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I ro -15'i r ,y of )ob"ema

In the control and protective circuits of com-

plex electrical systems it is frequently necessary to

make intricate interconnections of relay contacts and

switches. Examples of these circuits occur in auto-

matic telephone exchanges, industrial motor control

equipment and in almost any circuits designed to per-

form complex operations automatically. Two problems

that occur in connection with such networks of switches

will be treated here. The first, which will be called

analysis, is to determine the operating characteris-

tics of a given circuit. It is, of course, always pos~

si-ble to analyze any given circuit by setting up all

possible sets of initial conditions (positions of

switches and relays) and following through the chain

of events so instigated. This method is, however,

very tedious and open to frequent error.

The second problem is that of syntheias.

Given certain characteristics, it is required to find

a circuit incorporating these characteristics. The

aolution of this type of problem is not unique and it

is therefore additionally desirable that the circuit

requiring the least number of switch blades and relay



contacts be found. Although a solution can usually be

obtained by a "cut and try" nethod, first satisfying

one requirement and then making additions until all

are satisfied, the circuit so obtained will seldom

be the simplest. This method also has the disadvan-

tages of being long, and the resulting design often

contains hidden "sneak circuits."

The method of solution of these problems which

will be developed here may be described briefly as

follows: Any circuit is represented by a set of equa-

tions, the terms of the equations representing the

various relays and switches of the circuit. A cal-

culus is developed for manipulating these equations

by simple mathematical processes, most of which are

similar to ordinary algebraic algorisms. This cal-

culus is shown to be exactly analogous to the Calcu-

lus of Propositions used in the symbolic study of

logic. For the synthesis problem the desirec charac-

teristics are first written as a system of equations,

and the equations are then manipulated into the form

representing the simplest circuit. The circuit may

then be immediately drawn from the equations. By

this method it is always possible to find the simplest

circuit containing only series and parallel connections,
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and for dertain types of functions it is possible to

find the simplest circuit containing any type of con-

nection. In the analysis problem the equations repre-

senting the given circuit are written and may then be

interpreted in terms of the operating characteristics

of the circuit. It is also possible with the calculus

to obtain any number of circuits equivalent to a given

circuit.

Phraseology will be borrowed from ordinary

network theory for concepts in switching circuits

that are roughly analogous to those of impedence

networks.



II Series-Parallel Two Terminal Circuits

Fundamental Definitions and Postulates. We shall

limit our treatment to circuits containing only re-

lay contacts and switches, and therefore at sny given

time the circuit between any two terminals must be

either open (infinite impedance) or closed (zero

impedance). Let us associate a symbol Xab or more

simply X, with the terminals a and b. This variable,

a function of time, will be called the hinderance

of the two terminal circuit a-b. The symbol 0 (zero)

will be used to represent the hinderance of a closed

circuit, and the symbol 1 (unity) to represent the

hinderance of an open circuit. Thus when the cir-

cuit a-b is open Xa 1 and when closed Xab 0

Two hinderances Xab and Xcd will be said to be equal

if whenever the circuit a-b is open, the circuit c-d

is open, and whenever a-b is closed, c-d is closed.

Now let the symbol + (plus) be defined to mean the

series connection of the two terminal circuits whose

hinderances are added together. Thus Xab + Xcd

the hinderance of the circuit a-d when b and c are

connected together. Similarly the product of two

hinderances (Xab * Xcd) will be defined to mean the



hinderance of the circuit formed by connecting the

circuits a-b and c-d in parallel. A relay contact

or switch will be represented in a circuit by the

symbol in Fig. 1, the letter being the corresponding

hinderance function. Fig. 2 shows the interpreta-

tion of the plus sign and Fig.3 the multiplication sign.

Fig

Flig. I

xY.(X+Y)

Fig. 2

xg 
y

Fig.3

This choice of symbols makes the manipulation of

hinderances very similar to ordinary numerical alge-

bra.

It is evident that with the above definitions

the following postulates will hold:

Postulates

i. a. .0 = 0

b. 1* 1 1

2. a. 1 + 0 0 * I

b. 0.1 1.0 0

A closed circuit in parallel
with a closed circuit is a
closed circuit.

An open circuit in series
with an open circuit is an
open circuit.

An open circuit in series
with a closed circuit in
either order is an open
circuit.

A closed circuit in parallel
with an open circuit in
either order is a closed
circuit.



3. a. 0 + 0 0 A closed Circuit in series
with a closed circuit is a
closed circuit.

b. 1-1 1 An open circuit in parallel
with an open circuit is an
open circuit.

4. At any given time either X =0
or X 1.

These are sufficient to develop all the theo-

rems which will be used in connection with circuits

containing only series and paral lel connections. The

postulates are arranged in pairs to emphasize a duality

relationship between the operations of addition and

multiplication and the quantities zero and one. Thus

if in any of the*a postulates the zero's are replaced

by one's and the multiplications by additions and vice

versa, the correspondingb postulate will result.

This fact is of great importance. It gives each theorem

a dual, it being necessary to prove only one to esta-

blish both. The only one of these postulates which

differs from ordinary algebra is lb. However, this

enables great simplifications in the manipulation of

these svmbols.

Theorems. In this section a number of theorems gov-

erning the combination of hinderances will be given.

Inasmuch as any of the theorems may be proved by a

very simple process, the proofs will not be given
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except for an illu strative example. The method of

proof is that of "perfect induction," i.e., the veri-

fication of the theorem for all possible cases. Since

by postulate 4 each variable is limited to the values

0 and 1, this is a simple rr tter. Some of the theorems

may be proved more elegantly by recourse to previous

theorems, but the method of perfect induction is so uni-

versal that it is probably to be preferred.

1. a. x + y y + x

b. xy=yx

2. a. x + (y + a) z (x + y) + *

b. x(yO) = (xy)*

3. a. x(y + 0) a xy + x&

b. x + ys = (x + y) (x + .4

4. a. lox = x

b. o0 + x x

5. a. l + x

b. O*x D20

For example, to prove theorem 4a, note that

X is either 0 or 1. If it is 0, the theorem fbllows

from postulate 2b; if 1, it follows from postulate 3b.

