Thus

if A is the set of numbers 2, 3, and 5, and n = 6 then

A' is the set of numbers O, 1, 4, and 6.

Theorem; S, (A') = 8}(A)
Thesa'theorems are useful if several symmetric functions
are to be obteined simultaneously.

Before we study the synthesis of a network for
the general symmetric function consider the ceircuit a-b

of Fig. 24. This circuit represents Sz(2).

/5
X3

X

a/?
Xl H////%;x; J////o X3 ;

1 2 5

2

Pig. 24

The line coming in at a first encounters @ pair of

hindersnces X, end X{. If X; = O, the line is switched
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up to thé level marked 1, meaning that 1 of the wvarianhles
is zero. If X, =1, the 1line stays on the level marked
O; next hinderances x2 and Xé are encountered. If X5
is sero, the line is switched up a level; if not, it
stays at the same lsvel. Finally reaching the right
ﬁapd set of terminals the line has been switghad up
to 8 level representing the number of variables which
.are é§u81 to zero. Terminal b is connected to level
2 and therefore the circuit a-b will be completed if
and only if 2 of the variables are zero. Thus the
function 33(2) is represented. If Sz(0,3) had been
desired, terminal b would be connected to both levels
‘0 and 3. In figure 24 certain of the elements are
evidently superfluous. The ecircuit may be simplified
to the form of Pig. 25.

¥

Xé Xz
X1
a X i
g, 5

For the general function exactly the same

method 1s followed. TUsing the general circuilt for n
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variables of Flg. 26, the termminal b is connected to the
levels corresironding to the a-numbers of the desired
symmetric function. In Pig. 26 the hinderences 2re
represented by simple lines, and the letters are omitted
froﬁ the eircuit, tut the hinderence of each line may
easily be seen by generslizing Fig. 24.

NOTE: All sloping lines

heve hinderance of the

variable written below;

horizontel lines have
negative of this hinder-

ance.

n

» (n-1)
,I
2
1 to a-
numbers
8 . e . :&b
Xl X2 x;s L B I I A xn

Meg. 26

After terminal b is conneeted, all superfluous ele-
ments may be delsted.

In certain cases 1t is possible to greatly
simplify the ecircuit by shifting the levsels down.
Suprose the function 86(0,3,6) is desired. Instead

of continuing the circult up to the 6th level, we
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connect thse 2nd level teck down to the Zero level as
shown in Pig. 27. The zero l1level then 81so bscomes

the 3rd level and the 6th level.

-

oL B
o)

o M

i)
.

X2 Xz Xy X X

Mg. 27
With terminal b eonnected to this level, we have rea-
lized the function with & great saving of elements.
Eliminating unnecessary slements the circuit of Pig. 28
is obtained. This device is especislly useful if the
a-numbers form an srithmetic progression, although it
can sometimes be applied in other cases, The functions

n n
2§2xk and q;zxk)' which were shown to require the most

elements for a series-paralle]l realization have very
simple circuits wheh developed in this meanner. It

n
can be easily shown that if n is even,thenJ oX) is
1

the symmetric function with 21l the even numbers
for a-numbers, if n is odd 1t has all the odd numbers

n
for a-numbers. The function X, )! 18, of course
k 2
. 4

Just the oprosite. Using the shifting down process
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the circuits are as shown in Flg. 29.

These eircuits each require 4(n-1) elements. They

will be recognized as the familisr circuit for con-
trolling a 1i ght from n points: If'at any one of the
points the position of the switeh is changed, the
total number of variables which equalg zero is changed
by one, so that if the light is on, it will be turned

off and if already off, it will be turned on.



47

The general network of Fig. 26 contains n(n + 1)
8lements. It can be shown that for any given sslection
‘of a-numbers at least n of the elements will be super-
flupus. It follows that aeny symmetric function of n

variables can be reaiized with at most n2 elements,

Equations from Given Operating Characteristics. In gen=

eral, there is a c¢ertain set of independent variabies

A, B, Cy,¢s¢ Which may be switches, externally operated
or protective relays. There is 2lso & set of dependant
veriables X, ¥, Z.... Which represent relays, motors or
other devices to be controlled by the circuit. It is
required to find a network which gives for each possible
combination of values of the iIndependent varlables, the
correct values for all the dependent variables. The
following principles give +the general method of solu=
tion. ’

l. Additional dependent variables must be
introduced for each added phese of operation of a
sequential system. Thus if it is desired to construct
& system which operates in three steps, two additionsal
variables must be introduced to represent the beginning
of the lest two steps. These additional variables
may represent contacts on & stepping switeh or relays
which lock in sequentiglly. Similarly each required

time delay will require a new veriable, representing
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8 time delay relay of some sort. Other forms of relays
which may be necessery will usually be obvious from
the nature of the problem.