We shall now define a new operation to be

called negation. The negative of a hinderance X will

be written XT and is defined as a variable which is

equal to 1 when X equals 0 and equal to 0 when X
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equals 1. If X is the hindergnce of the make contacts

of a relay, then X' is the hinderance of the break con-

tacts of the same relay. The definition of the nega-

tive of a hinderence gives the following theorems:

6. a. X + X 1

b. XX =0
7. a. 0 a 1

b. 1 =0

8. (Xt) 12X

Analogue with the Calculus of Propositions. We are

now in a position to demonstrate the equivalence of

this calculus with certain elementary parts of the

calculus of propositions. The algebra of logic (1),

(2), (3) originated by George Boole, is a symbolic

method of investigating logical relationships. The

symbols of Boolean algebra admit of two logical inter-

pretations. If interpreted in terms of classes, the

variables are not limited to the two possible values

o and 1. This interpretation is known as the algebra

of classes. If, however, the terms are taken to repre-

sent propositions, we have the calculus of propositions

in which variables are limited to the values 0 and l*,

This refIrs only to the classical theory of the Cal-
culus of Propositions. Recently some work has been
done with logical systems in which propositions may
have more than two "truth values."



as are the hinderance functions above. Usually the two

subjects are developed simultaneously from the same set

of postulates, except for the addition in the case of

the Calculus of Propositions of a postulate equivalent

to postulate 4 above. E.V. Huntington (4) gives the

following set of postulates for symbolic logic:

1. The class K contains at least two distinct

elements.

2. If a and b are in the class K then a+ b is

in the class K.

3. a+b= b+ a

4. (a+b) + c= a+(b+ c)

5. a+ a= a

6. ab+ abK= a where ab is defined as (a'+ b')'

If we let the class K be the class consisting of the

two elements 0 and 1, then these postulates follow from

those given on pages 5 and 6. Also postulates 1, 2,

and 3 given there can be deduced from Huntington's

postulates. Adding 4 and restricting our discussion

to the calculus of propositions, it is evident that a

perfect analogy exists between the calculus for switch-

ing circuits and this branch of symbolic logic.* The

two interpretations of the symbols are shown in Table 1.

*This analogy may also be seen from a slightly different
viewpoint. Instead of associating Xab directly with the
circuit a-b let Xab represent the proposition that the
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Due to this analogy any theorem of t1v Calculus

of Propositions is also a true theorem if interpreted in

terms of relay circuits. The remaining theorems in this

section are taken directly from this field.

De Morgans theorem:

9. a. (X + Y + ... )t Xt.yze

b. (X.Y.Z . ) : X + Yt + Z +...

This theorem gives the negative of a sum or product in

terms of the negatives of the summands or factors. It

may be easily verified for two terms by substituting

all possible values and then extended to any number n

of variables by mathematical induction.

A function of certain variables X1 , *2*****Xn is

any expression formed from the variables with the opera-

tions of addition, multiplication, and negation. The

notation f(X1 , X2 p *** Xn) will be used to represent a

function. Thus we might have f(X, Y, Z)) = XY + X (Y + Z').

In infinitesimal calculus it is shown that any function

(providing it is continuous and all derivatives are con-

tinuous) may be expanded in a Taylor Series. A somewhat

similar expansion is possible in the Calculus of proposi-

tions. To develop the series expansion of functions

(Footnote continued from preceding page)
circuit a-b is open. Then all the symbols are directly
interpreted as propositions and the operations of addition
and multiplication will be seen to represent series and
parallel connections.
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TABLE I

Analogue Between the Calculus of Propositions

and the Symbolic Relay Analysis

Symbol Interpretation in relay
circuits

X The circuit X.

o The circuit is closed.

1 The cirmuit is open.

X + Y The series connection of
circuits X and Y

XY The parallel connection
of circuits X and Y

X1 The circuit which is open
when X is closed, and
closed when X is open.

The circuits open and
close simultaneously.

Interpretation in the
Calculus of Propositions

The proposition X.

The proposition is
false.

The proposition is
true.

The proposition which
is true if either X or
Y is true.

The proposition which
is true if both X and
Y are true.

The contradictory of
proposition X.

Each proposition
implies the other.



first note the following equations:

10. a. f(X1 ,X2 ,... Xn).X,fX 2 ...X) + XI ,',P(OX2..Xn)

b. f(Xl ... Xn) ([f(OX2 *- X n) + Xi].Ef(1,X2 ***Xn)+Xi]

These reduce to identities if we let X1 equal either

0 or 1. In these equations the function f is said to

be expanded about X . The coefficients of X and Xt
11i 3.

in -,e-are functions of the (n-1) variables X2****Xn

and may thus be expanded about any of these variables

in the same manner. The additive terms in at-also may

be expanded in this manner. Thus we get:

11. a. f(X1 ...Xn X X2 f(l1,X3 **Xn) + X X f(1,OX3 **ino,'

+ X1X2 f(0,lX3 *** n) + XIX f(0,0,X3 ...Xn

b. f(X....Xn) + X2 + f(0,0,X3 ***n)] a +

X + f(0,1 ... Xn) [xt + X2 + fMA, ...Xn)]

. CXI + Xt + f(i,,x3 ..x )]

Continuing this process n times we will arive at the

complete series expansion having the form:

12. a. f(X....)(Xn 1'1***l 2***4.n. + f(0,1,

.,.X) X ***X + ....... + f(0,0,0...0)
l1...2 f

xtxt*. . xt
1 2 n

b. f(X1 .... Xn) E X1 + X2 + ... X + f(oo,0...0)]

*4[X + X2*. + Xn + f(1,,0...0)]* ...... [xt

+ X1 + ... X, + f(1,1,..1)
2n
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By 12a, f is equal to the sum of the products formed

by permuting primes on the terms of X 1 X2 **O**n in all

possible ways and giving each product a coefficient

equal to the value of the function when that product

is 1. Similarly for 12b.

As an application of the series expansion it

should be noted that if we wish to find a circuit

representing any given function we can always expand

the function by either b0a or lOb in such a way that

any given variable appears at most twice, once as a

make contact and once as a break contact. This is

shown in Fig. 4.

X f(0,X 2 .. Xn) X 1  f(OX2,s-Xn)

f (X .X 00 L

f(lX2 ..Xn) Xj x f(lsx..X)

Fig. 4

Similarly by 11 any other variable need appear no more

than 4 times (two make and two break contacts) etc.

A generalization of De Morgans theorem is

represented symbolically in the following equation:

13. Ef(X2X2 '***XO + ,*] (X

By this we mean that the negative of any function may
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be obtained by replacing each variable by its negative

and interchanging the + and * symbols. Explicit and

implicit parentheses will, of course, remain in the

same places. For example, the negative of X + Y6

(Z + WXt) will be XI(Y + Zt(Wt + X)).

Some other theorems useful in simplifying

expressions are given below:

14. a. X: X + X X + X + X etc.

b. X : X * X X * X * X = etc.

15. a. X + XY X

b. X(X + Y) X

16. a. XY + Xta= XY + VA + Y

b. (X + Y)(Xt + 9) = (X + Y) (Xt + )(Y+

17. a. Xf(X) = Xf(l)

b. X + f(X) X + f(0)

18. a. Xtf(XY = X'f(O)

b. XI + f(X) Z XI + f(l)

Any expression formed with the operations of

addition, multiplication, and negation represents

explicitly a circuit containing only series and

parallel connections. Such a circuit will be called

a series-parallel circuit. Each letter in an expres-

sion of this sort represents a make or break relay

contact, or a switch blade and contact. To find.the

circuit requiring the least number of contacts, it is
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therefore necessary to manipulate the expression into

the form in which the least number of letters appear.

The theorems given above are always sufficient to do

this. A little practice in the manipulation of these

symbols is all that is required. Fortunately most of

the theorems are exactly the same as those of numeri-

cal algebra--the associative, commutative, and distrib-

utive laws of algebra hold here. The writer has found

theorems 3, 6, 9, 14, 15, 16a, 17, and 18 to be es-

pecially useful in the simplification of complex ex-

pressions.

As an example of the simplification of ex-

pressions consider the circuit shown in Fig. 5.

x y V Y ZI

a. 0W 00b
a W' z

Wi - - --
X Z

Fig. 5

The hinderance function X for this circuit will be:ab

Xab W+Wl(X+Y) + (X+a)(s+Wt+F)(At+Y+sIv)

T W+X+y+(nt+stv)

These reductions ware made with 17b using first W, then X and

-Alok,



Y as the "X"' of 17b. Now multiplying out:

Xab = W + X + Y + 91t + astv

W + X + Y + astv

The circuit corresponding to this expression

is shown in Fig. 6. Note the large reduction in the

number of elements.

z

W X Y Sa ---- o 0--- o . .

Fig. 6

It is convenient in drawing circuits to label

a relay with the same letter as the hinderance of

make contacts of the relay. Thus if a relay is con-

nected to a source of voltage through a network whose

hinderence fuinction is X, the relay and any make con-

tacts on it would be labeled X. Break contacts would

be labeled X'. This assumes that the relay operates

instantly and that the make contacts close and the

break contacts open simultaneously. Cases in which

there is a time delay will be treated later.

It is also possible to use the analogy between

Booleian algebra and relay circuits in the opposite

direction, i.e., to represent logical relations by



means of electric circuits. Some interesting results

have been obtained along this line, but are of no im-

portance here.
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III Multi-terminal and Non-series-parallel Circuits

Equivalence of n-Terminal Networks . The usual relay

control circuit will take the form of Fig. 7, where

X ,X2  .... X are relays or other devices controlled

by the circuit and N is a network of relay contacts and

switches.

X1
+1

Fig. 7

It is desirable to find transformations that may be

applied to N which will keep the operation of all

the relays X1 ...Xn the same. So far we have only

considered transformations which may be applied to

a two-terminal network keeping the operation of one

relay in series with this network the same. To

this end we shall define equivalence of two n-term-

inal networks as follows:

Definition: Two n-terminal networks M and N will

be said to be equivalent with respect to these
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terminals if and only if Xjk =Yjk j, k 1, 2, 3,1..n

where X jk is the hinderance on network N between termi-

nals j and k, and Yjk is that for M between the cor-

responding terminals.

Thus under this definition the equivalences

of the preceding sections were with respect to two

terminals.

Star-Mesh and Delta-Wye Transformations. As in ordi-

nary network theory there exist star to mesh and delta

to wye transformations. The delta to wye transforma-

tion is shown in Fig. 8. These two networks are

equivalent with respect to the three terminals a,

b, and C, since by the distributive law Xab = R(S + T)

2 RS + RT and similarly for the other pairs of termi-

nals a-c and b-c.

bb

R s R

R*T SOT

a-0a c
T

Fig. 8
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The wye to delta transformation is shown in

Fig. 9. This follows from the fact that Xab R + 3

(R + S)(R + T + T + S)

S

T

C
/

(R+S) (T+S)

a ((A+T)0

Fig. 9

An n point star also has a mesh equivalent

With the central node eliminated. -This is formed

exactly as in the simple three point star, by con-

necting each pair of terminals of the mesh through

a hinderance which is the sum of the corresponding

arms of the star. For n 3 5 this is shown in-Fig. 10.
b b

R+S S+T

a a0

T a 8 +U
R

V+R T+U
UR+U T+V

v+U
d e d

Fig. 10



Hinderance Function of a Non -Series -Parallel Network.

The methods of Part II were not sufficient to handle

circuits which contained connections other than those

of a series-parallel type. The bridge of Fig. 11, for

example, is a non-series-parallel network. These net-

works will be handled by reducing to an equivalent

series-parallel circuit. Three methods have been

developed for finding the equivalent of a network

such as the bridge.

R S
0V

T b

13 V

Fig. 11

The first is the obvious method of applying

the transformations until the network is of the

series-parallel type and then writing the hinderance

function by inspection. This process is exactly

the same as is used in simplifying complex impedetpce

networks. To apply this to the circuit of Fig. 11,

first eliminate the node c, by applying the star

to mesh transformation to the star a-c, b-c, d-c.

This gives the network of Fig. 12.
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T+S

\\~R+TT8

UV

Fig. 12

The hinderance function may be written down from

inspection for this network.

Xab = (R + S)[U(R + T) + V (T + S)]

Simplifying by the theorems gives:

Xab = RU + SV + RTV + STU

The second method of analysis is to draw

all possible paths between the points under consid-

eration through the network. These paths are drawn

along the lines representing the component hinder-

ance elements of the circuit. If any one of these

paths has zero hinderance, the required function

must be zero. Hence if the result is written as

a product, the hinderance of each path will be a

factor of this product. The required result may

therefore be written as the product of the hinder-

ances of all possible paths between the two points.

Paths which touch the same point more than once need



not be considered. In Fig. 13 this method is applied

to the bridge. The paths are marked in red.

a b

Fig. 13

The function is therefore gLven by:

Xab = (R + S)(U + V)(R + T + V)(U + T + S)

2 RU + SY + RTV + UTS

The same result is thus obtained as with the first

method.

The third method, the dual of the second, is

to draw all possible lines which would break the cir-

cuit between the points under consideration, making

the lines go through the hinderances of the circuit.

The result is written as a sum, each term corres-

ponding to a certain line. These terms are the prod-

ucts of all the hinderances on the line. This method

is applied to the bridge in Fig. 14, the lines being

drawn in red.

)k b
CLT

Fig. 14
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This again gives for the hinderance of the network:

Xab = RUt SV + RTV + STU

The third method is usually the most convenient

and rapid, for it gives the result directly as a sum.

It seems much easier to handle sums than products due,

no doubt, to the fact that in ordinary algebra we

have the distributive law X(Y + Z) x xY + XZ, but not

its dual X + YZ = (X + Y)(X + Z). It is, however,

sometimes difficult to apply the third method to non-

planar networks (networks which cannot be drawn on a

plane without crossing lines) and in this case one of

the other two methods may be used.