2., The hinderance equations for each of the
dependentlvariables should now be written down. These
functions may involve any of the variables, dependent
or independent, including the variable whose function
is being determined (as, for example, in a lock in
eircuit). The conditions may bs either conditions
for operation or for non-operation. Equations are
written from operating characteristics according to
Table II. To 1llustrate the use of this table sup-
pose & relay A 1s to operate if x 1s operated and y
or z 1s operated and X or w or 2 is not operated.

The expression for A will be:

ASx +yz + x'Wat
Loek in relay equations have alrsady been discussed.
It does not, of course, matter if the same conditions
are put in the expression more than once--all supser-
fluous material will disappear in the final simplifi-
cation.

3. The expressions for the various dependent
veariables should next be simplified as much 28 possible
by meens of the theorems on meanipulation of these quen=-

tities. Just how much this can be done depends somewhat
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RELATION OF OPERATING CHARACTERISTICS AND EQUATIONS

Symbol
X

In Terms of Operation

The switch or relay
X 1is operated.

If.

The switch or relay
X is not operated.

Or.
And.

The eircuit (--) is not

closed, or apply De
Morgen's Theorem.,

In Terms of Non-Operstion

The switch or relay X
is not operated.

If.

The switch or relay X
is operated.

And.,
or.
The circuit (=--~) is

closed, or apply De
Morgen's Theorem.
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on the ingenuity of the designer.

4, The resulting e¢ircuit should now be
drawn. Any necessary sdditions dictated by practicel
considerations such as current cerrying ability, se-

quence of contact operation, etc., should bs made.
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V Illustrative Examples

In this section several problems will be
solved with the methods which have been developed.

The examples are intended more to show the versatil-
ity of relay and switching circults and to illustrate
the use of the calculus in actual problems than to des-
cribe practical devices.

It is possible to perform complex mathematical
operations by meens of reley circults. Numbers may be
represented by the positions of relays or stepping
switches, and interconnections between sets of rslays
Ean be made to represent various mathematical opera-
tions. In fact, any operastion that can be completely
desceribed to the required accuracy (if numerical) in
a finite number of steps using the words "if," "or,"
"end," etc. (see Teble II) cen be done sutometicelly
with relays. The lest two examples are i1llustrations

of mathematical operations accomplished with relays.



A Sslective Circuit

A relay A is to operate when any one, eny
three or when all four of the relays w, x, y, and 2
are operated. The hinderance function for A will
evidently he:
A = wxys + wixXlye + wixy's + wixys'! + wxt!y's +
wx'ye! + wxyl!s!

Reduecing to the simplest series-parallel form:

52

A = w[x(yg - _Vigl) + xl(y!g + VB')] -+ w![x(yts + ‘ygl)

+ X'YE]

This eircuit 1is shown in Pig. 30. It reguires 20 ele=-

mentse.
1 A
+ ;wa Jﬁc— -
X x! X L sh
—0 — 0 0—— —0 g Oy
4
¥ 4E 'Ly ¥ y
f et z A 73
h—fi———:i———oad—4o—#—oo—i—omJL———c:h—J-

Fig. 30

However, using the symmetric function method, we may

write for A:

A 3 8,(1, 3, ¢)
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/4/47/

w % y z

Fig. 31

This circult contains only 15 elements, A still fur-
ther reduction may be mede with the following devics,
Mrst writes

Av = 8,(0,2)
This has the eircult of Fig. 32« What is rsquired is
the negative of this function. Thls is a planar net=-
work and we may apply the theorem on the duegl of a net-

work, thus obtaining the elrcuit shown in Fig. 33.

Al

w X y pA
Pig. 32

This contains 14 elements and is probably the most econom-

icel eircuit of any sort.
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Design of an Electric Combination I ock

An electric lock 1s to be constructed with
the following characteristics. There ars to be 5 push
button switches availsble on the front of the lock.
These will be labeled a, b, ¢, d, 8. To orerate the
lock the mattons must be pressed in the folleowing
order - ¢, b, & and ¢ simultaneously, d. When operated
in this sequence the lock is to be unlocked, ut if any
button is pressed incorrectly an alarm U is to operate.
To relock the system a switch g must be operated. To
release the alarm once 1t has started)a switeh h must
be operated. This being & sequential system either a
stepping switeh or additional sequentiel relays are
required. TUsing sequential relays let them be dsnoted
by w, X, y, and z corresponding respectively to the
correct sequence of operating ths push buttons. An
additional time delay reley is also required due to
the third step in the operation. Obviously, even
in correct operation a and ¢ cennot be pressed st ex-
actly the same time, but if only one is pressed eand
held down the alarm should operate. Therefore &ssume
an suxiliary time delay relay v which will operate
if either & or ¢ alone is pressed at the end of step 2

and held down longer then time s the delay of the relay.
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When z hes operated the lock unlocks and et this point
let 211 the other relays drop out of the ecircuit. The

equations of the system may be written down immediately:

#

wesowt s FUY sl D sees canet
' Lt 0 S |

X = bx + w/F ! + U .

g2 la®elytztat sy

= :z'f"-ﬂ+ 'y)-l- gt * Ut

vE x4 y' +ac +atgt ¥t + 7l

oo |
i

e(w! + abd)(w + x! + ad)(x + y' + dv(t-s))(y + v) [/
/j{# ht + st

These expressions ca&n be simplified considerably, first

by combining the second and third factors in the first

term of U, and then by factoring out the common terms

of the several functions. The final simplified form

is &8s below:

o= ht + e[ad(btw?) + x'](x + y' + dv)(y + b)U
w = cW
X -

Bly|pabx + W
= +
y s (ate)y

yt+actato?

gt +(y + ds » U’

This corresponds to the circuit on the following page.
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A Vote Counting Circuit

A circuilt is to be constructed with the follow-
ing properties. There are to be thirteen lights, marked
0, 1, 2 ...12 and twelve two-position switches, X135 Xgees
x12’ one for each voter, each me rked with two possible
votes, yes or no. There is 2l1so a control Mitton C.
The lights are to count the number of 'yes! votes.

If 5 voters move their switches to the tyes' position
and the remeining 7 vote 'no,! the light marked 5 is
to 1light up providing the control btutton C is pressed,
and similerly for any number of votes.

This is clearly en applicetion of symmetriec
functions discussed previously. If we represent the
lights by the symtols Lo, Ll, “ le, the the equa-
tions of the system will evidently be:

L =G * 85(k) " RN, .

The circuit representing this system according to the

symme tric function development will be:
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BElectric Adder to the Rase Two

A circult is to be designed that will sutomat-
ically add two numbers, using only relays and switches.
Although any numbering base could bs used the circuit is
greatly simplified by using the scale of two. Each digit
is thus either O or 1; the number whose digits in order

are ak, ak-l’ ak_z, . siete 82, al, ao has the value

2. 9321. Let the two numbers which are to be added be
j=0

ropresentad by a series of switches,ak, ak-l’ cee.87, 89
representing the various digits of one of the numbers
and bk’ hk-l’ ""bl’ bO the digits of the other number.
The sum will be repressnted by the positions of & set

of relays sk+1’ 8y Se-1 ""81’180' A number which

is carried to the jth column from the (j-1)th column
will be represented by a relsasy cj. If the value of

eany digit is zero, the corresponding reley or switeh
will be teken to be in the position of zero hinderance;
if one, in the position where the hinderance is ons.

The acetual eddition is8 shown helow:

ck+1 Bk cj+lcj 6o Cq carried numbers
- Wi, S, j+193 ol a) 8g lst number
by bJ¢1bJ bg by Do 2nd number

11

Sk+1



starting from the right, s, is one if a, is one and bo

is zero or if a. 1s zero and bo one but not otherwise.

(o]
Hence:

8 =8, B *8f b 4 ao€B b0

¢, 1s one 1if both &, end b, are one mut not otherwise.

85 is one if just one of 83, bj’ ©y 1s one, or 1f 21l

three are ons.

sj = 53(1,5) variables [ai, tﬁ’ 01]

cj*l is one 1if two or if thres of these variables 2re one.
© 541 = 8z(2, 3) veriables [aj, bi’ c$]

.
Using the method of symmetric functions, and shift-

ing down for sj gives the eclrcuits of Fig. 36.

Jim e L X j=0

o SRR s VR L
Plg. 36
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Elimineting superfluous elements we arrive at Fig. 37.

Ciel "

Pig. 37
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A Pector Table Machine