Simultaneous Equations. If there are n dependent

variables, there will be n simultaneous equations de-

fining the system. Any additive terms which are common

to several of the functions may be factored out in the

manner illustrated by the following example. These

terms need only be realized onee to take care of all

the functions in which they aprar. CA

W = A + B + OW-B
X = A + B + WX -O X
Y n A + CY A x

W + CW
X= A + W
Y = Cy
A =E% + fY

Fig. 15
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Sometimes the relation ab' 0 obtains between

two relays a and b. This is true, for example, in a

sequential system where each relay of the sequence

locks itself in and a precedes b in the sequence.

Whenever b is operated a is operated. In such a case

the following simplifications may be made*

If abt = 0

Then afbt a t bi + ab' = bt

ab ab + abt = a

at + b = 1

(at + b") = (at + bI)(at + b) = at

(a + b) = (a + b)(aI + b) = b

Matrix Methods. It is also possible to treat multi-

terminal networks by means of matrices. Although use-

ful for theoretical work the method is cumbersome for

practical problems and will therefore only be briefly

sketched. We shall as ume the same rules of manipulation

of matrices as usually defined in works on higher alge-

bra, the only difference being that the elements of

our matrices will be hinderance functions rather than

ordinary algebraic numbers or variables. The X' matrix

of a network with n nodes will be defined as the fol-

lowing array:



1 XI I 0 0 0 *0 0 I

l 12 13 ........ ln
X1 X 2 X 1 000**6 66OO 1  1

2 1 X23 ''''''X' L

X X.. 1nli n2

where XI is the negative of the hinderance common to
jk

nodes j and k.

Theorem: The XI matrix of a network formed by con-

necting two n node networks in parallel (correspond-

ing nodes together) is the sum of the individual Xt

matrices. This theorem is more general than might

appear at first since any interconnection of two net-

works may be considered as a parallel connection of

two networks with the same number of nodes by adding

nodes as needed whose mutual hinderances to the other

nodes is one.

Now define a matrix to be called the Ut ma-

trix of a network as follows:

1 U12 *....... Uln

U21  1 ''''''''. U2n

Unl Un2........

z



where Ur is the negative of the hinderance functi4
jk

from node j to k, the network considered as a twoI

inal circuit. Thus for the three node network of

Fig. 16 the X' and Ut matrices are as shown at the

right.

2

1 3

1

X1

x'

1

yl

zo 1 x'+y'z'

yI x'+ylz' 1

1 z'+xly' y'+x'z

X, Matrix U' Matrix

Theorem: Any power of the X' matrix of a network

gives a network which is equivalent with respect

to all nodes. The matrix is raised to a power by

the usual rule for multiplication of matrices.

Theorem:

U12 -- * ln 1 2... a
U 1UI IIXI

2 1 .... U2 n 21 ...xn

U; ........... 1X ..............
U. 1 X1

a > n-1

Theorem: Any node, say the kth, may be eliminrted

leaving the network equivalent with respect to all

remaining nodes by adding to each element XI of the

27

on

term--

y'+x'

1

Fig. 16

'



28

X, matrix the product of the elemsnts Xk and and

striking out the kth row and column.

Thus eliminating the 3rd node of Fig. 16 we get:

L+z'z' x'+z 1y1  1 x'+y'z'

x'ty'z' l+y'y' x'+y'z' 1

The proofs of these theorems are of a simple

nature, but quite long and will not be given.

Special Types of Relays and Switches. In certain types

of circuits it is necessary to preserve a definite

sequential relation in the operation of the contacts

of a relay. This is done with make-before-break (or

continuity) and break-make (or transfer) contacts.

In handling this type of circuit the simplest method

seems to be to assume in setting up the equations

that the make and break contacts operate simultane-

ously, and after all simplifications of the equations

have been made and the resulting circuit drawn the

required type of contact sequence is found from in-

spection.

Relays having a time delay in operating or

deoperating may be treated similarly or by shifting
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the time axis. Thus if a relay coil is connected to a

battery through a hinderance X, and the relay has a

delay of p seconds in operating and releasing, then

the hinderance function of the contacts of the relay

will also be X, but at a time p seconds later. This

may be indicated by writing X(t) for the hinderance in

series with the relay, and X(t-p) for that of the re-

lay Contacts.

There are many special types of relays and

switches for particular purposes, such as the stepping

switches and selector switches of various sorts,

multi-winding relays, cross-bar switches, etc . The

operation of all these types may be described with

the words "or," "and," "if," "operated," and "not

operated." This is a sufficient condition that may

be described in terms of hinderance functions with

the operations of addition, multiplication, nega-

tion, and equality. Thus a two winding relay might

be so constructed that it is operated if the first

or the second winding is operated (activated) and

the first and the second windings are not operated.

Usually, however, these special relays occur only at

the end of a complex circuit and may be omitted en-

tirely from the calculations to be added after the

rest of the circuit is designed.
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Sometimes

cuit r closes and

until a circuit S

a lock-in circuito

X rX + S

Replacing X by XI

Xt = rX' + 3

a relay X is to operate when a cir-

to remain closed independent of r

opens. Such a circuit is known as

Its equation is:

gives:

or

X (r, + X)sf

In this case X is opened when r closes and remains

open until S opens.
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IV Synthesis of Networks

Some General Theorems on Networks and Functions. It

has been shown .that any function may be expanded in a

series consisting of a sum of products, each product

being of the form XjX2 *.*.Xn with some permutation of

primes on the letters, and each product having the co-

efficient 0 or 1. Now since each of the n variables

may or may not have a prime, there is a total of 2 n

different products of this form. Similarly each prod-

uct may have the coefficient 0 or the coefficient 1
n

so there are .22 possible sums of this sort. Each of

these sums will represent a unique function, but some

of the functions may actually involve less than n vari-

ables (i.e. , they are of such a form that for one or

more of the n variables, say X4, we have identically

f(Xl,...*Xk-, 0, 'NXk+is ** -n) = f(X 1....Xk-ls1,-PXk+lJP

.. Xn)so that under no ocnditions does the value of

the function depend on the value of Xk
Hence we have the theorem:

Theorem: The number of functions of n variables or

less is 22n

To find the number of functions which actually

involve n variables we proceed as follows. Let j(n) be

the required number. Then by the theorem just given:
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. 2 n =n2n=& (R) (k)

where ( ) : nt/k (n-k)t, is the number of combinations

of n things taken k at a time. Solving for (n) gives:

$(n) = 2n n (R)$(k)
k=0

By substituting for (n-l) on the right the similar

expression found by replacing n by n-1 in this equation,

x then similarly substituting for $(n-2) in the expres-

sion thus obtained, etc, an equation may be obtained

involving only 9(n). This equation may then be sim-

plified to the forms

(n) = k4= n k)2k ln-kj

As n increases this expression approaches its leading

term 22 asyrdptotically. The error in using only this

term for n = 5 is less than .01%.

We shall now determine those functions of n

variables which require the most relay contacts to re-

alize, and find the number of contacts required. In

order to do this, it is necessary to define a function

of two variables known as the sum modulo two or dis-

junct of the variables. This function is written

X 1t2 and is defined by the equation:

X =X X1 + X 2
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It is easy to show that the sum modulo two obeys the

commutative, associative, and the distribitive law

with respect to multiplication, i.e.

. X 2 = X 2 fX1

(x eX 2 )*X3  Xie(kX 3 )

x1 (X 2 X 3 ) X1 X2Ox1X3

Also:

x 1 100 Z-

1 1

Since the sum modulo two obeys the associative law,

we may omit parentheses in a sum of several terms

without ambiguity. The sum modulo two of the n vari-

ables XlX2 'o'Xn will for convenience be written:

n
x 1 X2*X3---X n =xa

Theorem: The two functions of n Variables which re-

quire the most elements (relay contacts) in a series-

parallel realization are 4xand ( X1 )t, each of which

requires (3 *2n-1 2 ) elements.
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This will be proved by mathematical induction.

First note that it is true for n = 2. There are 10

functions of 2 variables, namely, XY, X+Y, Xty, Xt+Y,

XY', X+Yt, XYt, X1+Y', XY + X'Y, XY+X'Y'. All of

these but the last two require two elements; the last

two require four elements and are XOY and (Xfy)t

respectively. Thus the theorem is true for n = 2.

Now assuming it true for n-1, we shall prove it true

for n and thus complete the induction. Any function

of n variables may be written by (10a):

f(X 1 ,X 2 *'''Xn) X'f(l'X2  'Xn) + Xtf(DX200 (9

Now the terms f(l,X2 ...Xn) and f(OX2 .*Xn) are fanc-

tions of n-l variables, and if they individually re-

quire the most elements for n-1 variables, then f will

require the most elements for n variables, providing

there is no other method of writing f so that less

elements are required. We have assumed that the most

elements for these n-1 variables are required by
n

Xk and ( 2Xk) ' If we therefore substitute for
n

f (,IX..X ) the functionEX and for f(O,X''x)
f, 2 .. nXn)2 k 2 n

the function (2Xk)t We
2

nn n
f = X Xk .X2Xk = 2Xk

'2 a1
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From the symetry of this function there is no other way

of expanding which will reduce the number of elements.

If the functions are substituted in the other order,

we get:
n n n

.f = X Xk)t + X{Z2 Xk 2k

This completes the proof that these functions require

the most elements. To show that each requires ( 3 *2 n-1- 2 )

elements, let the number of elements required be de-

noted by s(n). Then from (19) we get the difference

equation:

S(n) : 2a(n-1) + 2

with s(2) = 4. This is linear, with constant coeffi-

cients, and may be solved by the usual methods (5).

The solution is:

s(n) = 3 .2n-1-2
as may be easily verified by substituting in the dif-

ference equation and boundary condition.

Note that the above only applies to a series-

parallel realization. In a later section it will be
n

shown that the function2Xk and its negative may be

realized with 4(n-1) elements using a more general

type of circuit. The function requiring the most

elements using any type of circuit has not as yet

been determined.
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Dual Networks. The negative, of any network mayv be

found by De Morgan's theorem, but the network must

first be transformed into an equivalent series-paralael

circuit (unless it is already of this type). A theorem

will be developed with which the negative of any planar

two-terminal circuit may be found directly. As a coro-

llary a method of finding a constant current ci'rcuit

equivalent to a given constant voltage circuit and

vice versa will be given.

Let N represent a planar network of hinder-

ances, with the function Xab between the terminals

a and b which are on the outer edge of the network.

For definiteness consider the network of Fig. 17

(here the hinderances are shown merely as lines).

Now let M represent the dual of N, as found by the

following process; for each ccntour or mesh of N

assign a node or junction point of M. For each

element of N say Xk, separating the contours r and

s there corresponds an element X' connecting the
k

nodes r and s of M. The area exterior to N is to

be considered as two meshes, c and d, corresponding

to nodes a and d of M. Thus the dual of Fig. 17 is

the network of Fig. 18.
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mesh c c

8 R' TO
R T . S'

ab

W Y W Y'

mesh dd
Fig. 17 Fig. 18

Theorem: If M and N beer this duality relationship,

then Xab rnX1cd

To prove this, let the networks M and N be

superimposed, the nodes of M within the corresponding

meshes of M and corresponding elements crossing. For

the network of Fig. 17, this is shown in Fig. 19,

with N in black and M in red. Incidentally, the

easiest method of finding the dual of a network

(whether of this type or an impedance network) is to

draw the required network superimposed on the given

network. Now, if Xab : 0, then there must be some

path from a to b along the lines of N such that every

element on this path equals zero. Bat this path repre-

sents a path across M dividing the circuit from c to d

along Wliich every element of M is one. Hence X

Similarly, if XadO= 0, then Xab 1, and it follows that

Xab d

a b

d

Fig* 19
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In a eonstant-voltage relay system all the

relays are in parallel across the line. To open a

relay a series connection is opened. The general con-

stant-voltage system is shown in Fig. 20. In a constant-

current system the relays are all in series in the line.

To de 4operate a relay, it is short circuited. The gen-

eral constant-current circuit corresponding to Fig. 20

is shown in Fig. 21. If the relay Yk of Fig. 21 is

to be operated whenever the relay Xk of Fig. 20 is

operated and not otherwise, then evidently the hin-

derance in parallel with Yk which shorts it out must

be the negative of the hinderance in series with

Xk which connects it across the voltage source. If

this is true for all the relays, we shall say that the

constant-current and constant-voltage systems are equiv-

alent. The above theorem may be used to find equivalent

circuits of this sort. For, if we make the networks

N and M of Figs. 20 and 21 duals in the sense described,

then the condition will be satisfied.

constant voltage
source.

X2 Constant
I current M

N source.

Xn Yn

Fig. 20 Fi g. 21
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A simple example of this is shown in Figs. 22 and 23.

E

U
x

z

I

Fig. 22

' Y

T'

h'r3
Fig. 23

Synthesis of the General Symetric Function. As ha s

been shown, any function represents explicitly a

series-parallel circuit. The series-parallel realiza-

tion may require more elements, however, than some

other circuit representing the same function. In

this section a method will be given for finding a cir-

cuit representing a certain type of function which

in general is much more economical of elements than

the best series-parallel circuit. This type of func-

tion frequently appears in relay circuits and is of

much importance.