A machine is to be deslgned which will auto-
metically print & table of factors and primes of all
the integers from 1 to 100,000,000. If & number is
Prime, it is to be so marked; if composite, its least
factor is to be printed beside it. The principle
Wwhich will be used is that of the sieve of Eratosthenes
(6). Let the natural numbers be written in order;:

s BREs s B B, 0y Bgsnvsdisiaiee
Now consider the prime numbers in order, 2, 3, 5, 7,
11, 13, 17e¢+.. Each 2nd number after 2 in the row of
natural numbers has the least prime factor 2; each
third number after 3 which is not a multiple of 2 has the
least prime factor 3; each 5th number after 5 not divis-
ible by 2 or 3 has the least prime factor 5, etc. Any
number P not having a prime factor less than itself
i1s, of course, 2 prime. It is customary in tables
of this sort to omit numbers divisible by 2, 3, or 5
thus reducing the number of integers which need be
considered to 4/15 of the largest number ¥ (102 in
this c2se). It should 2lso be noted thet any composite
number less then or equal to N has a least factor less

than or equal to yN. Thus in our case only primes

less than 10,000 need be considered in the filtering
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process deseribed. The asymptotic formula N/in N
(for the number of primes less than N) shows that
there are about 1000 primes less then 10,000. Let
each of these primes after 5 be represented by a

counter C, with the following properties. There are

k

three magnets, Mo, Mg, and Mg+ When Mo oprerates all

the counters are advanced 2 units; M4 and M6 advance

the counters 4 and 6 units respectively. Thse purpose

of these magnets is to automatically omit numbers

divisivle by 2, 3; and 5. Note that starting with 1

the next number not divisible by 2, 3, or 5 18 7,

en advance of 6; the next advance is 4 (to 11), then

2 (to 13). The total cycle of advances is as follows:
6, 4.8 %3 8, %, 8, 8 (1)

after which the same series is repeated (the period

is 30, the least common multiple of 2, 3, and 5).

As the successive numbers are considered for factors

or primality, the counters will advance according to

this sequence. When sny counter C, representing the

prime Pk reaches the value of this prime it is to be

so constructed that 1t automatically makes & connec-

tion Xk' Each counter is to have a return megnet Rk’

which when sctivated returns the counter to zero. The

general operation of the device will then be as follows.

Starting at the number 1 (the counter and printer
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representing the number being considered set at 1) snd

‘with the counters representing the primes less than

10,000 all set et zero, the counters are advanced 2ccord-
ing to the sequence (1). If for any number N, X, makes
contact, then Pk is a factor of N; the least Pk being
the least factor. If no Xy makes contact, N is a
prime, When any Xk.makes contact, it is to be auto=-
matically returned to Zero by means of Rk' To record
the results a printer Uk should be associated with
each counter which will print the value of the prime

P, opPposite N when me gnet U, is ectivated. If N is a
prime, a printer S should print a8 symbol to call atten-
tion to the fact.

Although this entire design could be carried
out with relays alone, it is prOESbly more economical
to construct the counters on mechanical prinelples,
and therefore only the control circuits will be des-
eribed. To automatically advence the numbers &t
short intervals some kind of sn lmpulse generator 1s
necessary. The simplest method of obtaining this is
to use & relay with & smell time delay &. If the
relay is labeled Z(t), then the contacts have a hinder-
ance function Z(t-§), eand the connection Z(t) = Z'(t~-9)
will give a series of impulses of period 28, The se-

quence of advences may be easily obt2ined with an 8



point rotery switeh. Let this switch have a8 magnet L
which advances the switeh one point When activated.
Then if We connect I so that L = Z(t-§&) and connect
the contacts of the rotary switeh to the magnets MB’
MS; and Mg according to the order of (1), the counters
will all be advanced periodicelly in this sequence.
After the counters heve advenced & step, certain of
the st will equal zero if the number is composite.

In this case these X; 8 should cause the smallest fac-

tor to print and then returm to Z2ro. This condition

will be setisfied by the following equations:

k=1
Up * X +£x3+z'(t-s) SR T TR
Rk X * y(t-e) (2)

y(t) = B(t-38)

Thet is, the printer Uk operates if Xk = 0 and the st,
J<k, do not equal zero. Also after a delay eto 2llow
for printing, the counter is returned to zero. If
none of the X, 8 make contact 6n 8 number N, it 18 a
prime end S should print. This can be accomplished

with the following squetion:

S = s(t-3) +ij5

The main printer end counter N should print on each

numbsr.

65
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N = 8'(t-3)
Using-tha method of factoring of simultaneous equationé

the system () can be greatly simplified as follows:

¥y Sy
Up = Xz
U, % Xyt xi‘
- Xé
Uﬁ:xﬂ \+Xr'1
8 = "\

The circuit of the entire device is shown schematically

in Pig. 38.
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This design requires thet the primes less
than 10,000 be known. If desired, the machine could
be made to automstically connect in new counters as
the primes were found, but there are many sccurste
tables of primes up to 10,000 so that this would not
be necessary.

As to the practicability of such a device, it
might be said that J.P. Kulik spent 20 years in
constructing a table of primes up to 100,000,000 and
when finished it was found to contain so many errors
that it was not worth publishing. The machine described
here could probasbly be made to handle 5 numbers per
second so that the table would require only about 2

months to construct.
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