A function of the n variables X1 , X2 .OO.Xn

is said to be symmetric in these variables if any

interchange of these variables leaves the function
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identically the same. Thus XY + XZ + YZ is symmetric

in the variables X, Y, and Z. Since any permutation

of variables may be obtained by successive interchanges

of two variables, a necessary and sufficient condition

that a function be symmetric is that any interchange

of two variables leaves the function unaltered.

We now give a theorem which forms the basis

of the method of synthesis to be described.

Theorem: The necessary and sufficient condition

that a function be symmetric is that it may be speci-

fied by stating a set of numbers a,, a2,.....ak such

that if exactly aj (j = 1, 2, 3,...k) of the variables

are zero,then the function is zero and not otherwise.

This follows easily from the definition. For the ex-

ample given these numbers are 2 and 3.

Theorem: There are 2 n+1 symmetric functions of n

variables. For every selection of a set of numbers

from the numbers 0, 1, 2,....n corresponds to one and

only one symmetric function. Since there are n+1 numbers

each of which may be either taken or not in our selec-

tion, the total number of functions is 2n+1 Two of

these functions are trivial, however, namely the so-

lections in which none and all of the numbers are

taken. These give the "functions"l and 0 respectively.



41

By proper selection of the varialbes many

apparently unsymmetric functions may be made symmetric.

For example, XY'Z + X'YZ + X'Y'Z', although not symmetric

in X, Y, and Z, is symmetric in X, Y, and Z.

The set of numbers a1 , a ,....ak will for con-

venience be called the a-numbers of the function.

The theorems concerning combinations of symmetric

functions are most easily stated in terms of the

classes of a-numbers. For this reason we denote the

class of a-numbers by a single letter A. If two differ-

ent sets of a-numbers are under consideration they will

be denoted by A1 and A2 . The symmetric function of n

variables having the a-numbers a1 , a21**ak will be

written Sn(a2, 2...ak) or Sn(A)*

Theorem: Sn(Al). Sn(A2) = Sn 1 + A2)

where A1 +A 2 means the logical sum of the classes A1

and A2 i.e., the class of those numbers which are members

of-either A1or A2 or both. Thus 86(1, 2, 3). 86(2, 3, 5)

is equal to S6(1, 2, 3, 5),

Theorem: Sn (A1 ) + Sn(AS) * n(A16A2)

where AjwA 2 is the logical producb of the 6lasses i.e.,

the class of numbers which are common to A1 and A2 . Thus

86(1, 2, 3) + S6 (2, 3, 5)-c 86(2, 3).

These theorems follow from the fact that a product is
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zero if either factor is zero, while a sum is zero only

if both terms are zero. The negative of a set of a-numbers

will be written A' and means the class of all the numbers

from 0 to- n inclusive which are not members of A. Thus

if A is the set of numbers 2, 3, and 5, and n s 6 then

A' is the set of numbers 0, 1, 4, and 6.

Theorem: Sn(A') S(A)

These theorems are useful if several symmetric functions

are to be obtained simultaneously.

Before we study the synthesis of a network for

the general symmetric function consider the circuit a-b

of Fig. 24. This circuit represents 83(2).

X3
x

2

XA

a00 0
X1 X' X'
X 2 3

Fig. 24

The line coming in at a first encounters a pair of

hinderances X and X1. If X, = 0, the line is switched
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up to the level marked 1, meaning that 1 of the variables

is zero. If X 1, the line stays on the level marked

0; next hinderances X and Xf are encountered. If X2

is aero, the line is switched up a level; if not, it

stays at the same level. Finally reaching the right

hard set of terminals the line has been switched up

to a level representing the number of variables which

are dqual to zero. Terminal b is connected to level

2 and therefore the circuit a-b will be completed if

and only if 2 of the variables are zero. Thus the

function 33(2) is represented. If 33(0,3) had been

desired, terminal b would be connected to both levels

0 and 3. In figure 24 certain of the elements are

evidently superfluous. The circuit may be simplified

to the form of Fig. 25.

a b

X2X

X X3

X1

Fig. 25

For the general function exactly the same

method is followed. Using the general circuit for n
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variables of Fig. 26, the terminal b is connected t the

levels corresronding to the a-numbers of the desired

symmetric function. In Fig. 26 the hinderances are

represented bY simple lines, and the letters are omitted

from the circuit, but the hinderence of each line may

easily be seen by generalizing Fig. 24.

NOTE: All sloping lines
have hinderance of the
variable written below;
horizontal lines have
negative of this hinder-
ance.

n

(n-1)

2

to a-
numbers

0a

x1 X2 X3 000* ..... Xn

Fig. 26

After terminal b is connected, all superfluous ele-

ments may be deleted.

In certain cases it is possible to greatly

simplify the circuit by shifting the levels down.

Suppose the function S6(0,3,6) is desired. Instead

of continuing the circuit up to the 6th level, we
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connect the 2nd level back down to the zero level as

shown in Fig. 27. The zero level then also becomes

the 3rd level and the 6th level.

2,5

1,4

0,3,6
b

x x2 X3 X4 X5 x6Fig. 27

With terminal b connected to this level, we have rea-

lized the function with a great saving of elements.

Eliminating unnecessary elements the circuit of Fig. 28

is obtained. This device is especially useful if the

a-numbers form an arithmetic progression, although it

can sometimes be applied in other cases. The functions
n n

Z 2 Xk and (12Xk)t which were shown to require the Must
1 1

elements for a series-parallel realization have very

simple circuits when developed in this manner. It
n

can be easily shown that if n is eventhen2&Xk is

the symmetric function with all the even numbers

for a-numbers, if n is odd it has all the odd numbers
n

for a-numbers. The function EXk) is, of course,

just the opposite. Using the shifting down process
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the circuits are as shown in Fig. 29.

Ob
xi X2 X3 - 4, 5 X6

Fig. 28

SX3n................X-1 
n

n
Z2 Xk for n odd; (
1

xi X2 X3n

22 Xk for n even; (
1

n

-- b

nxn-l xn

:2 Xk)' for n odd.
1

g. 29

These circuits each require 4(n-1) elements. They

will be recognized as the familiar circuit for con-

trolling a light from n points. If at any one of the

points the position of the switch is changed, the

total number of variables which equal$ zero is changed

by one, so that if the light is on, it will be turned

off and if already off, it will be turned on.
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The general network of Fig. 26 contains n(n + 1)

elements. It can be shown that for any given selection

of a-numbers at least n of the elements will be super-

fluous. It follows that any symmetric function of n

variables can be realized with at most n elements.

Equations from Given Operating Characteristics. In gen-

eral, there is a certain set of independent variables

A, B, C,... which may be switches, externally operated

or protective relays. There is also a set of dependent

variables x, y, z.... which represent relays, motors or

other devices to be controlled by the circuit. It is

required to find a network which gives for each possible

comblination of values of the independent variables, the

correct values for all the dependent variables. The

following principles give the general method of solu-

tion.

1. Additional dependent variables must be

introduced for each added phase of operation of a

sequential system. Thus if it is desired to construct

a system which operates in three steps, two additional

variables must be introduced to represent the beginning

of the last two steps. These additional variables

may represent contacts on a stepping switch or relays

which lock in sequentially. Similarly each required

time delay will require a new variable, representing
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a time delay relay of some sort. Other forms of relays

which may be necessary will usually be obvious from

the nature of the problem.

2. The hinderance equations for each of the

dependent variables should now be written down. These

functions may involve any of the variables, dependent

or independent, including the variable whose function

is being determined (as, for example, in a look in

circuit). The conditions may be either conditions

for operation or for non-operation. Equations are

written from operating characteristics according to

Table II. To illustrate the use of this table sup-

pose a relay A is to operate if x is operated and y

or z is operated and x or w or z is not operated.

The expression for A will be:

A = x + yz + x'w'tZ

Lock in relay equations have already been discussed.

It does not, of course, matter if the same conditions

are put in the expression more than once--all super-

fluous material will disappear in the final simplifi-

cation.

3. The expressions for the various dependent

variables should next be simplified as much as possible

by means of the theorems on manipulation of these quan-

tities. Just how much this can be done depends somewhat
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TA BLE II

RELATION OF OPERATING CHARACTERISTICS AND EQUATIONS

In Terms of Operation

The switch or relay
X is operated.

If.

The switch or relay
X is not operated.

Or.

And.

The circuit (--) is not
closed, or apply De
Morgan's Theorem.

In Terms of Non-Operation

The switch or relay X
is not operated.

If.

The switch or relay X
is operated.

And.

or.

The circuit (--) is
closed, or apply De
Morgan's Theorem.

Symbol

x

+



on .the ingenuity of the designer.

4. The resulting circuit should now be

drawn. Any necessary additions dictated by practical

considerations such as current carrying ability, so-

quence of contact operation, etc., should be made.
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V Illustrative Examples

In this section several problems will be

solved with the methods which have been developed.

The. examples are intended more to show the versatil-

ity of relay and switching circuits and to illustrate

the use of the calculus in actual problems than to des-

cribe practical devices.

It is possible to perform complex mathematical

operations by means of relay circuits. Numbers may be

represented by the positions of relays or stepping

switches, and interconnections between sets of relays

can be made to represent various mathematical opera-

tions. In fact, any operation that can be completely

described to the required accuracy (if numerical) in

a finite number of steps using the words "if'," "or,"

"and," etc. (see Table II) can be done automatically

with relays. The last two examples are illustrations

of mathematical operations accomplished with relays.



A Selective Circuit

A relay A is to operate when any one, any

three or when all four of the relays w, x, y, and z

are operated. The hinderance function for A will

evidently be:

A = wxys + wtxty* + wixy'. + w'xya' + wx'y's +

wxjyat + wxyta

Reducing to the simplest series-parallel form:

A a w~x(y* + yat) + xl(yt* + yat)) + wI[x(yts + yeT')

+ xty]

This circuit is shown in Fig. 30. It requires 20 ele-

ments.

*1*-
W WI

xf x

y y' y y' y y- y
a--0

Zr ' zz z Iz Z

A

Fig. 30

However, using the symmetric function method, we may

write for As

A = S4(1, 3, 4)
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w x yz

Fig. 31

This circuit contains only 15 elements. A still fur-

ther reduction may be made with the following device.

First writes

A - 1 4(0,2)

This has the circuit of Fig. 32. What is required is

the negative of this function. This is a planar net-

work and we may apply the theorem on the dual of a net-

work, thus obtaining the circuit shown in Fig. 33.

_ A'

+ - : --

w y z

Fig. 32

This contains 14 elements and is probably the most econom-

ic.al circuit of any sort.
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W Xl

WI

Fig, 33

a



Design of an Electric Oomtination Lock

An electric lock is to be constructed with

the following characteristics. There are to be 5 push

button switches available on the front of the lock.

These will be labeled a, b, c, d, e. To operate the

lock the buttons must be pressed in the following

order - c, b, a and c simultaneously, d. When operated

in this sequence the lock is to be unlocked, but if any

button is pressed incorrectly an alarm U is to operate.

To relock the system a switch g must be operated. To

release the alarm once it has started a switch h must

be operated. This being a sequential system either a

stepping switch or additional sequential relays are

required. Using sequential relays let them be denoted

by w, x, y, and z corresponding respectively to the

correct sequence of operating the push buttons. An

additional time delay relay is also required due to

the third step in the operation. Obviously, even

in correct operation a and c cannot be pressed at ex-

actly the same time, but if only one is pressed and

held down the alarm should operate. Therefore assume

an auxiliary time delay relay v which will operate

if either a or c alone is pressed at the end of step 2

and held down longer than time a the delay of the relay.
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When z has operated the lock unlocks and at this point

let all the other relays drop out of the circuit. The

equations of the system may be written down immediately:

W U OW + *t + Ut

x = bx + + U'

y (a + c)y + x + *t + U'

a fd + y)+ gt + U

v x x + yT + ac + slat + &t + U

U = e(wt + abd)(w + xt + ad)(x + y' + dv(t-s))(y + b)f

+ ht + *t

These expressions can be simplified considerably, first

by combining the se~cond and third factors in the first

term of U, and then by factoring out the common terms

of the several functions. The final simplified form

is as below:

U : ht + e[ad(b+w') + xt](x + y, + dv)(y + b)U

W =ow

a +V4bx + w V

y +(a+c)y

V yt+ac+atol

a g' +(y + 46 -U'

This corresponds to the circuit on the following page.
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A Vote Counting Circuit

A circuit is to be constructed with the follow-

ing Properties. There are to be thirteen lights, marked

0, 1, 2 ...12 and twelve two-position switches, x1 , X2 ***

x1, one for each voter, each marked with two possible

votes, yes or no. There is also a control button C.

The lights are to count the number of tyest votes*

If 5 voters move their switches to the 'yes' position

and the remaining 7 vote 'no,' the light marked 5 is

to light up providing the control button C is pressed,

and similarly for any number of votes.

This is clearly an application of symmetric

functions discussed previously. If we represent the

lights by the symbols L0 , L1 , ... L12 , the the equa-

tions of the system will evidently be:

Lk 2C + s1 2 (k) k = 0, 1, .... 12

The circuit representing this system according to the

symmetric function development will be#

L

LA

1  x2  ......... X1 2

Fig. 35
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Electric Adder to the Base Two

A circuit is to be designed that will automat-

ically add two numbers, using only relays and switches.

Although any numbering base could be used the circuit is

greatly simplified by using the scale of two. Each digit

is thus either 0 or 1; the number whose digits in order

are ak, ak-l, ak ,-2, .. a2 , a1 , a0 has the value
k
2: 2J. Let the two numbers which are to be added be
j=O J

represented by a series of switches,ak, ak-l '_''k la

representing the various digits of one of the numbers

and ,b .... bl, bo the digits of the other.number.

The sum will be represented by the positions of a set

of relays sk'+1*, Sk' 3k-1 .... 94,s 0. A number which

is carried to the jth column from the (j-l)th column

will be represented by a relay c * If the value of

any digit is zero, the corresponding relay or switch

will be taken to be in the position of zero hinderance;

if one, in the position where the hinderance is one.

The acatual addition is shown below:

0k+l 0k 0j+li (32 0 1  carried numbers

ak ----- aa2+1 aI ---- 2a ao 1st number

bk b elb i b2 bto .2nd number

k+1 Sk S j S2 SlSO Sum
Is



starting from the right, so is one if so is one and bo

is zero or if ao is zero and bo one but not otherwise.

Hence:

s o b6 + a bo = soED be

0 is one if both so and bo are one but not otherwise.

a, Zs bo

6 is one if just one of a1 , b1 , Oj is one, or if all

three are one.

5 ~ 83(l~3) variables (as, b , el

cj+j is one if two or if three of these variables are one.

aJ+1 =3(2, 3) variables [a1 , b . ]
sI

Using the method of symmetric functions, and shift-

ing down for s gives the circuits of Fig. 36.

in 1, 2, .... k

4.

cj+a

a bg.C3

Fig. 36

j = O

ci

ao bo
--- 4



Eliminating superfluous elements we arrive at Fig. 37.

Cj+1

b

c C;i

+ a

a b

Fig. 37
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A Factor Table Machine

A machine is to be designed which will auto-

matically print a table of factors and primes of all

the integers from 1 to 100,000,000. If a number is

prime, it is to be so marked; if composite, its least

factor is to be printed beside it. The principle

which will be used is that of the sieve of Eratosthenes

(6). Let the natural numbers be written in order;

1, 2, 3, 4, 5, 6, 7, 8,............

Now consider the prime numbers in ordar, 2, 3, 5, 7,

11, 13, 17..... Each 2nd number after 2 in the row of

natural numbers has the least prime factor 2; each

third number after 3 which is not a multiple of 2 has the

least prime factor 3; each 5th number after 5 not divis-

ible by 2 or 3 has the least prime factor 5, etc. Any

number P not having a prime factor less than itself

is, of course, a prime. It is customary in tables

of this sort to omit numbers divisible by 2, 3, or 5

thus reducing the number of integers which need be

considered to 4/15 of the largest number N (108 in

this case). It should also be noted that any composite

number less than or equal to N has a least factor less

than or equal to rN. Thus in our case only primes

less than 10,000 need be considered in the filtering
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process described. The asymptotic formula N/in N

(for the number of primes less than N) shows that

there are about 1000 primes less than 10,000. Let

each of these primes after 5 be represented by a

counter Ck with the following properties. There are

three magnets, M2 , 1M 4 , and M6 . When M2 operates all

the counters are advanced 2 units; M4 and M6 advance

the counters 4 and 6 units respectively. The purpose

of these magnets is to automatically omit numbers

divisible by 2, 3, and 5. Note that starting with 1

the next number not divisible by 2, 3, or 5 is 7,

an advance of 6; the next advance is 4 (to 11), then

2 (to 13). The total cycle of advances is as follows:

6, 4, 2, 4, 2, 4, 6, 2 (1)

after which the same series is repeated (the period

is 30, the least common multiple of 2, 3, and 5).

As the successive numbers are considered for factors

or primality, the counters will advance according to

this sequence. When any counter Ck representing the

prime Pk reeches the value of this prime it is to be

so constructed that it automatically makes a connec-

tion Xk. Each counter is to have a return magnet R ,

which when activated returns the counter to zero. The

general operation of the device will then be as follows.

Starting at the number 1 (the counter and printer
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representing the number being considered set at 1) and

with the counters representing the primes less than

10,000 all set at zero the counters are advanced accord-

ing to the sequence (1). If for any number N, Xk makes

contact, then Pk is a factor of N; the least Pk being

the least factor. If no Xk makes contact, N is a

prime. When any Xk makes contact, it is to be auto-

matically returned to zero by means of Rk. To record

the results a printer Uk should be associated with

each counter which will print the value of the prime

Pk opposite N when magnet Uk is activated. If N is a

prime, a printer S should print a symbol to call atten-

tion to the fact.

Although this entire design could be carried

out with relays alone, it is probably more economical

to construct the counters on mechanical principles,

and therefore only the control circuits will be des-

cribed. To automatically advance the numbers at

short intervals some kind of an impulse generator is

necessary. The simplest method of obtaining this is

to use a relay with a small time delay 8. If the

relay is labeled Z(t), then the contacts have a hinder-

ance function Z(t-3), and the connection Z(t) = Z'(t-S)

will give a series of impulses of period 28. The se-

quence of advances may be easily obtained with an 8
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point rotary switch. Let this switch have a magnet L

which advances the switch one point when activated.

Then if We connect. L so that L = Z(t-5) and connect

the contacts of the rotary switch to the magnets M2,

M3 , and M 5 according to the order of (1), the counters

will all be advanced periodically in this sequence.

After the counters have advanced a step, certain of

the Xks will equal zero if the number is composite.

In this case these XkS should cause the smallest fac-

tor to print and then return to zero. This condition

will be satisfied by the following equations:

k-1
Uk =Xk X + z'(t-) k =1, 2, 3.....

Rk k + y(t-e) (2)

y(t)=5(t-8)

That is, the printer Uk operates if Xk = 0 and the X a,

j<k, do not equal zero. Also after a delay e to allow

for printing, the counter is returned to zero. If

none of the Xks make contact on a number N, it is a

prime and S should print. This can be accomplished

with the following equation:

S =(t-5) + X1

The main printer and counter N should print on each

number.



N a(t-8)

Using the method of factoring of simultaneous equations

the system (2) can be greatly simplified as follows:

U X

U2 (

U X3 + XI31

+ XI
2

U X
n....+ xfSn-

S- + XI
n

The circuit of the entire device is shown schematically

in Fig. 38.
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This design requires that the primes less

than 10,000 be known. If desired, the machine could

be made to automatically connect in new counters as

the primes were found, but there are many accurate

tables of primes up to 10,000 so that this would not

be necessary.

As to the practicability of such a device, it

might be said that J.P. Kulik spent 20 years in

constructing a table of primes up to 100,000,000 and

when finished it was found to contain so many errors

that it was not worth publishing. The machine described

here could probably be made to handle 5 numbers per

second so that the table would require only about 2

months to construct.
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